
Internet Architecture Board (IAB) H. Tschofenig
Request for Comments: 7452 ARM Ltd.
Category: Informational J. Arkko
ISSN: 2070-1721 D. Thaler
 D. McPherson
 March 2015

 Architectural Considerations in Smart Object Networking

Abstract

 The term "Internet of Things" (IoT) denotes a trend where a large
 number of embedded devices employ communication services offered by
 Internet protocols. Many of these devices, often called "smart
 objects", are not directly operated by humans but exist as components
 in buildings or vehicles, or are spread out in the environment.
 Following the theme "Everything that can be connected will be
 connected", engineers and researchers designing smart object networks
 need to decide how to achieve this in practice.

 This document offers guidance to engineers designing Internet-
 connected smart objects.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Architecture Board (IAB)
 and represents information that the IAB has deemed valuable to
 provide for permanent record. It represents the consensus of the
 Internet Architecture Board (IAB). Documents approved for
 publication by the IAB are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7452.

Tschofenig, et al. Informational [Page 1]

RFC 7452 Smart Object Architectural Considerations March 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction . 2
 2. Smart Object Communication Patterns 4
 2.1. Device-to-Device Communication Pattern 4
 2.2. Device-to-Cloud Communication Pattern 6
 2.3. Device-to-Gateway Communication Pattern 7
 2.4. Back-End Data Sharing Pattern 9
 3. Reuse Internet Protocols 10
 4. The Deployed Internet Matters 13
 5. Design for Change . 14
 6. Security Considerations 16
 7. Privacy Considerations 18
 8. Informative References 19
 Appendix A. IAB Members at the Time of Approval 23
 Acknowledgements . 23
 Authors’ Addresses . 24

1. Introduction

 RFC 6574 [RFC6574] refers to smart objects as devices with
 constraints on energy, bandwidth, memory, size, cost, etc. This is a
 fuzzy definition, as there is clearly a continuum in device
 capabilities and there is no hard line to draw between devices that
 can run Internet protocols and those that can’t.

 Interconnecting smart objects with the Internet enables exciting new
 use cases and products. An increasing number of products put the
 Internet Protocol Suite on smaller and smaller devices and offer the
 ability to process, visualize, and gain insight from the collected
 sensor data. The network effect can be increased if the data
 collected from many different devices can be combined.

Tschofenig, et al. Informational [Page 2]

RFC 7452 Smart Object Architectural Considerations March 2015

 Developing embedded systems is a complex task, and designers must
 make a number of design decisions such as:

 o How long is the device designed to operate?

 o How does it interact with the physical world? Is it a sensor or
 actuator or both?

 o How many "owners" does it have? One? Many? Is the owner likely
 to change over the lifetime of the device?

 o Is it continuously or intermittently powered? Does it sleep?

 o Is it connected to a network, and if so, how?

 o Will it be physically accessible for direct maintenance after
 deployment? How does that affect the security model?

 While developing embedded systems is itself a complex task, designing
 Internet-connected smart objects is even harder since it requires
 expertise with Internet protocols in addition to software programming
 and hardware skills. To simplify the development task, and thereby
 to lower the cost of developing new products and prototypes, we
 believe that reuse of prior work is essential. Therefore, we provide
 high-level guidance on the use of Internet technology for the
 development of smart objects, and connected systems in general.

 Utilize Existing Design Patterns

 Design patterns are generally reusable solutions to a commonly
 occurring design problem (see [Gamma] for more discussion).
 Existing smart object deployments show communication patterns that
 can be reused by engineers with the benefit of lowering the design
 effort. As discussed in the sections below, individual patterns
 also have an implication on the required interoperability between
 the different entities. Depending on the desired functionality,
 already-existing patterns can be reused and adjusted. Section 2
 talks about various communication patterns.

 Reuse Internet Protocols

 Most smart object deployments can make use of the already-
 standardized Internet Protocol Suite. Internet protocols can be
 applied to almost any environment due to their generic design and
 typically offer plenty of potential for reconfiguration, which
 allows them to be tailored for the specific needs. Section 3
 discusses this topic.

Tschofenig, et al. Informational [Page 3]

RFC 7452 Smart Object Architectural Considerations March 2015

 The Deployed Internet Matters

 When connecting smart objects to the Internet, take existing
 deployment into consideration to avoid unpleasant surprises.
 Assuming an ideal, clean-slate deployment is, in many cases, far
 too optimistic since the already-deployed infrastructure is
 convenient to use. In Section 4, we highlight the importance of
 this topic.

 Design for Change

 The Internet infrastructure, applications, and preferred building
 blocks evolve over time. Especially long-lived smart object
 deployments need to take this change into account, and Section 5
 is dedicated to that topic.

2. Smart Object Communication Patterns

 This section illustrates a number of communication patterns utilized
 in the smart object environment. It is possible that more than one
 pattern can be applied at the same time in a product. Developers
 reusing those patterns will benefit from the experience of others as
 well as from documentation, source code, and available products.

2.1. Device-to-Device Communication Pattern

 Figure 1 illustrates a communication pattern where two devices
 developed by different manufacturers are desired to interoperate and
 communicate directly. To pick an example from [RFC6574], consider a
 light switch that talks to a light bulb with the requirement that
 each may be manufactured by a different company, represented as
 Manufacturer A and B. Other cases can be found with fitness
 equipment, such as heart rate monitors and cadence sensors.

 _,,,, ,,,,
 / -’‘‘ \
 | Wireless |
 \ Network |
 / \
 ,’’’’’’’’| / . ,’’’’’’’’|
 | Light | ------|------------------\------| Light |
 | Bulb | . | | Switch |
 |........’ ‘’- / |........’
 \ _-...-‘
 Manufacturer ‘. ,.’ Manufacturer
 A ‘ B

 Figure 1: Device-to-Device Communication Pattern

Tschofenig, et al. Informational [Page 4]

RFC 7452 Smart Object Architectural Considerations March 2015

 In order to fulfill the promise that devices from different
 manufacturers are able to communicate out of the box, these vendors
 need to agree on the protocol stack. They need to make decisions
 about the following protocol-design aspects:

 o Which physical layer(s) should be supported? Does it use low-
 power radio technologies (e.g., Bluetooth Smart, IEEE 802.15.4)?

 o Can devices be IPv6-only, or must they also support IPv4 for
 backward-compatibility reasons? What IPv4-IPv6 transition
 technologies are needed?

 o Which IP address configuration mechanism(s) is integrated into the
 device?

 o Which communication architectures shall be supported? Which
 devices are constrained, and what are those constraints? Is there
 a classical client-server model or rather a peer-to-peer model?

 o Is there a need for a service-discovery mechanism to allow users
 to discover light bulbs they have in their home or office?

 o Which transport-layer protocol (e.g., UDP) is used for conveying
 the sensor readings/commands?

 o Which application-layer protocol is used (for example, the
 Constrained Application Protocol (CoAP) [RFC7252])?

 o What information model is used for expressing the different light
 levels?

 o What data model is used to encode information? (See [RFC3444] for
 a discussion about the difference between data models and
 information models.)

 o Finally, security and privacy require careful thought. This
 includes questions like: What are the security threats? What
 security services need to be provided to deal with the identified
 threats? Where do the security credentials come from? At what
 layer(s) in the protocol stack should the security mechanism(s)
 reside? What privacy implications are caused by various design
 decisions?

 This list is not meant to be exhaustive but aims to illustrate that
 for every usage scenario, many design decisions will have to be made
 in order to accommodate the constrained nature of a specific device
 in a certain usage scenario. Standardizing such a complete solution

Tschofenig, et al. Informational [Page 5]

RFC 7452 Smart Object Architectural Considerations March 2015

 to accomplish a full level of interoperability between two devices
 manufactured by different vendors takes time, but there are obvious
 rewards for end customers and vendors.

2.2. Device-to-Cloud Communication Pattern

 Figure 2 shows a communication pattern for uploading sensor data to
 an application service provider. Often the application service
 provider (example.com in our illustration) also sells smart objects.
 In that case, the entire communication happens internal to the
 provider and no need for interoperability arises. Still, it is
 useful for example.com to reuse existing specifications to lower the
 design, implementation, testing, and development effort.

 While this pattern allows using IP-based communication end to end, it
 may still lead to silos. To prevent silos, example.com may allow
 third-party device vendors to connect to their server infrastructure
 as well. For those cases, the protocol interface used to communicate
 with the server infrastructure needs to be made available, and
 various standards are available, such as CoAP, Datagram Transport
 Layer Security (DTLS) [RFC6347], UDP, IP, etc., as shown in Figure 2.
 A frequent concern from end users is that a change in the business
 model (or bankruptcy) of the IoT device/service provide might make
 the hardware become unusable. Companies might consider the
 possibility of releasing their source code for the IoT device or
 allowing other IoT operating systems (plus application software) to
 be installed on the IoT device.

 Similarly, in many situations it is desirable to change which cloud
 service a device connects to, such as when an application service
 provider changes its hosting provider. Again, standard Internet
 protocols are needed.

 Since the access networks to which various smart objects are
 connected are typically not under the control of the application
 service provider, commonly used radio technologies (such as WLAN,
 wired Ethernet, and cellular radio) together with the network access
 authentication technology have to be reused. The same applies to
 standards used for IP address configuration.

Tschofenig, et al. Informational [Page 6]

RFC 7452 Smart Object Architectural Considerations March 2015

 | Application |
 | Service |
 | Provider |
 | example.com |
 |_______________|
 _, .
 HTTP ,’ ‘. CoAP
 TLS _,’ ‘. DTLS
 TCP ,’ ‘._ UDP
 IP -’ - IP
 ,’’’’’’’’’’’’’| ,’’’’’’’’’’’’’’’’’|
 | Device with | | Device with |
 | Temperature | | Carbon Monoxide |
 | Sensor | | Sensor |
 |.............’ |.................’

 TLS = Transport Layer Security

 Figure 2: Device-to-Cloud Communication Pattern

2.3. Device-to-Gateway Communication Pattern

 The device-to-cloud communication pattern, described in Section 2.2,
 is convenient for vendors of smart objects and works well if they
 choose a radio technology that is widely deployed in the targeted
 market, such as Wi-Fi based on IEEE 802.11 for smart home use cases.
 Sometimes, less-widely-available radio technologies are needed (such
 as IEEE 802.15.4) or special application-layer functionality (e.g.,
 local authentication and authorization) has to be provided or
 interoperability is needed with legacy, non-IP-based devices. In
 those cases, some form of gateway has to be introduced into the
 communication architecture that bridges between the different
 technologies and performs other networking and security
 functionality. Figure 3 shows this pattern graphically. Often,
 these gateways are provided by the same vendor that offers the IoT
 product, for example, because of the use of proprietary protocols, to
 lower the dependency on other vendors or to avoid potential
 interoperability problems. It is expected that in the future, more
 generic gateways will be deployed to lower cost and infrastructure
 complexity for end consumers, enterprises, and industrial
 environments. Such generic gateways are more likely to exist if IoT
 device designs make use of generic Internet protocols and not require
 application-layer gateways that translate one application-layer
 protocol to another one. The use of application-layer gateways will,
 in general, lead to a more fragile deployment, as has been observed
 in the past with [RFC3724] and [RFC3238].

Tschofenig, et al. Informational [Page 7]

RFC 7452 Smart Object Architectural Considerations March 2015

 This communication pattern can frequently be found with smart object
 deployments that require remote configuration capabilities and real-
 time interactions. The gateway is thereby assumed to be always
 connected to the Internet.

 | Application |
 | Service |
 | Provider |
 | example.com |
 |_______________|
 |
 |
 | IPv4/IPv6

 | Local |
 | Gateway |
 | |
 |_______________|
 _, .
 HTTP ,’ ‘. CoAP
 TLS _,’ Bluetooth Smart ‘. DTLS
 TCP ,’ IEEE 802.11 ‘._ UDP
 IPv6 -’ IEEE 802.15.4 - IPv6
 ,’’’’’’’’’’’’’| ,’’’’’’’’’’’’’’’’’|
 | Device with | | Device with |
 | Temperature | | Carbon Monoxide |
 | Sensor | | Sensor |
 |.............’ |.................’

 Figure 3: Device-to-Gateway Communication Pattern

 If the gateway is mobile, such as when the gateway is a smartphone,
 connectivity between the devices and the Internet may be
 intermittent. This limits the applicability of such a communication
 pattern but is nevertheless very common with wearables and other IoT
 devices that do not need always-on Internet or real-time Internet
 connectivity. From an interoperability point of view, it is worth
 noting that smartphones, with their sophisticated software update
 mechanism via app stores, allow new functionality to be updated
 regularly at the smartphone and sometimes even at the IoT device.
 With special apps that are tailored to each specific IoT device,
 interoperability is mainly a concern with regard to the lower layers
 of the protocol stack, such as the radio interface, and less so at
 the application layer (if users are willing to download a new app for
 each IoT device).

Tschofenig, et al. Informational [Page 8]

RFC 7452 Smart Object Architectural Considerations March 2015

 It is also worth pointing out that a gateway allows supporting both
 IPv6 and IPv4 (for compatibility with legacy application service
 providers) externally, while allowing devices to be IPv6-only to
 reduce footprint requirements. If devices do not have the resources
 to support both IPv4 and IPv6 themselves, being IPv6-only (rather
 than IPv4-only) with a gateway enables the most flexibility, avoiding
 the need to update devices to support IPv6 later, whereas IPv4
 address exhaustion makes it ill-suited to scale to smart object
 networks. See [RFC6540] for further discussion.

2.4. Back-End Data Sharing Pattern

 The device-to-cloud pattern often leads to silos; IoT devices upload
 data only to a single application service provider. However, users
 often demand the ability to export and to analyze data in combination
 with data from other sources. Hence, the desire for granting access
 to the uploaded sensor data to third parties arises. This design is
 shown in Figure 4. This pattern is known from the Web in case of
 mashups and is, therefore, reapplied to the smart object context. To
 offer familiarity for developers, typically a RESTful API design in
 combination with a federated authentication and authorization
 technology (like OAuth 2.0 [RFC6749]) is reused. While this offers
 reuse at the level of building blocks, the entire protocol stack
 (including the information/data model and RESTful Web APIs) is often
 not standardized.

Tschofenig, et al. Informational [Page 9]

RFC 7452 Smart Object Architectural Considerations March 2015

 | Application |
 .| Service |
 ,-‘ | Provider |
 .‘ | b-example.com |
 ,-‘ |_______________|
 .‘
 ,-‘
 | Application |-‘ HTTPS
 | Service | OAuth 2.0
 | Provider | JSON
 | example.com |-,
 |_______________| ’.
 _, ‘’,
 ,’ ’.
 _,’ CoAP or ‘’,
 ,’ HTTP ’. | Application |
 -’ ‘’| Service |
 ,’’’’’’’’| | Provider |
 | Light | | c-example.com |
 | Sensor | |_______________|
 |........’

 Figure 4: Back-End Data Sharing Pattern

3. Reuse Internet Protocols

 When discussing the need for reuse of available standards versus
 extending or redesigning protocols, it is useful to look back at the
 criteria for success of the Internet.

 RFC 1958 [RFC1958] provides lessons from the early days of the
 Internet and says:

 The Internet and its architecture have grown in evolutionary
 fashion from modest beginnings, rather than from a Grand Plan.

 And adds:

 A good analogy for the development of the Internet is that of
 constantly renewing the individual streets and buildings of a
 city, rather than razing the city and rebuilding it.

 Yet, because building very small, battery-powered devices is
 challenging, it may be difficult to resist the temptation to build
 solutions tailored to specific applications, or even to redesign
 networks from scratch to suit a particular application.

Tschofenig, et al. Informational [Page 10]

RFC 7452 Smart Object Architectural Considerations March 2015

 While developing consensus-based standards in an open and transparent
 process takes longer than developing proprietary solutions, the
 resulting solutions often remain relevant over a longer period of
 time.

 RFC 1263 [RFC1263] considers protocol-design strategy and the
 decision to design new protocols or to use existing protocols in a
 non-backward compatible way:

 We hope to be able to design and distribute protocols in less time
 than it takes a standards committee to agree on an acceptable
 meeting time. This is inevitable because the basic problem with
 networking is the standardization process. Over the last several
 years, there has been a push in the research community for
 lightweight protocols, when in fact what is needed are lightweight
 standards. Also note that we have not proposed to implement some
 entirely new set of ’superior’ communications protocols, we have
 simply proposed a system for making necessary changes to the
 existing protocol suites fast enough to keep up with the
 underlying change in the network. In fact, the first standards
 organization that realizes that the primary impediment to
 standardization is poor logistical support will probably win.

 While [RFC1263] was written in 1991 when the standardization process
 was more lightweight than today, these thoughts remain relevant in
 smart object development.

 Interestingly, a large number of already-standardized protocols are
 relevant for smart object deployments. RFC 6272 [RFC6272], for
 example, made the attempt to identify relevant IETF specifications
 for use in smart grids.

 Still, many commercial products contain proprietary or industry-
 specific protocol mechanisms, and researchers have made several
 attempts to design new architectures for the entire Internet system.
 There are several architectural concerns that deserve to be
 highlighted:

 Vertical Profiles

 The discussions at the IAB workshop (see Section 3.1.2 of
 [RFC6574]) revealed the preference of many participants to develop
 domain-specific profiles that select a minimum subset of protocols
 needed for a specific operating environment. Various
 standardization organizations and industry fora are currently
 engaged in activities of defining their preferred profile(s).

Tschofenig, et al. Informational [Page 11]

RFC 7452 Smart Object Architectural Considerations March 2015

 Ultimately, however, the number of domains where smart objects can
 be used is essentially unbounded. There is also an ever-evolving
 set of protocols and protocol extensions.

 However, merely changing the networking protocol to IP does not
 necessarily bring the kinds of benefits that industries are
 looking for in their evolving smart object deployments. In
 particular, a profile is rigid and leaves little room for
 interoperability among slightly differing or competing technology
 variations. As an example, Layer 1 through 7 type profiles do not
 account for the possibility that some devices may use different
 physical media than others, and that in such situations, a simple
 router could still provide an ability to communicate between the
 parties.

 Industry-Specific Solutions

 The Internet Protocol Suite is more extensive than merely the use
 of IP. Often, significant benefits can be gained from using
 additional, widely available, generic technologies, such as the
 Web. Benefits from using these kinds of tools include access to a
 large available workforce, software, and education already geared
 towards employing the technology.

 Tight Coupling

 Many applications are built around a specific set of servers,
 devices, and users. However, often the same data and devices
 could be useful for many purposes, some of which may not be easily
 identifiable at the time the devices are deployed.

 In addition to the architectural concerns, developing new protocols
 and mechanisms is generally more risky and expensive than reusing
 existing standards, due to the additional costs involved in design,
 implementation, testing, and deployment. Secondary costs, such as
 the training of technical staff and, in the worst case, the training
 of end users, can be substantial.

 As a result, while there are some cases where specific solutions are
 needed, the benefits of general-purpose technology are often
 compelling, be it choosing IP over some more specific communication
 mechanism, a widely deployed link layer (such as wireless LAN) over a
 more specific one, web technology over application-specific
 protocols, and so on.

 However, when employing these technologies, it is important to
 embrace them in their entirety, allowing for the architectural
 flexibility that is built into them. As an example, it rarely makes

Tschofenig, et al. Informational [Page 12]

RFC 7452 Smart Object Architectural Considerations March 2015

 sense to limit communications to on-link or to specific media.
 Design your applications so that the participating devices can easily
 interact with multiple other applications.

4. The Deployed Internet Matters

 Despite the applicability of Internet protocols for smart objects,
 picking the specific protocols for a particular use case can be
 tricky. As the Internet has evolved, certain protocols and protocol
 extensions have become the norm, and others have become difficult to
 use in all circumstances.

 Taking into account these constraints is particularly important for
 smart objects, as there is often a desire to employ specific features
 to support smart object communication. For instance, from a pure
 protocol-specification perspective, some transport protocols may be
 more desirable than others. These constraints apply both to the use
 of existing protocols as well as designing new ones on top of the
 Internet protocol stack.

 The following list illustrates a few of those constraints, but every
 communication protocol comes with its own challenges.

 In 2005, Fonseca, et al. [IPoptions] studied the usage of IP
 options-enabled packets in the Internet and found that overall,
 approximately half of Internet paths drop packets with options,
 making extensions using IP options "less ideal" for extending IP.

 In 2010, Honda, et al. [HomeGateway] tested 34 different home
 gateways regarding their packet dropping policy of UDP, TCP, the
 Datagram Congestion Control Protocol (DCCP), the Stream Control
 Transmission Protocol (SCTP), ICMP, and various timeout behavior.
 For example, more than half of the tested devices do not conform to
 the IETF-recommended timeouts for UDP, and for TCP the measured
 timeouts are highly variable, ranging from less than 4 minutes to
 longer than 25 hours. For NAT traversal of DCCP and SCTP, the
 situation is poor. None of the tested devices, for example, allowed
 establishing a DCCP connection.

 In 2011, the behavior of networks with regard to various TCP
 extensions was tested in [TCPextensions]: "From our results we
 conclude that the middleboxes implementing layer 4 functionality are
 very common -- at least 25% of paths interfered with TCP in some way
 beyond basic firewalling."

 Extending protocols to fulfill new uses and to add new functionality
 may range from very easy to difficult, as [RFC6709] explains in great
 detail. A challenge many protocol designers are facing is to ensure

Tschofenig, et al. Informational [Page 13]

RFC 7452 Smart Object Architectural Considerations March 2015

 incremental deployability and interoperability with incumbent
 elements in a number of areas. In various cases, the effort it takes
 to design incrementally deployable protocols has not been taken
 seriously enough at the outset. RFC 5218 on "What Makes For a
 Successful Protocol" [RFC5218] defines wildly successful protocols as
 protocols that are widely deployed beyond their envisioned use cases.

 As these examples illustrate, protocol architects have to take
 developments in the greater Internet into account, as not all
 features can be expected to be usable in all environments. For
 instance, middleboxes [RFC3234] complicate the use of extensions in
 basic IP protocols and transport layers.

 RFC 1958 [RFC1958] considers this aspect and says "... the community
 believes that the goal is connectivity, the tool is the Internet
 Protocol, and the intelligence is end to end rather than hidden in
 the network." This statement is challenged more than ever with the
 perceived need to develop intermediaries interacting with less
 intelligent end devices. However, RFC 3724 [RFC3724] has this to say
 about this crucial aspect: "One desirable consequence of the
 end-to-end principle is protection of innovation. Requiring
 modification in the network in order to deploy new services is still
 typically more difficult than modifying end nodes." Even this
 statement will become challenged, as large numbers of devices are
 deployed, and it indeed might be the case that changing those devices
 will be hard. But RFC 4924 [RFC4924] adds that a network that does
 not filter or transform the data that it carries may be said to be
 "transparent" or "oblivious" to the content of packets. Networks
 that provide oblivious transport enable the deployment of new
 services without requiring changes to the core. It is this
 flexibility that is perhaps both the Internet’s most essential
 characteristic as well as one of the most important contributors to
 its success.

5. Design for Change

 How to embrace rapid innovation and at the same time accomplish a
 high level of interoperability is one of the key aspects for
 competing in the marketplace. RFC 1263 [RFC1263] points out that
 "protocol change happens and is currently happening at a very
 respectable clip...We simply propose [for engineers developing the
 technology] to explicitly deal with the changes rather [than] keep
 trying to hold back the flood."

 In [Tussles], Clark, et al. suggest to "design for variation in
 outcome, so that the outcome can be different in different places,
 and the tussle takes place within the design, not by distorting or
 violating it. Do not design so as to dictate the outcome. Rigid

Tschofenig, et al. Informational [Page 14]

RFC 7452 Smart Object Architectural Considerations March 2015

 designs will be broken; designs that permit variation will flex under
 pressure and survive." The term "tussle" refers to the process
 whereby different parties, which are part of the Internet milieu and
 have interests that may be adverse to each other, adapt their mix of
 mechanisms to try to achieve their conflicting goals, and others
 respond by adapting the mechanisms to push back.

 In order to accomplish this, Clark, et al. suggest to:

 1. Break complex systems into modular parts, so that one tussle does
 not spill over and distort unrelated issues.

 2. Design for choice to permit the different players to express
 their preferences. Choice often requires open interfaces.

 The main challenge with the suggested approach is predicting how
 conflicts among the different players will evolve. Since tussles
 evolve over time, there will be changes to the architecture, too. It
 is certainly difficult to pick the right set of building blocks and
 to develop a communication architecture that will last a long time,
 and many smart object deployments are envisioned to be rather long
 lived.

 Luckily, the design of the system does not need to be cast in stone
 during the design phase. It may adjust dynamically since many of the
 protocols allow for configurability and dynamic discovery. But,
 ultimately, software update mechanisms may provide the flexibility
 needed to deal with more substantial changes.

 A solid software update mechanism is needed not only for dealing with
 the changing Internet communication environment and for
 interoperability improvements but also for adding new features and
 for fixing security bugs. This approach may appear to be in conflict
 with classes of severely restricted devices since, in addition to a
 software update mechanism, spare flash and RAM capacity is needed.
 It is, however, a trade-off worth thinking about since better product
 support comes with a price.

 As technology keeps advancing, the constraints that technology places
 on devices evolve as well. Microelectronics have become more capable
 as time goes by, often making it possible for new devices to be both
 less expensive and more capable than their predecessors. This trend
 can, however, be in some cases offset by the desire to embed
 communications technology in even smaller and cheaper objects. But
 it is important to design communications technology not just for
 today’s constraints but also for tomorrow’s. This is particularly
 important since the cost of a product is not only determined by the

Tschofenig, et al. Informational [Page 15]

RFC 7452 Smart Object Architectural Considerations March 2015

 cost of hardware but also by the cost of not reusing already-
 available protocol stacks and software libraries by developing custom
 solutions.

 Software updates are common in operating systems and application
 programs today. Without them, most devices would pose a latent risk
 to the Internet at large. Arguably, the JavaScript-based web employs
 a very rapid software update mechanism with code being provided by
 many different parties (e.g., by websites loaded into the browser or
 by smartphone apps).

6. Security Considerations

 Security is often even more important for smart objects than for more
 traditional computing systems, since interacting directly with the
 physical world can present greater dangers, and smart objects often
 operate autonomously without any human interaction for a long time
 period. The problem is compounded by the fact that there are often
 fewer resources available in constrained devices to actually
 implement security (e.g., see the discussion of "Class 0 devices" in
 Section 3 of [RFC7228]). As such, it is critical to design for
 security, taking into account a number of key considerations:

 o A key part of any smart object design is the problem of how to
 establish trust for a smart object. Typically, bootstrapping
 trust involves giving the device the credentials it needs to
 operate within a larger network of devices or services.

 o Smart objects will, in many cases, be deployed in places where
 additional physical security is difficult or impossible.
 Designers should take into account that any such device can and
 will be compromised by an attacker with direct physical access.
 Thus, trust models should distinguish between devices susceptible
 to physical compromise and devices with some level of physical
 security. Physical attacks, such as timing, power analysis, and
 glitching, are commonly applied to extract secrets
 [PhysicalAttacks].

 o Smart objects will, in many cases, be deployed as collections of
 identical or near identical devices. Protocols should be designed
 so that a compromise of a single device does not result in
 compromise of the entire collection, especially since the
 compromise of a large number of devices can enable additional
 attacks such as a distributed denial of service. Sharing secret
 keys across an entire product family is, therefore, also
 problematic since compromise of a single device might leave all
 devices from that product family vulnerable.

Tschofenig, et al. Informational [Page 16]

RFC 7452 Smart Object Architectural Considerations March 2015

 o Smart objects will, in many cases, be deployed in ways that the
 designer never considered. Designers should either seek to
 minimize the impact of misuse of their systems and devices or
 implement controls to prevent such misuse where applicable.

 o It is anticipated that smart objects will be deployed with a long
 (e.g., 5-40 years) life cycle. Any security mechanism chosen at
 the outset may not be "good enough" for the full lifespan of the
 device. Thus, long-lived devices should start with good security
 and provide a path to deploy new security mechanisms over the
 lifetime of the device.

 o Security protocols often rely on random numbers, and offering
 randomness in embedded devices is challenging. For this reason,
 it is important to consider the use of hardware-based random
 number generators during early states of the design process.

 A more detailed security discussion can be found in the "Report from
 the Smart Object Security Workshop" [RFC7397] that was held prior to
 the IETF meeting in Paris, March 2012, and in the report from the
 National Science Foundation’s "Cybersecurity Ideas Lab" workshop
 [NSF] that was held in February 2014. For example, [NSF] includes,
 among other recommendations, these recommendations specific to the
 Internet of Things:

 Enhance the Security of the Internet of Things by Identifying
 Enclaves: The security challenges posed by the emerging Internet
 of Things should be addressed now, to prepare before it is fully
 upon us. By identifying specific use segments, or "enclaves",
 Internet of Things infrastructure stakeholders can address the
 security requirements and devise event remediations for that
 enclave.

 Create a Framework for Managing Software Updates: The Internet of
 Things will challenge our current channels for distributing
 security updates. An environment must be developed for
 distributing security patches that scales to a world where almost
 everything is connected to the Internet and many "things" are
 largely unattended.

 Finally, we reiterate that use of standards that have gotten wide
 review can often avoid a number of security issues that could
 otherwise arise. Section 3.3 of [RFC6574] reminds us about the IETF
 work style regarding security:

Tschofenig, et al. Informational [Page 17]

RFC 7452 Smart Object Architectural Considerations March 2015

 In the development of smart object applications, as with any other
 protocol application solution, security has to be considered early
 in the design process. As such, the recommendations currently
 provided to IETF protocol architects, such as RFC 3552 [RFC3552],
 and RFC 4101 [RFC4101], apply also to the smart object space.

 In the IETF, security functionality is incorporated into each
 protocol as appropriate, to deal with threats that are specific to
 them. It is extremely unlikely that there is a one-size-fits-all
 security solution given the large number of choices for the ’right’
 protocol architecture (particularly at the application layer). For
 this purpose, [RFC6272] offers a survey of IETF security mechanisms
 instead of suggesting a preferred one.

7. Privacy Considerations

 This document mainly focuses on an engineering audience, i.e., those
 who are designing smart object protocols and architectures. Since
 there is no value-free design, privacy-related decisions also have to
 be made, even if they are just implicit in the reuse of certain
 technologies. RFC 6973 [RFC6973] and the threat model in
 [CONFIDENTIALITY] were written as guidance specifically for that
 audience and are also applicable to the smart object context.

 For those looking at privacy from a deployment point of view, the
 following additional guidelines are suggested:

 Transparency: Transparency of data collection and processing is key
 to avoid unpleasant surprises for owners and users of smart
 objects. Users and impacted parties must be put in a position to
 understand what items of personal data concerning them are
 collected and stored, as well for what purposes they are sought.

 Data Collection / Use Limitation: Smart objects should only store
 personal data that is adequate, relevant, and not excessive in
 relation to the purpose(s) for which they are processed. The use
 of anonymized data should be preferred wherever possible.

 Data Access: Before deployment starts, it is necessary to consider
 who can access personal data collected by smart objects and under
 which conditions. Appropriate and clear procedures should be
 established in order to allow data subjects to properly exercise
 their rights.

Tschofenig, et al. Informational [Page 18]

RFC 7452 Smart Object Architectural Considerations March 2015

 Data Security: Standardized data security measures to prevent
 unlawful access, alteration, or loss of smart object data need to
 be defined and deployed. Robust cryptographic techniques and
 proper authentication frameworks have to be used to limit the risk
 of unintended data transfers or unauthorized access.

 A more detailed treatment of privacy considerations that extend
 beyond engineering can be found in a publication from the Article 29
 Working Party [WP223].

8. Informative References

 [CONFIDENTIALITY]
 Barnes, R., Schneier, B., Jennings, C., Hardie, T.,
 Trammell, B., Huitema, C., and D. Borkmann,
 "Confidentiality in the Face of Pervasive Surveillance: A
 Threat Model and Problem Statement", Work in Progress,
 draft-iab-privsec-confidentiality-threat-04, March 2015.

 [Gamma] Gamma, E., "Design Patterns: Elements of Reusable Object-
 Oriented Software", 1995.

 [HomeGateway]
 Eggert, L., "An Experimental Study of Home Gateway
 Characteristics", In Proceedings of the 10th annual
 Internet Measurement Conference, 2010,
 <http://eggert.org/papers/2010-imc-hgw-study.pdf>.

 [IPoptions]
 Fonseca, R., Porter, G., Katz, R., Shenker, S., and I.
 Stoica, "IP options are not an option", Technical Report
 UCB/EECS2005-24, 2005,
 <http://citeseer.ist.psu.edu/viewdoc/
 summary?doi=10.1.1.123.4251>.

 [NSF] National Science Foundation, "Interdisciplinary Pathways
 towards a More Secure Internet", A report on the NSF-
 sponsored Cybersecurity Ideas Lab held in Arlington,
 Virginia, February 2014, <http://www.nsf.gov/cise/news/
 CybersecurityIdeasLab_July2014.pdf>.

 [PhysicalAttacks]
 Koeune, F. and F. Standaert, "A Tutorial on Physical
 Security and Side-Channel Attacks", in Foundations of
 Security Analysis and Design III: FOSAD 2004/2005 Tutorial
 Lectures; Lecture Notes in Computer Science, Vol. 3655,
 pp. 78-108, September 2005,
 <http://link.springer.com/chapter/10.1007%2F11554578_3>.

Tschofenig, et al. Informational [Page 19]

RFC 7452 Smart Object Architectural Considerations March 2015

 [RFC1263] O’Malley, S. and L. Peterson, "TCP Extensions Considered
 Harmful", RFC 1263, October 1991,
 <http://www.rfc-editor.org/info/rfc1263>.

 [RFC1958] Carpenter, B., "Architectural Principles of the Internet",
 RFC 1958, June 1996,
 <http://www.rfc-editor.org/info/rfc1958>.

 [RFC3234] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
 Issues", RFC 3234, February 2002,
 <http://www.rfc-editor.org/info/rfc3234>.

 [RFC3238] Floyd, S. and L. Daigle, "IAB Architectural and Policy
 Considerations for Open Pluggable Edge Services", RFC
 3238, January 2002,
 <http://www.rfc-editor.org/info/rfc3238>.

 [RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between
 Information Models and Data Models", RFC 3444, January
 2003, <http://www.rfc-editor.org/info/rfc3444>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003, <http://www.rfc-editor.org/info/rfc3552>.

 [RFC3724] Kempf, J., Austein, R., and IAB, "The Rise of the Middle
 and the Future of End-to-End: Reflections on the Evolution
 of the Internet Architecture", RFC 3724, March 2004,
 <http://www.rfc-editor.org/info/rfc3724>.

 [RFC4101] Rescorla, E. and IAB, "Writing Protocol Models", RFC 4101,
 June 2005, <http://www.rfc-editor.org/info/rfc4101>.

 [RFC4924] Aboba, B. and E. Davies, "Reflections on Internet
 Transparency", RFC 4924, July 2007,
 <http://www.rfc-editor.org/info/rfc4924>.

 [RFC5218] Thaler, D. and B. Aboba, "What Makes For a Successful
 Protocol?", RFC 5218, July 2008,
 <http://www.rfc-editor.org/info/rfc5218>.

 [RFC6272] Baker, F. and D. Meyer, "Internet Protocols for the Smart
 Grid", RFC 6272, June 2011,
 <http://www.rfc-editor.org/info/rfc6272>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012,
 <http://www.rfc-editor.org/info/rfc6347>.

Tschofenig, et al. Informational [Page 20]

RFC 7452 Smart Object Architectural Considerations March 2015

 [RFC6540] George, W., Donley, C., Liljenstolpe, C., and L. Howard,
 "IPv6 Support Required for All IP-Capable Nodes", BCP 177,
 RFC 6540, April 2012,
 <http://www.rfc-editor.org/info/rfc6540>.

 [RFC6574] Tschofenig, H. and J. Arkko, "Report from the Smart Object
 Workshop", RFC 6574, April 2012,
 <http://www.rfc-editor.org/info/rfc6574>.

 [RFC6709] Carpenter, B., Aboba, B., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 September 2012, <http://www.rfc-editor.org/info/rfc6709>.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013, <http://www.rfc-editor.org/info/rfc6973>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7397] Gilger, J. and H. Tschofenig, "Report from the Smart
 Object Security Workshop", RFC 7397, December 2014,
 <http://www.rfc-editor.org/info/rfc7397>.

 [TCPextensions]
 Honda, M., Nishida, Y., Greenhalgh, A., Handley, M., and
 H. Tokuda, "Is it Still Possible to Extend TCP?", In
 Proceedings of the ACM Internet Measurement Conference
 (IMC), Berlin, Germany, November 2011,
 <http://conferences.sigcomm.org/imc/2011/docs/p181.pdf>.

 [Tussles] Clark, D., Wroclawski, J., Sollins, K., and R. Braden,
 "Tussle in Cyberspace: Defining Tomorrow’s Internet", In
 Proceedings of ACM SIGCOMM, 2002,
 <http://conferences.sigcomm.org/sigcomm/2002/papers/
 tussle.html>.

Tschofenig, et al. Informational [Page 21]

RFC 7452 Smart Object Architectural Considerations March 2015

 [WP223] Article 29 Data Protection Working Party, "Opinion 8/2014
 on the Recent Developments on the Internet of Things", 14/
 EN, WP 223, September 2014, <http://ec.europa.eu/justice/
 data-protection/article-29/documentation/
 opinion-recommendation/files/2014/wp223_en.pdf>.

Tschofenig, et al. Informational [Page 22]

RFC 7452 Smart Object Architectural Considerations March 2015

Appendix A. IAB Members at the Time of Approval

 Jari Arkko
 Mary Barnes
 Marc Blanchet
 Joel Halpern
 Ted Hardie
 Joe Hildebrand
 Russ Housley
 Eliot Lear
 Xing Li
 Erik Nordmark
 Andrew Sullivan
 Dave Thaler
 Brian Trammell

Acknowledgements

 We would like to thank the participants of the IAB Smart Object
 workshop for their input to the overall discussion about smart
 objects.

 Furthermore, we would like to thank Mike St. Johns, Jan Holler,
 Patrick Wetterwald, Atte Lansisalmi, Hannu Flinck, Bernard Aboba,
 Markku Tuohino, Wes George, Robert Sparks, S. Moonsesamy, Dave
 Crocker, and Steve Crocker in particular for their review comments.

Tschofenig, et al. Informational [Page 23]

RFC 7452 Smart Object Architectural Considerations March 2015

Authors’ Addresses

 Hannes Tschofenig
 ARM Ltd.
 6060 Hall in Tirol
 Austria

 EMail: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Jari Arkko
 Jorvas 02420
 Finland

 EMail: jari.arkko@piuha.net

 Dave Thaler
 One Microsoft Way
 Redmond, WA 98052
 United States

 EMail: dthaler@microsoft.com

 Danny McPherson
 12061 Bluemont Way
 Reston, VA 20190
 United States

 EMail: dmcpherson@verisign.com

Tschofenig, et al. Informational [Page 24]

