
Network Working Group K. Evans
Request for Comments: 2372 J. Klein
Category: Informational Tandem Computers
 J. Lyon
 Microsoft
 July 1998

 Transaction Internet Protocol - Requirements and
 Supplemental Information

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1998). All Rights Reserved.

Abstract

 This document describes the purpose (usage scenarios), and
 requirements for the Transaction Internet Protocol [1]. It is
 intended to help qualify the necessary features and functions of the
 protocol. It also provides supplemental information to aid
 understanding and facilitate implementation of the TIP protocol.

Table of Contents

 1. Introduction 2
 2. The Transaction Internet Protocol 3
 3. Scope 4
 4. Anticipated Usage of TIP 4
 5. TIP Compliant Systems 4
 6. Relationship to the X/Open DTP Model 5
 7. Example TIP Usage Scenario 5
 8. TIP Transaction Recovery 9
 9. TIP Transaction and Application Message Serialisation 10
 10. TIP Protocol and Local Actions 10
 11. Security Considerations 11
 12. TIP Requirements 11
 References 14
 Authors’ Addresses 15
 Comments 15
 A. An Example TIP Transaction Manager API 16
 Full Copyright Statement 24

Evans, et. al. Informational [Page 1]

RFC 2372 TIP Requirements and Supplemental Information July 1998

1. Introduction

 Transactions are a very useful programming paradigm, greatly
 simplifying the writing of distributed applications. When
 transactions are employed, no matter how many distributed application
 components participate in a particular unit-of-work, the number of
 possible outcomes is reduced to only two; that is, either all of the
 work completed successfully, or none of it did (this characteristic
 is known as atomicity). Applications programming is therefore much
 less complex since the programmer does not have to deal with a
 multitude of possible failure scenarios. Typically, transaction
 semantics are provided by some underlying system infrastructure
 (usually in the form of products such as Transaction Processing
 Monitors, and/or Databases). This infrastructure deals with failures,
 and performs the necessary recovery actions to guarantee the property
 of atomicity. The use of transactions enables the development of
 reliable distributed applications which would otherwise be difficult,
 if not impossible.

 A key technology required to support distributed transactions is the
 two-phase commit protocol (2-pc). 2-pc protocols have been used in
 commercial Transaction Processing (TP) systems for many years, and
 are well understood (e.g. the LU6.2 2-pc (syncpoint) protocol was
 first implemented more than 12 years ago). Today a number of
 different 2-pc protocols are supported by a variety of TP monitor and
 database products. 2-pc is used between the components participating
 in a distributed unit-of-work (transaction) to ensure agreement by
 all parties regarding the outcome of that work (regardless of any
 failure).

 Today both standard and proprietary 2-pc protocols exist. These
 protocols typically employ a "one-pipe" model. That is, the
 transaction and application protocols are tightly-integrated,
 executing over the same communications channel. An application may
 use only the particular communications mechanism associated with the
 transaction protocol. The standard protocols (OSI TP, LU6.2) are
 complex, with a large footprint and extensive configuration and
 administration requirements. For these reasons they are not very
 widely deployed. The net of all this is restricted application
 flexibility and interoperability if transactions are to be used.
 Applications may wish to use a number of communications protocols for
 which there are no transactional variants (e.g. HTTP), and be
 deployed in very heterogeneous application environments.

 In summary, transactions greatly simplify the programming of
 distributed applications, and the 2-pc protocol is a key
 transactional technology. Current 2-pc protocols only offer
 transaction semantics to a limited set of applications, operating

Evans, et. al. Informational [Page 2]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 within a special-purpose (complex, homogeneous) infrastructure, using
 a particular set of intercommunication protocols. The restrictions
 thus imposed by current 2-pc protocols limits the widespread use of
 the transaction paradigm, thereby inhibiting the development of new
 distributed business applications.

 (See [2] for more information re transactions, atomicity, and two-
 phase commit protocols in general.)

2. The Transaction Internet Protocol (TIP)

 TIP is a 2-pc protocol which is intended to provide ubiquitous
 distributed transaction support, in a heterogeneous (networked)
 environment. TIP removes the restrictions of current 2-pc protocols
 and enables the development of new distributed business applications.

 This goal is achieved primarily by satisfying two key requirements:

 1) Keep the protocol simple (yet functionally sufficient). If the
 protocol is complex it will not be widely deployed or quickly
 adopted. Simplicity also means suitability to a wide range of
 application environments.

 2) Enable the protocol to be used with any applications
 communications protocol (e.g. HTTP). This ensures heterogeneous
 environments can participate in distributed work.

 TIP does not reinvent the 2-pc protocol itself, the well-known
 presumed-abort 2-pc protocol is used as a basis. Rather the novelty
 and utility of TIP is in its separation from the application
 communications protocol (the two-pipe model).

 +-------------+ Application Communication +-------------+
 | Application |---------------------------| Application |
 | Program | "Pipe 1" | Program |
 +-------------+ +-------------+
 | |
 | TIP TM API TIP TM API |
 | |
 +-----------------+ TIP 2-pc Protocol +-----------------+
 | TIP Transaction |-----------------------| TIP Transaction |
 | Manager | "Pipe 2" | Manager |
 +-----------------+ +-----------------+

 Fig 1: The two-pipe nature of TIP

Evans, et. al. Informational [Page 3]

RFC 2372 TIP Requirements and Supplemental Information July 1998

3. Scope

 TIP does not describe how business transactions or electronic
 commerce are to be conducted on the internet, it specifies only the
 2-pc transaction protocol (which is an aid in the development of such
 applications). e.g. TIP does not provide a mechanism for non-
 repudiation. Such protocols might be a subject for subsequent IETF
 activity, once the requirements for general electronic commerce are
 better understood. TIP does not preclude the later definition of
 these protocols.

 TIP does not specify Application Programming Interfaces (note that an
 example TIP TM API is included in this document (Appendix A), as an
 aid to understanding).

4. Anticipated Usage of TIP

 As described above, transactions are a very useful tool in
 simplifying the programming of distributed applications. TIP is
 therefore targeted at any application that involves distributed work.
 Such applications may comprise components executing within a single
 system, across a corporate intranet, across the internet, or any
 other distributed system configuration. The application may be of
 "enterprise" class (requiring high-levels of performance and
 availability), or be less demanding. TIP is intended to be generally
 applicable, meeting the requirements of any application type which
 would benefit from the provision of transaction semantics.

5. TIP Compliant Systems

 There are two classes of TIP compliant Transaction Manager system:

 1) Client-only systems. Those which provide an application
 interface to demarcate TIP transactions, but which do not offer
 access to local recoverable resources. Such a lightweight
 implementation is useful for systems which host client
 applications only (e.g. desktop machines). Such client systems may
 be unreliable, and are not appropriate as transaction coordinators
 (their unavailability might cause resources on other transaction
 participant systems to remain locked and unavailable). These so-
 called "volatile client" systems therefore delegate the
 responsibility to coordinate the transaction (and recover from
 failures), to other "full" (server) TIP system implementations.
 For these lightweight systems, only the TIP IDENTIFY, BEGIN,
 COMMIT, and ABORT commands are needed; no transaction log is
 required.

Evans, et. al. Informational [Page 4]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 2) Server systems. Those which offer the above support, plus TIP
 transaction coordination and recovery services. These systems may
 also provide access to recoverable resources (e.g. relational
 databases). Server systems support all TIP commands, and provide a
 recoverable transaction log.

 A TIP compliant Transaction Manager (TM), will also supply
 application programming interfaces to demarcate transactions (e.g.
 the X/Open TX interface [3]), plus commands to generate TIP URLs, to
 PUSH/PULL TIP transactions, and to set the current TIP transaction
 context. TIP support can be added to TMs with existing APIs and 2-pc
 protocols, and transactions may comprise both proprietary and TIP
 transaction branches (it is assumed existing TM implementations will
 provide "TIP gateway" facilities which will coordinate between TIP
 and other transaction protocols).

6. Relationship to the X/Open DTP Model

 The X/Open Distributed Transaction Processing (DTP) Model [4] defines
 four components: 1) Application Program (AP), 2) Transaction Manager
 (TM), 3) Resource Manager (RM), and 4) Communications Resource
 Manager (CRM). In this model, TIP defines a TM to TM interoperability
 protocol, which is independent of application communications (there
 is no such equivalent protocol specified by X/Open, where all
 transaction and application communication occurs between CRMs (the
 one-pipe model)). Programmatic interfaces between the AP and TM/RM
 are unaffected by, and may be used with TIP. The TM to RM interaction
 is defined via the X/Open XA interface specification [5]. TIP is
 compatible with XA, and a TIP transaction may comprise applications
 accessing multiple RMs where the XA interface is being used to
 coordinate the RM transaction branches.

7. Example TIP Usage Scenario

 It is expected that a typical internet usage of TIP will involve
 applications using the agency model. In this model, the client node
 itself is not directly involved in the TIP protocol at all, and does
 not need the services of a local TIP TM. Instead, an agency (server)
 application handles the dialogue with the client, and is responsible
 for the coordination of the TIP transaction. The agency works with
 other service providers to deliver the service to the client. e.g. as
 a Travel Agency acts as an intermediate between airlines/hotels/etc
 and the customer. A big benefit of this model is that the agency is
 trusted by the service providers, and there are fewer such agencies
 (compared to user clients), so issues of security and performance are
 reduced.

Evans, et. al. Informational [Page 5]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 Consider a Travel Agency example. A client running a web browser on a
 network PC accesses the Travel Agency web page. Via pages served up
 by the agency (which may in turn be constructed from pages provided
 by the airline and hotel servers), the client creates an itinerary
 involving flights and hotel choices. Finally, the client clicks the
 "make reservation" button. At this point the following sequence of
 events occurs (user-written application code is invoked by the
 various web servers, via any of the standard or proprietary
 techniques available (e.g. CGI)):

 1) The travel agency begins a local transaction, and gets a TIP URL
 for this transaction (both of these functions are performed using
 the API of the local TM. e.g. "tip_xid_to_url()" would return the
 TIP URL for the local transaction). The TIP URL contains the
 listening endpoint IP address of the local TM and the transaction
 identifier of the local transaction.

 2) The travel agency application sends a request to the airline
 server (via some protocol (e.g. HTTP)), requesting the
 "book_flight" service, passing the flights selected by the client,
 and the TIP URL (obtained in 1. above).

 3) The request is received by the airline server which invokes the
 book_flight application. This application retrieves the TIP URL
 from the input data, and passes this on a "tip_pull()" API request
 to its local TM. The tip_pull() function causes the following to
 occur:

 a. the local TM creates a local transaction (under which the
 work will be performed),

 b. if a TIP connection does not already exist to the superior
 (travel agency) TM (as identified via the IP address passed in
 the TIP URL), one is created and an IDENTIFY exchange occurs
 (if multiplexing is to be used on the connection, this is
 followed by a MULTIPLEX exchange),

 c. a PULL command is sent to the superior TM,

 d. in response to the PULL, the superior TM associates the
 subordinate (airline) TM with the transaction (by associating
 the connection with the transaction), and sends a PULLED
 response to the subordinate TM,

 e. the subordinate TM returns control to the book_flight
 application, which is now executing in the context of the newly
 created local transaction.

Evans, et. al. Informational [Page 6]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 4) The book_flight application does its work (which may involve
 access to a recoverable resource manager (e.g. an RDBMS), in which
 case the local TM will associate the RM with the local transaction
 (via the XA interface or whatever)).

 5) The book_flight application returns to the travel agency
 application indicating success.

 6) Steps 2-5 are then repeated with the hotel server "book_room"
 application. At the conclusion of this, the superior TM has
 registered two subordinate TMs as participants in the transaction,
 there are TIP connections between the agency TM and the airline
 and hotel TMs, and there are inflight transactions at the airline
 and hotel servers. [Note that steps 2-5 and 6 could be performed
 in parallel.]

 7) The travel agency application issues a "commit transaction"
 request (using the API of the local TM). The local TM sends a
 PREPARE command on the TIP connections to the airline and hotel
 TMs (as these are registered as subordinate transaction
 participants).

 8) The TMs at the airline and hotel servers perform the
 necessary steps to prepare their local recoverable resources (e.g.
 by issuing xa_prepare() requests). If successful, the subordinate
 TMs change their TIP transaction state to Prepared, and log
 recovery information (e.g. local and superior transaction branch
 identifiers, and the IP address of the superior TM). The
 subordinate TMs then send PREPARED commands to the superior TM.

 9) If both subordinates respond PREPARED, the superior TM logs that
 the transaction is Committed, with recovery information (e.g.
 local and subordinate transaction identifiers, and subordinate TM
 IP addresses). The superior TM then sends COMMIT commands on the
 two subordinate TIP connections.

 10) The TMs at the airline and hotel servers perform the
 necessary steps to commit their local recoverable resources (e.g.
 by issuing xa_commit() requests). The subordinate TMs forget the
 transaction. The subordinate TMs then send COMITTED commands to
 the superior TM.

 11) The superior TM forgets the transaction. The TIP connections
 between the superior and subordinate TMs return to Idle state
 (not associated with any transaction). The superior TM returns
 success to the travel agency application "commit transaction"
 request.

Evans, et. al. Informational [Page 7]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 12) The travel agency application returns "reservation made" to the
 client.

 This example illustrates the use of PULL. If PUSH were to be used
 instead, events 2) and 3) above would change as follows:

 2) The travel agency application:

 a. passes the TIP URL obtained in 1. above, together with the
 listening endpoint address of the TM at the airline server, to
 its local TM via a "tip_push()" API request. The tip_push()
 function causes the following to occur:

 i. if a TIP connection does not already exist to the
 subordinate (airline server) TM (as identified via the IP
 address passed on the tip_push), one is created and an
 IDENTIFY exchange occurs (if multiplexing is to be used on
 the connection, this is followed by a MULTIPLEX exchange),

 ii. a PUSH command is sent to the subordinate TM,

 iii. in response to the PUSH, the subordinate TM creates a
 local transaction, associates this transaction with the
 connection, and sends a PUSHED response to the superior
 TM,

 iv. in response to the PUSHED response, the superior TM
 associates the subordinate TM with the transaction,

 v. the superior TM returns control to the travel agency
 application.

 b. the travel agency application sends a request to the airline
 server (via some protocol (e.g. HTTP)), requesting the
 "book_flight" service, passing the flights selected by the
 client, and the TIP URL (obtained in 1 above).

 3) The request is received by the airline server which invokes the
 book_flight application. This application retrieves the TIP URL
 from the input data, and passes this on a "tip_pull()" API request
 to its local TM. Since the local TM has already "seen" this URL
 (it was already pushed), it simply returns to the book_flight
 application, which is now executing in the context of the
 previously created local transaction.

Evans, et. al. Informational [Page 8]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 [Note that although in this example the transaction coordinator role
 is performed by a node which is also a participant in the transaction
 (the Travel Agency), other configurations are possible (e.g. where
 the transaction coordinator role is performed by a non-participant
 3rd-party node).]

8. TIP Transaction Recovery

 Until the transaction reaches the Prepared state, any failure results
 in the transaction being aborted. If an error occurs once the
 transaction has reached the Prepared state, then transaction recovery
 must be performed. Recovery behaviour is different for superior and
 subordinate; the details depend upon the outcome of the transaction
 (committed or aborted), and the precise point at which failure
 occurs.

 In the travel agency application for example, if the connection to
 the hotel server fails before the COMMIT command has been received by
 the hotel TM, then (once the connection is restored):

 1) The superior (travel agency) TM sends a RECONNECT command
 (passing the subordinate transaction identifier (recovered from
 the transaction log if necessary)).

 2) The subordinate (hotel) TM responds RECONNECTED (since it never
 received the COMMIT command, and still has the transaction in
 Prepared state (if the failure had occurred after the subordinate
 had responded COMMITTED, then the subordinate would have forgotten
 the transaction, and responded NOTRECONNECTED to the RECONNECT
 command)).

 3) The superior TM sends a COMMIT command. The subordinate TM
 commits the transaction and responds COMMITTED. The transaction is
 now resolved.

 4) If the subordinate TM restores the connection to the superior TM
 before receiving a RECONNECT command, then it may send a QUERY
 command. In this case, the superior TM will respond QUERIEDEXISTS,
 and the subordinate TM should wait for the superior to send a
 RECONNECT command. If the transaction had been aborted, then the
 superior may respond QUERIEDNOTFOUND, in which case the
 subordinate should abort the transaction (note that the superior
 is not obliged to send a RECONNECT command for an aborted
 transaction (i.e. it could just forget the transaction after
 sending ABORT and before receiving an ABORTED response)).

Evans, et. al. Informational [Page 9]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 There are failure circumstances in which the client application (the
 one calling "commit") may not receive a response indicating the final
 outcome of the transaction (even though the transaction itself is
 successfully completed). This is a common problem, and one not unique
 to TIP. In such circumstances, it is up to the application to
 ascertain the final outcome of the transaction (a TIP TM may
 facilitate this by providing some implementation specific mechanism.
 e.g. writing the outcome to a user-log).

9. TIP Transaction and Application Message Serialisation

 A relationship exists between TIP commands and application messages:
 a TIP transaction must not be committed until it is certain that all
 participants have properly registered, and have finished work on the
 transaction. Because of the two-pipe nature of TIP, this behaviour
 cannot necessarily be enforced by the TIP system itself (although it
 may be possible in some implementations). It is therefore incumbent
 upon the application to behave properly. Generally, an application
 must not:

 1) call it’s local TMs "commit" function when it has any requests
 associated with the transaction still outstanding.

 2) positively respond to a transactional request from a partner
 application prior to having registered it’s local TM with the
 transaction.

10. TIP Protocol and Local Actions

 In order to ensure that transaction atomicity is properly guaranteed,
 a system implementing TIP must perform other local actions at certain
 points in the protocol exchange. These actions pertain to the
 creation and deletion of transaction "log-records" (the necessary
 information which survives failures and ensures that transaction
 recovery is correctly executed). The following information regarding
 the relationship between the TIP protocol and logging events is
 advisory, and is not intended to be definitive (see [2] for more
 discussion on this subject):

 1) before sending a PREPARED response, the system should create
 a prepared-recovery-record for the transaction.

 2) having created a prepared-recovery-record, this record should not
 be deleted until after:
 a. an ABORT message is received; or
 b. a COMMIT message is received; or
 c. a QUERIEDNOTFOUND response is received.

Evans, et. al. Informational [Page 10]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 3) the system should not send a COMMITTED or NOTRECONNECTED message
 if a prepared-recovery-record exists.

 4) before creating a commit-recovery-record for the transaction, the
 system should have received a PREPARED response.

 5) before sending a COMMIT message in Prepared state, the system
 should have created a commit-recovery-record for the transaction.

 6) having created a commit-recovery-record, this record should not be
 deleted until after:
 a. a COMMITTED message is received; or
 b. a NOTRECONNECTED message is received.

11. Security Considerations

 The means by which applications communicate and perform distributed
 work are outside the scope of the TIP protocol. The mechanisms used
 for authentication and authorisation of clients to access programs
 and information on a particular system are part of the application
 communications protocol and the application execution infrastructure.
 Use of the TIP protocol does not affect these considerations.

 Security relates to the TIP protocol itself inasmuch that systems
 require to protect themselves from the receipt of unauthorised TIP
 commands, or the impersonation of a trusted partner TIP TM. Probably
 the worst consequence of this is the possibility of undetected data
 inconsistency resulting from violations of the TIP commitment
 protocol (e.g. a COMMIT command is injected on a TIP connection in
 place of an ABORT command). TIP uses the Transport Layer Security
 protocol [6] to restrict access to only trusted partners (i.e. to
 control from which remote endpoints TIP transactions will be
 accepted, and to verify that an end-point is genuine), and to encrypt
 TIP commands. Usage of TLS (or not) is negotiated between partner TIP
 TMs. See [1] for details of how TLS is used with TIP.

 TIP TM implementations will also likely provide local means to time-
 out and abort transactions which have not completed within some time
 period (thereby preventing unavailability of resources due to
 malicious intent). Transaction time-out also serves as a means of
 deadlock resolution.

12. TIP Requirements

 Most of these requirements stem from the primary objective of making
 transactions a ubiquitous system service, available to all
 application classes (much as TCP may be assumed to be available
 everywhere). In general this requires imposing as few restrictions

Evans, et. al. Informational [Page 11]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 regarding the use of TIP as possible (applications should not be
 required to execute in some "special" environment in order to use
 transactions), and keeping the protocol simple and efficient. This
 enables the widespread implementation of TIP (it’s cheap to do), on a
 wide range of systems (it’s cheap to run).

 1) Application Communications Protocol Independence

 The TIP protocol must be defined independently of the
 communications protocol used for transferring application data, to
 allow TIP usage in conjunction with any application protocol. It
 must be possible for applications using arbitrary communications
 protocols to begin, end, and propagate TIP transactions.

 This implies that the TIP protocol employ a 2-pipe model of
 operation. This model requires the separation of application
 communications and transaction coordination, into two discrete
 communication channels (pipes). This separation enables the use of
 the transaction coordination protocol (TIP), with any application
 communications protocol (e.g. HTTP, ODBC, plain TCP/UDP, etc).

 2) Support for Transaction Semantics

 The TIP protocol must provide the functionality of the de-facto
 standard presumed-abort 2-pc protocol, to guarantee transactional
 atomicity even in the event of failure. It should provide a means
 to construct the transaction tree, as well as provide commitment
 and recovery functions.

 3) Application Transaction Propagation and Interoperability

 In order to facilitate protocol independence, application
 interoperability, and provide a means for TIP transaction context
 propagation, a standard representation of the TIP transaction
 context information is required (in the form of a URL). This
 information must include the listening endpoint address of the
 partner TIP TM, and transaction identifier information.

 4) Ease of Implementation

 The TIP protocol must be simple to implement. It should support
 only those features necessary to provide a useful, performant 2-pc
 protocol service. The protocol should not add complexity in the
 form of extraneous optimisations.

Evans, et. al. Informational [Page 12]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 5) Suitability for All Application Classes

 The TIP protocol should be complete and robust enough not only for
 electronic commerce on the web, but also for intranet applications
 and for traditional TP applications spanning heterogenous
 transaction manager environments. The protocol should be
 performant and scaleable enough to meet the needs of low to very
 high throughput applications.

 a. the TIP protocol should support the concept of client-only
 transaction participants (useful for ultra-lightweight
 implementations on low-end platforms).

 b. since some clients may be unreliable, TIP must provide support
 for delegation of transaction coordination (to a more reliable
 (trusted) node).

 c. the TIP protocol must scale between 1 and n (> 1) concurrent
 transactions per TCP connection.

 d. TIP commands should be able to be concatenated (pipelined).

 e. TIP should be compatible with the X/Open XA interface.

 6) Security

 The TIP protocol must be compatible with existing security
 mechanisms, potentially including encryption, firewalls, and
 authorization mechanisms (e.g. TLS may be used to authenticate the
 sender of a TIP command, and for encryption of TIP commands).
 Nothing in the protocol definition should prevent TIP working
 within any security environment.

 7) TIP Protocol Transport Independence

 It would be beneficial to some applications to allow the TIP
 protocol to flow over different transport protocols. The benefit
 is when using different transport protocols for the application
 data, the same transport can be used for the TIP 2PC protocol. TIP
 must therefore not preclude use with other transport protocols.

 8) Recovery

 Recovery semantics need to be defined sufficiently to avoid
 ambiguous results in the event of any type of communications
 transport failure.

Evans, et. al. Informational [Page 13]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 9) Extensibility

 The TIP protocol should be able to be extended, whilst maintaining
 compatibility with previous versions.

References

 [1] Lyon, J., Evans, K., and J. Klein, "The Transaction Internet
 Protocol Version 3.0", RFC 2371, July 1998.

 [2] Transaction Processing: Concepts and Techniques. Morgan
 Kaufmann Publishers. (ISBN 1-55860-190-2). J. Gray, A. Reuter.

 [3] X/Open CAE Specification, April 1995, Distributed Transaction
 Processing: The TX Specification. (ISBN 1-85912-094-6).

 [4] X/Open Guide, November 1993, Distributed Transaction Processing:
 Reference Model Version 2. (ISBN 1-85912-019-9).

 [5] X/Open CAE Specification, December 1991, Distributed Transaction
 Processing: The XA Specification. (ISBN 1-872630-24-3).

 [6] Dierks, T., et. al., "The TLS Protocol Version 1.0", Work in
 Progress.

Evans, et. al. Informational [Page 14]

RFC 2372 TIP Requirements and Supplemental Information July 1998

Authors’ Addresses

 Keith Evans
 Tandem Computers Inc, LOC 252-30
 5425 Stevens Creek Blvd
 Santa Clara, CA 95051-7200, USA

 Phone: +1 (408) 285 5314
 Fax: +1 (408) 285 5245
 EMail: Keith.Evans@Tandem.Com

 Johannes Klein
 Tandem Computers Inc.
 10555 Ridgeview Court
 Cupertino, CA 95014-0789, USA

 Phone: +1 (408) 285 0453
 Fax: +1 (408) 285 9818
 EMail: Johannes.Klein@Tandem.Com

 Jim Lyon
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399, USA

 Phone: +1 (206) 936 0867
 Fax: +1 (206) 936 7329
 EMail: JimLyon@Microsoft.Com

Comments

 Please send comments on this document to the authors at
 <JimLyon@Microsoft.Com>, <Keith.Evans@Tandem.Com>,
 <Johannes.Klein@Tandem.Com>, or to the TIP mailing list at
 <Tip@Tandem.Com>. You can subscribe to the TIP mailing list by
 sending mail to <Listserv@Lists.Tandem.Com> with the line
 "subscribe tip <full name>" somewhere in the body of the message.

Evans, et. al. Informational [Page 15]

RFC 2372 TIP Requirements and Supplemental Information July 1998

Appendix A. An Example TIP Transaction Manager Application Programming
 Interface.

 Note that this API is included solely for informational purposes, and
 is not part of the formal TIP specification (TIP conformant
 implementations are free to define alternative APIs).

 1) tip_open() - establish a connection to a TIP TM.
 Synopsis
 int tip_open ([out] tip_handle_t *ptiptm)
 Parameters
 ptiptm [out]
 Pointer to the TIP TM handle.
 Description
 tip_open() establishes a connection to a TIP TM. The call
 returns a handle which identifies the TIP TM. This function
 must be called before any work can be performed on a TIP
 transaction.

 Return Values
 [TIPOK]
 Connection has been successfully established.
 [TIPNOTCONNECTED]
 User has been disconnected from the TIP TM.
 [TIPNOTCONFIGURED]
 TIP TM has not been configured.
 [TIPTRANSIENT]
 Too many openers; re-try the open.
 [TIPERROR]
 An unexpected error occurred.

 2) tip_close() - close a connection to a TIP TM.
 Synopsis
 int tip_close([in] tip_handle_t handle)
 Parameters
 handle [in]
 The TIP TM handle.
 Description
 tip_close() closes a connection to a TIP TM. All outstanding
 requests associated with that connection will be cancelled.
 Return Values
 [TIPOK]
 Connection has been successfully closed.
 [TIPINVALIDPARM]
 Invalid connection handle specified.
 [TIPERROR]
 An unexpected error occurred.

Evans, et. al. Informational [Page 16]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 3) tip_push() - export a local transaction to a remote node and
 return a TIP transaction identifier for the
 associated remote transaction.
 Synopsis
 int tip_push ([in] tip_handle_t TM,
 [in] char *tm_url,
 [in] void *plocal_xid,
 [out] char *pxid_url,
 [in] unsigned int url_length)
 Parameters
 TM [in]
 The TIP TM handle.
 tm_url [in]
 Pointer to the TIP URL of the remote transaction manager.
 A TIP URL for a transaction manager takes the form:
 TIP://<host>[:<port>]
 plocal_xid [in]
 Pointer to the local transaction identifier. The
 structure of the transaction identifier is defined by the
 local transaction manager.
 pxid_url [out]
 Pointer to the TIP URL of the associated remote
 transaction. A TIP URL for a transaction takes the form:
 TIP://<host>[:<port>]/<transaction identifier>
 url_length [in]
 The size in bytes of the buffer for the remote
 transaction URL.
 Description
 tip_push() exports (pushes) a local transaction to a remote
 node. If a local transaction identifier is not supplied, the
 caller’s current transaction context is used. The call returns
 a TIP URL for the associated remote transaction. The TIP
 transaction identifier may be passed on application requests to
 the remote node (as part of a TIP URL). The receiving process
 uses this information in order to do work on behalf of the
 transaction.
 Return Values
 [TIPOK]
 Transaction has been successfully pushed to the remote
 node.
 [TIPINVALIDXID]
 An invalid transaction identifier has been provided.
 [TIPNOCURRENTTX]
 Process is currently not associated with a transaction
 (and none was supplied).
 [TIPINVALIDHANDLE]
 Invalid connection handle specified.
 [TIPNOTPUSHED]

Evans, et. al. Informational [Page 17]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 Transaction could not be pushed to the remote node.
 [TIPNOTCONNECTED]
 Caller has been disconnected from the TIP TM.
 [TIPINVALIDURL]
 Invalid endpoint URL is provided.
 [TIPTRANSIENT]
 Transient error occurred; re-try the operation.
 [TIPTRUNCATED]
 Insufficient buffer size is specified for the TIP
 transaction identifier.
 [TIPERROR]
 An unexpected error occurred.

 4) tip_pull() - create a local transaction and join it with the TIP
 transaction.
 Synopsis
 int tip_pull([in] tip_handle_t TM,
 [in] char *pxid_url,
 [out] void *plocal_xid,
 [in] unsigned int xid_length)
 Parameters
 TM [in]
 The TIP TM handle.
 pxid_url [in]
 Pointer to the TIP URL of the associated remote
 transaction. A TIP URL for a transaction takes the form:
 TIP://<host>[:<port>]/<transaction identifier>
 plocal_xid [out]
 Pointer to the local transaction identifier. The
 structure of the transaction identifier is defined by the
 local transaction manager.
 xid_length [in]
 The size in bytes of the buffer for the local transaction
 identifier.
 Description
 tip_pull() creates a local transaction and joins the local
 transaction with the TIP transaction (the caller becomes a
 subordinate participant in the TIP transaction). The remote TIP
 TM is identified via the URL (*pxid_url). The local transaction
 identifier is returned. If a local transaction has already been
 created for the TIP transaction identifier supplied, then
 [TIPOK] is returned (with the local transaction identifier),
 and no other action is taken.
 Return Values
 [TIPOK]
 The local transaction has been successfully created
 and joined with the TIP transaction.
 [TIPINVALIDHANDLE]

Evans, et. al. Informational [Page 18]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 Invalid connection handle specified.
 [TIPTRUNCATED]
 Insufficient buffer size is specified for the local
 transaction identifier.
 [TIPNOTPULLED]
 Joining of the local transaction with the TIP
 transaction has failed.
 [TIPNOTCONNECTED]
 Caller has been disconnected from the TIP TM.
 [TIPINVALIDURL]
 Invalid URL has been supplied.
 [TIPTRANSIENT]
 Transient error occurred; retry the operation.
 [TIPERROR]
 An unexpected error occurred.

 5) tip_pull_async() - create a local transaction and join it with the
 TIP transaction. Control is returned to the
 caller as soon as a local transaction is
 created.
 Synopsis
 int tip_pull_async ([in] tip_handle_t TM
 [in] char *pxid_url,
 [out] void *plocal_xid,
 [in] unsigned int xid_length)
 Parameters
 TM [in]
 The TIP gateway handle.
 pxid_url [in]
 Pointer to the TIP URL of the associated remote
 transaction. A TIP URL for a transaction takes the form:
 TIP://<host>[:<port>]/<transaction identifier>
 plocal_xid [out]
 Pointer to the local transaction identifier. The
 structure of the transaction identifier is defined by the
 local transaction manager.
 xid_length [in]
 The size in bytes of the buffer for the local transaction
 identifier.
 Description
 tip_pull_async() creates a local transaction and joins the
 local transaction with the TIP transaction (the caller
 becomes a subordinate participant in the TIP transaction). The
 remote TIP TM is identified via the URL (*pxid_url). The local
 transaction identifier is returned. A call to tip_pull_async()
 returns immediately after the local transaction has been
 created (before the TIP PULL protocol command is sent). A
 subsequent call to tip_pull_complete() must be issued to check

Evans, et. al. Informational [Page 19]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 for successful completion of the pull request.
 Return Values
 [TIPOK]
 The local transaction has been successfully created.
 [TIPINVALIDHANDLE]
 Invalid connection handle specified.
 [TIPNOTCONNECTED]
 User has been disconnected from the TIP TM.
 [TIPINVALIDURL]
 Invalid URL has been supplied.
 [TIPTRANSIENT]
 Transient error has occurred; retry the operation.
 [TIPTRUNCATED]
 Insufficient buffer size is specified for the local
 transaction identifier.
 [TIPERROR]
 An unexpected error occurred.

 6) tip_pull_complete() - check whether a previous tip_pull_async()
 request has been successfully completed.
 Synopsis
 int tip_pull_complete ([in] tip_handle_t TM,
 [in] void *plocal_xid)
 Parameters
 TM [in]
 The TIP TM handle.
 plocal_xid [in]
 Pointer to the local transaction identifier. The
 structure of the transaction identifier is defined by the
 local transaction manager.
 Description
 tip_pull_complete() checks whether a previous call to
 tip_pull_async() has been successfully completed. i.e. whether
 the local transaction has been successfully joined with the TIP
 transaction. The caller supplies the local transaction
 identifier returned by the previous call to tip_pull_async().
 Repeated calls to tip_pull_complete() for the same local
 transaction identifier are idempotent.
 Return Values
 [TIPOK]
 The local transaction has been successfully joined with
 the TIP transaction.
 [TIPINVALIDHANDLE]
 Invalid connection handle specified.
 [TIPINVALIDXID]
 An invalid transaction identifier has been provided.
 [TIPNOTPULLED]
 Joining of the local transaction with the TIP transaction

Evans, et. al. Informational [Page 20]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 has failed. The local transaction has been aborted.
 [TIPNOTCONNECTED]
 Caller has been disconnected from the TIP TM.
 [TIPERROR]
 An unexpected error occurred.

 7) tip_xid_to_url() - return a TIP transaction identifier for a local
 transaction identifier.
 Synopsis
 int tip_xid_to_url ([in] tip_handle_t TM,
 [in] void *plocal_xid,
 [out] char *pxid_url,
 [in] unsigned int url_length)
 Parameters
 TM [in]
 The TIP TM handle.
 plocal_xid [in]
 Pointer to the local transaction identifier. The
 structure of the transaction identifier is defined by the
 local transaction manager.
 pxid_url [out]
 Pointer to the TIP URL of the local transaction.
 A TIP URL for a transaction takes the form:
 TIP://<host>[:<port>]/<transaction identifier>
 url_length [in]
 The size in bytes of the buffer for the TIP URL.
 Description
 tip_xid_to_url() returns a TIP transaction identifier for a
 local transaction identifier. The TIP transaction identifier
 can be passed to remote applications to enable them to do work
 on the transaction. e.g. to pull the local transaction to the
 remote node. If a local transaction identifier is not supplied,
 the caller’s current transaction context is used. The constant
 TIPURLSIZE defines the size of a TIP transaction identifier in
 bytes. This value is implementation specific.
 Return Values
 [TIPOK]
 TIP transaction identifier has been returned.
 [TIPNOTCONNECTED]
 Caller has been disconnected from the TIP TM.
 [TIPNOCURRENTTX]
 Process is currently not associated with a transaction
 (and none was supplied).
 [TIPINVALIDXID]
 An invalid local transaction identifier has been
 supplied.
 [TIPTRUNCATED]
 Insufficient buffer size is specified for the TIP

Evans, et. al. Informational [Page 21]

RFC 2372 TIP Requirements and Supplemental Information July 1998

 transaction identifier.
 [TIPERROR]
 An unexpected error occurred.

 8) tip_url_to_xid() - return a local transaction identifier for a TIP
 transaction identifier.
 Synopsis
 int tip_url_to_xid ([in] tip_handle_t TM,
 [in] char *pxid_url,
 [out] void *plocal_xid,
 [in] unsigned int xid_length)
 Parameters
 TM [in]
 The TIP TM handle.
 pxid_url [in]
 Pointer to the TIP URL of the local transaction. A TIP
 URL for a transaction takes the form:
 TIP://<host>[:<port>]/<transaction identifier>
 plocal_xid [out]
 Pointer to the local transaction identifier. The
 structure of the transaction identifier is defined by the
 local transaction manager.
 xid_length [in]
 The size in bytes of the buffer for the local transaction
 identifier.
 Description
 tip_url_to_xid() returns a local transaction identifier for a
 TIP transaction identifier (note that the local transaction
 must have previously been created via a tip_push(), or tip_pull
 (or tip_pull_async()). The constant TIPXIDSIZE defines the size
 of a local transaction identifier in bytes. This value is
 implementation specific.
 Return Values
 [TIPOK]
 Local transaction identifier is returned.
 [TIPINVALIDURL]
 An invalid TIP transaction identifier has been provided.
 [TIPTRUNCATED]
 Insufficient buffer size is specified for the local
 transaction identifier.
 [TIPERROR]
 An unexpected error occurred.

Evans, et. al. Informational [Page 22]

RFC 2372 TIP Requirements and Supplemental Information July 1998

9) tip_get_tm_url() - get the name of the local TIP transaction
 manager in TIP URL form.
 Synopsis
 int tip_get_tm_url ([in] tip_handle_t TM,
 [out] char *tm_url,
 [in] int tm_len);
 Parameters
 TM[in]
 The TIP TM handle.
 tm_url [in]
 Pointer to the TIP URL of the local transaction manager. A
 TIP URL for a transaction manager takes the form:
 TIP://<host>[:<port>]
 tm_len [out]
 The size in bytes of the buffer for the TIP URL of the local
 transaction manager.
 Description
 tip_get_tm_url() gets the name of the local transaction
 manager in TIP URL form (i.e. TIP://<host>[:<port>])
 Return Values
 [TIPOK]
 The name of the local transaction manager has been
 successfully returned.
 [TIPTRUNCATED]
 The name of the local transaction manager has been
 truncated due to insufficient buffer size. Retry the
 operation with larger buffer size.

Evans, et. al. Informational [Page 23]

RFC 2372 TIP Requirements and Supplemental Information July 1998

Full Copyright Statement

 Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Evans, et. al. Informational [Page 24]

