
RFC 9144
Comparison of Network Management Datastore
Architecture (NMDA) Datastores

Abstract
This document defines a Remote Procedure Call (RPC) operation to compare management
datastores that comply with the Network Management Datastore Architecture (NMDA).

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9144
Standards Track
December 2021
2070-1721

 A. Clemm
Futurewei

Y. Qu
Futurewei

J. Tantsura
Microsoft

A. Bierman
YumaWorks

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9144

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Clemm, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9144
https://www.rfc-editor.org/info/rfc9144
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Key Words

3. Data Model Overview

4. YANG Data Model

5. Example

6. Performance Considerations

7. IANA Considerations

7.1. Update to the IETF XML Registry

7.2. Update to the YANG Module Names Registry

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Possible Future Extensions

Acknowledgments

Authors' Addresses

1. Introduction
The revised NMDA introduces a set of new datastores that each hold YANG-defined data

 and represent a different "viewpoint" on the data that is maintained by a server. New
YANG datastores that are introduced include <intended>, which contains validated configuration
data that a client application intends to be in effect, and <operational>, which contains
operational state data (such as statistics) as well as configuration data that is actually in effect.

NMDA introduces, in effect, a concept of "lifecycle" for management data, distinguishing between
data that is part of a configuration that was supplied by a user, configuration data that has
actually been successfully applied and that is part of the operational state, and the overall
operational state that includes applied configuration data as well as status and statistics.

[RFC8342]
[RFC7950]

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 2

2. Key Words
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

As a result, data from the same management model can be reflected in multiple datastores.
Clients need to specify the target datastore to be specific about which viewpoint of the data they
want to access. For example, a client application can differentiate whether they are interested in
the configuration that is supplied to a server and is supposed to be in effect or the configuration
that has been applied and is actually in effect on the server.

Due to the fact that data can propagate from one datastore to another, it is possible for
differences between datastores to occur. Some of this is entirely expected, as there may be a time
lag between when a configuration is given to the device and reflected in <intended> until when it
actually takes effect and is reflected in <operational>. However, there may be cases when a
configuration item that was to be applied may not actually take effect at all or needs an
unusually long time to do so. This can be the case due to certain conditions not being met, certain
parts of the configuration not propagating because they are considered inactive, resource
dependencies not being resolved, or even implementation errors in corner conditions.

When the configuration that is in effect is different from the configuration that was applied,
many issues can result. It becomes more difficult to operate the network properly due to limited
visibility of the actual operational status, which makes it more difficult to analyze and
understand what is going on in the network. Services may be negatively affected (for example,
degrading or breaking a customer service), and network resources may be misallocated.

Applications can potentially analyze any differences between two datastores by retrieving the
contents from both datastores and comparing them. However, in many cases, this will be both
costly and extremely wasteful.

This document introduces a YANG data model that defines RPCs intended to be used in
conjunction with NETCONF or RESTCONF . These RPCs allow a client to
request a server to compare two NMDA datastores and report any differences.

[RFC6241] [RFC8040]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Data Model Overview
The core of the solution is a new management operation, <compare>, that compares the data tree
contents of two datastores. The operation checks whether there are any differences in values or
in data nodes that are contained in either datastore and returns any differences as output. The
output is returned in the format specified in YANG Patch .

The YANG data model defines the <compare> operation as a new RPC. The operation takes the
following input parameters:

[RFC8072]

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 3

source:

target:

filter-spec:

all:

report-origin:

differences:

The source identifies the datastore to serve as the reference for the comparison -- for
example, <intended>.

The target identifies the datastore to compare against the source -- for example,
<operational>.

This is a choice between different filter constructs to identify the parts of the
datastore to be retrieved. It acts as a node selector that specifies which data nodes are within
the scope of the comparison and which nodes are outside the scope. This allows a comparison
operation to be applied only to a specific part of the datastore that is of interest, such as a
particular subtree. Note that the filter does not allow expressions that match against data
node values, since this may incur implementation difficulties and is not required for normal
use cases.

When set, this parameter indicates that all differences should be included, including
differences pertaining to schema nodes that exist in only one of the datastores. When this
parameter is not included, a prefiltering step is automatically applied to exclude data from the
comparison that does not pertain to both datastores: if the same schema node is not present
in both datastores, then all instances of that schema node and all its descendants are excluded
from the comparison. This allows client applications to focus on the differences that constitute
true mismatches of instance data without needing to specify more complex filter constructs.

When set, this parameter indicates that origin metadata should be included as
part of RPC output. When this parameter is omitted, origin metadata in comparisons that
involve <operational> is by default omitted. Note that origin metadata only applies to
<operational>; it is therefore also omitted in comparisons that do not involve <operational>
regardless of whether or not the parameter is set.

The operation provides the following output parameter:

This parameter contains the list of differences. Those differences are encoded per
the YANG Patch data model defined in . When a datastore node in the source of the
comparison is not present in the target of the comparison, this can be indicated either as a
"delete" or as a "remove" in the patch as there is no differentiation between those operations
for the purposes of the comparison. The YANG Patch data model is augmented to indicate the
value of source datastore nodes in addition to the patch itself that would need to be applied to
the source to produce the target. When the target datastore is <operational> and the input
parameter "report-origin" is set, origin metadata is included as part of the patch. Including
origin metadata can help explain the cause of a difference in some cases -- for example, when
a data node is part of <intended> but the origin of the same data node in <operational> is
reported as "system".

The data model is defined in the ietf-nmda-compare YANG module. Its structure is shown in the
following figure. The notation syntax follows .

[RFC8072]

[RFC8340]

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 4

4. YANG Data Model
This YANG module includes references to , , , and .

Figure 1: Structure of ietf-nmda-compare

module: ietf-nmda-compare
 rpcs:
 +---x compare
 +---w input
 | +---w source identityref
 | +---w target identityref
 | +---w all? empty
 | +---w report-origin? empty
 | +---w (filter-spec)?
 | +--:(subtree-filter)
 | | +---w subtree-filter?
 | +--:(xpath-filter)
 | +---w xpath-filter? yang:xpath1.0 {nc:xpath}?
 +--ro output
 +--ro (compare-response)?
 +--:(no-matches)
 | +--ro no-matches? empty
 +--:(differences)
 +--ro differences
 +--ro yang-patch
 +--ro patch-id string
 +--ro comment? string
 +--ro edit* [edit-id]
 +--ro edit-id string
 +--ro operation enumeration
 +--ro target target-resource-offset
 +--ro point? target-resource-offset
 +--ro where? enumeration
 +--ro value?
 +--ro source-value?

[RFC6991] [RFC8342] [RFC8072] [RFC6241]

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 5

<CODE BEGINS> file "ietf-nmda-compare@2021-12-10.yang"

module ietf-nmda-compare {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-nmda-compare";
 prefix cmp;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore
 Architecture (NMDA)";
 }
 import ietf-yang-patch {
 prefix ypatch;
 reference
 "RFC 8072: YANG Patch Media Type";
 }
 import ietf-netconf {
 prefix nc;
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF)";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Author: Yingzhen Qu
 <mailto:yqu@futurewei.com>

 Author: Jeff Tantsura
 <mailto:jefftant.ietf@gmail.com>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>";
 description
 "The YANG data model defines a new operation, <compare>, that
 can be used to compare NMDA datastores.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 6

 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9144; see the
 RFC itself for full legal notices.";

 revision 2021-12-10 {
 description
 "Initial revision.";
 reference
 "RFC 9144: Comparison of Network Management Datastore
 Architecture (NMDA) Datastores";
 }

 /* RPC */

 rpc compare {
 description
 "NMDA datastore compare operation.";
 input {
 leaf source {
 type identityref {
 base ds:datastore;
 }
 mandatory true;
 description
 "The source datastore to be compared.";
 }
 leaf target {
 type identityref {
 base ds:datastore;
 }
 mandatory true;
 description
 "The target datastore to be compared.";
 }
 leaf all {
 type empty;
 description
 "When this leaf is provided, all data nodes are compared,
 whether their schema node pertains to both datastores or
 not. When this leaf is omitted, a prefiltering step is
 automatically applied that excludes data nodes from the
 comparison that can occur in only one datastore but not
 the other. Specifically, if one of the datastores
 (source or target) contains only configuration data and
 the other datastore is <operational>, data nodes for
 the config that is false are excluded from the
 comparison.";
 }
 leaf report-origin {
 type empty;
 description
 "When this leaf is provided, origin metadata is
 included as part of RPC output. When this leaf is
 omitted, origin metadata in comparisons that involve
 <operational> is by default omitted.";
 }

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 7

 choice filter-spec {
 description
 "Identifies the portions of the datastores to be
 compared.";
 anydata subtree-filter {
 description
 "This parameter identifies the portions of the
 target datastore to retrieve.";
 reference
 "RFC 6241, Section 6.";
 }
 leaf xpath-filter {
 if-feature "nc:xpath";
 type yang:xpath1.0;
 description
 "This parameter contains an XPath expression
 identifying the portions of the target
 datastore to retrieve.";
 reference
 "RFC 6991: Common YANG Data Types";
 }
 }
 }
 output {
 choice compare-response {
 description
 "Comparison results.";
 leaf no-matches {
 type empty;
 description
 "This leaf indicates that the filter did not match
 anything and nothing was compared.";
 }
 container differences {
 description
 "The list of differences, encoded per RFC 8072 with an
 augmentation to include source values where applicable.
 When a datastore node in the source is not present in
 the target, this can be indicated either as a 'delete'
 or as a 'remove' as there is no difference between
 them for the purposes of the comparison.";
 uses ypatch:yang-patch {
 augment "yang-patch/edit" {
 description
 "Provides the value of the source of the patch,
 respectively of the source of the comparison, in
 addition to the target value, where applicable.";
 anydata source-value {
 when "../operation = 'delete'"
 + "or ../operation = 'merge'"
 + "or ../operation = 'move'"
 + "or ../operation = 'replace'"
 + "or ../operation = 'remove'";
 description
 "The anydata 'value' is only used for 'delete',
 'move', 'merge', 'replace', and 'remove'
 operations.";
 }

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 8

5. Example
The following example compares the difference between <operational> and <intended> for a
subtree under "interfaces". The subtree contains a subset of objects that are defined in a YANG
data model for the management of interfaces defined in . For the purposes of
understanding the subsequent example, the following excerpt of the data model whose
instantiation is the basis of the comparison is provided:

The contents of <intended> and <operational> datastores in XML :

 reference
 "RFC 8072: YANG Patch Media Type";
 }
 }
 }
 }
 }
 }
}

<CODE ENDS>

[RFC8343]

container interfaces {
 description
 "Interface parameters.";
 list interface {
 key "name";
 leaf name {
 type string;
 description
 "The name of the interface.";
 }
 leaf description {
 type string;
 description
 "A textual description of the interface.";
 }
 leaf enabled {
 type boolean;
 default "true";
 description
 "This leaf contains the configured, desired state of the
 interface.";
 }
 }
}

[W3C.REC-xml-20081126]

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 9

<operational> does not contain an instance for leaf "description" that is contained in <intended>.
Another leaf, "enabled", has different values in the two datastores, being "true" in <operational>
and "false" in <intended>. A third leaf, "name", is the same in both cases. The origin of the leaf
instances in <operational> is "learned", which may help explain the discrepancies.

RPC request to compare <operational> (source of the comparison) with <intended> (target of the
comparison):

RPC reply when a difference is detected:

<!--INTENDED-->
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <name>eth0</name>
 <enabled>false</enabled>
 <description>ip interface</description>
 </interface>
</interfaces>

<!--OPERATIONAL-->
<interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">
 <interface or:origin="or:learned">
 <name>eth0</name>
 <enabled>true</enabled>
 </interface>
</interfaces>

<rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <compare xmlns="urn:ietf:params:xml:ns:yang:ietf-nmda-compare"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 <source>ds:operational</source>
 <target>ds:intended</target>
 <report-origin/>
 <xpath-filter
 xmlns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 /if:interfaces
 </xpath-filter>
 </compare>
</rpc>

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 10

The same request in RESTCONF (using JSON format):

The same response in RESTCONF (using JSON format):

<rpc-reply
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 message-id="101">
 <differences
 xmlns="urn:ietf:params:xml:ns:yang:ietf-nmda-compare"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">
 <yang-patch>
 <patch-id>interface status</patch-id>
 <comment>
 diff between operational (source) and intended (target)
 </comment>
 <edit>
 <edit-id>1</edit-id>
 <operation>replace</operation>
 <target>/ietf-interfaces:interface=eth0/enabled</target>
 <value>
 <if:enabled>false</if:enabled>
 </value>
 <source-value>
 <if:enabled or:origin="or:learned">true</if:enabled>
 </source-value>
 </edit>
 <edit>
 <edit-id>2</edit-id>
 <operation>create</operation>
 <target>/ietf-interfaces:interface=eth0/description</target>
 <value>
 <if:description>ip interface</if:description>
 </value>
 </edit>
 </yang-patch>
 </differences>
</rpc-reply>

[RFC7951]

POST /restconf/operations/ietf-nmda-compare:compare HTTP/1.1
Host: example.com
Content-Type: application/yang-data+json
Accept: application/yang-data+json

{ "ietf-nmda-compare:input" : {
 "source" : "ietf-datastores:operational",
 "target" : "ietf-datastores:intended",
 "report-origin" : null,
 "xpath-filter" : "/ietf-interfaces:interfaces"
 }
}

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 11

6. Performance Considerations
The <compare> operation can be computationally expensive. While responsible client
applications are expected to use the operation responsibly and sparingly only when warranted,
implementations need to be aware of the fact that excessive invocation of this operation will
burden system resources and need to ensure that system performance will not be adversely
impacted. One possibility for an implementation to mitigate against this is to limit the number of
requests that are served to a client, or to any number of clients, in any one time interval, by
rejecting requests made at a higher frequency than the implementation can reasonably sustain.

HTTP/1.1 200 OK
Date: Thu, 24 Jan 2019 20:56:30 GMT
Server: example-server
Content-Type: application/yang-data+json

{ "ietf-nmda-compare:output" : {
 "differences" : {
 "ietf-yang-patch:yang-patch" : {
 "patch-id" : "interface status",
 "comment" : "diff between intended (source) and operational",
 "edit" : [
 {
 "edit-id" : "1",
 "operation" : "replace",
 "target" : "/ietf-interfaces:interface=eth0/enabled",
 "value" : {
 "ietf-interfaces:interface/enabled" : "false"
 },
 "source-value" : {
 "ietf-interfaces:interface/enabled" : "true",
 "@ietf-interfaces:interface/enabled" : {
 "ietf-origin:origin" : "ietf-origin:learned"
 }
 }
 },
 {
 "edit-id" : "2",
 "operation" : "create",
 "target" : "/ietf-interfaces:interface=eth0/description",
 "value" : {
 "ietf-interface:interface/description" : "ip interface"
 }
 }
]
 }
 }
 }
}

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 12

URI:
Registrant Contact:
XML:

name:
namespace:
prefix:
reference:

While useful, tools such as YANG data models that allow for the monitoring of server resources,
system performance, and statistics about RPCs and RPC rates are outside the scope of this
document. When defined, any such model should be general in nature and not limited to the RPC
operation defined in this document.

7. IANA Considerations

7.1. Update to the IETF XML Registry
IANA has registered the following URI in the "IETF XML Registry" :

urn:ietf:params:xml:ns:yang:ietf-nmda-compare
The IESG.

N/A; the requested URI is an XML namespace.

7.2. Update to the YANG Module Names Registry
IANA has registered the following YANG module in the "YANG Module Names" registry :

ietf-nmda-compare
urn:ietf:params:xml:ns:yang:ietf-nmda-compare

cmp
RFC 9144

8. Security Considerations
The YANG module specified in this document defines a schema for data that is designed to be
accessed via network management protocols such as NETCONF or RESTCONF

. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-
implement secure transport is Secure Shell (SSH) . The lowest RESTCONF layer is HTTPS,
and the mandatory-to-implement secure transport is TLS .

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all
available NETCONF or RESTCONF protocol operations and content.

NACM specifies access for the server in its entirety, and the same access rules apply to all
datastores. Any subtrees to which a requestor does not have read access are silently skipped and
not included in the comparison.

The RPC operation defined in this YANG module, <compare>, may be considered sensitive or
vulnerable in some network environments. It is thus important to control access to this
operation. This is the sensitivity/vulnerability of RPC operation <compare>:

[RFC3688]

[RFC6020]

[RFC6241]
[RFC8040]

[RFC6242]
[RFC8446]

[RFC8341]

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 13

[RFC2119]

[RFC3688]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC6991]

[RFC7950]

[RFC7951]

[RFC8040]

[RFC8072]

[RFC8174]

Comparing datastores for differences requires a certain amount of processing resources at the
server. An attacker could attempt to attack a server by making a high volume of comparison
requests. Server implementations can guard against such scenarios in several ways. For one, they
can implement the NACM in order to require proper authorization for requests to be made.
Second, server implementations can limit the number of requests that they serve to a client in
any one time interval, rejecting requests made at a higher frequency than the implementation
can reasonably sustain.

9. References

9.1. Normative References

, , ,
, , March 1997,
.

, , , , ,
January 2004, .

,
, , , October

2010, .

, , , and ,
, , ,

June 2011, .

, , ,
, June 2011, .

, , ,
, July 2013, .

, , ,
, August 2016, .

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, , and , , ,
, February 2017, .

, , ,
, , May 2017,
.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Wasserman, M. "Using the NETCONF Protocol over Secure Shell (SSH)" RFC 6242
DOI 10.17487/RFC6242 <https://www.rfc-editor.org/info/rfc6242>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6991 DOI 10.17487/
RFC6991 <https://www.rfc-editor.org/info/rfc6991>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Lhotka, L. "JSON Encoding of Data Modeled with YANG" RFC 7951 DOI 10.17487/
RFC7951 <https://www.rfc-editor.org/info/rfc7951>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Bierman, A. Bjorklund, M. K. Watsen "YANG Patch Media Type" RFC 8072
DOI 10.17487/RFC8072 <https://www.rfc-editor.org/info/rfc8072>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 14

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8072
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8340]

[RFC8341]

[RFC8342]

[RFC8446]

[W3C.REC-xml-20081126]

[RFC8343]

 and , , , ,
, March 2018, .

 and , ,
, , , March 2018,

.

, , , , and ,
, , ,

March 2018, .

, , ,
, August 2018, .

, , , , and ,
,

, November 2008,
.

9.2. Informative References

, , ,
, March 2018, .

Appendix A. Possible Future Extensions
It is conceivable to extend the <compare> operation with a number of possible additional
features in the future.

Specifically, it is possible to define an extension with an optional feature for dampening. This will
allow clients to specify a minimum time period for which a difference must persist for it to be
reported. This will enable clients to distinguish between differences that are only fleeting from
ones that are not and that may represent a real operational issue and inconsistency within the
device.

For this purpose, an additional input parameter can be added to specify the dampening period.
Only differences that pertain for at least the dampening time are reported. A value of 0 or
omission of the parameter indicates no dampening. Reporting of differences
correspondingly be delayed by the dampening period from the time the request is received.

To implement this feature, a server implementation might run a comparison when the RPC is first
invoked and temporarily store the result. Subsequently, it could wait until after the end of the
dampening period to check whether the same differences are still observed. The differences that
still persist are then returned.

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-editor.org/
info/rfc8341>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Bray, T. Paoli, J. Sperberg-McQueen, M. Maler, E. F. Yergeau
"Extensible Markup Language (XML) 1.0 (Fifth Edition)" World Wide Web
Consortium Recommendation REC-xml-20081126 <https://
www.w3.org/TR/2008/REC-xml-20081126>

Bjorklund, M. "A YANG Data Model for Interface Management" RFC 8343 DOI
10.17487/RFC8343 <https://www.rfc-editor.org/info/rfc8343>

MAY

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 15

https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8446
https://www.w3.org/TR/2008/REC-xml-20081126
https://www.w3.org/TR/2008/REC-xml-20081126
https://www.rfc-editor.org/info/rfc8343

Acknowledgments
We thank , , , , ,

, , , and for their valuable feedback and
suggestions.

Rob Wilton Martin Bjorklund Mahesh Jethanandani Lou Berger Kent Watsen Phil
Shafer Ladislav Lhotka Tim Carey Reshad Rahman

Authors' Addresses
Alexander Clemm
Futurewei
2330 Central Expressway

, Santa Clara CA 95050
United States of America

 ludwig@clemm.org Email:

Yingzhen Qu
Futurewei
2330 Central Expressway

, Santa Clara CA 95050
United States of America

 yqu@futurewei.com Email:

Jeff Tantsura
Microsoft

 jefftant.ietf@gmail.com Email:

Andy Bierman
YumaWorks

 andy@yumaworks.com Email:

RFC 9144 NMDA Datastores December 2021

Clemm, et al. Standards Track Page 16

mailto:ludwig@clemm.org
mailto:yqu@futurewei.com
mailto:jefftant.ietf@gmail.com
mailto:andy@yumaworks.com

	RFC 9144
	Comparison of Network Management Datastore Architecture (NMDA) Datastores
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Key Words
	3. Data Model Overview
	4. YANG Data Model
	5. Example
	6. Performance Considerations
	7. IANA Considerations
	7.1. Update to the IETF XML Registry
	7.2. Update to the YANG Module Names Registry

	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Possible Future Extensions
	Acknowledgments
	Authors' Addresses

 Comparison of Network Management Datastore Architecture (NMDA) Datastores

 Futurewei

 2330 Central Expressway
 Santa Clara
 CA
 United States of America
 95050

 ludwig@clemm.org

 Futurewei

 2330 Central Expressway
 Santa Clara
 CA
 United States of America
 95050

 yqu@futurewei.com

 Microsoft

 jefftant.ietf@gmail.com

 YumaWorks

 andy@yumaworks.com

 Troubleshooting
 YANG RPC
 YANG Data Model

 This document defines a Remote Procedure Call (RPC) operation to compare management datastores that comply with the Network Management Datastore Architecture (NMDA).

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Key Words

 . Data Model Overview

 . YANG Data Model

 . Example

 . Performance Considerations

 . IANA Considerations

 . Update to the IETF XML Registry

 . Update to the YANG Module Names Registry

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . Possible Future Extensions

 Acknowledgments

 Authors' Addresses

 Introduction

 The revised NMDA introduces a set of new datastores that each hold YANG-defined data and represent a different "viewpoint" on the data that is maintained by a server. New YANG datastores that are introduced include <intended>, which contains validated configuration data that a client application intends to be in effect, and <operational>, which contains operational state data (such as statistics) as well as configuration data that is actually in effect.

 NMDA introduces, in effect, a concept of "lifecycle" for management data, distinguishing between data that is part of a configuration that was supplied by a user, configuration data that has actually been successfully applied and that is part of the operational state, and the overall operational state that includes applied configuration data as well as status and statistics.

 As a result, data from the same management model can be reflected in multiple datastores. Clients need to specify the target datastore to be specific about
 which viewpoint of the data they want to access. For example, a client application can differentiate whether they are interested in the configuration that is supplied to a server and is supposed to be in effect or the configuration that has been applied and is actually in effect on the server.

 Due to the fact that data can propagate from one datastore to another, it is possible for differences between datastores to occur. Some of this is entirely expected, as there may be a time lag between when a configuration is given to the device and reflected in <intended> until when it actually takes effect and is reflected in <operational>. However, there may be cases when a configuration item that was to be applied may not actually take effect at all or needs an unusually long time to do so. This can be the case due to certain conditions not being met, certain parts of the configuration not propagating because they are considered inactive, resource dependencies not being resolved, or even implementation errors in corner conditions.

 When the configuration that is in effect is different from the configuration that was applied, many issues can result. It becomes more difficult to operate the network properly due to limited visibility of the actual operational status, which makes it more difficult to analyze and understand what is going on in the network. Services may be negatively affected (for example, degrading or breaking a customer service), and network resources may be misallocated.

 Applications can potentially analyze any differences between two datastores by retrieving the contents from both datastores and comparing them. However, in many cases, this will be both costly and extremely wasteful.

 This document introduces a YANG data model that defines RPCs
 intended to be used in conjunction with NETCONF or RESTCONF . These RPCs allow a client to request a server to compare two NMDA datastores and report any differences.

 Key Words

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Data Model Overview

 The core of the solution is a new management operation, <compare>, that compares the data tree contents of two datastores. The operation checks whether there are any differences in values or in data nodes that are contained in either datastore and returns any differences as output. The output is returned in the format specified in YANG Patch .

 The YANG data model defines the <compare> operation as a new RPC. The operation takes the following input parameters:

 source:
 The source identifies the datastore to serve as the reference for the comparison -- for example, <intended>.
 target:
 The target identifies the datastore to compare against the source -- for example, <operational>.
 filter-spec:
 This is a choice between different filter constructs to identify the parts of the datastore to be retrieved. It acts as a node selector that specifies which data nodes are within the scope of the comparison and which nodes are outside the scope. This allows a comparison operation to be applied only to a specific part of the datastore that is of interest, such as a particular subtree. Note that the filter does not allow expressions that match against data node values, since this may incur implementation difficulties and is not required for normal use cases.
 all:
 When set, this parameter indicates that all differences should be included, including differences pertaining to schema nodes that exist in only one of the datastores. When this parameter is not included, a prefiltering step is automatically applied to exclude data from the comparison that does not pertain to both datastores: if the same schema node is not present in both datastores, then all instances of that schema node and all its descendants are excluded from the comparison. This allows client applications to focus on the differences that constitute true mismatches of instance data without needing to specify more complex filter constructs.
 report-origin:
 When set, this parameter indicates that origin metadata should be included as part of RPC output.
 When this parameter is omitted, origin metadata in comparisons that involve
 <operational> is by default omitted.
 Note that origin metadata only applies to <operational>; it is therefore also omitted in comparisons that do not involve <operational> regardless of whether or not the parameter is set.

 The operation provides the following output parameter:

 differences:
 This parameter contains the list of differences. Those differences are encoded per the YANG Patch data model defined in . When a datastore node in the source of the comparison is not present in the target of the comparison, this can be indicated either as a "delete" or as a "remove" in the patch as there is no differentiation between those operations for the purposes of the comparison.
The YANG Patch data model is augmented to indicate the value of source datastore nodes in addition to the patch itself that would need to be applied to the source to produce the target. When the target datastore is <operational> and the input parameter "report-origin" is set, origin metadata is included as part of the patch. Including origin metadata can help explain the cause of a difference in some cases -- for example, when a data node is part of <intended> but the origin of the same data node in <operational> is reported as "system".

 The data model is defined in the ietf-nmda-compare YANG
 module. Its structure is shown in the following figure. The notation syntax
 follows .

 Structure of ietf-nmda-compare

module: ietf-nmda-compare
 rpcs:
 +---x compare
 +---w input
 | +---w source identityref
 | +---w target identityref
 | +---w all? empty
 | +---w report-origin? empty
 | +---w (filter-spec)?
 | +--:(subtree-filter)
 | | +---w subtree-filter?
 | +--:(xpath-filter)
 | +---w xpath-filter? yang:xpath1.0 {nc:xpath}?
 +--ro output
 +--ro (compare-response)?
 +--:(no-matches)
 | +--ro no-matches? empty
 +--:(differences)
 +--ro differences
 +--ro yang-patch
 +--ro patch-id string
 +--ro comment? string
 +--ro edit* [edit-id]
 +--ro edit-id string
 +--ro operation enumeration
 +--ro target target-resource-offset
 +--ro point? target-resource-offset
 +--ro where? enumeration
 +--ro value?
 +--ro source-value?

 YANG Data Model

This YANG module includes references to , , ,
and .

module ietf-nmda-compare {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-nmda-compare";
 prefix cmp;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore
 Architecture (NMDA)";
 }
 import ietf-yang-patch {
 prefix ypatch;
 reference
 "RFC 8072: YANG Patch Media Type";
 }
 import ietf-netconf {
 prefix nc;
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF)";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Author: Yingzhen Qu
 <mailto:yqu@futurewei.com>

 Author: Jeff Tantsura
 <mailto:jefftant.ietf@gmail.com>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>";
 description
 "The YANG data model defines a new operation, <compare>, that
 can be used to compare NMDA datastores.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9144; see the
 RFC itself for full legal notices.";

 revision 2021-12-10 {
 description
 "Initial revision.";
 reference
 "RFC 9144: Comparison of Network Management Datastore
 Architecture (NMDA) Datastores";
 }

 /* RPC */

 rpc compare {
 description
 "NMDA datastore compare operation.";
 input {
 leaf source {
 type identityref {
 base ds:datastore;
 }
 mandatory true;
 description
 "The source datastore to be compared.";
 }
 leaf target {
 type identityref {
 base ds:datastore;
 }
 mandatory true;
 description
 "The target datastore to be compared.";
 }
 leaf all {
 type empty;
 description
 "When this leaf is provided, all data nodes are compared,
 whether their schema node pertains to both datastores or
 not. When this leaf is omitted, a prefiltering step is
 automatically applied that excludes data nodes from the
 comparison that can occur in only one datastore but not
 the other. Specifically, if one of the datastores
 (source or target) contains only configuration data and
 the other datastore is <operational>, data nodes for
 the config that is false are excluded from the
 comparison.";
 }
 leaf report-origin {
 type empty;
 description
 "When this leaf is provided, origin metadata is
 included as part of RPC output. When this leaf is
 omitted, origin metadata in comparisons that involve
 <operational> is by default omitted.";
 }
 choice filter-spec {
 description
 "Identifies the portions of the datastores to be
 compared.";
 anydata subtree-filter {
 description
 "This parameter identifies the portions of the
 target datastore to retrieve.";
 reference
 "RFC 6241, Section 6.";
 }
 leaf xpath-filter {
 if-feature "nc:xpath";
 type yang:xpath1.0;
 description
 "This parameter contains an XPath expression
 identifying the portions of the target
 datastore to retrieve.";
 reference
 "RFC 6991: Common YANG Data Types";
 }
 }
 }
 output {
 choice compare-response {
 description
 "Comparison results.";
 leaf no-matches {
 type empty;
 description
 "This leaf indicates that the filter did not match
 anything and nothing was compared.";
 }
 container differences {
 description
 "The list of differences, encoded per RFC 8072 with an
 augmentation to include source values where applicable.
 When a datastore node in the source is not present in
 the target, this can be indicated either as a 'delete'
 or as a 'remove' as there is no difference between
 them for the purposes of the comparison.";
 uses ypatch:yang-patch {
 augment "yang-patch/edit" {
 description
 "Provides the value of the source of the patch,
 respectively of the source of the comparison, in
 addition to the target value, where applicable.";
 anydata source-value {
 when "../operation = 'delete'"
 + "or ../operation = 'merge'"
 + "or ../operation = 'move'"
 + "or ../operation = 'replace'"
 + "or ../operation = 'remove'";
 description
 "The anydata 'value' is only used for 'delete',
 'move', 'merge', 'replace', and 'remove'
 operations.";
 }
 reference
 "RFC 8072: YANG Patch Media Type";
 }
 }
 }
 }
 }
 }
}

 Example

The following example compares the difference between <operational> and <intended> for a subtree under "interfaces". The subtree contains a subset of objects that are defined in a YANG data model for the management of interfaces defined in . For the purposes of understanding the subsequent example, the following excerpt of the data model whose instantiation is the basis of the comparison is provided:

container interfaces {
 description
 "Interface parameters.";
 list interface {
 key "name";
 leaf name {
 type string;
 description
 "The name of the interface.";
 }
 leaf description {
 type string;
 description
 "A textual description of the interface.";
 }
 leaf enabled {
 type boolean;
 default "true";
 description
 "This leaf contains the configured, desired state of the
 interface.";
 }
 }
}

The contents of <intended> and <operational> datastores in XML :

<!--INTENDED-->
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <name>eth0</name>
 <enabled>false</enabled>
 <description>ip interface</description>
 </interface>
</interfaces>

<!--OPERATIONAL-->
<interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">
 <interface or:origin="or:learned">
 <name>eth0</name>
 <enabled>true</enabled>
 </interface>
</interfaces>

<operational> does not contain an instance for leaf "description" that is contained in <intended>. Another leaf, "enabled", has different values in the two datastores, being "true" in <operational> and "false" in <intended>. A third leaf, "name", is the same in both cases. The origin of the leaf instances in <operational> is "learned", which may help explain the discrepancies.

RPC request to compare <operational> (source of the comparison) with <intended> (target of the comparison):

<rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <compare xmlns="urn:ietf:params:xml:ns:yang:ietf-nmda-compare"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 <source>ds:operational</source>
 <target>ds:intended</target>
 <report-origin/>
 <xpath-filter
 xmlns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 /if:interfaces
 </xpath-filter>
 </compare>
</rpc>

RPC reply when a difference is detected:

<rpc-reply
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 message-id="101">
 <differences
 xmlns="urn:ietf:params:xml:ns:yang:ietf-nmda-compare"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">
 <yang-patch>
 <patch-id>interface status</patch-id>
 <comment>
 diff between operational (source) and intended (target)
 </comment>
 <edit>
 <edit-id>1</edit-id>
 <operation>replace</operation>
 <target>/ietf-interfaces:interface=eth0/enabled</target>
 <value>
 <if:enabled>false</if:enabled>
 </value>
 <source-value>
 <if:enabled or:origin="or:learned">true</if:enabled>
 </source-value>
 </edit>
 <edit>
 <edit-id>2</edit-id>
 <operation>create</operation>
 <target>/ietf-interfaces:interface=eth0/description</target>
 <value>
 <if:description>ip interface</if:description>
 </value>
 </edit>
 </yang-patch>
 </differences>
</rpc-reply>

 The same request in RESTCONF (using JSON format):

POST /restconf/operations/ietf-nmda-compare:compare HTTP/1.1
Host: example.com
Content-Type: application/yang-data+json
Accept: application/yang-data+json

{ "ietf-nmda-compare:input" : {
 "source" : "ietf-datastores:operational",
 "target" : "ietf-datastores:intended",
 "report-origin" : null,
 "xpath-filter" : "/ietf-interfaces:interfaces"
 }
}

 The same response in RESTCONF (using JSON format):

HTTP/1.1 200 OK
Date: Thu, 24 Jan 2019 20:56:30 GMT
Server: example-server
Content-Type: application/yang-data+json

{ "ietf-nmda-compare:output" : {
 "differences" : {
 "ietf-yang-patch:yang-patch" : {
 "patch-id" : "interface status",
 "comment" : "diff between intended (source) and operational",
 "edit" : [
 {
 "edit-id" : "1",
 "operation" : "replace",
 "target" : "/ietf-interfaces:interface=eth0/enabled",
 "value" : {
 "ietf-interfaces:interface/enabled" : "false"
 },
 "source-value" : {
 "ietf-interfaces:interface/enabled" : "true",
 "@ietf-interfaces:interface/enabled" : {
 "ietf-origin:origin" : "ietf-origin:learned"
 }
 }
 },
 {
 "edit-id" : "2",
 "operation" : "create",
 "target" : "/ietf-interfaces:interface=eth0/description",
 "value" : {
 "ietf-interface:interface/description" : "ip interface"
 }
 }
]
 }
 }
 }
}

 Performance Considerations

The <compare> operation can be computationally expensive. While responsible client applications are expected to use the operation responsibly and sparingly only when warranted, implementations need to be aware of the fact that excessive invocation of this operation will burden system resources and need to ensure that system performance will not be adversely impacted. One possibility for an implementation to mitigate against this is to limit the number of requests that are served to a client, or to any number of clients, in any one time interval, by rejecting requests made at a higher frequency than the implementation can reasonably sustain.

While useful, tools such as YANG data models that allow for the	monitoring of server resources, system performance,
and statistics about RPCs and RPC rates are outside the scope of this document.
When defined, any such model should be general in nature and not limited to the RPC operation defined in this document.

 IANA Considerations

 Update to the IETF XML Registry
 IANA has registered the following URI in the "IETF XML Registry" :

 URI:
 urn:ietf:params:xml:ns:yang:ietf-nmda-compare
 Registrant Contact:
 The IESG.
 XML:
 N/A; the requested URI is an XML namespace.

 Update to the YANG Module Names Registry

 IANA has registered the following YANG module in the "YANG Module Names"
 registry :

 name:
 ietf-nmda-compare
 namespace:
 urn:ietf:params:xml:ns:yang:ietf-nmda-compare
 prefix:
 cmp
 reference:
 RFC 9144

 Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF or RESTCONF . The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) . The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS .

 The Network Configuration Access Control Model (NACM) provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 NACM specifies access for the server in its entirety, and the same access rules apply to all datastores.
Any subtrees to which a requestor does not have read access are silently
skipped and not included in the comparison.

 The RPC operation defined in this YANG module, <compare>, may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to this operation. This is the sensitivity/vulnerability of RPC operation <compare>:

 Comparing datastores for differences requires a certain amount of processing resources at the server. An attacker could attempt to attack a server by making a high volume of comparison requests. Server implementations can guard against such scenarios in several ways. For one, they can implement the NACM in order to require proper authorization for requests to be made. Second, server implementations can limit the number of requests that they serve to a client in any one time interval, rejecting requests made at a higher frequency than the implementation can reasonably sustain.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Using the NETCONF Protocol over Secure Shell (SSH)

 This document describes a method for invoking and running the Network Configuration Protocol (NETCONF) within a Secure Shell (SSH) session as an SSH subsystem. This document obsoletes RFC 4742. [STANDARDS-TRACK]

 Common YANG Data Types

 This document introduces a collection of common data types to be used with the YANG data modeling language. This document obsoletes RFC 6021.

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 JSON Encoding of Data Modeled with YANG

 This document defines encoding rules for representing configuration data, state data, parameters of Remote Procedure Call (RPC) operations or actions, and notifications defined using YANG as JavaScript Object Notation (JSON) text.

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 YANG Patch Media Type

 This document describes a method for applying patches to configuration datastores using data defined with the YANG data modeling language.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 World Wide Web Consortium Recommendation REC-xml-20081126

 Informative References

 A YANG Data Model for Interface Management

 This document defines a YANG data model for the management of network interfaces. It is expected that interface-type-specific data models augment the generic interfaces data model defined in this document. The data model includes definitions for configuration and system state (status information and counters for the collection of statistics).
 The YANG data model in this document conforms to the Network Management Datastore Architecture (NMDA) defined in RFC 8342.
 This document obsoletes RFC 7223.

 Possible Future Extensions
 It is conceivable to extend the <compare> operation with a number of possible additional features in the future.

 Specifically, it is possible to define an extension with an optional feature for dampening. This will allow clients to specify a minimum time period for which a difference must persist for it to be reported. This will enable clients to distinguish between differences that are only fleeting from ones that are not and that may represent a real operational issue and inconsistency within the device.

 For this purpose, an additional input parameter can be added to specify the dampening period. Only differences that pertain
 for at least the dampening time are reported.
 A value of 0 or omission of the parameter indicates no
 dampening.
 Reporting of differences MAY correspondingly be delayed by the dampening period from the time the request is received.

 To implement this feature, a server implementation might run a comparison when the RPC is first invoked and temporarily store the result. Subsequently, it could wait until after the end of the dampening period to check whether the same differences are still observed. The differences that still persist are then returned.

 Acknowledgments
 We thank , , , , , , , , and for their valuable feedback and suggestions.

 Authors' Addresses

 Futurewei

 2330 Central Expressway
 Santa Clara
 CA
 United States of America
 95050

 ludwig@clemm.org

 Futurewei

 2330 Central Expressway
 Santa Clara
 CA
 United States of America
 95050

 yqu@futurewei.com

 Microsoft

 jefftant.ietf@gmail.com

 YumaWorks

 andy@yumaworks.com

