
The Z Shell Manual
Version 4.3.5

Updated February 1, 2008

Original documentation by Paul Falstad

This is a texinfo version of the documentation for the Z Shell, originally by Paul Falstad.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided also that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

Chapter 2: Introduction 1

1 The Z Shell Manual

This document has been produced from the texinfo file zsh.texi, included in the Doc sub-
directory of the Zsh distribution.

1.1 Producing documentation from zsh.texi

The texinfo source may be converted into several formats:

The Info manual
The Info format allows searching for topics, commands, functions, etc. from the
many Indices. The command ‘makeinfo zsh.texi’ is used to produce the Info
documentation.

The printed manual
The command ‘texi2dvi zsh.texi’ will output zsh.dvi which can then be pro-
cessed with dvips and optionally gs (Ghostscript) to produce a nicely formatted
printed manual.

The HTML manual
An HTML version of this manual is available at the Zsh web site via:
http://zsh.sunsite.dk/Doc/.
(The HTML version is produced with texi2html, which may be obtained from
http://www.mathematik.uni-kl.de/~obachman/Texi2html/. The command is
‘texi2html -split chapter -expand info zsh.texi’. If necessary, upgrade to
version 1.64 of texi2html.)

For those who do not have the necessary tools to process texinfo, precompiled documentation
(PostScript, dvi, info and HTML formats) is available from the zsh archive site or its mirrors,
in the file zsh-doc.tar.gz. (See Section 2.2 [Availability], page 1 for a list of sites.)

2 Introduction

Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a shell
script command processor. Of the standard shells, zsh most closely resembles ksh but includes
many enhancements. Zsh has command line editing, builtin spelling correction, programmable
command completion, shell functions (with autoloading), a history mechanism, and a host of
other features.

2.1 Author

Zsh was originally written by Paul Falstad <pf@zsh.org>. Zsh is now maintained by the
members of the zsh-workers mailing list <zsh-workers@sunsite.dk>. The development is cur-
rently coordinated by Peter Stephenson <pws@zsh.org>. The coordinator can be contacted at
<coordinator@zsh.org>, but matters relating to the code should generally go to the mailing
list.

2.2 Availability

Zsh is available from the following anonymous FTP sites. These mirror sites are kept frequently
up to date. The sites marked with (H) may be mirroring ftp.cs.elte.hu instead of the primary
site.

Chapter 2: Introduction 2

Primary site
ftp://ftp.zsh.org/pub/zsh/
http://www.zsh.org/pub/zsh/

Australia ftp://ftp.zsh.org/pub/zsh/
http://www.zsh.org/pub/zsh/

Denmark ftp://sunsite.dk/pub/unix/shells/zsh/

Finland ftp://ftp.funet.fi/pub/unix/shells/zsh/

Germany ftp://ftp.fu-berlin.de/pub/unix/shells/zsh/ (H)
ftp://ftp.gmd.de/packages/zsh/
ftp://ftp.uni-trier.de/pub/unix/shell/zsh/

Hungary ftp://ftp.cs.elte.hu/pub/zsh/
http://www.cs.elte.hu/pub/zsh/
ftp://ftp.kfki.hu/pub/packages/zsh/

Israel ftp://ftp.math.technion.ac.il/pub/zsh/
http://www.math.technion.ac.il/pub/zsh/

Japan ftp://ftp.win.ne.jp/pub/shell/zsh/

Korea ftp://linux.sarang.net/mirror/system/shell/zsh/

Netherlands
ftp://ftp.demon.nl/pub/mirrors/zsh/

Norway ftp://ftp.uit.no/pub/unix/shells/zsh/

Poland ftp://sunsite.icm.edu.pl/pub/unix/shells/zsh/

Romania ftp://ftp.roedu.net/pub/mirrors/ftp.zsh.org/pub/zsh/
ftp://ftp.kappa.ro/pub/mirrors/ftp.zsh.org/pub/zsh/

Slovenia ftp://ftp.siol.net/mirrors/zsh/

Sweden ftp://ftp.lysator.liu.se/pub/unix/zsh/

UK ftp://ftp.net.lut.ac.uk/zsh/
ftp://sunsite.org.uk/packages/zsh/

USA http://zsh.open-mirror.com/

The up-to-date source code is available via anonymous CVS from Sourceforge. See
http://sourceforge.net/projects/zsh/ for details.

2.3 Mailing Lists

Zsh has 3 mailing lists:

<zsh-announce@sunsite.dk>
Announcements about releases, major changes in the shell and the monthly posting
of the Zsh FAQ. (moderated)

<zsh-users@sunsite.dk>
User discussions.

<zsh-workers@sunsite.dk>
Hacking, development, bug reports and patches.

Chapter 3: Roadmap 3

To subscribe or unsubscribe, send mail to the associated administrative address for the mailing
list.

<zsh-announce-subscribe@sunsite.dk>
<zsh-users-subscribe@sunsite.dk>
<zsh-workers-subscribe@sunsite.dk>

<zsh-announce-unsubscribe@sunsite.dk>
<zsh-users-unsubscribe@sunsite.dk>
<zsh-workers-unsubscribe@sunsite.dk>

YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED.
All submissions to zsh-announce are automatically forwarded to zsh-users. All submissions to
zsh-users are automatically forwarded to zsh-workers.
If you have problems subscribing/unsubscribing to any of the mailing lists, send mail
to <listmaster@zsh.org>. The mailing lists are maintained by Karsten Thygesen
<karthy@kom.auc.dk>.
The mailing lists are archived; the archives can be accessed via the administrative addresses
listed above. There is also a hypertext archive, maintained by Geoff Wing <gcw@zsh.org>,
available at http://www.zsh.org/mla/.

2.4 The Zsh FAQ

Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter Stephenson
<pws@zsh.org>. It is regularly posted to the newsgroup comp.unix.shell and the
zsh-announce mailing list. The latest version can be found at any of the Zsh FTP
sites, or at http://www.zsh.org/FAQ/. The contact address for FAQ-related matters is
<faqmaster@zsh.org>.

2.5 The Zsh Web Page

Zsh has a web page which is located at http://www.zsh.org/. This is maintained by Karsten
Thygesen <karthy@zsh.org>, of SunSITE Denmark. The contact address for web-related mat-
ters is <webmaster@zsh.org>.

2.6 The Zsh Userguide

A userguide is currently in preparation. It is intended to complement the manual, with expla-
nations and hints on issues where the manual can be cabbalistic, hierographic, or downright
mystifying (for example, the word ‘hierographic’ does not exist). It can be viewed in its current
state at http://zsh.sunsite.dk/Guide/. At the time of writing, chapters dealing with startup
files and their contents and the new completion system were essentially complete.

2.7 The Zsh Wiki

A ‘wiki’ website for zsh has been created at http://www.zshwiki.org/. This is a site which
can be added to and modified directly by users without any special permission. You can add
your own zsh tips and configurations.

2.8 See Also

man page sh(1), man page csh(1), man page tcsh(1), man page rc(1), man page bash(1), man
page ksh(1)
IEEE Standard for information Technology - Portable Operating System Interface (POSIX) -
Part 2: Shell and Utilities, IEEE Inc, 1993, ISBN 1-55937-255-9.

Chapter 3: Roadmap 4

3 Roadmap

The Zsh Manual, like the shell itself, is large and often complicated. This section of the manual
provides some pointers to areas of the shell that are likely to be of particular interest to new
users, and indicates where in the rest of the manual the documentation is to be found.

3.1 When the shell starts

When it starts, the shell reads commands from various files. These can be created or edited to
customize the shell. See Chapter 5 [Files], page 8.
If no personal intialization files exist for the current user, a function is run to help you change
some of the most common settings. It won’t appear if your administrator has disabled the
zsh/newuser module. The function is designed to be self-explanatory. You can run it by hand
with ‘autoload -Uz zsh-newuser-install; zsh-newuser-install -f’. See also Section 26.8
[User Configuration Functions], page 322.

3.2 Interactive Use

Interaction with the shell uses the builtin Zsh Line Editor, ZLE. This is described in detail in
Chapter 18 [Zsh Line Editor], page 119.
The first decision a user must make is whether to use the Emacs or Vi editing mode as the
keys for editing are substantially different. Emacs editing mode is probably more natural for
beginners and can be selected explicitly with the command bindkey -e.
A history mechanism for retrieving previously typed lines (most simply with the Up or Down
arrow keys) is available; note that, unlike other shells, zsh will not save these lines when the shell
exits unless you set appropriate variables, and the number of history lines retained by default is
quite small (30 lines). See the description of the shell variables (referred to in the documentation
as parameters) HISTFILE, HISTSIZE and SAVEHIST in Section 15.6 [Parameters Used By The
Shell], page 66.

3.2.1 Completion

Completion is a feature present in many shells. It allows the user to type only a part (usually
the prefix) of a word and have the shell fill in the rest. The completion system in zsh is
programmable. For example, the shell can be set to complete email addresses in arguments to
the mail command from your ~/.abook/addressbook; usernames, hostnames, and even remote
paths in arguments to scp, and so on. Anything that can be written in or glued together with
zsh can be the source of what the line editor offers as possible completions.
Zsh has two completion systems, an old, so called compctl completion (named after the builtin
command that serves as its complete and only user interface), and a new one, referred to as
compsys, organized as library of builtin and user-defined functions. The two systems differ in
their interface for specifying the completion behavior. The new system is more customizable and
is supplied with completions for many commonly used commands; it is therefore to be preferred.
The completion system must be enabled explicitly when the shell starts. For more information
see Chapter 20 [Completion System], page 158.

3.2.2 Extending the line editor

Apart from completion, the line editor is highly extensible by means of shell functions. Some
useful functions are provided with the shell; they provide facilities such as:

insert-composed-char
composing characters not found on the keyboard

Chapter 3: Roadmap 5

match-words-by-style
configuring what the line editor considers a word when moving or deleting by word

history-beginning-search-backward-end, etc.
alternative ways of searching the shell history

replace-string, replace-pattern
functions for replacing strings or patterns globally in the command line

edit-command-line
edit the command line with an external editor.

See Section 26.4 [ZLE Functions], page 301 for descriptions of these.

3.3 Options

The shell has a large number of options for changing its behaviour. These cover all aspects of
the shell; browsing the full documentation is the only good way to become acquainted with the
many possibilities. See Chapter 16 [Options], page 72.

3.4 Pattern Matching

The shell has a rich set of patterns which are available for file matching (described in the
documentation as ‘filename generation’ and also known for historical reasons as ‘globbing’) and
for use when programming. These are described in Section 14.8 [Filename Generation], page 47.
Of particular interest are the following patterns that are not commonly supported by other
systems of pattern matching:

** for matching over multiple directories

~, ^ the ability to exclude patterns from matching when the EXTENDED_GLOB option is
set

(...) glob qualifiers, included in parentheses at the end of the pattern, which select files
by type (such as directories) or attribute (such as size).

3.5 General Comments on Syntax

Although the syntax of zsh is in ways similar to the Korn shell, and therefore more remotely to
the original UNIX shell, the Bourne shell, its default behaviour does not entirely correspond to
those shells. General shell syntax is introduced in Chapter 6 [Shell Grammar], page 9.
One commonly encountered difference is that variables substituted onto the command line are
not split into words. See the description of the shell option SH_WORD_SPLIT in Section 14.3
[Parameter Expansion], page 36. In zsh, you can either explicitly request the splitting (e.g.
${=foo}) or use an array when you want a variable to expand to more than one word. See
Section 15.2 [Array Parameters], page 58.

3.6 Programming

The most convenient way of adding enhancements to the shell is typically by writing a shell
function and arranging for it to be autoloaded. Functions are described in Chapter 9 [Functions],
page 19. Users changing from the C shell and its relatives should notice that aliases are less
used in zsh as they don’t perform argument substitution, only simple text replacement.
A few general functions, other than those for the line editor described above, are provided with
the shell and are described in Chapter 26 [User Contributions], page 296. Features include:

Chapter 4: Invocation 6

promptinit
a prompt theme system for changing prompts easily, see Section 26.3 [Prompt
Themes], page 300

zsh-mime-setup
a MIME-handling system which dispatches commands according to the suffix of a
file as done by graphical file managers

zcalc a calculator

zargs a version of xargs that makes the find command redundant

zmv a command for renaming files by means of shell patterns.

4 Invocation

4.1 Invocation Options

The following flags are interpreted by the shell when invoked to determine where the shell will
read commands from:

-c Take the first argument as a command to execute, rather than reading commands
from a script or standard input. If any further arguments are given, the first one is
assigned to $0, rather than being used as a positional parameter.

-i Force shell to be interactive.

-s Force shell to read commands from the standard input. If the -s flag is not present
and an argument is given, the first argument is taken to be the pathname of a script
to execute.

After the first one or two arguments have been appropriated as described above, the remaining
arguments are assigned to the positional parameters.
For further options, which are common to invocation and the set builtin, see Chapter 16 [Op-
tions], page 72.
Options may be specified by name using the -o option. -o acts like a single-letter option, but
takes a following string as the option name. For example,

zsh -x -o shwordsplit scr

runs the script scr, setting the XTRACE option by the corresponding letter ‘-x’ and the
SH_WORD_SPLIT option by name. Options may be turned off by name by using +o instead of -o.
-o can be stacked up with preceding single-letter options, so for example ‘-xo shwordsplit’ or
‘-xoshwordsplit’ is equivalent to ‘-x -o shwordsplit’.
Options may also be specified by name in GNU long option style, ‘--option-name’. When this
is done, ‘-’ characters in the option name are permitted: they are translated into ‘_’, and thus
ignored. So, for example, ‘zsh --sh-word-split’ invokes zsh with the SH_WORD_SPLIT option
turned on. Like other option syntaxes, options can be turned off by replacing the initial ‘-’
with a ‘+’; thus ‘+-sh-word-split’ is equivalent to ‘--no-sh-word-split’. Unlike other option
syntaxes, GNU-style long options cannot be stacked with any other options, so for example
‘-x-shwordsplit’ is an error, rather than being treated like ‘-x --shwordsplit’.
The special GNU-style option ‘--version’ is handled; it sends to standard output the shell’s
version information, then exits successfully. ‘--help’ is also handled; it sends to standard output
a list of options that can be used when invoking the shell, then exits successfully.

Chapter 4: Invocation 7

Option processing may be finished, allowing following arguments that start with ‘-’ or ‘+’ to be
treated as normal arguments, in two ways. Firstly, a lone ‘-’ (or ‘+’) as an argument by itself
ends option processing. Secondly, a special option ‘--’ (or ‘+-’), which may be specified on its
own (which is the standard POSIX usage) or may be stacked with preceding options (so ‘-x-’ is
equivalent to ‘-x --’). Options are not permitted to be stacked after ‘--’ (so ‘-x-f’ is an error),
but note the GNU-style option form discussed above, where ‘--shwordsplit’ is permitted and
does not end option processing.
Except when the sh/ksh emulation single-letter options are in effect, the option ‘-b’ (or ‘+b’)
ends option processing. ‘-b’ is like ‘--’, except that further single-letter options can be stacked
after the ‘-b’ and will take effect as normal.

4.2 Compatibility

Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respectively; more precisely, it
looks at the first letter of the name by which it was invoked, excluding any initial ‘r’ (assumed to
stand for ‘restricted’), and if that is ‘s’ or ‘k’ it will emulate sh or ksh. Furthermore, if invoked
as su (which happens on certain systems when the shell is executed by the su command), the
shell will try to find an alternative name from the SHELL environment variable and perform
emulation based on that.
In sh and ksh compatibility modes the following parameters are not special and not initialized
by the shell: ARGC, argv, cdpath, fignore, fpath, HISTCHARS, mailpath, MANPATH, manpath,
path, prompt, PROMPT, PROMPT2, PROMPT3, PROMPT4, psvar, status, watch.
The usual zsh startup/shutdown scripts are not executed. Login shells source /etc/profile
followed by $HOME/.profile. If the ENV environment variable is set on invocation, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expansion, command
substitution, and arithmetic expansion before being interpreted as a pathname. Note that the
PRIVILEGED option also affects the execution of startup files.
The following options are set if the shell is invoked as sh or ksh: NO_BAD_PATTERN,
NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNCTION_ARGZERO, GLOB_SUBST,
NO_GLOBAL_EXPORT, NO_HUP, INTERACTIVE_COMMENTS, KSH_ARRAYS, NO_MULTIOS,
NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS, NO_PROMPT_PERCENT, RM_STAR_SILENT,
SH_FILE_EXPANSION, SH_GLOB, SH_OPTION_LETTERS, SH_WORD_SPLIT. Additionally
the BSD_ECHO and IGNORE_BRACES options are set if zsh is invoked as sh. Also, the
KSH_OPTION_PRINT, LOCAL_OPTIONS, PROMPT_BANG, PROMPT_SUBST and SINGLE_LINE_ZLE
options are set if zsh is invoked as ksh.

4.3 Restricted Shell

When the basename of the command used to invoke zsh starts with the letter ‘r’ or the ‘-r’
command line option is supplied at invocation, the shell becomes restricted. Emulation mode is
determined after stripping the letter ‘r’ from the invocation name. The following are disabled
in restricted mode:
• changing directories with the cd builtin
• changing or unsetting the PATH, path, MODULE_PATH, module_path, SHELL, HISTFILE,

HISTSIZE, GID, EGID, UID, EUID, USERNAME, LD_LIBRARY_PATH, LD_AOUT_LIBRARY_PATH,
LD_PRELOAD and LD_AOUT_PRELOAD parameters

• specifying command names containing /

• specifying command pathnames using hash

• redirecting output to files
• using the exec builtin command to replace the shell with another command

Chapter 5: Files 8

• using jobs -Z to overwrite the shell process’ argument and environment space

• using the ARGV0 parameter to override argv[0] for external commands

• turning off restricted mode with set +r or unsetopt RESTRICTED

These restrictions are enforced after processing the startup files. The startup files should set
up PATH to point to a directory of commands which can be safely invoked in the restricted
environment. They may also add further restrictions by disabling selected builtins.

Restricted mode can also be activated any time by setting the RESTRICTED option. This imme-
diately enables all the restrictions described above even if the shell still has not processed all
startup files.

5 Files

5.1 Startup/Shutdown Files

Commands are first read from /etc/zshenv; this cannot be overridden. Subsequent behaviour
is modified by the RCS and GLOBAL_RCS options; the former affects all startup files, while the
second only affects those in the /etc directory. If one of the options is unset at any point, any
subsequent startup file(s) of the corresponding type will not be read. It is also possible for a file
in $ZDOTDIR to re-enable GLOBAL_RCS. Both RCS and GLOBAL_RCS are set by default.

Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login shell, commands are
read from /etc/zprofile and then $ZDOTDIR/.zprofile. Then, if the shell is interactive,
commands are read from /etc/zshrc and then $ZDOTDIR/.zshrc. Finally, if the shell is a login
shell, /etc/zlogin and $ZDOTDIR/.zlogin are read.

When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zlogout are read. This
happens with either an explicit exit via the exit or logout commands, or an implicit exit by
reading end-of-file from the terminal. However, if the shell terminates due to exec’ing another
process, the logout files are not read. These are also affected by the RCS and GLOBAL_RCS options.
Note also that the RCS option affects the saving of history files, i.e. if RCS is unset when the
shell exits, no history file will be saved.

If ZDOTDIR is unset, HOME is used instead. Those files listed above as being in /etc may be in
another directory, depending on the installation.

As /etc/zshenv is run for all instances of zsh, it is important that it be kept as small as possible.
In particular, it is a good idea to put code that does not need to be run for every single shell
behind a test of the form ‘if [[-o rcs]]; then ...’ so that it will not be executed when
zsh is invoked with the ‘-f’ option.

5.2 Files

Chapter 6: Shell Grammar 9

$ZDOTDIR/.zshenv
$ZDOTDIR/.zprofile
$ZDOTDIR/.zshrc
$ZDOTDIR/.zlogin
$ZDOTDIR/.zlogout
${TMPPREFIX}* (default is /tmp/zsh*)
/etc/zshenv
/etc/zprofile
/etc/zshrc
/etc/zlogin
/etc/zlogout (installation-specific - /etc is the default)

Any of these files may be pre-compiled with the zcompile builtin command (Chapter 17 [Shell
Builtin Commands], page 91). If a compiled file exists (named for the original file plus the .zwc
extension) and it is newer than the original file, the compiled file will be used instead.

6 Shell Grammar

6.1 Simple Commands & Pipelines

A simple command is a sequence of optional parameter assignments followed by blank-separated
words, with optional redirections interspersed. The first word is the command to be executed,
and the remaining words, if any, are arguments to the command. If a command name is given,
the parameter assignments modify the environment of the command when it is executed. The
value of a simple command is its exit status, or 128 plus the signal number if terminated by a
signal. For example,

echo foo

is a simple command with arguments.
A pipeline is either a simple command, or a sequence of two or more simple commands where
each command is separated from the next by ‘|’ or ‘|&’. Where commands are separated by ‘|’,
the standard output of the first command is connected to the standard input of the next. ‘|&’
is shorthand for ‘2>&1 |’, which connects both the standard output and the standard error of
the command to the standard input of the next. The value of a pipeline is the value of the last
command, unless the pipeline is preceded by ‘!’ in which case the value is the logical inverse of
the value of the last command. For example,

echo foo | sed ’s/foo/bar/’

is a pipeline, where the output (‘foo’ plus a newline) of the first command will be passed to the
input of the second.
If a pipeline is preceded by ‘coproc’, it is executed as a coprocess; a two-way pipe is established
between it and the parent shell. The shell can read from or write to the coprocess by means of
the ‘>&p’ and ‘<&p’ redirection operators or with ‘print -p’ and ‘read -p’. A pipeline cannot
be preceded by both ‘coproc’ and ‘!’. If job control is active, the coprocess can be treated in
other than input and output as an ordinary background job.
A sublist is either a single pipeline, or a sequence of two or more pipelines separated by ‘&&’
or ‘||’. If two pipelines are separated by ‘&&’, the second pipeline is executed only if the first
succeeds (returns a zero status). If two pipelines are separated by ‘||’, the second is executed
only if the first fails (returns a nonzero status). Both operators have equal precedence and are
left associative. The value of the sublist is the value of the last pipeline executed. For example,

Chapter 6: Shell Grammar 10

dmesg | grep panic && print yes

is a sublist consisting of two pipelines, the second just a simple command which will be executed
if and only if the grep command returns a zero status. If it does not, the value of the sublist is
that return status, else it is the status returned by the print (almost certainly zero).

A list is a sequence of zero or more sublists, in which each sublist is terminated by ‘;’, ‘&’, ‘&|’,
‘&!’, or a newline. This terminator may optionally be omitted from the last sublist in the list
when the list appears as a complex command inside ‘(...)’ or ‘{...}’. When a sublist is terminated
by ‘;’ or newline, the shell waits for it to finish before executing the next sublist. If a sublist
is terminated by a ‘&’, ‘&|’, or ‘&!’, the shell executes the last pipeline in it in the background,
and does not wait for it to finish (note the difference from other shells which execute the whole
sublist in the background). A backgrounded pipeline returns a status of zero.

More generally, a list can be seen as a set of any shell commands whatsoever, including the
complex commands below; this is implied wherever the word ‘list’ appears in later descriptions.
For example, the commands in a shell function form a special sort of list.

6.2 Precommand Modifiers

A simple command may be preceded by a precommand modifier, which will alter how the
command is interpreted. These modifiers are shell builtin commands with the exception of
nocorrect which is a reserved word.

- The command is executed with a ‘-’ prepended to its argv[0] string.

builtin The command word is taken to be the name of a builtin command, rather than a
shell function or external command.

command [-pvV]
The command word is taken to be the name of an external command, rather than
a shell function or builtin. If the POSIX_BUILTINS option is set, builtins will also be
executed but certain special properties of them are suppressed. The -p flag causes
a default path to be searched instead of that in $path. With the -v flag, command
is similar to whence and with -V, it is equivalent to whence -v.

exec [-cl] [-a argv0]
The following command together with any arguments is run in place of the current
process, rather than as a sub-process. The shell does not fork and is replaced. The
shell does not invoke TRAPEXIT, nor does it source zlogout files. The options are
provided for compatibility with other shells.

The -c option clears the environment.

The -l option is equivalent to the - precommand modifier, to treat the replacement
command as a login shell; the command is executed with a - prepended to its
argv[0] string. This flag has no effect if used together with the -a option.

The -a option is used to specify explicitly the argv[0] string (the name of the
command as seen by the process itself) to be used by the replacement command
and is directly equivalent to setting a value for the ARGV0 environment variable.

nocorrect
Spelling correction is not done on any of the words. This must appear before any
other precommand modifier, as it is interpreted immediately, before any parsing is
done. It has no effect in non-interactive shells.

noglob Filename generation (globbing) is not performed on any of the words.

Chapter 6: Shell Grammar 11

6.3 Complex Commands

A complex command in zsh is one of the following:

if list then list [elif list then list] ... [else list] fi
The if list is executed, and if it returns a zero exit status, the then list is executed.
Otherwise, the elif list is executed and if its status is zero, the then list is executed.
If each elif list returns nonzero status, the else list is executed.

for name ... [in word ...] term do list done
where term is at least one newline or ;. Expand the list of words, and set the
parameter name to each of them in turn, executing list each time. If the in word
is omitted, use the positional parameters instead of the words.
More than one parameter name can appear before the list of words. If N names
are given, then on each execution of the loop the next N words are assigned to
the corresponding parameters. If there are more names than remaining words, the
remaining parameters are each set to the empty string. Execution of the loop ends
when there is no remaining word to assign to the first name. It is only possible for
in to appear as the first name in the list, else it will be treated as marking the end
of the list.

for (([expr1] ; [expr2] ; [expr3])) do list done
The arithmetic expression expr1 is evaluated first (see Chapter 11 [Arithmetic Eval-
uation], page 24). The arithmetic expression expr2 is repeatedly evaluated until it
evaluates to zero and when non-zero, list is executed and the arithmetic expression
expr3 evaluated. If any expression is omitted, then it behaves as if it evaluated to
1.

while list do list done
Execute the do list as long as the while list returns a zero exit status.

until list do list done
Execute the do list as long as until list returns a nonzero exit status.

repeat word do list done
word is expanded and treated as an arithmetic expression, which must evaluate to
a number n. list is then executed n times.

case word in [[(] pattern [| pattern] ...) list (;;|;&|;|)] ... esac
Execute the list associated with the first pattern that matches word, if any. The form
of the patterns is the same as that used for filename generation. See Section 14.8
[Filename Generation], page 47.
If the list that is executed is terminated with ;& rather than ;;, the following list
is also executed. The rule for the terminator of the following list ;;, ;& or ;| is
applied unless the esac is reached.
If the list that is executed is terminated with ;| the shell continues to scan the
patterns looking for the next match, executing the corresponding list, and applying
the rule for the corresponding terminator ;;, ;& or ;|. Note that word is not
re-expanded; all applicable patterns are tested with the same word.

select name [in word ... term] do list done
where term is one or more newline or ; to terminate the words. Print the set of
words, each preceded by a number. If the in word is omitted, use the positional
parameters. The PROMPT3 prompt is printed and a line is read from the line editor if
the shell is interactive and that is active, or else standard input. If this line consists
of the number of one of the listed words, then the parameter name is set to the

Chapter 6: Shell Grammar 12

word corresponding to this number. If this line is empty, the selection list is printed
again. Otherwise, the value of the parameter name is set to null. The contents of
the line read from standard input is saved in the parameter REPLY. list is executed
for each selection until a break or end-of-file is encountered.

(list) Execute list in a subshell. Traps set by the trap builtin are reset to their default
values while executing list.

{ list } Execute list.

{ try-list } always { always-list }
First execute try-list. Regardless of errors, or break, continue, or return com-
mands encountered within try-list, execute always-list. Execution then continues
from the result of the execution of try-list; in other words, any error, or break,
continue, or return command is treated in the normal way, as if always-list were
not present. The two chunks of code are referred to as the ‘try block’ and the ‘always
block’.

Optional newlines or semicolons may appear after the always; note, however, that
they may not appear between the preceeding closing brace and the always.

An ‘error’ in this context is a condition such as a syntax error which causes the shell
to abort execution of the current function, script, or list. Syntax errors encountered
while the shell is parsing the code do not cause the always-list to be executed. For
example, an erroneously constructed if block in try-list would cause the shell
to abort during parsing, so that always-list would not be executed, while an
erroneous substitution such as ${*foo*} would cause a run-time error, after which
always-list would be executed.

An error condition can be tested and reset with the special integer variable
TRY_BLOCK_ERROR. Outside an always-list the value is irrelevant, but it is ini-
tialised to -1. Inside always-list, the value is 1 if an error occurred in the try-
list, else 0. If TRY_BLOCK_ERROR is set to 0 during the always-list, the error
condition caused by the try-list is reset, and shell execution continues normally
after the end of always-list. Altering the value during the try-list is not useful
(unless this forms part of an enclosing always block).

Regardless of TRY_BLOCK_ERROR, after the end of always-list the normal shell
status $? is the value returned from always-list. This will be non-zero if there
was an error, even if TRY_BLOCK_ERROR was set to zero.

The following executes the given code, ignoring any errors it causes. This is an
alternative to the usual convention of protecting code by executing it in a subshell.

{
code which may cause an error

} always {
This code is executed regardless of the error.
((TRY_BLOCK_ERROR = 0))

}
The error condition has been reset.

An exit command (or a return command executed at the outermost function level
of a script) encountered in try-list does not cause the execution of always-list.
Instead, the shell exits immediately after any EXIT trap has been executed.

Chapter 6: Shell Grammar 13

function word ... [()] [term] { list }
word ... () [term] { list }
word ... () [term] command

where term is one or more newline or ;. Define a function which is referenced by
any one of word. Normally, only one word is provided; multiple words are usually
only useful for setting traps. The body of the function is the list between the { and
}. See Chapter 9 [Functions], page 19.
If the option SH_GLOB is set for compatibility with other shells, then whitespace
may appear between between the left and right parentheses when there is a single
word; otherwise, the parentheses will be treated as forming a globbing pattern in
that case.

time [pipeline]
The pipeline is executed, and timing statistics are reported on the standard error in
the form specified by the TIMEFMT parameter. If pipeline is omitted, print statistics
about the shell process and its children.

[[exp]] Evaluates the conditional expression exp and return a zero exit status if it is true.
See Chapter 12 [Conditional Expressions], page 26 for a description of exp.

6.4 Alternate Forms For Complex Commands

Many of zsh’s complex commands have alternate forms. These particular versions of complex
commands should be considered deprecated and may be removed in the future. The versions in
the previous section should be preferred instead.
The short versions below only work if sublist is of the form ‘{ list }’ or if the SHORT_LOOPS
option is set. For the if, while and until commands, in both these cases the test part of the
loop must also be suitably delimited, such as by ‘[[...]]’ or ‘((...))’, else the end of the
test will not be recognized. For the for, repeat, case and select commands no such special
form for the arguments is necessary, but the other condition (the special form of sublist or use
of the SHORT_LOOPS option) still applies.

if list { list } [elif list { list }] ... [else { list }]
An alternate form of if. The rules mean that

if [[-o ignorebraces]] {
print yes

}

works, but
if true { # Does not work!
print yes

}

does not, since the test is not suitably delimited.

if list sublist
A short form of the alternate ‘if’. The same limitations on the form of list apply as
for the previous form.

for name ... (word ...) sublist
A short form of for.

for name ... [in word ...] term sublist
where term is at least one newline or ;. Another short form of for.

for (([expr1] ; [expr2] ; [expr3])) sublist
A short form of the arithmetic for command.

Chapter 6: Shell Grammar 14

foreach name ... (word ...) list end
Another form of for.

while list { list }
An alternative form of while. Note the limitations on the form of list mentioned
above.

until list { list }
An alternative form of until. Note the limitations on the form of list mentioned
above.

repeat word sublist
This is a short form of repeat.

case word { [[(] pattern [| pattern] ...) list (;;|;&|;|)] ... }
An alternative form of case.

select name [in word term] sublist
where term is at least one newline or ;. A short form of select.

6.5 Reserved Words

The following words are recognized as reserved words when used as the first word of a command
unless quoted or disabled using disable -r:

do done esac then elif else fi for case if while function repeat time until
select coproc nocorrect foreach end ! [[{ }

Additionally, ‘}’ is recognized in any position if the IGNORE_BRACES option is not set.

6.6 Comments

In noninteractive shells, or in interactive shells with the INTERACTIVE_COMMENTS option set, a
word beginning with the third character of the histchars parameter (‘#’ by default) causes that
word and all the following characters up to a newline to be ignored.

6.7 Aliasing

Every token in the shell input is checked to see if there is an alias defined for it. If so, it is
replaced by the text of the alias if it is in command position (if it could be the first word of a
simple command), or if the alias is global. If the text ends with a space, the next word in the
shell input is treated as though it were in command position for purposes of alias expansion.
An alias is defined using the alias builtin; global aliases may be defined using the -g option to
that builtin.

Alias expansion is done on the shell input before any other expansion except history expansion.
Therefore, if an alias is defined for the word foo, alias expansion may be avoided by quoting
part of the word, e.g. \foo. But there is nothing to prevent an alias being defined for \foo as
well.

6.8 Quoting

A character may be quoted (that is, made to stand for itself) by preceding it with a ‘\’. ‘\’
followed by a newline is ignored.

A string enclosed between ‘$’’ and ‘’’ is processed the same way as the string arguments of the
print builtin, and the resulting string is considered to be entirely quoted. A literal ‘’’ character
can be included in the string by using the ‘\’’ escape.

Chapter 7: Redirection 15

All characters enclosed between a pair of single quotes (’’) that is not preceded by a ‘$’ are
quoted. A single quote cannot appear within single quotes unless the option RC_QUOTES is set,
in which case a pair of single quotes are turned into a single quote. For example,

print ’’’’

outputs nothing apart from a newline if RC_QUOTES is not set, but one single quote if it is set.

Inside double quotes (""), parameter and command substitution occur, and ‘\’ quotes the char-
acters ‘\’, ‘‘’, ‘"’, and ‘$’.

7 Redirection

If a command is followed by & and job control is not active, then the default standard input
for the command is the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified by input/output
specifications.

The following may appear anywhere in a simple command or may precede or follow a complex
command. Expansion occurs before word or digit is used except as noted below. If the result
of substitution on word produces more than one filename, redirection occurs for each separate
filename in turn.

< word Open file word for reading as standard input.

<> word Open file word for reading and writing as standard input. If the file does not exist
then it is created.

> word Open file word for writing as standard output. If the file does not exist then it is
created. If the file exists, and the CLOBBER option is unset, this causes an error;
otherwise, it is truncated to zero length.

>| word
>! word Same as >, except that the file is truncated to zero length if it exists, even if CLOBBER

is unset.

>> word Open file word for writing in append mode as standard output. If the file does not
exist, and the CLOBBER option is unset, this causes an error; otherwise, the file is
created.

>>| word
>>! word Same as >>, except that the file is created if it does not exist, even if CLOBBER is

unset.

<<[-] word
The shell input is read up to a line that is the same as word, or to an end-of-file.
No parameter expansion, command substitution or filename generation is performed
on word. The resulting document, called a here-document, becomes the standard
input.
If any character of word is quoted with single or double quotes or a ‘\’, no inter-
pretation is placed upon the characters of the document. Otherwise, parameter and
command substitution occurs, ‘\’ followed by a newline is removed, and ‘\’ must be
used to quote the characters ‘\’, ‘$’, ‘‘’ and the first character of word.
Note that word itself does not undergo shell expansion. Backquotes in word do
not have their usual effect; instead they behave similarly to double quotes, except
that the backquotes themselves are passed through unchanged. (This information is
given for completeness and it is not recommended that backquotes be used.) Quotes

Chapter 7: Redirection 16

in the form $’...’ have their standard effect of expanding backslashed references to
special characters.
If <<- is used, then all leading tabs are stripped from word and from the document.

<<< word Perform shell expansion on word and pass the result to standard input. This is
known as a here-string. Compare the use of word in here-documents above, where
word does not undergo shell expansion.

<& number
>& number

The standard input/output is duplicated from file descriptor number (see man page
dup2(2)).

<& -
>& - Close the standard input/output.

<& p
>& p The input/output from/to the coprocess is moved to the standard input/output.

>& word
&> word (Except where ‘>& word’ matches one of the above syntaxes; ‘&>’ can always be

used to avoid this ambiguity.) Redirects both standard output and standard error
(file descriptor 2) in the manner of ‘> word’. Note that this does not have the same
effect as ‘> word 2>&1’ in the presence of multios (see the section below).

>&| word
>&! word
&>| word
&>! word Redirects both standard output and standard error (file descriptor 2) in the manner

of ‘>| word’.

>>& word
&>> word Redirects both standard output and standard error (file descriptor 2) in the manner

of ‘>> word’.

>>&| word
>>&! word
&>>| word
&>>! word Redirects both standard output and standard error (file descriptor 2) in the manner

of ‘>>| word’.

If one of the above is preceded by a digit, then the file descriptor referred to is that specified by
the digit instead of the default 0 or 1. The order in which redirections are specified is significant.
The shell evaluates each redirection in terms of the (file descriptor, file) association at the time
of evaluation. For example:

... 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file
associated with file descriptor 1 (that is, fname). If the order of redirections were reversed, file
descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname.
If instead of a digit one of the operators above is preceded by a valid identifier enclosed in
braces, the shell will open a new file descriptor that is guaranteed to be at least 10 and set
the parameter named by the identifier to the file descriptor opened. No whitespace is allowed
between the closing brace and the redirection character. The option IGNORE_BRACES must not
be set. For example:

... {myfd}>&1

Chapter 7: Redirection 17

This opens a new file descriptor that is a duplicate of file descriptor 1 and sets the parameter
myfd to the number of the file descriptor, which will be at least 10. The new file descriptor can
be written to using the syntax >&$myfd.
The syntax {varid}>&-, for example {myfd}>&-, may be used to close a file descriptor opened in
this fashion. Note that the parameter given by varid must previously be set to a file descriptor
in this case.
It is an error to open or close a file descriptor in this fashion when the parameter is readonly.
However, it is not an error to read or write a file descriptor using <&$param or >&$param if
param is readonly.
If the option CLOBBER is unset, it is an error to open a file descriptor using a parameter that
is already set to an open file descriptor previously allocated by this mechanism. Unsetting the
parameter before using it for allocating a file descriptor avoids the error.
Note that this mechanism merely allocates or closes a file descriptor; it does not perform any
redirections from or to it. It is usually convenient to allocate a file descriptor prior to use as an
argument to exec. The following shows a typical sequence of allocation, use, and closing of a
file descriptor:

integer myfd
exec {myfd}>~/logs/mylogfile.txt
print This is a log message. >&$myfd
exec {myfd}>&-

Note that the expansion of the variable in the expression >&$myfd occurs at the point the redi-
rection is opened. This is after the expansion of command arguments and after any redirections
to the left on the command line have been processed.
The ‘|&’ command separator described in Section 6.1 [Simple Commands & Pipelines], page 9
is a shorthand for ‘2>&1 |’.
The various forms of process substitution, ‘<(list)’, and ‘=(list())’ for input and ‘>(list)’ for
output, are often used together with redirection. For example, if word in an output redirection
is of the form ‘>(list)’ then the output is piped to the command represented by list. See
Section 14.2 [Process Substitution], page 35.

7.1 Multios

If the user tries to open a file descriptor for writing more than once, the shell opens the file
descriptor as a pipe to a process that copies its input to all the specified outputs, similar to tee,
provided the MULTIOS option is set, as it is by default. Thus:

date >foo >bar

writes the date to two files, named ‘foo’ and ‘bar’. Note that a pipe is an implicit redirection;
thus

date >foo | cat

writes the date to the file ‘foo’, and also pipes it to cat.
If the MULTIOS option is set, the word after a redirection operator is also subjected to filename
generation (globbing). Thus

: > *

will truncate all files in the current directory, assuming there’s at least one. (Without the
MULTIOS option, it would create an empty file called ‘*’.) Similarly, you can do

echo exit 0 >> *.sh

If the user tries to open a file descriptor for reading more than once, the shell opens the file
descriptor as a pipe to a process that copies all the specified inputs to its output in the order
specified, similar to cat, provided the MULTIOS option is set. Thus

Chapter 8: Command Execution 18

sort <foo <fubar

or even

sort <f{oo,ubar}

is equivalent to ‘cat foo fubar | sort’.

Expansion of the redirection argument occurs at the point the redirection is opened, at the point
described above for the expansion of the variable in >&$myfd.

Note that a pipe is an implicit redirection; thus

cat bar | sort <foo

is equivalent to ‘cat bar foo | sort’ (note the order of the inputs).

If the MULTIOS option is unset, each redirection replaces the previous redirection for that file
descriptor. However, all files redirected to are actually opened, so

echo foo > bar > baz

when MULTIOS is unset will truncate bar, and write ‘foo’ into baz.

There is a problem when an output multio is attached to an external program. A simple example
shows this:

cat file >file1 >file2
cat file1 file2

Here, it is possible that the second ‘cat’ will not display the full contents of file1 and file2
(i.e. the original contents of file repeated twice).

The reason for this is that the multios are spawned after the cat process is forked from the parent
shell, so the parent shell does not wait for the multios to finish writing data. This means the
command as shown can exit before file1 and file2 are completely written. As a workaround,
it is possible to run the cat process as part of a job in the current shell:

{ cat file } >file >file2

Here, the {...} job will pause to wait for both files to be written.

7.2 Redirections with no command

When a simple command consists of one or more redirection operators and zero or more param-
eter assignments, but no command name, zsh can behave in several ways.

If the parameter NULLCMD is not set or the option CSH_NULLCMD is set, an error is caused. This
is the csh behavior and CSH_NULLCMD is set by default when emulating csh.

If the option SH_NULLCMD is set, the builtin ‘:’ is inserted as a command with the given redirec-
tions. This is the default when emulating sh or ksh.

Otherwise, if the parameter NULLCMD is set, its value will be used as a command with the given
redirections. If both NULLCMD and READNULLCMD are set, then the value of the latter will be used
instead of that of the former when the redirection is an input. The default for NULLCMD is ‘cat’
and for READNULLCMD is ‘more’. Thus

< file

shows the contents of file on standard output, with paging if that is a terminal. NULLCMD and
READNULLCMD may refer to shell functions.

Chapter 9: Functions 19

8 Command Execution

If a command name contains no slashes, the shell attempts to locate it. If there exists a shell
function by that name, the function is invoked as described in Chapter 9 [Functions], page 19.
If there exists a shell builtin by that name, the builtin is invoked.
Otherwise, the shell searches each element of $path for a directory containing an executable
file by that name. If the search is unsuccessful, the shell prints an error message and returns a
nonzero exit status.
If execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be a shell script. /bin/sh is spawned to execute it. If the program is a file beginning
with ‘#!’, the remainder of the first line specifies an interpreter for the program. The shell will
execute the specified interpreter on operating systems that do not handle this executable format
in the kernel.
If no external command is found but a function command_not_found_handler exists the shell
executes this function with all command line arguments. The function should return status
zero if it successfully handled the command, or non-zero status if it failed. In the latter case
the standard handling is applied: ‘command not found’ is printed to standard error and the
shell exits with status 127. Note that the handler is executed in a subshell forked to execute
an external command, hence changes to directories, shell parameters, etc. have no effect on the
main shell.

9 Functions

Shell functions are defined with the function reserved word or the special syntax ‘funcname
()’. Shell functions are read in and stored internally. Alias names are resolved when the
function is read. Functions are executed like commands with the arguments passed as positional
parameters. (See Chapter 8 [Command Execution], page 19.)
Functions execute in the same process as the caller and share all files and present working
directory with the caller. A trap on EXIT set inside a function is executed after the function
completes in the environment of the caller.
The return builtin is used to return from function calls.
Function identifiers can be listed with the functions builtin. Functions can be undefined with
the unfunction builtin.

9.1 Autoloading Functions

A function can be marked as undefined using the autoload builtin (or ‘functions -u’ or ‘type-
set -fu’). Such a function has no body. When the function is first executed, the shell searches
for its definition using the elements of the fpath variable. Thus to define functions for autoload-
ing, a typical sequence is:

fpath=(~/myfuncs $fpath)
autoload myfunc1 myfunc2 ...

The usual alias expansion during reading will be suppressed if the autoload builtin or its
equivalent is given the option -U. This is recommended for the use of functions supplied with
the zsh distribution. Note that for functions precompiled with the zcompile builtin command
the flag -U must be provided when the .zwc file is created, as the corresponding information is
compiled into the latter.
For each element in fpath, the shell looks for three possible files, the newest of which is used to
load the definition for the function:

Chapter 9: Functions 20

element.zwc
A file created with the zcompile builtin command, which is expected to contain the
definitions for all functions in the directory named element. The file is treated in
the same manner as a directory containing files for functions and is searched for the
definition of the function. If the definition is not found, the search for a definition
proceeds with the other two possibilities described below.
If element already includes a .zwc extension (i.e. the extension was explicitly
given by the user), element is searched for the definition of the function without
comparing its age to that of other files; in fact, there does not need to be any
directory named element without the suffix. Thus including an element such as
‘/usr/local/funcs.zwc’ in fpath will speed up the search for functions, with the
disadvantage that functions included must be explicitly recompiled by hand before
the shell notices any changes.

element/function.zwc
A file created with zcompile, which is expected to contain the definition for function.
It may include other function definitions as well, but those are neither loaded nor
executed; a file found in this way is searched only for the definition of function.

element/function
A file of zsh command text, taken to be the definition for function.

In summary, the order of searching is, first, in the parents of directories in fpath for the newer
of either a compiled directory or a directory in fpath; second, if more than one of these contains
a definition for the function that is sought, the leftmost in the fpath is chosen; and third, within
a directory, the newer of either a compiled function or an ordinary function definition is used.
If the KSH_AUTOLOAD option is set, or the file contains only a simple definition of the function,
the file’s contents will be executed. This will normally define the function in question, but may
also perform initialization, which is executed in the context of the function execution, and may
therefore define local parameters. It is an error if the function is not defined by loading the file.
Otherwise, the function body (with no surrounding ‘funcname() {...}’) is taken to be the com-
plete contents of the file. This form allows the file to be used directly as an executable shell
script. If processing of the file results in the function being re-defined, the function itself is not
re-executed. To force the shell to perform initialization and then call the function defined, the
file should contain initialization code (which will be executed then discarded) in addition to a
complete function definition (which will be retained for subsequent calls to the function), and a
call to the shell function, including any arguments, at the end.
For example, suppose the autoload file func contains

func() { print This is func; }
print func is initialized

then ‘func; func’ with KSH_AUTOLOAD set will produce both messages on the first call, but only
the message ‘This is func’ on the second and subsequent calls. Without KSH_AUTOLOAD set,
it will produce the initialization message on the first call, and the other message on the second
and subsequent calls.
It is also possible to create a function that is not marked as autoloaded, but which loads its own
definition by searching fpath, by using ‘autoload -X’ within a shell function. For example, the
following are equivalent:

myfunc() {
autoload -X

}
myfunc args...

Chapter 9: Functions 21

and
unfunction myfunc # if myfunc was defined
autoload myfunc
myfunc args...

In fact, the functions command outputs ‘builtin autoload -X’ as the body of an autoloaded
function. This is done so that

eval "$(functions)"

produces a reasonable result. A true autoloaded function can be identified by the presence
of the comment ‘# undefined’ in the body, because all comments are discarded from defined
functions.
To load the definition of an autoloaded function myfunc without executing myfunc, use:

autoload +X myfunc

9.2 Special Functions

Certain functions, if defined, have special meaning to the shell.
In the case of chpwd, periodic, precmd and preexec it is possible to define an array that has
the same name with ‘_functions’ appended. Any element in such an array is taken as the name
of a function to execute; it is executed in the same context and with the same arguments as the
basic function. For example, if $chpwd_functions is an array containing the values ‘mychpwd’,
‘chpwd_save_dirstack’, then the shell attempts to execute the functions ‘chpwd’, ‘mychpwd’
and ‘chpwd_save_dirstack’, in that order. Any function that does not exist is silently ignored.
A function found by this mechanism is referred to elsewhere as a ‘hook function’. An error in
any function causes subsequent functions not to be run. Note further that an error in a precmd
hook causes an immediately following periodic function not to run (thought it may run at the
next opportunity).

chpwd Executed whenever the current working directory is changed.

periodic If the parameter PERIOD is set, this function is executed every $PERIOD seconds,
just before a prompt. Note that if multiple functions are defined using the array
periodic_functions only one period is applied to the complete set of functions,
and the scheduled time is not reset if the list of functions is altered. Hence the set
of functions is always called together.

precmd Executed before each prompt. Note that precommand functions are not reexecuted
simply because the command line is redrawn, as happens, for example, when a
notification about an exiting job is displayed.

preexec Executed just after a command has been read and is about to be executed. If
the history mechanism is active (and the line was not discarded from the history
buffer), the string that the user typed is passed as the first argument, otherwise it
is an empty string. The actual command that will be executed (including expanded
aliases) is passed in two different forms: the second argument is a single-line, size-
limited version of the command (with things like function bodies elided); the third
argument contains the full text that is being executed.

zshexit Executed at the point where the main shell is about to exit normally. This is not
called by exiting subshells, nor when the exec precommand modifier is used before
an external command. Also, unlike TRAPEXIT, it is not called when functions exit.

TRAPNAL If defined and non-null, this function will be executed whenever the shell catches a
signal SIGNAL, where NAL is a signal name as specified for the kill builtin. The
signal number will be passed as the first parameter to the function.

Chapter 10: Jobs & Signals 22

If a function of this form is defined and null, the shell and processes spawned by it
will ignore SIGNAL.
The return status from the function is handled specially. If it is zero, the signal is
assumed to have been handled, and execution continues normally. Otherwise, the
shell will behave as interrupted except that the return status of the trap is retained.
Programs terminated by uncaught signals typically return the status 128 plus the
signal number. Hence the following causes the handler for SIGINT to print a message,
then mimic the usual effect of the signal.

TRAPINT() {
print "Caught SIGINT, aborting."
return $((128 + $1))

}

The functions TRAPZERR, TRAPDEBUG and TRAPEXIT are never executed inside other
traps.

TRAPDEBUG
Executed after each command.

TRAPEXIT Executed when the shell exits, or when the current function exits if defined inside a
function. The value of $? at the start of execution is the exit status of the shell or
the return status of the function exiting.

TRAPZERR Executed whenever a command has a non-zero exit status. However, the function
is not executed if the command occurred in a sublist followed by ‘&&’ or ‘||’; only
the final command in a sublist of this type causes the trap to be executed. The
function TRAPERR acts the same as TRAPZERR on systems where there is no SIGERR
(this is the usual case).

The functions beginning ‘TRAP’ may alternatively be defined with the trap builtin: this may be
preferable for some uses, as they are then run in the environment of the calling process, rather
than in their own function environment. Apart from the difference in calling procedure and the
fact that the function form appears in lists of functions, the forms

TRAPNAL() {
code
}

and

trap ’
code
’ NAL

are equivalent.

10 Jobs & Signals

10.1 Jobs

If the MONITOR option is set, an interactive shell associates a job with each pipeline. It keeps a
table of current jobs, printed by the jobs command, and assigns them small integer numbers.
When a job is started asynchronously with ‘&’, the shell prints a line to standard error which
looks like:

[1] 1234

Chapter 11: Arithmetic Evaluation 23

indicating that the job which was started asynchronously was job number 1 and had one (top-
level) process, whose process ID was 1234.
If a job is started with ‘&|’ or ‘&!’, then that job is immediately disowned. After startup, it does
not have a place in the job table, and is not subject to the job control features described here.
If you are running a job and wish to do something else you may hit the key ^Z (control-Z)
which sends a TSTP signal to the current job: this key may be redefined by the susp option
of the external stty command. The shell will then normally indicate that the job has been
‘suspended’, and print another prompt. You can then manipulate the state of this job, putting
it in the background with the bg command, or run some other commands and then eventually
bring the job back into the foreground with the foreground command fg. A ^Z takes effect
immediately and is like an interrupt in that pending output and unread input are discarded
when it is typed.
A job being run in the background will suspend if it tries to read from the terminal. Background
jobs are normally allowed to produce output, but this can be disabled by giving the command
‘stty tostop’. If you set this tty option, then background jobs will suspend when they try to
produce output like they do when they try to read input.
When a command is suspended and continued later with the fg or wait builtins, zsh restores
tty modes that were in effect when it was suspended. This (intentionally) does not apply if the
command is continued via ‘kill -CONT’, nor when it is continued with bg.
There are several ways to refer to jobs in the shell. A job can be referred to by the process ID
of any process of the job or by one of the following:

%number The job with the given number.

%string Any job whose command line begins with string.

%?string Any job whose command line contains string.

%% Current job.

%+ Equivalent to ‘%%’.

%- Previous job.

The shell learns immediately whenever a process changes state. It normally informs you when-
ever a job becomes blocked so that no further progress is possible. If the NOTIFY option is not
set, it waits until just before it prints a prompt before it informs you. All such notifications are
sent directly to the terminal, not to the standard output or standard error.
When the monitor mode is on, each background job that completes triggers any trap set for
CHLD.
When you try to leave the shell while jobs are running or suspended, you will be warned that
‘You have suspended (running) jobs’. You may use the jobs command to see what they are.
If you do this or immediately try to exit again, the shell will not warn you a second time; the
suspended jobs will be terminated, and the running jobs will be sent a SIGHUP signal, if the HUP
option is set.
To avoid having the shell terminate the running jobs, either use the nohup command (see man
page nohup(1)) or the disown builtin.

10.2 Signals

The INT and QUIT signals for an invoked command are ignored if the command is followed by ‘&’
and the MONITOR option is not active. The shell itself always ignores the QUIT signal. Otherwise,
signals have the values inherited by the shell from its parent (but see the TRAPNAL special
functions in Chapter 9 [Functions], page 19).

Chapter 11: Arithmetic Evaluation 24

11 Arithmetic Evaluation

The shell can perform integer and floating point arithmetic, either using the builtin let, or via
a substitution of the form $((...)). For integers, the shell is usually compiled to use 8-byte
precision where this is available, otherwise precision is 4 bytes. This can be tested, for example,
by giving the command ‘print - $((12345678901))’; if the number appears unchanged,
the precision is at least 8 bytes. Floating point arithmetic always uses the ‘double’ type with
whatever corresponding precision is provided by the compiler and the library.
The let builtin command takes arithmetic expressions as arguments; each is evaluated sepa-
rately. Since many of the arithmetic operators, as well as spaces, require quoting, an alternative
form is provided: for any command which begins with a ‘((’, all the characters until a matching
‘))’ are treated as a quoted expression and arithmetic expansion performed as for an argument of
let. More precisely, ‘((...))’ is equivalent to ‘let "..."’. The return status is 0 if the arithmetic
value of the expression is non-zero, 1 if it is zero, and 2 if an error occurred.
For example, the following statement

((val = 2 + 1))

is equivalent to
let "val = 2 + 1"

both assigning the value 3 to the shell variable val and returning a zero status.
Integers can be in bases other than 10. A leading ‘0x’ or ‘0X’ denotes hexadecimal. Integers
may also be of the form ‘base#n’, where base is a decimal number between two and thirty-six
representing the arithmetic base and n is a number in that base (for example, ‘16#ff’ is 255 in
hexadecimal). The base# may also be omitted, in which case base 10 is used. For backwards
compatibility the form ‘[base]n’ is also accepted.
It is also possible to specify a base to be used for output in the form ‘[#base]’, for example
‘[#16]’. This is used when outputting arithmetical substitutions or when assigning to scalar
parameters, but an explicitly defined integer or floating point parameter will not be affected. If
an integer variable is implicitly defined by an arithmetic expression, any base specified in this
way will be set as the variable’s output arithmetic base as if the option ‘-i base’ to the typeset
builtin had been used. The expression has no precedence and if it occurs more than once in
a mathematical expression, the last encountered is used. For clarity it is recommended that it
appear at the beginning of an expression. As an example:

typeset -i 16 y
print $(([#8] x = 32, y = 32))
print $x $y

outputs first ‘8#40’, the rightmost value in the given output base, and then ‘8#40 16#20’,
because y has been explicitly declared to have output base 16, while x (assuming it does not
already exist) is implicitly typed by the arithmetic evaluation, where it acquires the output base
8.
If the C_BASES option is set, hexadecimal numbers in the standard C format, for example 0xFF
instead of the usual ‘16#FF’. If the option OCTAL_ZEROES is also set (it is not by default), octal
numbers will be treated similarly and hence appear as ‘077’ instead of ‘8#77’. This option has
no effect on the output of bases other than hexadecimal and octal, and these formats are always
understood on input.
When an output base is specified using the ‘[#base]’ syntax, an appropriate base prefix will be
output if necessary, so that the value output is valid syntax for input. If the # is doubled, for
example ‘[##16]’, then no base prefix is output.
Floating point constants are recognized by the presence of a decimal point or an exponent. The
decimal point may be the first character of the constant, but the exponent character e or E may
not, as it will be taken for a parameter name.

Chapter 11: Arithmetic Evaluation 25

An arithmetic expression uses nearly the same syntax, precedence, and associativity of expres-
sions in C. The following operators are supported (listed in decreasing order of precedence):

+ - ! ~ ++ --
unary plus/minus, logical NOT, complement, {pre,post}{in,de}crement

<< >> bitwise shift left, right

& bitwise AND

^ bitwise XOR

| bitwise OR

** exponentiation

* / % multiplication, division, modulus (remainder)

+ - addition, subtraction

< > <= >=
comparison

== != equality and inequality

&& logical AND

|| ^^ logical OR, XOR

? : ternary operator

= += -= *= /= %= &= ^= |= <<= >>= &&= ||= ^^= **=
assignment

, comma operator

The operators ‘&&’, ‘||’, ‘&&=’, and ‘||=’ are short-circuiting, and only one of the latter two
expressions in a ternary operator is evaluated. Note the precedence of the bitwise AND, OR,
and XOR operators.
Mathematical functions can be called with the syntax ‘func(args)’, where the function decides
if the args is used as a string or a comma-separated list of arithmetic expressions. The shell
currently defines no mathematical functions by default, but the module zsh/mathfunc may be
loaded with the zmodload builtin to provide standard floating point mathematical functions.
An expression of the form ‘##x’ where x is any character sequence such as ‘a’, ‘^A’, or ‘\M-\C-x’
gives the value of this character and an expression of the form ‘#foo’ gives the value of the first
character of the contents of the parameter foo. Character values are according to the character
set used in the current locale; for multibyte character handling the option MULTIBYTE must be
set. Note that this form is different from ‘$#foo’, a standard parameter substitution which gives
the length of the parameter foo. ‘#\’ is accepted instead of ‘##’, but its use is deprecated.
Named parameters and subscripted arrays can be referenced by name within an arithmetic
expression without using the parameter expansion syntax. For example,

((val2 = val1 * 2))

assigns twice the value of $val1 to the parameter named val2.
An internal integer representation of a named parameter can be specified with the integer
builtin. Arithmetic evaluation is performed on the value of each assignment to a named param-
eter declared integer in this manner. Assigning a floating point number to an integer results in
rounding down to the next integer.
Likewise, floating point numbers can be declared with the float builtin; there are two types,
differing only in their output format, as described for the typeset builtin. The output format

Chapter 12: Conditional Expressions 26

can be bypassed by using arithmetic substitution instead of the parameter substitution, i.e.
‘${float}’ uses the defined format, but ‘$((float))’ uses a generic floating point format.
Promotion of integer to floating point values is performed where necessary. In addition, if any
operator which requires an integer (‘~’, ‘&’, ‘|’, ‘^’, ‘%’, ‘<<’, ‘>>’ and their equivalents with
assignment) is given a floating point argument, it will be silently rounded down to the next
integer.
Scalar variables can hold integer or floating point values at different times; there is no memory
of the numeric type in this case.
If a variable is first assigned in a numeric context without previously being declared, it will be
implicitly typed as integer or float and retain that type either until the type is explicitly
changed or until the end of the scope. This can have unforeseen consequences. For example, in
the loop

for ((f = 0; f < 1; f += 0.1)); do
use $f
done

if f has not already been declared, the first assignment will cause it to be created as an integer,
and consequently the operation ‘f += 0.1’ will always cause the result to be truncated to zero,
so that the loop will fail. A simple fix would be to turn the initialization into ‘f = 0.0’. It is
therefore best to declare numeric variables with explicit types.

12 Conditional Expressions

A conditional expression is used with the [[compound command to test attributes of files and
to compare strings. Each expression can be constructed from one or more of the following unary
or binary expressions:

-a file true if file exists.

-b file true if file exists and is a block special file.

-c file true if file exists and is a character special file.

-d file true if file exists and is a directory.

-e file true if file exists.

-f file true if file exists and is a regular file.

-g file true if file exists and has its setgid bit set.

-h file true if file exists and is a symbolic link.

-k file true if file exists and has its sticky bit set.

-n string true if length of string is non-zero.

-o option true if option named option is on. option may be a single character, in which case
it is a single letter option name. (See Section 16.1 [Specifying Options], page 72.)

-p file true if file exists and is a FIFO special file (named pipe).

-r file true if file exists and is readable by current process.

-s file true if file exists and has size greater than zero.

-t fd true if file descriptor number fd is open and associated with a terminal device. (note:
fd is not optional)

-u file true if file exists and has its setuid bit set.

Chapter 12: Conditional Expressions 27

-w file true if file exists and is writable by current process.

-x file true if file exists and is executable by current process. If file exists and is a directory,
then the current process has permission to search in the directory.

-z string true if length of string is zero.

-L file true if file exists and is a symbolic link.

-O file true if file exists and is owned by the effective user ID of this process.

-G file true if file exists and its group matches the effective group ID of this process.

-S file true if file exists and is a socket.

-N file true if file exists and its access time is not newer than its modification time.

file1 -nt file2
true if file1 exists and is newer than file2.

file1 -ot file2
true if file1 exists and is older than file2.

file1 -ef file2
true if file1 and file2 exist and refer to the same file.

string = pattern
string == pattern

true if string matches pattern. The ‘==’ form is the preferred one. The ‘=’ form is
for backward compatibility and should be considered obsolete.

string != pattern
true if string does not match pattern.

string =~ regexp
true if string matches the regular expression regexp. If the option RE_MATCH_PCRE is
set regexp is tested as a PCRE regular expression using the zsh/pcre module, else
it is tested as a POSIX extended regular expression using the zsh/regex module.
If the option BASH_REMATCH is set the array BASH_REMATCH is set to the substring
that matched the pattern followed by the substrings that matched parenthesised
subexpressions within the pattern; otherwise, the scalar parameter MATCH is set to
the substring that matched the pattern and and the array match to the substrings
that matched parenthesised subexpressions.

string1 < string2
true if string1 comes before string2 based on ASCII value of their characters.

string1 > string2
true if string1 comes after string2 based on ASCII value of their characters.

exp1 -eq exp2
true if exp1 is numerically equal to exp2.

exp1 -ne exp2
true if exp1 is numerically not equal to exp2.

exp1 -lt exp2
true if exp1 is numerically less than exp2.

exp1 -gt exp2
true if exp1 is numerically greater than exp2.

exp1 -le exp2
true if exp1 is numerically less than or equal to exp2.

Chapter 13: Prompt Expansion 28

exp1 -ge exp2
true if exp1 is numerically greater than or equal to exp2.

(exp) true if exp is true.

! exp true if exp is false.

exp1 && exp2
true if exp1 and exp2 are both true.

exp1 || exp2
true if either exp1 or exp2 is true.

Normal shell expansion is performed on the file, string and pattern arguments, but the result of
each expansion is constrained to be a single word, similar to the effect of double quotes. However,
pattern metacharacters are active for the pattern arguments; the patterns are the same as those
used for filename generation, see Section 14.8 [Filename Generation], page 47, but there is no
special behaviour of ‘/’ nor initial dots, and no glob qualifiers are allowed.

In each of the above expressions, if file is of the form ‘/dev/fd/n’, where n is an integer, then
the test applied to the open file whose descriptor number is n, even if the underlying system
does not support the /dev/fd directory.

In the forms which do numeric comparison, the expressions exp undergo arithmetic expansion
as if they were enclosed in $((...)).

For example, the following:

[[(-f foo || -f bar) && $report = y*]] && print File exists.

tests if either file foo or file bar exists, and if so, if the value of the parameter report begins
with ‘y’; if the complete condition is true, the message ‘File exists.’ is printed.

13 Prompt Expansion

13.1 Expansion of Prompt Sequences

Prompt sequences undergo a special form of expansion. This type of expansion is also available
using the -P option to the print builtin.

If the PROMPT_SUBST option is set, the prompt string is first subjected to parameter expansion,
command substitution and arithmetic expansion. See Chapter 14 [Expansion], page 32.

Certain escape sequences may be recognised in the prompt string.

If the PROMPT_BANG option is set, a ‘!’ in the prompt is replaced by the current history event
number. A literal ‘!’ may then be represented as ‘!!’.

If the PROMPT_PERCENT option is set, certain escape sequences that start with ‘%’ are expanded.
Many escapes are followed by a single character, although some of these take an optional integer
argument that should appear between the ‘%’ and the next character of the sequence. More
complicated escape sequences are available to provide conditional expansion.

13.2 Simple Prompt Escapes

13.2.1 Special characters

%% A ‘%’.

%) A ‘)’.

Chapter 13: Prompt Expansion 29

13.2.2 Login information

%l The line (tty) the user is logged in on, without ‘/dev/’ prefix. If the name starts
with ‘/dev/tty’, that prefix is stripped.

%M The full machine hostname.

%m The hostname up to the first ‘.’. An integer may follow the ‘%’ to specify how
many components of the hostname are desired. With a negative integer, trailing
components of the hostname are shown.

%n $USERNAME.

%y The line (tty) the user is logged in on, without ‘/dev/’ prefix. This does not treat
‘/dev/tty’ names specially.

13.2.3 Shell state

%# A ‘#’ if the shell is running with privileges, a ‘%’ if not. Equivalent to ‘%(!.#.%%)’.
The definition of ‘privileged’, for these purposes, is that either the effective user ID
is zero, or, if POSIX.1e capabilities are supported, that at least one capability is
raised in either the Effective or Inheritable capability vectors.

%? The return status of the last command executed just before the prompt.

%_ The status of the parser, i.e. the shell constructs (like ‘if’ and ‘for’) that have been
started on the command line. If given an integer number that many strings will be
printed; zero or negative or no integer means print as many as there are. This is
most useful in prompts PS2 for continuation lines and PS4 for debugging with the
XTRACE option; in the latter case it will also work non-interactively.

%d
%/ Present working directory ($PWD). If an integer follows the ‘%’, it specifies a number

of trailing components of $PWD to show; zero means the whole path. A negative
integer specifies leading components, i.e. %-1d specifies the first component.

%~ As %d and %/, but if $PWD has a named directory as its prefix, that part is replaced
by a ‘~’ followed by the name of the directory. If it starts with $HOME, that part is
replaced by a ‘~’.

%h
%! Current history event number.

%i The line number currently being executed in the script, sourced file, or shell function
given by %N. This is most useful for debugging as part of $PS4.

%j The number of jobs.

%L The current value of $SHLVL.

%N The name of the script, sourced file, or shell function that zsh is currently executing,
whichever was started most recently. If there is none, this is equivalent to the
parameter $0. An integer may follow the ‘%’ to specify a number of trailing path
components to show; zero means the full path. A negative integer specifies leading
components.

%c
%.
%C Trailing component of $PWD. An integer may follow the ‘%’ to get more than one

component. Unless ‘%C’ is used, tilde contraction is performed first. These are
deprecated as %c and %C are equivalent to %1~ and %1/, respectively, while explicit
positive integers have the same effect as for the latter two sequences.

Chapter 13: Prompt Expansion 30

13.2.4 Date and time

%D The date in yy-mm-dd format.

%T Current time of day, in 24-hour format.

%t
%@ Current time of day, in 12-hour, am/pm format.

%* Current time of day in 24-hour format, with seconds.

%w The date in day-dd format.

%W The date in mm/dd/yy format.

%D{string}
string is formatted using the strftime function. See man page strftime(3) for more
details. Three additional codes are available: %f prints the day of the month, like %e
but without any preceding space if the day is a single digit, and %K/%L correspond
to %k/%l for the hour of the day (24/12 hour clock) in the same way.

13.2.5 Visual effects

%B (%b) Start (stop) boldface mode.

%E Clear to end of line.

%U (%u) Start (stop) underline mode.

%S (%s) Start (stop) standout mode.

%{...%} Include a string as a literal escape sequence. The string within the braces should
not change the cursor position. Brace pairs can nest.

13.3 Conditional Substrings in Prompts

%v The value of the first element of the psvar array parameter. Following the ‘%’ with
an integer gives that element of the array. Negative integers count from the end of
the array.

%(x.true-text.false-text)
Specifies a ternary expression. The character following the x is arbitrary; the same
character is used to separate the text for the ‘true’ result from that for the ‘false’
result. This separator may not appear in the true-text, except as part of a %-
escape sequence. A ‘)’ may appear in the false-text as ‘%)’. true-text and false-
text may both contain arbitrarily-nested escape sequences, including further ternary
expressions.
The left parenthesis may be preceded or followed by a positive integer n, which
defaults to zero. A negative integer will be multiplied by -1. The test character x
may be any of the following:

! True if the shell is running with privileges.

True if the effective uid of the current process is n.

? True if the exit status of the last command was n.

_ True if at least n shell constructs were started.

C
/ True if the current absolute path has at least n elements relative to the

root directory, hence / is counted as 0 elements.

Chapter 14: Expansion 31

c
.
~ True if the current path, with prefix replacement, has at least n elements

relative to the root directory, hence / is counted as 0 elements.

D True if the month is equal to n (January = 0).

d True if the day of the month is equal to n.

g True if the effective gid of the current process is n.

j True if the number of jobs is at least n.

L True if the SHLVL parameter is at least n.

l True if at least n characters have already been printed on the current
line.

S True if the SECONDS parameter is at least n.

T True if the time in hours is equal to n.

t True if the time in minutes is equal to n.

v True if the array psvar has at least n elements.

w True if the day of the week is equal to n (Sunday = 0).

%<string<
%>string>
%[xstring]

Specifies truncation behaviour for the remainder of the prompt string. The third,
deprecated, form is equivalent to ‘%xstringx’, i.e. x may be ‘<’ or ‘>’. The numeric
argument, which in the third form may appear immediately after the ‘[’, specifies
the maximum permitted length of the various strings that can be displayed in the
prompt. The string will be displayed in place of the truncated portion of any string;
note this does not undergo prompt expansion.

The forms with ‘<’ truncate at the left of the string, and the forms with ‘>’ truncate
at the right of the string. For example, if the current directory is ‘/home/pike’,
the prompt ‘%8<..<%/’ will expand to ‘..e/pike’. In this string, the terminating
character (‘<’, ‘>’ or ‘]’), or in fact any character, may be quoted by a preceding
‘\’; note when using print -P, however, that this must be doubled as the string is
also subject to standard print processing, in addition to any backslashes removed
by a double quoted string: the worst case is therefore ‘print -P "%<\\\\<<..."’.

If the string is longer than the specified truncation length, it will appear in full,
completely replacing the truncated string.

The part of the prompt string to be truncated runs to the end of the string, or to
the end of the next enclosing group of the ‘%(’ construct, or to the next truncation
encountered at the same grouping level (i.e. truncations inside a ‘%(’ are separate),
which ever comes first. In particular, a truncation with argument zero (e.g. ‘%<<’)
marks the end of the range of the string to be truncated while turning off truncation
from there on. For example, the prompt ’%10<...<%~%<<%# ’ will print a trun-
cated representation of the current directory, followed by a ‘%’ or ‘#’, followed by a
space. Without the ‘%<<’, those two characters would be included in the string to
be truncated.

Chapter 14: Expansion 32

14 Expansion

The following types of expansions are performed in the indicated order in five steps:

History Expansion
This is performed only in interactive shells.

Alias Expansion
Aliases are expanded immediately before the command line is parsed as explained
in Section 6.7 [Aliasing], page 14.

Process Substitution
Parameter Expansion
Command Substitution
Arithmetic Expansion
Brace Expansion

These five are performed in one step in left-to-right fashion. After these expansions,
all unquoted occurrences of the characters ‘\’, ‘’’ and ‘"’ are removed.

Filename Expansion
If the SH_FILE_EXPANSION option is set, the order of expansion is modified for com-
patibility with sh and ksh. In that case filename expansion is performed immediately
after alias expansion, preceding the set of five expansions mentioned above.

Filename Generation
This expansion, commonly referred to as globbing, is always done last.

The following sections explain the types of expansion in detail.

14.1 History Expansion

History expansion allows you to use words from previous command lines in the command line
you are typing. This simplifies spelling corrections and the repetition of complicated commands
or arguments. Immediately before execution, each command is saved in the history list, the size
of which is controlled by the HISTSIZE parameter. The one most recent command is always
retained in any case. Each saved command in the history list is called a history event and is
assigned a number, beginning with 1 (one) when the shell starts up. The history number that
you may see in your prompt (see Chapter 13 [Prompt Expansion], page 28) is the number that
is to be assigned to the next command.

14.1.1 Overview

A history expansion begins with the first character of the histchars parameter, which is ‘!’ by
default, and may occur anywhere on the command line; history expansions do not nest. The
‘!’ can be escaped with ‘\’ or can be enclosed between a pair of single quotes (’’) to suppress
its special meaning. Double quotes will not work for this. Following this history character is
an optional event designator (Section 14.1.2 [Event Designators], page 33) and then an optional
word designator (Section 14.1.3 [Word Designators], page 33); if neither of these designators is
present, no history expansion occurs.

Input lines containing history expansions are echoed after being expanded, but before any other
expansions take place and before the command is executed. It is this expanded form that is
recorded as the history event for later references.

By default, a history reference with no event designator refers to the same event as any preceding
history reference on that command line; if it is the only history reference in a command, it refers

Chapter 14: Expansion 33

to the previous command. However, if the option CSH_JUNKIE_HISTORY is set, then every history
reference with no event specification always refers to the previous command.
For example, ‘!’ is the event designator for the previous command, so ‘!!:1’ always refers to
the first word of the previous command, and ‘!!$’ always refers to the last word of the previous
command. With CSH_JUNKIE_HISTORY set, then ‘!:1’ and ‘!$’ function in the same manner as
‘!!:1’ and ‘!!$’, respectively. Conversely, if CSH_JUNKIE_HISTORY is unset, then ‘!:1’ and ‘!$’
refer to the first and last words, respectively, of the same event referenced by the nearest other
history reference preceding them on the current command line, or to the previous command if
there is no preceding reference.
The character sequence ‘^foo^bar’ (where ‘^’ is actually the second character of the histchars
parameter) repeats the last command, replacing the string foo with bar. More precisely, the
sequence ‘^foo^bar^’ is synonymous with ‘!!:s^foo^bar^’, hence other modifiers (see Sec-
tion 14.1.4 [Modifiers], page 34) may follow the final ‘^’. In particular, ‘^foo^bar:G’ performs a
global substitution.
If the shell encounters the character sequence ‘!"’ in the input, the history mechanism is tem-
porarily disabled until the current list (see Chapter 6 [Shell Grammar], page 9) is fully parsed.
The ‘!"’ is removed from the input, and any subsequent ‘!’ characters have no special signifi-
cance.
A less convenient but more comprehensible form of command history support is provided by the
fc builtin.

14.1.2 Event Designators

An event designator is a reference to a command-line entry in the history list. In the list below,
remember that the initial ‘!’ in each item may be changed to another character by setting the
histchars parameter.

! Start a history expansion, except when followed by a blank, newline, ‘=’ or ‘(’.
If followed immediately by a word designator (Section 14.1.3 [Word Designators],
page 33), this forms a history reference with no event designator (Section 14.1.1
[Overview], page 32).

!! Refer to the previous command. By itself, this expansion repeats the previous
command.

!n Refer to command-line n.

!-n Refer to the current command-line minus n.

!str Refer to the most recent command starting with str.

!?str[?] Refer to the most recent command containing str. The trailing ‘?’ is necessary if
this reference is to be followed by a modifier or followed by any text that is not to
be considered part of str.

!# Refer to the current command line typed in so far. The line is treated as if it were
complete up to and including the word before the one with the ‘!#’ reference.

!{...} Insulate a history reference from adjacent characters (if necessary).

14.1.3 Word Designators

A word designator indicates which word or words of a given command line are to be included in
a history reference. A ‘:’ usually separates the event specification from the word designator. It
may be omitted only if the word designator begins with a ‘^’, ‘$’, ‘*’, ‘-’ or ‘%’. Word designators
include:

0 The first input word (command).

Chapter 14: Expansion 34

n The nth argument.

^ The first argument. That is, 1.

$ The last argument.

% The word matched by (the most recent) ?str search.

x-y A range of words; x defaults to 0.

* All the arguments, or a null value if there are none.

x* Abbreviates ‘x-$’.

x- Like ‘x*’ but omitting word $.

Note that a ‘%’ word designator works only when used in one of ‘!%’, ‘!:%’ or ‘!?str?:%’, and
only when used after a !? expansion (possibly in an earlier command). Anything else results in
an error, although the error may not be the most obvious one.

14.1.4 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’. These modifiers also work on the result of filename generation
and parameter expansion, except where noted.

h Remove a trailing pathname component, leaving the head. This works like
‘dirname’.

r Remove a filename extension of the form ‘.xxx’, leaving the root name.

e Remove all but the extension.

t Remove all leading pathname components, leaving the tail. This works like
‘basename’.

p Print the new command but do not execute it. Only works with history expansion.

q Quote the substituted words, escaping further substitutions. Works with history
expansion and parameter expansion, though for parameters it is only useful if the
resulting text is to be re-evaluated such as by eval.

Q Remove one level of quotes from the substituted words.

x Like q, but break into words at whitespace. Does not work with parameter expan-
sion.

l Convert the words to all lowercase.

u Convert the words to all uppercase.

s/l/r[/] Substitute r for l as described below. The substitution is done only for the first
string that matches l. For arrays and for filename generation, this applies to each
word of the expanded text. See below for further notes on substitutions.

The forms ‘gs/l/r’ and ‘s/l/r/:G’ perform global substitution, i.e. substitute every
occurrence of r for l. Note that the g or :G must appear in exactly the position
shown.

& Repeat the previous s substitution. Like s, may be preceded immediately by a g.
In parameter expansion the & must appear inside braces, and in filename generation
it must be quoted with a backslash.

Chapter 14: Expansion 35

The s/l/r/ substitution works as follows. By default the left-hand side of substitutions are not
patterns, but character strings. Any character can be used as the delimiter in place of ‘/’. A
backslash quotes the delimiter character. The character ‘&’, in the right-hand-side r, is replaced
by the text from the left-hand-side l. The ‘&’ can be quoted with a backslash. A null l uses
the previous string either from the previous l or from the contextual scan string s from ‘!?s’.
You can omit the rightmost delimiter if a newline immediately follows r; the rightmost ‘?’ in a
context scan can similarly be omitted. Note the same record of the last l and r is maintained
across all forms of expansion.
If the option HIST_SUBST_PATTERN is set, l is treated as a pattern of the usual form desribed in
Section 14.8 [Filename Generation], page 47. This can be used in all the places where modifiers
are available; note, however, that in globbing qualifiers parameter substitution has already taken
place, so parameters in the replacement string should be quoted to ensure they are replaced at
the correct time. Note also that complicated patterns used in globbing qualifiers may need the
extended glob qualifier notation (#q:s/.../.../) in order for the shell to recognize the expression
as a glob qualifer. Further, note that bad patterns in the substitution are not subject to the
NO_BAD_PATTERN option so will cause an error.
When HIST_SUBST_PATTERN is set, l may start with a # to indicate that the pattern must match
at the start of the string to be substituted, and a % may appear at the start or after an # to
indicate that the pattern must match at the end of the string to be substituted. The % or # may
be quoted with two backslashes.
For example, the following piece of filename generation code with the EXTENDED_GLOB option:

print *.c(#q:s/#%(#b)s(*).c/’S${match[1]}.C’/)

takes the expansion of *.c and applies the glob qualifiers in the (#q...) expression, which consists
of a substitution modifier anchored to the start and end of each word (#%). This turns on
backreferences ((#b)), so that the parenthesised subexpression is available in the replacement
string as ${match[1]}. The replacement string is quoted so that the parameter is not substituted
before the start of filename generation.
The following f, F, w and W modifiers work only with parameter expansion and filename gener-
ation. They are listed here to provide a single point of reference for all modifiers.

f Repeats the immediately (without a colon) following modifier until the resulting
word doesn’t change any more.

F:expr: Like f, but repeats only n times if the expression expr evaluates to n. Any character
can be used instead of the ‘:’; if ‘(’, ‘[’, or ‘{’ is used as the opening delimiter, the
closing delimiter should be ’)’, ‘]’, or ‘}’, respectively.

w Makes the immediately following modifier work on each word in the string.

W:sep: Like w but words are considered to be the parts of the string that are separated by
sep. Any character can be used instead of the ‘:’; opening parentheses are handled
specially, see above.

14.2 Process Substitution

Each command argument of the form ‘<(list)’, ‘>(list)’ or ‘=(list)’ is subject to process sub-
stitution. In the case of the < or > forms, the shell runs process list asynchronously. If the
system supports the /dev/fd mechanism, the command argument is the name of the device file
corresponding to a file descriptor; otherwise, if the system supports named pipes (FIFOs), the
command argument will be a named pipe. If the form with > is selected then writing on this
special file will provide input for list. If < is used, then the file passed as an argument will be
connected to the output of the list process. For example,

paste <(cut -f1 file1) <(cut -f3 file2) |

Chapter 14: Expansion 36

tee >(process1) >(process2) >/dev/null

cuts fields 1 and 3 from the files file1 and file2 respectively, pastes the results together, and
sends it to the processes process1 and process2.
If =(...) is used instead of <(...), then the file passed as an argument will be the name of a
temporary file containing the output of the list process. This may be used instead of the < form
for a program that expects to lseek (see man page lseek(2)) on the input file.
There is an optimisation for substitutions of the form =(<<<arg), where arg is a single-word
argument to the here-string redirection <<<. This form produces a file name containing the value
of arg after any substitutions have been performed. This is handled entirely within the current
shell. This is effectively the reverse of the special form $(<arg) which treats arg as a file name
and replaces it with the file’s contents.
The = form is useful as both the /dev/fd and the named pipe implementation of <(...) have
drawbacks. In the former case, some programmes may automatically close the file descriptor
in question before examining the file on the command line, particularly if this is necessary
for security reasons such as when the programme is running setuid. In the second case, if
the programme does not actually open the file, the subshell attempting to read from or write
to the pipe will (in a typical implementation, different operating systems may have different
behaviour) block for ever and have to be killed explicitly. In both cases, the shell actually
supplies the information using a pipe, so that programmes that expect to lseek (see man page
lseek(2)) on the file will not work.
Also note that the previous example can be more compactly and efficiently written (provided
the MULTIOS option is set) as:

paste <(cut -f1 file1) <(cut -f3 file2) > >(process1) > >(process2)

The shell uses pipes instead of FIFOs to implement the latter two process substitutions in the
above example.
There is an additional problem with >(process); when this is attached to an external command,
the parent shell does not wait for process to finish and hence an immediately following command
cannot rely on the results being complete. The problem and solution are the same as described
in the section MULTIOS in Chapter 7 [Redirection], page 15. Hence in a simplified version of
the example above:

paste <(cut -f1 file1) <(cut -f3 file2) > >(process)

(note that no MULTIOS are involved), process will be run asynchronously. The workaround is:
{ paste <(cut -f1 file1) <(cut -f3 file2) } > >(process)

The extra processes here are spawned from the parent shell which will wait for their completion.

14.3 Parameter Expansion

The character ‘$’ is used to introduce parameter expansions. See Chapter 15 [Parameters],
page 57 for a description of parameters, including arrays, associative arrays, and subscript
notation to access individual array elements.
Note in particular the fact that words of unquoted parameters are not automatically split on
whitespace unless the option SH_WORD_SPLIT is set; see references to this option below for more
details. This is an important difference from other shells.
In the expansions discussed below that require a pattern, the form of the pattern is the same as
that used for filename generation; see Section 14.8 [Filename Generation], page 47. Note that
these patterns, along with the replacement text of any substitutions, are themselves subject
to parameter expansion, command substitution, and arithmetic expansion. In addition to the
following operations, the colon modifiers described in Section 14.1.4 [Modifiers], page 34 in Sec-
tion 14.1 [History Expansion], page 32 can be applied: for example, ${i:s/foo/bar/} performs
string substitution on the expansion of parameter $i.

Chapter 14: Expansion 37

${name} The value, if any, of the parameter name is substituted. The braces are required
if the expansion is to be followed by a letter, digit, or underscore that is not to be
interpreted as part of name. In addition, more complicated forms of substitution
usually require the braces to be present; exceptions, which only apply if the option
KSH_ARRAYS is not set, are a single subscript or any colon modifiers appearing after
the name, or any of the characters ‘^’, ‘=’, ‘~’, ‘#’ or ‘+’ appearing before the name,
all of which work with or without braces.

If name is an array parameter, and the KSH_ARRAYS option is not set, then the
value of each element of name is substituted, one element per word. Otherwise, the
expansion results in one word only; with KSH_ARRAYS, this is the first element of an
array. No field splitting is done on the result unless the SH_WORD_SPLIT option is
set. See also the flags = and s:string:.

${+name} If name is the name of a set parameter ‘1’ is substituted, otherwise ‘0’ is substituted.

${name-word}
${name:-word}

If name is set, or in the second form is non-null, then substitute its value; otherwise
substitute word. In the second form name may be omitted, in which case word is
always substituted.

${name+word}
${name:+word}

If name is set, or in the second form is non-null, then substitute word; otherwise
substitute nothing.

${name=word}
${name:=word}
${name::=word}

In the first form, if name is unset then set it to word; in the second form, if name
is unset or null then set it to word; and in the third form, unconditionally set name
to word. In all forms, the value of the parameter is then substituted.

${name?word}
${name:?word}

In the first form, if name is set, or in the second form if name is both set and
non-null, then substitute its value; otherwise, print word and exit from the shell.
Interactive shells instead return to the prompt. If word is omitted, then a standard
message is printed.

In any of the above expressions that test a variable and substitute an alternate word, note that
you can use standard shell quoting in the word value to selectively override the splitting done
by the SH_WORD_SPLIT option and the = flag, but not splitting by the s:string: flag.

In the following expressions, when name is an array and the substitution is not quoted, or if the
‘(@)’ flag or the name[@] syntax is used, matching and replacement is performed on each array
element separately.

${name#pattern}
${name##pattern}

If the pattern matches the beginning of the value of name, then substitute the value
of name with the matched portion deleted; otherwise, just substitute the value of
name. In the first form, the smallest matching pattern is preferred; in the second
form, the largest matching pattern is preferred.

Chapter 14: Expansion 38

${name%pattern}
${name%%pattern}

If the pattern matches the end of the value of name, then substitute the value
of name with the matched portion deleted; otherwise, just substitute the value of
name. In the first form, the smallest matching pattern is preferred; in the second
form, the largest matching pattern is preferred.

${name:#pattern}
If the pattern matches the value of name, then substitute the empty string; oth-
erwise, just substitute the value of name. If name is an array the matching array
elements are removed (use the ‘(M)’ flag to remove the non-matched elements).

${name/pattern/repl}
${name//pattern/repl}

Replace the longest possible match of pattern in the expansion of parameter name
by string repl. The first form replaces just the first occurrence, the second form
all occurrences. Both pattern and repl are subject to double-quoted substitution,
so that expressions like ${name/$opat/$npat} will work, but note the usual rule
that pattern characters in $opat are not treated specially unless either the option
GLOB_SUBST is set, or $opat is instead substituted as ${~opat}.

The pattern may begin with a ‘#’, in which case the pattern must match at the
start of the string, or ‘%’, in which case it must match at the end of the string, or
‘#%’ in which case the pattern must match the entire string. The repl may be an
empty string, in which case the final ‘/’ may also be omitted. To quote the final ‘/’
in other cases it should be preceded by a single backslash; this is not necessary if
the ‘/’ occurs inside a substituted parameter. Note also that the ‘#’, ‘%’ and ‘#% are
not active if they occur inside a substituted parameter, even at the start.

The first ‘/’ may be preceded by a ‘:’, in which case the match will only succeed if
it matches the entire word. Note also the effect of the I and S parameter expansion
flags below; however, the flags M, R, B, E and N are not useful.

For example,

foo="twinkle twinkle little star" sub="t*e" rep="spy"
print ${foo//${~sub}/$rep}
print ${(S)foo//${~sub}/$rep}

Here, the ‘~’ ensures that the text of $sub is treated as a pattern rather than a plain
string. In the first case, the longest match for t*e is substituted and the result is
‘spy star’, while in the second case, the shortest matches are taken and the result
is ‘spy spy lispy star’.

${#spec} If spec is one of the above substitutions, substitute the length in characters of the
result instead of the result itself. If spec is an array expression, substitute the
number of elements of the result. Note that ‘^’, ‘=’, and ‘~’, below, must appear to
the left of ‘#’ when these forms are combined.

${^spec} Turn on the RC_EXPAND_PARAM option for the evaluation of spec; if the ‘^’ is doubled,
turn it off. When this option is set, array expansions of the form foo${xx}bar, where
the parameter xx is set to (a b c), are substituted with ‘fooabar foobbar foocbar’
instead of the default ‘fooa b cbar’.

Internally, each such expansion is converted into the equivalent list for brace expan-
sion. E.g., ${^var} becomes {$var[1],$var[2],...}, and is processed as described
in Section 14.6 [Brace Expansion], page 46 below. If word splitting is also in effect
the $var[N] may themselves be split into different list elements.

Chapter 14: Expansion 39

${=spec} Perform word splitting using the rules for SH_WORD_SPLIT during the evaluation of
spec, but regardless of whether the parameter appears in double quotes; if the ‘=’
is doubled, turn it off. This forces parameter expansions to be split into separate
words before substitution, using IFS as a delimiter. This is done by default in most
other shells.
Note that splitting is applied to word in the assignment forms of spec before the
assignment to name is performed. This affects the result of array assignments with
the A flag.

${~spec} Turn on the GLOB_SUBST option for the evaluation of spec; if the ‘~’ is doubled,
turn it off. When this option is set, the string resulting from the expansion will be
interpreted as a pattern anywhere that is possible, such as in filename expansion
and filename generation and pattern-matching contexts like the right hand side of
the ‘=’ and ‘!=’ operators in conditions.
In nested substitutions, note that the effect of the ~ applies to the result of the
current level of substitution. A surrounding pattern operation on the result may
cancel it. Hence, for example, if the parameter foo is set to *, ${~foo//*/*.c}
is substituted by the pattern *.c, which may be expanded by filename generation,
but ${${~foo}//*/*.c} substitutes to the string *.c, which will not be further
expanded.

If a ${...} type parameter expression or a $(...) type command substitution is used in place of
name above, it is expanded first and the result is used as if it were the value of name. Thus it
is possible to perform nested operations: ${${foo#head}%tail} substitutes the value of $foo
with both ‘head’ and ‘tail’ deleted. The form with $(...) is often useful in combination with
the flags described next; see the examples below. Each name or nested ${...} in a parameter
expansion may also be followed by a subscript expression as described in Section 15.2 [Array
Parameters], page 58.
Note that double quotes may appear around nested expressions, in which case only the part
inside is treated as quoted; for example, ${(f)"$(foo)"} quotes the result of $(foo), but the
flag ‘(f)’ (see below) is applied using the rules for unquoted expansions. Note further that
quotes are themselves nested in this context; for example, in "${(@f)"$(foo)"}", there are two
sets of quotes, one surrounding the whole expression, the other (redundant) surrounding the
$(foo) as before.

14.3.1 Parameter Expansion Flags

If the opening brace is directly followed by an opening parenthesis, the string up to the matching
closing parenthesis will be taken as a list of flags. In cases where repeating a flag is meaningful,
the repetitions need not be consecutive; for example, ‘(q%q%q)’ means the same thing as the
more readable ‘(%%qqq)’. The following flags are supported:

Evaluate the resulting words as numeric expressions and output the characters cor-
responding to the resulting integer. Note that this form is entirely distinct from use
of the # without parentheses.
If the MULTIBYTE option is set and the number is greater than 127 (i.e. not an ASCII
character) it is treated as a Unicode character.

% Expand all % escapes in the resulting words in the same way as in prompts (see Chap-
ter 13 [Prompt Expansion], page 28). If this flag is given twice, full prompt expansion
is done on the resulting words, depending on the setting of the PROMPT_PERCENT,
PROMPT_SUBST and PROMPT_BANG options.

@ In double quotes, array elements are put into separate words. E.g., ‘"${(@)foo}"’
is equivalent to ‘"${foo[@]}"’ and ‘"${(@)foo[1,2]}"’ is the same as ‘"$foo[1]"

Chapter 14: Expansion 40

"$foo[2]"’. This is distinct from field splitting by the the f, s or z flags, which still
applies within each array element.

A Create an array parameter with ‘${...=...}’, ‘${...:=...}’ or ‘${...::=...}’. If this
flag is repeated (as in ‘AA’), create an associative array parameter. Assignment is
made before sorting or padding. The name part may be a subscripted range for
ordinary arrays; the word part must be converted to an array, for example by using
‘${(AA)=name=...}’ to activate field splitting, when creating an associative array.

a Sort in array index order; when combined with ‘O’ sort in reverse array index order.
Note that ‘a’ is therefore equivalent to the default but ‘Oa’ is useful for obtaining
an array’s elements in reverse order.

c With ${#name}, count the total number of characters in an array, as if the elements
were concatenated with spaces between them.

C Capitalize the resulting words. ‘Words’ in this case refers to sequences of alphanu-
meric characters separated by non-alphanumerics, not to words that result from
field splitting.

e Perform parameter expansion, command substitution and arithmetic expansion on
the result. Such expansions can be nested but too deep recursion may have unpre-
dictable effects.

f Split the result of the expansion to lines. This is a shorthand for ‘ps:\n:’.

F Join the words of arrays together using newline as a separator. This is a shorthand
for ‘pj:\n:’.

i Sort case-insensitively. May be combined with ‘n’ or ‘O’.

k If name refers to an associative array, substitute the keys (element names) rather
than the values of the elements. Used with subscripts (including ordinary arrays),
force indices or keys to be substituted even if the subscript form refers to values.
However, this flag may not be combined with subscript ranges.

L Convert all letters in the result to lower case.

n Sort decimal integers numerically; if the first differing characters of two test strings
are not digits, sorting is lexical. Integers with more initial zeroes are sorted before
those with fewer or none. Hence the array ‘foo1 foo02 foo2 foo3 foo20 foo23’
is sorted into the order shown. May be combined with ‘i’ or ‘O’.

o Sort the resulting words in ascending order; if this appears on its own the sorting
is lexical and case-sensitive (unless the locale renders it case-insensitive). Sorting
in ascending order is the default for other forms of sorting, so this is ignored if
combined with ‘a’, ‘i’ or ‘n’.

O Sort the resulting words in descending order; ‘O’ without ‘a’, ‘i’ or ‘n’ sorts in reverse
lexical order. May be combined with ‘a’, ‘i’ or ‘n’ to reverse the order of sorting.

P This forces the value of the parameter name to be interpreted as a further parameter
name, whose value will be used where appropriate. Note that flags set with one of
the typeset family of commands (in particular case transformations) are not applied
to the value of name used in this fashion.
If used with a nested parameter or command substitution, the result of that will be
taken as a parameter name in the same way. For example, if you have ‘foo=bar’
and ‘bar=baz’, the strings ${(P)foo}, ${(P)${foo}}, and ${(P)$(echo bar)} will
be expanded to ‘baz’.

Chapter 14: Expansion 41

q Quote the resulting words with backslashes; unprintable or invalid characters are
quoted using the $’\NNN’ form, with separate quotes for each octet. If this flag is
given twice, the resulting words are quoted in single quotes and if it is given three
times, the words are quoted in double quotes; in these forms no special handling of
unprintable or invalid characters is attempted. If the flag is given four times, the
words are quoted in single quotes preceded by a $.

Q Remove one level of quotes from the resulting words.

t Use a string describing the type of the parameter where the value of the parameter
would usually appear. This string consists of keywords separated by hyphens (‘-’).
The first keyword in the string describes the main type, it can be one of ‘scalar’,
‘array’, ‘integer’, ‘float’ or ‘association’. The other keywords describe the type
in more detail:

local for local parameters

left for left justified parameters

right_blanks
for right justified parameters with leading blanks

right_zeros
for right justified parameters with leading zeros

lower for parameters whose value is converted to all lower case when it is
expanded

upper for parameters whose value is converted to all upper case when it is
expanded

readonly for readonly parameters

tag for tagged parameters

export for exported parameters

unique for arrays which keep only the first occurrence of duplicated values

hide for parameters with the ‘hide’ flag

special for special parameters defined by the shell

u Expand only the first occurrence of each unique word.

U Convert all letters in the result to upper case.

v Used with k, substitute (as two consecutive words) both the key and the value of
each associative array element. Used with subscripts, force values to be substituted
even if the subscript form refers to indices or keys.

V Make any special characters in the resulting words visible.

w With ${#name}, count words in arrays or strings; the s flag may be used to set a
word delimiter.

W Similar to w with the difference that empty words between repeated delimiters are
also counted.

X With this flag, parsing errors occurring with the Q, e and # flags or the pattern
matching forms such as ‘${name#pattern}’ are reported. Without the flag, errors
are silently ignored.

Chapter 14: Expansion 42

z Split the result of the expansion into words using shell parsing to find the words,
i.e. taking into account any quoting in the value.
Note that this is done very late, as for the ‘(s)’ flag. So to access single words in
the result, one has to use nested expansions as in ‘${${(z)foo}[2]}’. Likewise, to
remove the quotes in the resulting words one would do: ‘${(Q)${(z)foo}}’.

0 Split the result of the expansion on null bytes. This is a shorthand for ‘ps:\0:’.

The following flags (except p) are followed by one or more arguments as shown. Any character,
or the matching pairs ‘(...)’, ‘{...}’, ‘[...]’, or ‘<...>’, may be used in place of a colon as delimiters,
but note that when a flag takes more than one argument, a matched pair of delimiters must
surround each argument.

p Recognize the same escape sequences as the print builtin in string arguments to
any of the flags described below.

j:string: Join the words of arrays together using string as a separator. Note that this occurs
before field splitting by the s:string: flag or the SH_WORD_SPLIT option.

l:expr::string1::string2:
Pad the resulting words on the left. Each word will be truncated if required and
placed in a field expr characters wide.
The arguments :string1: and :string2: are optional; neither, the first, or both may
be given. Note that the same pairs of delimiters must be used for each of the three
arguments. The space to the left will be filled with string1 (concatenated as often
as needed) or spaces if string1 is not given. If both string1 and string2 are given,
string2 is inserted once directly to the left of each word, truncated if necessary,
before string1 is used to produce any remaining padding.
If the MULTIBYTE option is in effect, the flag m may also be given, in which case
widths will be used for the calculation of padding; otherwise individual multibyte
characters are treated as occupying one unit of width.
IF the MULTIBYTE option is not in effect, each byte in the string is treated as occu-
pying one unit of width.
Control characters are always assumed to be one unit wide; this allows the mecha-
nism to be used for generating repetitions of control characters.

m Only useful together with l and r when the MULTIBYTE option is in effect. Use the
character width reported by the system in calculating the how much of the string it
occupies. Most printable characters have a width of one unit, however certain Asian
character sets and certain special effects use wider characters.

r:expr::string1::string2:
As l, but pad the words on the right and insert string2 immediately to the right of
the string to be padded.
Left and right padding may be used together. In this case the strategy is to apply
left padding to the first half width of each of the resulting words, and right padding
to the second half. If the string to be padded has odd width the extra padding is
applied on the left.

s:string: Force field splitting at the separator string. Note that a string of two or more
characters means that all of them must match in sequence; this differs from the
treatment of two or more characters in the IFS parameter. See also the = flag and
the SH_WORD_SPLIT option.
For historical reasons, the usual behaviour that empty array elements are retained
inside double quotes is disabled for arrays generated by splitting; hence the following:

Chapter 14: Expansion 43

line="one::three"
print -l "${(s.:.)line}"

produces two lines of output for one and three and elides the empty field. To
override this behaviour, supply the "(@)" flag as well, i.e. "${(@s.:.)line}".

The following flags are meaningful with the ${...#...} or ${...%...} forms. The S and I flags may
also be used with the ${.../...} forms.

S Search substrings as well as beginnings or ends; with # start from the beginning and
with % start from the end of the string. With substitution via ${.../...} or ${...//...},
specifies non-greedy matching, i.e. that the shortest instead of the longest match
should be replaced.

I:expr: Search the exprth match (where expr evaluates to a number). This only applies
when searching for substrings, either with the S flag, or with ${.../...} (only the
exprth match is substituted) or ${...//...} (all matches from the exprth on are
substituted). The default is to take the first match.
The exprth match is counted such that there is either one or zero matches from each
starting position in the string, although for global substitution matches overlapping
previous replacements are ignored. With the ${...%...} and ${...%%...} forms, the
starting position for the match moves backwards from the end as the index increases,
while with the other forms it moves forward from the start.
Hence with the string

which switch is the right switch for Ipswich?

substitutions of the form ${(SI:N:)string#w*ch} as N increases from 1 will match
and remove ‘which’, ‘witch’, ‘witch’ and ‘wich’; the form using ‘##’ will match
and remove ‘which switch is the right switch for Ipswich’, ‘witch is the
right switch for Ipswich’, ‘witch for Ipswich’ and ‘wich’. The form using ‘%’
will remove the same matches as for ‘#’, but in reverse order, and the form using
‘%%’ will remove the same matches as for ‘##’ in reverse order.

B Include the index of the beginning of the match in the result.

E Include the index of the end of the match in the result.

M Include the matched portion in the result.

N Include the length of the match in the result.

R Include the unmatched portion in the result (the Rest).

14.3.2 Rules

Here is a summary of the rules for substitution; this assumes that braces are present around
the substitution, i.e. ${...}. Some particular examples are given below. Note that the Zsh
Development Group accepts no responsibility for any brain damage which may occur during the
reading of the following rules.

1. Nested Substitution
If multiple nested ${...} forms are present, substitution is performed from the
inside outwards. At each level, the substitution takes account of whether the current
value is a scalar or an array, whether the whole substitution is in double quotes,
and what flags are supplied to the current level of substitution, just as if the nested
substitution were the outermost. The flags are not propagated up to enclosing
substitutions; the nested substitution will return either a scalar or an array as
determined by the flags, possibly adjusted for quoting. All the following steps take

Chapter 14: Expansion 44

place where applicable at all levels of substitution. Note that, unless the ‘(P)’ flag
is present, the flags and any subscripts apply directly to the value of the nested
substitution; for example, the expansion ${${foo}} behaves exactly the same as
${foo}.

At each nested level of substitution, the substituted words undergo all forms of
single-word substitution (i.e. not filename generation), including command substi-
tution, arithmetic expansion and filename expansion (i.e. leading ~ and =). Thus,
for example, ${${:-=cat}:h} expands to the directory where the cat program re-
sides. (Explanation: the internal substitution has no parameter but a default value
=cat, which is expanded by filename expansion to a full path; the outer substitution
then applies the modifier :h and takes the directory part of the path.)

2. Internal Parameter Flags
Any parameter flags set by one of the typeset family of commands, in particular
the L, R, Z, u and l flags for padding and capitalization, are applied directly to the
parameter value.

3. Parameter Subscripting
If the value is a raw parameter reference with a subscript, such as ${var[3]}, the
effect of subscripting is applied directly to the parameter. Subscripts are evaluated
left to right; subsequent subscripts apply to the scalar or array value yielded by the
previous subscript. Thus if var is an array, ${var[1][2]} is the second character of
the first word, but ${var[2,4][2]} is the entire third word (the second word of the
range of words two through four of the original array). Any number of subscripts
may appear.

4. Parameter Name Replacement
The effect of any (P) flag, which treats the value so far as a parameter name and
replaces it with the corresponding value, is applied.

5. Double-Quoted Joining
If the value after this process is an array, and the substitution appears in double
quotes, and no (@) flag is present at the current level, the words of the value are
joined with the first character of the parameter $IFS, by default a space, between
each word (single word arrays are not modified). If the (j) flag is present, that is
used for joining instead of $IFS.

6. Nested Subscripting
Any remaining subscripts (i.e. of a nested substitution) are evaluated at this point,
based on whether the value is an array or a scalar. As with 2., multiple subscripts
can appear. Note that ${foo[2,4][2]} is thus equivalent to ${${foo[2,4]}[2]}
and also to "${${(@)foo[2,4]}[2]}" (the nested substitution returns an array in
both cases), but not to "${${foo[2,4]}[2]}" (the nested substitution returns a
scalar because of the quotes).

7. Modifiers
Any modifiers, as specified by a trailing ‘#’, ‘%’, ‘/’ (possibly doubled) or by a set of
modifiers of the form :... (see Section 14.1.4 [Modifiers], page 34 in Section 14.1
[History Expansion], page 32), are applied to the words of the value at this level.

8. Forced Joining
If the ‘(j)’ flag is present, or no ‘(j)’ flag is present but the string is to be split
as given by rules 8. or 9., and joining did not take place at step 4., any words in
the value are joined together using the given string or the first character of $IFS if
none. Note that the ‘(F)’ flag implicitly supplies a string for joining in this manner.

Chapter 14: Expansion 45

9. Forced Splitting
If one of the ‘(s)’, ‘(f)’ or ‘(z)’ flags are present, or the ‘=’ specifier was present
(e.g. ${=var}), the word is split on occurrences of the specified string, or (for = with
neither of the two flags present) any of the characters in $IFS.

10. Shell Word Splitting
If no ‘(s)’, ‘(f)’ or ‘=’ was given, but the word is not quoted and the option
SH_WORD_SPLIT is set, the word is split on occurrences of any of the characters in
$IFS. Note this step, too, takes place at all levels of a nested substitution.

11. Uniqueness
If the result is an array and the ‘(u)’ flag was present, duplicate elements are
removed from the array.

12. Ordering
If the result is still an array and one of the ‘(o)’ or ‘(O)’ flags was present, the array
is reordered.

13. Re-Evaluation
Any ‘(e)’ flag is applied to the value, forcing it to be re-examined for new parameter
substitutions, but also for command and arithmetic substitutions.

14. Padding
Any padding of the value by the ‘(l.fill.)’ or ‘(r.fill.)’ flags is applied.

15. Semantic Joining
In contexts where expansion semantics requires a single word to result, all words
are rejoined with the first character of IFS between. So in ‘${(P)${(f)lines}}’
the value of ${lines} is split at newlines, but then must be joined again before the
P flag can be applied.
If a single word is not required, this rule is skipped.

14.3.3 Examples

The flag f is useful to split a double-quoted substitution line by line. For example,
${(f)"$(<file)"} substitutes the contents of file divided so that each line is an element of
the resulting array. Compare this with the effect of $(<file) alone, which divides the file up
by words, or the same inside double quotes, which makes the entire content of the file a single
string.
The following illustrates the rules for nested parameter expansions. Suppose that $foo contains
the array (bar baz):

"${(@)${foo}[1]}"
This produces the result b. First, the inner substitution "${foo}", which has no
array (@) flag, produces a single word result "bar baz". The outer substitution
"${(@)...[1]}" detects that this is a scalar, so that (despite the ‘(@)’ flag) the
subscript picks the first character.

"${${(@)foo}[1]}"
This produces the result ‘bar’. In this case, the inner substitution "${(@)foo}" pro-
duces the array ‘(bar baz)’. The outer substitution "${...[1]}" detects that this
is an array and picks the first word. This is similar to the simple case "${foo[1]}".

As an example of the rules for word splitting and joining, suppose $foo contains the array ‘(ax1
bx1)’. Then

${(s/x/)foo}
produces the words ‘a’, ‘1 b’ and ‘1’.

Chapter 14: Expansion 46

${(j/x/s/x/)foo}
produces ‘a’, ‘1’, ‘b’ and ‘1’.

${(s/x/)foo%%1*}
produces ‘a’ and ‘ b’ (note the extra space). As substitution occurs before either
joining or splitting, the operation first generates the modified array (ax bx), which
is joined to give "ax bx", and then split to give ‘a’, ‘ b’ and ‘’. The final empty
string will then be elided, as it is not in double quotes.

14.4 Command Substitution

A command enclosed in parentheses preceded by a dollar sign, like ‘$(...)’, or quoted with grave
accents, like ‘‘...‘’, is replaced with its standard output, with any trailing newlines deleted. If
the substitution is not enclosed in double quotes, the output is broken into words using the
IFS parameter. The substitution ‘$(cat foo)’ may be replaced by the equivalent but faster
‘$(<foo)’. In either case, if the option GLOB_SUBST is set, the output is eligible for filename
generation.

14.5 Arithmetic Expansion

A string of the form ‘$[exp]’ or ‘$((exp))’ is substituted with the value of the arithmetic
expression exp. exp is subjected to parameter expansion, command substitution and arithmetic
expansion before it is evaluated. See Chapter 11 [Arithmetic Evaluation], page 24.

14.6 Brace Expansion

A string of the form ‘foo{xx,yy,zz}bar’ is expanded to the individual words ‘fooxxbar’, ‘fooyy-
bar’ and ‘foozzbar’. Left-to-right order is preserved. This construct may be nested. Commas
may be quoted in order to include them literally in a word.

An expression of the form ‘{n1..n2}’, where n1 and n2 are integers, is expanded to every
number between n1 and n2 inclusive. If either number begins with a zero, all the resulting
numbers will be padded with leading zeroes to that minimum width. If the numbers are in
decreasing order the resulting sequence will also be in decreasing order.

If a brace expression matches none of the above forms, it is left unchanged, unless the option
BRACE_CCL (an abbreviation for ‘brace character class’) is set. In that case, it is expanded to a
list of the individual characters between the braces sorted into the order of the characters in the
ASCII character set (multibyte characters are not currently handled). The syntax is similar to
a [...] expression in filename generation: ‘-’ is treated specially to denote a range of characters,
but ‘^’ or ‘!’ as the first character is treated normally. For example, ‘{abcdef0-9}’ expands to
16 words 0 1 2 3 4 5 6 7 8 9 a b c d e f.

Note that brace expansion is not part of filename generation (globbing); an expression such as
*/{foo,bar} is split into two separate words */foo and */bar before filename generation takes
place. In particular, note that this is liable to produce a ‘no match’ error if either of the two
expressions does not match; this is to be contrasted with */(foo|bar), which is treated as a
single pattern but otherwise has similar effects.

To combine brace expansion with array expansion, see the ${^spec} form described in Sec-
tion 14.3 [Parameter Expansion], page 36 above.

14.7 Filename Expansion

Each word is checked to see if it begins with an unquoted ‘~’. If it does, then the word up to
a ‘/’, or the end of the word if there is no ‘/’, is checked to see if it can be substituted in one

Chapter 14: Expansion 47

of the ways described here. If so, then the ‘~’ and the checked portion are replaced with the
appropriate substitute value.
A ‘~’ by itself is replaced by the value of $HOME. A ‘~’ followed by a ‘+’ or a ‘-’ is replaced by
the value of $PWD or $OLDPWD, respectively.
A ‘~’ followed by a number is replaced by the directory at that position in the directory stack.
‘~0’ is equivalent to ‘~+’, and ‘~1’ is the top of the stack. ‘~+’ followed by a number is replaced by
the directory at that position in the directory stack. ‘~+0’ is equivalent to ‘~+’, and ‘~+1’ is the
top of the stack. ‘~-’ followed by a number is replaced by the directory that many positions from
the bottom of the stack. ‘~-0’ is the bottom of the stack. The PUSHD_MINUS option exchanges
the effects of ‘~+’ and ‘~-’ where they are followed by a number.
A ‘~’ followed by anything not already covered is looked up as a named directory, and replaced
by the value of that named directory if found. Named directories are typically home directories
for users on the system. They may also be defined if the text after the ‘~’ is the name of a string
shell parameter whose value begins with a ‘/’. Note that trailing slashes will be removed from
the path to the directory (though the original parameter is not modified). It is also possible to
define directory names using the -d option to the hash builtin.
In certain circumstances (in prompts, for instance), when the shell prints a path, the path is
checked to see if it has a named directory as its prefix. If so, then the prefix portion is replaced
with a ‘~’ followed by the name of the directory. The shortest way of referring to the directory
is used, with ties broken in favour of using a named directory, except when the directory is /
itself. The parameters $PWD and $OLDPWD are never abbreviated in this fashion.
If a word begins with an unquoted ‘=’ and the EQUALS option is set, the remainder of the word
is taken as the name of a command. If a command exists by that name, the word is replaced by
the full pathname of the command.
Filename expansion is performed on the right hand side of a parameter assignment, including
those appearing after commands of the typeset family. In this case, the right hand side will
be treated as a colon-separated list in the manner of the PATH parameter, so that a ‘~’ or an ‘=’
following a ‘:’ is eligible for expansion. All such behaviour can be disabled by quoting the ‘~’,
the ‘=’, or the whole expression (but not simply the colon); the EQUALS option is also respected.
If the option MAGIC_EQUAL_SUBST is set, any unquoted shell argument in the form ‘identi-
fier=expression’ becomes eligible for file expansion as described in the previous paragraph. Quot-
ing the first ‘=’ also inhibits this.

14.8 Filename Generation

If a word contains an unquoted instance of one of the characters ‘*’, ‘(’, ‘|’, ‘<’, ‘[’, or ‘?’,
it is regarded as a pattern for filename generation, unless the GLOB option is unset. If the
EXTENDED_GLOB option is set, the ‘^’ and ‘#’ characters also denote a pattern; otherwise they
are not treated specially by the shell.
The word is replaced with a list of sorted filenames that match the pattern. If no matching
pattern is found, the shell gives an error message, unless the NULL_GLOB option is set, in which
case the word is deleted; or unless the NOMATCH option is unset, in which case the word is left
unchanged.
In filename generation, the character ‘/’ must be matched explicitly; also, a ‘.’ must be matched
explicitly at the beginning of a pattern or after a ‘/’, unless the GLOB_DOTS option is set. No
filename generation pattern matches the files ‘.’ or ‘..’. In other instances of pattern matching,
the ‘/’ and ‘.’ are not treated specially.

14.8.1 Glob Operators

* Matches any string, including the null string.

Chapter 14: Expansion 48

? Matches any character.

[...] Matches any of the enclosed characters. Ranges of characters can be specified by
separating two characters by a ‘-’. A ‘-’ or ‘]’ may be matched by including it as the
first character in the list. There are also several named classes of characters, in the
form ‘[:name:]’ with the following meanings. The first set use the macros provided
by the operating system to test for the given character combinations, including any
modifications due to local language settings, see man page ctype(3):

[:alnum:]
The character is alphanumeric

[:alpha:]
The character is alphabetic

[:ascii:]
The character is 7-bit, i.e. is a single-byte character without the top bit
set.

[:blank:]
The character is either space or tab

[:cntrl:]
The character is a control character

[:digit:]
The character is a decimal digit

[:graph:]
The character is a printable character other than whitespace

[:lower:]l
The character is a lowercase letter

[:print:]
The character is printable

[:punct:]
The character is printable but neither alphanumeric nor whitespace

[:space:]
The character is whitespace

[:upper:]
The character is an uppercase letter

[:xdigit:]
The character is a hexadecimal digit

Another set of named classes is handled internally by the shell and is not sensitive
to the locale:

[:IDENT:]
The character is allowed to form part of a shell identifier, such as a
parameter name

[:IFS:] The character is used as an input field separator, i.e. is contained in
the IFS parameter

[:IFSSPACE:]
The character is an IFS white space character; see the documentation
for IFS in Section 15.6 [Parameters Used By The Shell], page 66.

Chapter 14: Expansion 49

[:WORD:] The character is treated as part of a word; this test is sensitive to the
value of the WORDCHARS parameter

Note that the square brackets are additional to those enclosing the whole set of
characters, so to test for a single alphanumeric character you need ‘[[:alnum:]]’.
Named character sets can be used alongside other types, e.g. ‘[[:alpha:]0-9]’.

[^...]
[!...] Like [...], except that it matches any character which is not in the given set.

<[x]-[y]> Matches any number in the range x to y, inclusive. Either of the numbers may be
omitted to make the range open-ended; hence ‘<->’ matches any number. To match
individual digits, the [...] form is more efficient.
Be careful when using other wildcards adjacent to patterns of this form; for example,
<0-9>* will actually match any number whatsoever at the start of the string, since
the ‘<0-9>’ will match the first digit, and the ‘*’ will match any others. This is a
trap for the unwary, but is in fact an inevitable consequence of the rule that the
longest possible match always succeeds. Expressions such as ‘<0-9>[^[:digit:]]*’
can be used instead.

(...) Matches the enclosed pattern. This is used for grouping. If the KSH_GLOB option is
set, then a ‘@’, ‘*’, ‘+’, ‘?’ or ‘!’ immediately preceding the ‘(’ is treated specially,
as detailed below. The option SH_GLOB prevents bare parentheses from being used
in this way, though the KSH_GLOB option is still available.
Note that grouping cannot extend over multiple directories: it is an error to have
a ‘/’ within a group (this only applies for patterns used in filename generation).
There is one exception: a group of the form (pat/)# appearing as a complete path
segment can match a sequence of directories. For example, foo/(a*/)#bar matches
foo/bar, foo/any/bar, foo/any/anyother/bar, and so on.

x|y Matches either x or y. This operator has lower precedence than any other. The ‘|’
character must be within parentheses, to avoid interpretation as a pipeline.

^x (Requires EXTENDED_GLOB to be set.) Matches anything except the pattern x. This
has a higher precedence than ‘/’, so ‘^foo/bar’ will search directories in ‘.’ except
‘./foo’ for a file named ‘bar’.

x~y (Requires EXTENDED_GLOB to be set.) Match anything that matches the pattern
x but does not match y. This has lower precedence than any operator except
‘|’, so ‘*/*~foo/bar’ will search for all files in all directories in ‘.’ and then ex-
clude ‘foo/bar’ if there was such a match. Multiple patterns can be excluded by
‘foo~bar~baz’. In the exclusion pattern (y), ‘/’ and ‘.’ are not treated specially the
way they usually are in globbing.

x# (Requires EXTENDED_GLOB to be set.) Matches zero or more occurrences of the
pattern x. This operator has high precedence; ‘12#’ is equivalent to ‘1(2#)’, rather
than ‘(12)#’. It is an error for an unquoted ‘#’ to follow something which cannot
be repeated; this includes an empty string, a pattern already followed by ‘##’, or
parentheses when part of a KSH_GLOB pattern (for example, ‘!(foo)#’ is invalid and
must be replaced by ‘*(!(foo))’).

x## (Requires EXTENDED_GLOB to be set.) Matches one or more occurrences of the pattern
x. This operator has high precedence; ‘12##’ is equivalent to ‘1(2##)’, rather than
‘(12)##’. No more than two active ‘#’ characters may appear together. (Note the
potential clash with glob qualifiers in the form ‘1(2##)’ which should therefore be
avoided.)

Chapter 14: Expansion 50

14.8.2 ksh-like Glob Operators

If the KSH_GLOB option is set, the effects of parentheses can be modified by a preceding ‘@’, ‘*’,
‘+’, ‘?’ or ‘!’. This character need not be unquoted to have special effects, but the ‘(’ must be.

@(...) Match the pattern in the parentheses. (Like ‘(...)’.)

*(...) Match any number of occurrences. (Like ‘(...)#’.)

+(...) Match at least one occurrence. (Like ‘(...)##’.)

?(...) Match zero or one occurrence. (Like ‘(|...)’.)

!(...) Match anything but the expression in parentheses. (Like ‘(^(...))’.)

14.8.3 Precedence

The precedence of the operators given above is (highest) ‘^’, ‘/’, ‘~’, ‘|’ (lowest); the remaining
operators are simply treated from left to right as part of a string, with ‘#’ and ‘##’ applying
to the shortest possible preceding unit (i.e. a character, ‘?’, ‘[...]’, ‘<...>’, or a parenthesised
expression). As mentioned above, a ‘/’ used as a directory separator may not appear inside
parentheses, while a ‘|’ must do so; in patterns used in other contexts than filename generation
(for example, in case statements and tests within ‘[[...]]’), a ‘/’ is not special; and ‘/’ is also
not special after a ‘~’ appearing outside parentheses in a filename pattern.

14.8.4 Globbing Flags

There are various flags which affect any text to their right up to the end of the enclosing group
or to the end of the pattern; they require the EXTENDED_GLOB option. All take the form (#X)
where X may have one of the following forms:

i Case insensitive: upper or lower case characters in the pattern match upper or lower
case characters.

l Lower case characters in the pattern match upper or lower case characters; upper
case characters in the pattern still only match upper case characters.

I Case sensitive: locally negates the effect of i or l from that point on.

b Activate backreferences for parenthesised groups in the pattern; this does not work
in filename generation. When a pattern with a set of active parentheses is matched,
the strings matched by the groups are stored in the array $match, the indices of the
beginning of the matched parentheses in the array $mbegin, and the indices of the
end in the array $mend, with the first element of each array corresponding to the
first parenthesised group, and so on. These arrays are not otherwise special to the
shell. The indices use the same convention as does parameter substitution, so that
elements of $mend and $mbegin may be used in subscripts; the KSH_ARRAYS option
is respected. Sets of globbing flags are not considered parenthesised groups; only
the first nine active parentheses can be referenced.
For example,

foo="a string with a message"
if [[$foo = (a|an)’ ’(#b)(*)’ ’*]]; then
print ${foo[$mbegin[1],$mend[1]]}

fi

prints ‘string with a’. Note that the first parenthesis is before the (#b) and does
not create a backreference.
Backreferences work with all forms of pattern matching other than filename gen-
eration, but note that when performing matches on an entire array, such as

Chapter 14: Expansion 51

${array#pattern}, or a global substitution, such as ${param//pat/repl}, only the
data for the last match remains available. In the case of global replacements this
may still be useful. See the example for the m flag below.
The numbering of backreferences strictly follows the order of the opening parentheses
from left to right in the pattern string, although sets of parentheses may be nested.
There are special rules for parentheses followed by ‘#’ or ‘##’. Only the last match
of the parenthesis is remembered: for example, in ‘[[abab = (#b)([ab])#]]’,
only the final ‘b’ is stored in match[1]. Thus extra parentheses may be necessary
to match the complete segment: for example, use ‘X((ab|cd)#)Y’ to match a whole
string of either ‘ab’ or ‘cd’ between ‘X’ and ‘Y’, using the value of $match[1] rather
than $match[2].
If the match fails none of the parameters is altered, so in some cases it may be
necessary to initialise them beforehand. If some of the backreferences fail to match
— which happens if they are in an alternate branch which fails to match, or if they
are followed by # and matched zero times — then the matched string is set to the
empty string, and the start and end indices are set to -1.
Pattern matching with backreferences is slightly slower than without.

B Deactivate backreferences, negating the effect of the b flag from that point on.

cN,M The flag (#cN,M) can be used anywhere that the # or ## operators can be used;
it cannot be combined with other globbing flags and a bad pattern error occurs if
it is misplaced. It is equivalent to the form {N,M} in regular expressions. The
previous character or group is required to match between N and M times, inclusive.
The form (#cN) requires exactly N matches; (#c,M) is equivalent to specifying N
as 0; (#cN,) specifies that there is no maximum limit on the number of matches.

m Set references to the match data for the entire string matched; this is similar to
backreferencing and does not work in filename generation. The flag must be in
effect at the end of the pattern, i.e. not local to a group. The parameters $MATCH,
$MBEGIN and $MEND will be set to the string matched and to the indices of the
beginning and end of the string, respectively. This is most useful in parameter
substitutions, as otherwise the string matched is obvious.
For example,

arr=(veldt jynx grimps waqf zho buck)
print ${arr//(#m)[aeiou]/${(U)MATCH}}

forces all the matches (i.e. all vowels) into uppercase, printing ‘vEldt jynx grImps
wAqf zhO bUck’.
Unlike backreferences, there is no speed penalty for using match references, other
than the extra substitutions required for the replacement strings in cases such as
the example shown.

M Deactivate the m flag, hence no references to match data will be created.

anum Approximate matching: num errors are allowed in the string matched by the pattern.
The rules for this are described in the next subsection.

s, e Unlike the other flags, these have only a local effect, and each must appear on its
own: ‘(#s)’ and ‘(#e)’ are the only valid forms. The ‘(#s)’ flag succeeds only
at the start of the test string, and the ‘(#e)’ flag succeeds only at the end of the
test string; they correspond to ‘^’ and ‘$’ in standard regular expressions. They
are useful for matching path segments in patterns other than those in filename
generation (where path segments are in any case treated separately). For example,

Chapter 14: Expansion 52

‘*((#s)|/)test((#e)|/)*’ matches a path segment ‘test’ in any of the following
strings: test, test/at/start, at/end/test, in/test/middle.
Another use is in parameter substitution; for example ‘${array/(#s)A*Z(#e)}’ will
remove only elements of an array which match the complete pattern ‘A*Z’. There
are other ways of performing many operations of this type, however the combination
of the substitution operations ‘/’ and ‘//’ with the ‘(#s)’ and ‘(#e)’ flags provides
a single simple and memorable method.
Note that assertions of the form ‘(^(#s))’ also work, i.e. match anywhere except
at the start of the string, although this actually means ‘anything except a zero-
length portion at the start of the string’; you need to use ‘(""~(#s))’ to match a
zero-length portion of the string not at the start.

q A ‘q’ and everything up to the closing parenthesis of the globbing flags are ignored
by the pattern matching code. This is intended to support the use of glob qualifiers,
see below. The result is that the pattern ‘(#b)(*).c(#q.)’ can be used both for
globbing and for matching against a string. In the former case, the ‘(#q.)’ will
be treated as a glob qualifier and the ‘(#b)’ will not be useful, while in the latter
case the ‘(#b)’ is useful for backreferences and the ‘(#q.)’ will be ignored. Note
that colon modifiers in the glob qualifiers are also not applied in ordinary pattern
matching.

u Respect the current locale in determining the presence of multibyte characters in a
pattern, provided the shell was compiled with MULTIBYTE_SUPPORT. This overrides
the MULTIBYTE option; the default behaviour is taken from the option. Compare U.
(Mnemonic: typically multibyte characters are from Unicode in the UTF-8 encoding,
although any extension of ASCII supported by the system library may be used.)

U All characters are considered to be a single byte long. The opposite of u. This
overrides the MULTIBYTE option.

For example, the test string fooxx can be matched by the pattern (#i)FOOXX, but not by
(#l)FOOXX, (#i)FOO(#I)XX or ((#i)FOOX)X. The string (#ia2)readme specifies case-insensitive
matching of readme with up to two errors.
When using the ksh syntax for grouping both KSH_GLOB and EXTENDED_GLOB must be set and
the left parenthesis should be preceded by @. Note also that the flags do not affect letters inside
[...] groups, in other words (#i)[a-z] still matches only lowercase letters. Finally, note that
when examining whole paths case-insensitively every directory must be searched for all files
which match, so that a pattern of the form (#i)/foo/bar/... is potentially slow.

14.8.5 Approximate Matching

When matching approximately, the shell keeps a count of the errors found, which cannot exceed
the number specified in the (#anum) flags. Four types of error are recognised:

1. Different characters, as in fooxbar and fooybar.

2. Transposition of characters, as in banana and abnana.

3. A character missing in the target string, as with the pattern road and target string
rod.

4. An extra character appearing in the target string, as with stove and strove.

Thus, the pattern (#a3)abcd matches dcba, with the errors occurring by using the first rule
twice and the second once, grouping the string as [d][cb][a] and [a][bc][d].
Non-literal parts of the pattern must match exactly, including characters in character ranges:
hence (#a1)??? matches strings of length four, by applying rule 4 to an empty part of the

Chapter 14: Expansion 53

pattern, but not strings of length two, since all the ? must match. Other characters which must
match exactly are initial dots in filenames (unless the GLOB_DOTS option is set), and all slashes
in filenames, so that a/bc is two errors from ab/c (the slash cannot be transposed with another
character). Similarly, errors are counted separately for non-contiguous strings in the pattern, so
that (ab|cd)ef is two errors from aebf.
When using exclusion via the ~ operator, approximate matching is treated entirely separately
for the excluded part and must be activated separately. Thus, (#a1)README~READ_ME matches
READ.ME but not READ_ME, as the trailing READ_ME is matched without approximation. However,
(#a1)README~(#a1)READ_ME does not match any pattern of the form READ?ME as all such forms
are now excluded.
Apart from exclusions, there is only one overall error count; however, the maximum er-
rors allowed may be altered locally, and this can be delimited by grouping. For example,
(#a1)cat((#a0)dog)fox allows one error in total, which may not occur in the dog section,
and the pattern (#a1)cat(#a0)dog(#a1)fox is equivalent. Note that the point at which an
error is first found is the crucial one for establishing whether to use approximation; for ex-
ample, (#a1)abc(#a0)xyz will not match abcdxyz, because the error occurs at the ‘x’, where
approximation is turned off.
Entire path segments may be matched approximately, so that
‘(#a1)/foo/d/is/available/at/the/bar’ allows one error in any path segment.
This is much less efficient than without the (#a1), however, since every directory in the path
must be scanned for a possible approximate match. It is best to place the (#a1) after any path
segments which are known to be correct.

14.8.6 Recursive Globbing

A pathname component of the form ‘(foo/)#’ matches a path consisting of zero or more direc-
tories matching the pattern foo.
As a shorthand, ‘**/’ is equivalent to ‘(*/)#’; note that this therefore matches files in the
current directory as well as subdirectories. Thus:

ls (*/)#bar

or
ls **/bar

does a recursive directory search for files named ‘bar’ (potentially including the file ‘bar’ in the
current directory). This form does not follow symbolic links; the alternative form ‘***/’ does,
but is otherwise identical. Neither of these can be combined with other forms of globbing within
the same path segment; in that case, the ‘*’ operators revert to their usual effect.

14.8.7 Glob Qualifiers

Patterns used for filename generation may end in a list of qualifiers enclosed in parentheses. The
qualifiers specify which filenames that otherwise match the given pattern will be inserted in the
argument list.
If the option BARE_GLOB_QUAL is set, then a trailing set of parentheses containing no ‘|’ or ‘(’
characters (or ‘~’ if it is special) is taken as a set of glob qualifiers. A glob subexpression that
would normally be taken as glob qualifiers, for example ‘(^x)’, can be forced to be treated as
part of the glob pattern by doubling the parentheses, in this case producing ‘((^x))’.
If the option EXTENDED_GLOB is set, a different syntax for glob qualifiers is available, namely
‘(#qx)’ where x is any of the same glob qualifiers used in the other format. The qualifiers must
still appear at the end of the pattern. However, with this syntax multiple glob qualifiers may
be chained together. They are treated as a logical AND of the individual sets of flags. Also,
as the syntax is unambiguous, the expression will be treated as glob qualifiers just as long any

Chapter 14: Expansion 54

parentheses contained within it are balanced; appearance of ‘|’, ‘(’ or ‘~’ does not negate the
effect. Note that qualifiers will be recognised in this form even if a bare glob qualifier exists at
the end of the pattern, for example ‘*(#q*)(.)’ will recognise executable regular files if both
options are set; however, mixed syntax should probably be avoided for the sake of clarity.
A qualifier may be any one of the following:

/ directories

F ‘full’ (i.e. non-empty) directories. Note that the opposite sense (^F) expands to
empty directories and all non-directories. Use (/^F) for empty directories

. plain files

@ symbolic links

= sockets

p named pipes (FIFOs)

* executable plain files (0100)

% device files (character or block special)

%b block special files

%c character special files

r owner-readable files (0400)

w owner-writable files (0200)

x owner-executable files (0100)

A group-readable files (0040)

I group-writable files (0020)

E group-executable files (0010)

R world-readable files (0004)

W world-writable files (0002)

X world-executable files (0001)

s setuid files (04000)

S setgid files (02000)

t files with the sticky bit (01000)

fspec files with access rights matching spec. This spec may be a octal number optionally
preceded by a ‘=’, a ‘+’, or a ‘-’. If none of these characters is given, the behavior
is the same as for ‘=’. The octal number describes the mode bits to be expected,
if combined with a ‘=’, the value given must match the file-modes exactly, with a
‘+’, at least the bits in the given number must be set in the file-modes, and with
a ‘-’, the bits in the number must not be set. Giving a ‘?’ instead of a octal digit
anywhere in the number ensures that the corresponding bits in the file-modes are
not checked, this is only useful in combination with ‘=’.
If the qualifier ‘f’ is followed by any other character anything up to the next matching
character (‘[’, ‘{’, and ‘<’ match ‘]’, ‘}’, and ‘>’ respectively, any other character
matches itself) is taken as a list of comma-separated sub-specs. Each sub-spec may
be either an octal number as described above or a list of any of the characters ‘u’,
‘g’, ‘o’, and ‘a’, followed by a ‘=’, a ‘+’, or a ‘-’, followed by a list of any of the

Chapter 14: Expansion 55

characters ‘r’, ‘w’, ‘x’, ‘s’, and ‘t’, or an octal digit. The first list of characters
specify which access rights are to be checked. If a ‘u’ is given, those for the owner
of the file are used, if a ‘g’ is given, those of the group are checked, a ‘o’ means
to test those of other users, and the ‘a’ says to test all three groups. The ‘=’, ‘+’,
and ‘-’ again says how the modes are to be checked and have the same meaning as
described for the first form above. The second list of characters finally says which
access rights are to be expected: ‘r’ for read access, ‘w’ for write access, ‘x’ for the
right to execute the file (or to search a directory), ‘s’ for the setuid and setgid bits,
and ‘t’ for the sticky bit.
Thus, ‘*(f70?)’ gives the files for which the owner has read, write, and execute
permission, and for which other group members have no rights, independent of the
permissions for other users. The pattern ‘*(f-100)’ gives all files for which the
owner does not have execute permission, and ‘*(f:gu+w,o-rx:)’ gives the files for
which the owner and the other members of the group have at least write permission,
and for which other users don’t have read or execute permission.

estring
+cmd The string will be executed as shell code. The filename will be included in the list if

and only if the code returns a zero status (usually the status of the last command).
The first character after the ‘e’ will be used as a separator and anything up to the
next matching separator will be taken as the string ; ‘[’, ‘{’, and ‘<’ match ‘]’, ‘}’,
and ‘>’, respectively, while any other character matches itself. Note that expansions
must be quoted in the string to prevent them from being expanded before globbing
is done.
During the execution of string the filename currently being tested is available in the
parameter REPLY; the parameter may be altered to a string to be inserted into the
list instead of the original filename. In addition, the parameter reply may be set
to an array or a string, which overrides the value of REPLY. If set to an array, the
latter is inserted into the command line word by word.
For example, suppose a directory contains a single file ‘lonely’. Then the expression
‘*(e:’reply=(${REPLY}{1,2})’:)’ will cause the words ‘lonely1 lonely2’ to be
inserted into the command line. Note the quotation marks.
The form +cmd has the same effect, but no delimiters appear around cmd. In-
stead, cmd is taken as the longest sequence of characters following the + that are
alphanumeric or underscore. Typically cmd will be the name of a shell function that
contains the appropriate test. For example,

nt() { [[$REPLY -nt $NTREF]] }
NTREF=reffile
ls -l *(+nt)

lists all files in the directory that have been modified more recently than reffile.

ddev files on the device dev

l[-|+]ct files having a link count less than ct (-), greater than ct (+), or equal to ct

U files owned by the effective user ID

G files owned by the effective group ID

uid files owned by user ID id if that is a number. Otherwise, id specifies a user name:
the character after the ‘u’ will be taken as a separator and the string between
it and the next matching separator will be taken as a user name. The starting
separators ‘[’, ‘{’, and ‘<’ match the final separators ‘]’, ‘}’, and ‘>’, respectively;
any other character matches itself. The selected files are those owned by this user.
For example, ‘u:foo:’ or ‘u[foo]’ selects files owned by user ‘foo’.

Chapter 14: Expansion 56

gid like uid but with group IDs or names

a[Mwhms][-|+]n
files accessed exactly n days ago. Files accessed within the last n days are selected
using a negative value for n (-n). Files accessed more than n days ago are selected
by a positive n value (+n). Optional unit specifiers ‘M’, ‘w’, ‘h’, ‘m’ or ‘s’ (e.g. ‘ah5’)
cause the check to be performed with months (of 30 days), weeks, hours, minutes
or seconds instead of days, respectively.
Any fractional part of the difference between the access time and the current part
in the appropriate units is ignored in the comparison. For instance, ‘echo *(ah-5)’
would echo files accessed within the last five hours, while ‘echo *(ah+5)’ would
echo files accessed at least six hours ago, as times strictly between five and six hours
are treated as five hours.

m[Mwhms][-|+]n
like the file access qualifier, except that it uses the file modification time.

c[Mwhms][-|+]n
like the file access qualifier, except that it uses the file inode change time.

L[+|-]n files less than n bytes (-), more than n bytes (+), or exactly n bytes in length. If
this flag is directly followed by a ‘k’ (‘K’), ‘m’ (‘M’), or ‘p’ (‘P’) (e.g. ‘Lk-50’) the
check is performed with kilobytes, megabytes, or blocks (of 512 bytes) instead.

^ negates all qualifiers following it

- toggles between making the qualifiers work on symbolic links (the default) and the
files they point to

M sets the MARK_DIRS option for the current pattern

T appends a trailing qualifier mark to the filenames, analogous to the LIST_TYPES
option, for the current pattern (overrides M)

N sets the NULL_GLOB option for the current pattern

D sets the GLOB_DOTS option for the current pattern

n sets the NUMERIC_GLOB_SORT option for the current pattern

oc specifies how the names of the files should be sorted. If c is n they are sorted by
name (the default); if it is L they are sorted depending on the size (length) of the
files; if l they are sorted by the number of links; if a, m, or c they are sorted by
the time of the last access, modification, or inode change respectively; if d, files in
subdirectories appear before those in the current directory at each level of the search
— this is best combined with other criteria, for example ‘odon’ to sort on names for
files within the same directory; if N, no sorting is performed. Note that a, m, and
c compare the age against the current time, hence the first name in the list is the
youngest file. Also note that the modifiers ^ and - are used, so ‘*(^-oL)’ gives a
list of all files sorted by file size in descending order, following any symbolic links.
Unless oN is used, multiple order specifiers may occur to resolve ties.

Oc like ‘o’, but sorts in descending order; i.e. ‘*(^oc)’ is the same as ‘*(Oc)’ and
‘*(^Oc)’ is the same as ‘*(oc)’; ‘Od’ puts files in the current directory before those
in subdirectories at each level of the search.

[beg [,end]]
specifies which of the matched filenames should be included in the returned list.
The syntax is the same as for array subscripts. beg and the optional end may be

Chapter 15: Parameters 57

mathematical expressions. As in parameter subscripting they may be negative to
make them count from the last match backward. E.g.: ‘*(-OL[1,3])’ gives a list of
the names of the three largest files.

More than one of these lists can be combined, separated by commas. The whole list matches if
at least one of the sublists matches (they are ‘or’ed, the qualifiers in the sublists are ‘and’ed).
Some qualifiers, however, affect all matches generated, independent of the sublist in which they
are given. These are the qualifiers ‘M’, ‘T’, ‘N’, ‘D’, ‘n’, ‘o’, ‘O’ and the subscripts given in brackets
(‘[...]’).
If a ‘:’ appears in a qualifier list, the remainder of the expression in parenthesis is interpreted as
a modifier (see Section 14.1.4 [Modifiers], page 34 in Section 14.1 [History Expansion], page 32).
Note that each modifier must be introduced by a separate ‘:’. Note also that the result after
modification does not have to be an existing file. The name of any existing file can be followed
by a modifier of the form ‘(:..)’ even if no actual filename generation is performed. Thus:

ls *(-/)

lists all directories and symbolic links that point to directories, and
ls *(%W)

lists all world-writable device files in the current directory, and
ls *(W,X)

lists all files in the current directory that are world-writable or world-executable, and
echo /tmp/foo*(u0^@:t)

outputs the basename of all root-owned files beginning with the string ‘foo’ in /tmp, ignoring
symlinks, and

ls *.*~(lex|parse).[ch](^D^l1)

lists all files having a link count of one whose names contain a dot (but not those starting with a
dot, since GLOB_DOTS is explicitly switched off) except for lex.c, lex.h, parse.c and parse.h.

print b*.pro(#q:s/pro/shmo/)(#q.:s/builtin/shmiltin/)

demonstrates how colon modifiers and other qualifiers may be chained together. The ordi-
nary qualifier ‘.’ is applied first, then the colon modifiers in order from left to right. So if
EXTENDED_GLOB is set and the base pattern matches the regular file builtin.pro, the shell will
print ‘shmiltin.shmo’.

15 Parameters

15.1 Description

A parameter has a name, a value, and a number of attributes. A name may be any sequence
of alphanumeric characters and underscores, or the single characters ‘*’, ‘@’, ‘#’, ‘?’, ‘-’, ‘$’, or
‘!’. The value may be a scalar (a string), an integer, an array (indexed numerically), or an
associative array (an unordered set of name-value pairs, indexed by name). To declare the type
of a parameter, or to assign a scalar or integer value to a parameter, use the typeset builtin.
The value of a scalar or integer parameter may also be assigned by writing:

name=value

If the integer attribute, -i, is set for name, the value is subject to arithmetic evaluation. Fur-
thermore, by replacing ‘=’ with ‘+=’, a parameter can be added or appended to. See Section 15.2
[Array Parameters], page 58 for additional forms of assignment.

Chapter 15: Parameters 58

To refer to the value of a parameter, write ‘$name’ or ‘${name}’. See Section 14.3 [Parameter
Expansion], page 36 for complete details.
In the parameter lists that follow, the mark ‘<S>’ indicates that the parameter is special. Special
parameters cannot have their type changed or their readonly attribute turned off, and if a special
parameter is unset, then later recreated, the special properties will be retained. ‘<Z>’ indicates
that the parameter does not exist when the shell initializes in sh or ksh emulation mode.

15.2 Array Parameters

To assign an array value, write one of:

set -A name value ...
name=(value ...)

If no parameter name exists, an ordinary array parameter is created. If the parameter name
exists and is a scalar, it is replaced by a new array. Ordinary array parameters may also be
explicitly declared with:

typeset -a name

Associative arrays must be declared before assignment, by using:

typeset -A name

When name refers to an associative array, the list in an assignment is interpreted as alternating
keys and values:

set -A name key value ...
name=(key value ...)

Every key must have a value in this case. Note that this assigns to the entire array, deleting
any elements that do not appear in the list.
To create an empty array (including associative arrays), use one of:

set -A name

name=()

15.2.1 Array Subscripts

Individual elements of an array may be selected using a subscript. A subscript of the form ‘[exp]’
selects the single element exp, where exp is an arithmetic expression which will be subject
to arithmetic expansion as if it were surrounded by ‘$((...))’. The elements are numbered
beginning with 1, unless the KSH_ARRAYS option is set in which case they are numbered from
zero.
Subscripts may be used inside braces used to delimit a parameter name, thus ‘${foo[2]}’ is
equivalent to ‘$foo[2]’. If the KSH_ARRAYS option is set, the braced form is the only one that
works, as bracketed expressions otherwise are not treated as subscripts.
If the KSH_ARRAYS option is not set, then by default accesses to an array element with a subscript
that evaluates to zero return an empty string, while an attempt to write such an element is
treated as an error. For backward compatibility the KSH_ZERO_SUBSCRIPT option can be set to
cause subscript values 0 and 1 to be equivalent; see the description of the option in Section 16.2
[Description of Options], page 72.
The same subscripting syntax is used for associative arrays, except that no arithmetic expansion
is applied to exp. However, the parsing rules for arithmetic expressions still apply, which affects
the way that certain special characters must be protected from interpretation. See Subscript
Parsing below for details.

Chapter 15: Parameters 59

A subscript of the form ‘[*]’ or ‘[@]’ evaluates to all elements of an array; there is no difference
between the two except when they appear within double quotes. ‘"$foo[*]"’ evaluates to
‘"$foo[1] $foo[2] ..."’, whereas ‘"$foo[@]"’ evaluates to ‘"$foo[1]" "$foo[2]" ...’. For
associative arrays, ‘[*]’ or ‘[@]’ evaluate to all the values, in no particular order. Note that
this does not substitute the keys; see the documentation for the ‘k’ flag under Section 14.3
[Parameter Expansion], page 36 for complete details. When an array parameter is referenced as
‘$name’ (with no subscript) it evaluates to ‘$name[*]’, unless the KSH_ARRAYS option is set in
which case it evaluates to ‘${name[0]}’ (for an associative array, this means the value of the
key ‘0’, which may not exist even if there are values for other keys).
A subscript of the form ‘[exp1,exp2]’ selects all elements in the range exp1 to exp2, inclusive.
(Associative arrays are unordered, and so do not support ranges.) If one of the subscripts
evaluates to a negative number, say -n, then the nth element from the end of the array is used.
Thus ‘$foo[-3]’ is the third element from the end of the array foo, and ‘$foo[1,-1]’ is the
same as ‘$foo[*]’.
Subscripting may also be performed on non-array values, in which case the subscripts specify a
substring to be extracted. For example, if FOO is set to ‘foobar’, then ‘echo $FOO[2,5]’ prints
‘ooba’.

15.2.2 Array Element Assignment

A subscript may be used on the left side of an assignment like so:

name[exp]=value

In this form of assignment the element or range specified by exp is replaced by the expression
on the right side. An array (but not an associative array) may be created by assignment to a
range or element. Arrays do not nest, so assigning a parenthesized list of values to an element or
range changes the number of elements in the array, shifting the other elements to accommodate
the new values. (This is not supported for associative arrays.)
This syntax also works as an argument to the typeset command:

typeset "name[exp]"=value

The value may not be a parenthesized list in this case; only single-element assignments may be
made with typeset. Note that quotes are necessary in this case to prevent the brackets from
being interpreted as filename generation operators. The noglob precommand modifier could be
used instead.
To delete an element of an ordinary array, assign ‘()’ to that element. To delete an element of
an associative array, use the unset command:

unset "name[exp]"

15.2.3 Subscript Flags

If the opening bracket, or the comma in a range, in any subscript expression is directly followed
by an opening parenthesis, the string up to the matching closing one is considered to be a list
of flags, as in ‘name[(flags)exp]’.
The flags s, n and b take an argument; the delimiter is shown below as ‘:’, but any character,
or the matching pairs ‘(...)’, ‘{...}’, ‘[...]’, or ‘<...>’, may be used.
The flags currently understood are:

w If the parameter subscripted is a scalar then this flag makes subscripting work on
words instead of characters. The default word separator is whitespace.

s:string: This gives the string that separates words (for use with the w flag). The delimiter
character : is arbitrary; see above.

Chapter 15: Parameters 60

p Recognize the same escape sequences as the print builtin in the string argument of
a subsequent ‘s’ flag.

f If the parameter subscripted is a scalar then this flag makes subscripting work on
lines instead of characters, i.e. with elements separated by newlines. This is a
shorthand for ‘pws:\n:’.

r Reverse subscripting: if this flag is given, the exp is taken as a pattern and the
result is the first matching array element, substring or word (if the parameter is an
array, if it is a scalar, or if it is a scalar and the ‘w’ flag is given, respectively). The
subscript used is the number of the matching element, so that pairs of subscripts
such as ‘$foo[(r)??,3]’ and ‘$foo[(r)??,(r)f*]’ are possible if the parameter is
not an associative array. If the parameter is an associative array, only the value
part of each pair is compared to the pattern, and the result is that value.
If a search through an ordinary array failed, the search sets the subscript to one past
the end of the array, and hence ${array[(r)pattern]} will substitute the empty
string. Thus the success of a search can be tested by using the (i) flag, for example
(assuming the option KSH_ARRAYS is not in effect):

[[${array[(i)pattern]} -le ${#array}]]

If KSH_ARRAYS is in effect, the -le should be replaced by -lt.
Note that in subscripts with both ‘r’ and ‘R’ pattern characters are active even
if they were substituted for a parameter (regardless of the setting of GLOB_SUBST
which controls this feature in normal pattern matching). It is therefore necessary
to quote pattern characters for an exact string match. Given a string in $key, and
assuming the EXTENDED_GLOB option is set, the following is sufficient to match an
element of an array $array containing exactly the value of $key:

key2=${key//(#m)[\][()*?#<>~^]/\\$MATCH}
print ${array[(R)$key2]}

R Like ‘r’, but gives the last match. For associative arrays, gives all possible matches.
May be used for assigning to ordinary array elements, but not for assigning to
associative arrays. On failure, for normal arrays this has the effect of returning
the element corresponding to subscript 0; this is empty unless one of the options
KSH_ARRAYS or KSH_ZERO_SUBSCRIPT is in effect.

i Like ‘r’, but gives the index of the match instead; this may not be combined with a
second argument. On the left side of an assignment, behaves like ‘r’. For associative
arrays, the key part of each pair is compared to the pattern, and the first matching
key found is the result. On failure substitutes one more than the last currently valid
index, as discussed under the description of ‘r’.

I Like ‘i’, but gives the index of the last match, or all possible matching keys in an
associative array. On failure substitutes 0.

k If used in a subscript on an associative array, this flag causes the keys to be in-
terpreted as patterns, and returns the value for the first key found where exp is
matched by the key. This flag does not work on the left side of an assignment to an
associative array element. If used on another type of parameter, this behaves like
‘r’.

K On an associative array this is like ‘k’ but returns all values where exp is matched
by the keys. On other types of parameters this has the same effect as ‘R’.

n:expr: If combined with ‘r’, ‘R’, ‘i’ or ‘I’, makes them give the nth or nth last match
(if expr evaluates to n). This flag is ignored when the array is associative. The
delimiter character : is arbitrary; see above.

Chapter 15: Parameters 61

b:expr: If combined with ‘r’, ‘R’, ‘i’ or ‘I’, makes them begin at the nth or nth last element,
word, or character (if expr evaluates to n). This flag is ignored when the array is
associative. The delimiter character : is arbitrary; see above.

e This flag has no effect and for ordinary arrays is retained for backward compatibility
only. For associative arrays, this flag can be used to force * or @ to be interpreted
as a single key rather than as a reference to all values. This flag may be used on
the left side of an assignment.

See Parameter Expansion Flags (Section 14.3 [Parameter Expansion], page 36) for additional
ways to manipulate the results of array subscripting.

15.2.4 Subscript Parsing

This discussion applies mainly to associative array key strings and to patterns used for reverse
subscripting (the ‘r’, ‘R’, ‘i’, etc. flags), but it may also affect parameter substitutions that
appear as part of an arithmetic expression in an ordinary subscript.
It is possible to avoid the use of subscripts in assignments to associative array elements by using
the syntax:

aa+=(’key with "*strange*" characters’ ’value string’)

This adds a new key/value pair if the key is not already present, and replaces the value for the
existing key if it is.
The basic rule to remember when writing a subscript expression is that all text between the
opening ‘[’ and the closing ‘]’ is interpreted as if it were in double quotes (Section 6.8 [Quoting],
page 14). However, unlike double quotes which normally cannot nest, subscript expressions may
appear inside double-quoted strings or inside other subscript expressions (or both!), so the rules
have two important differences.
The first difference is that brackets (‘[’ and ‘]’) must appear as balanced pairs in a subscript
expression unless they are preceded by a backslash (‘\’). Therefore, within a subscript expression
(and unlike true double-quoting) the sequence ‘\[’ becomes ‘[’, and similarly ‘\]’ becomes ‘]’.
This applies even in cases where a backslash is not normally required; for example, the pattern
‘[^[]’ (to match any character other than an open bracket) should be written ‘[^\[]’ in a
reverse-subscript pattern. However, note that ‘\[^\[\]’ and even ‘\[^[]’ mean the same thing,
because backslashes are always stripped when they appear before brackets!
The same rule applies to parentheses (‘(’ and ‘)’) and braces (‘{’ and ‘}’): they must appear
either in balanced pairs or preceded by a backslash, and backslashes that protect parentheses or
braces are removed during parsing. This is because parameter expansions may be surrounded
balanced braces, and subscript flags are introduced by balanced parenthesis.
The second difference is that a double-quote (‘"’) may appear as part of a subscript expression
without being preceded by a backslash, and therefore that the two characters ‘\"’ remain as
two characters in the subscript (in true double-quoting, ‘\"’ becomes ‘"’). However, because of
the standard shell quoting rules, any double-quotes that appear must occur in balanced pairs
unless preceded by a backslash. This makes it more difficult to write a subscript expression that
contains an odd number of double-quote characters, but the reason for this difference is so that
when a subscript expression appears inside true double-quotes, one can still write ‘\"’ (rather
than ‘\\\"’) for ‘"’.
To use an odd number of double quotes as a key in an assignment, use the typeset builtin and
an enclosing pair of double quotes; to refer to the value of that key, again use double quotes:

typeset -A aa
typeset "aa[one\"two\"three\"quotes]"=QQQ

Chapter 15: Parameters 62

print "$aa[one\"two\"three\"quotes]"

It is important to note that the quoting rules do not change when a parameter expansion with
a subscript is nested inside another subscript expression. That is, it is not necessary to use
additional backslashes within the inner subscript expression; they are removed only once, from
the innermost subscript outwards. Parameters are also expanded from the innermost subscript
first, as each expansion is encountered left to right in the outer expression.

A further complication arises from a way in which subscript parsing is not different from double
quote parsing. As in true double-quoting, the sequences ‘*’, and ‘\@’ remain as two characters
when they appear in a subscript expression. To use a literal ‘*’ or ‘@’ as an associative array
key, the ‘e’ flag must be used:

typeset -A aa
aa[(e)*]=star
print $aa[(e)*]

A last detail must be considered when reverse subscripting is performed. Parameters appearing
in the subscript expression are first expanded and then the complete expression is interpreted
as a pattern. This has two effects: first, parameters behave as if GLOB_SUBST were on (and it
cannot be turned off); second, backslashes are interpreted twice, once when parsing the array
subscript and again when parsing the pattern. In a reverse subscript, it’s necessary to use four
backslashes to cause a single backslash to match literally in the pattern. For complex patterns,
it is often easiest to assign the desired pattern to a parameter and then refer to that parameter
in the subscript, because then the backslashes, brackets, parentheses, etc., are seen only when
the complete expression is converted to a pattern. To match the value of a parameter literally
in a reverse subscript, rather than as a pattern, use ‘${(q)name}’ (Section 14.3 [Parameter
Expansion], page 36) to quote the expanded value.

Note that the ‘k’ and ‘K’ flags are reverse subscripting for an ordinary array, but are not reverse
subscripting for an associative array! (For an associative array, the keys in the array itself are
interpreted as patterns by those flags; the subscript is a plain string in that case.)

One final note, not directly related to subscripting: the numeric names of positional parameters
(Section 15.3 [Positional Parameters], page 62) are parsed specially, so for example ‘$2foo’
is equivalent to ‘${2}foo’. Therefore, to use subscript syntax to extract a substring from a
positional parameter, the expansion must be surrounded by braces; for example, ‘${2[3,5]}’
evaluates to the third through fifth characters of the second positional parameter, but ‘$2[3,5]’
is the entire second parameter concatenated with the filename generation pattern ‘[3,5]’.

15.3 Positional Parameters

The positional parameters provide access to the command-line arguments of a shell function,
shell script, or the shell itself; see Chapter 4 [Invocation], page 6, and also Chapter 9 [Functions],
page 19. The parameter n, where n is a number, is the nth positional parameter. The parameters
*, @ and argv are arrays containing all the positional parameters; thus ‘$argv[n]’, etc., is
equivalent to simply ‘$n’.

Positional parameters may be changed after the shell or function starts by using the set builtin,
by assigning to the argv array, or by direct assignment of the form ‘n=value’ where n is the
number of the positional parameter to be changed. This also creates (with empty values) any
of the positions from 1 to n that do not already have values. Note that, because the positional
parameters form an array, an array assignment of the form ‘n=(value ...)’ is allowed, and has
the effect of shifting all the values at positions greater than n by as many positions as necessary
to accommodate the new values.

Chapter 15: Parameters 63

15.4 Local Parameters

Shell function executions delimit scopes for shell parameters. (Parameters are dynamically
scoped.) The typeset builtin, and its alternative forms declare, integer, local and readonly
(but not export), can be used to declare a parameter as being local to the innermost scope.
When a parameter is read or assigned to, the innermost existing parameter of that name is
used. (That is, the local parameter hides any less-local parameter.) However, assigning to a
non-existent parameter, or declaring a new parameter with export, causes it to be created in
the outermost scope.
Local parameters disappear when their scope ends. unset can be used to delete a parameter
while it is still in scope; any outer parameter of the same name remains hidden.
Special parameters may also be made local; they retain their special attributes unless either the
existing or the newly-created parameter has the -h (hide) attribute. This may have unexpected
effects: there is no default value, so if there is no assignment at the point the variable is made
local, it will be set to an empty value (or zero in the case of integers). The following:

typeset PATH=/new/directory:$PATH

is valid for temporarily allowing the shell or programmes called from it to find the programs in
/new/directory inside a function.
Note that the restriction in older versions of zsh that local parameters were never exported has
been removed.

15.5 Parameters Set By The Shell

The following parameters are automatically set by the shell:

! <S> The process ID of the last command started in the background with &, or put into
the background with the bg builtin.

<S> The number of positional parameters in decimal. Note that some confusion may
occur with the syntax $#param which substitutes the length of param. Use ${#} to
resolve ambiguities. In particular, the sequence ‘$#-...’ in an arithmetic expression
is interpreted as the length of the parameter -, q.v.

ARGC <S> <Z>
Same as #.

$ <S> The process ID of this shell. Note that this indicates the original shell started by
invoking zsh; all processes forked from the shells without executing a new program,
such as subshells started by (...), substitute the same value.

- <S> Flags supplied to the shell on invocation or by the set or setopt commands.

* <S> An array containing the positional parameters.

argv <S> <Z>
Same as *. Assigning to argv changes the local positional parameters, but argv is
not itself a local parameter. Deleting argv with unset in any function deletes it
everywhere, although only the innermost positional parameter array is deleted (so
* and @ in other scopes are not affected).

@ <S> Same as argv[@], even when argv is not set.

? <S> The exit status returned by the last command.

0 <S> The name used to invoke the current shell. If the FUNCTION_ARGZERO option is set,
this is set temporarily within a shell function to the name of the function, and within
a sourced script to the name of the script.

Chapter 15: Parameters 64

status <S> <Z>
Same as ?.

pipestatus <S> <Z>
An array containing the exit statuses returned by all commands in the last pipeline.

_ <S> The last argument of the previous command. Also, this parameter is set in the
environment of every command executed to the full pathname of the command.

CPUTYPE The machine type (microprocessor class or machine model), as determined at run
time.

EGID <S> The effective group ID of the shell process. If you have sufficient privileges, you may
change the effective group ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command with a different
effective group ID by ‘(EGID=gid; command)’

EUID <S> The effective user ID of the shell process. If you have sufficient privileges, you may
change the effective user ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command with a different
effective user ID by ‘(EUID=uid; command)’

ERRNO <S> The value of errno (see man page errno(3)) as set by the most recently failed system
call. This value is system dependent and is intended for debugging purposes. It is
also useful with the zsh/system module which allows the number to be turned into
a name or message.

GID <S> The real group ID of the shell process. If you have sufficient privileges, you may
change the group ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command under a different
group ID by ‘(GID=gid; command)’

HISTCMD The current history line number in an interactive shell, in other words the line
number for the command that caused $HISTCMD to be read.

HOST The current hostname.

LINENO <S>
The line number of the current line within the current script, sourced file, or shell
function being executed, whichever was started most recently. Note that in the case
of shell functions the line number refers to the function as it appeared in the original
definition, not necessarily as displayed by the functions builtin.

LOGNAME If the corresponding variable is not set in the environment of the shell, it is initialized
to the login name corresponding to the current login session. This parameter is
exported by default but this can be disabled using the typeset builtin.

MACHTYPE The machine type (microprocessor class or machine model), as determined at com-
pile time.

OLDPWD The previous working directory. This is set when the shell initializes and whenever
the directory changes.

OPTARG <S>
The value of the last option argument processed by the getopts command.

OPTIND <S>
The index of the last option argument processed by the getopts command.

OSTYPE The operating system, as determined at compile time.

Chapter 15: Parameters 65

PPID <S> The process ID of the parent of the shell. As for $$, the value indicates the parent
of the original shell and does not change in subshells.

PWD The present working directory. This is set when the shell initializes and whenever
the directory changes.

RANDOM <S>
A pseudo-random integer from 0 to 32767, newly generated each time this parameter
is referenced. The random number generator can be seeded by assigning a numeric
value to RANDOM.

The values of RANDOM form an intentionally-repeatable pseudo-random sequence;
subshells that reference RANDOM will result in identical pseudo-random values unless
the value of RANDOM is referenced or seeded in the parent shell in between subshell
invocations.

SECONDS <S>
The number of seconds since shell invocation. If this parameter is assigned a value,
then the value returned upon reference will be the value that was assigned plus the
number of seconds since the assignment.

Unlike other special parameters, the type of the SECONDS parameter can be changed
using the typeset command. Only integer and one of the floating point types are
allowed. For example, ‘typeset -F SECONDS’ causes the value to be reported as
a floating point number. The value is available to microsecond accuracy, although
the shell may show more or fewer digits depending on the use of typeset. See the
documentation for the builtin typeset in Chapter 17 [Shell Builtin Commands],
page 91 for more details.

SHLVL <S> Incremented by one each time a new shell is started.

signals An array containing the names of the signals.

TRY_BLOCK_ERROR <S>
In an always block, indicates whether the preceding list of code caused an error.
The value is 1 to indicate an error, 0 otherwise. It may be reset, clearing the error
condition. See Section 6.3 [Complex Commands], page 11

TTY The name of the tty associated with the shell, if any.

TTYIDLE <S>
The idle time of the tty associated with the shell in seconds or -1 if there is no such
tty.

UID <S> The real user ID of the shell process. If you have sufficient privileges, you may
change the user ID of the shell by assigning to this parameter. Also (assuming
sufficient privileges), you may start a single command under a different user ID by
‘(UID=uid; command)’

USERNAME <S>
The username corresponding to the real user ID of the shell process. If you have
sufficient privileges, you may change the username (and also the user ID and group
ID) of the shell by assigning to this parameter. Also (assuming sufficient privileges),
you may start a single command under a different username (and user ID and group
ID) by ‘(USERNAME=username; command)’

VENDOR The vendor, as determined at compile time.

ZSH_NAME Expands to the basename of the command used to invoke this instance of zsh.

Chapter 15: Parameters 66

zsh_scheduled_events
See Section 22.19 [The zsh/sched Module], page 246.

ZSH_VERSION
The version number of this zsh.

15.6 Parameters Used By The Shell

The following parameters are used by the shell.
In cases where there are two parameters with an upper- and lowercase form of the same name,
such as path and PATH, the lowercase form is an array and the uppercase form is a scalar with the
elements of the array joined together by colons. These are similar to tied parameters created via
‘typeset -T’. The normal use for the colon-separated form is for exporting to the environment,
while the array form is easier to manipulate within the shell. Note that unsetting either of the
pair will unset the other; they retain their special properties when recreated, and recreating one
of the pair will recreate the other.

ARGV0 If exported, its value is used as the argv[0] of external commands. Usually used
in constructs like ‘ARGV0=emacs nethack’.

BAUD The rate in bits per second at which data reaches the terminal. The line editor
will use this value in order to compensate for a slow terminal by delaying updates
to the display until necessary. If the parameter is unset or the value is zero the
compensation mechanism is turned off. The parameter is not set by default.
This parameter may be profitably set in some circumstances, e.g. for slow modems
dialing into a communications server, or on a slow wide area network. It should be
set to the baud rate of the slowest part of the link for best performance.

cdpath <S> <Z> (CDPATH <S>)
An array (colon-separated list) of directories specifying the search path for the cd
command.

COLUMNS <S>
The number of columns for this terminal session. Used for printing select lists and
for the line editor.

DIRSTACKSIZE
The maximum size of the directory stack. If the stack gets larger than this, it will
be truncated automatically. This is useful with the AUTO_PUSHD option.

ENV If the ENV environment variable is set when zsh is invoked as sh or ksh, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expan-
sion, command substitution, and arithmetic expansion before being interpreted as
a pathname. Note that ENV is not used unless zsh is emulating sh or ksh.

FCEDIT The default editor for the fc builtin. If FCEDIT is not set, the parameter EDITOR is
used; if that is not set either, a builtin default, usually vi, is used.

fignore <S> <Z> (FIGNORE <S>)
An array (colon separated list) containing the suffixes of files to be ignored during
filename completion. However, if completion only generates files with suffixes in this
list, then these files are completed anyway.

fpath <S> <Z> (FPATH <S>)
An array (colon separated list) of directories specifying the search path for function
definitions. This path is searched when a function with the -u attribute is referenced.
If an executable file is found, then it is read and executed in the current environment.

Chapter 15: Parameters 67

histchars <S>
Three characters used by the shell’s history and lexical analysis mechanism. The
first character signals the start of a history expansion (default ‘!’). The second
character signals the start of a quick history substitution (default ‘^’). The third
character is the comment character (default ‘#’).

The characters must be in the ASCII character set; any attempt to set histchars to
characters with a locale-dependent meaning will be rejected with an error message.

HISTCHARS <S> <Z>
Same as histchars. (Deprecated.)

HISTFILE The file to save the history in when an interactive shell exits. If unset, the history
is not saved.

HISTSIZE <S>
The maximum number of events stored in the internal history list. If you use the
HIST_EXPIRE_DUPS_FIRST option, setting this value larger than the SAVEHIST size
will give you the difference as a cushion for saving duplicated history events.

HOME <S> The default argument for the cd command. This is not set automatically by the
shell in sh, ksh or csh emulation, but it is typically present in the environment
anyway, and if it becomes set it has its usual special behaviour.

IFS <S> Internal field separators (by default space, tab, newline and NUL), that are used to
separate words which result from command or parameter expansion and words read
by the read builtin. Any characters from the set space, tab and newline that appear
in the IFS are called IFS white space. One or more IFS white space characters or one
non-IFS white space character together with any adjacent IFS white space character
delimit a field. If an IFS white space character appears twice consecutively in the
IFS, this character is treated as if it were not an IFS white space character.

KEYTIMEOUT
The time the shell waits, in hundredths of seconds, for another key to be pressed
when reading bound multi-character sequences.

LANG <S> This variable determines the locale category for any category not specifically selected
via a variable starting with ‘LC_’.

LC_ALL <S>
This variable overrides the value of the ‘LANG’ variable and the value of any of the
other variables starting with ‘LC_’.

LC_COLLATE <S>
This variable determines the locale category for character collation information
within ranges in glob brackets and for sorting.

LC_CTYPE <S>
This variable determines the locale category for character handling functions.

LC_MESSAGES <S>
This variable determines the language in which messages should be written. Note
that zsh does not use message catalogs.

LC_NUMERIC <S>
This variable affects the decimal point character and thousands separator character
for the formatted input/output functions and string conversion functions. Note that
zsh ignores this setting when parsing floating point mathematical expressions.

Chapter 15: Parameters 68

LC_TIME <S>
This variable determines the locale category for date and time formatting in prompt
escape sequences.

LINES <S> The number of lines for this terminal session. Used for printing select lists and for
the line editor.

LISTMAX In the line editor, the number of matches to list without asking first. If the value
is negative, the list will be shown if it spans at most as many lines as given by the
absolute value. If set to zero, the shell asks only if the top of the listing would scroll
off the screen.

LOGCHECK The interval in seconds between checks for login/logout activity using the watch
parameter.

MAIL If this parameter is set and mailpath is not set, the shell looks for mail in the
specified file.

MAILCHECK
The interval in seconds between checks for new mail.

mailpath <S> <Z> (MAILPATH <S>)
An array (colon-separated list) of filenames to check for new mail. Each filename
can be followed by a ‘?’ and a message that will be printed. The message will
undergo parameter expansion, command substitution and arithmetic expansion with
the variable $_ defined as the name of the file that has changed. The default message
is ‘You have new mail’. If an element is a directory instead of a file the shell will
recursively check every file in every subdirectory of the element.

manpath <S> <Z> (MANPATH <S> <Z>)
An array (colon-separated list) whose value is not used by the shell. The manpath
array can be useful, however, since setting it also sets MANPATH, and vice versa.

module_path <S> <Z> (MODULE_PATH <S>)
An array (colon-separated list) of directories that zmodload searches for dynam-
ically loadable modules. This is initialized to a standard pathname, usually
‘/usr/local/lib/zsh/$ZSH_VERSION’. (The ‘/usr/local/lib’ part varies from
installation to installation.) For security reasons, any value set in the environment
when the shell is started will be ignored.
These parameters only exist if the installation supports dynamic module loading.

NULLCMD <S>
The command name to assume if a redirection is specified with no command. De-
faults to cat. For sh/ksh behavior, change this to :. For csh-like behavior, unset
this parameter; the shell will print an error message if null commands are entered.

path <S> <Z> (PATH <S>)
An array (colon-separated list) of directories to search for commands. When this
parameter is set, each directory is scanned and all files found are put in a hash table.

POSTEDIT <S>
This string is output whenever the line editor exits. It usually contains termcap
strings to reset the terminal.

PROMPT <S> <Z>
PROMPT2 <S> <Z>
PROMPT3 <S> <Z>
PROMPT4 <S> <Z>

Same as PS1, PS2, PS3 and PS4, respectively.

Chapter 15: Parameters 69

prompt <S> <Z>
Same as PS1.

PS1 <S> The primary prompt string, printed before a command is read. the default is ‘%m%#
’. It undergoes a special form of expansion before being displayed; see Chapter 13
[Prompt Expansion], page 28.

PS2 <S> The secondary prompt, printed when the shell needs more information to complete
a command. It is expanded in the same way as PS1. The default is ‘%_> ’, which
displays any shell constructs or quotation marks which are currently being processed.

PS3 <S> Selection prompt used within a select loop. It is expanded in the same way as
PS1. The default is ‘?# ’.

PS4 <S> The execution trace prompt. Default is ‘+%N:%i> ’, which displays the name of the
current shell structure and the line number within it. In sh or ksh emulation, the
default is ‘+ ’.

psvar <S> <Z> (PSVAR <S>)
An array (colon-separated list) whose first nine values can be used in PROMPT strings.
Setting psvar also sets PSVAR, and vice versa.

READNULLCMD <S>
The command name to assume if a single input redirection is specified with no
command. Defaults to more.

REPORTTIME
If nonnegative, commands whose combined user and system execution times (mea-
sured in seconds) are greater than this value have timing statistics printed for them.

REPLY This parameter is reserved by convention to pass string values between shell scripts
and shell builtins in situations where a function call or redirection are impossible or
undesirable. The read builtin and the select complex command may set REPLY,
and filename generation both sets and examines its value when evaluating certain
expressions. Some modules also employ REPLY for similar purposes.

reply As REPLY, but for array values rather than strings.

RPROMPT <S>
RPS1 <S> This prompt is displayed on the right-hand side of the screen when the primary

prompt is being displayed on the left. This does not work if the SINGLELINEZLE
option is set. It is expanded in the same way as PS1.

RPROMPT2 <S>
RPS2 <S> This prompt is displayed on the right-hand side of the screen when the secondary

prompt is being displayed on the left. This does not work if the SINGLELINEZLE
option is set. It is expanded in the same way as PS2.

SAVEHIST The maximum number of history events to save in the history file.

SPROMPT <S>
The prompt used for spelling correction. The sequence ‘%R’ expands to the string
which presumably needs spelling correction, and ‘%r’ expands to the proposed cor-
rection. All other prompt escapes are also allowed.

STTY If this parameter is set in a command’s environment, the shell runs the stty com-
mand with the value of this parameter as arguments in order to set up the terminal
before executing the command. The modes apply only to the command, and are
reset when it finishes or is suspended. If the command is suspended and continued
later with the fg or wait builtins it will see the modes specified by STTY, as if it were

Chapter 15: Parameters 70

not suspended. This (intentionally) does not apply if the command is continued via
‘kill -CONT’. STTY is ignored if the command is run in the background, or if it is
in the environment of the shell but not explicitly assigned to in the input line. This
avoids running stty at every external command by accidentally exporting it. Also
note that STTY should not be used for window size specifications; these will not be
local to the command.

TERM <S> The type of terminal in use. This is used when looking up termcap sequences. An
assignment to TERM causes zsh to re-initialize the terminal, even if the value does
not change (e.g., ‘TERM=$TERM’). It is necessary to make such an assignment upon
any change to the terminal definition database or terminal type in order for the new
settings to take effect.

TIMEFMT The format of process time reports with the time keyword. The default is ‘%E real
%U user %S system %P %J’. Recognizes the following escape sequences, although
not all may be available on all systems, and some that are available may not be
useful:

%% A ‘%’.

%U CPU seconds spent in user mode.

%S CPU seconds spent in kernel mode.

%E Elapsed time in seconds.

%P The CPU percentage, computed as (100*%U+%S)/%E.

%W Number of times the process was swapped.

%X The average amount in (shared) text space used in Kbytes.

%D The average amount in (unshared) data/stack space used in Kbytes.

%K The total space used (%X+%D) in Kbytes.

%M The maximum memory the process had in use at any time in Kbytes.

%F The number of major page faults (page needed to be brought from disk).

%R The number of minor page faults.

%I The number of input operations.

%O The number of output operations.

%r The number of socket messages received.

%s The number of socket messages sent.

%k The number of signals received.

%w Number of voluntary context switches (waits).

%c Number of involuntary context switches.

%J The name of this job.

A star may be inserted between the percent sign and flags printing time. This
cause the time to be printed in ‘hh:mm:ss.ttt’ format (hours and minutes are only
printed if they are not zero).

TMOUT If this parameter is nonzero, the shell will receive an ALRM signal if a command is not
entered within the specified number of seconds after issuing a prompt. If there is a
trap on SIGALRM, it will be executed and a new alarm is scheduled using the value

Chapter 15: Parameters 71

of the TMOUT parameter after executing the trap. If no trap is set, and the idle time
of the terminal is not less than the value of the TMOUT parameter, zsh terminates.
Otherwise a new alarm is scheduled to TMOUT seconds after the last keypress.

TMPPREFIX
A pathname prefix which the shell will use for all temporary files. Note that this
should include an initial part for the file name as well as any directory names. The
default is ‘/tmp/zsh’.

watch <S> <Z> (WATCH <S>)
An array (colon-separated list) of login/logout events to report. If it contains the
single word ‘all’, then all login/logout events are reported. If it contains the single
word ‘notme’, then all events are reported as with ‘all’ except $USERNAME. An entry
in this list may consist of a username, an ‘@’ followed by a remote hostname, and
a ‘%’ followed by a line (tty). Any or all of these components may be present in an
entry; if a login/logout event matches all of them, it is reported.

WATCHFMT The format of login/logout reports if the watch parameter is set. Default is ‘%n has
%a %l from %m’. Recognizes the following escape sequences:

%n The name of the user that logged in/out.

%a The observed action, i.e. "logged on" or "logged off".

%l The line (tty) the user is logged in on.

%M The full hostname of the remote host.

%m The hostname up to the first ‘.’. If only the IP address is available or
the utmp field contains the name of an X-windows display, the whole
name is printed.
NOTE: The ‘%m’ and ‘%M’ escapes will work only if there is a host name
field in the utmp on your machine. Otherwise they are treated as ordi-
nary strings.

%S (%s) Start (stop) standout mode.

%U (%u) Start (stop) underline mode.

%B (%b) Start (stop) boldface mode.

%t
%@ The time, in 12-hour, am/pm format.

%T The time, in 24-hour format.

%w The date in ‘day-dd’ format.

%W The date in ‘mm/dd/yy ’ format.

%D The date in ‘yy-mm-dd’ format.

%(x:true-text:false-text)
Specifies a ternary expression. The character following the x is arbi-
trary; the same character is used to separate the text for the "true"
result from that for the "false" result. Both the separator and the right
parenthesis may be escaped with a backslash. Ternary expressions may
be nested.
The test character x may be any one of ‘l’, ‘n’, ‘m’ or ‘M’, which indi-
cate a ‘true’ result if the corresponding escape sequence would return
a non-empty value; or it may be ‘a’, which indicates a ‘true’ result if

Chapter 16: Options 72

the watched user has logged in, or ‘false’ if he has logged out. Other
characters evaluate to neither true nor false; the entire expression is
omitted in this case.
If the result is ‘true’, then the true-text is formatted according to the
rules above and printed, and the false-text is skipped. If ‘false’, the
true-text is skipped and the false-text is formatted and printed. Either
or both of the branches may be empty, but both separators must be
present in any case.

WORDCHARS <S>
A list of non-alphanumeric characters considered part of a word by the line editor.

ZBEEP If set, this gives a string of characters, which can use all the same codes as the
bindkey command as described in Section 22.29 [The zsh/zle Module], page 260,
that will be output to the terminal instead of beeping. This may have a visible
instead of an audible effect; for example, the string ‘\e[?5h\e[?5l’ on a vt100
or xterm will have the effect of flashing reverse video on and off (if you usually
use reverse video, you should use the string ‘\e[?5l\e[?5h’ instead). This takes
precedence over the NOBEEP option.

ZDOTDIR The directory to search for shell startup files (.zshrc, etc), if not $HOME.

16 Options

16.1 Specifying Options

Options are primarily referred to by name. These names are case insensitive and underscores
are ignored. For example, ‘allexport’ is equivalent to ‘A__lleXP_ort’.
The sense of an option name may be inverted by preceding it with ‘no’, so ‘setopt No_Beep’
is equivalent to ‘unsetopt beep’. This inversion can only be done once, so ‘nonobeep’ is not a
synonym for ‘beep’. Similarly, ‘tify’ is not a synonym for ‘nonotify’ (the inversion of ‘notify’).
Some options also have one or more single letter names. There are two sets of single let-
ter options: one used by default, and another used to emulate sh/ksh (used when the
SH_OPTION_LETTERS option is set). The single letter options can be used on the shell com-
mand line, or with the set, setopt and unsetopt builtins, as normal Unix options preceded by
‘-’.
The sense of the single letter options may be inverted by using ‘+’ instead of ‘-’. Some of the
single letter option names refer to an option being off, in which case the inversion of that name
refers to the option being on. For example, ‘+n’ is the short name of ‘exec’, and ‘-n’ is the short
name of its inversion, ‘noexec’.
In strings of single letter options supplied to the shell at startup, trailing whitespace will be
ignored; for example the string ‘-f ’ will be treated just as ‘-f’, but the string ‘-f i’ is an
error. This is because many systems which implement the ‘#!’ mechanism for calling scripts do
not strip trailing whitespace.

16.2 Description of Options

In the following list, options set by default in all emulations are marked <D>; those set by
default only in csh, ksh, sh, or zsh emulations are marked <C>, <K>, <S>, <Z> as appropriate.
When listing options (by ‘setopt’, ‘unsetopt’, ‘set -o’ or ‘set +o’), those turned on by default
appear in the list prefixed with ‘no’. Hence (unless KSH_OPTION_PRINT is set), ‘setopt’ shows
all options whose settings are changed from the default.

Chapter 16: Options 73

16.2.1 Changing Directories

AUTO_CD (-J)
If a command is issued that can’t be executed as a normal command, and the
command is the name of a directory, perform the cd command to that directory.

AUTO_PUSHD (-N)
Make cd push the old directory onto the directory stack.

CDABLE_VARS (-T)
If the argument to a cd command (or an implied cd with the AUTO_CD option set)
is not a directory, and does not begin with a slash, try to expand the expression as
if it were preceded by a ‘~’ (see Section 14.7 [Filename Expansion], page 46).

CHASE_DOTS
When changing to a directory containing a path segment ‘..’ which would otherwise
be treated as canceling the previous segment in the path (in other words, ‘foo/..’
would be removed from the path, or if ‘..’ is the first part of the path, the last part
of $PWD would be deleted), instead resolve the path to the physical directory. This
option is overridden by CHASE_LINKS.
For example, suppose /foo/bar is a link to the directory /alt/rod. Without this
option set, ‘cd /foo/bar/..’ changes to /foo; with it set, it changes to /alt. The
same applies if the current directory is /foo/bar and ‘cd ..’ is used. Note that all
other symbolic links in the path will also be resolved.

CHASE_LINKS (-w)
Resolve symbolic links to their true values when changing directory. This also has
the effect of CHASE_DOTS, i.e. a ‘..’ path segment will be treated as referring to the
physical parent, even if the preceding path segment is a symbolic link.

PUSHD_IGNORE_DUPS
Don’t push multiple copies of the same directory onto the directory stack.

PUSHD_MINUS
Exchanges the meanings of ‘+’ and ‘-’ when used with a number to specify a directory
in the stack.

PUSHD_SILENT (-E)
Do not print the directory stack after pushd or popd.

PUSHD_TO_HOME (-D)
Have pushd with no arguments act like ‘pushd $HOME’.

16.2.2 Completion

ALWAYS_LAST_PROMPT <D>
If unset, key functions that list completions try to return to the last prompt if given
a numeric argument. If set these functions try to return to the last prompt if given
no numeric argument.

ALWAYS_TO_END
If a completion is performed with the cursor within a word, and a full completion is
inserted, the cursor is moved to the end of the word. That is, the cursor is moved
to the end of the word if either a single match is inserted or menu completion is
performed.

AUTO_LIST (-9) <D>
Automatically list choices on an ambiguous completion.

Chapter 16: Options 74

AUTO_MENU <D>
Automatically use menu completion after the second consecutive request for com-
pletion, for example by pressing the tab key repeatedly. This option is overridden
by MENU_COMPLETE.

AUTO_NAME_DIRS
Any parameter that is set to the absolute name of a directory immediately becomes a
name for that directory, that will be used by the ‘%~’ and related prompt sequences,
and will be available when completion is performed on a word starting with ‘~’.
(Otherwise, the parameter must be used in the form ‘~param’ first.)

AUTO_PARAM_KEYS <D>
If a parameter name was completed and a following character (normally a space)
automatically inserted, and the next character typed is one of those that have to
come directly after the name (like ‘}’, ‘:’, etc.), the automatically added character is
deleted, so that the character typed comes immediately after the parameter name.
Completion in a brace expansion is affected similarly: the added character is a ‘,’,
which will be removed if ‘}’ is typed next.

AUTO_PARAM_SLASH <D>
If a parameter is completed whose content is the name of a directory, then add a
trailing slash instead of a space.

AUTO_REMOVE_SLASH <D>
When the last character resulting from a completion is a slash and the next character
typed is a word delimiter, a slash, or a character that ends a command (such as a
semicolon or an ampersand), remove the slash.

BASH_AUTO_LIST
On an ambiguous completion, automatically list choices when the completion func-
tion is called twice in succession. This takes precedence over AUTO_LIST. The setting
of LIST_AMBIGUOUS is respected. If AUTO_MENU is set, the menu behaviour will then
start with the third press. Note that this will not work with MENU_COMPLETE, since
repeated completion calls immediately cycle through the list in that case.

COMPLETE_ALIASES
Prevents aliases on the command line from being internally substituted before com-
pletion is attempted. The effect is to make the alias a distinct command for com-
pletion purposes.

COMPLETE_IN_WORD
If unset, the cursor is set to the end of the word if completion is started. Otherwise
it stays there and completion is done from both ends.

GLOB_COMPLETE
When the current word has a glob pattern, do not insert all the words resulting from
the expansion but generate matches as for completion and cycle through them like
MENU_COMPLETE. The matches are generated as if a ‘*’ was added to the end of the
word, or inserted at the cursor when COMPLETE_IN_WORD is set. This actually uses
pattern matching, not globbing, so it works not only for files but for any completion,
such as options, user names, etc.

Note that when the pattern matcher is used, matching control (for example, case-
insensitive or anchored matching) cannot be used. This limitation only applies when
the current word contains a pattern; simply turning on the GLOB_COMPLETE option
does not have this effect.

Chapter 16: Options 75

HASH_LIST_ALL <D>
Whenever a command completion is attempted, make sure the entire command path
is hashed first. This makes the first completion slower.

LIST_AMBIGUOUS <D>
This option works when AUTO_LIST or BASH_AUTO_LIST is also set. If there is an
unambiguous prefix to insert on the command line, that is done without a completion
list being displayed; in other words, auto-listing behaviour only takes place when
nothing would be inserted. In the case of BASH_AUTO_LIST, this means that the list
will be delayed to the third call of the function.

LIST_BEEP <D>
Beep on an ambiguous completion. More accurately, this forces the completion
widgets to return status 1 on an ambiguous completion, which causes the shell to
beep if the option BEEP is also set; this may be modified if completion is called from
a user-defined widget.

LIST_PACKED
Try to make the completion list smaller (occupying less lines) by printing the matches
in columns with different widths.

LIST_ROWS_FIRST
Lay out the matches in completion lists sorted horizontally, that is, the second match
is to the right of the first one, not under it as usual.

LIST_TYPES (-X) <D>
When listing files that are possible completions, show the type of each file with a
trailing identifying mark.

MENU_COMPLETE (-Y)
On an ambiguous completion, instead of listing possibilities or beeping, insert the
first match immediately. Then when completion is requested again, remove the first
match and insert the second match, etc. When there are no more matches, go back
to the first one again. reverse-menu-complete may be used to loop through the
list in the other direction. This option overrides AUTO_MENU.

REC_EXACT (-S)
In completion, recognize exact matches even if they are ambiguous.

16.2.3 Expansion and Globbing

BAD_PATTERN (+2) <C> <Z>
If a pattern for filename generation is badly formed, print an error message. (If this
option is unset, the pattern will be left unchanged.)

BARE_GLOB_QUAL <Z>
In a glob pattern, treat a trailing set of parentheses as a qualifier list, if it contains
no ‘|’, ‘(’ or (if special) ‘~’ characters. See Section 14.8 [Filename Generation],
page 47.

BRACE_CCL
Expand expressions in braces which would not otherwise undergo brace expansion
to a lexically ordered list of all the characters. See Section 14.6 [Brace Expansion],
page 46.

CASE_GLOB <D>
Make globbing (filename generation) sensitive to case. Note that other uses of
patterns are always sensitive to case. If the option is unset, the presence of any

Chapter 16: Options 76

character which is special to filename generation will cause case-insensitive matching.
For example, cvs(/) can match the directory CVS owing to the presence of the
globbing flag (unless the option BARE_GLOB_QUAL is unset).

CASE_MATCH <D>
Make regular expressions using the zsh/regex module (including matches with =~)
sensitive to case.

CSH_NULL_GLOB <C>
If a pattern for filename generation has no matches, delete the pattern from the
argument list; do not report an error unless all the patterns in a command have no
matches. Overrides NOMATCH.

EQUALS <Z>
Perform = filename expansion. (See Section 14.7 [Filename Expansion], page 46.)

EXTENDED_GLOB
Treat the ‘#’, ‘~’ and ‘^’ characters as part of patterns for filename generation, etc.
(An initial unquoted ‘~’ always produces named directory expansion.)

GLOB (+F, ksh: +f) <D>
Perform filename generation (globbing). (See Section 14.8 [Filename Generation],
page 47.)

GLOB_ASSIGN <C>
If this option is set, filename generation (globbing) is performed on the right hand
side of scalar parameter assignments of the form ‘name=pattern (e.g. ‘foo=*’). If
the result has more than one word the parameter will become an array with those
words as arguments. This option is provided for backwards compatibility only:
globbing is always performed on the right hand side of array assignments of the
form ‘name=(value)’ (e.g. ‘foo=(*)’) and this form is recommended for clarity;
with this option set, it is not possible to predict whether the result will be an array
or a scalar.

GLOB_DOTS (-4)
Do not require a leading ‘.’ in a filename to be matched explicitly.

GLOB_SUBST <C> <K> <S>
Treat any characters resulting from parameter expansion as being eligible for file
expansion and filename generation, and any characters resulting from command sub-
stitution as being eligible for filename generation. Braces (and commas in between)
do not become eligible for expansion.

HIST_SUBST_PATTERN
Substitutions using the :s and :& history modifiers are performed with pattern
matching instead of string matching. This occurs wherever history modifiers are
valid, including glob qualifiers and parameters. See Section 14.1.4 [Modifiers],
page 34.

IGNORE_BRACES (-I) <S>
Do not perform brace expansion.

KSH_GLOB <K>
In pattern matching, the interpretation of parentheses is affected by a preceding ‘@’,
‘*’, ‘+’, ‘?’ or ‘!’. See Section 14.8 [Filename Generation], page 47.

MAGIC_EQUAL_SUBST
All unquoted arguments of the form ‘anything=expression’ appearing after the com-
mand name have filename expansion (that is, where expression has a leading ‘~’

Chapter 16: Options 77

or ‘=’) performed on expression as if it were a parameter assignment. The argu-
ment is not otherwise treated specially; it is passed to the command as a single
argument, and not used as an actual parameter assignment. For example, in echo
foo=~/bar:~/rod, both occurrences of ~ would be replaced. Note that this happens
anyway with typeset and similar statements.
This option respects the setting of the KSH_TYPESET option. In other words, if
both options are in effect, arguments looking like assignments will not undergo
wordsplitting.

MARK_DIRS (-8, ksh: -X)
Append a trailing ‘/’ to all directory names resulting from filename generation (glob-
bing).

MULTIBYTE
Respect multibyte characters when found in strings. When this option is set, strings
are examined using the system library to determine how many bytes form a char-
acter, depending on the current locale. This affects the way characters are counted
in pattern matching, parameter values and various delimiters.
The option is on by default if the shell was compiled with MULTIBYTE_SUPPORT;
otherwise it is off by default and has no effect if turned on.
If the option is off a single byte is always treated as a single character. This setting
is designed purely for examining strings known to contain raw bytes or other values
that may not be characters in the current locale. It is not necessary to unset the
option merely because the character set for the current locale does not contain
multibyte characters.
The option does not affect the shell’s editor, which always uses the locale to de-
termine multibyte characters. This is because the character set displayed by the
terminal emulator is independent of shell settings.

NOMATCH (+3) <C> <Z>
If a pattern for filename generation has no matches, print an error, instead of leaving
it unchanged in the argument list. This also applies to file expansion of an initial
‘~’ or ‘=’.

NULL_GLOB (-G)
If a pattern for filename generation has no matches, delete the pattern from the
argument list instead of reporting an error. Overrides NOMATCH.

NUMERIC_GLOB_SORT
If numeric filenames are matched by a filename generation pattern, sort the filenames
numerically rather than lexicographically.

RC_EXPAND_PARAM (-P)
Array expansions of the form ‘foo${xx}bar’, where the parameter xx is set to (a
b c), are substituted with ‘fooabar foobbar foocbar’ instead of the default ‘fooa b
cbar’.

REMATCH_PCRE <Z>
If set, regular expression matching with the =~ operator will use Perl-Compatible
Regular Expressions from the PCRE library, if available. If not set, regular expres-
sions will use the extended regexp syntax provided by the system libraries.

SH_GLOB <K> <S>
Disables the special meaning of ‘(’, ‘|’, ‘)’ and ’<’ for globbing the result of param-
eter and command substitutions, and in some other places where the shell accepts
patterns. This option is set by default if zsh is invoked as sh or ksh.

Chapter 16: Options 78

UNSET (+u, ksh: +u) <K> <S> <Z>
Treat unset parameters as if they were empty when substituting. Otherwise they
are treated as an error.

WARN_CREATE_GLOBAL
Print a warning message when a global parameter is created in a function by an
assignment. This often indicates that a parameter has not been declared local when
it should have been. Parameters explicitly declared global from within a function
using typeset -g do not cause a warning. Note that there is no warning when a
local parameter is assigned to in a nested function, which may also indicate an error.

16.2.4 History

APPEND_HISTORY <D>
If this is set, zsh sessions will append their history list to the history file, rather
than replace it. Thus, multiple parallel zsh sessions will all have the new entries
from their history lists added to the history file, in the order that they exit. The
file will still be periodically re-written to trim it when the number of lines grows
20% beyond the value specified by $SAVEHIST (see also the HIST SAVE BY COPY
option).

BANG_HIST (+K) <C> <Z>
Perform textual history expansion, csh-style, treating the character ‘!’ specially.

EXTENDED_HISTORY <C>
Save each command’s beginning timestamp (in seconds since the epoch) and the
duration (in seconds) to the history file. The format of this prefixed data is:
‘:<beginning time>:<elapsed seconds>:<command>’.

HIST_ALLOW_CLOBBER
Add ‘|’ to output redirections in the history. This allows history references to
clobber files even when CLOBBER is unset.

HIST_BEEP <D>
Beep when an attempt is made to access a history entry which isn’t there.

HIST_EXPIRE_DUPS_FIRST
If the internal history needs to be trimmed to add the current command line, setting
this option will cause the oldest history event that has a duplicate to be lost before
losing a unique event from the list. You should be sure to set the value of HISTSIZE
to a larger number than SAVEHIST in order to give you some room for the duplicated
events, otherwise this option will behave just like HIST_IGNORE_ALL_DUPS once the
history fills up with unique events.

HIST_FIND_NO_DUPS
When searching for history entries in the line editor, do not display duplicates of a
line previously found, even if the duplicates are not contiguous.

HIST_IGNORE_ALL_DUPS
If a new command line being added to the history list duplicates an older one, the
older command is removed from the list (even if it is not the previous event).

HIST_IGNORE_DUPS (-h)
Do not enter command lines into the history list if they are duplicates of the previous
event.

HIST_IGNORE_SPACE (-g)
Remove command lines from the history list when the first character on the line is a
space, or when one of the expanded aliases contains a leading space. Note that the

Chapter 16: Options 79

command lingers in the internal history until the next command is entered before it
vanishes, allowing you to briefly reuse or edit the line. If you want to make it vanish
right away without entering another command, type a space and press return.

HIST_NO_FUNCTIONS
Remove function definitions from the history list. Note that the function lingers in
the internal history until the next command is entered before it vanishes, allowing
you to briefly reuse or edit the definition.

HIST_NO_STORE
Remove the history (fc -l) command from the history list when invoked. Note
that the command lingers in the internal history until the next command is entered
before it vanishes, allowing you to briefly reuse or edit the line.

HIST_REDUCE_BLANKS
Remove superfluous blanks from each command line being added to the history list.

HIST_SAVE_BY_COPY <D>
When the history file is re-written, we normally write out a copy of the file named
$HISTFILE.new and then rename it over the old one. However, if this option is
unset, we instead truncate the old history file and write out the new version in-
place. If one of the history-appending options is enabled, this option only has an
effect when the enlarged history file needs to be re-written to trim it down to size.
Disable this only if you have special needs, as doing so makes it possible to lose
history entries if zsh gets interrupted during the save.
When writing out a copy of the history file, zsh preserves the old file’s permissions
and group information, but will refuse to write out a new file if it would change the
history file’s owner.

HIST_SAVE_NO_DUPS
When writing out the history file, older commands that duplicate newer ones are
omitted.

HIST_VERIFY
Whenever the user enters a line with history expansion, don’t execute the line di-
rectly; instead, perform history expansion and reload the line into the editing buffer.

INC_APPEND_HISTORY
This options works like APPEND_HISTORY except that new history lines are added
to the $HISTFILE incrementally (as soon as they are entered), rather than waiting
until the shell exits. The file will still be periodically re-written to trim it when the
number of lines grows 20% beyond the value specified by $SAVEHIST (see also the
HIST SAVE BY COPY option).

SHARE_HISTORY <K>
This option both imports new commands from the history file, and also causes
your typed commands to be appended to the history file (the latter is like specify-
ing INC_APPEND_HISTORY). The history lines are also output with timestamps ala
EXTENDED_HISTORY (which makes it easier to find the spot where we left off reading
the file after it gets re-written).
By default, history movement commands visit the imported lines as well as the local
lines, but you can toggle this on and off with the set-local-history zle binding. It is
also possible to create a zle widget that will make some commands ignore imported
commands, and some include them.
If you find that you want more control over when commands get imported, you
may wish to turn SHARE_HISTORY off, INC_APPEND_HISTORY on, and then manually
import commands whenever you need them using ‘fc -RI’.

Chapter 16: Options 80

16.2.5 Initialisation

ALL_EXPORT (-a, ksh: -a)
All parameters subsequently defined are automatically exported.

GLOBAL_EXPORT (<Z>)
If this option is set, passing the -x flag to the builtins declare, float, integer,
readonly and typeset (but not local) will also set the -g flag; hence parameters
exported to the environment will not be made local to the enclosing function, unless
they were already or the flag +g is given explicitly. If the option is unset, exported
parameters will be made local in just the same way as any other parameter.
This option is set by default for backward compatibility; it is not recommended that
its behaviour be relied upon. Note that the builtin export always sets both the -x
and -g flags, and hence its effect extends beyond the scope of the enclosing function;
this is the most portable way to achieve this behaviour.

GLOBAL_RCS (-d) <D>
If this option is unset, the startup files /etc/zprofile, /etc/zshrc, /etc/zlogin
and /etc/zlogout will not be run. It can be disabled and re-enabled at any time,
including inside local startup files (.zshrc, etc.).

RCS (+f) <D>
After /etc/zshenv is sourced on startup, source the .zshenv, /etc/zprofile,
.zprofile, /etc/zshrc, .zshrc, /etc/zlogin, .zlogin, and .zlogout files, as
described in Chapter 5 [Files], page 8. If this option is unset, the /etc/zshenv file
is still sourced, but any of the others will not be; it can be set at any time to prevent
the remaining startup files after the currently executing one from being sourced.

16.2.6 Input/Output

ALIASES <D>
Expand aliases.

CLOBBER (+C, ksh: +C) <D>
Allows ‘>’ redirection to truncate existing files, and ‘>>’ to create files. Otherwise
‘>!’ or ‘>|’ must be used to truncate a file, and ‘>>!’ or ‘>>|’ to create a file.

CORRECT (-0)
Try to correct the spelling of commands. Note that, when the HASH_LIST_ALL
option is not set or when some directories in the path are not readable, this may
falsely report spelling errors the first time some commands are used.

CORRECT_ALL (-O)
Try to correct the spelling of all arguments in a line.

DVORAK Use the Dvorak keyboard instead of the standard qwerty keyboard as a basis for
examining spelling mistakes for the CORRECT and CORRECT_ALL options and the
spell-word editor command.

FLOW_CONTROL <D>
If this option is unset, output flow control via start/stop characters (usually assigned
to ^S/^Q) is disabled in the shell’s editor.

IGNORE_EOF (-7)
Do not exit on end-of-file. Require the use of exit or logout instead. However, ten
consecutive EOFs will cause the shell to exit anyway, to avoid the shell hanging if
its tty goes away.

Chapter 16: Options 81

Also, if this option is set and the Zsh Line Editor is used, widgets implemented by
shell functions can be bound to EOF (normally Control-D) without printing the
normal warning message. This works only for normal widgets, not for completion
widgets.

INTERACTIVE_COMMENTS (-k) <K> <S>
Allow comments even in interactive shells.

HASH_CMDS <D>
Note the location of each command the first time it is executed. Subsequent invo-
cations of the same command will use the saved location, avoiding a path search. If
this option is unset, no path hashing is done at all. However, when CORRECT is set,
commands whose names do not appear in the functions or aliases hash tables are
hashed in order to avoid reporting them as spelling errors.

HASH_DIRS <D>
Whenever a command name is hashed, hash the directory containing it, as well as
all directories that occur earlier in the path. Has no effect if neither HASH_CMDS nor
CORRECT is set.

MAIL_WARNING (-U)
Print a warning message if a mail file has been accessed since the shell last checked.

PATH_DIRS (-Q)
Perform a path search even on command names with slashes in them. Thus if
‘/usr/local/bin’ is in the user’s path, and he or she types ‘X11/xinit’, the com-
mand ‘/usr/local/bin/X11/xinit’ will be executed (assuming it exists). Com-
mands explicitly beginning with ‘/’, ‘./’ or ‘../’ are not subject to the path search.
This also applies to the . builtin.
Note that subdirectories of the current directory are always searched for executables
specified in this form. This takes place before any search indicated by this option,
and regardless of whether ‘.’ or the current directory appear in the command search
path.

PRINT_EIGHT_BIT
Print eight bit characters literally in completion lists, etc. This option is not nec-
essary if your system correctly returns the printability of eight bit characters (see
man page ctype(3)).

PRINT_EXIT_VALUE (-1)
Print the exit value of programs with non-zero exit status.

RC_QUOTES
Allow the character sequence ‘’’’ to signify a single quote within singly quoted
strings. Note this does not apply in quoted strings using the format $’...’, where a
backslashed single quote can be used.

RM_STAR_SILENT (-H) <K> <S>
Do not query the user before executing ‘rm *’ or ‘rm path/*’.

RM_STAR_WAIT
If querying the user before executing ‘rm *’ or ‘rm path/*’, first wait ten seconds
and ignore anything typed in that time. This avoids the problem of reflexively
answering ‘yes’ to the query when one didn’t really mean it. The wait and query
can always be avoided by expanding the ‘*’ in ZLE (with tab).

SHORT_LOOPS <C> <Z>
Allow the short forms of for, repeat, select, if, and function constructs.

Chapter 16: Options 82

SUN_KEYBOARD_HACK (-L)
If a line ends with a backquote, and there are an odd number of backquotes on
the line, ignore the trailing backquote. This is useful on some keyboards where the
return key is too small, and the backquote key lies annoyingly close to it.

16.2.7 Job Control

AUTO_CONTINUE
With this option set, stopped jobs that are removed from the job table with the
disown builtin command are automatically sent a CONT signal to make them running.

AUTO_RESUME (-W)
Treat single word simple commands without redirection as candidates for resumption
of an existing job.

BG_NICE (-6) <C> <Z>
Run all background jobs at a lower priority. This option is set by default.

CHECK_JOBS <Z>
Report the status of background and suspended jobs before exiting a shell with job
control; a second attempt to exit the shell will succeed. NO_CHECK_JOBS is best used
only in combination with NO_HUP, else such jobs will be killed automatically.
The check is omitted if the commands run from the previous command line included
a ‘jobs’ command, since it is assumed the user is aware that there are background
or suspended jobs. A ‘jobs’ command run from one of the hook functions defined
in the section Special Functions in Chapter 9 [Functions], page 19 is not counted for
this purpose.

HUP <Z> Send the HUP signal to running jobs when the shell exits.

LONG_LIST_JOBS (-R)
List jobs in the long format by default.

MONITOR (-m, ksh: -m)
Allow job control. Set by default in interactive shells.

NOTIFY (-5, ksh: -b) <Z>
Report the status of background jobs immediately, rather than waiting until just
before printing a prompt.

16.2.8 Prompting

PROMPT_BANG <K>
If set, ‘!’ is treated specially in prompt expansion. See Chapter 13 [Prompt Expan-
sion], page 28.

PROMPT_CR (+V) <D>
Print a carriage return just before printing a prompt in the line editor. This is on
by default as multi-line editing is only possible if the editor knows where the start
of the line appears.

PROMPT_SP <D>
Attempt to preserve a partial line (i.e. a line that did not end with a newline) that
would otherwise be covered up by the command prompt due to the PROMPT CR
option. This works by outputting some cursor-control characters, including a series
of spaces, that should make the terminal wrap to the next line when a partial line
is present (note that this is only successful if your terminal has automatic margins,
which is typical).

Chapter 16: Options 83

When a partial line is preserved, you will see an inverse+bold character at the end
of the partial line: a "%" for a normal user or a "#" for root.

NOTE: if the PROMPT CR option is not set, enabling this option will have no
effect. This option is on by default.

PROMPT_PERCENT <C> <Z>
If set, ‘%’ is treated specially in prompt expansion. See Chapter 13 [Prompt Expan-
sion], page 28.

PROMPT_SUBST <K>
If set, parameter expansion, command substitution and arithmetic expansion are
performed in prompts. Substitutions within prompts do not affect the command
status.

TRANSIENT_RPROMPT
Remove any right prompt from display when accepting a command line. This may
be useful with terminals with other cut/paste methods.

16.2.9 Scripts and Functions

C_BASES Output hexadecimal numbers in the standard C format, for example ‘0xFF’ instead
of the usual ‘16#FF’. If the option OCTAL_ZEROES is also set (it is not by default),
octal numbers will be treated similarly and hence appear as ‘077’ instead of ‘8#77’.
This option has no effect on the choice of the output base, nor on the output of bases
other than hexadecimal and octal. Note that these formats will be understood on
input irrespective of the setting of C_BASES.

DEBUG_BEFORE_CMD
Run the DEBUG trap before each command; otherwise it is run after each command.
Setting this option mimics the behaviour of ksh 93; with the option unset the be-
haviour is that of ksh 88.

ERR_EXIT (-e, ksh: -e)
If a command has a non-zero exit status, execute the ZERR trap, if set, and exit.
This is disabled while running initialization scripts.

ERR_RETURN
If a command has a non-zero exit status, return immediately from the enclosing
function. The logic is identical to that for ERR_EXIT, except that an implicit return
statement is executed instead of an exit. This will trigger an exit at the outermost
level of a non-interactive script.

EVAL_LINENO <Z>
If set, line numbers of expressions evaluated using the builtin eval are tracked
separately of the enclosing environment. This applies both to the parameter LINENO
and the line number output by the prompt escape %i. If the option is set, the prompt
escape %N will output the string ‘(eval)’ instead of the script or function name as
an indication. (The two prompt escapes are typically used in the parameter PS4 to
be output when the option XTRACE is set.) If EVAL_LINENO is unset, the line number
of the surrounding script or function is retained during the evaluation.

EXEC (+n, ksh: +n) <D>
Do execute commands. Without this option, commands are read and checked for
syntax errors, but not executed. This option cannot be turned off in an interactive
shell, except when ‘-n’ is supplied to the shell at startup.

Chapter 16: Options 84

FUNCTION_ARGZERO <C> <Z>
When executing a shell function or sourcing a script, set $0 temporarily to the name
of the function/script.

LOCAL_OPTIONS <K>
If this option is set at the point of return from a shell function, all the options
(including this one) which were in force upon entry to the function are restored.
Otherwise, only this option and the XTRACE and PRINT_EXIT_VALUE options are
restored. Hence if this is explicitly unset by a shell function the other options in
force at the point of return will remain so. A shell function can also guarantee
itself a known shell configuration with a formulation like ‘emulate -L zsh’; the -L
activates LOCAL_OPTIONS.

LOCAL_TRAPS <K>
If this option is set when a signal trap is set inside a function, then the previous
status of the trap for that signal will be restored when the function exits. Note that
this option must be set prior to altering the trap behaviour in a function; unlike
LOCAL_OPTIONS, the value on exit from the function is irrelevant. However, it does
not need to be set before any global trap for that to be correctly restored by a
function. For example,

unsetopt localtraps
trap - INT
fn() { setopt localtraps; trap ’’ INT; sleep 3; }

will restore normally handling of SIGINT after the function exits.

MULTIOS <Z>
Perform implicit tees or cats when multiple redirections are attempted (see Chap-
ter 7 [Redirection], page 15).

OCTAL_ZEROES <S>
Interpret any integer constant beginning with a 0 as octal, per IEEE Std 1003.2-
1992 (ISO 9945-2:1993). This is not enabled by default as it causes problems with
parsing of, for example, date and time strings with leading zeroes.
Sequences of digits indicating a numeric base such as the ‘08’ component in ‘08#77’
are always interpreted as decimal, regardless of leading zeroes.

TYPESET_SILENT
If this is unset, executing any of the ‘typeset’ family of commands with no options
and a list of parameters that have no values to be assigned but already exist will
display the value of the parameter. If the option is set, they will only be shown when
parameters are selected with the ‘-m’ option. The option ‘-p’ is available whether
or not the option is set.

VERBOSE (-v, ksh: -v)
Print shell input lines as they are read.

XTRACE (-x, ksh: -x)
Print commands and their arguments as they are executed.

16.2.10 Shell Emulation

BASH_REMATCH
When set, matches performed with the =~ operator will set the BASH_REMATCH array
variable, instead of the default MATCH and match variables. The first element of the
BASH_REMATCH array will contain the entire matched text and subsequent elements
will contain extracted substrings. This option makes more sense when KSH_ARRAYS

Chapter 16: Options 85

is also set, so that the entire matched portion is stored at index 0 and the first
substring is at index 1. Without this option, the MATCH variable contains the entire
matched text and the match array variable contains substrings.

BSD_ECHO <S>
Make the echo builtin compatible with the BSD man page echo(1) command. This
disables backslashed escape sequences in echo strings unless the -e option is speci-
fied.

CSH_JUNKIE_HISTORY <C>
A history reference without an event specifier will always refer to the previous com-
mand. Without this option, such a history reference refers to the same event as the
previous history reference, defaulting to the previous command.

CSH_JUNKIE_LOOPS <C>
Allow loop bodies to take the form ‘list; end’ instead of ‘do list; done’.

CSH_JUNKIE_QUOTES <C>
Changes the rules for single- and double-quoted text to match that of csh. These
require that embedded newlines be preceded by a backslash; unescaped newlines will
cause an error message. In double-quoted strings, it is made impossible to escape
‘$’, ‘‘’ or ‘"’ (and ‘\’ itself no longer needs escaping). Command substitutions are
only expanded once, and cannot be nested.

CSH_NULLCMD <C>
Do not use the values of NULLCMD and READNULLCMD when running redirections with
no command. This make such redirections fail (see Chapter 7 [Redirection], page 15).

KSH_ARRAYS <K> <S>
Emulate ksh array handling as closely as possible. If this option is set, array elements
are numbered from zero, an array parameter without subscript refers to the first
element instead of the whole array, and braces are required to delimit a subscript
(‘${path[2]}’ rather than just ‘$path[2]’).

KSH_AUTOLOAD <K> <S>
Emulate ksh function autoloading. This means that when a function is autoloaded,
the corresponding file is merely executed, and must define the function itself. (By
default, the function is defined to the contents of the file. However, the most common
ksh-style case - of the file containing only a simple definition of the function - is
always handled in the ksh-compatible manner.)

KSH_OPTION_PRINT <K>
Alters the way options settings are printed: instead of separate lists of set and unset
options, all options are shown, marked ‘on’ if they are in the non-default state, ‘off’
otherwise.

KSH_TYPESET <K>
Alters the way arguments to the typeset family of commands, including declare,
export, float, integer, local and readonly, are processed. Without this option,
zsh will perform normal word splitting after command and parameter expansion in
arguments of an assignment; with it, word splitting does not take place in those
cases.

KSH_ZERO_SUBSCRIPT
Treat use of a subscript of value zero in array or string expressions as a reference
to the first element, i.e. the element that usually has the subscript 1. Ignored if
KSH_ARRAYS is also set.

Chapter 16: Options 86

If neither this option nor KSH_ARRAYS is set, accesses to an element of an array or
string with subscript zero return an empty element or string, while attempts to set
element zero of an array or string are treated as an error. However, attempts to set
an otherwise valid subscript range that includes zero will succeed. For example, if
KSH_ZERO_SUBSCRIPT is not set,

array[0]=(element)

is an error, while
array[0,1]=(element)

is not and will replace the first element of the array.
This option is for compatibility with older versions of the shell and is not recom-
mended in new code.

POSIX_BUILTINS <K> <S>
When this option is set the command builtin can be used to execute shell builtin com-
mands. Parameter assignments specified before shell functions and special builtins
are kept after the command completes unless the special builtin is prefixed with the
command builtin. Special builtins are ., :, break, continue, declare, eval, exit,
export, integer, local, readonly, return, set, shift, source, times, trap and
unset.

POSIX_IDENTIFIERS <K> <S>
When this option is set, only the ASCII characters a to z, A to Z, 0 to 9 and _ may
be used in identifiers (names of shell parameters and modules).
When the option is unset and multibyte character support is enabled (i.e. it is
compiled in and the option MULTIBYTE is set), then additionally any alphanumeric
characters in the local character set may be used in identifiers. Note that scripts
and functions written with this feature are not portable, and also that both options
must be set before the script or function is parsed; setting them during execution is
not sufficient as the syntax variable=value has already been parsed as a command
rather than an assignment.
If multibyte character support is not compiled into the shell this option is ignored;
all octets with the top bit set may be used in identifiers. This is non-standard but
is the traditional zsh behaviour.

SH_FILE_EXPANSION <K> <S>
Perform filename expansion (e.g., ~ expansion) before parameter expansion, com-
mand substitution, arithmetic expansion and brace expansion. If this option is
unset, it is performed after brace expansion, so things like ‘~$USERNAME’ and
‘~{pfalstad,rc}’ will work.

SH_NULLCMD <K> <S>
Do not use the values of NULLCMD and READNULLCMD when doing redirections, use ‘:’
instead (see Chapter 7 [Redirection], page 15).

SH_OPTION_LETTERS <K> <S>
If this option is set the shell tries to interpret single letter options (which are used
with set and setopt) like ksh does. This also affects the value of the - special
parameter.

SH_WORD_SPLIT (-y) <K> <S>
Causes field splitting to be performed on unquoted parameter expansions. Note
that this option has nothing to do with word splitting. (See Section 14.3 [Parameter
Expansion], page 36.)

Chapter 16: Options 87

TRAPS_ASYNC
While waiting for a program to exit, handle signals and run traps immediately.
Otherwise the trap is run after a child process has exited. Note this does not affect
the point at which traps are run for any case other than when the shell is waiting
for a child process.

16.2.11 Shell State

INTERACTIVE (-i, ksh: -i)
This is an interactive shell. This option is set upon initialisation if the standard input
is a tty and commands are being read from standard input. (See the discussion of
SHIN_STDIN.) This heuristic may be overridden by specifying a state for this option
on the command line. The value of this option cannot be changed anywhere other
than the command line.

LOGIN (-l, ksh: -l)
This is a login shell. If this option is not explicitly set, the shell is a login shell if
the first character of the argv[0] passed to the shell is a ‘-’.

PRIVILEGED (-p, ksh: -p)
Turn on privileged mode. This is enabled automatically on startup if the effective
user (group) ID is not equal to the real user (group) ID. Turning this option off
causes the effective user and group IDs to be set to the real user and group IDs.
This option disables sourcing user startup files. If zsh is invoked as ‘sh’ or ‘ksh’
with this option set, /etc/suid_profile is sourced (after /etc/profile on inter-
active shells). Sourcing ~/.profile is disabled and the contents of the ENV variable
is ignored. This option cannot be changed using the -m option of setopt and
unsetopt, and changing it inside a function always changes it globally regardless of
the LOCAL_OPTIONS option.

RESTRICTED (-r)
Enables restricted mode. This option cannot be changed using unsetopt, and set-
ting it inside a function always changes it globally regardless of the LOCAL_OPTIONS
option. See Section 4.3 [Restricted Shell], page 7.

SHIN_STDIN (-s, ksh: -s)
Commands are being read from the standard input. Commands are read from
standard input if no command is specified with -c and no file of commands is
specified. If SHIN_STDIN is set explicitly on the command line, any argument that
would otherwise have been taken as a file to run will instead be treated as a normal
positional parameter. Note that setting or unsetting this option on the command
line does not necessarily affect the state the option will have while the shell is running
- that is purely an indicator of whether on not commands are actually being read
from standard input. The value of this option cannot be changed anywhere other
than the command line.

SINGLE_COMMAND (-t, ksh: -t)
If the shell is reading from standard input, it exits after a single command has been
executed. This also makes the shell non-interactive, unless the INTERACTIVE option
is explicitly set on the command line. The value of this option cannot be changed
anywhere other than the command line.

16.2.12 Zle

BEEP (+B) <D>
Beep on error in ZLE.

Chapter 16: Options 88

EMACS If ZLE is loaded, turning on this option has the equivalent effect of ‘bindkey -
e’. In addition, the VI option is unset. Turning it off has no effect. The option
setting is not guaranteed to reflect the current keymap. This option is provided for
compatibility; bindkey is the recommended interface.

OVERSTRIKE
Start up the line editor in overstrike mode.

SINGLE_LINE_ZLE (-M) <K>
Use single-line command line editing instead of multi-line.

VI If ZLE is loaded, turning on this option has the equivalent effect of ‘bindkey -v’.
In addition, the EMACS option is unset. Turning it off has no effect. The option
setting is not guaranteed to reflect the current keymap. This option is provided for
compatibility; bindkey is the recommended interface.

ZLE (-Z) Use the zsh line editor. Set by default in interactive shells connected to a terminal.

16.3 Option Aliases

Some options have alternative names. These aliases are never used for output, but can be used
just like normal option names when specifying options to the shell.

BRACE_EXPAND
NO IGNORE_BRACES (ksh and bash compatibility)

DOT_GLOB GLOB_DOTS (bash compatibility)

HASH_ALL HASH_CMDS (bash compatibility)

HIST_APPEND
APPEND_HISTORY (bash compatibility)

HIST_EXPAND
BANG_HIST (bash compatibility)

LOG NO HIST_NO_FUNCTIONS (ksh compatibility)

MAIL_WARN
MAIL_WARNING (bash compatibility)

ONE_CMD SINGLE_COMMAND (bash compatibility)

PHYSICAL CHASE_LINKS (ksh and bash compatibility)

PROMPT_VARS
PROMPT_SUBST (bash compatibility)

STDIN SHIN_STDIN (ksh compatibility)

TRACK_ALL
HASH_CMDS (ksh compatibility)

16.4 Single Letter Options

16.4.1 Default set

-0 CORRECT

-1 PRINT EXIT VALUE

Chapter 16: Options 89

-2 NO BAD PATTERN

-3 NO NOMATCH

-4 GLOB DOTS

-5 NOTIFY

-6 BG NICE

-7 IGNORE EOF

-8 MARK DIRS

-9 AUTO LIST

-B NO BEEP

-C NO CLOBBER

-D PUSHD TO HOME

-E PUSHD SILENT

-F NO GLOB

-G NULL GLOB

-H RM STAR SILENT

-I IGNORE BRACES

-J AUTO CD

-K NO BANG HIST

-L SUN KEYBOARD HACK

-M SINGLE LINE ZLE

-N AUTO PUSHD

-O CORRECT ALL

-P RC EXPAND PARAM

-Q PATH DIRS

-R LONG LIST JOBS

-S REC EXACT

-T CDABLE VARS

-U MAIL WARNING

-V NO PROMPT CR

-W AUTO RESUME

-X LIST TYPES

-Y MENU COMPLETE

-Z ZLE

-a ALL EXPORT

-e ERR EXIT

-f NO RCS

Chapter 16: Options 90

-g HIST IGNORE SPACE

-h HIST IGNORE DUPS

-i INTERACTIVE

-k INTERACTIVE COMMENTS

-l LOGIN

-m MONITOR

-n NO EXEC

-p PRIVILEGED

-r RESTRICTED

-s SHIN STDIN

-t SINGLE COMMAND

-u NO UNSET

-v VERBOSE

-w CHASE LINKS

-x XTRACE

-y SH WORD SPLIT

16.4.2 sh/ksh emulation set

-C NO CLOBBER

-T TRAPS ASYNC

-X MARK DIRS

-a ALL EXPORT

-b NOTIFY

-e ERR EXIT

-f NO GLOB

-i INTERACTIVE

-l LOGIN

-m MONITOR

-n NO EXEC

-p PRIVILEGED

-r RESTRICTED

-s SHIN STDIN

-t SINGLE COMMAND

-u NO UNSET

-v VERBOSE

-x XTRACE

Chapter 17: Shell Builtin Commands 91

16.4.3 Also note

-A Used by set for setting arrays

-b Used on the command line to specify end of option processing

-c Used on the command line to specify a single command

-m Used by setopt for pattern-matching option setting

-o Used in all places to allow use of long option names

-s Used by set to sort positional parameters

17 Shell Builtin Commands

- simple command
See Section 6.2 [Precommand Modifiers], page 10.

. file [arg ...]
Read commands from file and execute them in the current shell environment.
If file does not contain a slash, or if PATH_DIRS is set, the shell looks in the compo-
nents of $path to find the directory containing file. Files in the current directory are
not read unless ‘.’ appears somewhere in $path. If a file named ‘file.zwc’ is found,
is newer than file, and is the compiled form (created with the zcompile builtin) of
file, then commands are read from that file instead of file.
If any arguments arg are given, they become the positional parameters; the old
positional parameters are restored when the file is done executing. The exit status
is the exit status of the last command executed.

: [arg ...]
This command does nothing, although normal argument expansions is performed
which may have effects on shell parameters. A zero exit status is returned.

alias [{+|-}gmrsL] [name[=value] ...]
For each name with a corresponding value, define an alias with that value. A trailing
space in value causes the next word to be checked for alias expansion. If the -g flag
is present, define a global alias; global aliases are expanded even if they do not occur
in command position.
If the -s flags is present, define a suffix alias: if the command word on a command
line is in the form ‘text.name’, where text is any non-empty string, it is replaced
by the text ‘value text.name’. Note that name is treated as a literal string, not a
pattern. A trailing space in value is not special in this case. For example,

alias -s ps=gv

will cause the command ‘*.ps’ to be expanded to ‘gv *.ps’. As alias expansion is
carried out earlier than globbing, the ‘*.ps’ will then be expanded. Suffix aliases
constitute a different name space from other aliases (so in the above example it is
still possible to create an alias for the command ps) and the two sets are never listed
together.
For each name with no value, print the value of name, if any. With no arguments,
print all currently defined aliases other than suffix aliases. If the -m flag is given
the arguments are taken as patterns (they should be quoted to preserve them from
being interpreted as glob patterns), and the aliases matching these patterns are

Chapter 17: Shell Builtin Commands 92

printed. When printing aliases and one of the -g, -r or -s flags is present, restrict
the printing to global, regular or suffix aliases, respectively; a regular alias is one
which is neither a global nor a suffix alias. Using ‘+’ instead of ‘-’, or ending the
option list with a single ‘+’, prevents the values of the aliases from being printed.
If the -L flag is present, then print each alias in a manner suitable for putting in
a startup script. The exit status is nonzero if a name (with no value) is given for
which no alias has been defined.

autoload [{+|-}UXktz] [-w] [name ...]
Equivalent to functions -u, with the exception of -X/+X and -w.
The flag -X may be used only inside a shell function, and may not be followed
by a name. It causes the calling function to be marked for autoloading and then
immediately loaded and executed, with the current array of positional parameters
as arguments. This replaces the previous definition of the function. If no function
definition is found, an error is printed and the function remains undefined and
marked for autoloading.
The flag +X attempts to load each name as an autoloaded function, but does not
execute it. The exit status is zero (success) if the function was not previously defined
and a definition for it was found. This does not replace any existing definition of the
function. The exit status is nonzero (failure) if the function was already defined or
when no definition was found. In the latter case the function remains undefined and
marked for autoloading. If ksh-style autoloading is enabled, the function created
will contain the contents of the file plus a call to the function itself appended to it,
thus giving normal ksh autoloading behaviour on the first call to the function.
With the -w flag, the names are taken as names of files compiled with the zcompile
builtin, and all functions defined in them are marked for autoloading.

bg [job ...]
job ... & Put each specified job in the background, or the current job if none is specified.

bindkey See Section 18.3 [Zle Builtins], page 120.

break [n]
Exit from an enclosing for, while, until, select or repeat loop. If n is specified,
then break n levels instead of just one.

builtin name [args ...]
Executes the builtin name, with the given args.

bye Same as exit.

cap See Section 22.2 [The zsh/cap Module], page 228.

cd [-sLP] [arg]
cd [-sLP] old new
cd [-sLP] {+|-}n

Change the current directory. In the first form, change the current directory to arg,
or to the value of $HOME if arg is not specified. If arg is ‘-’, change to the value of
$OLDPWD, the previous directory.
Otherwise, if arg begins with a slash, attempt to change to the director given by
arg.
If arg does not begin with a slash, the behaviour depends on whether the current
directory ‘.’ occurs in the list of directories contained in the shell parameter cdpath.
If it does not, first attempt to change to the directory arg under the current directory,
and if that fails but cdpath is set and contains at least one element attempt to change

Chapter 17: Shell Builtin Commands 93

to the directory arg under each component of cdpath in turn until successful. If ‘.’
occurs in cdpath, then cdpath is searched strictly in order so that ‘.’ is only tried
at the appropriate point.
If no directory is found, the option CDABLE_VARS is set, and a parameter named arg
exists whose value begins with a slash, treat its value as the directory. In that case,
the parameter is added to the named directory hash table.
The second form of cd substitutes the string new for the string old in the name of
the current directory, and tries to change to this new directory.
The third form of cd extracts an entry from the directory stack, and changes to that
directory. An argument of the form ‘+n’ identifies a stack entry by counting from
the left of the list shown by the dirs command, starting with zero. An argument of
the form ‘-n’ counts from the right. If the PUSHD_MINUS option is set, the meanings
of ‘+’ and ‘-’ in this context are swapped.
If the -s option is specified, cd refuses to change the current directory if the given
pathname contains symlinks. If the -P option is given or the CHASE_LINKS option
is set, symbolic links are resolved to their true values. If the -L option is given
symbolic links are followed regardless of the state of the CHASE_LINKS option.

chdir Same as cd.

clone See Section 22.3 [The zsh/clone Module], page 228.

command [-pvV] simple command
The simple command argument is taken as an external command instead of a func-
tion or builtin and is executed. If the POSIX_BUILTINS option is set, builtins will
also be executed but certain special properties of them are suppressed. The -p flag
causes a default path to be searched instead of that in $path. With the -v flag,
command is similar to whence and with -V, it is equivalent to whence -v.
See also Section 6.2 [Precommand Modifiers], page 10.

comparguments
See Section 22.7 [The zsh/computil Module], page 234.

compcall See Section 22.4 [The zsh/compctl Module], page 229.

compctl See Section 22.4 [The zsh/compctl Module], page 229.

compdescribe
See Section 22.7 [The zsh/computil Module], page 234.

compfiles
See Section 22.7 [The zsh/computil Module], page 234.

compgroups
See Section 22.7 [The zsh/computil Module], page 234.

compquote
See Section 22.7 [The zsh/computil Module], page 234.

comptags See Section 22.7 [The zsh/computil Module], page 234.

comptry See Section 22.7 [The zsh/computil Module], page 234.

compvalues
See Section 22.7 [The zsh/computil Module], page 234.

continue [n]
Resume the next iteration of the enclosing for, while, until, select or repeat
loop. If n is specified, break out of n-1 loops and resume at the nth enclosing loop.

Chapter 17: Shell Builtin Commands 94

declare Same as typeset.

dirs [-c] [arg ...]
dirs [-lpv]

With no arguments, print the contents of the directory stack. Directories are added
to this stack with the pushd command, and removed with the cd or popd commands.
If arguments are specified, load them onto the directory stack, replacing anything
that was there, and push the current directory onto the stack.

-c clear the directory stack.

-l print directory names in full instead of using of using ~ expressions.

-p print directory entries one per line.

-v number the directories in the stack when printing.

disable [-afmrs] name ...
Temporarily disable the named hash table elements. The default is to disable builtin
commands. This allows you to use an external command with the same name as a
builtin command. The -a option causes disable to act on regular or global aliases.
The -s option causes disable to act on suffix aliases. The -f option causes disable
to act on shell functions. The -r options causes disable to act on reserved words.
Without arguments all disabled hash table elements from the corresponding hash
table are printed. With the -m flag the arguments are taken as patterns (which
should be quoted to prevent them from undergoing filename expansion), and all
hash table elements from the corresponding hash table matching these patterns are
disabled. Disabled objects can be enabled with the enable command.

disown [job ...]
job ... &|
job ... &! Remove the specified jobs from the job table; the shell will no longer report their

status, and will not complain if you try to exit an interactive shell with them running
or stopped. If no job is specified, disown the current job.
If the jobs are currently stopped and the AUTO_CONTINUE option is not set, a warning
is printed containing information about how to make them running after they have
been disowned. If one of the latter two forms is used, the jobs will automatically be
made running, independent of the setting of the AUTO_CONTINUE option.

echo [-neE] [arg ...]
Write each arg on the standard output, with a space separating each one. If the -n
flag is not present, print a newline at the end. echo recognizes the following escape
sequences:

\a bell character

\b backspace

\c suppress final newline

\e escape

\f form feed

\n linefeed (newline)

\r carriage return

\t horizontal tab

\v vertical tab

Chapter 17: Shell Builtin Commands 95

\\ backslash

\0NNN character code in octal

\xNN character code in hexadecimal

\uNNNN unicode character code in hexadecimal

\UNNNNNNNN
unicode character code in hexadecimal

The -E flag, or the BSD_ECHO option, can be used to disable these escape sequences.
In the latter case, -e flag can be used to enable them.

echotc See Section 22.26 [The zsh/termcap Module], page 254.

echoti See Section 22.27 [The zsh/terminfo Module], page 254.

emulate [-LR] {zsh|sh|ksh|csh}
Set up zsh options to emulate the specified shell as much as possible. csh will never
be fully emulated. If the argument is not one of the shells listed above, zsh will be
used as a default; more precisely, the tests performed on the argument are the same
as those used to determine the emulation at startup based on the shell name, see
Section 4.2 [Compatibility], page 7 . If the -R option is given, all options are reset to
their default value corresponding to the specified emulation mode, except for certain
options describing the interactive environment; otherwise, only those options likely
to cause portability problems in scripts and functions are altered. If the -L option
is given, the options LOCAL_OPTIONS and LOCAL_TRAPS will be set as well, causing
the effects of the emulate command and any setopt and trap commands to be
local to the immediately surrounding shell function, if any; normally these options
are turned off in all emulation modes except ksh.

enable [-afmrs] name ...
Enable the named hash table elements, presumably disabled earlier with disable.
The default is to enable builtin commands. The -a option causes enable to act on
regular or global aliases. The -s option causes enable to act on suffix aliases. The
-f option causes enable to act on shell functions. The -r option causes enable
to act on reserved words. Without arguments all enabled hash table elements from
the corresponding hash table are printed. With the -m flag the arguments are taken
as patterns (should be quoted) and all hash table elements from the corresponding
hash table matching these patterns are enabled. Enabled objects can be disabled
with the disable builtin command.

eval [arg ...]
Read the arguments as input to the shell and execute the resulting command in the
current shell process.

exec [-cl] [-a argv0] simple command
Replace the current shell with an external command rather than forking. With -c
clear the environment; with -l prepend - to the argv[0] string of the command
executed (to simulate a login shell); with -a argv0 set the argv[0] string of the
command executed. See Section 6.2 [Precommand Modifiers], page 10.

exit [n] Exit the shell with the exit status specified by n; if none is specified, use the exit
status from the last command executed. An EOF condition will also cause the shell
to exit, unless the IGNORE_EOF option is set.

export [name[=value] ...]
The specified names are marked for automatic export to the environment of subse-
quently executed commands. Equivalent to typeset -gx. If a parameter specified
does not already exist, it is created in the global scope.

Chapter 17: Shell Builtin Commands 96

false [arg ...]
Do nothing and return an exit status of 1.

fc [-e ename] [-nlrdDfEim] [old=new ...] [first [last]]
fc -p [-a] [filename [histsize [savehistsize]]]
fc -P
fc -ARWI [filename]

Select a range of commands from first to last from the history list. The arguments
first and last may be specified as a number or as a string. A negative number is
used as an offset to the current history event number. A string specifies the most
recent event beginning with the given string. All substitutions old=new, if any, are
then performed on the commands.

If the -l flag is given, the resulting commands are listed on standard output. If the
-m flag is also given the first argument is taken as a pattern (should be quoted) and
only the history events matching this pattern will be shown. Otherwise the editor
program ename is invoked on a file containing these history events. If ename is not
given, the value of the parameter FCEDIT is used; if that is not set the value of the
parameter EDITOR is used; if that is not set a builtin default, usually ‘vi’ is used. If
ename is ‘-’, no editor is invoked. When editing is complete, the edited command
is executed.

If first is not specified, it will be set to -1 (the most recent event), or to -16 if the
-l flag is given. If last is not specified, it will be set to first, or to -1 if the -l flag
is given.

The flag -r reverses the order of the commands and the flag -n suppresses command
numbers when listing. Also when listing, -d prints timestamps for each command,
and -f prints full time-date stamps. Adding the -E flag causes the dates to be
printed as ‘dd.mm.yyyy ’, instead of the default ‘mm/dd/yyyy ’. Adding the -i
flag causes the dates to be printed in ISO8601 ‘yyyy-mm-dd’ format. With the -D
flag, fc prints elapsed times.

‘fc -p’ pushes the current history list onto a stack and switches to a new history
list. If the -a option is also specified, this history list will be automatically popped
when the current function scope is exited, which is a much better solution than
creating a trap function to call ‘fc -P’ manually. If no arguments are specified, the
history list is left empty, $HISTFILE is unset, and $HISTSIZE & $SAVEHIST are set
to their default values. If one argument is given, $HISTFILE is set to that filename,
$HISTSIZE & $SAVEHIST are left unchanged, and the history file is read in (if it
exists) to initialize the new list. If a second argument is specified, $HISTSIZE &
$SAVEHIST are instead set to the single specified numeric value. Finally, if a third
argument is specified, $SAVEHIST is set to a separate value from $HISTSIZE. You
are free to change these environment values for the new history list however you
desire in order to manipulate the new history list.

‘fc -P’ pops the history list back to an older list saved by ‘fc -p’. The current
list is saved to its $HISTFILE before it is destroyed (assuming that $HISTFILE and
$SAVEHIST are set appropriately, of course). The values of $HISTFILE, $HISTSIZE,
and $SAVEHIST are restored to the values they had when ‘fc -p’ was called. Note
that this restoration can conflict with making these variables "local", so your best
bet is to avoid local declarations for these variables in functions that use ‘fc -p’.
The one other guaranteed-safe combination is declaring these variables to be local at
the top of your function and using the automatic option (-a) with ‘fc -p’. Finally,

Chapter 17: Shell Builtin Commands 97

note that it is legal to manually pop a push marked for automatic popping if you
need to do so before the function exits.

‘fc -R’ reads the history from the given file, ‘fc -W’ writes the history out to the
given file, and ‘fc -A’ appends the history out to the given file. If no filename is
specified, the $HISTFILE is assumed. If the -I option is added to -R, only those
events that are not already contained within the internal history list are added.
If the -I option is added to -A or -W, only those events that are new since last
incremental append/write to the history file are appended/written. In any case, the
created file will have no more than $SAVEHIST entries.

fg [job ...]
job ... Bring each specified job in turn to the foreground. If no job is specified, resume the

current job.

float [{+|-}EFHghlprtux] [-LRZ [n]] [name[=value] ...]
Equivalent to typeset -E, except that options irrelevant to floating point numbers
are not permitted.

functions [{+|-}UXkmtuz] [name ...]
functions -M mathfn [min [max [shellfn]]]
functions -M [-m pattern ...]
functions +M [-m] mathfn

Equivalent to typeset -f, with the exception of the -M option. Use of the -M option
may not be combined with any of the options handled by typeset -f.

functions -M mathfn defines mathfn as the name of a mathematical function recog-
nised in all forms of arithmetical expressions; see Chapter 11 [Arithmetic Evalua-
tion], page 24. By default mathfn may take any number of comma-separated ar-
guments. If min is given, it must have exactly min args; if min and max are both
given, it must have at least min and and at most max args. max may be -1 to
indicate that there is no upper limit.

By default the function is implemented by a shell function of the same name;
if shellfn is specified it gives the name of the corresponding shell function while
mathfn remains the name used in arithmetical expressions. The name of the func-
tion in $0 is mathfn (not shellfn as would usually be the case), provided the option
FUNCTION_ARGZERO is in effect. The positional parameters in the shell function cor-
respond to the arguments of the mathematical function call. The result of the last
arithmetical expression evaluated inside the shell function (even if it is a form that
normally only returns a status) gives the result of the mathematical function.

functions -M with no arguments lists all such user-defined functions in the same
form as a definition. With the additional option -m and a list of arguments, all
functions whose mathfn matches one of the pattern arguments are listed.

function +M removes the list of mathematical functions; with the additional option
-m the arguments are treated as patterns and all functions whose mathfn matches
the pattern are removed. Note that the shell function implementing the behaviour
is not removed (regardless of whether its name coincides with mathfn).

For example, the following prints the cube of 3:

zmath_cube() { (($1 * $1 * $1)) }
functions -M cube 1 1 zmath_cube
print $((cube(3)))

getcap See Section 22.2 [The zsh/cap Module], page 228.

Chapter 17: Shell Builtin Commands 98

getln [-AclneE] name ...
Read the top value from the buffer stack and put it in the shell parameter name.
Equivalent to read -zr.

getopts optstring name [arg ...]
Checks the args for legal options. If the args are omitted, use the positional pa-
rameters. A valid option argument begins with a ‘+’ or a ‘-’. An argument not
beginning with a ‘+’ or a ‘-’, or the argument ‘--’, ends the options. Note that a
single ‘-’ is not considered a valid option argument. optstring contains the letters
that getopts recognizes. If a letter is followed by a ‘:’, that option is expected to
have an argument. The options can be separated from the argument by blanks.
Each time it is invoked, getopts places the option letter it finds in the shell param-
eter name, prepended with a ‘+’ when arg begins with a ‘+’. The index of the next
arg is stored in OPTIND. The option argument, if any, is stored in OPTARG.
The first option to be examined may be changed by explicitly assigning to OPTIND.
OPTIND has an initial value of 1, and is normally reset to 1 upon exit from a shell
function. OPTARG is not reset and retains its value from the most recent call to
getopts. If either of OPTIND or OPTARG is explicitly unset, it remains unset, and the
index or option argument is not stored. The option itself is still stored in name in
this case.
A leading ‘:’ in optstring causes getopts to store the letter of any invalid option in
OPTARG, and to set name to ‘?’ for an unknown option and to ‘:’ when a required
option is missing. Otherwise, getopts sets name to ‘?’ and prints an error message
when an option is invalid. The exit status is nonzero when there are no more options.

hash [-Ldfmrv] [name[=value]] ...
hash can be used to directly modify the contents of the command hash table, and
the named directory hash table. Normally one would modify these tables by mod-
ifying one’s PATH (for the command hash table) or by creating appropriate shell
parameters (for the named directory hash table). The choice of hash table to work
on is determined by the -d option; without the option the command hash table is
used, and with the option the named directory hash table is used.
Given no arguments, and neither the -r or -f options, the selected hash table will
be listed in full.
The -r option causes the selected hash table to be emptied. It will be subsequently
rebuilt in the normal fashion. The -f option causes the selected hash table to be
fully rebuilt immediately. For the command hash table this hashes all the absolute
directories in the PATH, and for the named directory hash table this adds all users’
home directories. These two options cannot be used with any arguments.
The -m option causes the arguments to be taken as patterns (which should be quoted)
and the elements of the hash table matching those patterns are printed. This is the
only way to display a limited selection of hash table elements.
For each name with a corresponding value, put ‘name’ in the selected hash table,
associating it with the pathname ‘value’. In the command hash table, this means
that whenever ‘name’ is used as a command argument, the shell will try to execute
the file given by ‘value’. In the named directory hash table, this means that ‘value’
may be referred to as ‘~name’.
For each name with no corresponding value, attempt to add name to the hash table,
checking what the appropriate value is in the normal manner for that hash table.
If an appropriate value can’t be found, then the hash table will be unchanged.
The -v option causes hash table entries to be listed as they are added by explicit
specification. If has no effect if used with -f.

Chapter 17: Shell Builtin Commands 99

If the -L flag is present, then each hash table entry is printed in the form of a call
to hash.

history Same as fc -l.

integer [{+|-}Hghilprtux] [-LRZ [n]] [name[=value] ...]
Equivalent to typeset -i, except that options irrelevant to integers are not per-
mitted.

jobs [-dlprs] [job ...]
jobs -Z string

Lists information about each given job, or all jobs if job is omitted. The -l flag
lists process IDs, and the -p flag lists process groups. If the -r flag is specified only
running jobs will be listed and if the -s flag is given only stopped jobs are shown.
If the -d flag is given, the directory from which the job was started (which may not
be the current directory of the job) will also be shown.
The -Z option replaces the shell’s argument and environment space with the given
string, truncated if necessary to fit. This will normally be visible in ps (man page
ps(1)) listings. This feature is typically used by daemons, to indicate their state.

kill [-s signal name | -n signal number | -sig] job ...
kill -l [sig ...]

Sends either SIGTERM or the specified signal to the given jobs or processes. Signals
are given by number or by names, with or without the ‘SIG’ prefix. If the signal
being sent is not ‘KILL’ or ‘CONT’, then the job will be sent a ‘CONT’ signal if it is
stopped. The argument job can be the process ID of a job not in the job list. In the
second form, kill -l, if sig is not specified the signal names are listed. Otherwise,
for each sig that is a name, the corresponding signal number is listed. For each sig
that is a signal number or a number representing the exit status of a process which
was terminated or stopped by a signal the name of the signal is printed.
On some systems, alternative signal names are allowed for a few signals. Typical
examples are SIGCHLD and SIGCLD or SIGPOLL and SIGIO, assuming they correspond
to the same signal number. kill -l will only list the preferred form, however kill
-l alt will show if the alternative form corresponds to a signal number. For example,
under Linux kill -l IO and kill -l POLL both output 29, hence kill -IO and
kill -POLL have the same effect.
Many systems will allow process IDs to be negative to kill a process group or zero
to kill the current process group.

let arg ... Evaluate each arg as an arithmetic expression. See Chapter 11 [Arithmetic Evalua-
tion], page 24 for a description of arithmetic expressions. The exit status is 0 if the
value of the last expression is nonzero, 1 if it is zero, and 2 if an error occurred.

limit [-hs] [resource [limit]] ...
Set or display resource limits. Unless the -s flag is given, the limit applies only the
children of the shell. If -s is given without other arguments, the resource limits of
the current shell is set to the previously set resource limits of the children.
If limit is not specified, print the current limit placed on resource, otherwise set the
limit to the specified value. If the -h flag is given, use hard limits instead of soft
limits. If no resource is given, print all limits.
When looping over multiple resources, the shell will abort immediately if it detects
a badly formed argument. However, if it fails to set a limit for some other reason it
will continue trying to set the remaining limits.
resource can be one of:

Chapter 17: Shell Builtin Commands 100

addressspace
Maximum amount of address space used.

aiomemorylocked
Maximum amount of memory locked in RAM for AIO operations.

aiooperations
Maximum number of AIO operations.

cachedthreads
Maximum number of cached threads.

coredumpsize
Maximum size of a core dump.

cputime Maximum CPU seconds per process.

datasize Maximum data size (including stack) for each process.

descriptors
Maximum value for a file descriptor.

filesize Largest single file allowed.

maxproc Maximum number of processes.

maxpthreads
Maximum number of threads per process.

memorylocked
Maximum amount of memory locked in RAM.

memoryuse
Maximum resident set size.

msgqueue Maximum number of bytes in POSIX message queues.

resident Maximum resident set size.

sigpending
Maximum number of pending signals.

sockbufsize
Maximum size of all socket buffers.

stacksize
Maximum stack size for each process.

vmemorysize
Maximum amount of virtual memory.

Which of these resource limits are available depends on the system. resource can be
abbreviated to any unambiguous prefix. It can also be an integer, which corresponds
to the integer defined for the resource by the operating system.
If argument corresponds to a number which is out of the range of the resources
configured into the shell, the shell will try to read or write the limit anyway, and
will report an error if this fails. As the shell does not store such resources internally,
an attempt to set the limit will fail unless the -s option is present.
limit is a number, with an optional scaling factor, as follows:

nh hours

nk kilobytes (default)

Chapter 17: Shell Builtin Commands 101

nm megabytes or minutes

[mm:]ss minutes and seconds

local [{+|-}AEFHUahlprtux] [-LRZi [n]] [name[=value]] ...
Same as typeset, except that the options -g, and -f are not permitted. In this
case the -x option does not force the use of -g, i.e. exported variables will be local
to functions.

log List all users currently logged in who are affected by the current setting of the watch
parameter.

logout [n]
Same as exit, except that it only works in a login shell.

noglob simple command
See Section 6.2 [Precommand Modifiers], page 10.

popd [{+|-}n]
Remove an entry from the directory stack, and perform a cd to the new top directory.
With no argument, the current top entry is removed. An argument of the form ‘+n’
identifies a stack entry by counting from the left of the list shown by the dirs
command, starting with zero. An argument of the form -n counts from the right.
If the PUSHD_MINUS option is set, the meanings of ‘+’ and ‘-’ in this context are
swapped.

print [-abcDilmnNoOpPrsz] [-u n] [-f format] [-C cols]
[-R [-en]] [arg ...]

With the ‘-f’ option the arguments are printed as described by printf. With
no flags or with the flag ‘-’, the arguments are printed on the standard output
as described by echo, with the following differences: the escape sequence ‘\M-x’
metafies the character x (sets the highest bit), ‘\C-x’ produces a control character
(‘\C-@’ and ‘\C-?’ give the characters NUL and delete), and ‘\E’ is a synonym for
‘\e’. Finally, if not in an escape sequence, ‘\’ escapes the following character and is
not printed.

-a Print arguments with the column incrementing first. Only useful with
the -c and -C options.

-b Recognize all the escape sequences defined for the bindkey command,
see Section 18.3 [Zle Builtins], page 120.

-c Print the arguments in columns. Unless -a is also given, arguments are
printed with the row incrementing first.

-C cols Print the arguments in cols columns. Unless -a is also given, arguments
are printed with the row incrementing first.

-D Treat the arguments as directory names, replacing prefixes with ~ ex-
pressions, as appropriate.

-i If given together with -o or -O, sorting is performed case-independently.

-l Print the arguments separated by newlines instead of spaces.

-m Take the first argument as a pattern (should be quoted), and remove it
from the argument list together with subsequent arguments that do not
match this pattern.

-n Do not add a newline to the output.

-N Print the arguments separated and terminated by nulls.

Chapter 17: Shell Builtin Commands 102

-o Print the arguments sorted in ascending order.

-O Print the arguments sorted in descending order.

-p Print the arguments to the input of the coprocess.

-P Perform prompt expansion (see Chapter 13 [Prompt Expansion],
page 28).

-r Ignore the escape conventions of echo.

-R Emulate the BSD echo command, which does not process escape se-
quences unless the -e flag is given. The -n flag suppresses the trailing
newline. Only the -e and -n flags are recognized after -R; all other
arguments and options are printed.

-s Place the results in the history list instead of on the standard output.

-u n Print the arguments to file descriptor n.

-z Push the arguments onto the editing buffer stack, separated by spaces.

If any of ‘-m’, ‘-o’ or ‘-O’ are used in combination with ‘-f’ and there are no
arguments (after the removal process in the case of ‘-m’) then nothing is printed.

printf format [arg ...]
Print the arguments according to the format specification. Formatting rules are the
same as used in C. The same escape sequences as for echo are recognised in the for-
mat. All C conversion specifications ending in one of csdiouxXeEfgGn are handled.
In addition to this, ‘%b’ can be used instead of ‘%s’ to cause escape sequences in the
argument to be recognised and ‘%q’ can be used to quote the argument in such a
way that allows it to be reused as shell input. With the numeric format specifiers, if
the corresponding argument starts with a quote character, the numeric value of the
following character is used as the number to print otherwise the argument is evalu-
ated as an arithmetic expression. See Chapter 11 [Arithmetic Evaluation], page 24
for a description of arithmetic expressions. With ‘%n’, the corresponding argument
is taken as an identifier which is created as an integer parameter.
Normally, conversion specifications are applied to each argument in order but they
can explicitly specify the nth argument is to be used by replacing ‘%’ by ‘%n$’ and
‘*’ by ‘*n$’. It is recommended that you do not mix references of this explicit style
with the normal style and the handling of such mixed styles may be subject to future
change.
If arguments remain unused after formatting, the format string is reused until all
arguments have been consumed. With the print builtin, this can be suppressed by
using the -r option. If more arguments are required by the format than have been
specified, the behaviour is as if zero or an empty string had been specified as the
argument.

pushd [-sLP] [arg]
pushd [-sLP] old new
pushd [-sLP] {+|-}n

Change the current directory, and push the old current directory onto the directory
stack. In the first form, change the current directory to arg. If arg is not specified,
change to the second directory on the stack (that is, exchange the top two entries),
or change to $HOME if the PUSHD_TO_HOME option is set or if there is only one entry
on the stack. Otherwise, arg is interpreted as it would be by cd. The meaning of
old and new in the second form is also the same as for cd.

Chapter 17: Shell Builtin Commands 103

The third form of pushd changes directory by rotating the directory list. An argu-
ment of the form ‘+n’ identifies a stack entry by counting from the left of the list
shown by the dirs command, starting with zero. An argument of the form ‘-n’
counts from the right. If the PUSHD_MINUS option is set, the meanings of ‘+’ and ‘-’
in this context are swapped.
If the option PUSHD_SILENT is not set, the directory stack will be printed after a
pushd is performed.
The options -s, -L and -P have the same meanings as for the cd builtin.

pushln [arg ...]
Equivalent to print -nz.

pwd [-rLP]
Print the absolute pathname of the current working directory. If the -r or the -P
flag is specified, or the CHASE_LINKS option is set and the -L flag is not given, the
printed path will not contain symbolic links.

r Same as fc -e -.

read [-rszpqAclneE] [-t [num]] [-k [num]] [-d delim] [-u n] [name[?prompt]] [
name ...]

Read one line and break it into fields using the characters in $IFS as separators,
except as noted below. The first field is assigned to the first name, the second field
to the second name, etc., with leftover fields assigned to the last name. If name is
omitted then REPLY is used for scalars and reply for arrays.

-r Raw mode: a ‘\’ at the end of a line does not signify line continuation
and backslashes in the line don’t quote the following character and are
not removed.

-s Don’t echo back characters if reading from the terminal. Currently does
not work with the -q option.

-q Read only one character from the terminal and set name to ‘y’ if this
character was ‘y’ or ‘Y’ and to ‘n’ otherwise. With this flag set the
return status is zero only if the character was ‘y’ or ‘Y’. Note that this
always reads from the terminal, even if used with the -p or -u or -z
flags or with redirected input. This option may also be used within zle
widgets.

-k [num] Read only one (or num) characters. All are assigned to the first name,
without word splitting. This flag is ignored when -q is present. Input
is read from the terminal unless one of -u or -p is present. This option
may also be used within zle widgets.
Note that despite the mnemonic ‘key’ this option does read full char-
acters, which may consist of multiple bytes if the option MULTIBYTE is
set.

-z Read one entry from the editor buffer stack and assign it to the first
name, without word splitting. Text is pushed onto the stack with ‘print
-z’ or with push-line from the line editor (see Chapter 18 [Zsh Line
Editor], page 119). This flag is ignored when the -k or -q flags are
present.

-e
-E The input read is printed (echoed) to the standard output. If the -e

flag is used, no input is assigned to the parameters.

Chapter 17: Shell Builtin Commands 104

-A The first name is taken as the name of an array and all words are
assigned to it.

-c
-l These flags are allowed only if called inside a function used for com-

pletion (specified with the -K flag to compctl). If the -c flag is given,
the words of the current command are read. If the -l flag is given, the
whole line is assigned as a scalar. If both flags are present, -l is used
and -c is ignored.

-n Together with -c, the number of the word the cursor is on is read. With
-l, the index of the character the cursor is on is read. Note that the
command name is word number 1, not word 0, and that when the cursor
is at the end of the line, its character index is the length of the line plus
one.

-u n Input is read from file descriptor n.

-p Input is read from the coprocess.

-d delim Input is terminated by the first character of delim instead of by newline.

-t [num] Test if input is available before attempting to read. If num is present,
it must begin with a digit and will be evaluated to give a number of
seconds, which may be a floating point number; in this case the read
times out if input is not available within this time. If num is not present,
it is taken to be zero, so that read returns immediately if no input is
available. If no input is available, return status 1 and do not set any
variables.
This option is not available when reading from the editor buffer with -z,
when called from within completion with -c or -l, with -q which clears
the input queue before reading, or within zle where other mechanisms
should be used to test for input.
Note that read does not attempt to alter the input processing mode.
The default mode is canonical input, in which an entire line is read at a
time, so usually ‘read -t’ will not read anything until an entire line has
been typed. However, when reading from the terminal with -k input is
processed one key at a time; in this case, only availability of the first
character is tested, so that e.g. ‘read -t -k 2’ can still block on the
second character. Use two instances of ‘read -t -k’ if this is not what
is wanted.

If the first argument contains a ‘?’, the remainder of this word is used as a prompt
on standard error when the shell is interactive.
The value (exit status) of read is 1 when an end-of-file is encountered, or when
-c or -l is present and the command is not called from a compctl function, or as
described for -q. Otherwise the value is 0.
The behavior of some combinations of the -k, -p, -q, -u and -z flags is undefined.
Presently -q cancels all the others, -p cancels -u, -k cancels -z, and otherwise -z
cancels both -p and -u.
The -c or -l flags cancel any and all of -kpquz.

readonly Same as typeset -r.

rehash Same as hash -r.

Chapter 17: Shell Builtin Commands 105

return [n]
Causes a shell function or . script to return to the invoking script with the return
status specified by n. If n is omitted, the return status is that of the last command
executed.
If return was executed from a trap in a TRAPNAL function, the effect is different for
zero and non-zero return status. With zero status (or after an implicit return at the
end of the trap), the shell will return to whatever it was previously processing; with
a non-zero status, the shell will behave as interrupted except that the return status
of the trap is retained. Note that the numeric value of the signal which caused the
trap is passed as the first argument, so the statement ‘return $((128+$1))’ will
return the same status as if the signal had not been trapped.

sched See Section 22.19 [The zsh/sched Module], page 246.

set [{+|-}options | {+|-}o [option name]] ... [{+|-}A [name]] [arg ...]
Set the options for the shell and/or set the positional parameters, or declare and set
an array. If the -s option is given, it causes the specified arguments to be sorted
before assigning them to the positional parameters (or to the array name if -A is
used). With +s sort arguments in descending order. For the meaning of the other
flags, see Chapter 16 [Options], page 72. Flags may be specified by name using
the -o option. If no option name is supplied with -o, the current option states are
printed: see the description of setopt below for more information on the format.
With +o they are printed in a form that can be used as input to the shell.
If the -A flag is specified, name is set to an array containing the given args; if no
name is specified, all arrays are printed together with their values.
If +A is used and name is an array, the given arguments will replace the initial
elements of that array; if no name is specified, all arrays are printed without their
values.
The behaviour of arguments after -A name or +A name depends on whether the
option KSH_ARRAYS is set. If it is not set, all arguments following name are treated
as values for the array, regardless of their form. If the option is set, normal option
processing continues at that point; only regular arguments are treated as values for
the array. This means that

set -A array -x -- foo

sets array to ‘-x -- foo’ if KSH_ARRAYS is not set, but sets the array to foo and
turns on the option ‘-x’ if it is set.
If the -A flag is not present, but there are arguments beyond the options, the posi-
tional parameters are set. If the option list (if any) is terminated by ‘--’, and there
are no further arguments, the positional parameters will be unset.
If no arguments and no ‘--’ are given, then the names and values of all parameters
are printed on the standard output. If the only argument is ‘+’, the names of all
parameters are printed.
For historical reasons, ‘set -’ is treated as ‘set +xv’ and ‘set - args’ as ‘set +xv
-- args’ when in any other emulation mode than zsh’s native mode.

setcap See Section 22.2 [The zsh/cap Module], page 228.

setopt [{+|-}options | {+|-}o option name] [name ...]
Set the options for the shell. All options specified either with flags or by name are
set.
If no arguments are supplied, the names of all options currently set are printed.
The form is chosen so as to minimize the differences from the default options for

Chapter 17: Shell Builtin Commands 106

the current emulation (the default emulation being native zsh, shown as <Z> in
Section 16.2 [Description of Options], page 72). Options that are on by default for
the emulation are shown with the prefix no only if they are off, while other options
are shown without the prefix no and only if they are on. In addition to options
changed from the default state by the user, any options activated automatically by
the shell (for example, SHIN_STDIN or INTERACTIVE) will be shown in the list. The
format is further modified by the option KSH_OPTION_PRINT, however the rationale
for choosing options with or without the no prefix remains the same in this case.
If the -m flag is given the arguments are taken as patterns (which should be quoted
to protect them from filename expansion), and all options with names matching
these patterns are set.

shift [n] [name ...]
The positional parameters ${n+1} ... are renamed to $1 ..., where n is an arithmetic
expression that defaults to 1. If any names are given then the arrays with these
names are shifted instead of the positional parameters.

source file [arg ...]
Same as ., except that the current directory is always searched and is always
searched first, before directories in $path.

stat See Section 22.21 [The zsh/stat Module], page 248.

suspend [-f]
Suspend the execution of the shell (send it a SIGTSTP) until it receives a SIGCONT.
Unless the -f option is given, this will refuse to suspend a login shell.

test [arg ...]
[[arg ...]]

Like the system version of test. Added for compatibility; use conditional expres-
sions instead (see Chapter 12 [Conditional Expressions], page 26). The main differ-
ences between the conditional expression syntax and the test and [builtins are:
these commands are not handled syntactically, so for example an empty variable
expansion may cause an argument to be omitted; syntax errors cause status 2 to be
returned instead of a shell error; and arithmetic operators expect integer arguments
rather than arithmetic expressions.
The command attempts to implement POSIX and its extensions where these are
specified. Unfortunately there are intrinsic ambiguities in the syntax; in particular
there is no distinction between test operators and strings that resemble them. The
standard attempts to resolve these for small numbers of arguments (up to four); for
five or more arguments compatibility cannot be relied on. Users are urged wherever
possible to use the ‘[[’ test syntax which does not have these ambiguities.

times Print the accumulated user and system times for the shell and for processes run
from the shell.

trap [arg] [sig ...]
arg is a series of commands (usually quoted to protect it from immediate evaluation
by the shell) to be read and executed when the shell receives any of the signals
specified by one or more sig args. Each sig can be given as a number, or as the
name of a signal either with or without the string SIG in front (e.g. 1, HUP, and
SIGHUP are all the same signal).
If arg is ‘-’, then the specified signals are reset to their defaults, or, if no sig args
are present, all traps are reset.
If arg is an empty string, then the specified signals are ignored by the shell (and by
the commands it invokes).

Chapter 17: Shell Builtin Commands 107

If arg is omitted but one or more sig args are provided (i.e. the first argument is a
valid signal number or name), the effect is the same as if arg had been specified as
‘-’.
The trap command with no arguments prints a list of commands associated with
each signal.
If sig is ZERR then arg will be executed after each command with a nonzero exit
status. ERR is an alias for ZERR on systems that have no SIGERR signal (this is the
usual case). If sig is DEBUG then arg will be executed after each command. If sig is
0 or EXIT and the trap statement is executed inside the body of a function, then
the command arg is executed after the function completes. The value of $? at the
start of execution is the exit status of the shell or the return status of the function
exiting. If sig is 0 or EXIT and the trap statement is not executed inside the body
of a function, then the command arg is executed when the shell terminates.
ZERR, DEBUG, and EXIT traps are not executed inside other traps.
Note that traps defined with the trap builtin are slightly different from those defined
as ‘TRAPNAL () { ... }’, as the latter have their own function environment (line
numbers, local variables, etc.) while the former use the environment of the command
in which they were called. For example,

trap ’print $LINENO’ DEBUG

will print the line number of a command executed after it has run, while
TRAPDEBUG() { print $LINENO; }

will always print the number zero.
Alternative signal names are allowed as described under kill above. Defining a
trap under either name causes any trap under an alternative name to be removed.
However, it is recommended that for consistency users stick exclusively to one name
or another.

true [arg ...]
Do nothing and return an exit status of 0.

ttyctl -fu
The -f option freezes the tty, and -u unfreezes it. When the tty is frozen, no changes
made to the tty settings by external programs will be honored by the shell, except
for changes in the size of the screen; the shell will simply reset the settings to their
previous values as soon as each command exits or is suspended. Thus, stty and
similar programs have no effect when the tty is frozen. Without options it reports
whether the terminal is frozen or not.

type [-wfpams] name ...
Equivalent to whence -v.

typeset [{+|-}AEFHUafghklprtuxmz] [-LRZi [n]] [name[=value] ...]
typeset -T [{+|-}Urux] [-LRZ [n]] SCALAR[=value] array [sep]

Set or display attributes and values for shell parameters.
A parameter is created for each name that does not already refer to one. When inside
a function, a new parameter is created for every name (even those that already exist),
and is unset again when the function completes. See Section 15.4 [Local Parameters],
page 63. The same rules apply to special shell parameters, which retain their special
attributes when made local.
For each name=value assignment, the parameter name is set to value. Note that ar-
rays currently cannot be assigned in typeset expressions, only scalars and integers.
Unless the option KSH_TYPESET is set, normal expansion rules apply to assignment

Chapter 17: Shell Builtin Commands 108

arguments, so value may be split into separate words; if the option is set, assign-
ments which can be recognised when expansion is performed are treated as single
words. For example the command typeset vbl=$(echo one two) is treated as
having one argument if KSH_TYPESET is set, but otherwise is treated as having the
two arguments vbl=one and two.

If the shell option TYPESET_SILENT is not set, for each remaining name that refers
to a parameter that is set, the name and value of the parameter are printed in the
form of an assignment. Nothing is printed for newly-created parameters, or when
any attribute flags listed below are given along with the name. Using ‘+’ instead of
minus to introduce an attribute turns it off.

If the -p option is given, parameters and values are printed in the form of a type-
set comand and an assignment (which will be printed separately for arrays and
associative arrays), regardless of other flags and options. Note that the -h flag on
parameters is respected; no value will be shown for these parameters.

If the -T option is given, two or three arguments must be present (an exception is
that zero arguments are allowed to show the list of parameters created in this fash-
ion). The first two are the name of a scalar and an array parameter (in that order)
that will be tied together in the manner of $PATH and $path. The optional third
argument is a single-character separator which will be used to join the elements of
the array to form the scalar; if absent, a colon is used, as with $PATH. Only the
first character of the separator is significant; any remaining characters are ignored.
Only the scalar parameter may be assigned an initial value. Both the scalar and
the array may otherwise be manipulated as normal. If one is unset, the other will
automatically be unset too. There is no way of untying the variables without unset-
ting them, or converting the type of one of them with another typeset command;
+T does not work, assigning an array to SCALAR is an error, and assigning a scalar
to array sets it to be a single-element array. Note that both ‘typeset -xT ...’
and ‘export -T ...’ work, but only the scalar will be marked for export. Setting
the value using the scalar version causes a split on all separators (which cannot be
quoted).

The -g (global) flag is treated specially: it means that any resulting parameter will
not be restricted to local scope. Note that this does not necessarily mean that the
parameter will be global, as the flag will apply to any existing parameter (even if
unset) from an enclosing function. This flag does not affect the parameter after
creation, hence it has no effect when listing existing parameters, nor does the flag
+g have any effect except in combination with -m (see below).

If no name is present, the names and values of all parameters are printed. In this
case the attribute flags restrict the display to only those parameters that have the
specified attributes, and using ‘+’ rather than ‘-’ to introduce the flag suppresses
printing of the values of parameters when there is no parameter name. Also, if the
last option is the word ‘+’, then names are printed but values are not.

If the -m flag is given the name arguments are taken as patterns (which should be
quoted). With no attribute flags, all parameters (or functions with the -f flag) with
matching names are printed (the shell option TYPESET_SILENT is not used in this
case). Note that -m is ignored if no patterns are given. If the +g flag is combined
with -m, a new local parameter is created for every matching parameter that is not
already local. Otherwise -m applies all other flags or assignments to the existing
parameters. Except when assignments are made with name=value, using +m forces
the matching parameters to be printed, even inside a function.

Chapter 17: Shell Builtin Commands 109

If no attribute flags are given and either no -m flag is present or the +m form was
used, each parameter name printed is preceded by a list of the attributes of that
parameter (array, association, exported, integer, readonly). If +m is used with
attribute flags, and all those flags are introduced with +, the matching parameter
names are printed but their values are not.
Attribute flags that transform the final value (-L, -R, -Z, -l, u) are only applied
to the expanded value at the point of a parameter expansion expression using ‘$’.
They are not applied when a parameter is retrieved internally by the shell for any
purpose.
The following attribute flags may be specified:

-A The names refer to associative array parameters; see Section 15.2 [Array
Parameters], page 58.

-L Left justify and remove leading blanks from value. If n is nonzero, it
defines the width of the field. If n is zero, the width is determined by
the width of the value of the first assignment. In the case of numeric
parameters, the length of the complete value assigned to the parameter
is used to determine the width, not the value that would be output.
The width is the count of characters, which may be multibyte characters
if the MULTIBYTE option is in effect. Note that the screen width of the
character is not taken into account; if this is required, use padding
with parameter expansion flags ${(ml...)...} as described in ‘Parameter
Expansion Flags’ in Section 14.3 [Parameter Expansion], page 36.
When the parameter is expanded, it is filled on the right with blanks
or truncated if necessary to fit the field. Note truncation can lead to
unexpected results with numeric parameters. Leading zeros are removed
if the -Z flag is also set.

-R Similar to -L, except that right justification is used; when the parameter
is expanded, the field is left filled with blanks or truncated from the end.
May not be combined with the -Z flag.

-U For arrays (but not for associative arrays), keep only the first occur-
rence of each duplicated value. This may also be set for colon-separated
special parameters like PATH or FIGNORE, etc. This flag has a different
meaning when used with -f; see below.

-Z Specially handled if set along with the -L flag. Otherwise, similar to -R,
except that leading zeros are used for padding instead of blanks if the
first non-blank character is a digit. Numeric parameters are specially
handled: they are always eligible for padding with zeroes, and the zeroes
are inserted at an appropriate place in the output.

-a The names refer to array parameters. An array parameter may be cre-
ated this way, but it may not be assigned to in the typeset statement.
When displaying, both normal and associative arrays are shown.

-f The names refer to functions rather than parameters. No assignments
can be made, and the only other valid flags are -t, -k, -u, -U and -z.
The flag -t turns on execution tracing for this function. The -u and
-U flags cause the function to be marked for autoloading; -U also causes
alias expansion to be suppressed when the function is loaded. The
fpath parameter will be searched to find the function definition when
the function is first referenced; see Chapter 9 [Functions], page 19. The

Chapter 17: Shell Builtin Commands 110

-k and -z flags make the function be loaded using ksh-style or zsh-
style autoloading respectively. If neither is given, the setting of the
KSH AUTOLOAD option determines how the function is loaded.

-h Hide: only useful for special parameters (those marked ‘<S>’ in the ta-
ble in Section 15.5 [Parameters Set By The Shell], page 63), and for
local parameters with the same name as a special parameter, though
harmless for others. A special parameter with this attribute will not re-
tain its special effect when made local. Thus after ‘typeset -h PATH’,
a function containing ‘typeset PATH’ will create an ordinary local pa-
rameter without the usual behaviour of PATH. Alternatively, the local
parameter may itself be given this attribute; hence inside a function
‘typeset -h PATH’ creates an ordinary local parameter and the special
PATH parameter is not altered in any way. It is also possible to create
a local parameter using ‘typeset +h special’, where the local copy of
special will retain its special properties regardless of having the -h at-
tribute. Global special parameters loaded from shell modules (currently
those in zsh/mapfile and zsh/parameter) are automatically given the
-h attribute to avoid name clashes.

-H Hide value: specifies that typeset will not display the value of the
parameter when listing parameters; the display for such parameters is
always as if the ‘+’ flag had been given. Use of the parameter is in
other respects normal, and the option does not apply if the parameter
is specified by name, or by pattern with the -m option. This is on
by default for the parameters in the zsh/parameter and zsh/mapfile
modules. Note, however, that unlike the -h flag this is also useful for
non-special parameters.

-i Use an internal integer representation. If n is nonzero it defines the out-
put arithmetic base, otherwise it is determined by the first assignment.

-E Use an internal double-precision floating point representation. On out-
put the variable will be converted to scientific notation. If n is nonzero
it defines the number of significant figures to display; the default is ten.

-F Use an internal double-precision floating point representation. On out-
put the variable will be converted to fixed-point decimal notation. If n
is nonzero it defines the number of digits to display after the decimal
point; the default is ten.

-l Convert the result to lower case whenever the parameter is expanded.
The value is not converted when assigned.

-r The given names are marked readonly. Note that if name is a special
parameter, the readonly attribute can be turned on, but cannot then
be turned off.

-t Tags the named parameters. Tags have no special meaning to the shell.
This flag has a different meaning when used with -f; see above.

-u Convert the result to upper case whenever the parameter is expanded.
The value is not converted when assigned. This flag has a different
meaning when used with -f; see above.

-x Mark for automatic export to the environment of subsequently executed
commands. If the option GLOBAL_EXPORT is set, this implies the option

Chapter 17: Shell Builtin Commands 111

-g, unless +g is also explicitly given; in other words the parameter is
not made local to the enclosing function. This is for compatibility with
previous versions of zsh.

ulimit [[-SHacdfilmnpqstvx | -N resource [limit] ...]
Set or display resource limits of the shell and the processes started by the shell. The
value of limit can be a number in the unit specified below or the value ‘unlimited’.
By default, only soft limits are manipulated. If the -H flag is given use hard limits
instead of soft limits. If the -S flag is given together with the -H flag set both hard
and soft limits. If no options are used, the file size limit (-f) is assumed. If limit is
omitted the current value of the specified resources are printed. When more than
one resource values are printed the limit name and unit is printed before each value.
When looping over multiple resources, the shell will abort immediately if it detects
a badly formed argument. However, if it fails to set a limit for some other reson it
will continue trying to set the remaining limits.

-a Lists all of the current resource limits.

-c 512-byte blocks on the size of core dumps.

-d K-bytes on the size of the data segment.

-f 512-byte blocks on the size of files written.

-i The number of pending signals.

-l K-bytes on the size of locked-in memory.

-m K-bytes on the size of physical memory.

-n open file descriptors.

-q Bytes in POSIX message queues.

-s K-bytes on the size of the stack.

-t CPU seconds to be used.

-u processes available to the user.

-v K-bytes on the size of virtual memory. On some systems this refers to
the limit called ‘address space’.

-x The number of locks on files.

A resource may also be specified by integer in the form ‘-N resource’, where resource
corresponds to the integer defined for the resource by the operating system. This
may be used to set the limits for resources known to the shell which do not cor-
respond to option letters. Such limits will be shown by number in the output of
‘ulimit -a’.
The number may alternatively be out of the range of limits compiled into the shell.
The shell will try to read or write the limit anyway, and will report an error if this
fails.

umask [-S] [mask]
The umask is set to mask. mask can be either an octal number or a symbolic value
as described in man page chmod(1). If mask is omitted, the current value is printed.
The -S option causes the mask to be printed as a symbolic value. Otherwise, the
mask is printed as an octal number. Note that in the symbolic form the permissions
you specify are those which are to be allowed (not denied) to the users specified.

unalias Same as unhash -a.

Chapter 17: Shell Builtin Commands 112

unfunction
Same as unhash -f.

unhash [-adfms] name ...
Remove the element named name from an internal hash table. The default is remove
elements from the command hash table. The -a option causes unhash to remove
regular or global aliases; note when removing a global aliases that the argument
must be quoted to prevent it from being expanded before being passed to the com-
mand. The -s option causes unhash to remove suffix aliases. The -f option causes
unhash to remove shell functions. The -d options causes unhash to remove named
directories. If the -m flag is given the arguments are taken as patterns (should be
quoted) and all elements of the corresponding hash table with matching names will
be removed.

unlimit [-hs] resource ...
The resource limit for each resource is set to the hard limit. If the -h flag is given
and the shell has appropriate privileges, the hard resource limit for each resource is
removed. The resources of the shell process are only changed if the -s flag is given.

unset [-fmv] name ...
Each named parameter is unset. Local parameters remain local even if unset; they
appear unset within scope, but the previous value will still reappear when the scope
ends.
Individual elements of associative array parameters may be unset by using subscript
syntax on name, which should be quoted (or the entire command prefixed with
noglob) to protect the subscript from filename generation.
If the -m flag is specified the arguments are taken as patterns (should be quoted)
and all parameters with matching names are unset. Note that this cannot be used
when unsetting associative array elements, as the subscript will be treated as part
of the pattern.
The -v flag specifies that name refers to parameters. This is the default behaviour.
unset -f is equivalent to unfunction.

unsetopt [{+|-}options | {+|-}o option name] [name ...]
Unset the options for the shell. All options specified either with flags or by name
are unset. If no arguments are supplied, the names of all options currently unset are
printed. If the -m flag is given the arguments are taken as patterns (which should be
quoted to preserve them from being interpreted as glob patterns), and all options
with names matching these patterns are unset.

vared See Section 18.3 [Zle Builtins], page 120.

wait [job ...]
Wait for the specified jobs or processes. If job is not given then all currently active
child processes are waited for. Each job can be either a job specification or the
process ID of a job in the job table. The exit status from this command is that of
the job waited for.

whence [-vcwfpams] name ...
For each name, indicate how it would be interpreted if used as a command name.

-v Produce a more verbose report.

-c Print the results in a csh-like format. This takes precedence over -v.

-w For each name, print ‘name: word’ where word is one of alias,
builtin, command, function, hashed, reserved or none, according

Chapter 17: Shell Builtin Commands 113

as name corresponds to an alias, a built-in command, an external com-
mand, a shell function, a command defined with the hash builtin, a
reserved word, or is not recognised. This takes precedence over -v and
-c.

-f Causes the contents of a shell function to be displayed, which would
otherwise not happen unless the -c flag were used.

-p Do a path search for name even if it is an alias, reserved word, shell
function or builtin.

-a Do a search for all occurrences of name throughout the command path.
Normally only the first occurrence is printed.

-m The arguments are taken as patterns (should be quoted), and the infor-
mation is displayed for each command matching one of these patterns.

-s If a pathname contains symlinks, print the symlink-free pathname as
well.

where [-wpms] name ...
Equivalent to whence -ca.

which [-wpams] name ...
Equivalent to whence -c.

zcompile [-U] [-z | -k] [-R | -M] file [name ...]
zcompile -ca [-m] [-R | -M] file [name ...]
zcompile -t file [name ...]

This builtin command can be used to compile functions or scripts, storing the com-
piled form in a file, and to examine files containing the compiled form. This allows
faster autoloading of functions and execution of scripts by avoiding parsing of the
text when the files are read.
The first form (without the -c, -a or -t options) creates a compiled file. If only
the file argument is given, the output file has the name ‘file.zwc’ and will be placed
in the same directory as the file. The shell will load the compiled file instead of
the normal function file when the function is autoloaded; see Chapter 9 [Functions],
page 19 for a description of how autoloaded functions are searched. The extension
.zwc stands for ‘zsh word code’.
If there is at least one name argument, all the named files are compiled into the
output file given as the first argument. If file does not end in .zwc, this extension
is automatically appended. Files containing multiple compiled functions are called
‘digest’ files, and are intended to be used as elements of the FPATH/fpath special
array.
The second form, with the -c or -a options, writes the compiled definitions for all
the named functions into file. For -c, the names must be functions currently defined
in the shell, not those marked for autoloading. Undefined functions that are marked
for autoloading may be written by using the -a option, in which case the fpath
is searched and the contents of the definition files for those functions, if found, are
compiled into file. If both -c and -a are given, names of both defined functions and
functions marked for autoloading may be given. In either case, the functions in files
written with the -c or -a option will be autoloaded as if the KSH_AUTOLOAD option
were unset.
The reason for handling loaded and not-yet-loaded functions with different options
is that some definition files for autoloading define multiple functions, including the

Chapter 17: Shell Builtin Commands 114

function with the same name as the file, and, at the end, call that function. In such
cases the output of ‘zcompile -c’ does not include the additional functions defined
in the file, and any other initialization code in the file is lost. Using ‘zcompile -a’
captures all this extra information.
If the -m option is combined with -c or -a, the names are used as patterns and all
functions whose names match one of these patterns will be written. If no name is
given, the definitions of all functions currently defined or marked as autoloaded will
be written.
The third form, with the -t option, examines an existing compiled file. Without
further arguments, the names of the original files compiled into it are listed. The
first line of output shows the version of the shell which compiled the file and how
the file will be used (i.e. by reading it directly or by mapping it into memory). With
arguments, nothing is output and the return status is set to zero if definitions for
all names were found in the compiled file, and non-zero if the definition for at least
one name was not found.
Other options:

-U Aliases are not expanded when compiling the named files.

-R When the compiled file is read, its contents are copied into the shell’s
memory, rather than memory-mapped (see -M). This happens automat-
ically on systems that do not support memory mapping.
When compiling scripts instead of autoloadable functions, it is often de-
sirable to use this option; otherwise the whole file, including the code to
define functions which have already been defined, will remain mapped,
consequently wasting memory.

-M The compiled file is mapped into the shell’s memory when read. This is
done in such a way that multiple instances of the shell running on the
same host will share this mapped file. If neither -R nor -M is given, the
zcompile builtin decides what to do based on the size of the compiled
file.

-k
-z These options are used when the compiled file contains functions which

are to be autoloaded. If -z is given, the function will be autoloaded
as if the KSH_AUTOLOAD option is not set, even if it is set at the time
the compiled file is read, while if the -k is given, the function will be
loaded as if KSH_AUTOLOAD is set. These options also take precedence
over any -k or -z options specified to the autoload builtin. If neither
of these options is given, the function will be loaded as determined by
the setting of the KSH_AUTOLOAD option at the time the compiled file is
read.
These options may also appear as many times as necessary between the
listed names to specify the loading style of all following functions, up
to the next -k or -z.

The created file always contains two versions of the compiled format, one for big-
endian machines and one for small-endian machines. The upshot of this is that the
compiled file is machine independent and if it is read or mapped, only one half of
the file is actually used (and mapped).

zformat See Section 22.34 [The zsh/zutil Module], page 264.

zftp See Section 22.28 [The zsh/zftp Module], page 254.

Chapter 17: Shell Builtin Commands 115

zle See Section 18.3 [Zle Builtins], page 120.

zmodload [-dL] [...]
zmodload -F [-lLe -P param] module [+-]feature...
zmodload -e [-A] [...]
zmodload [-a [-bcpf [-I]]] [-iL] ...
zmodload -u [-abcdpf [-I]] [-iL] ...
zmodload -A [-L] [modalias[=module] ...]
zmodload -R modalias ...

Performs operations relating to zsh’s loadable modules. Loading of modules while
the shell is running (‘dynamical loading’) is not available on all operating systems,
or on all installations on a particular operating system, although the zmodload
command itself is always available and can be used to manipulate modules built
into versions of the shell executable without dynamical loading.
Without arguments the names of all currently loaded binary modules are printed.
The -L option causes this list to be in the form of a series of zmodload commands.
Forms with arguments are:

zmodload [-i] name ...
zmodload -u [-i] name ...

In the simplest case, zmodload loads a binary module. The module
must be in a file with a name consisting of the specified name followed
by a standard suffix, usually ‘.so’ (‘.sl’ on HPUX). If the module to be
loaded is already loaded the duplicate module is ignored. If zmodload
detects an inconsistency, such as an invalid module name or circular
dependency list, the current code block is aborted. Hence ‘zmodload
module 2>/dev/null’ is sufficient to test whether a module is available.
If it is available, the module is loaded if necessary, while if it is not
available, non-zero status is silently returned. The option -i is accepted
for compatibility but has no effect.
The named module is searched for in the same way a command is, using
$module_path instead of $path. However, the path search is performed
even when the module name contains a ‘/’, which it usually does. There
is no way to prevent the path search.
If the module supports features (see below), zmodload tries to enable all
features when loading a module. If the module was successfully loaded
but not all features could be enabled, zmodload returns status 2.
With -u, zmodload unloads modules. The same name must be given
that was given when the module was loaded, but it is not necessary
for the module to exist in the filesystem. The -i option suppresses the
error if the module is already unloaded (or was never loaded).
Each module has a boot and a cleanup function. The module will not
be loaded if its boot function fails. Similarly a module can only be
unloaded if its cleanup function runs successfully.

zmodload -F [-alLe -P param] module [+-]feature...
zmodload -F allows more selective control over the features provided
by modules. With no options apart from -F, the module named module
is loaded, if it was not already loaded, and the list of features is set to
the required state. If no features are specified, the module is loaded,
if it was not already loaded, but the state of features is unchanged.
Each feature may be preceded by a + to turn the feature on, or - to
turn it off; the + is assumed if neither character is present. Any feature

Chapter 17: Shell Builtin Commands 116

not explicitly mentioned is left in its current state; if the module was
not previously loaded this means any such features will remain disabled.
The return status is zero if all features were set, 1 if the module failed to
load, and 2 if some features could not be set (for example, a parameter
couldn’t be added because there was a different parameter of the same
name) but the module was loaded.

The standard features are builtins, conditions, parameters and math
functions; these are indicated by the prefix ‘b:’, ‘c:’ (‘C:’ for an infix
condition), ‘p:’ and ‘f:’, respectively, followed by the name that the cor-
responding feature would have in the shell. For example, ‘b:strftime’
indicates a builtin named strftime and p:EPOCHSECONDS indicates a
parameter named EPOCHSECONDS. The module may provide other (‘ab-
stract’) features of its own as indicated by its documentation; these have
no prefix.

With -l or -L, features provided by the module are listed. With -l
alone, a list of features together with their states is shown, one feature
per line. With -L alone, a zmodload -F command that would cause
enabled features of the module to be turned on is shown. With -lL, a
zmodload -F command that would cause all the features to be set to
their current state is shown. If one of these combinations is given the
option -P param then the parameter param is set to an array of features,
either features together with their state or (if -L alone is given) enabled
features.

With the option -L the module name may be omitted; then a list of
all enabled features for all modules providing features is printed in the
form of zmodload -F commands. If -l is also given, the state of both
enabled and disabled features is output in that form.

A set of features may be provided together with -l or -L and a module
name; in that case only the state of those features is considered. Each
feature may be preceded by + or - but the character has no effect. If
no set of features is provided, all features are considered.

With -e, the command first tests that the module is loaded; if it is not,
status 1 is returned. If the module is loaded, the list of features given
as an argument is examined. Any feature given with no prefix is simply
tested to see if the module provides it; any feature given with a prefix
+ or - is tested to see if is provided and in the given state. If the tests
on all features in the list succeed, status 0 is returned, else status 1.

With -a, the given list of features is marked for autoload from the
specified module, which may not yet be loaded. An optional + may
appear before the feature name. If the feature is prefixed with -, any
existing autoload is removed. The options -l and -L may be used
to list autoloads. Autoloading is specific to individual features; when
the module is loaded only the requested feature is enabled. Autoload
requests are preserved if the module is subsequently unloaded until an
explicit ‘zmodload -Fa module -feature’ is issued. It is not an error to
request an autoload for a feature of a module that is already loaded.

When the module is loaded each autoload is checked against the fea-
tures actually provided by the module; if the feature is not provided
the autoload request is deleted. A warning message is output; if the
module is being loaded to provide a different feature, and that autoload

Chapter 17: Shell Builtin Commands 117

is successful, there is no effect on the status of the current command.
If the module is already loaded at the time when zmodload -Fa is run,
an error message is printed and status 1 returned.
zmodload -Fa can be used with the -l, -L, -e and -P options for listing
and testing the existence of autoloadable features. In this case -l is
ignored if -L is specified. zmodload -FaL with no module name lists
autoloads for all modules.
Note that only standard features as described above can be autoloaded;
other features require the module to be loaded before enabling.

zmodload -d [-L] [name]
zmodload -d name dep ...
zmodload -ud name [dep ...]

The -d option can be used to specify module dependencies. The modules
named in the second and subsequent arguments will be loaded before
the module named in the first argument.
With -d and one argument, all dependencies for that module are listed.
With -d and no arguments, all module dependencies are listed. This
listing is by default in a Makefile-like format. The -L option changes
this format to a list of zmodload -d commands.
If -d and -u are both used, dependencies are removed. If only one
argument is given, all dependencies for that module are removed.

zmodload -ab [-L]
zmodload -ab [-i] name [builtin ...]
zmodload -ub [-i] builtin ...

The -ab option defines autoloaded builtins. It defines the specified
builtins. When any of those builtins is called, the module specified
in the first argument is loaded and all its features are enabled (for
selective control of features use ‘zmodload -F -a’ as described above).
If only the name is given, one builtin is defined, with the same name
as the module. -i suppresses the error if the builtin is already defined
or autoloaded, but not if another builtin of the same name is already
defined.
With -ab and no arguments, all autoloaded builtins are listed, with the
module name (if different) shown in parentheses after the builtin name.
The -L option changes this format to a list of zmodload -a commands.
If -b is used together with the -u option, it removes builtins previously
defined with -ab. This is only possible if the builtin is not yet loaded. -i
suppresses the error if the builtin is already removed (or never existed).
Autoload requests are retained if the module is subsequently unloaded
until an explicit ‘zmodload -ub builtin’ is issued.

zmodload -ac [-IL]
zmodload -ac [-iI] name [cond ...]
zmodload -uc [-iI] cond ...

The -ac option is used to define autoloaded condition codes. The cond
strings give the names of the conditions defined by the module. The
optional -I option is used to define infix condition names. Without this
option prefix condition names are defined.
If given no condition names, all defined names are listed (as a series of
zmodload commands if the -L option is given).

Chapter 17: Shell Builtin Commands 118

The -uc option removes definitions for autoloaded conditions.

zmodload -ap [-L]
zmodload -ap [-i] name [parameter ...]
zmodload -up [-i] parameter ...

The -p option is like the -b and -c options, but makes zmodload work
on autoloaded parameters instead.

zmodload -af [-L]
zmodload -af [-i] name [function ...]
zmodload -uf [-i] function ...

The -f option is like the -b, -p, and -c options, but makes zmodload
work on autoloaded math functions instead.

zmodload -a [-L]
zmodload -a [-i] name [builtin ...]
zmodload -ua [-i] builtin ...

Equivalent to -ab and -ub.

zmodload -e [-A] [string ...]
The -e option without arguments lists all loaded modules; if the -A
option is also given, module aliases corresponding to loaded modules
are also shown. If arguments are provided, nothing is printed; the re-
turn status is set to zero if all strings given as arguments are names of
loaded modules and to one if at least on string is not the name of a
loaded module. This can be used to test for the availability of things
implemented by modules. In this case, any aliases are automatically
resolved and the -A flag is not used.

zmodload -A [-L] [modalias[=module] ...]
For each argument, if both modalias and module are given, define
modalias to be an alias for the module module. If the module modalias
is ever subsequently requested, either via a call to zmodload or implic-
itly, the shell will attempt to load module instead. If module is not
given, show the definition of modalias. If no arguments are given, list
all defined module aliases. When listing, if the -L flag was also given,
list the definition as a zmodload command to recreate the alias.
The existence of aliases for modules is completely independent of
whether the name resolved is actually loaded as a module: while the
alias exists, loading and unloading the module under any alias has ex-
actly the same effect as using the resolved name, and does not affect
the connection between the alias and the resolved name which can be
removed either by zmodload -R or by redefining the alias. Chains of
aliases (i.e. where the first resolved name is itself an alias) are valid so
long as these are not circular. As the aliases take the same format as
module names, they may include path separators: in this case, there is
no requirement for any part of the path named to exist as the alias will
be resolved first. For example, ‘any/old/alias’ is always a valid alias.
Dependencies added to aliased modules are actually added to the re-
solved module; these remain if the alias is removed. It is valid to create
an alias whose name is one of the standard shell modules and which
resolves to a different module. However, if a module has dependencies,
it will not be possible to use the module name as an alias as the module
will already be marked as a loadable module in its own right.

Chapter 18: Zsh Line Editor 119

Apart from the above, aliases can be used in the zmodload command
anywhere module names are required. However, aliases will not be
shown in lists of loaded modules with a bare ‘zmodload’.

zmodload -R modalias ...
For each modalias argument that was previously defined as a module
alias via zmodload -A, delete the alias. If any was not defined, an error
is caused and the remainder of the line is ignored.

Note that zsh makes no distinction between modules that were linked into the shell
and modules that are loaded dynamically. In both cases this builtin command has to
be used to make available the builtins and other things defined by modules (unless
the module is autoloaded on these definitions). This is true even for systems that
don’t support dynamic loading of modules.

zparseopts
See Section 22.34 [The zsh/zutil Module], page 264.

zprof See Section 22.31 [The zsh/zprof Module], page 261.

zpty See Section 22.32 [The zsh/zpty Module], page 262.

zregexparse
See Section 22.34 [The zsh/zutil Module], page 264.

zsocket See Section 22.20 [The zsh/net/socket Module], page 247.

zstyle See Section 22.34 [The zsh/zutil Module], page 264.

ztcp See Section 22.25 [The zsh/net/tcp Module], page 251.

18 Zsh Line Editor

18.1 Description

If the ZLE option is set (which it is by default in interactive shells) and the shell input is attached
to the terminal, the user is able to edit command lines.
There are two display modes. The first, multiline mode, is the default. It only works if the TERM
parameter is set to a valid terminal type that can move the cursor up. The second, single line
mode, is used if TERM is invalid or incapable of moving the cursor up, or if the SINGLE_LINE_ZLE
option is set. This mode is similar to ksh, and uses no termcap sequences. If TERM is "emacs",
the ZLE option will be unset by default.
The parameters BAUD, COLUMNS, and LINES are also used by the line editor. Section 15.6 [Pa-
rameters Used By The Shell], page 66.

18.2 Keymaps

A keymap in ZLE contains a set of bindings between key sequences and ZLE commands. The
empty key sequence cannot be bound.
There can be any number of keymaps at any time, and each keymap has one or more names. If
all of a keymap’s names are deleted, it disappears. bindkey can be used to manipulate keymap
names.
Initially, there are four keymaps:

emacs EMACS emulation

Chapter 18: Zsh Line Editor 120

viins vi emulation - insert mode

vicmd vi emulation - command mode

.safe fallback keymap

The ‘.safe’ keymap is special. It can never be altered, and the name can never be removed.
However, it can be linked to other names, which can be removed. In the future other special
keymaps may be added; users should avoid using names beginning with ‘.’ for their own keymaps.

In addition to these four names, either ‘emacs’ or ‘viins’ is also linked to the name ‘main’. If
one of the VISUAL or EDITOR environment variables contain the string ‘vi’ when the shell starts
up then it will be ‘viins’, otherwise it will be ‘emacs’. bindkey’s -e and -v options provide a
convenient way to override this default choice.

When the editor starts up, it will select the ‘main’ keymap. If that keymap doesn’t exist, it will
use ‘.safe’ instead.

In the ‘.safe’ keymap, each single key is bound to self-insert, except for ^J (line feed) and
^M (return) which are bound to accept-line. This is deliberately not pleasant to use; if you
are using it, it means you deleted the main keymap, and you should put it back.

18.2.1 Reading Commands

When ZLE is reading a command from the terminal, it may read a sequence that is bound to
some command and is also a prefix of a longer bound string. In this case ZLE will wait a certain
time to see if more characters are typed, and if not (or they don’t match any longer string) it
will execute the binding. This timeout is defined by the KEYTIMEOUT parameter; its default is
0.4 sec. There is no timeout if the prefix string is not itself bound to a command.

The key timeout is also applied when ZLE is reading the bytes from a multibyte character string
when it is in the appropriate mode. (This requires that the shell was compiled with multibyte
mode enabled; typically also the locale has characters with the UTF-8 encoding, although any
multibyte encoding known to the operating system is supported.) If the second or a subsequent
byte is not read within the timeout period, the shell acts as if ? were typed and resets the input
state.

As well as ZLE commands, key sequences can be bound to other strings, by using ‘bindkey
-s’. When such a sequence is read, the replacement string is pushed back as input, and the
command reading process starts again using these fake keystrokes. This input can itself invoke
further replacement strings, but in order to detect loops the process will be stopped if there are
twenty such replacements without a real command being read.

A key sequence typed by the user can be turned into a command name for use in user-defined
widgets with the read-command widget, described in Section 18.6.6 [Miscellaneous], page 140
below.

18.3 Zle Builtins

The ZLE module contains three related builtin commands. The bindkey command manipulates
keymaps and key bindings; the vared command invokes ZLE on the value of a shell parameter;
and the zle command manipulates editing widgets and allows command line access to ZLE
commands from within shell functions.

Chapter 18: Zsh Line Editor 121

bindkey [options] -l
bindkey [options] -d
bindkey [options] -D keymap ...
bindkey [options] -A old-keymap new-keymap
bindkey [options] -N new-keymap [old-keymap]
bindkey [options] -m
bindkey [options] -r in-string ...
bindkey [options] -s in-string out-string ...
bindkey [options] in-string command ...
bindkey [options] [in-string]

bindkey’s options can be divided into three categories: keymap selection, operation
selection, and others. The keymap selection options are:

-e Selects keymap ‘emacs’, and also links it to ‘main’.

-v Selects keymap ‘viins’, and also links it to ‘main’.

-a Selects keymap ‘vicmd’.

-M keymap
The keymap specifies a keymap name.

If a keymap selection is required and none of the options above are used, the ‘main’
keymap is used. Some operations do not permit a keymap to be selected, namely:

-l List all existing keymap names. If the -L option is also used, list in the
form of bindkey commands to create the keymaps.

-d Delete all existing keymaps and reset to the default state.

-D keymap ...
Delete the named keymaps.

-A old-keymap new-keymap
Make the new-keymap name an alias for old-keymap, so that both names
refer to the same keymap. The names have equal standing; if either is
deleted, the other remains. If there is already a keymap with the new-
keymap name, it is deleted.

-N new-keymap [old-keymap]
Create a new keymap, named new-keymap. If a keymap already has
that name, it is deleted. If an old-keymap name is given, the new
keymap is initialized to be a duplicate of it, otherwise the new keymap
will be empty.

To use a newly created keymap, it should be linked to main. Hence the sequence
of commands to create and use a new keymap ‘mymap’ initialized from the emacs
keymap (which remains unchanged) is:

bindkey -N mymap emacs
bindkey -A mymap main

Note that while ‘bindkey -A newmap main’ will work when newmap is emacs or
viins, it will not work for vicmd, as switching from vi insert to command mode
becomes impossible.
The following operations act on the ‘main’ keymap if no keymap selection option
was given:

-m Add the built-in set of meta-key bindings to the selected keymap. Only
keys that are unbound or bound to self-insert are affected.

Chapter 18: Zsh Line Editor 122

-r in-string ...
Unbind the specified in-strings in the selected keymap. This is exactly
equivalent to binding the strings to undefined-key.
When -R is also used, interpret the in-strings as ranges.
When -p is also used, the in-strings specify prefixes. Any binding that
has the given in-string as a prefix, not including the binding for the
in-string itself, if any, will be removed. For example,

bindkey -rpM viins ’^[’

will remove all bindings in the vi-insert keymap beginning with an es-
cape character (probably cursor keys), but leave the binding for the
escape character itself (probably vi-cmd-mode). This is incompatible
with the option -R.

-s in-string out-string ...
Bind each in-string to each out-string. When in-string is typed, out-
string will be pushed back and treated as input to the line editor. When
-R is also used, interpret the in-strings as ranges.

in-string command ...
Bind each in-string to each command. When -R is used, interpret the
in-strings as ranges.

[in-string]
List key bindings. If an in-string is specified, the binding of that string
in the selected keymap is displayed. Otherwise, all key bindings in
the selected keymap are displayed. (As a special case, if the -e or -v
option is used alone, the keymap is not displayed - the implicit linking
of keymaps is the only thing that happens.)
When the option -p is used, the in-string must be present. The listing
shows all bindings which have the given key sequence as a prefix, not
including any bindings for the key sequence itself.
When the -L option is used, the list is in the form of bindkey commands
to create the key bindings.

When the -R option is used as noted above, a valid range consists of two charac-
ters, with an optional ‘-’ between them. All characters between the two specified,
inclusive, are bound as specified.
For either in-string or out-string, the following escape sequences are recognised:

\a bell character

\b backspace

\e, \E escape

\f form feed

\n linefeed (newline)

\r carriage return

\t horizontal tab

\v vertical tab

\NNN character code in octal

\xNN character code in hexadecimal

Chapter 18: Zsh Line Editor 123

\M[-]X character with meta bit set

\C[-]X control character

^X control character

In all other cases, ‘\’ escapes the following character. Delete is written as ‘^?’.
Note that ‘\M^?’ and ‘^\M?’ are not the same, and that (unlike emacs), the bindings
‘\M-X ’ and ‘\eX ’ are entirely distinct, although they are initialized to the same
bindings by ‘bindkey -m’.

vared [-Aache] [-p prompt] [-r rprompt]
[-M main-keymap] [-m vicmd-keymap] name

The value of the parameter name is loaded into the edit buffer, and the line editor
is invoked. When the editor exits, name is set to the string value returned by the
editor. When the -c flag is given, the parameter is created if it doesn’t already
exist. The -a flag may be given with -c to create an array parameter, or the -A flag
to create an associative array. If the type of an existing parameter does not match
the type to be created, the parameter is unset and recreated.
If an array or array slice is being edited, separator characters as defined in $IFS will
be shown quoted with a backslash, as will backslashes themselves. Conversely, when
the edited text is split into an array, a backslash quotes an immediately following
separator character or backslash; no other special handling of backslashes, or any
handling of quotes, is performed.
Individual elements of existing array or associative array parameters may be edited
by using subscript syntax on name. New elements are created automatically, even
without -c.
If the -p flag is given, the following string will be taken as the prompt to display
at the left. If the -r flag is given, the following string gives the prompt to display
at the right. If the -h flag is specified, the history can be accessed from ZLE. If
the -e flag is given, typing ^D (Control-D) on an empty line causes vared to exit
immediately with a non-zero return value.
The -M option gives a keymap to link to the main keymap during editing, and the
-m option gives a keymap to link to the vicmd keymap during editing. For vi-style
editing, this allows a pair of keymaps to override viins and vicmd. For emacs-style
editing, only -M is normally needed but the -m option may still be used. On exit,
the previous keymaps will be restored.

zle
zle -l [-L | -a] [string ...]
zle -D widget ...
zle -A old-widget new-widget
zle -N widget [function]
zle -C widget completion-widget function
zle -R [-c] [display-string] [string ...]
zle -M string
zle -U string
zle -K keymap
zle -F [-L] [fd [handler]]
zle -I
zle widget [-n num] [-Nw] [-K keymap] args ...

The zle builtin performs a number of different actions concerning ZLE.
With no options and no arguments, only the return status will be set. It is zero if
ZLE is currently active and widgets could be invoked using this builtin command

Chapter 18: Zsh Line Editor 124

and non-zero otherwise. Note that even if non-zero status is returned, zle may still
be active as part of the completion system; this does not allow direct calls to ZLE
widgets.
Otherwise, which operation it performs depends on its options:

-l [-L | -a]
List all existing user-defined widgets. If the -L option is used, list in
the form of zle commands to create the widgets.
When combined with the -a option, all widget names are listed, includ-
ing the builtin ones. In this case the -L option is ignored.
If at least one string is given, nothing will be printed but the return
status will be zero if all strings are names of existing widgets (or of
user-defined widgets if the -a flag is not given) and non-zero if at least
one string is not a name of an defined widget.

-D widget ...
Delete the named widgets.

-A old-widget new-widget
Make the new-widget name an alias for old-widget, so that both names
refer to the same widget. The names have equal standing; if either is
deleted, the other remains. If there is already a widget with the new-
widget name, it is deleted.

-N widget [function]
Create a user-defined widget. If there is already a widget with the
specified name, it is overwritten. When the new widget is invoked from
within the editor, the specified shell function is called. If no function
name is specified, it defaults to the same name as the widget. For further
information, see the section Widgets in Chapter 18 [Zsh Line Editor],
page 119.

-C widget completion-widget function
Create a user-defined completion widget named widget. The comple-
tion widget will behave like the built-in completion-widget whose name
is given as completion-widget. To generate the completions, the shell
function function will be called. For further information, see Chapter 19
[Completion Widgets], page 144.

-R [-c] [display-string] [string ...]
Redisplay the command line; this is to be called from within a user-
defined widget to allow changes to become visible. If a display-string
is given and not empty, this is shown in the status line (immediately
below the line being edited).
If the optional strings are given they are listed below the prompt in the
same way as completion lists are printed. If no strings are given but
the -c option is used such a list is cleared.
Note that this option is only useful for widgets that do not exit im-
mediately after using it because the strings displayed will be erased
immediately after return from the widget.
This command can safely be called outside user defined widgets; if zle
is active, the display will be refreshed, while if zle is not active, the
command has no effect. In this case there will usually be no other
arguments.

Chapter 18: Zsh Line Editor 125

The status is zero if zle was active, else one.

-M string As with the -R option, the string will be displayed below the command
line; unlike the -R option, the string will not be put into the status line
but will instead be printed normally below the prompt. This means
that the string will still be displayed after the widget returns (until it
is overwritten by subsequent commands).

-U string This pushes the characters in the string onto the input stack of ZLE.
After the widget currently executed finishes ZLE will behave as if the
characters in the string were typed by the user.
As ZLE uses a stack, if this option is used repeatedly the last string
pushed onto the stack will be processed first. However, the characters
in each string will be processed in the order in which they appear in the
string.

-K keymap
Selects the keymap named keymap. An error message will be displayed
if there is no such keymap.
This keymap selection affects the interpretation of following keystrokes
within this invocation of ZLE. Any following invocation (e.g., the next
command line) will start as usual with the ‘main’ keymap selected.

-F [-L] [fd [handler]]
Only available if your system supports one of the ‘poll’ or ‘select’ system
calls; most modern systems do.
Installs handler (the name of a shell function) to handle input from file
descriptor fd. When zle is attempting to read data, it will examine both
the terminal and the list of handled fd’s. If data becomes available on
a handled fd, zle will call handler with the fd which is ready for reading
as the only argument. If the handler produces output to the terminal,
it should call ‘zle -I’ before doing so (see below). The handler should
not attempt to read from the terminal. Note that zle makes no attempt
to check whether this fd is actually readable when installing the han-
dler. The user must make their own arrangements for handling the file
descriptor when zle is not active.
Any number of handlers for any number of readable file descriptors may
be installed. Installing a handler for an fd which is already handled
causes the existing handler to be replaced.
If no handler is given, but an fd is present, any handler for that fd is
removed. If there is none, an error message is printed and status 1 is
returned.
If no arguments are given, or the -L option is supplied, a list of handlers
is printed in a form which can be stored for later execution.
An fd (but not a handler) may optionally be given with the -L option;
in this case, the function will list the handler if any, else silently return
status 1.
Note that this feature should be used with care. Activity on one of the
fd’s which is not properly handled can cause the terminal to become
unusable.
Here is a simple example of using this feature. A connection to a remote
TCP port is created using the ztcp command; see Section 22.25 [The

Chapter 18: Zsh Line Editor 126

zsh/net/tcp Module], page 251. Then a handler is installed which simply
prints out any data which arrives on this connection. Note that ‘select’
will indicate that the file descriptor needs handling if the remote side
has closed the connection; we handle that by testing for a failed read.

if ztcp pwspc 2811; then
tcpfd=$REPLY
handler() {
zle -I
local line
if ! read -r line <&$1; then
select marks this fd if we reach EOF,
so handle this specially.
print "[Read on fd $1 failed, removing.]" >&2
zle -F $1
return 1

fi
print -r - $line

}
zle -F $tcpfd handler

fi

-I Unusually, this option is most useful outside ordinary widget functions,
though it may be used within if normal output to the terminal is re-
quired. It invalidates the current zle display in preparation for output;
typically this will be from a trap function. It has no effect if zle is not
active. When a trap exits, the shell checks to see if the display needs
restoring, hence the following will print output in such a way as not to
disturb the line being edited:

TRAPUSR1() {
Invalidate zle display

[[-o zle]] && zle -I
Show output

print Hello
}

In general, the trap function may need to test whether zle is active before
using this method (as shown in the example), since the zsh/zle module
may not even be loaded; if it is not, the command can be skipped.
It is possible to call ‘zle -I’ several times before control is returned to
the editor; the display will only be invalidated the first time to minimise
disruption.
Note that there are normally better ways of manipulating the display
from within zle widgets; see, for example, ‘zle -R’ above.
The returned status is zero if zle was invalidated, even though this may
have been by a previous call to ‘zle -I’ or by a system notification.
To test if a zle widget may be called at this point, execute zle with no
arguments and examine the return status.

widget [-n num] [-Nw] [-K keymap] args ...
Invoke the specified widget. This can only be done when ZLE is active;
normally this will be within a user-defined widget.
With the options -n and -N, the current numerical argument will be
saved and then restored after the call to widget; ‘-n num’ sets the

Chapter 18: Zsh Line Editor 127

numerical argument temporarily to num, while ‘-N’ sets it to the default,
i.e. as if there were none.

With the option -K, keymap will be used as the current keymap during
the execution of the widget. The previous keymap will be restored when
the widget exits.

Normally, calling a widget in this way does not set the special parameter
WIDGET and related parameters, so that the environment appears as if
the top-level widget called by the user were still active. With the option
-w, WIDGET and related parameters are set to reflect the widget being
executed by the zle call.

Any further arguments will be passed to the widget; note that as stan-
dard argument handling is performed, any general argument list should
be preceded by --. If it is a shell function, these are passed down as
positional parameters; for builtin widgets it is up to the widget in ques-
tion what it does with them. Currently arguments are only handled by
the incremental-search commands, the history-search-forward and
-backward and the corresponding functions prefixed by vi-, and by
universal-argument. No error is flagged if the command does not use
the arguments, or only uses some of them.

The return status reflects the success or failure of the operation carried
out by the widget, or if it is a user-defined widget the return status of
the shell function.

A non-zero return status causes the shell to beep when the widget exits,
unless the BEEP options was unset or the widget was called via the zle
command. Thus if a user defined widget requires an immediate beep, it
should call the beep widget directly.

18.4 Widgets

All actions in the editor are performed by ‘widgets’. A widget’s job is simply to perform some
small action. The ZLE commands that key sequences in keymaps are bound to are in fact
widgets. Widgets can be user-defined or built in.

The standard widgets built in to ZLE are listed in Standard Widgets below. Other built-in
widgets can be defined by other modules (see Chapter 22 [Zsh Modules], page 227). Each built-
in widget has two names: its normal canonical name, and the same name preceded by a ‘.’. The
‘.’ name is special: it can’t be rebound to a different widget. This makes the widget available
even when its usual name has been redefined.

User-defined widgets are defined using ‘zle -N’, and implemented as shell functions. When the
widget is executed, the corresponding shell function is executed, and can perform editing (or
other) actions. It is recommended that user-defined widgets should not have names starting
with ‘.’.

18.5 User-Defined Widgets

User-defined widgets, being implemented as shell functions, can execute any normal shell com-
mand. They can also run other widgets (whether built-in or user-defined) using the zle builtin
command. The standard input of the function is closed to prevent external commands from
unintentionally blocking ZLE by reading from the terminal, but read -k or read -q can be
used to read characters. Finally, they can examine and edit the ZLE buffer being edited by
reading and setting the special parameters described below.

Chapter 18: Zsh Line Editor 128

These special parameters are always available in widget functions, but are not in any way special
outside ZLE. If they have some normal value outside ZLE, that value is temporarily inaccessible,
but will return when the widget function exits. These special parameters in fact have local scope,
like parameters created in a function using local.
Inside completion widgets and traps called while ZLE is active, these parameters are available
read-only.

BUFFER (scalar)
The entire contents of the edit buffer. If it is written to, the cursor remains at the
same offset, unless that would put it outside the buffer.

BUFFERLINES (integer)
The number of screen lines needed for the edit buffer currently displayed on screen
(i.e. without any changes to the preceding parameters done after the last redisplay);
read-only.

CONTEXT (scalar)
The context in which zle was called to read a line; read-only. One of the values:

start The start of a command line (at prompt PS1).

cont A continuation to a command line (at prompt PS2).

select In a select loop.

vared Editing a variable in vared.

CURSOR (integer)
The offset of the cursor, within the edit buffer. This is in the range 0 to $#BUFFER,
and is by definition equal to $#LBUFFER. Attempts to move the cursor outside the
buffer will result in the cursor being moved to the appropriate end of the buffer.

CUTBUFFER (scalar)
The last item to be cut using one of the ‘kill-’ commands; the string which the
next yank would insert in the line. Later entries in the kill ring are in the array
killring. Note that the command ‘zle copy-region-as-kill string ’ can be used
to set the text of the cut buffer from a shell function and cycle the kill ring in the
same way as interactively killing text.

HISTNO (integer)
The current history number. Setting this has the same effect as moving up or down
in the history to the corresponding history line. An attempt to set it is ignored if
the line is not stored in the history. Note this is not the same as the parameter
HISTCMD, which always gives the number of the history line being added to the main
shell’s history. HISTNO refers to the line being retrieved within zle.

KEYMAP (scalar)
The name of the currently selected keymap; read-only.

KEYS (scalar)
The keys typed to invoke this widget, as a literal string; read-only.

killring (array)
The array of previously killed items, with the most recently killed first. This gives
the items that would be retrieved by a yank-pop in the same order. Note, however,
that the most recently killed item is in $CUTBUFFER; $killring shows the array of
previous entries.
The default size for the kill ring is eight, however the length may be changed by
normal array operations. Any empty string in the kill ring is ignored by the yank-
pop command, hence the size of the array effectively sets the maximum length of

Chapter 18: Zsh Line Editor 129

the kill ring, while the number of non-zero strings gives the current length, both as
seen by the user at the command line.

LASTSEARCH (scalar)
The last search string used by an interactive search ; read-only.

LASTWIDGET (scalar)
The name of the last widget that was executed; read-only.

LBUFFER (scalar)
The part of the buffer that lies to the left of the cursor position. If it is assigned
to, only that part of the buffer is replaced, and the cursor remains between the new
$LBUFFER and the old $RBUFFER.

MARK (integer)
Like CURSOR, but for the mark.

NUMERIC (integer)
The numeric argument. If no numeric argument was given, this parameter is unset.
When this is set inside a widget function, builtin widgets called with the zle builtin
command will use the value assigned. If it is unset inside a widget function, builtin
widgets called behave as if no numeric argument was given.

PENDING (integer)
The number of bytes pending for input, i.e. the number of bytes which have already
been typed and can immediately be read. On systems where the shell is not able to
get this information, this parameter will always have a value of zero. Read-only.

PREBUFFER (scalar)
In a multi-line input at the secondary prompt, this read-only parameter contains
the contents of the lines before the one the cursor is currently in.

PREDISPLAY (scalar)
Text to be displayed before the start of the editable text buffer. This does not
have to be a complete line; to display a complete line, a newline must be appended
explicitly. The text is reset on each new invocation (but not recursive invocation)
of zle.

POSTDISPLAY (scalar)
Text to be displayed after the end of the editable text buffer. This does not have
to be a complete line; to display a complete line, a newline must be prepended
explicitly. The text is reset on each new invocation (but not recursive invocation)
of zle.

RBUFFER (scalar)
The part of the buffer that lies to the right of the cursor position. If it is assigned
to, only that part of the buffer is replaced, and the cursor remains between the old
$LBUFFER and the new $RBUFFER.

WIDGET (scalar)
The name of the widget currently being executed; read-only.

WIDGETFUNC (scalar)
The name of the shell function that implements a widget defined with either zle -N
or zle -C. In the former case, this is the second argument to the zle -N command
that defined the widget, or the first argument if there was no second argument. In
the latter case this is the the third argument to the zle -C command that defined
the widget. Read-only.

Chapter 18: Zsh Line Editor 130

WIDGETSTYLE (scalar)
Describes the implementation behind the completion widget currently being exe-
cuted; the second argument that followed zle -C when the widget was defined.
This is the name of a builtin completion widget. For widgets defined with zle -N
this is set to the empty string. Read-only.

18.5.1 Special Widgets

There are a few user-defined widgets which are special to the shell. If they do not exist, no
special action is taken. The environment provided is identical to that for any other editing
widget.

zle-line-init
Executed every time the line editor is started to read a new line of input. The
following example puts the line editor into vi command mode when it starts up.

zle-line-init() { zle -K vicmd; }
zle -N zle-line-init

(The command inside the function sets the keymap directly; it is equivalent to zle
vi-cmd-mode.)

zle-keymap-select
Executed every time the keymap changes, i.e. the special parameter KEYMAP is set
to a different value, while the line editor is active. Initialising the keymap when the
line editor starts does not cause the widget to be called.
The value $KEYMAP within the function reflects the new keymap. The old keymap
is passed as the sole argument.
This can been used for detecting switches between the vi command (vicmd) and
insert (usually main) keymaps.

18.6 Standard Widgets

The following is a list of all the standard widgets, and their default bindings in emacs mode, vi
command mode and vi insert mode (the ‘emacs’, ‘vicmd’ and ‘viins’ keymaps, respectively).
Note that cursor keys are bound to movement keys in all three keymaps; the shell assumes that
the cursor keys send the key sequences reported by the terminal-handling library (termcap or
terminfo). The key sequences shown in the list are those based on the VT100, common on many
modern terminals, but in fact these are not necessarily bound. In the case of the viins keymap,
the initial escape character of the sequences serves also to return to the vicmd keymap: whether
this happens is determined by the KEYTIMEOUT parameter, see Chapter 15 [Parameters], page 57.

18.6.1 Movement

vi-backward-blank-word (unbound) (B) (unbound)
Move backward one word, where a word is defined as a series of non-blank characters.

backward-char (^B ESC-[D) (unbound) (unbound)
Move backward one character.

vi-backward-char (unbound) (^H h ^?) (ESC-[D)
Move backward one character, without changing lines.

backward-word (ESC-B ESC-b) (unbound) (unbound)
Move to the beginning of the previous word.

emacs-backward-word
Move to the beginning of the previous word.

Chapter 18: Zsh Line Editor 131

vi-backward-word (unbound) (b) (unbound)
Move to the beginning of the previous word, vi-style.

beginning-of-line (^A) (unbound) (unbound)
Move to the beginning of the line. If already at the beginning of the line, move to
the beginning of the previous line, if any.

vi-beginning-of-line
Move to the beginning of the line, without changing lines.

end-of-line (^E) (unbound) (unbound)
Move to the end of the line. If already at the end of the line, move to the end of the
next line, if any.

vi-end-of-line (unbound) ($) (unbound)
Move to the end of the line. If an argument is given to this command, the cursor
will be moved to the end of the line (argument - 1) lines down.

vi-forward-blank-word (unbound) (W) (unbound)
Move forward one word, where a word is defined as a series of non-blank characters.

vi-forward-blank-word-end (unbound) (E) (unbound)
Move to the end of the current word, or, if at the end of the current word, to the
end of the next word, where a word is defined as a series of non-blank characters.

forward-char (^F ESC-[C) (unbound) (unbound)
Move forward one character.

vi-forward-char (unbound) (space l) (ESC-[C)
Move forward one character.

vi-find-next-char (^X^F) (f) (unbound)
Read a character from the keyboard, and move to the next occurrence of it in the
line.

vi-find-next-char-skip (unbound) (t) (unbound)
Read a character from the keyboard, and move to the position just before the next
occurrence of it in the line.

vi-find-prev-char (unbound) (F) (unbound)
Read a character from the keyboard, and move to the previous occurrence of it in
the line.

vi-find-prev-char-skip (unbound) (T) (unbound)
Read a character from the keyboard, and move to the position just after the previous
occurrence of it in the line.

vi-first-non-blank (unbound) (^) (unbound)
Move to the first non-blank character in the line.

vi-forward-word (unbound) (w) (unbound)
Move forward one word, vi-style.

forward-word (ESC-F ESC-f) (unbound) (unbound)
Move to the beginning of the next word. The editor’s idea of a word is specified
with the WORDCHARS parameter.

emacs-forward-word
Move to the end of the next word.

vi-forward-word-end (unbound) (e) (unbound)
Move to the end of the next word.

Chapter 18: Zsh Line Editor 132

vi-goto-column (ESC-|) (|) (unbound)
Move to the column specified by the numeric argument.

vi-goto-mark (unbound) (‘) (unbound)
Move to the specified mark.

vi-goto-mark-line (unbound) (’) (unbound)
Move to beginning of the line containing the specified mark.

vi-repeat-find (unbound) (;) (unbound)
Repeat the last vi-find command.

vi-rev-repeat-find (unbound) (,) (unbound)
Repeat the last vi-find command in the opposite direction.

18.6.2 History Control

beginning-of-buffer-or-history (ESC-<) (unbound) (unbound)
Move to the beginning of the buffer, or if already there, move to the first event in
the history list.

beginning-of-line-hist
Move to the beginning of the line. If already at the beginning of the buffer, move
to the previous history line.

beginning-of-history
Move to the first event in the history list.

down-line-or-history (^N ESC-[B) (j) (ESC-[B)
Move down a line in the buffer, or if already at the bottom line, move to the next
event in the history list.

vi-down-line-or-history (unbound) (+) (unbound)
Move down a line in the buffer, or if already at the bottom line, move to the next
event in the history list. Then move to the first non-blank character on the line.

down-line-or-search
Move down a line in the buffer, or if already at the bottom line, search forward in
the history for a line beginning with the first word in the buffer.
If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

down-history (unbound) (^N) (unbound)
Move to the next event in the history list.

history-beginning-search-backward
Search backward in the history for a line beginning with the current line up to the
cursor. This leaves the cursor in its original position.

end-of-buffer-or-history (ESC->) (unbound) (unbound)
Move to the end of the buffer, or if already there, move to the last event in the
history list.

end-of-line-hist
Move to the end of the line. If already at the end of the buffer, move to the next
history line.

end-of-history
Move to the last event in the history list.

Chapter 18: Zsh Line Editor 133

vi-fetch-history (unbound) (G) (unbound)
Fetch the history line specified by the numeric argument. This defaults to the
current history line (i.e. the one that isn’t history yet).

history-incremental-search-backward (^R ^Xr) (unbound) (unbound)
Search backward incrementally for a specified string. The search is case-insensitive
if the search string does not have uppercase letters and no numeric argument was
given. The string may begin with ‘^’ to anchor the search to the beginning of the
line.
A restricted set of editing functions is available in the mini-buffer. An interrupt
signal, as defined by the stty setting, will stop the search and go back to the original
line. An undefined key will have the same effect. The supported functions are:
backward-delete-char, vi-backward-delete-char, clear-screen, redisplay,
quoted-insert, vi-quoted-insert, accept-and-hold, accept-and-infer-next-
history, accept-line and accept-line-and-down-history.
magic-space just inserts a space. vi-cmd-mode toggles between the ‘main’ and
‘vicmd’ keymaps; the ‘main’ keymap (insert mode) will be selected initially.
history-incremental-search-backward will get the next occurrence of the con-
tents of the mini-buffer. history-incremental-search-forward inverts the sense
of the search. vi-repeat-search and vi-rev-repeat-search are similarly sup-
ported. The direction of the search is indicated in the mini-buffer.
Any multi-character string that is not bound to one of the above functions will
beep and interrupt the search, leaving the last found line in the buffer. Any single
character that is not bound to one of the above functions, or self-insert or self-
insert-unmeta, will have the same effect but the function will be executed.
When called from a widget function by the zle command, the incremental search
commands can take a string argument. This will be treated as a string of keys, as
for arguments to the bindkey command, and used as initial input for the command.
Any characters in the string which are unused by the incremental search will be
silently ignored. For example,

zle history-incremental-search-backward forceps

will search backwards for forceps, leaving the minibuffer containing the string
‘forceps’.

history-incremental-search-forward (^S ^Xs) (unbound) (unbound)
Search forward incrementally for a specified string. The search is case-insensitive
if the search string does not have uppercase letters and no numeric argument was
given. The string may begin with ‘^’ to anchor the search to the beginning of
the line. The functions available in the mini-buffer are the same as for history-
incremental-search-backward.

history-search-backward (ESC-P ESC-p) (unbound) (unbound)
Search backward in the history for a line beginning with the first word in the buffer.
If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

vi-history-search-backward (unbound) (/) (unbound)
Search backward in the history for a specified string. The string may begin with ‘^’
to anchor the search to the beginning of the line.
A restricted set of editing functions is available in the mini-buffer. An interrupt
signal, as defined by the stty setting, will stop the search. The functions available in
the mini-buffer are: accept-line, backward-delete-char, vi-backward-delete-

Chapter 18: Zsh Line Editor 134

char, backward-kill-word, vi-backward-kill-word, clear-screen, redisplay,
quoted-insert and vi-quoted-insert.
vi-cmd-mode is treated the same as accept-line, and magic-space is treated as a
space. Any other character that is not bound to self-insert or self-insert-unmeta will
beep and be ignored. If the function is called from vi command mode, the bindings
of the current insert mode will be used.
If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

history-search-forward (ESC-N ESC-n) (unbound) (unbound)
Search forward in the history for a line beginning with the first word in the buffer.
If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

vi-history-search-forward (unbound) (?) (unbound)
Search forward in the history for a specified string. The string may begin with ‘^’
to anchor the search to the beginning of the line. The functions available in the
mini-buffer are the same as for vi-history-search-backward. Argument handling
is also the same as for that command.

infer-next-history (^X^N) (unbound) (unbound)
Search in the history list for a line matching the current one and fetch the event
following it.

insert-last-word (ESC- ESC-.) (unbound) (unbound)
Insert the last word from the previous history event at the cursor position. If a
positive numeric argument is given, insert that word from the end of the previous
history event. If the argument is zero or negative insert that word from the left
(zero inserts the previous command word). Repeating this command replaces the
word just inserted with the last word from the history event prior to the one just
used; numeric arguments can be used in the same way to pick a word from that
event.
When called from a shell function invoked from a user-defined widget, the command
can take one to three arguments. The first argument specifies a history offset which
applies to successive calls to this widget: if is -1, the default behaviour is used, while
if it is 1, successive calls will move forwards through the history. The value 0 can
be used to indicate that the history line examined by the previous execution of the
command will be reexamined. Note that negative numbers should be preceded with
a ‘--’ argument to avoid confusing them with options.
If two arguments are given, the second specifies the word on the command line in
normal array index notation (as a more natural alternative to the prefix argument).
Hence 1 is the first word, and -1 (the default) is the last word.
If a third argument is given, its value is ignored, but it is used to signify that the
history offset is relative to the current history line, rather than the one remembered
after the previous invocations of insert-last-word.
For example, the default behaviour of the command corresponds to

zle insert-last-word -- -1 -1

while the command
zle insert-last-word -- -1 1 -

always copies the first word of the line in the history immediately before the line
being edited. This has the side effect that later invocations of the widget will be
relative to that line.

Chapter 18: Zsh Line Editor 135

vi-repeat-search (unbound) (n) (unbound)
Repeat the last vi history search.

vi-rev-repeat-search (unbound) (N) (unbound)
Repeat the last vi history search, but in reverse.

up-line-or-history (^P ESC-[A) (k) (ESC-[A)
Move up a line in the buffer, or if already at the top line, move to the previous event
in the history list.

vi-up-line-or-history (unbound) (-) (unbound)
Move up a line in the buffer, or if already at the top line, move to the previous event
in the history list. Then move to the first non-blank character on the line.

up-line-or-search
Move up a line in the buffer, or if already at the top line, search backward in the
history for a line beginning with the first word in the buffer.
If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

up-history (unbound) (^P) (unbound)
Move to the previous event in the history list.

history-beginning-search-forward
Search forward in the history for a line beginning with the current line up to the
cursor. This leaves the cursor in its original position.

18.6.3 Modifying Text

vi-add-eol (unbound) (A) (unbound)
Move to the end of the line and enter insert mode.

vi-add-next (unbound) (a) (unbound)
Enter insert mode after the current cursor position, without changing lines.

backward-delete-char (^H ^?) (unbound) (unbound)
Delete the character behind the cursor.

vi-backward-delete-char (unbound) (X) (^H)
Delete the character behind the cursor, without changing lines. If in insert mode,
this won’t delete past the point where insert mode was last entered.

backward-delete-word
Delete the word behind the cursor.

backward-kill-line
Kill from the beginning of the line to the cursor position.

backward-kill-word (^W ESC-^H ESC-^?) (unbound) (unbound)
Kill the word behind the cursor.

vi-backward-kill-word (unbound) (unbound) (^W)
Kill the word behind the cursor, without going past the point where insert mode
was last entered.

capitalize-word (ESC-C ESC-c) (unbound) (unbound)
Capitalize the current word and move past it.

vi-change (unbound) (c) (unbound)
Read a movement command from the keyboard, and kill from the cursor position
to the endpoint of the movement. Then enter insert mode. If the command is
vi-change, change the current line.

Chapter 18: Zsh Line Editor 136

vi-change-eol (unbound) (C) (unbound)
Kill to the end of the line and enter insert mode.

vi-change-whole-line (unbound) (S) (unbound)
Kill the current line and enter insert mode.

copy-region-as-kill (ESC-W ESC-w) (unbound) (unbound)
Copy the area from the cursor to the mark to the kill buffer.
If called from a ZLE widget function in the form ‘zle copy-region-as-kill string ’
then string will be taken as the text to copy to the kill buffer. The cursor, the mark
and the text on the command line are not used in this case.

copy-prev-word (ESC-^) (unbound) (unbound)
Duplicate the word to the left of the cursor.

copy-prev-shell-word
Like copy-prev-word, but the word is found by using shell parsing, whereas copy-
prev-word looks for blanks. This makes a difference when the word is quoted and
contains spaces.

vi-delete (unbound) (d) (unbound)
Read a movement command from the keyboard, and kill from the cursor position to
the endpoint of the movement. If the command is vi-delete, kill the current line.

delete-char
Delete the character under the cursor.

vi-delete-char (unbound) (x) (unbound)
Delete the character under the cursor, without going past the end of the line.

delete-word
Delete the current word.

down-case-word (ESC-L ESC-l) (unbound) (unbound)
Convert the current word to all lowercase and move past it.

kill-word (ESC-D ESC-d) (unbound) (unbound)
Kill the current word.

gosmacs-transpose-chars
Exchange the two characters behind the cursor.

vi-indent (unbound) (>) (unbound)
Indent a number of lines.

vi-insert (unbound) (i) (unbound)
Enter insert mode.

vi-insert-bol (unbound) (I) (unbound)
Move to the first non-blank character on the line and enter insert mode.

vi-join (^X^J) (J) (unbound)
Join the current line with the next one.

kill-line (^K) (unbound) (unbound)
Kill from the cursor to the end of the line. If already on the end of the line, kill the
newline character.

vi-kill-line (unbound) (unbound) (^U)
Kill from the cursor back to wherever insert mode was last entered.

Chapter 18: Zsh Line Editor 137

vi-kill-eol (unbound) (D) (unbound)
Kill from the cursor to the end of the line.

kill-region
Kill from the cursor to the mark.

kill-buffer (^X^K) (unbound) (unbound)
Kill the entire buffer.

kill-whole-line (^U) (unbound) (unbound)
Kill the current line.

vi-match-bracket (^X^B) (%) (unbound)
Move to the bracket character (one of {}, () or []) that matches the one under the
cursor. If the cursor is not on a bracket character, move forward without going past
the end of the line to find one, and then go to the matching bracket.

vi-open-line-above (unbound) (O) (unbound)
Open a line above the cursor and enter insert mode.

vi-open-line-below (unbound) (o) (unbound)
Open a line below the cursor and enter insert mode.

vi-oper-swap-case
Read a movement command from the keyboard, and swap the case of all charac-
ters from the cursor position to the endpoint of the movement. If the movement
command is vi-oper-swap-case, swap the case of all characters on the current line.

overwrite-mode (^X^O) (unbound) (unbound)
Toggle between overwrite mode and insert mode.

vi-put-before (unbound) (P) (unbound)
Insert the contents of the kill buffer before the cursor. If the kill buffer contains a
sequence of lines (as opposed to characters), paste it above the current line.

vi-put-after (unbound) (p) (unbound)
Insert the contents of the kill buffer after the cursor. If the kill buffer contains a
sequence of lines (as opposed to characters), paste it below the current line.

quoted-insert (^V) (unbound) (unbound)
Insert the next character typed into the buffer literally. An interrupt character will
not be inserted.

vi-quoted-insert (unbound) (unbound) (^Q ^V)
Display a ‘^’ at the cursor position, and insert the next character typed into the
buffer literally. An interrupt character will not be inserted.

quote-line (ESC-’) (unbound) (unbound)
Quote the current line; that is, put a ‘’’ character at the beginning and the end,
and convert all ‘’’ characters to ‘’\’’’.

quote-region (ESC-") (unbound) (unbound)
Quote the region from the cursor to the mark.

vi-replace (unbound) (R) (unbound)
Enter overwrite mode.

vi-repeat-change (unbound) (.) (unbound)
Repeat the last vi mode text modification. If a count was used with the modi-
fication, it is remembered. If a count is given to this command, it overrides the
remembered count, and is remembered for future uses of this command. The cut
buffer specification is similarly remembered.

Chapter 18: Zsh Line Editor 138

vi-replace-chars (unbound) (r) (unbound)
Replace the character under the cursor with a character read from the keyboard.

self-insert (printable characters) (unbound) (printable characters and some control
characters)

Insert a character into the buffer at the cursor position.

self-insert-unmeta (ESC-^I ESC-^J ESC-^M) (unbound) (unbound)
Insert a character into the buffer after stripping the meta bit and converting ^M to
^J.

vi-substitute (unbound) (s) (unbound)
Substitute the next character(s).

vi-swap-case (unbound) (~) (unbound)
Swap the case of the character under the cursor and move past it.

transpose-chars (^T) (unbound) (unbound)
Exchange the two characters to the left of the cursor if at end of line, else exchange
the character under the cursor with the character to the left.

transpose-words (ESC-T ESC-t) (unbound) (unbound)
Exchange the current word with the one before it.

vi-unindent (unbound) (<) (unbound)
Unindent a number of lines.

up-case-word (ESC-U ESC-u) (unbound) (unbound)
Convert the current word to all caps and move past it.

yank (^Y) (unbound) (unbound)
Insert the contents of the kill buffer at the cursor position.

yank-pop (ESC-y) (unbound) (unbound)
Remove the text just yanked, rotate the kill-ring (the history of previously killed
text) and yank the new top. Only works following yank or yank-pop.

vi-yank (unbound) (y) (unbound)
Read a movement command from the keyboard, and copy the region from the cursor
position to the endpoint of the movement into the kill buffer. If the command is
vi-yank, copy the current line.

vi-yank-whole-line (unbound) (Y) (unbound)
Copy the current line into the kill buffer.

vi-yank-eol
Copy the region from the cursor position to the end of the line into the kill buffer.
Arguably, this is what Y should do in vi, but it isn’t what it actually does.

18.6.4 Arguments

digit-argument (ESC-0..ESC-9) (1-9) (unbound)
Start a new numeric argument, or add to the current one. See also vi-digit-
or-beginning-of-line. This only works if bound to a key sequence ending in a
decimal digit.
Inside a widget function, a call to this function treats the last key of the key sequence
which called the widget as the digit.

neg-argument (ESC—) (unbound) (unbound)
Changes the sign of the following argument.

Chapter 18: Zsh Line Editor 139

universal-argument
Multiply the argument of the next command by 4. Alternatively, if this command is
followed by an integer (positive or negative), use that as the argument for the next
command. Thus digits cannot be repeated using this command. For example, if
this command occurs twice, followed immediately by forward-char, move forward
sixteen spaces; if instead it is followed by -2, then forward-char, move backward
two spaces.
Inside a widget function, if passed an argument, i.e. ‘zle universal-argument
num’, the numerical argument will be set to num; this is equivalent to
‘NUMERIC=num’.

argument-base
Use the existing numeric argument as a numeric base, which must be in the range 2
to 36 inclusive. Subsequent use of digit-argument and universal-argument will
input a new prefix in the given base. The usual hexadecimal convention is used: the
letter a or A corresponds to 10, and so on. Arguments in bases requiring digits from
10 upwards are more conveniently input with universal-argument, since ESC-a
etc. are not usually bound to digit-argument.
The function can be used with a command argument inside a user-defined wid-
get. The following code sets the base to 16 and lets the user input a hexadecimal
argument until a key out of the digit range is typed:

zle argument-base 16
zle universal-argument

18.6.5 Completion

accept-and-menu-complete
In a menu completion, insert the current completion into the buffer, and advance
to the next possible completion.

complete-word
Attempt completion on the current word.

delete-char-or-list (^D) (unbound) (unbound)
Delete the character under the cursor. If the cursor is at the end of the line, list
possible completions for the current word.

expand-cmd-path
Expand the current command to its full pathname.

expand-or-complete (TAB) (unbound) (TAB)
Attempt shell expansion on the current word. If that fails, attempt completion.

expand-or-complete-prefix
Attempt shell expansion on the current word up to cursor.

expand-history (ESC-space ESC-!) (unbound) (unbound)
Perform history expansion on the edit buffer.

expand-word (^X*) (unbound) (unbound)
Attempt shell expansion on the current word.

list-choices (ESC-^D) (^D =) (^D)
List possible completions for the current word.

list-expand (^Xg ^XG) (^G) (^G)
List the expansion of the current word.

Chapter 18: Zsh Line Editor 140

magic-space
Perform history expansion and insert a space into the buffer. This is intended to be
bound to space.

menu-complete
Like complete-word, except that menu completion is used. See the MENU_COMPLETE
option.

menu-expand-or-complete
Like expand-or-complete, except that menu completion is used.

reverse-menu-complete
Perform menu completion, like menu-complete, except that if a menu completion
is already in progress, move to the previous completion rather than the next.

end-of-list
When a previous completion displayed a list below the prompt, this widget can be
used to move the prompt below the list.

18.6.6 Miscellaneous

accept-and-hold (ESC-A ESC-a) (unbound) (unbound)
Push the contents of the buffer on the buffer stack and execute it.

accept-and-infer-next-history
Execute the contents of the buffer. Then search the history list for a line matching
the current one and push the event following onto the buffer stack.

accept-line (^J ^M) (^J ^M) (^J ^M)
Finish editing the buffer. Normally this causes the buffer to be executed as a shell
command.

accept-line-and-down-history (^O) (unbound) (unbound)
Execute the current line, and push the next history event on the the buffer stack.

auto-suffix-remove
If the previous action added a suffix (space, slash, etc.) to the word on the command
line, remove it. Otherwise do nothing. Removing the suffix ends any active menu
completion or menu selection.
This widget is intended to be called from user-defined widgets to enforce a desired
suffix-removal behavior.

auto-suffix-retain
If the previous action added a suffix (space, slash, etc.) to the word on the command
line, force it to be preserved. Otherwise do nothing. Retaining the suffix ends any
active menu completion or menu selection.
This widget is intended to be called from user-defined widgets to enforce a desired
suffix-preservation behavior.

beep Beep, unless the BEEP option is unset.

vi-cmd-mode (^X^V) (unbound) (^[)
Enter command mode; that is, select the ‘vicmd’ keymap. Yes, this is bound by
default in emacs mode.

vi-caps-lock-panic
Hang until any lowercase key is pressed. This is for vi users without the mental
capacity to keep track of their caps lock key (like the author).

Chapter 18: Zsh Line Editor 141

clear-screen (^L ESC-^L) (^L) (^L)
Clear the screen and redraw the prompt.

describe-key-briefly
Reads a key sequence, then prints the function bound to that sequence.

exchange-point-and-mark (^X^X) (unbound) (unbound)
Exchange the cursor position with the position of the mark.

execute-named-cmd (ESC-x) (unbound) (unbound)
Read the name of an editor command and execute it. A restricted set of
editing functions is available in the mini-buffer. An interrupt signal, as de-
fined by the stty setting, will abort the function. The allowed functions are:
backward-delete-char, vi-backward-delete-char, clear-screen, redisplay,
quoted-insert, vi-quoted-insert, backward-kill-word, vi-backward-kill-
word, kill-whole-line, vi-kill-line, backward-kill-line, list-choices,
delete-char-or-list, complete-word, accept-line, expand-or-complete and
expand-or-complete-prefix.

kill-region kills the last word, and vi-cmd-mode is treated the same as accept-line.
The space and tab characters, if not bound to one of these functions, will complete
the name and then list the possibilities if the AUTO_LIST option is set. Any other
character that is not bound to self-insert or self-insert-unmeta will beep and
be ignored. The bindings of the current insert mode will be used.

Currently this command may not be redefined or called by name.

execute-last-named-cmd (ESC-z) (unbound) (unbound)
Redo the last function executed with execute-named-cmd.

Currently this command may not be redefined or called by name.

get-line (ESC-G ESC-g) (unbound) (unbound)
Pop the top line off the buffer stack and insert it at the cursor position.

pound-insert (unbound) (#) (unbound)
If there is no # character at the beginning of the buffer, add one to the beginning
of each line. If there is one, remove a # from each line that has one. In either case,
accept the current line. The INTERACTIVE_COMMENTS option must be set for this to
have any usefulness.

vi-pound-insert
If there is no # character at the beginning of the current line, add one. If there is
one, remove it. The INTERACTIVE_COMMENTS option must be set for this to have any
usefulness.

push-input
Push the entire current multiline construct onto the buffer stack and return to the
top-level (PS1) prompt. If the current parser construct is only a single line, this is
exactly like push-line. Next time the editor starts up or is popped with get-line,
the construct will be popped off the top of the buffer stack and loaded into the
editing buffer.

push-line (^Q ESC-Q ESC-q) (unbound) (unbound)
Push the current buffer onto the buffer stack and clear the buffer. Next time the
editor starts up, the buffer will be popped off the top of the buffer stack and loaded
into the editing buffer.

Chapter 18: Zsh Line Editor 142

push-line-or-edit
At the top-level (PS1) prompt, equivalent to push-line. At a secondary (PS2)
prompt, move the entire current multiline construct into the editor buffer. The
latter is equivalent to push-input followed by get-line.

read-command
Only useful from a user-defined widget. A keystroke is read just as in normal
operation, but instead of the command being executed the name of the command
that would be executed is stored in the shell parameter REPLY. This can be used as
the argument of a future zle command. If the key sequence is not bound, status 1
is returned; typically, however, REPLY is set to undefined-key to indicate a useless
key sequence.

recursive-edit
Only useful from a user-defined widget. At this point in the function, the editor
regains control until one of the standard widgets which would normally cause zle
to exit (typically an accept-line caused by hitting the return key) is executed.
Instead, control returns to the user-defined widget. The status returned is non-zero
if the return was caused by an error, but the function still continues executing and
hence may tidy up. This makes it safe for the user-defined widget to alter the
command line or key bindings temporarily.

The following widget, caps-lock, serves as an example.

self-insert-ucase() {
LBUFFER+=${(U)KEYS[-1]}

}

integer stat

zle -N self-insert self-insert-ucase
zle -A caps-lock save-caps-lock
zle -A accept-line caps-lock

zle recursive-edit
stat=$?

zle -A .self-insert self-insert
zle -A save-caps-lock caps-lock
zle -D save-caps-lock

((stat)) && zle send-break

return $stat

This causes typed letters to be inserted capitalised until either accept-line (i.e.
typically the return key) is typed or the caps-lock widget is invoked again; the
later is handled by saving the old definition of caps-lock as save-caps-lock and

Chapter 18: Zsh Line Editor 143

then rebinding it to invoke accept-line. Note that an error from the recursive edit
is detected as a non-zero return status and propagated by using the send-break
widget.

redisplay (unbound) (^R) (^R)
Redisplays the edit buffer.

reset-prompt (unbound) (unbound) (unbound)
Force the prompts on both the left and right of the screen to be re-expanded,
then redisplay the edit buffer. This reflects changes both to the prompt variables
themselves and changes in the expansion of the values (for example, changes in time
or directory, or changes to the value of variables referred to by the prompt).
Otherwise, the prompt is only expanded each time zle starts, and when the display as
been interrupted by output from another part of the shell (such as a job notification)
which causes the command line to be reprinted.

send-break (^G ESC-^G) (unbound) (unbound)
Abort the current editor function, e.g. execute-named-command, or the editor itself,
e.g. if you are in vared. Otherwise abort the parsing of the current line.

run-help (ESC-H ESC-h) (unbound) (unbound)
Push the buffer onto the buffer stack, and execute the command ‘run-help cmd’,
where cmd is the current command. run-help is normally aliased to man.

vi-set-buffer (unbound) (") (unbound)
Specify a buffer to be used in the following command. There are 35 buffers that can
be specified: the 26 ‘named’ buffers "a to "z and the nine ‘queued’ buffers "1 to "9.
The named buffers can also be specified as "A to "Z.
When a buffer is specified for a cut command, the text being cut replaces the
previous contents of the specified buffer. If a named buffer is specified using a
capital, the newly cut text is appended to the buffer instead of overwriting it.
If no buffer is specified for a cut command, "1 is used, and the contents of "1 to "8
are each shifted along one buffer; the contents of "9 is lost.

vi-set-mark (unbound) (m) (unbound)
Set the specified mark at the cursor position.

set-mark-command (^@) (unbound) (unbound)
Set the mark at the cursor position.

spell-word (ESC-$ ESC-S ESC-s) (unbound) (unbound)
Attempt spelling correction on the current word.

undefined-key
This command is executed when a key sequence that is not bound to any command
is typed. By default it beeps.

undo (^ ^Xu ^X^U) (unbound) (unbound)
Incrementally undo the last text modification.

redo Incrementally redo undone text modifications.

vi-undo-change (unbound) (u) (unbound)
Undo the last text modification. If repeated, redo the modification.

what-cursor-position (^X=) (unbound) (unbound)
Print the character under the cursor, its code as an octal, decimal and hexadecimal
number, the current cursor position within the buffer and the column of the cursor
in the current line.

Chapter 19: Completion Widgets 144

where-is Read the name of an editor command and and print the listing of key sequences
that invoke the specified command.

which-command (ESC-?) (unbound) (unbound)
Push the buffer onto the buffer stack, and execute the command ‘which-command
cmd’. where cmd is the current command. which-command is normally aliased to
whence.

vi-digit-or-beginning-of-line (unbound) (0) (unbound)
If the last command executed was a digit as part of an argument, continue the
argument. Otherwise, execute vi-beginning-of-line.

19 Completion Widgets

19.1 Description

The shell’s programmable completion mechanism can be manipulated in two ways; here the low-
level features supporting the newer, function-based mechanism are defined. A complete set of
shell functions based on these features is described in the next chapter, Chapter 20 [Completion
System], page 158, and users with no interest in adding to that system (or, potentially, writing
their own — see dictionary entry for ‘hubris’) should skip the current section. The older system
based on the compctl builtin command is described in Chapter 21 [Completion Using compctl],
page 218.

Completion widgets are defined by the -C option to the zle builtin command provided by the
zsh/zle module (see Section 22.29 [The zsh/zle Module], page 260). For example,

zle -C complete expand-or-complete completer

defines a widget named ‘complete’. The second argument is the name of any of the
builtin widgets that handle completions: complete-word, expand-or-complete, expand-
or-complete-prefix, menu-complete, menu-expand-or-complete, reverse-menu-complete,
list-choices, or delete-char-or-list. Note that this will still work even if the widget in
question has been re-bound.

When this newly defined widget is bound to a key using the bindkey builtin command defined in
the zsh/zle module (Chapter 18 [Zsh Line Editor], page 119), typing that key will call the shell
function ‘completer’. This function is responsible for generating the possible matches using the
builtins described below. As with other ZLE widgets, the function is called with its standard
input closed.

Once the function returns, the completion code takes over control again and treats the matches
in the same manner as the specified builtin widget, in this case expand-or-complete.

19.2 Special Parameters

Inside completion widgets, and any functions called from them, some parameters have special
meaning; outside these functions they are not special to the shell in any way. These parameters
are used to pass information between the completion code and the completion widget. Some
of the builtin commands and the condition codes use or change the current values of these
parameters. Any existing values will be hidden during execution of completion widgets; except
for compstate, the parameters are reset on each function exit (including nested function calls
from within the completion widget) to the values they had when the function was entered.

Chapter 19: Completion Widgets 145

CURRENT This is the number of the current word, i.e. the word the cursor is currently on in
the words array. Note that this value is only correct if the ksharrays option is not
set.

IPREFIX Initially this will be set to the empty string. This parameter functions like PREFIX;
it contains a string which precedes the one in PREFIX and is not considered part of
the list of matches. Typically, a string is transferred from the beginning of PREFIX
to the end of IPREFIX, for example:

IPREFIX=${PREFIX%%\=*}=
PREFIX=${PREFIX#*=}

causes the part of the prefix up to and including the first equal sign not to be treated
as part of a matched string. This can be done automatically by the compset builtin,
see below.

ISUFFIX As IPREFIX, but for a suffix that should not be considered part of the matches; note
that the ISUFFIX string follows the SUFFIX string.

PREFIX Initially this will be set to the part of the current word from the beginning of the
word up to the position of the cursor; it may be altered to give a common prefix for
all matches.

QIPREFIX This parameter is read-only and contains the quoted string up to the word being
completed. E.g. when completing ‘"foo’, this parameter contains the double quote.
If the -q option of compset is used (see below), and the original string was ‘"foo
bar’ with the cursor on the ‘bar’, this parameter contains ‘"foo ’.

QISUFFIX Like QIPREFIX, but containing the suffix.

SUFFIX Initially this will be set to the part of the current word from the cursor position
to the end; it may be altered to give a common suffix for all matches. It is most
useful when the option COMPLETE_IN_WORD is set, as otherwise the whole word on
the command line is treated as a prefix.

compstate
This is an associative array with various keys and values that the completion code
uses to exchange information with the completion widget. The keys are:

all_quotes
The -q option of the compset builtin command (see below) allows a
quoted string to be broken into separate words; if the cursor is on one
of those words, that word will be completed, possibly invoking ‘compset
-q’ recursively. With this key it is possible to test the types of quoted
strings which are currently broken into parts in this fashion. Its value
contains one character for each quoting level. The characters are a
single quote or a double quote for strings quoted with these characters,
a dollars sign for strings quoted with $’...’ and a backslash for strings
not starting with a quote character. The first character in the value
always corresponds to the innermost quoting level.

context This will be set by the completion code to the overall context in which
completion is attempted. Possible values are:

array_value
when completing inside the value of an array parameter
assignment; in this case the words array contains the words
inside the parentheses.

Chapter 19: Completion Widgets 146

brace_parameter
when completing the name of a parameter in a parameter
expansion beginning with ${.

assign_parameter
when completing the name of a parameter in a parameter
assignment.

command when completing for a normal command (either in com-
mand position or for an argument of the command).

condition
when completing inside a ‘[[...]]’ conditional expression;
in this case the words array contains only the words inside
the conditional expression.

math when completing in a mathematical environment such as a
‘((...))’ construct.

parameter
when completing the name of a parameter in a parameter
expansion beginning with $ but not ${.

redirect when completing after a redirection operator.

subscript
when completing inside a parameter subscript.

value when completing the value of a parameter assignment.

exact Controls the behaviour when the REC_EXACT option is set. It will be
set to accept if an exact match would be accepted, and will be unset
otherwise.
If it was set when at least one match equal to the string on the line was
generated, the match is accepted.

exact_string
The string of an exact match if one was found, otherwise unset.

ignored The number of words that were ignored because they matched one of
the patterns given with the -F option to the compadd builtin command.

insert This controls the manner in which a match is inserted into the command
line. On entry to the widget function, if it is unset the command line
is not to be changed; if set to unambiguous, any prefix common to all
matches is to be inserted; if set to automenu-unambiguous, the common
prefix is to be inserted and the next invocation of the completion code
may start menu completion (due to the AUTO_MENU option being set);
if set to menu or automenu menu completion will be started for the
matches currently generated (in the latter case this will happen because
the AUTO_MENU is set). The value may also contain the string ‘tab’ when
the completion code would normally not really do completion, but only
insert the TAB character.
On exit it may be set to any of the values above (where setting it to the
empty string is the same as unsetting it), or to a number, in which case
the match whose number is given will be inserted into the command
line. Negative numbers count backward from the last match (with ‘-1’
selecting the last match) and out-of-range values are wrapped around,

Chapter 19: Completion Widgets 147

so that a value of zero selects the last match and a value one more
than the maximum selects the first. Unless the value of this key ends
in a space, the match is inserted as in a menu completion, i.e. without
automatically appending a space.
Both menu and automenu may also specify the the number of the match
to insert, given after a colon. For example, ‘menu:2’ says to start menu
completion, beginning with the second match.
Note that a value containing the substring ‘tab’ makes the matches
generated be ignored and only the TAB be inserted.
Finally, it may also be set to all, which makes all matches generated
be inserted into the line.

insert_positions
When the completion system inserts an unambiguous string into the
line, there may be multiple places where characters are missing or where
the character inserted differs from at least one match. The value of this
key contains a colon separated list of all these positions, as indexes into
the command line.

last_prompt
If this is set to a non-empty string for every match added, the completion
code will move the cursor back to the previous prompt after the list of
completions has been displayed. Initially this is set or unset according
to the ALWAYS_LAST_PROMPT option.

list This controls whether or how the list of matches will be displayed. If it
is unset or empty they will never be listed; if its value begins with list,
they will always be listed; if it begins with autolist or ambiguous,
they will be listed when the AUTO_LIST or LIST_AMBIGUOUS options
respectively would normally cause them to be.
If the substring force appears in the value, this makes the list be shown
even if there is only one match. Normally, the list would be shown only
if there are at least two matches.
The value contains the substring packed if the LIST_PACKED option is
set. If this substring is given for all matches added to a group, this
group will show the LIST_PACKED behavior. The same is done for the
LIST_ROWS_FIRST option with the substring rows.
Finally, if the value contains the string explanations, only the expla-
nation strings, if any, will be listed and if it contains messages, only
the messages (added with the -x option of compadd) will be listed. If
it contains both explanations and messages both kinds of explana-
tion strings will be listed. It will be set appropriately on entry to a
completion widget and may be changed there.

list_lines
This gives the number of lines that are needed to display the full list of
completions. Note that to calculate the total number of lines to display
you need to add the number of lines needed for the command line to
this value, this is available as the value of the BUFFERLINES special
parameter.

list_max Initially this is set to the value of the LISTMAX parameter. It may be
set to any other value; when the widget exits this value will be used in
the same way as the value of LISTMAX.

Chapter 19: Completion Widgets 148

nmatches The number of matches generated and accepted by the completion code
so far.

old_insert
On entry to the widget this will be set to the number of the match of
an old list of completions that is currently inserted into the command
line. If no match has been inserted, this is unset.
As with old_list, the value of this key will only be used if it is the
string keep. If it was set to this value by the widget and there was an
old match inserted into the command line, this match will be kept and
if the value of the insert key specifies that another match should be
inserted, this will be inserted after the old one.

old_list This is set to yes if there is still a valid list of completions from a
previous completion at the time the widget is invoked. This will usually
be the case if and only if the previous editing operation was a completion
widget or one of the builtin completion functions. If there is a valid list
and it is also currently shown on the screen, the value of this key is
shown.
After the widget has exited the value of this key is only used if it was
set to keep. In this case the completion code will continue to use this
old list. If the widget generated new matches, they will not be used.

parameter
The name of the parameter when completing in a subscript or in the
value of a parameter assignment.

pattern_insert
Normally this is set to menu, which specifies that menu completion will
be used whenever a set of matches was generated using pattern match-
ing. If it is set to any other non-empty string by the user and menu
completion is not selected by other option settings, the code will instead
insert any common prefix for the generated matches as with normal
completion.

pattern_match
Locally controls the behaviour given by the GLOB_COMPLETE option. Ini-
tially it is set to ‘*’ if and only if the option is set. The completion widget
may set it to this value, to an empty string (which has the same effect
as unsetting it), or to any other non-empty string. If it is non-empty,
unquoted metacharacters on the command line will be treated as pat-
terns; if it is ‘*’, then additionally a wildcard ‘*’ is assumed at the cursor
position; if it is empty or unset, metacharacters will be treated literally.
Note that the matcher specifications given to the compadd builtin com-
mand are not used if this is set to a non-empty string.

quote When completing inside quotes, this contains the quotation character
(i.e. either a single quote, a double quote, or a backtick). Otherwise it
is unset.

quoting When completing inside single quotes, this is set to the string single;
inside double quotes, the string double; inside backticks, the string
backtick. Otherwise it is unset.

redirect The redirection operator when completing in a redirection position, i.e.
one of <, >, etc.

Chapter 19: Completion Widgets 149

restore This is set to auto before a function is entered, which forces the spe-
cial parameters mentioned above (words, CURRENT, PREFIX, IPREFIX,
SUFFIX, and ISUFFIX) to be restored to their previous values when the
function exits. If a function unsets it or sets it to any other string, they
will not be restored.

to_end Specifies the occasions on which the cursor is moved to the end of a
string when a match is inserted. On entry to a widget function, it
may be single if this will happen when a single unambiguous match
was inserted or match if it will happen any time a match is inserted
(for example, by menu completion; this is likely to be the effect of the
ALWAYS_TO_END option).
On exit, it may be set to single as above. It may also be set to always,
or to the empty string or unset; in those cases the cursor will be moved
to the end of the string always or never respectively. Any other string
is treated as match.

unambiguous
This key is read-only and will always be set to the common (unambigu-
ous) prefix the completion code has generated for all matches added so
far.

unambiguous_cursor
This gives the position the cursor would be placed at if the common
prefix in the unambiguous key were inserted, relative to the value of
that key. The cursor would be placed before the character whose index
is given by this key.

unambiguous_positions
This contains all positions where characters in the unambiguous string
are missing or where the character inserted differs from at least one of
the matches. The positions are given as indexes into the string given
by the value of the unambiguous key.

vared If completion is called while editing a line using the vared builtin, the
value of this key is set to the name of the parameter given as an argument
to vared. This key is only set while a vared command is active.

words This array contains the words present on the command line currently being edited.

19.3 Builtin Commands

compadd [-akqQfenUld12C] [-F array]
[-P prefix] [-S suffix]
[-p hidden-prefix] [-s hidden-suffix]
[-i ignored-prefix] [-I ignored-suffix]
[-W file-prefix] [-d array]
[-J name] [-V name] [-X explanation] [-x message]
[-r remove-chars] [-R remove-func]
[-D array] [-O array] [-A array]
[-E number]
[-M match-spec] [--] [words ...]

This builtin command can be used to add matches directly and control all the
information the completion code stores with each possible match. The return status
is zero if at least one match was added and non-zero if no matches were added.

Chapter 19: Completion Widgets 150

The completion code breaks the string to complete into seven fields in the order:

<ipre><apre><hpre><word><hsuf><asuf><isuf>

The first field is an ignored prefix taken from the command line, the contents of the
IPREFIX parameter plus the string given with the -i option. With the -U option,
only the string from the -i option is used. The field <apre> is an optional prefix
string given with the -P option. The <hpre> field is a string that is considered part
of the match but that should not be shown when listing completions, given with
the -p option; for example, functions that do filename generation might specify a
common path prefix this way. <word> is the part of the match that should appear
in the list of completions, i.e. one of the words given at the end of the compadd
command line. The suffixes <hsuf>, <asuf> and <isuf> correspond to the prefixes
<hpre>, <apre> and <ipre> and are given by the options -s, -S and -I, respectively.
The supported flags are:

-P prefix This gives a string to be inserted before the given words. The string
given is not considered as part of the match and any shell metacharacters
in it will not be quoted when the string is inserted.

-S suffix Like -P, but gives a string to be inserted after the match.

-p hidden-prefix
This gives a string that should be inserted into the command line before
the match but that should not appear in the list of matches. Unless the
-U option is given, this string must be matched as part of the string on
the command line.

-s hidden-suffix
Like ‘-p’, but gives a string to insert after the match.

-i ignored-prefix
This gives a string to insert into the command line just before any string
given with the ‘-P’ option. Without ‘-P’ the string is inserted before
the string given with ‘-p’ or directly before the match.

-I ignored-suffix
Like -i, but gives an ignored suffix.

-a With this flag the words are taken as names of arrays and the possible
matches are their values. If only some elements of the arrays are needed,
the words may also contain subscripts, as in ‘foo[2,-1]’.

-k With this flag the words are taken as names of associative arrays and
the possible matches are their keys. As for -a, the words may also
contain subscripts, as in ‘foo[(R)*bar*]’.

-d array This adds per-match display strings. The array should contain one
element per word given. The completion code will then display the first
element instead of the first word, and so on. The array may be given
as the name of an array parameter or directly as a space-separated list
of words in parentheses.
If there are fewer display strings than words, the leftover words will be
displayed unchanged and if there are more display strings than words,
the leftover display strings will be silently ignored.

-l This option only has an effect if used together with the -d option. If
it is given, the display strings are listed one per line, not arrayed in
columns.

Chapter 19: Completion Widgets 151

-o This option only has an effect if used together with the -d option. If
it is given, the order of the output is determined by the match strings;
otherwise it is determined by the display strings (i.e. the strings given
by the -d option).

-J name Gives the name of the group of matches the words should be stored in.

-V name Like -J but naming a unsorted group. These are in a different name
space than groups created with the -J flag.

-1 If given together with the -V option, makes only consecutive duplicates
in the group be removed. If combined with the -J option, this has
no visible effect. Note that groups with and without this flag are in
different name spaces.

-2 If given together with the -J or -V option, makes all duplicates be kept.
Again, groups with and without this flag are in different name spaces.

-X explanation
The explanation string will be printed with the list of matches, above
the group currently selected.

-x message
Like -X, but the message will be printed even if there are no matches
in the group.

-q The suffix given with -S will be automatically removed if the next char-
acter typed is a blank or does not insert anything, or if the suffix consists
of only one character and the next character typed is the same character.

-r remove-chars
This is a more versatile form of the -q option. The suffix given with
-S or the slash automatically added after completing directories will
be automatically removed if the next character typed inserts one of
the characters given in the remove-chars. This string is parsed as a
characters class and understands the backslash sequences used by the
print command. For example, ‘-r "a-z\t"’ removes the suffix if the
next character typed inserts a lowercase character or a TAB, and ‘-r
"^0-9"’ removes the suffix if the next character typed inserts anything
but a digit. One extra backslash sequence is understood in this string:
‘\-’ stands for all characters that insert nothing. Thus ‘-S "=" -q’ is
the same as ‘-S "=" -r "= \t\n\-"’.

This option may also be used without the -S option; then any automat-
ically added space will be removed when one of the characters in the
list is typed.

-R remove-func
This is another form of the -r option. When a suffix has been inserted
and the completion accepted, the function remove-func will be called
after the next character typed. It is passed the length of the suffix as an
argument and can use the special parameters available in ordinary (non-
completion) zle widgets (see Chapter 18 [Zsh Line Editor], page 119) to
analyse and modify the command line.

-f If this flag is given, all of the matches built from words are marked as
being the names of files. They are not required to be actual filenames,

Chapter 19: Completion Widgets 152

but if they are, and the option LIST_TYPES is set, the characters describ-
ing the types of the files in the completion lists will be shown. This also
forces a slash to be added when the name of a directory is completed.

-e This flag can be used to tell the completion code that the matches
added are parameter names for a parameter expansion. This will make
the AUTO_PARAM_SLASH and AUTO_PARAM_KEYS options be used for the
matches.

-W file-prefix
This string is a pathname that will be prepended to each of the matches
formed by the given words together with any prefix specified by the -p
option to form a complete filename for testing. Hence it is only useful if
combined with the -f flag, as the tests will not otherwise be performed.

-F array Specifies an array containing patterns. Words matching one of these
patterns are ignored, i.e. not considered to be possible matches.

The array may be the name of an array parameter or a list of literal
patterns enclosed in parentheses and quoted, as in ‘-F "(*?.o *?.h)"’.
If the name of an array is given, the elements of the array are taken as
the patterns.

-Q This flag instructs the completion code not to quote any metacharacters
in the words when inserting them into the command line.

-M match-spec
This gives local match specifications as described below in Section 19.5
[Matching Control], page 155. This option may be given more than
once. In this case all match-specs given are concatenated with spaces
between them to form the specification string to use. Note that they
will only be used if the -U option is not given.

-n Specifies that the words added are to be used as possible matches, but
are not to appear in the completion listing.

-U If this flag is given, all words given will be accepted and no matching
will be done by the completion code. Normally this is used in functions
that do the matching themselves.

-O array If this option is given, the words are not added to the set of possible
completions. Instead, matching is done as usual and all of the words
given as arguments that match the string on the command line will be
stored in the array parameter whose name is given as array.

-A array As the -O option, except that instead of those of the words which match
being stored in array, the strings generated internally by the completion
code are stored. For example, with a matching specification of ‘-M
"L:|no="’, the string ‘nof’ on the command line and the string ‘foo’
as one of the words, this option stores the string ‘nofoo’ in the array,
whereas the -O option stores the ‘foo’ originally given.

-D array As with -O, the words are not added to the set of possible completions.
Instead, the completion code tests whether each word in turn matches
what is on the line. If the n’th word does not match, the n’th element
of the array is removed. Elements for which the corresponding word is
matched are retained.

Chapter 19: Completion Widgets 153

-C This option adds a special match which expands to all other matches
when inserted into the line, even those that are added after this option
is used. Together with the -d option it is possible to specify a string
that should be displayed in the list for this special match. If no string
is given, it will be shown as a string containing the strings that would
be inserted for the other matches, truncated to the width of the screen.

-E This option adds number empty matches after the words have been
added. An empty match takes up space in completion listings but will
never be inserted in the line and can’t be selected with menu completion
or menu selection. This makes empty matches only useful to format
completion lists and to make explanatory string be shown in completion
lists (since empty matches can be given display strings with the -d
option). And because all but one empty string would otherwise be
removed, this option implies the -V and -2 options (even if an explicit
-J option is given).

-
-- This flag ends the list of flags and options. All arguments after it will be

taken as the words to use as matches even if they begin with hyphens.

Except for the -M flag, if any of these flags is given more than once, the first one
(and its argument) will be used.

compset -p number
compset -P [number] pattern
compset -s number
compset -S [number] pattern
compset -n begin [end]
compset -N beg-pat [end-pat]
compset -q

This command simplifies modification of the special parameters, while its return
status allows tests on them to be carried out.

The options are:

-p number
If the contents of the PREFIX parameter is longer than number charac-
ters, the first number characters are removed from it and appended to
the contents of the IPREFIX parameter.

-P [number] pattern
If the value of the PREFIX parameter begins with anything that matches
the pattern, the matched portion is removed from PREFIX and appended
to IPREFIX.

Without the optional number, the longest match is taken, but if number
is given, anything up to the number’th match is moved. If the number
is negative, the number’th longest match is moved. For example, if
PREFIX contains the string ‘a=b=c’, then compset -P ’*\=’ will move
the string ‘a=b=’ into the IPREFIX parameter, but compset -P 1 ’*\=’
will move only the string ‘a=’.

-s number
As -p, but transfer the last number characters from the value of SUFFIX
to the front of the value of ISUFFIX.

Chapter 19: Completion Widgets 154

-S [number] pattern
As -P, but match the last portion of SUFFIX and transfer the matched
portion to the front of the value of ISUFFIX.

-n begin [end]
If the current word position as specified by the parameter CURRENT is
greater than or equal to begin, anything up to the begin’th word is
removed from the words array and the value of the parameter CURRENT
is decremented by begin.
If the optional end is given, the modification is done only if the current
word position is also less than or equal to end. In this case, the words
from position end onwards are also removed from the words array.
Both begin and end may be negative to count backwards from the last
element of the words array.

-N beg-pat [end-pat]
If one of the elements of the words array before the one at the index
given by the value of the parameter CURRENT matches the pattern beg-
pat, all elements up to and including the matching one are removed
from the words array and the value of CURRENT is changed to point to
the same word in the changed array.
If the optional pattern end-pat is also given, and there is an element in
the words array matching this pattern, the parameters are modified only
if the index of this word is higher than the one given by the CURRENT
parameter (so that the matching word has to be after the cursor). In
this case, the words starting with the one matching end-pat are also
removed from the words array. If words contains no word matching
end-pat, the testing and modification is performed as if it were not
given.

-q The word currently being completed is split on spaces into separate
words, respecting the usual shell quoting conventions. The resulting
words are stored in the words array, and CURRENT, PREFIX, SUFFIX,
QIPREFIX, and QISUFFIX are modified to reflect the word part that is
completed.

In all the above cases the return status is zero if the test succeeded and the param-
eters were modified and non-zero otherwise. This allows one to use this builtin in
tests such as:

if compset -P ’*\=’; then ...

This forces anything up to and including the last equal sign to be ignored by the
completion code.

compcall [-TD]
This allows the use of completions defined with the compctl builtin from within
completion widgets. The list of matches will be generated as if one of the non-
widget completion function (complete-word, etc.) had been called, except that
only compctls given for specific commands are used. To force the code to try
completions defined with the -T option of compctl and/or the default completion
(whether defined by compctl -D or the builtin default) in the appropriate places,
the -T and/or -D flags can be passed to compcall.
The return status can be used to test if a matching compctl definition was found.
It is non-zero if a compctl was found and zero otherwise.
Note that this builtin is defined by the zsh/compctl module.

Chapter 19: Completion Widgets 155

19.4 Condition Codes

The following additional condition codes for use within the [[...]] construct are available
in completion widgets. These work on the special parameters. All of these tests can also be
performed by the compset builtin, but in the case of the condition codes the contents of the
special parameters are not modified.

-prefix [number] pattern
true if the test for the -P option of compset would succeed.

-suffix [number] pattern
true if the test for the -S option of compset would succeed.

-after beg-pat
true if the test of the -N option with only the beg-pat given would succeed.

-between beg-pat end-pat
true if the test for the -N option with both patterns would succeed.

19.5 Matching Control

It is possible by use of the -M option of the compadd builtin command to specify how the
characters in the string to be completed (referred to here as the command line) map onto the
characters in the list of matches produced by the completion code (referred to here as the trial
completions). Note that this is not used if the command line contains a glob pattern and the
GLOB_COMPLETE option is set or the pattern_match of the compstate special association is set
to a non-empty string.
The match-spec given as the argument to the -M option (see Section 19.3 [Builtin Commands],
page 149) consists of one or more matching descriptions separated by whitespace. Each descrip-
tion consists of a letter followed by a colon and then the patterns describing which character
sequences on the line match which character sequences in the trial completion. Any sequence of
characters not handled in this fashion must match exactly, as usual.
The forms of match-spec understood are as follows. In each case, the form with an uppercase
initial character retains the string already typed on the command line as the final result of
completion, while with a lowercase initial character the string on the command line is changed
into the corresponding part of the trial completion.

m:lpat=tpat
M:lpat=tpat

Here, lpat is a pattern that matches on the command line, corresponding to tpat
which matches in the trial completion.

l:lanchor|lpat=tpat
L:lanchor|lpat=tpat
l:lanchor||ranchor=tpat
L:lanchor||ranchor=tpat
b:lpat=tpat
B:lpat=tpat

These letters are for patterns that are anchored by another pattern on the left side.
Matching for lpat and tpat is as for m and M, but the pattern lpat matched on the
command line must be preceded by the pattern lanchor. The lanchor can be blank
to anchor the match to the start of the command line string; otherwise the anchor
can occur anywhere, but must match in both the command line and trial completion
strings.

Chapter 19: Completion Widgets 156

If no lpat is given but a ranchor is, this matches the gap between substrings matched
by lanchor and ranchor. Unlike lanchor, the ranchor only needs to match the trial
completion string.
The b and B forms are similar to l and L with an empty anchor, but need to
match only the beginning of the trial completion or the word on the command line,
respectively.

r:lpat|ranchor=tpat
R:lpat|ranchor=tpat
r:lanchor||ranchor=tpat
R:lanchor||ranchor=tpat
e:lpat=tpat
E:lpat=tpat

As l, L, b and B, with the difference that the command line and trial completion
patterns are anchored on the right side. Here an empty ranchor and the e and E
forms force the match to the end of the trial completion or command line string.

Each lpat, tpat or anchor is either an empty string or consists of a sequence of literal characters
(which may be quoted with a backslash), question marks, character classes, and correspondence
classes; ordinary shell patterns are not used. Literal characters match only themselves, question
marks match any character, and character classes are formed as for globbing and match any
character in the given set.

Correspondence classes are defined like character classes, but with two differences: they are
delimited by a pair of braces, and negated classes are not allowed, so the characters ! and
^ have no special meaning directly after the opening brace. They indicate that a range of
characters on the line match a range of characters in the trial completion, but (unlike ordinary
character classes) paired according to the corresponding position in the sequence. For example,
to make any lowercase letter on the line match the corresponding uppercase letter in the trial
completion, you can use ‘m:{a-z}={A-Z}’. More than one pair of classes can occur, in which
case the first class before the = corresponds to the first after it, and so on. If one side has more
such classes than the other side, the superfluous classes behave like normal character classes. In
anchor patterns correspondence classes also behave like normal character classes.

The pattern tpat may also be one or two stars, ‘*’ or ‘**’. This means that the pattern on
the command line can match any number of characters in the trial completion. In this case
the pattern must be anchored (on either side); in the case of a single star, the anchor then
determines how much of the trial completion is to be included — only the characters up to the
next appearance of the anchor will be matched. With two stars, substrings matched by the
anchor can be matched, too.

Examples:

The keys of the options association defined by the parameter module are the option names
in all-lowercase form, without underscores, and without the optional no at the beginning even
though the builtins setopt and unsetopt understand option names with uppercase letters,
underscores, and the optional no. The following alters the matching rules so that the prefix
no and any underscore are ignored when trying to match the trial completions generated and
uppercase letters on the line match the corresponding lowercase letters in the words:

compadd -M ’L:|[nN][oO]= M:_= M:{A-Z}={a-z}’ - \
${(k)options}

The first part says that the pattern ‘[nN][oO]’ at the beginning (the empty anchor before the
pipe symbol) of the string on the line matches the empty string in the list of words generated
by completion, so it will be ignored if present. The second part does the same for an underscore
anywhere in the command line string, and the third part uses correspondence classes so that

Chapter 19: Completion Widgets 157

any uppercase letter on the line matches the corresponding lowercase letter in the word. The
use of the uppercase forms of the specification characters (L and M) guarantees that what has
already been typed on the command line (in particular the prefix no) will not be deleted.

Note that the use of L in the first part means that it matches only when at the beginning of
both the command line string and the trial completion. I.e., the string ‘_NO_f’ would not be
completed to ‘_NO_foo’, nor would ‘NONO_f’ be completed to ‘NONO_foo’ because of the leading
underscore or the second ‘NO’ on the line which makes the pattern fail even though they are
otherwise ignored. To fix this, one would use ‘B:[nN][oO]=’ instead of the first part. As
described above, this matches at the beginning of the trial completion, independent of other
characters or substrings at the beginning of the command line word which are ignored by the
same or other match-specs.

The second example makes completion case insensitive. This is just the same as in the option
example, except here we wish to retain the characters in the list of completions:

compadd -M ’m:{a-z}={A-Z}’ ...

This makes lowercase letters match their uppercase counterparts. To make uppercase letters
match the lowercase forms as well:

compadd -M ’m:{a-zA-Z}={A-Za-z}’ ...

A nice example for the use of * patterns is partial word completion. Sometimes you would like
to make strings like ‘c.s.u’ complete to strings like ‘comp.source.unix’, i.e. the word on the
command line consists of multiple parts, separated by a dot in this example, where each part
should be completed separately — note, however, that the case where each part of the word, i.e.
‘comp’, ‘source’ and ‘unix’ in this example, is to be completed from separate sets of matches is
a different problem to be solved by the implementation of the completion widget. The example
can be handled by:

compadd -M ’r:|.=* r:|=*’ \
- comp.sources.unix comp.sources.misc ...

The first specification says that lpat is the empty string, while anchor is a dot; tpat is *, so this
can match anything except for the ‘.’ from the anchor in the trial completion word. So in ‘c.s.u’,
the matcher sees ‘c’, followed by the empty string, followed by the anchor ‘.’, and likewise for the
second dot, and replaces the empty strings before the anchors, giving ‘c[omp].s[ources].u[nix]’,
where the last part of the completion is just as normal.

With the pattern shown above, the string ‘c.u’ could not be completed to ‘comp.sources.unix’
because the single star means that no dot (matched by the anchor) can be skipped. By using
two stars as in ‘r:|.=**’, however, ‘c.u’ could be completed to ‘comp.sources.unix’. This
also shows that in some cases, especially if the anchor is a real pattern, like a character class,
the form with two stars may result in more matches than one would like.

The second specification is needed to make this work when the cursor is in the middle of the
string on the command line and the option COMPLETE_IN_WORD is set. In this case the completion
code would normally try to match trial completions that end with the string as typed so far, i.e.
it will only insert new characters at the cursor position rather then at the end. However in our
example we would like the code to recognise matches which contain extra characters after the
string on the line (the ‘nix’ in the example). Hence we say that the empty string at the end of
the string on the line matches any characters at the end of the trial completion.

More generally, the specification

compadd -M ’r:|[.,_-]=* r:|=*’ ...

allows one to complete words with abbreviations before any of the characters in the square
brackets. For example, to complete veryverylongfile.c rather than veryverylongheader.h
with the above in effect, you can just type very.c before attempting completion.

Chapter 20: Completion System 158

The specifications with both a left and a right anchor are useful to complete partial words whose
parts are not separated by some special character. For example, in some places strings have to
be completed that are formed ‘LikeThis’ (i.e. the separate parts are determined by a leading
uppercase letter) or maybe one has to complete strings with trailing numbers. Here one could
use the simple form with only one anchor as in:

compadd -M ’r:|[A-Z0-9]=* r:|=*’ LikeTHIS FooHoo 5foo123 5bar234

But with this, the string ‘H’ would neither complete to ‘FooHoo’ nor to ‘LikeTHIS’ because in
each case there is an uppercase letter before the ‘H’ and that is matched by the anchor. Likewise,
a ‘2’ would not be completed. In both cases this could be changed by using ‘r:|[A-Z0-9]=**’,
but then ‘H’ completes to both ‘LikeTHIS’ and ‘FooHoo’ and a ‘2’ matches the other strings
because characters can be inserted before every uppercase letter and digit. To avoid this one
would use:

compadd -M ’r:[^A-Z0-9]||[A-Z0-9]=** r:|=*’ \
LikeTHIS FooHoo foo123 bar234

By using these two anchors, a ‘H’ matches only uppercase ‘H’s that are immediately preceded by
something matching the left anchor ‘[^A-Z0-9]’. The effect is, of course, that ‘H’ matches only
the string ‘FooHoo’, a ‘2’ matches only ‘bar234’ and so on.

When using the completion system (see Chapter 20 [Completion System], page 158), users can
define match specifications that are to be used for specific contexts by using the matcher and
matcher-list styles. The values for the latter will be used everywhere.

19.6 Completion Widget Example

The first step is to define the widget:

zle -C complete complete-word complete-files

Then the widget can be bound to a key using the bindkey builtin command:

bindkey ’^X\t’ complete

After that the shell function complete-files will be invoked after typing control-X and TAB.
The function should then generate the matches, e.g.:

complete-files () { compadd - * }

This function will complete files in the current directory matching the current word.

20 Completion System

20.1 Description

This describes the shell code for the ‘new’ completion system, referred to as compsys. It is
written in shell functions based on the features described in the previous chapter, Chapter 19
[Completion Widgets], page 144.

The features are contextual, sensitive to the point at which completion is started. Many com-
pletions are already provided. For this reason, a user can perform a great many tasks without
knowing any details beyond how to initialize the system, which is described in Section 20.2
[Initialization], page 159.

The context that decides what completion is to be performed may be

Chapter 20: Completion System 159

• an argument or option position: these describe the position on the command line at which
completion is requested. For example ‘first argument to rmdir, the word being completed
names a directory’;

• a special context, denoting an element in the shell’s syntax. For example ‘a word in com-
mand position’ or ‘an array subscript’.

A full context specification contains other elements, as we shall describe.
Besides commands names and contexts, the system employs two more concepts, styles and tags.
These provide ways for the user to configure the system’s behaviour.
Tags play a dual role. They serve as a classification system for the matches, typically indicating
a class of object that the user may need to distinguish. For example, when completing arguments
of the ls command the user may prefer to try files before directories, so both of these are
tags. They also appear as the rightmost element in a context specification.
Styles modify various operations of the completion system, such as output formatting, but also
what kinds of completers are used (and in what order), or which tags are examined. Styles may
accept arguments and are manipulated using the zstyle command described in Section 22.34
[The zsh/zutil Module], page 264.
In summary, tags describe what the completion objects are, and style how they are to be com-
pleted. At various points of execution, the completion system checks what styles and/or tags
are defined for the current context, and uses that to modify its behavior. The full description
of context handling, which determines how tags and other elements of the context influence the
behaviour of styles, is described in Section 20.3 [Completion System Configuration], page 164.
When a completion is requested, a dispatcher function is called; see the description of
_main_complete in the list of control functions below. This dispatcher decides which func-
tion should be called to produce the completions, and calls it. The result is passed to one or
more completers, functions that implement individual completion strategies: simple completion,
error correction, completion with error correction, menu selection, etc.
More generally, the shell functions contained in the completion system are of two types:
• those beginning ‘comp’ are to be called directly; there are only a few of these;
• those beginning ‘_’ are called by the completion code. The shell functions of this set,

which implement completion behaviour and may be bound to keystrokes, are referred to as
‘widgets’. These proliferate as new completions are required.

20.2 Initialization

If the system was installed completely, it should be enough to call the shell function compinit
from your initialization file; see the next section. However, the function compinstall can be
run by a user to configure various aspects of the completion system.
Usually, compinstall will insert code into .zshrc, although if that is not writable it will save
it in another file and tell you that file’s location. Note that it is up to you to make sure that
the lines added to .zshrc are actually run; you may, for example, need to move them to an
earlier place in the file if .zshrc usually returns early. So long as you keep them all together
(including the comment lines at the start and finish), you can rerun compinstall and it will
correctly locate and modify these lines. Note, however, that any code you add to this section by
hand is likely to be lost if you rerun compinstall, although lines using the command ‘zstyle’
should be gracefully handled.
The new code will take effect next time you start the shell, or run .zshrc by hand; there is
also an option to make them take effect immediately. However, if compinstall has removed
definitions, you will need to restart the shell to see the changes.

Chapter 20: Completion System 160

To run compinstall you will need to make sure it is in a directory mentioned in your fpath
parameter, which should already be the case if zsh was properly configured as long as your
startup files do not remove the appropriate directories from fpath. Then it must be autoloaded
(‘autoload -U compinstall’ is recommended). You can abort the installation any time you
are being prompted for information, and your .zshrc will not be altered at all; changes only
take place right at the end, where you are specifically asked for confirmation.

20.2.1 Use of compinit

This section describes the use of compinit to initialize completion for the current session when
called directly; if you have run compinstall it will be called automatically from your .zshrc.
To initialize the system, the function compinit should be in a directory mentioned in the fpath
parameter, and should be autoloaded (‘autoload -U compinit’ is recommended), and then run
simply as ‘compinit’. This will define a few utility functions, arrange for all the necessary shell
functions to be autoloaded, and will then re-define all widgets that do completion to use the new
system. If you use the menu-select widget, which is part of the zsh/complist module, you
should make sure that that module is loaded before the call to compinit so that that widget
is also re-defined. If completion styles (see below) are set up to perform expansion as well as
completion by default, and the TAB key is bound to expand-or-complete, compinit will rebind
it to complete-word; this is necessary to use the correct form of expansion.
Should you need to use the original completion commands, you can still bind keys to the old
widgets by putting a ‘.’ in front of the widget name, e.g. ‘.expand-or-complete’.
To speed up the running of compinit, it can be made to produce a dumped configuration that
will be read in on future invocations; this is the default, but can be turned off by calling compinit
with the option -D. The dumped file is .zcompdump in the same directory as the startup files
(i.e. $ZDOTDIR or $HOME); alternatively, an explicit file name can be given by ‘compinit -d
dumpfile’. The next invocation of compinit will read the dumped file instead of performing a
full initialization.
If the number of completion files changes, compinit will recognise this and produce a new dump
file. However, if the name of a function or the arguments in the first line of a #compdef function
(as described below) change, it is easiest to delete the dump file by hand so that compinit will
re-create it the next time it is run. The check performed to see if there are new functions can
be omitted by giving the option -C. In this case the dump file will only be created if there isn’t
one already.
The dumping is actually done by another function, compdump, but you will only need to run this
yourself if you change the configuration (e.g. using compdef) and then want to dump the new
one. The name of the old dumped file will be remembered for this purpose.
If the parameter _compdir is set, compinit uses it as a directory where completion functions
can be found; this is only necessary if they are not already in the function search path.
For security reasons compinit also checks if the completion system would use files not owned by
root or by the current user, or files in directories that are world- or group-writable or that are
not owned by root or by the current user. If such files or directories are found, compinit will ask
if the completion system should really be used. To avoid these tests and make all files found be
used without asking, use the option -u, and to make compinit silently ignore all insecure files
and directories use the option -i. This security check is skipped entirely when the -C option is
given.
The security check can be retried at any time by running the function compaudit. This is
the same check used by compinit, but when it is executed directly any changes to fpath
are made local to the function so they do not persist. The directories to be checked may be
passed as arguments; if none are given, compaudit uses fpath and _compdir to find completion

Chapter 20: Completion System 161

system directories, adding missing ones to fpath as necessary. To force a check of exactly the
directories currently named in fpath, set _compdir to an empty string before calling compaudit
or compinit.

20.2.2 Autoloaded files

The convention for autoloaded functions used in completion is that they start with an underscore;
as already mentioned, the fpath/FPATH parameter must contain the directory in which they are
stored. If zsh was properly installed on your system, then fpath/FPATH automatically contains
the required directories for the standard functions.
For incomplete installations, if compinit does not find enough files beginning with an underscore
(fewer than twenty) in the search path, it will try to find more by adding the directory _compdir
to the search path. If that directory has a subdirectory named Base, all subdirectories will
be added to the path. Furthermore, if the subdirectory Base has a subdirectory named Core,
compinit will add all subdirectories of the subdirectories is to the path: this allows the functions
to be in the same format as in the zsh source distribution.
When compinit is run, it searches all such files accessible via fpath/FPATH and reads the first
line of each of them. This line should contain one of the tags described below. Files whose first
line does not start with one of these tags are not considered to be part of the completion system
and will not be treated specially.
The tags are:

#compdef names... [-[pP] patterns... [-N names...]]
The file will be made autoloadable and the function defined in it will be called when
completing names, each of which is either the name of a command whose arguments
are to be completed or one of a number of special contexts in the form -context-
described below.
Each name may also be of the form ‘cmd=service’. When completing the command
cmd, the function typically behaves as if the command (or special context) service
was being completed instead. This provides a way of altering the behaviour of
functions that can perform many different completions. It is implemented by setting
the parameter $service when calling the function; the function may choose to
interpret this how it wishes, and simpler functions will probably ignore it.
If the #compdef line contains one of the options -p or -P, the words following are
taken to be patterns. The function will be called when completion is attempted for
a command or context that matches one of the patterns. The options -p and -P are
used to specify patterns to be tried before or after other completions respectively.
Hence -P may be used to specify default actions.
The option -N is used after a list following -p or -P; it specifies that remaining
words no longer define patterns. It is possible to toggle between the three options
as many times as necessary.

#compdef -k style key-sequences...
This option creates a widget behaving like the builtin widget style and binds it to
the given key-sequences, if any. The style must be one of the builtin widgets that
perform completion, namely complete-word, delete-char-or-list, expand-or-
complete, expand-or-complete-prefix, list-choices, menu-complete, menu-
expand-or-complete, or reverse-menu-complete. If the zsh/complist module
is loaded (see Section 22.6 [The zsh/complist Module], page 229) the widget menu-
select is also available.
When one of the key-sequences is typed, the function in the file will be invoked to
generate the matches. Note that a key will not be re-bound if if it already was (that

Chapter 20: Completion System 162

is, was bound to something other than undefined-key). The widget created has
the same name as the file and can be bound to any other keys using bindkey as
usual.

#compdef -K widget-name style key-sequences ...
This is similar to -k except that only one key-sequences argument may be given for
each widget-name style pair. However, the entire set of three arguments may be
repeated with a different set of arguments. Note in particular that the widget-name
must be distinct in each set. If it does not begin with ‘_’ this will be added. The
widget-name should not clash with the name of any existing widget: names based
on the name of the function are most useful. For example,

#compdef -K _foo_complete complete-word "^X^C" \
_foo_list list-choices "^X^D"

(all on one line) defines a widget _foo_complete for completion, bound to ‘^X^C’,
and a widget _foo_list for listing, bound to ‘^X^D’.

#autoload [options]
Functions with the #autoload tag are marked for autoloading but are not otherwise
treated specially. Typically they are to be called from within one of the completion
functions. Any options supplied will be passed to the autoload builtin; a typical
use is +X to force the function to be loaded immediately. Note that the -U and -z
flags are always added implicitly.

The # is part of the tag name and no white space is allowed after it. The #compdef tags use
the compdef function described below; the main difference is that the name of the function is
supplied implicitly.
The special contexts for which completion functions can be defined are:

-array-value-
The right hand side of an array-assignment (‘foo=(...)’)

-brace-parameter-
The name of a parameter expansion within braces (‘${...}’)

-assign-parameter-
The name of a parameter in an assignment, i.e. on the left hand side of an ‘=’

-command-
A word in command position

-condition-
A word inside a condition (‘[[...]]’)

-default-
Any word for which no other completion is defined

-equal- A word beginning with an equals sign

-first- This is tried before any other completion function. The function called may set
the _compskip parameter to one of various values: all: no further completion
is attempted; a string containing the substring patterns: no pattern completion
functions will be called; a string containing default: the function for the ‘-default-
’ context will not be called, but functions defined for commands will

-math- Inside mathematical contexts, such as ‘((...))’

-parameter-
The name of a parameter expansion (‘$...’)

Chapter 20: Completion System 163

-redirect-
The word after a redirection operator.

-subscript-
The contents of a parameter subscript.

-tilde- After an initial tilde (‘~’), but before the first slash in the word.

-value- On the right hand side of an assignment.

Default implementations are supplied for each of these contexts. In most cases the context
-context- is implemented by a corresponding function _context, for example the context ‘-
tilde-’ and the function ‘_tilde’).

The contexts -redirect- and -value- allow extra context-specific information. (Internally,
this is handled by the functions for each context calling the function _dispatch.) The extra
information is added separated by commas.

For the -redirect- context, the extra information is in the form ‘-redirect-,op,command’,
where op is the redirection operator and command is the name of the command on the line. If
there is no command on the line yet, the command field will be empty.

For the -value- context, the form is ‘-value-,name,command’, where name is the name of
the parameter. In the case of elements of an associative array, for example ‘assoc=(key <TAB>’,
name is expanded to ‘name-key ’. In certain special contexts, such as completing after ‘make
CFLAGS=’, the command part gives the name of the command, here make; otherwise it is empty.

It is not necessary to define fully specific completions as the functions provided will try to
generate completions by progressively replacing the elements with ‘-default-’. For example,
when completing after ‘foo=<TAB>’, _value will try the names ‘-value-,foo,’ (note the empty
command part), ‘-value-,foo,-default-’ and‘-value-,-default-,-default-’, in that order,
until it finds a function to handle the context.

As an example:

compdef ’_files -g "*.log"’ ’-redirect-,2>,-default-’

completes files matching ‘*.log’ after ‘2> <TAB>’ for any command with no more specific handler
defined.

Also:

compdef _foo -value-,-default-,-default-

specifies that _foo provides completions for the values of parameters for which no special function
has been defined. This is usually handled by the function _value itself.

The same lookup rules are used when looking up styles (as described below); for example

zstyle ’:completion:*:*:-redirect-,2>,*:*’ file-patterns ’*.log’

is another way to make completion after ‘2> <TAB>’ complete files matching ‘*.log’.

20.2.3 Functions

The following function is defined by compinit and may be called directly.

compdef [-an] function names... [-[pP] patterns... [-N names...]]
compdef -d names...
compdef -k [-an] function style key-sequences...
compdef -K [-an] function name style key-sequences ...

The first form defines the function to call for completion in the given contexts as
described for the #compdef tag above.

Chapter 20: Completion System 164

Alternatively, all the arguments may have the form ‘cmd=service’. Here service
should already have been defined by ‘cmd1=service’ lines in #compdef files, as de-
scribed above. The argument for cmd will be completed in the same way as service.
The function argument may alternatively be a string containing any shell code. The
string will be executed using the eval builtin command to generate completions.
This provides a way of avoiding having to define a new completion function. For
example, to complete files ending in ‘.h’ as arguments to the command foo:

compdef ’_files -g "*.h"’ foo

The option -n prevents any completions already defined for the command or context
from being overwritten.
The option -d deletes any completion defined for the command or contexts listed.
The names may also contain -p, -P and -N options as described for the #compdef
tag. The effect on the argument list is identical, switching between definitions of
patterns tried initially, patterns tried finally, and normal commands and contexts.
The parameter $_compskip may be set by any function defined for a pattern context.
If it is set to a value containing the substring ‘patterns’ none of the pattern-
functions will be called; if it is set to a value containing the substring ‘all’, no other
function will be called.
The form with -k defines a widget with the same name as the function that will be
called for each of the key-sequences; this is like the #compdef -k tag. The function
should generate the completions needed and will otherwise behave like the builtin
widget whose name is given as the style argument. The widgets usable for this
are: complete-word, delete-char-or-list, expand-or-complete, expand-or-
complete-prefix, list-choices, menu-complete, menu-expand-or-complete,
and reverse-menu-complete, as well as menu-select if the zsh/complist module
is loaded. The option -n prevents the key being bound if it is already to bound to
something other than undefined-key.
The form with -K is similar and defines multiple widgets based on the same function,
each of which requires the set of three arguments name, style and key-sequences,
where the latter two are as for -k and the first must be a unique widget name
beginning with an underscore.
Wherever applicable, the -a option makes the function autoloadable, equivalent to
autoload -U function.

The function compdef can be used to associate existing completion functions with new com-
mands. For example,

compdef _pids foo

uses the function _pids to complete process IDs for the command foo.
Note also the _gnu_generic function described below, which can be used to complete options
for commands that understand the ‘--help’ option.

20.3 Completion System Configuration

This section gives a short overview of how the completion system works, and then more detail
on how users can configure how and when matches are generated.

20.3.1 Overview

When completion is attempted somewhere on the command line the completion system first
works out the context. This takes account of a number of things including the command word

Chapter 20: Completion System 165

(such as ‘grep’ or ‘zsh’) and options to which the current word may be an argument (such as
the ‘-o’ option to zsh which takes a shell option as an argument).
This context information is condensed into a string consisting of multiple fields separated by
colons, referred to simply as ‘the context’ in the remainder of the documentation. This is used
to look up styles, context-sensitive options that can be used to configure the completion system.
The context used for lookup may vary during the same call to the completion system.
The context string always consists of a fixed set of fields, separated by colons and with a leading
colon before the first, in the form :completion:function:completer:command:argument:tag.
These have the following meaning:
• The literal string completion, saying that this style is used by the completion system. This

distinguishes the context from those used by, for example, zle widgets and ZFTP functions.
• The function, if completion is called from a named widget rather than through the normal

completion system. Typically this is blank, but it is set by special widgets such as predict-
on and the various functions in the Widget directory of the distribution to the name of that
function, often in an abbreviated form.

• The completer currently active, the name of the function without the leading underscore
and with other underscores converted to hyphens. A ‘completer’ is in overall control of how
completion is to be performed; ‘complete’ is the simplest, but other completers exist to
perform related tasks such as correction, or to modify the behaviour of a later completer.
See Section 20.4 [Control Functions], page 190 for more information.

• The command or a special -context-, just at it appears following the #compdef tag or the
compdef function. Completion functions for commands that have sub-commands usually
modify this field to contain the name of the command followed by a minus sign and the
sub-command. For example, the completion function for the cvs command sets this field
to cvs-add when completing arguments to the add subcommand.

• The argument; this indicates which command line or option argument we are completing.
For command arguments this generally takes the form argument-n, where n is the number of
the argument, and for arguments to options the form option-opt-n where n is the number
of the argument to option opt. However, this is only the case if the command line is parsed
with standard UNIX-style options and arguments, so many completions do not set this.

• The tag. As described previously, tags are used to discriminate between the types of matches
a completion function can generate in a certain context. Any completion function may use
any tag name it likes, but a list of the more common ones is given below.

The context is gradually put together as the functions are executed, starting with the main
entry point, which adds :completion: and the function element if necessary. The completer
then adds the completer element. The contextual completion adds the command and argument
options. Finally, the tag is added when the types of completion are known. For example, the
context name

:completion::complete:dvips:option-o-1:files

says that normal completion was attempted as the first argument to the option -o of the com-
mand dvips:

dvips -o ...

and the completion function will generate filenames.
Usually completion will be tried for all possible tags in an order given by the completion function.
However, this can be altered by using the tag-order style. Completion is then restricted to the
list of given tags in the given order.
The _complete_help bindable command shows all the contexts and tags available for completion
at a particular point. This provides an easy way of finding information for tag-order and other
styles. It is described in Section 20.5 [Bindable Commands], page 195.

Chapter 20: Completion System 166

Styles determine such things as how the matches are generated, similarly to shell options but
with much more control. They can have any number of strings as their value. They are defined
with the zstyle builtin command (Section 22.34 [The zsh/zutil Module], page 264).
When looking up styles the completion system uses full context names, including the tag. Look-
ing up the value of a style therefore consists of two things: the context, which may be matched
as a pattern, and the name of the style itself, which must be given exactly.
For example, many completion functions can generate matches in a simple and a verbose form
and use the verbose style to decide which form should be used. To make all such functions use
the verbose form, put

zstyle ’:completion:*’ verbose yes

in a startup file (probably .zshrc). This gives the verbose style the value yes in every context
inside the completion system, unless that context has a more specific definition. It is best to
avoid giving the context as ‘*’ in case the style has some meaning outside the completion system.
Many such general purpose styles can be configured simply by using the compinstall function.
A more specific example of the use of the verbose style is by the completion for the kill builtin.
If the style is set, the builtin lists full job texts and process command lines; otherwise it shows
the bare job numbers and PIDs. To turn the style off for this use only:

zstyle ’:completion:*:*:kill:*’ verbose no

For even more control, the style can use one of the tags ‘jobs’ or ‘processes’. To turn off
verbose display only for jobs:

zstyle ’:completion:*:*:kill:*:jobs’ verbose no

The -e option to zstyle even allows completion function code to appear as the argument to a
style; this requires some understanding of the internals of completion functions (see Chapter 19
[Completion Widgets], page 144)). For example,

zstyle -e ’:completion:*’ hosts ’reply=($myhosts)’

This forces the value of the hosts style to be read from the variable myhosts each time a host
name is needed; this is useful if the value of myhosts can change dynamically. For another useful
example, see the example in the description of the file-list style below. This form can be
slow and should be avoided for commonly examined styles such as menu and list-rows-first.
Note that the order in which styles are defined does not matter; the style mechanism uses the
most specific possible match for a particular style to determine the set of values. More precisely,
strings are preferred over patterns (for example, ‘:completion::complete:foo’ is more specific
than ‘:completion::complete:*’), and longer patterns are preferred over shorter patterns.
Style names like those of tags are arbitrary and depend on the completion function. However,
the following two sections list some of the most common tags and styles.

20.3.2 Standard Tags

Some of the following are only used when looking up particular styles and do not refer to a type
of match.

accounts used to look up the users-hosts style

all-expansions
used by the _expand completer when adding the single string containing all possible
expansions

all-files
for the names of all files (as distinct from a particular subset, see the globbed-files
tag).

Chapter 20: Completion System 167

arguments
for arguments to a command

arrays for names of array parameters

association-keys
for keys of associative arrays; used when completing inside a subscript to a parameter
of this type

bookmarks
when completing bookmarks (e.g. for URLs and the zftp function suite)

builtins for names of builtin commands

characters
for single characters in arguments of commands such as stty. Also used when
completing character classes after an opening bracket

colormapids
for X colormap ids

colors for color names

commands for names of external commands. Also used by complex commands such as cvs
when completing names subcommands.

contexts for contexts in arguments to the zstyle builtin command

corrections
used by the _approximate and _correct completers for possible corrections

cursors for cursor names used by X programs

default used in some contexts to provide a way of supplying a default when more specific
tags are also valid. Note that this tag is used when only the function field of the
context name is set

descriptions
used when looking up the value of the format style to generate descriptions for
types of matches

devices for names of device special files

directories
for names of directories

directory-stack
for entries in the directory stack

displays for X display names

domains for network domains

expansions
used by the _expand completer for individual words (as opposed to the complete
set of expansions) resulting from the expansion of a word on the command line

extensions
for X server extensions

file-descriptors
for numbers of open file descriptors

files the generic file-matching tag used by functions completing filenames

Chapter 20: Completion System 168

fonts for X font names

fstypes for file system types (e.g. for the mount command)

functions
names of functions — normally shell functions, although certain commands may
understand other kinds of function

globbed-files
for filenames when the name has been generated by pattern matching

groups for names of user groups

history-words
for words from the history

hosts for hostnames

indexes for array indexes

jobs for jobs (as listed by the ‘jobs’ builtin)

interfaces
for network interfaces

keymaps for names of zsh keymaps

keysyms for names of X keysyms

libraries
for names of system libraries

limits for system limits

local-directories
for names of directories that are subdirectories of the current working directory
when completing arguments of cd and related builtin commands (compare path-
directories)

manuals for names of manual pages

mailboxes
for e-mail folders

maps for map names (e.g. NIS maps)

messages used to look up the format style for messages

modifiers
for names of X modifiers

modules for modules (e.g. zsh modules)

my-accounts
used to look up the users-hosts style

named-directories
for named directories (you wouldn’t have guessed that, would you?)

names for all kinds of names

newsgroups
for USENET groups

nicknames
for nicknames of NIS maps

Chapter 20: Completion System 169

options for command options

original used by the _approximate, _correct and _expand completers when offering the
original string as a match

other-accounts
used to look up the users-hosts style

packages for packages (e.g. rpm or installed Debian packages)

parameters
for names of parameters

path-directories
for names of directories found by searching the cdpath array when completing ar-
guments of cd and related builtin commands (compare local-directories)

paths used to look up the values of the expand, ambiguous and special-dirs styles

pods for perl pods (documentation files)

ports for communication ports

prefixes for prefixes (like those of a URL)

printers for print queue names

processes
for process identifiers

processes-names
used to look up the command style when generating the names of processes for
killall

sequences
for sequences (e.g. mh sequences)

sessions for sessions in the zftp function suite

signals for signal names

strings for strings (e.g. the replacement strings for the cd builtin command)

styles for styles used by the zstyle builtin command

suffixes for filename extensions

tags for tags (e.g. rpm tags)

targets for makefile targets

time-zones
for time zones (e.g. when setting the TZ parameter)

types for types of whatever (e.g. address types for the xhost command)

urls used to look up the urls and local styles when completing URLs

users for usernames

values for one of a set of values in certain lists

variant used by _pick_variant to look up the command to run when determining what
program is installed for a particular command name.

visuals for X visuals

warnings used to look up the format style for warnings

Chapter 20: Completion System 170

widgets for zsh widget names

windows for IDs of X windows

zsh-options
for shell options

20.3.3 Standard Styles

Note that the values of several of these styles represent boolean values. Any of the strings ‘true’,
‘on’, ‘yes’, and ‘1’ can be used for the value ‘true’ and any of the strings ‘false’, ‘off’, ‘no’, and
‘0’ for the value ‘false’. The behavior for any other value is undefined except where explicitly
mentioned. The default value may be either true or false if the style is not set.

Some of these styles are tested first for every possible tag corresponding to a type of match,
and if no style was found, for the default tag. The most notable styles of this type are menu,
list-colors and styles controlling completion listing such as list-packed and last-prompt).
When tested for the default tag, only the function field of the context will be set so that a
style using the default tag will normally be defined along the lines of:

zstyle ’:completion:*:default’ menu ...

accept-exact
This is tested for the default tag in addition to the tags valid for the current context.
If it is set to ‘true’ and any of the trial matches is the same as the string on the
command line, this match will immediately be accepted (even if it would otherwise
be considered ambiguous).

When completing pathnames (where the tag used is ‘paths’) this style accepts any
number of patterns as the value in addition to the boolean values. Pathnames
matching one of these patterns will be accepted immediately even if the command
line contains some more partially typed pathname components and these match no
file under the directory accepted.

This style is also used by the _expand completer to decide if words beginning with
a tilde or parameter expansion should be expanded. For example, if there are
parameters foo and foobar, the string ‘$foo’ will only be expanded if accept-
exact is set to ‘true’; otherwise the completion system will be allowed to complete
$foo to $foobar. If the style is set to ‘continue’, expand will add the expansion as
a match and the completion system will also be allowed to continue.

add-space
This style is used by the _expand completer. If it is true (the default), a space will
be inserted after all words resulting from the expansion, or a slash in the case of
directory names. If the value is ‘file’, the completer will only add a space to names
of existing files. Either a boolean true or the value ‘file’ may be combined with
‘subst’, in which case the completer will not add a space to words generated from
the expansion of a substitution of the form ‘$(...)’ or ‘${...}’.

The _prefix completer uses this style as a simple boolean value to decide if a space
should be inserted before the suffix.

ambiguous
This applies when completing non-final components of filename paths, in other words
those with a trailing slash. If it is set, the cursor is left after the first ambiguous
component, even if menu completion is in use. The style is always tested with the
paths tag.

Chapter 20: Completion System 171

assign-list
When completing after an equals sign that is being treated as an assignment, the
completion system normally completes only one filename. In some cases the value
may be a list of filenames separated by colons, as with PATH and similar parameters.
This style can be set to a list of patterns matching the names of such parameters.
The default is to complete lists when the word on the line already contains a colon.

auto-description
If set, this style’s value will be used as the description for options that are not
described by the completion functions, but that have exactly one argument. The
sequence ‘%d’ in the value will be replaced by the description for this argument.
Depending on personal preferences, it may be useful to set this style to something
like ‘specify: %d’. Note that this may not work for some commands.

avoid-completer
This is used by the _all_matches completer to decide if the string consisting of all
matches should be added to the list currently being generated. Its value is a list of
names of completers. If any of these is the name of the completer that generated
the matches in this completion, the string will not be added.
The default value for this style is ‘_expand _old_list _correct _approximate’,
i.e. it contains the completers for which a string with all matches will almost never
be wanted.

cache-path
This style defines the path where any cache files containing dumped completion
data are stored. It defaults to ‘$ZDOTDIR/.zcompcache’, or ‘$HOME/.zcompcache’
if $ZDOTDIR is not defined. The completion cache will not be used unless the use-
cache style is set.

cache-policy
This style defines the function that will be used to determine whether a cache needs
rebuilding. See the section on the _cache_invalid function below.

call-command
This style is used in the function for commands such as make and ant where calling
the command directly to generate matches suffers problems such as being slow or,
as in the case of make can potentially causes actions in the makefile to be executed.
If it is set to ‘true’ the command is called to generate matches. The default value
of this style is ‘false’.

command In many places, completion functions need to call external commands to generate
the list of completions. This style can be used to override the command that is
called in some such cases. The elements of the value are joined with spaces to
form a command line to execute. The value can also start with a hyphen, in which
case the usual command will be added to the end; this is most useful for putting
‘builtin’ or ‘command’ in front to make sure the appropriate version of a command
is called, for example to avoid calling a shell function with the same name as an
external command.
As an example, the completion function for process IDs uses this style with the
processes tag to generate the IDs to complete and the list of processes to display
(if the verbose style is ‘true’). The list produced by the command should look like
the output of the ps command. The first line is not displayed, but is searched for
the string ‘PID’ (or ‘pid’) to find the position of the process IDs in the following
lines. If the line does not contain ‘PID’, the first numbers in each of the other lines
are taken as the process IDs to complete.

Chapter 20: Completion System 172

Note that the completion function generally has to call the specified command for
each attempt to generate the completion list. Hence care should be taken to specify
only commands that take a short time to run, and in particular to avoid any that
may never terminate.

command-path
This is a list of directories to search for commands to complete. The default for this
style is the value of the special parameter path.

commands This is used by the function completing sub-commands for the system initialisation
scripts (residing in /etc/init.d or somewhere not too far away from that). Its
values give the default commands to complete for those commands for which the
completion function isn’t able to find them out automatically. The default for this
style are the two strings ‘start’ and ‘stop’.

complete This is used by the _expand_alias function when invoked as a bindable command.
If it set to ‘true’ and the word on the command line is not the name of an alias,
matching alias names will be completed.

completer
The strings given as the value of this style provide the names of the completer
functions to use. The available completer functions are described in Section 20.4
[Control Functions], page 190.
Each string may be either the name of a completer function or a string of the form
‘function:name’. In the first case the completer field of the context will contain the
name of the completer without the leading underscore and with all other underscores
replaced by hyphens. In the second case the function is the name of the completer
to call, but the context will contain the user-defined name in the completer field of
the context. If the name starts with a hyphen, the string for the context will be
build from the name of the completer function as in the first case with the name
appended to it. For example:

zstyle ’:completion:*’ completer _complete _complete:-foo

Here, completion will call the _complete completer twice, once using ‘complete’
and once using ‘complete-foo’ in the completer field of the context. Normally,
using the same completer more than once only makes sense when used with the
‘functions:name’ form, because otherwise the context name will be the same in all
calls to the completer; possible exceptions to this rule are the _ignored and _prefix
completers.
The default value for this style is ‘_complete _ignored’: only completion will be
done, first using the ignored-patterns style and the $fignore array and then
without ignoring matches.

condition
This style is used by the _list completer function to decide if insertion of matches
should be delayed unconditionally. The default is ‘true’.

disabled If this is set to ‘true’, the _expand_alias completer and bindable command will try
to expand disabled aliases, too. The default is ‘false’.

domains A list of names of network domains for completion. If this is not set, domain names
will be taken from the file /etc/resolv.conf.

expand This style is used when completing strings consisting of multiple parts, such as path
names.
If one of its values is the string ‘prefix’, the partially typed word from the line will
be expanded as far as possible even if trailing parts cannot be completed.

Chapter 20: Completion System 173

If one of its values is the string ‘suffix’, matching names for components after the
first ambiguous one will also be added. This means that the resulting string is the
longest unambiguous string possible. However, menu completion can be used to
cycle through all matches.

fake This style may be set for any completion context. It specifies additional strings
that will always be completed in that context. The form of each string is
‘value:description’; the colon and description may be omitted, but any literal colons
in value must be quoted with a backslash. Any description provided is shown along-
side the value in completion listings.

It is important to use a sufficiently restrictive context when specifying fake strings.
Note that the styles fake-files and fake-parameters provide additional features
when completing files or parameters.

fake-always
This works identically to the fake style except that the ignored-patterns style is
not applied to it. This makes it possible to override a set of matches completely by
setting the ignored patterns to ‘*’.

The following shows a way of supplementing any tag with arbitrary data, but having
it behave for display purposes like a separate tag. In this example we use the
features of the tag-order style to divide the named-directories tag into two
when performing completion with the standard completer complete for arguments
of cd. The tag named-directories-normal behaves as normal, but the tag named-
directories-mine contains a fixed set of directories. This has the effect of adding
the match group ‘extra directories’ with the given completions.

zstyle ’:completion::complete:cd:*’ tag-order \
’named-directories:-mine:extra\ directories
named-directories:-normal:named\ directories *’

zstyle ’:completion::complete:cd:*:named-directories-mine’ \
fake-always mydir1 mydir2

zstyle ’:completion::complete:cd:*:named-directories-mine’ \
ignored-patterns ’*’

fake-files
This style is used when completing files and looked up without a tag. Its values are
of the form ‘dir:names...’. This will add the names (strings separated by spaces) as
possible matches when completing in the directory dir, even if no such files really
exist. The dir may be a pattern; pattern characters or colons in dir should be quote
with a backslash to be treated literally.

This can be useful on systems that support special filesystems whose top-level path-
names can not be listed or generated with glob patterns. It can also be used for
directories for which one does not have read permission.

The pattern form can be used to add a certain ‘magic’ entry to all directories on a
particular filing system.

fake-parameters
This is used by the completion function for parameter names. Its values are names
of parameters that might not yet be set but should be completed nonetheless. Each
name may also be followed by a colon and a string specifying the type of the pa-
rameter (like ‘scalar’, ‘array’ or ‘integer’). If the type is given, the name will
only be completed if parameters of that type are required in the particular context.
Names for which no type is specified will always be completed.

Chapter 20: Completion System 174

file-list
This style controls whether files completed using the standard builtin mechanism
are to be listed with a long list similar to ls -l. Note that this feature uses the shell
module zsh/stat for file information; this loads the builtin stat which will replace
any external stat executable. To avoid this the following code can be included in
an initialization file:

zmodload -i zsh/stat
disable stat

The style may either be set to a true value (or ‘all’), or one of the values ‘insert’
or ‘list’, indicating that files are to be listed in long format in all circumstances, or
when attempting to insert a file name, or when listing file names without attempting
to insert one.

More generally, the value may be an array of any of the above values, optionally
followed by =num. If num is present it gives the maximum number of matches for
which long listing style will be used. For example,

zstyle ’:completion:*’ file-list list=20 insert=10

specifies that long format will be used when listing up to 20 files or inserting a file
with up to 10 matches (assuming a listing is to be shown at all, for example on an
ambiguous completion), else short format will be used.

zstyle -e ’:completion:*’ file-list ’((${+NUMERIC})) && reply=(true)’

specifies that long format will be used any time a numeric argument is supplied, else
short format.

file-patterns
This is used by the standard function for completing filenames, _files. If the style
is unset up to three tags are offered, ‘globbed-files’,‘directories’ and ‘all-
files’, depending on the types of files expected by the caller of _files. The first
two (‘globbed-files’ and ‘directories’) are normally offered together to make it
easier to complete files in sub-directories.

The file-patterns style provides alternatives to the default tags, which are not
used. Its value consists of elements of the form ‘pattern:tag ’; each string may
contain any number of such specifications separated by spaces.

The pattern is a pattern that is to be used to generate filenames. Any occurrence
of the sequence ‘%p’ is replaced by any pattern(s) passed by the function calling
_files. Colons in the pattern must be preceded by a backslash to make them
distinguishable from the colon before the tag. If more than one pattern is needed,
the patterns can be given inside braces, separated by commas.

The tags of all strings in the value will be offered by _files and used when looking
up other styles. Any tags in the same word will be offered at the same time and
before later words. If no ‘:tag ’ is given the ‘files’ tag will be used.

The tag may also be followed by an optional second colon and a description, which
will be used for the ‘%d’ in the value of the format style (if that is set) instead
of the default description supplied by the completion function. If the description
given here contains itself a ‘%d’, that is replaced with the description supplied by
the completion function.

For example, to make the rm command first complete only names of object files and
then the names of all files if there is no matching object file:

zstyle ’:completion:*:*:rm:*’ file-patterns \
’*.o:object-files’ ’%p:all-files’

Chapter 20: Completion System 175

To alter the default behaviour of file completion — offer files matching a pattern
and directories on the first attempt, then all files — to offer only matching files on
the first attempt, then directories, and finally all files:

zstyle ’:completion:*’ file-patterns \
’%p:globbed-files’ ’*(-/):directories’ ’*:all-files’

This works even where there is no special pattern: _files matches all files using
the pattern ‘*’ at the first step and stops when it sees this pattern. Note also it will
never try a pattern more than once for a single completion attempt.
During the execution of completion functions, the EXTENDED_GLOB option is in effect,
so the characters ‘#’, ‘~’ and ‘^’ have special meanings in the patterns.

file-sort
The standard filename completion function uses this style without a tag to determine
in which order the names should be listed; menu completion will cycle through them
in the same order. The possible values are: ‘size’ to sort by the size of the file;
‘links’ to sort by the number of links to the file; ‘modification’ (or ‘time’ or
‘date’) to sort by the last modification time; ‘access’ to sort by the last access
time; and ‘inode’ (or ‘change’) to sort by the last inode change time. If the style
is set to any other value, or is unset, files will be sorted alphabetically by name. If
the value contains the string ‘reverse’, sorting is done in the opposite order.

filter This is used by the LDAP plugin for e-mail address completion to specify the at-
tributes to match against when filtering entries. So for example, if the style is set
to ‘sn’, matching is done against surnames. Standard LDAP filtering is used so
normal completion matching is bypassed. If this style is not set, the LDAP plugin
is skipped. You may also need to set the command style to specify how to connect
to your LDAP server.

force-list
This forces a list of completions to be shown at any point where listing is done, even
in cases where the list would usually be suppressed. For example, normally the list
is only shown if there are at least two different matches. By setting this style to
‘always’, the list will always be shown, even if there is only a single match that will
immediately be accepted. The style may also be set to a number. In this case the
list will be shown if there are at least that many matches, even if they would all
insert the same string.
This style is tested for the default tag as well as for each tag valid for the current
completion. Hence the listing can be forced only for certain types of match.

format If this is set for the descriptions tag, its value is used as a string to display above
matches in completion lists. The sequence ‘%d’ in this string will be replaced with
a short description of what these matches are. This string may also contain the
sequences to specify output attributes, such as ‘%B’, ‘%S’ and ‘%{...%}’.
The style is tested with each tag valid for the current completion before it is tested
for the descriptions tag. Hence different format strings can be defined for different
types of match.
Note also that some completer functions define additional ‘%’-sequences. These are
described for the completer functions that make use of them.
Some completion functions display messages that may be customised by setting this
style for the messages tag. Here, the ‘%d’ is replaced with a message given by the
completion function.
Finally, the format string is looked up with the warnings tag, for use when no
matches could be generated at all. In this case the ‘%d’ is replaced with the descrip-

Chapter 20: Completion System 176

tions for the matches that were expected separated by spaces. The sequence ‘%D’ is
replaced with the same descriptions separated by newlines.

It is possible to use printf-style field width specifiers with ‘%d’ and similar escape
sequences. This is handled by the zformat builtin command from the zsh/zutil
module, see Section 22.34 [The zsh/zutil Module], page 264.

glob This is used by the _expand completer. If it is set to ‘true’ (the default), globbing
will be attempted on the words resulting from a previous substitution (see the
substitute style) or else the original string from the line.

global If this is set to ‘true’ (the default), the _expand_alias completer and bindable
command will try to expand global aliases.

group-name
The completion system can group different types of matches, which appear in sepa-
rate lists. This style can be used to give the names of groups for particular tags. For
example, in command position the completion system generates names of builtin and
external commands, names of aliases, shell functions and parameters and reserved
words as possible completions. To have the external commands and shell functions
listed separately:

zstyle ’:completion:*:*:-command-:*:commands’ group-name commands
zstyle ’:completion:*:*:-command-:*:functions’ group-name functions

As a consequence, any match with the same tag will be displayed in the same group.

If the name given is the empty string the name of the tag for the matches will be
used as the name of the group. So, to have all different types of matches displayed
separately, one can just set:

zstyle ’:completion:*’ group-name ’’

All matches for which no group name is defined will be put in a group named
-default-.

group-order
This style is additional to the group-name style to specify the order for display
of the groups defined by that style (compare tag-order, which determines which
completions appear at all). The groups named are shown in the given order; any
other groups are shown in the order defined by the completion function.

For example, to have names of builtin commands, shell functions and external com-
mands appear in that order when completing in command position:

zstyle ’:completion:*:*:-command-:*’ group-order \
builtins functions commands

groups A list of names of UNIX groups. If this is not set, group names are taken from the
YP database or the file ‘/etc/group’.

hidden If this is set to true, matches for the given context will not be listed, although any
description for the matches set with the format style will be shown. If it is set to
‘all’, not even the description will be displayed.

Note that the matches will still be completed; they are just not shown in the list.
To avoid having matches considered as possible completions at all, the tag-order
style can be modified as described below.

hosts A list of names of hosts that should be completed. If this is not set, hostnames are
taken from the file ‘/etc/hosts’.

Chapter 20: Completion System 177

hosts-ports
This style is used by commands that need or accept hostnames and network ports.
The strings in the value should be of the form ‘host:port’. Valid ports are deter-
mined by the presence of hostnames; multiple ports for the same host may appear.

ignore-line
This is tested for each tag valid for the current completion. If it is set to ‘true’, none
of the words that are already on the line will be considered as possible completions. If
it is set to ‘current’, the word the cursor is on will not be considered as a possible
completion. The value ‘current-shown’ is similar but only applies if the list of
completions is currently shown on the screen. Finally, if the style is set to ‘other’,
no word apart from the current one will be considered as a possible completion.

The values ‘current’ and ‘current-shown’ are a bit like the opposite of the accept-
exact style: only strings with missing characters will be completed.

Note that you almost certainly don’t want to set this to ‘true’ or ‘other’ for a general
context such as ‘:completion:*’. This is because it would disallow completion of,
for example, options multiple times even if the command in question accepts the
option more than once.

ignore-parents
The style is tested without a tag by the function completing pathnames in order
to determine whether to ignore the names of directories already mentioned in the
current word, or the name of the current working directory. The value must include
one or both of the following strings:

parent The name of any directory whose path is already contained in the word
on the line is ignored. For example, when completing after foo/../,
the directory foo will not be considered a valid completion.

pwd The name of the current working directory will not be completed; hence,
for example, completion after ../ will not use the name of the current
directory.

In addition, the value may include one or both of:

.. Ignore the specified directories only when the word on the line contains
the substring ‘../’.

directory
Ignore the specified directories only when names of directories are com-
pleted, not when completing names of files.

Excluded values act in a similar fashion to values of the ignored-patterns style,
so they can be restored to consideration by the _ignored completer.

ignored-patterns
A list of patterns; any trial completion matching one of the patterns will be excluded
from consideration. The _ignored completer can appear in the list of completers
to restore the ignored matches. This is a more configurable version of the shell
parameter $fignore.

Note that the EXTENDED_GLOB option is set during the execution of completion func-
tions, so the characters ‘#’, ‘~’ and ‘^’ have special meanings in the patterns.

insert This style is used by the _all_matches completer to decide whether to insert the
list of all matches unconditionally instead of adding the list as another match.

Chapter 20: Completion System 178

insert-ids
When completing process IDs, for example as arguments to the kill and wait
builtins the name of a command may be converted to the appropriate process ID.
A problem arises when the process name typed is not unique. By default (or if this
style is set explicitly to ‘menu’) the name will be converted immediately to a set of
possible IDs, and menu completion will be started to cycle through them.
If the value of the style is ‘single’, the shell will wait until the user has typed
enough to make the command unique before converting the name to an ID; attempts
at completion will be unsuccessful until that point. If the value is any other string,
menu completion will be started when the string typed by the user is longer than
the common prefix to the corresponding IDs.

insert-tab
If this is set to ‘true’, the completion system will insert a TAB character (assuming
that was used to start completion) instead of performing completion when there is
no non-blank character to the left of the cursor. If it is set to ‘false’, completion will
be done even there.
The value may also contain the substrings ‘pending’ or ‘pending=val’. In this case,
the typed character will be inserted instead of staring completion when there is
unprocessed input pending. If a val is given, completion will not be done if there are
at least that many characters of unprocessed input. This is often useful when pasting
characters into a terminal. Note however, that it relies on the $PENDING special
parameter from the zsh/zle module being set properly which is not guaranteed on
all platforms.
The default value of this style is ‘true’ except for completion within vared builtin
command where it is ‘false’.

insert-unambiguous
This is used by the _match and _approximate completers. These completers are
often used with menu completion since the word typed may bear little resemblance
to the final completion. However, if this style is ‘true’, the completer will start menu
completion only if it could find no unambiguous initial string at least as long as the
original string typed by the user.
In the case of the _approximate completer, the completer field in the context will
already have been set to one of correct-num or approximate-num, where num is
the number of errors that were accepted.
In the case of the _match completer, the style may also be set to the string ‘pattern’.
Then the pattern on the line is left unchanged if it does not match unambiguously.

keep-prefix
This style is used by the _expand completer. If it is ‘true’, the completer will try
to keep a prefix containing a tilde or parameter expansion. Hence, for example, the
string ‘~/f*’ would be expanded to ‘~/foo’ instead of ‘/home/user/foo’. If the
style is set to ‘changed’ (the default), the prefix will only be left unchanged if there
were other changes between the expanded words and the original word from the
command line. Any other value forces the prefix to be expanded unconditionally.
The behaviour of expand when this style is true is to cause _expand to give up when
a single expansion with the restored prefix is the same as the original; hence any
remaining completers may be called.

last-prompt
This is a more flexible form of the ALWAYS_LAST_PROMPT option. If it is true, the
completion system will try to return the cursor to the previous command line after

Chapter 20: Completion System 179

displaying a completion list. It is tested for all tags valid for the current completion,
then the default tag. The cursor will be moved back to the previous line if this
style is ‘true’ for all types of match. Note that unlike the ALWAYS_LAST_PROMPT
option this is independent of the numeric prefix argument.

known-hosts-files
This style should contain a list of files to search for host names and (if the use-ip
style is set) IP addresses in a format compatible with ssh known_hosts files. If it is
not set, the files /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts are used.

list This style is used by the _history_complete_word bindable command. If it is set to
‘true’ it has no effect. If it is set to ‘false’ matches will not be listed. This overrides
the setting of the options controlling listing behaviour, in particular AUTO_LIST.
The context always starts with ‘:completion:history-words’.

list-colors
If the zsh/complist module is loaded, this style can be used to set color speci-
fications. This mechanism replaces the use of the ZLS_COLORS and ZLS_COLOURS
parameters described in Section 22.6 [The zsh/complist Module], page 229, but the
syntax is the same.
If this style is set for the default tag, the strings in the value are taken as specifi-
cations that are to be used everywhere. If it is set for other tags, the specifications
are used only for matches of the type described by the tag. For this to work best,
the group-name style must be set to an empty string.
In addition to setting styles for specific tags, it is also possible to use group names
specified explicitly by the group-name tag together with the ‘(group)’ syntax
allowed by the ZLS_COLORS and ZLS_COLOURS parameters and simply using the
default tag.
It is possible to use any color specifications already set up for the GNU version of
the ls command:

zstyle ’:completion:*:default’ list-colors ${(s.:.)LS_COLORS}

The default colors are the same as for the GNU ls command and can be obtained
by setting the style to an empty string (i.e. ’’).

list-grouped
If this style is ‘true’ (the default), the completion system will try to make certain
completion listings more compact by grouping matches. For example, options for
commands that have the same description (shown when the verbose style is set to
‘true’) will appear as a single entry. However, menu selection can be used to cycle
through all the matches.

list-packed
This is tested for each tag valid in the current context as well as the default tag. If
it is set to ‘true’, the corresponding matches appear in listings as if the LIST_PACKED
option were set. If it is set to ‘false’, they are listed normally.

list-prompt
If this style is set for the default tag, completion lists that don’t fit on the screen
can be scrolled (see Section 22.6 [The zsh/complist Module], page 229). The value,
if not the empty string, will be displayed after every screenful and the shell will
prompt for a key press; if the style is set to the empty string, a default prompt will
be used.
The value may contain the escape sequences: ‘%l’ or ‘%L’, which will be replaced by
the number of the last line displayed and the total number of lines; ‘%m’ or ‘%M’, the

Chapter 20: Completion System 180

number of the last match shown and the total number of matches; and ‘%p’ and ‘%P’,
‘Top’ when at the beginning of the list, ‘Bottom’ when at the end and the position
shown as a percentage of the total length otherwise. In each case the form with the
uppercase letter will be replaced by a string of fixed width, padded to the right with
spaces, while the lowercase form will be replaced by a variable width string. As in
other prompt strings, the escape sequences ‘%S’, ‘%s’, ‘%B’, ‘%b’, ‘%U’, ‘%u’ for entering
and leaving the display modes standout, bold and underline are also available, as is
the form ‘%{...%}’ for enclosing escape sequences which display with zero width.
After deleting this prompt the variable LISTPROMPT should be unset for the the
removal to take effect.

list-rows-first
This style is tested in the same way as the list-packed style and determines
whether matches are to be listed in a rows-first fashion as if the LIST_ROWS_FIRST
option were set.

list-suffixes
This style is used by the function that completes filenames. If it is true, and com-
pletion is attempted on a string containing multiple partially typed pathname com-
ponents, all ambiguous components will be shown. Otherwise, completion stops at
the first ambiguous component.

list-separator
The value of this style is used in completion listing to separate the string to complete
from a description when possible (e.g. when completing options). It defaults to ‘--’
(two hyphens).

local This is for use with functions that complete URLs for which the corresponding files
are available directly from the filing system. Its value should consist of three strings:
a hostname, the path to the default web pages for the server, and the directory name
used by a user placing web pages within their home area.
For example:

zstyle ’:completion:*’ local toast \
/var/http/public/toast public_html

Completion after ‘http://toast/stuff/’ will look for files in the
directory /var/http/public/toast/stuff, while completion after
‘http://toast/~yousir/’ will look for files in the directory ~yousir/public_html.

mail-directory
If set, zsh will assume that mailbox files can be found in the directory specified. It
defaults to ‘~/Mail’.

match-original
This is used by the _match completer. If it is set to only, _match will try to generate
matches without inserting a ‘*’ at the cursor position. If set to any other non-empty
value, it will first try to generate matches without inserting the ‘*’ and if that yields
no matches, it will try again with the ‘*’ inserted. If it is unset or set to the empty
string, matching will only be performed with the ‘*’ inserted.

matcher This style is tested separately for each tag valid in the current context. Its value is
added to any match specifications given by the matcher-list style. It should be in
the form described in Section 19.5 [Matching Control], page 155.

matcher-list
This style can be set to a list of match specifications that are to be applied ev-
erywhere. Match specifications are described in Section 19.5 [Matching Control],

Chapter 20: Completion System 181

page 155. The completion system will try them one after another for each com-
pleter selected. For example, to try first simple completion and, if that generates
no matches, case-insensitive completion:

zstyle ’:completion:*’ matcher-list ’’ ’m:{a-zA-Z}={A-Za-z}’

By default each specification replaces the previous one; however, if a specification
is prefixed with +, it is added to the existing list. Hence it is possible to create
increasingly general specifications without repetition:

zstyle ’:completion:*’ matcher-list ’’ ’+m{a-Z}={A-Z}’ ’+m{A-Z}={a-
z}’

It is possible to create match specifications valid for particular completers by using
the third field of the context. For example, to use the completers _complete and
_prefix but only allow case-insensitive completion with _complete:

zstyle ’:completion:*’ completer _complete _prefix
zstyle ’:completion:*:complete:*’ matcher-list \

’’ ’m:{a-zA-Z}={A-Za-z}’

User-defined names, as explained for the completer style, are available. This makes
it possible to try the same completer more than once with different match specifica-
tions each time. For example, to try normal completion without a match specifica-
tion, then normal completion with case-insensitive matching, then correction, and
finally partial-word completion:

zstyle ’:completion:*’ completer _complete _correct _complete:foo
zstyle ’:completion:*:complete:*’ matcher-list \

’’ ’m:{a-zA-Z}={A-Za-z}’
zstyle ’:completion:*:foo:*’ matcher-list \

’m:{a-zA-Z}={A-Za-z} r:|[-_./]=* r:|=*’

If the style is unset in any context no match specification is applied. Note also
that some completers such as _correct and _approximate do not use the match
specifications at all, though these completers will only ever called once even if the
matcher-list contains more than one element.
Where multiple specifications are useful, note that the entire completion is done for
each element of matcher-list, which can quickly reduce the shell’s performance.
As a rough rule of thumb, one to three strings will give acceptable performance. On
the other hand, putting multiple space-separated values into the same string does
not have an appreciable impact on performance.
If there is no current matcher or it is empty, and the option NO_CASE_GLOB is in
effect, the matching for files is performed case-insensitively in any case. However,
any matcher must explicitly specify case-insensitive matching if that is required.

max-errors
This is used by the _approximate and _correct completer functions to determine
the maximum number of errors to allow. The completer will try to generate com-
pletions by first allowing one error, then two errors, and so on, until either a match
or matches were found or the maximum number of errors given by this style has
been reached.
If the value for this style contains the string ‘numeric’, the completer function will
take any numeric argument as the maximum number of errors allowed. For example,
with

zstyle ’:completion:*:approximate:::’ max-errors 2 numeric

two errors are allowed if no numeric argument is given, but with a numeric argument
of six (as in ‘ESC-6 TAB’), up to six errors are accepted. Hence with a value of ‘0

Chapter 20: Completion System 182

numeric’, no correcting completion will be attempted unless a numeric argument is
given.
If the value contains the string ‘not-numeric’, the completer will not try to generate
corrected completions when given a numeric argument, so in this case the number
given should be greater than zero. For example, ‘2 not-numeric’ specifies that
correcting completion with two errors will usually be performed, but if a numeric
argument is given, correcting completion will not be performed.
The default value for this style is ‘2 numeric’.

max-matches-width
This style is used to determine the trade off between the width of the display used
for matches and the width used for their descriptions when the verbose style is in
effect. The value gives the number of display columns to reserve for the matches.
The default is half the width of the screen.
This has the most impact when several matches have the same description and so
will be grouped together. Increasing the style will allow more matches to be grouped
together; decreasing it will allow more of the description to be visible.

menu If this is true in the context of any of the tags defined for the current completion
menu completion will be used. The value for a specific tag will take precedence over
that for the ‘default’ tag.
If none of the values found in this way is true but at least one is set to ‘auto’, the
shell behaves as if the AUTO_MENU option is set.
If one of the values is explicitly set to false, menu completion will be explicitly turned
off, overriding the MENU_COMPLETE option and other settings.
In the form ‘yes=num’, where ‘yes’ may be any of the true values (‘yes’, ‘true’,
‘on’ and ‘1’), menu completion will be turned on if there are at least num matches.
In the form ‘yes=long’, menu completion will be turned on if the list does not fit
on the screen. This does not activate menu completion if the widget normally only
lists completions, but menu completion can be activated in that case with the value
‘yes=long-list’ (Typically, the value ‘select=long-list’ described later is more
useful as it provides control over scrolling.)
Similarly, with any of the ‘false’ values (as in ‘no=10’), menu completion will not be
used if there are num or more matches.
The value of this widget also controls menu selection, as implemented by the
zsh/complist module. The following values may appear either alongside or in-
stead of the values above.
If the value contains the string ‘select’, menu selection will be started uncondi-
tionally.
In the form ‘select=num’, menu selection will only be started if there are at least
num matches. If the values for more than one tag provide a number, the smallest
number is taken.
Menu selection can be turned off explicitly by defining a value containing the
string‘no-select’.
It is also possible to start menu selection only if the list of matches does not fit on
the screen by using the value ‘select=long’. To start menu selection even if the
current widget only performs listing, use the value ‘select=long-list’.
To turn on menu completion or menu selection when a there are a certain number
of matches or the list of matches does not fit on the screen, both of ‘yes=’ and
‘select=’ may be given twice, once with a number and once with ‘long’ or ‘long-
list’.

Chapter 20: Completion System 183

Finally, it is possible to activate two special modes of menu selection. The word
‘interactive’ in the value causes interactive mode to be entered immediately when
menu selection is started; see Section 22.6 [The zsh/complist Module], page 229 for
a description of interactive mode. Including the string ‘search’ does the same for
incremental search mode. To select backward incremental search, include the string
‘search-backward’.)

muttrc If set, gives the location of the mutt configuration file. It defaults to ‘~/.muttrc’.

numbers This is used with the jobs tag. If it is ‘true’, the shell will complete job numbers
instead of the shortest unambiguous prefix of the job command text. If the value is a
number, job numbers will only be used if that many words from the job descriptions
are required to resolve ambiguities. For example, if the value is ‘1’, strings will only
be used if all jobs differ in the first word on their command lines.

old-list This is used by the _oldlist completer. If it is set to ‘always’, then standard
widgets which perform listing will retain the current list of matches, however they
were generated; this can be turned off explicitly with the value ‘never’, giving the
behaviour without the _oldlist completer. If the style is unset, or any other value,
then the existing list of completions is displayed if it is not already; otherwise, the
standard completion list is generated; this is the default behaviour of _oldlist.
However, if there is an old list and this style contains the name of the completer
function that generated the list, then the old list will be used even if it was generated
by a widget which does not do listing.
For example, suppose you type ^Xc to use the _correct_word widget, which gen-
erates a list of corrections for the word under the cursor. Usually, typing ^D would
generate a standard list of completions for the word on the command line, and show
that. With _oldlist, it will instead show the list of corrections already generated.
As another example consider the _match completer: with the insert-unambiguous
style set to ‘true’ it inserts only a common prefix string, if there is any. However, this
may remove parts of the original pattern, so that further completion could produce
more matches than on the first attempt. By using the _oldlist completer and
setting this style to _match, the list of matches generated on the first attempt will
be used again.

old-matches
This is used by the _all_matches completer to decide if an old list of matches
should be used if one exists. This is selected by one of the ‘true’ values or by the
string ‘only’. If the value is ‘only’, _all_matches will only use an old list and
won’t have any effect on the list of matches currently being generated.
If this style is set it is generally unwise to call the _all_matches completer un-
conditionally. One possible use is for either this style or the completer style to be
defined with the -e option to zstyle to make the style conditional.

old-menu This is used by the _oldlist completer. It controls how menu completion behaves
when a completion has already been inserted and the user types a standard comple-
tion key such as TAB. The default behaviour of _oldlist is that menu completion
always continues with the existing list of completions. If this style is set to ‘false’,
however, a new completion is started if the old list was generated by a different
completion command; this is the behaviour without the _oldlist completer.
For example, suppose you type ^Xc to generate a list of corrections, and menu
completion is started in one of the usual ways. Usually, or with this style set to
false, typing TAB at this point would start trying to complete the line as it now
appears. With _oldlist, it instead continues to cycle through the list of corrections.

Chapter 20: Completion System 184

original This is used by the _approximate and _correct completers to decide if the original
string should be added as a possible completion. Normally, this is done only if there
are at least two possible corrections, but if this style is set to ‘true’, it is always
added. Note that the style will be examined with the completer field in the context
name set to correct-num or approximate-num, where num is the number of errors
that were accepted.

packageset
This style is used when completing arguments of the Debian ‘dpkg’ program. It
contains an override for the default package set for a given context. For example,

zstyle ’:completion:*:complete:dpkg:option--status-1:*’ \
packageset avail

causes available packages, rather than only installed packages, to be completed for
‘dpkg --status’.

path The function that completes color names uses this style with the colors tag. The
value should be the pathname of a file containing color names in the format of an
X11 rgb.txt file. If the style is not set but this file is found in one of various
standard locations it will be used as the default.

pine-directory
If set, specifies the directory containing PINE mailbox files. There is no default,
since recursively searching this directory is inconvenient for anyone who doesn’t use
PINE.

ports A list of Internet service names (network ports) to complete. If this is not set,
service names are taken from the file ‘/etc/services’.

prefix-hidden
This is used for certain completions which share a common prefix, for example
command options beginning with dashes. If it is ‘true’, the prefix will not be shown
in the list of matches.
The default value for this style is ‘false’.

prefix-needed
This, too, is used for matches with a common prefix. If it is set to ‘true’ this common
prefix must be typed by the user to generate the matches. In the case of command
options, this means that the initial ‘-’, ‘+’, or ‘--’ must be typed explicitly before
option names will be completed.
The default value for this style is ‘true’.

preserve-prefix
This style is used when completing path names. Its value should be a pattern
matching an initial prefix of the word to complete that should be left unchanged
under all circumstances. For example, on some Unices an initial ‘//’ (double slash)
has a special meaning; setting this style to the string ‘//’ will preserve it. As
another example, setting this style to ‘?:/’ under Cygwin would allow completion
after ‘a:/...’ and so on.

range This is used by the _history completer and the _history_complete_word bindable
command to decide which words should be completed.
If it is a singe number, only the last N words from the history will be completed.
If it is a range of the form ‘max:slice’, the last slice words will be completed; then
if that yields no matches, the slice words before those will be tried and so on. This
process stops either when at least one match was been found, or max words have
been tried.

Chapter 20: Completion System 185

The default is to complete all words from the history at once.

regular This style is used by the _expand_alias completer and bindable command. If set to
‘true’ (the default), regular aliases will be expanded but only in command position.
If it is set to ‘false’, regular aliases will never be expanded. If it is set to ‘always’,
regular aliases will be expanded even if not in command position.

rehash If this is set when completing external commands, the internal list (hash) of com-
mands will be updated for each search by issuing the rehash command. There is a
speed penalty for this which is only likely to be noticeable when directories in the
path have slow file access.

remote-access
If set to false, certain commands will be prevented from making Internet con-
nections to retrieve remote information. This includes the completion for the CVS
command.
It is not always possible to know if connections are in fact to a remote site, so some
may be prevented unnecessarily.

remove-all-dups
The _history_complete_word bindable command and the _history completer use
this to decide if all duplicate matches should be removed, rather than just consecu-
tive duplicates.

select-prompt
If this is set for the default tag, its value will be displayed during menu selection
(see the menu style above) when the completion list does not fit on the screen as a
whole. The same escapes as for the list-prompt style are understood, except that
the numbers refer to the match or line the mark is on. A default prompt is used
when the value is the empty string.

select-scroll
This style is tested for the default tag and determines how a completion list is
scrolled during a menu selection (see the menu style above) when the completion list
does not fit on the screen as a whole. If the value is ‘0’ (zero), the list is scrolled by
half-screenfuls; if it is a positive integer, the list is scrolled by the given number of
lines; if it is a negative number, the list is scrolled by a screenful minus the absolute
value of the given number of lines. The default is to scroll by single lines.

separate-sections
This style is used with the manuals tag when completing names of manual pages. If
it is ‘true’, entries for different sections are added separately using tag names of the
form ‘manual.X ’, where X is the section number. When the group-name style is
also in effect, pages from different sections will appear separately. This style is also
used similarly with the words style when completing words for the dict command.
It allows words from different dictionary databases to be added separately. The
default for this style is ‘false’.

show-completer
Tested whenever a new completer is tried. If it is true, the completion system
outputs a progress message in the listing area showing what completer is being
tried. The message will be overwritten by any output when completions are found
and is removed after completion is finished.

single-ignored
This is used by the _ignored completer when there is only one match. If its value
is ‘show’, the single match will be displayed but not inserted. If the value is ‘menu’,

Chapter 20: Completion System 186

then the single match and the original string are both added as matches and menu
completion is started, making it easy to select either of them.

sort Many completion widgets call _description at some point which decides whether
the matches are added sorted or unsorted (often indirectly via _wanted or
_requested). This style can be set explicitly to one of the usual true or false
values as an override. If it is not set for the context, the standard behaviour of the
calling widget is used.
The style is tested first against the full context including the tag, and if that fails
to produce a value against the context without the tag.
If the calling widget explicitly requests unsorted matches, this is usually honoured.
However, the default (unsorted) behaviour of completion for the command history
may be overridden by setting the style to true.
In the _expand completer, if it is set to ‘true’, the expansions generated will always
be sorted. If it is set to ‘menu’, then the expansions are only sorted when they are
offered as single strings but not in the string containing all possible expansions.

special-dirs
Normally, the completion code will not produce the directory names ‘.’ and ‘..’ as
possible completions. If this style is set to ‘true’, it will add both ‘.’ and ‘..’ as
possible completions; if it is set to ‘..’, only ‘..’ will be added.
The following example sets special-dirs to ‘..’ when the current prefix is empty,
is a single ‘.’, or consists only of a path beginning with ‘../’. Otherwise the value
is ‘false’.

zstyle -e ’:completion:*’ special-dirs \
’[[$PREFIX = (../)#(|.|..)]] && reply=(..)’

squeeze-slashes
If set to ‘true’, sequences of slashes in filename paths (for example in ‘foo//bar’) will
be treated as a single slash. This is the usual behaviour of UNIX paths. However,
by default the file completion function behaves as if there were a ‘*’ between the
slashes.

stop If set to ‘true’, the _history_complete_word bindable command will
stop once when reaching the beginning or end of the history. Invoking
_history_complete_word will then wrap around to the opposite end of the
history. If this style is set to ‘false’ (the default), _history_complete_word will
loop immediately as in a menu completion.

strip-comments
If set to ‘true’, this style causes non-essential comment text to be removed from
completion matches. Currently it is only used when completing e-mail addresses
where it removes any display name from the addresses, cutting them down to plain
user@host form.

subst-globs-only
This is used by the _expand completer. If it is set to ‘true’, the expansion will only
be used if it resulted from globbing; hence, if expansions resulted from the use of the
substitute style described below, but these were not further changed by globbing,
the expansions will be rejected.
The default for this style is ‘false’.

substitute
This boolean style controls whether the _expand completer will first try to expand
all substitutions in the string (such as ‘$(...)’ and ‘${...}’).

Chapter 20: Completion System 187

The default is ‘true’.

suffix This is used by the _expand completer if the word starts with a tilde or contains
a parameter expansion. If it is set to ‘true’, the word will only be expanded if it
doesn’t have a suffix, i.e. if it is something like ‘~foo’ or ‘$foo’ rather than ‘~foo/’
or ‘$foo/bar’, unless that suffix itself contains characters eligible for expansion. The
default for this style is ‘true’.

tag-order
This provides a mechanism for sorting how the tags available in a particular context
will be used.
The values for the style are sets of space-separated lists of tags. The tags in each
value will be tried at the same time; if no match is found, the next value is used.
(See the file-patterns style for an exception to this behavior.)
For example:

zstyle ’:completion:*:complete:-command-:*’ tag-order \
’commands functions’

specifies that completion in command position first offers external commands and
shell functions. Remaining tags will be tried if no completions are found.
In addition to tag names, each string in the value may take one of the following
forms:

- If any value consists of only a hyphen, then only the tags specified in
the other values are generated. Normally all tags not explicitly selected
are tried last if the specified tags fail to generate any matches. This
means that a single value consisting only of a single hyphen turns off
completion.

! tags... A string starting with an exclamation mark specifies names of tags that
are not to be used. The effect is the same as if all other possible tags
for the context had been listed.

tag:label ...
Here, tag is one of the standard tags and label is an arbitrary name.
Matches are generated as normal but the name label is used in contexts
instead of tag. This is not useful in words starting with !.
If the label starts with a hyphen, the tag is prepended to the label to
form the name used for lookup. This can be used to make the comple-
tion system try a certain tag more than once, supplying different style
settings for each attempt; see below for an example.

tag:label:description
As before, but description will replace the ‘%d’ in the value of the
format style instead of the default description supplied by the comple-
tion function. Spaces in the description must be quoted with a back-
slash. A ‘%d’ appearing in description is replaced with the description
given by the completion function.

In any of the forms above the tag may be a pattern or several patterns in the form
‘{pat1,pat2...}’. In this case all matching tags will be used except for any given
explicitly in the same string.
One use of these features is to try one tag more than once, setting other styles
differently on each attempt, but still to use all the other tags without having to
repeat them all. For example, to make completion of function names in command

Chapter 20: Completion System 188

position ignore all the completion functions starting with an underscore the first
time completion is tried:

zstyle ’:completion:*:*:-command-:*’ tag-order \
’functions:-non-comp *’ functions

zstyle ’:completion:*:functions-non-comp’ ignored-patterns ’_*’

On the first attempt, all tags will be offered but the functions tag will be replaced
by functions-non-comp. The ignored-patterns style is set for this tag to exclude
functions starting with an underscore. If there are no matches, the second value of
the tag-order style is used which completes functions using the default tag, this
time presumably including all function names.

The matches for one tag can be split into different groups. For example:

zstyle ’:completion:*’ tag-order \
’options:-long:long\ options
options:-short:short\ options
options:-single-letter:single\ letter\ options’

zstyle ’:completion:*:options-long’ ignored-patterns ’[-+](|-|[^-
]*)’
zstyle ’:completion:*:options-short’ ignored-patterns ’--*’ ’[-+]?’
zstyle ’:completion:*:options-single-letter’ ignored-patterns ’???*’

With the group-names style set, options beginning with ‘--’, options beginning with
a single ‘-’ or ‘+’ but containing multiple characters, and single-letter options will
be displayed in separate groups with different descriptions.

Another use of patterns is to try multiple match specifications one after another.
The matcher-list style offers something similar, but it is tested very early in the
completion system and hence can’t be set for single commands nor for more specific
contexts. Here is how to try normal completion without any match specification and,
if that generates no matches, try again with case-insensitive matching, restricting
the effect to arguments of the command foo:

zstyle ’:completion:*:*:foo:*’ tag-order ’*’ ’*:-case’
zstyle ’:completion:*-case’ matcher ’m:{a-z}={A-Z}’

First, all the tags offered when completing after foo are tried using the normal tag
name. If that generates no matches, the second value of tag-order is used, which
tries all tags again except that this time each has -case appended to its name for
lookup of styles. Hence this time the value for the matcher style from the second
call to zstyle in the example is used to make completion case-insensitive.

It is possible to use the -e option of the zstyle builtin command to specify condi-
tions for the use of particular tags. For example:

zstyle -e ’*:-command-:*’ tag-order ’
if [[-n $PREFIX$SUFFIX]]; then
reply=()

else
reply=(-)

fi’

Completion in command position will be attempted only if the string typed so far
is not empty. This is tested using the PREFIX special parameter; see Chapter 19
[Completion Widgets], page 144 for a description of parameters which are special
inside completion widgets. Setting reply to an empty array provides the default

Chapter 20: Completion System 189

behaviour of trying all tags at once; setting it to an array containing only a hyphen
disables the use of all tags and hence of all completions.
If no tag-order style has been defined for a context, the strings ‘(|*-)argument-
* (|*-)option-* values’ and ‘options’ plus all tags offered by the completion
function will be used to provide a sensible default behavior that causes arguments
(whether normal command arguments or arguments of options) to be completed
before option names for most commands.

urls This is used together with the the urls tag by functions completing URLs.
If the value consists of more than one string, or if the only string does not name a
file or directory, the strings are used as the URLs to complete.
If the value contains only one string which is the name of a normal file the URLs are
taken from that file (where the URLs may be separated by white space or newlines).
Finally, if the only string in the value names a directory, the directory hierarchy
rooted at this directory gives the completions. The top level directory should be the
file access method, such as ‘http’, ‘ftp’, ‘bookmark’ and so on. In many cases the
next level of directories will be a filename. The directory hierarchy can descend as
deep as necessary.
For example,

zstyle ’:completion:*’ urls ~/.urls
mkdir -p ~/.urls/ftp/ftp.zsh.org/pub/development

allows completion of all the components of the URL
ftp://ftp.zsh.org/pub/development after suitable commands such as
‘netscape’ or ‘lynx’. Note, however, that access methods and files are completed
separately, so if the hosts style is set hosts can be completed without reference to
the urls style.
See the description in the function _urls itself for more information (e.g. ‘more
$^fpath/_urls(N)’).

use-cache
If this is set, the completion caching layer is activated for any completions which
use it (via the _store_cache, _retrieve_cache, and _cache_invalid functions).
The directory containing the cache files can be changed with the cache-path style.

use-compctl
If this style is set to a string not equal to false, 0, no, and off, the completion
system may use any completion specifications defined with the compctl builtin
command. If the style is unset, this is done only if the zsh/compctl module is
loaded. The string may also contain the substring ‘first’ to use completions defined
with ‘compctl -T’, and the substring ‘default’ to use the completion defined with
‘compctl -D’.
Note that this is only intended to smooth the transition from compctl to the new
completion system and may disappear in the future.
Note also that the definitions from compctl will only be used if there is no specific
completion function for the command in question. For example, if there is a function
_foo to complete arguments to the command foo, compctl will never be invoked for
foo. However, the compctl version will be tried if foo only uses default completion.

use-ip By default, the function _hosts that completes host names strips IP addresses from
entries read from host databases such as NIS and ssh files. If this style is true, the
corresponding IP addresses can be completed as well. This style is not use in any

Chapter 20: Completion System 190

context where the hosts style is set; note also it must be set before the cache of
host names is generated (typically the first completion attempt).

use-perl Various parts of the function system use awk to extract words from files or command
output as this universally available. However, many versions of awk have arbitrary
limits on the size of input. If this style is set, perl will be used instead. This is
almost always preferable if perl is available on your system.
Currently this is only used in completions for ‘make’, but it may be extended de-
pending on authorial frustration.

users This may be set to a list of usernames to be completed. If it is not set all usernames
will be completed. Note that if it is set only that list of users will be completed;
this is because on some systems querying all users can take a prohibitive amount of
time.

users-hosts
The values of this style should be of the form ‘user@host’ or ‘user:host’. It is used for
commands that need pairs of user- and hostnames. These commands will complete
usernames from this style (only), and will restrict subsequent hostname completion
to hosts paired with that user in one of the values of the style.
It is possible to group values for sets of commands which allow a remote login,
such as rlogin and ssh, by using the my-accounts tag. Similarly, values for sets
of commands which usually refer to the accounts of other people, such as talk
and finger, can be grouped by using the other-accounts tag. More ambivalent
commands may use the accounts tag.

users-hosts-ports
Like users-hosts but used for commands like telnet and containing strings of the
form ‘user@host:port’.

verbose If set, as it is by default, the completion listing is more verbose. In particular many
commands show descriptions for options if this style is ‘true’.

word This is used by the _list completer, which prevents the insertion of completions
until a second completion attempt when the line has not changed. The normal way
of finding out if the line has changed is to compare its entire contents between the
two occasions. If this style is true, the comparison is instead performed only on
the current word. Hence if completion is performed on another word with the same
contents, completion will not be delayed.

20.4 Control Functions

The initialization script compinit redefines all the widgets which perform completion to call the
supplied widget function _main_complete. This function acts as a wrapper calling the so-called
‘completer’ functions that generate matches. If _main_complete is called with arguments, these
are taken as the names of completer functions to be called in the order given. If no arguments
are given, the set of functions to try is taken from the completer style. For example, to use
normal completion and correction if that doesn’t generate any matches:

zstyle ’:completion:*’ completer _complete _correct

after calling compinit. The default value for this style is ‘_complete _ignored’, i.e. normally
only ordinary completion is tried, first with the effect of the ignored-patterns style and then
without it. The _main_complete function uses the return status of the completer functions to
decide if other completers should be called. If the return status is zero, no other completers are
tried and the _main_complete function returns.

Chapter 20: Completion System 191

If the first argument to _main_complete is a single hyphen, the arguments will not be taken as
names of completers. Instead, the second argument gives a name to use in the completer field of
the context and the other arguments give a command name and arguments to call to generate
the matches.

The following completer functions are contained in the distribution, although users may write
their own. Note that in contexts the leading underscore is stripped, for example basic completion
is performed in the context ‘:completion::complete:...’.

_all_matches
This completer can be used to add a string consisting of all other matches. As it
influences later completers it must appear as the first completer in the list. The list
of all matches is affected by the avoid-completer and old-matches styles described
above.
It may be useful to use the _generic function described below to bind _all_matches
to its own keystroke, for example:

zle -C all-matches complete-word _generic
bindkey ’^Xa’ all-matches
zstyle ’:completion:all-matches:*’ old-matches only
zstyle ’:completion:all-matches::::’ completer _all_matches

Note that this does not generate completions by itself: first use any of the standard
ways of generating a list of completions, then use ^Xa to show all matches. It is
possible instead to add a standard completer to the list and request that the list of
all matches should be directly inserted:

zstyle ’:completion:all-matches::::’ completer _all_matches _complete
zstyle ’:completion:all-matches:*’ insert true

In this case the old-matches style should not be set.

_approximate
This is similar to the basic _complete completer but allows the completions to
undergo corrections. The maximum number of errors can be specified by the max-
errors style; see the description of approximate matching in Section 14.8 [Filename
Generation], page 47 for how errors are counted. Normally this completer will only
be tried after the normal _complete completer:

zstyle ’:completion:*’ completer _complete _approximate

This will give correcting completion if and only if normal completion yields no
possible completions. When corrected completions are found, the completer will
normally start menu completion allowing you to cycle through these strings.
This completer uses the tags corrections and original when generating the possi-
ble corrections and the original string. The format style for the former may contain
the additional sequences ‘%e’ and ‘%o’ which will be replaced by the number of errors
accepted to generate the corrections and the original string, respectively.
The completer progressively increases the number of errors allowed up to the limit by
the max-errors style, hence if a completion is found with one error, no completions
with two errors will be shown, and so on. It modifies the completer name in the
context to indicate the number of errors being tried: on the first try the completer
field contains ‘approximate-1’, on the second try ‘approximate-2’, and so on.
When _approximate is called from another function, the number of errors to accept
may be passed with the -a option. The argument is in the same format as the max-
errors style, all in one string.

Chapter 20: Completion System 192

Note that this completer (and the _correct completer mentioned below) can be
quite expensive to call, especially when a large number of errors are allowed. One
way to avoid this is to set up the completer style using the -e option to zstyle so
that some completers are only used when completion is attempted a second time on
the same string, e.g.:

zstyle -e ’:completion:*’ completer ’
if [[$_last_try != "$HISTNO$BUFFER$CURSOR"]]; then
_last_try="$HISTNO$BUFFER$CURSOR"
reply=(_complete _match _prefix)

else
reply=(_ignored _correct _approximate)

fi’

This uses the HISTNO parameter and the BUFFER and CURSOR special parameters
that are available inside zle and completion widgets to find out if the command
line hasn’t changed since the last time completion was tried. Only then are the
_ignored, _correct and _approximate completers called.

_complete
This completer generates all possible completions in a context-sensitive manner, i.e.
using the settings defined with the compdef function explained above and the current
settings of all special parameters. This gives the normal completion behaviour.
To complete arguments of commands, _complete uses the utility function _normal,
which is in turn responsible for finding the particular function; it is described be-
low. Various contexts of the form -context- are handled specifically. These are all
mentioned above as possible arguments to the #compdef tag.
Before trying to find a function for a specific context, _complete checks if the
parameter ‘compcontext’ is set. Setting ‘compcontext’ allows the usual completion
dispatching to be overridden which is useful in places such as a function that uses
vared for input. If it is set to an array, the elements are taken to be the possible
matches which will be completed using the tag ‘values’ and the description ‘value’.
If it is set to an associative array, the keys are used as the possible completions and
the values (if non-empty) are used as descriptions for the matches. If ‘compcontext’
is set to a string containing colons, it should be of the form ‘tag:descr:action’.
In this case the tag and descr give the tag and description to use and the action
indicates what should be completed in one of the forms accepted by the _arguments
utility function described below.
Finally, if ‘compcontext’ is set to a string without colons, the value is taken as the
name of the context to use and the function defined for that context will be called.
For this purpose, there is a special context named -command-line- that completes
whole command lines (commands and their arguments). This is not used by the
completion system itself but is nonetheless handled when explicitly called.

_correct Generate corrections, but not completions, for the current word; this is similar to
_approximate but will not allow any number of extra characters at the cursor as that
completer does. The effect is similar to spell-checking. It is based on _approximate,
but the completer field in the context name is correct.
For example, with:

zstyle ’:completion:::::’ completer _complete _correct _approximate
zstyle ’:completion:*:correct:::’ max-errors 2 not-numeric
zstyle ’:completion:*:approximate:::’ max-errors 3 numeric

correction will accept up to two errors. If a numeric argument is given, correction will
not be performed, but correcting completion will be, and will accept as many errors

Chapter 20: Completion System 193

as given by the numeric argument. Without a numeric argument, first correction
and then correcting completion will be tried, with the first one accepting two errors
and the second one accepting three errors.
When _correct is called as a function, the number of errors to accept may be given
following the -a option. The argument is in the same form a values to the accept
style, all in one string.
This completer function is intended to be used without the _approximate completer
or, as in the example, just before it. Using it after the _approximate completer is
useless since _approximate will at least generate the corrected strings generated by
the _correct completer — and probably more.

_expand This completer function does not really perform completion, but instead checks if the
word on the command line is eligible for expansion and, if it is, gives detailed control
over how this expansion is done. For this to happen, the completion system needs
to be invoked with complete-word, not expand-or-complete (the default binding
for TAB), as otherwise the string will be expanded by the shell’s internal mechanism
before the completion system is started. Note also this completer should be called
before the _complete completer function.
The tags used when generating expansions are all-expansions for the string con-
taining all possible expansions, expansions when adding the possible expansions as
single matches and original when adding the original string from the line. The
order in which these strings are generated, if at all, can be controlled by the group-
order and tag-order styles, as usual.
The format string for all-expansions and for expansions may contain the se-
quence ‘%o’ which will be replaced by the original string from the line.
The kind of expansion to be tried is controlled by the substitute, glob and subst-
globs-only styles.
It is also possible to call _expand as a function, in which case the different modes
may be selected with options: -s for substitute, -g for glob and -o for subst-
globs-only.

_expand_alias
If the word the cursor is on is an alias, it is expanded and no other completers are
called. The types of aliases which are to be expanded can be controlled with the
styles regular, global and disabled.
This function is also a bindable command, see Section 20.5 [Bindable Commands],
page 195.

_history Complete words from the shell’s command history. This completer can be controlled
by the remove-all-dups, and sort styles as for the _history_complete_word bind-
able command, see Section 20.5 [Bindable Commands], page 195 and Section 20.3
[Completion System Configuration], page 164.

_ignored The ignored-patterns style can be set to a list of patterns which are compared
against possible completions; matching ones are removed. With this completer
those matches can be reinstated, as if no ignored-patterns style were set. The
completer actually generates its own list of matches; which completers are invoked
is determined in the same way as for the _prefix completer. The single-ignored
style is also available as described above.

_list This completer allows the insertion of matches to be delayed until completion is
attempted a second time without the word on the line being changed. On the first
attempt, only the list of matches will be shown. It is affected by the styles condition
and word, see Section 20.3 [Completion System Configuration], page 164.

Chapter 20: Completion System 194

_match This completer is intended to be used after the _complete completer. It behaves
similarly but the string on the command line may be a pattern to match against
trial completions. This gives the effect of the GLOB_COMPLETE option.
Normally completion will be performed by taking the pattern from the line, in-
serting a ‘*’ at the cursor position and comparing the resulting pattern with the
possible completions generated. This can be modified with the match-original
style described above.
The generated matches will be offered in a menu completion unless the insert-
unambiguous style is set to ‘true’; see the description above for other options for
this style.
Note that matcher specifications defined globally or used by the completion functions
(the styles matcher-list and matcher) will not be used.

_menu This completer was written as simple example function to show how menu comple-
tion can be enabled in shell code. However, it has the notable effect of disabling
menu selection which can be useful with _generic based widgets. It should be used
as the first completer in the list. Note that this is independent of the setting of the
MENU_COMPLETE option and does not work with the other menu completion widgets
such as reverse-menu-complete, or accept-and-menu-complete.

_oldlist This completer controls how the standard completion widgets behave when there
is an existing list of completions which may have been generated by a special com-
pletion (i.e. a separately-bound completion command). It allows the ordinary com-
pletion keys to continue to use the list of completions thus generated, instead of
producing a new list of ordinary contextual completions. It should appear in the
list of completers before any of the widgets which generate matches. It uses two
styles: old-list and old-menu, see Section 20.3 [Completion System Configura-
tion], page 164.

_prefix This completer can be used to try completion with the suffix (everything after the
cursor) ignored. In other words, the suffix will not be considered to be part of
the word to complete. The effect is similar to the expand-or-complete-prefix
command.
The completer style is used to decide which other completers are to be called to
generate matches. If this style is unset, the list of completers set for the current
context is used — except, of course, the _prefix completer itself. Furthermore, if
this completer appears more than once in the list of completers only those completers
not already tried by the last invocation of _prefix will be called.
For example, consider this global completer style:

zstyle ’:completion:*’ completer \
_complete _prefix _correct _prefix:foo

Here, the _prefix completer tries normal completion but ignoring the suffix. If that
doesn’t generate any matches, and neither does the call to the _correct completer
after it, _prefix will be called a second time and, now only trying correction with
the suffix ignored. On the second invocation the completer part of the context
appears as ‘foo’.
To use _prefix as the last resort and try only normal completion when it is invoked:

zstyle ’:completion:*’ completer _complete ... _prefix
zstyle ’:completion::prefix:*’ completer _complete

The add-space style is also respected. If it is set to ‘true’ then _prefix will insert
a space between the matches generated (if any) and the suffix.

Chapter 20: Completion System 195

Note that this completer is only useful if the COMPLETE_IN_WORD option is set; other-
wise, the cursor will be moved to the end of the current word before the completion
code is called and hence there will be no suffix.

bashcompinit
This function provides compatibility with bash’s programmable completion system.
When run it will define the functions, compgen and complete which correspond to
the bash builtins with the same names. It will then be possible to use completion
specifications and functions written for bash.

20.5 Bindable Commands

In addition to the context-dependent completions provided, which are expected to work in an
intuitively obvious way, there are a few widgets implementing special behaviour which can be
bound separately to keys. The following is a list of these and their default bindings.

_bash_completions
This function is used by two widgets, _bash_complete-word and _bash_list-
choices. It exists to provide compatibility with completion bindings in bash. The
last character of the binding determines what is completed: ‘!’, command names;
‘$’, environment variables; ‘@’, host names; ‘/’, file names; ‘~’ user names. In bash,
the binding preceded by ‘\e’ gives completion, and preceded by ‘^X’ lists options.
As some of these bindings clash with standard zsh bindings, only ‘\e~’ and ‘^X~’ are
bound by default. To add the rest, the following should be added to .zshrc after
compinit has been run:

for key in ’!’ ’$’ ’@’ ’/’ ’~’; do
bindkey "\e$key" _bash_complete-word
bindkey "^X$key" _bash_list-choices

done

This includes the bindings for ‘~’ in case they were already bound to something else;
the completion code does not override user bindings.

_correct_filename (^XC)
Correct the filename path at the cursor position. Allows up to six errors in the name.
Can also be called with an argument to correct a filename path, independently of
zle; the correction is printed on standard output.

_correct_word (^Xc)
Performs correction of the current argument using the usual contextual completions
as possible choices. This stores the string ‘correct-word’ in the function field of
the context name and then calls the _correct completer.

_expand_alias (^Xa)
This function can be used as a completer and as a bindable command. It expands
the word the cursor is on if it is an alias. The types of alias expanded can be
controlled with the styles regular, global and disabled.

When used as a bindable command there is one additional feature that can be
selected by setting the complete style to ‘true’. In this case, if the word is not the
name of an alias, _expand_alias tries to complete the word to a full alias name
without expanding it. It leaves the cursor directly after the completed word so that
invoking _expand_alias once more will expand the now-complete alias name.

Chapter 20: Completion System 196

_expand_word (^Xe)
Performs expansion on the current word: equivalent to the standard expand-word
command, but using the _expand completer. Before calling it, the function field of
the context is set to ‘expand-word’.

_generic This function is not defined as a widget and not bound by default. However, it can
be used to define a widget and will then store the name of the widget in the function
field of the context and call the completion system. This allows custom completion
widgets with their own set of style settings to be defined easily. For example, to
define a widget that performs normal completion and starts menu selection:

zle -C foo complete-word _generic
bindkey ’...’ foo
zstyle ’:completion:foo:*’ menu yes select=1

Note in particular that the completer style may be set for the context in order
to change the set of functions used to generate possible matches. If _generic is
called with arguments, those are passed through to _main_complete as the list of
completers in place of those defined by the completer style.

_history_complete_word (\e/)
Complete words from the shell’s command history. This uses the list, remove-
all-dups, sort, and stop styles.

_most_recent_file (^Xm)
Complete the name of the most recently modified file matching the pattern on the
command line (which may be blank). If given a numeric argument N, complete the
Nth most recently modified file. Note the completion, if any, is always unique.

_next_tags (^Xn)
This command alters the set of matches used to that for the next tag, or set of tags,
either as given by the tag-order style or as set by default; these matches would
otherwise not be available. Successive invocations of the command cycle through
all possible sets of tags.

_read_comp (^X^R)
Prompt the user for a string, and use that to perform completion on the current
word. There are two possibilities for the string. First, it can be a set of words begin-
ning ‘_’, for example ‘_files -/’, in which case the function with any arguments
will be called to generate the completions. Unambiguous parts of the function name
will be completed automatically (normal completion is not available at this point)
until a space is typed.
Second, any other string will be passed as a set of arguments to compadd and should
hence be an expression specifying what should be completed.
A very restricted set of editing commands is available when reading the string: ‘DEL’
and ‘^H’ delete the last character; ‘^U’ deletes the line, and ‘^C’ and ‘^G’ abort the
function, while ‘RET’ accepts the completion. Note the string is used verbatim as
a command line, so arguments must be quoted in accordance with standard shell
rules.
Once a string has been read, the next call to _read_comp will use the existing string
instead of reading a new one. To force a new string to be read, call _read_comp
with a numeric argument.

_complete_debug (^X?)
This widget performs ordinary completion, but captures in a temporary file a trace
of the shell commands executed by the completion system. Each completion attempt

Chapter 20: Completion System 197

gets its own file. A command to view each of these files is pushed onto the editor
buffer stack.

_complete_help (^Xh)
This widget displays information about the context names, the tags, and the com-
pletion functions used when completing at the current cursor position. If given a
numeric argument other than 1 (as in ‘ESC-2 ^Xh’), then the styles used and the
contexts for which they are used will be shown, too.
Note that the information about styles may be incomplete; it depends on the infor-
mation available from the completion functions called, which in turn is determined
by the user’s own styles and other settings.

_complete_help_generic
Unlike other commands listed here, this must be created as a normal ZLE widget
rather than a completion widget (i.e. with zle -N). It is used for generating help
with a widget bound to the _generic widget that is described above.
If this widget is created using the name of the function, as it is by default, then
when executed it will read a key sequence. This is expected to be bound to a
call to a completion function that uses the _generic widget. That widget will be
executed, and information provided in the same format that the _complete_help
widget displays for contextual completion.
If the widget’s name contains debug, for example if it is created as ‘zle -N _com-
plete_debug_generic _complete_help_generic’, it will read and execute the
keystring for a generic widget as before, but then generate debugging information
as done by _complete_debug for contextual completion.
If the widget’s name contains noread, it will not read a keystring but instead arrange
that the next use of a generic widget run in the same shell will have the effect as
described above.
The widget works by setting the shell parameter ZSH_TRACE_GENERIC_WIDGET which
is read by _generic. Unsetting the parameter cancels any pending effect of the
noread form.
For example, after executing the following:

zle -N _complete_debug_generic _complete_help_generic
bindkey ’^x:’ _complete_debug_generic

typing ‘C-x :’ followed by the key sequence for a generic widget will cause trace
output for that widget to be saved to a file.

_complete_tag (^Xt)
This widget completes symbol tags created by the etags or ctags programmes (note
there is no connection with the completion system’s tags) stored in a file TAGS, in
the format used by etags, or tags, in the format created by ctags. It will look
back up the path hierarchy for the first occurrence of either file; if both exist, the
file TAGS is preferred. You can specify the full path to a TAGS or tags file by setting
the parameter $TAGSFILE or $tagsfile respectively. The corresponding completion
tags used are etags and vtags, after emacs and vi respectively.

20.6 Utility Functions

Descriptions follow for utility functions that may be useful when writing completion functions.
If functions are installed in subdirectories, most of these reside in the Base subdirectory. Like
the example functions for commands in the distribution, the utility functions generating matches

Chapter 20: Completion System 198

all follow the convention of returning status zero if they generated completions and non-zero if
no matching completions could be added.

Two more features are offered by the _main_complete function. The arrays compprefuncs and
comppostfuncs may contain names of functions that are to be called immediately before or
after completion has been tried. A function will only be called once unless it explicitly reinserts
itself into the array.

_all_labels [-x] [-12VJ] tag name descr [command args ...]
This is a convenient interface to the _next_label function below, implementing
the loop shown in the _next_label example. The command and its arguments
are called to generate the matches. The options stored in the parameter name will
automatically be inserted into the args passed to the command. Normally, they are
put directly after the command, but if one of the args is a single hyphen, they are
inserted directly before that. If the hyphen is the last argument, it will be removed
from the argument list before the command is called. This allows _all_labels to
be used in almost all cases where the matches can be generated by a single call to
the compadd builtin command or by a call to one of the utility functions.

For example:

local expl
...
if _requested foo; then
...
_all_labels foo expl ’...’ compadd ... - $matches

fi

Will complete the strings from the matches parameter, using compadd with addi-
tional options which will take precedence over those generated by _all_labels.

_alternative [-C name] spec ...
This function is useful in simple cases where multiple tags are available. Essentially
it implements a loop like the one described for the _tags function below.

The tags to use and the action to perform if a tag is requested are described using
the specs which are of the form: ‘tag:descr:action’. The tags are offered using
_tags and if the tag is requested, the action is executed with the given description
descr. The actions are those accepted by the _arguments function (described below),
excluding the ‘->state’ and ‘=...’ forms.

For example, the action may be a simple function call:

_alternative \
’users:user:_users’ \
’hosts:host:_hosts’

offers usernames and hostnames as possible matches, generated by the _users and
_hosts functions respectively.

Like _arguments, this functions uses _all_labels to execute the actions, which will
loop over all sets of tags. Special handling is only required if there is an additional
valid tag, for example inside a function called from _alternative.

Like _tags this function supports the -C option to give a different name for the
argument context field.

_arguments [-nswWACRS] [-O name] [-M matchspec] [:] spec ...
This function can be used to give a complete specification for completion for a com-
mand whose arguments follow standard UNIX option and argument conventions.

Chapter 20: Completion System 199

The following forms specify individual sets of options and arguments; to avoid am-
biguity, these may be separated from the options to _arguments itself by a single
colon. Options to _arguments itself must be in separate words, i.e. -s -w, not -sw.
With the option -n, _arguments sets the parameter NORMARG to the position of
the first normal argument in the $words array, i.e. the position after the end of
the options. If that argument has not been reached, NORMARG is set to -1. The
caller should declare ‘integer NORMARG’ if the -n option is passed; otherwise the
parameter is not used.

n:message:action
n::message:action

This describes the n’th normal argument. The message will be printed
above the matches generated and the action indicates what can be com-
pleted in this position (see below). If there are two colons before the
message the argument is optional. If the message contains only white
space, nothing will be printed above the matches unless the action adds
an explanation string itself.

:message:action
::message:action

Similar, but describes the next argument, whatever number that hap-
pens to be. If all arguments are specified in this form in the correct
order the numbers are unnecessary.

*:message:action
*::message:action
*:::message:action

This describes how arguments (usually non-option arguments, those not
beginning with - or +) are to be completed when neither of the first two
forms was provided. Any number of arguments can be completed in
this fashion.
With two colons before the message, the words special array and the
CURRENT special parameter are modified to refer only to the normal ar-
guments when the action is executed or evaluated. With three colons
before the message they are modified to refer only to the normal argu-
ments covered by this description.

optspec
optspec:... This describes an option. The colon indicates handling for one or more

arguments to the option; if it is not present, the option is assumed to
take no arguments.
By default, options are multi-character name, one ‘-word’ per option.
With -s, options may be single characters, with more than one op-
tion per word, although words starting with two hyphens, such as ‘--
prefix’, are still considered complete option names. This is suitable for
standard GNU options.
The combination of -s with -w allows single-letter options to be com-
bined in a single word even if one or more of the options take arguments.
For example, if -a takes an argument, with no -s ‘-ab’ is considered as
a single (unhandled) option; with -s -ab is an option with the argument
‘b’; with both -s and -w, -ab may be the option -a and the option -b
with arguments still to come.
The option -W takes this a stage further: it is possible to complete
single-letter options even after an argument that occurs in the same

Chapter 20: Completion System 200

word. However, it depends on the action performed whether options
will really be completed at this point. For more control, use a utility
function like _guard as part of the action.
The following forms are available for the initial optspec, whether or not
the option has arguments.

*optspec Here optspec is one of the remaining forms below. This
indicates the following optspec may be repeated. Other-
wise if the corresponding option is already present on the
command line to the left of the cursor it will not be offered
again.

-optname
+optname In the simplest form the optspec is just the option name be-

ginning with a minus or a plus sign, such as ‘-foo’. The first
argument for the option (if any) must follow as a separate
word directly after the option.
Either of ‘-+optname’ and ‘+-optname’ can be used to spec-
ify that -optname and +optname are both valid.
In all the remaining forms, the leading ‘-’ may be replaced
by or paired with ‘+’ in this way.

-optname-
The first argument of the option must come directly after
the option name in the same word. For example, ‘-foo-:...’
specifies that the completed option and argument will look
like ‘-fooarg ’.

-optname+
The first argument may appear immediately after optname
in the same word, or may appear as a separate word after
the option. For example, ‘-foo+:...’ specifies that the com-
pleted option and argument will look like either ‘-fooarg ’
or ‘-foo arg ’.

-optname=
The argument may appear as the next word, or in same
word as the option name provided that it is separated from
it by an equals sign, for example ‘-foo=arg ’ or ‘-foo arg ’.

-optname=-
The argument to the option must appear after an equals
sign in the same word, and may not be given in the next
argument.

optspec[explanation]
An explanation string may be appended to any of the pre-
ceding forms of optspec by enclosing it in brackets, as in
‘-q[query operation]’.
The verbose style is used to decide whether the explanation
strings are displayed with the option in a completion listing.
If no bracketed explanation string is given but the auto-
description style is set and only one argument is described
for this optspec, the value of the style is displayed, with
any appearance of the sequence ‘%d’ in it replaced by the

Chapter 20: Completion System 201

message of the first optarg that follows the optspec; see
below.

It is possible for options with a literal ‘+’ or ‘=’ to appear, but that
character must be quoted, for example ‘-\+’.
Each optarg following an optspec must take one of the following forms:

:message:action
::message:action

An argument to the option; message and action are treated
as for ordinary arguments. In the first form, the argument
is mandatory, and in the second form it is optional.
This group may be repeated for options which
take multiple arguments. In other words,
:message1:action1:message2:action2 specifies
that the option takes two arguments.

:*pattern:message:action
:*pattern::message:action
:*pattern:::message:action

This describes multiple arguments. Only the last optarg for
an option taking multiple arguments may be given in this
form. If the pattern is empty (i.e., :*:), all the remaining
words on the line are to be completed as described by the
action; otherwise, all the words up to and including a word
matching the pattern are to be completed using the action.
Multiple colons are treated as for the ‘*:...’ forms for or-
dinary arguments: when the message is preceded by two
colons, the words special array and the CURRENT special pa-
rameter are modified during the execution or evaluation of
the action to refer only to the words after the option. When
preceded by three colons, they are modified to refer only to
the words covered by this description.

Any literal colon in an optname, message, or action must be preceded by a backslash,
‘\:’.
Each of the forms above may be preceded by a list in parentheses of option names
and argument numbers. If the given option is on the command line, the options and
arguments indicated in parentheses will not be offered. For example, ‘(-two -three
1)-one:...’ completes the option ‘-one’; if this appears on the command line, the
options -two and -three and the first ordinary argument will not be completed
after it. ‘(-foo):...’ specifies an ordinary argument completion; -foo will not be
completed if that argument is already present.
Other items may appear in the list of excluded options to indicate various other
items that should not be applied when the current specification is matched: a single
star (*) for the rest arguments (i.e. a specification of the form ‘*:...’); a colon
(:) for all normal (non-option-) arguments; and a hyphen (-) for all options. For
example, if ‘(*)’ appears before an option and the option appears on the command
line, the list of remaining arguments (those shown in the above table beginning with
‘*:’) will not be completed.
To aid in reuse of specifications, it is possible to precede any of the forms above with
‘!’; then the form will no longer be completed, although if the option or argument
appears on the command line they will be skipped as normal. The main use for this

Chapter 20: Completion System 202

is when the arguments are given by an array, and _arguments is called repeatedly
for more specific contexts: on the first call ‘_arguments $global_options’ is used,
and on subsequent calls ‘_arguments !$^global_options’.

In each of the forms above the action determines how completions should be gener-
ated. Except for the ‘->string ’ form below, the action will be executed by calling
the _all_labels function to process all tag labels. No special handling of tags is
needed unless a function call introduces a new one.

The forms for action are as follows.

(single unquoted space)
This is useful where an argument is required but it is not possible or
desirable to generate matches for it. The message will be displayed but
no completions listed. Note that even in this case the colon at the end of
the message is needed; it may only be omitted when neither a message
nor an action is given.

(item1 item2 ...)
One of a list of possible matches, for example:

:foo:(foo bar baz)

((item1\:desc1 ...))
Similar to the above, but with descriptions for each possible match.
Note the backslash before the colon. For example,

:foo:((a\:bar b\:baz))

The matches will be listed together with their descriptions if the
description style is set with the values tag in the context.

->string In this form, _arguments processes the arguments and options and then
returns control to the calling function with parameters set to indicate
the state of processing; the calling function then makes its own ar-
rangements for generating completions. For example, functions that
implement a state machine can use this type of action.

Where _arguments encounters a ‘->string ’, it will strip all leading and
trailing whitespace from string and set the array state to the set of all
stringss for which an action is to be performed.

By default and in common with all other well behaved completion func-
tions, arguments returns status zero if it was able to add matches and
non-zero otherwise. However, if the -R option is given, _arguments will
instead return a status of 300 to indicate that $state is to be handled.

In addition to $state, _arguments also sets the global parameters
‘context’, ‘line’ and ‘opt_args’ as described below, and does not reset
any changes made to the special parameters such as PREFIX and words.
This gives the calling function the choice of resetting these parameters
or propagating changes in them.

A function calling _arguments with at least one action containing a
‘->string ’ therefore must declare appropriate local parameters:

local context state line
typeset -A opt_args

to avoid _arguments from altering the global environment.

Chapter 20: Completion System 203

{eval-string}
A string in braces is evaluated as shell code to generate matches. If the
eval-string itself does not begin with an opening parenthesis or brace it
is split into separate words before execution.

= action If the action starts with ‘= ’ (an equals sign followed by a space),
_arguments will insert the contents of the argument field of the cur-
rent context as the new first element in the words special array and
increment the value of the CURRENT special parameter. This has the
effect of inserting a dummy word onto the completion command line
while not changing the point at which completion is taking place.
This is most useful with one of the specifiers that restrict the words
on the command line on which the action is to operate (the two- and
three-colon forms above). One particular use is when an action itself
causes _arguments on a restricted range; it is necessary to use this trick
to insert an appropriate command name into the range for the second
call to _arguments to be able to parse the line.

word...
word... This covers all forms other than those above. If the action starts with

a space, the remaining list of words will be invoked unchanged.
Otherwise it will be invoked with some extra strings placed after the first
word; these are to be passed down as options to the compadd builtin.
They ensure that the state specified by _arguments, in particular the
descriptions of options and arguments, is correctly passed to the com-
pletion command. These additional arguments are taken from the array
parameter ‘expl’; this will be set up before executing the action and
hence may be referred to inside it, typically in an expansion of the form
‘$expl[@]’ which preserves empty elements of the array.

During the performance of the action the array ‘line’ will be set to the command
name and normal arguments from the command line, i.e. the words from the com-
mand line excluding all options and their arguments. Options are stored in the
associative array ‘opt_args’ with option names as keys and their arguments as
the values. For options that have more than one argument these are given as one
string, separated by colons. All colons in the original arguments are preceded with
backslashes.
The parameter ‘context’ is set when returning to the calling function to perform
an action of the form ‘->string ’. It is set to an array of elements corresponding to
the elements of $state. Each element is a suitable name for the argument field of
the context: either a string of the form ‘option-opt-n’ for the n’th argument of
the option -opt, or a string of the form ‘argument-n’ for the n’th argument. For
‘rest’ arguments, that is those in the list at the end not handled by position, n is
the string ‘rest’. For example, when completing the argument of the -o option,
the name is ‘option-o-1’, while for the second normal (non-option-) argument it is
‘argument-2’.
Furthermore, during the evaluation of the action the context name in the
curcontext parameter is altered to append the same string that is stored in the
context parameter.
It is possible to specify multiple sets of options and arguments with the sets separated
by single hyphens. The specifications before the first hyphen (if any) are shared by
all the remaining sets. The first word in every other set provides a name for the set
which may appear in exclusion lists in specifications, either alone or before one of

Chapter 20: Completion System 204

the possible values described above. In the second case a ‘-’ should appear between
this name and the remainder.
For example:

_arguments \
-a \

- set1 \
-c \

- set2 \
-d \
’:arg:(x2 y2)’

This defines two sets. When the command line contains the option ‘-c’, the ‘-
d’ option and the argument will not be considered possible completions. When it
contains ‘-d’ or an argument, the option ‘-c’ will not be considered. However, after
‘-a’ both sets will still be considered valid.
If the name given for one of the mutually exclusive sets is of the form ‘(name)’ then
only one value from each set will ever be completed; more formally, all specifications
are mutually exclusive to all other specifications in the same set. This is useful for
defining multiple sets of options which are mutually exclusive and in which the
options are aliases for each other. For example:

_arguments \
-a -b \

- ’(compress)’ \
{-c,--compress}’[compress]’ \

- ’(uncompress)’ \
{-d,--decompress}’[decompress]’

As the completion code has to parse the command line separately for each set
this form of argument is slow and should only be used when necessary. A useful
alternative is often an option specification with rest-arguments (as in ‘-foo:*:...’);
here the option -foo swallows up all remaining arguments as described by the optarg
definitions.
The options -S and -A are available to simplify the specifications for commands
with standard option parsing. With -S, no option will be completed after a ‘--’
appearing on its own on the line; this argument will otherwise be ignored; hence in
the line

foobar -a -- -b

the ‘-a’ is considered an option but the ‘-b’ is considered an argument, while the
‘--’ is considered to be neither.
With -A, no options will be completed after the first non-option argument on the
line. The -A must be followed by a pattern matching all strings which are not to
be taken as arguments. For example, to make _arguments stop completing options
after the first normal argument, but ignoring all strings starting with a hyphen even
if they are not described by one of the optspecs, the form is ‘-A "-*"’.
The option ‘-O name’ specifies the name of an array whose elements will be passed
as arguments to functions called to execute actions. For example, this can be used
to pass the same set of options for the compadd builtin to all actions.
The option ‘-M spec’ sets a match specification to use to completion option names
and values. It must appear before the first argument specification. The default
is ‘r:|[_-]=* r:|=*’: this allows partial word completion after ‘_’ and ‘-’, for
example ‘-f-b’ can be completed to ‘-foo-bar’.

Chapter 20: Completion System 205

The option -C tells _arguments to modify the curcontext parameter for an action
of the form ‘->state’. This is the standard parameter used to keep track of the
current context. Here it (and not the context array) should be made local to the
calling function to avoid passing back the modified value and should be initialised
to the current value at the start of the function:

local curcontext="$curcontext"

This is useful where it is not possible for multiple states to be valid together.
The option ‘--’ allows _arguments to work out the names of long options that
support the ‘--help’ option which is standard in many GNU commands. The
command word is called with the argument ‘--help’ and the output examined for
option names. Clearly, it can be dangerous to pass this to commands which may
not support this option as the behaviour of the command is unspecified.
In addition to options, ‘_arguments --’ will try to deduce the types of arguments
available for options when the form ‘--opt=val’ is valid. It is also possible to
provide hints by examining the help text of the command and adding specifiers of
the form ‘pattern:message:action’; note that normal _arguments specifiers are not
used. The pattern is matched against the help text for an option, and if it matches
the message and action are used as for other argument specifiers. For example:

_arguments -- ’**:toggle:(yes no)’ \
’*=FILE*:file:_files’ \
’*=DIR*:directory:_files -/’ \
’*=PATH*:directory:_files -/’

Here, ‘yes’ and ‘no’ will be completed as the argument of options whose description
ends in a star; file names will be completed for options that contain the substring
‘=FILE’ in the description; and directories will be completed for options whose de-
scription contains ‘=DIR’ or ‘=PATH’. The last three are in fact the default and so
need not be given explicitly, although it is possible to override the use of these
patterns. A typical help text which uses this feature is:

-C, --directory=DIR change to directory DIR

so that the above specifications will cause directories to be completed after ‘--
directory’, though not after ‘-C’.
Note also that _arguments tries to find out automatically if the argument for an
option is optional. This can be specified explicitly by doubling the colon before the
message.
If the pattern ends in ‘(-)’, this will removed from the pattern and the action will
be used only directly after the ‘=’, not in the next word. This is the behaviour of a
normal specification defined with the form ‘=-’.
The ‘_arguments --’ can be followed by the option ‘-i patterns’ to give patterns
for options which are not to be completed. The patterns can be given as the name
of an array parameter or as a literal list in parentheses. For example,

_arguments -- -i \
"(--(en|dis)able-FEATURE*)"

will cause completion to ignore the options ‘--enable-FEATURE’ and ‘--disable-
FEATURE’ (this example is useful with GNU configure).
The ‘_arguments --’ form can also be followed by the option ‘-s pair’ to describe
option aliases. Each pair consists of a pattern and a replacement. For example,
some configure-scripts describe options only as ‘--enable-foo’, but also accept
‘--disable-foo’. To allow completion of the second form:

_arguments -- -s "(#--enable- --disable-)"

Chapter 20: Completion System 206

Here is a more general example of the use of _arguments:
_arguments ’-l+:left border:’ \

’-format:paper size:(letter A4)’ \
’*-copy:output file:_files::resolution:(300 600)’ \
’:postscript file:_files -g *.\(ps\|eps\)’ \
’*:page number:’

This describes three options: ‘-l’, ‘-format’, and ‘-copy’. The first takes one
argument described as ‘left border’ for which no completion will be offered because
of the empty action. Its argument may come directly after the ‘-l’ or it may be
given as the next word on the line.
The ‘-format’ option takes one argument in the next word, described as ‘paper size’
for which only the strings ‘letter’ and ‘A4’ will be completed.
The ‘-copy’ option may appear more than once on the command line and takes two
arguments. The first is mandatory and will be completed as a filename. The second
is optional (because of the second colon before the description ‘resolution’) and will
be completed from the strings ‘300’ and ‘600’.
The last two descriptions say what should be completed as arguments. The first
describes the first argument as a ‘postscript file’ and makes files ending in ‘ps’ or
‘eps’ be completed. The last description gives all other arguments the description
‘page numbers’ but does not offer completions.

_cache_invalid cache identifier
This function returns status zero if the completions cache corresponding to the given
cache identifier needs rebuilding. It determines this by looking up the cache-policy
style for the current context. This should provide a function name which is run with
the full path to the relevant cache file as the only argument.
Example:

_example_caching_policy () {
rebuild if cache is more than a week old
oldp=("$1"(Nmw+1))
(($#oldp))

}

_call_function return name [args ...]
If a function name exists, it is called with the arguments args. The return argument
gives the name of a parameter in which the return status from the function name;
if return is empty or a single hyphen it is ignored.
The return status of _call_function itself is zero if the function name exists and
was called and non-zero otherwise.

_call_program tag string ...
This function provides a mechanism for the user to override the use of an external
command. It looks up the command style with the supplied tag. If the style is
set, its value is used as the command to execute. The strings from the call to
_call_program, or from the style if set, are concatenated with spaces between
them and the resulting string is evaluated. The return status is the return status of
the command called.

_combination [-s pattern] tag style spec ... field opts ...
This function is used to complete combinations of values, for example pairs of host-
names and usernames. The style argument gives the style which defines the pairs;
it is looked up in a context with the tag specified.

Chapter 20: Completion System 207

The style name consists of field names separated by hyphens, for example ‘users-
hosts-ports’. For each field for a value is already known, a spec of the form
‘field=pattern’ is given. For example, if the command line so far specifies a user
‘pws’, the argument ‘users=pws’ should appear.
The next argument with no equals sign is taken as the name of the field for which
completions should be generated (presumably not one of the fields for which the
value is known).
The matches generated will be taken from the value of the style. These should con-
tain the possible values for the combinations in the appropriate order (users, hosts,
ports in the example above). The different fields the values for the different fields are
separated by colons. This can be altered with the option -s to _combination which
specifies a pattern. Typically this is a character class, as for example ‘-s "[:@]"’
in the case of the users-hosts style. Each ‘field=pattern’ specification restricts the
completions which apply to elements of the style with appropriately matching fields.
If no style with the given name is defined for the given tag, or if none of the strings
in style’s value match, but a function name of the required field preceded by an
underscore is defined, that function will be called to generate the matches. For
example, if there is no ‘users-hosts-ports’ or no matching hostname when a host
is required, the function ‘_hosts’ will automatically be called.
If the same name is used for more than one field, in both the ‘field=pattern’ and the
argument that gives the name of the field to be completed, the number of the field
(starting with one) may be given after the fieldname, separated from it by a colon.
All arguments after the required field name are passed to compadd when generating
matches from the style value, or to the functions for the fields if they are called.

_describe [-oO | -t tag] descr name1 [name2] opts ... -- ...
This function associates completions with descriptions. Multiple groups separated
by -- can be supplied, potentially with different completion options opts.
The descr is taken as a string to display above the matches if the format style for the
descriptions tag is set. This is followed by one or two names of arrays followed by
options to pass to compadd. The first array contains the possible completions with
their descriptions in the form ‘completion:description’. If a second array is given, it
should have the same number of elements as the first; in this case the corresponding
elements are added as possible completions instead of the completion strings from
the first array. The completion list will retain the descriptions from the first array.
Finally, a set of completion options can appear.
If the option ‘-o’ appears before the first argument, the matches added will be
treated as names of command options (N.B. not shell options), typically following
a ‘-’, ‘--’ or ‘+’ on the command line. In this case _describe uses the prefix-
hidden, prefix-needed and verbose styles to find out if the strings should be
added as completions and if the descriptions should be shown. Without the ‘-o’
option, only the verbose style is used to decide how descriptions are shown. If ‘-O’
is used instead of ‘-O’, command options are completed as above but _describe
will not handle the prefix-needed style.
With the -t option a tag can be specified. The default is ‘values’ or, if the -o
option is given, ‘options’.
If selected by the list-grouped style, strings with the same description will appear
together in the list.
_describe uses the _all_labels function to generate the matches, so it does not
need to appear inside a loop over tag labels.

Chapter 20: Completion System 208

_description [-x] [-12VJ] tag name descr [spec ...]
This function is not to be confused with the previous one; it is used as a helper
function for creating options to compadd. It is buried inside many of the higher level
completion functions and so often does not need to be called directly.

The styles listed below are tested in the current context using the given tag. The re-
sulting options for compadd are put into the array named name (this is traditionally
‘expl’, but this convention is not enforced). The description for the corresponding
set of matches is passed to the function in descr.

The styles tested are: format, hidden, matcher, ignored-patterns and group-
name. The format style is first tested for the given tag and then for the
descriptions tag if no value was found, while the remainder are only tested for
the tag given as the first argument. The function also calls _setup which tests some
more styles.

The string returned by the format style (if any) will be modified so that the sequence
‘%d’ is replaced by the descr given as the third argument without any leading or
trailing white space. If, after removing the white space, the descr is the empty
string, the format style will not be used and the options put into the name array
will not contain an explanation string to be displayed above the matches.

If _description is called with more than three arguments, the additional specs
should be of the form ‘char:str’. These supply escape sequence replacements for
the format style: every appearance of ‘%char’ will be replaced by string.

If the -x option is given, the description will be passed to compadd using the -x
option instead of the default -X. This means that the description will be displayed
even if there are no corresponding matches.

The options placed in the array name take account of the group-name style, so
matches are placed in a separate group where necessary. The group normally has
its elements sorted (by passing the option -J to compadd), but if an option starting
with ‘-V’, ‘-J’, ‘-1’, or ‘-2’ is passed to _description, that option will be included
in the array. Hence it is possible for the completion group to be unsorted by giving
the option ‘-V’, ‘-1V’, or ‘-2V’.

In most cases, the function will be used like this:

local expl
_description files expl file
compadd "$expl[@]" - "$files[@]"

Note the use of the parameter expl, the hyphen, and the list of matches. Almost
all calls to compadd within the completion system use a similar format; this ensures
that user-specified styles are correctly passed down to the builtins which implement
the internals of completion.

_dispatch context string ...
This sets the current context to context and looks for completion functions to handle
this context by hunting through the list of command names or special contexts (as
described above for compdef) given as string The first completion function to
be defined for one of the contexts in the list is used to generate matches. Typically,
the last string is -default- to cause the function for default completion to be used
as a fallback.

The function sets the parameter $service to the string being tried, and sets the
context/command field (the fourth) of the $curcontext parameter to the context
given as the first argument.

Chapter 20: Completion System 209

_files The function _files calls _path_files with all the arguments it was passed except
for -g and -/. The use of these two options depends on the setting of the file-
patterns style.
This function accepts the full set of options allowed by _path_files, described
below.

_gnu_generic
This function is a simple wrapper around the _arguments function described above.
It can be used to determine automatically the long options understood by commands
that produce a list when passed the option ‘--help’. It is intended to be used as
a top-level completion function in its own right. For example, to enable option
completion for the commands foo and bar, use

compdef _gnu_generic foo bar

after the call to compinit.
The completion system as supplied is conservative in its use of this function, since
it is important to be sure the command understands the option ‘--help’.

_guard [options] pattern descr
This function is intended to be used in the action for the specifications passed to
_arguments and similar functions. It returns immediately with a non-zero return
status if the string to be completed does not match the pattern. If the pattern
matches, the descr is displayed; the function then returns status zero if the word to
complete is not empty, non-zero otherwise.
The pattern may be preceded by any of the options understood by compadd that are
passed down from _description, namely -M, -J, -V, -1, -2, -n, -F and -X. All of
these options will be ignored. This fits in conveniently with the argument-passing
conventions of actions for _arguments.
As an example, consider a command taking the options -n and -none, where -n
must be followed by a numeric value in the same word. By using:

_arguments ’-n-: :_guard "[0-9]#" "numeric value"’ ’-none’

_arguments can be made to both display the message ‘numeric value’ and com-
plete options after ‘-n<TAB>’. If the ‘-n’ is already followed by one or more digits
(the pattern passed to _guard) only the message will be displayed; if the ‘-n’ is
followed by another character, only options are completed.

_message [-r12] [-VJ group] descr
_message -e [tag] descr

The descr is used in the same way as the third argument to the _description func-
tion, except that the resulting string will always be shown whether or not matches
were generated. This is useful for displaying a help message in places where no
completions can be generated.
The format style is examined with the messages tag to find a message; the usual
tag, descriptions, is used only if the style is not set with the former.
If the -r option is given, no style is used; the descr is taken literally as the string to
display. This is most useful when the descr comes from a pre-processed argument
list which already contains an expanded description.
The -12VJ options and the group are passed to compadd and hence determine the
group the message string is added to.
The second form gives a description for completions with the tag tag to be shown
even if there are no matches for that tag. The tag can be omitted and if so the tag
is taken from the parameter $curtag; this is maintained by the completion system
and so is usually correct.

Chapter 20: Completion System 210

_multi_parts sep array
The argument sep is a separator character. The array may be either the name of
an array parameter or a literal array in the form ‘(foo bar)’, a parenthesised list
of words separated by whitespace. The possible completions are the strings from
the array. However, each chunk delimited by sep will be completed separately. For
example, the _tar function uses ‘_multi_parts / patharray ’ to complete partial
file paths from the given array of complete file paths.

The -i option causes _multi_parts to insert a unique match even if that requires
multiple separators to be inserted. This is not usually the expected behaviour with
filenames, but certain other types of completion, for example those with a fixed set
of possibilities, may be more suited to this form.

Like other utility functions, this function accepts the ‘-V’, ‘-J’, ‘-1’, ‘-2’, ‘-n’, ‘-f’,
‘-X’, ‘-M’, ‘-P’, ‘-S’, ‘-r’, ‘-R’, and ‘-q’ options and passes them to the compadd
builtin.

_next_label [-x] [-12VJ] tag name descr [options ...]
This function is used to implement the loop over different tag labels for a particular
tag as described above for the tag-order style. On each call it checks to see if there
are any more tag labels; if there is it returns status zero, otherwise non-zero. As
this function requires a current tag to be set, it must always follow a call to _tags
or _requested.

The -x12VJ options and the first three arguments are passed to the _description
function. Where appropriate the tag will be replaced by a tag label in this call.
Any description given in the tag-order style is preferred to the descr passed to
_next_label.

The options given after the descr are set in the parameter given by name, and hence
are to be passed to compadd or whatever function is called to add the matches.

Here is a typical use of this function for the tag foo. The call to _requested
determines if tag foo is required at all; the loop over _next_label handles any
labels defined for the tag in the tag-order style.

local expl ret=1
...
if _requested foo; then
...
while _next_label foo expl ’...’; do
compadd "$expl[@]" ... && ret=0

done
...

fi
return ret

_normal This is the standard function called to handle completion outside any special -
context-. It is called both to complete the command word and also the arguments
for a command. In the second case, _normal looks for a special completion for that
command, and if there is none it uses the completion for the -default- context.

A second use is to reexamine the command line specified by the $words array and
the $CURRENT parameter after those have been modified. For example, the function
_precommand, which completes after pre-command specifiers such as nohup, removes
the first word from the words array, decrements the CURRENT parameter, then calls
_normal again. The effect is that ‘nohup cmd ...’ is treated in the same way as ‘cmd
...’.

Chapter 20: Completion System 211

If the command name matches one of the patterns given by one of the options -p
or -P to compdef, the corresponding completion function is called and then the
parameter _compskip is checked. If it is set completion is terminated at that point
even if no matches have been found. This is the same effect as in the -first-
context.

_options This can be used to complete the names of shell options. It provides a matcher speci-
fication that ignores a leading ‘no’, ignores underscores and allows upper-case letters
to match their lower-case counterparts (for example, ‘glob’, ‘noglob’, ‘NO_GLOB’ are
all completed). Any arguments are propagated to the compadd builtin.

_options_set and _options_unset
These functions complete only set or unset options, with the same matching speci-
fication used in the _options function.
Note that you need to uncomment a few lines in the _main_complete function for
these functions to work properly. The lines in question are used to store the option
settings in effect before the completion widget locally sets the options it needs.
Hence these functions are not generally used by the completion system.

_parameters
This is used to complete the names of shell parameters.
The option ‘-g pattern ’ limits the completion to parameters whose type matches
the pattern. The type of a parameter is that shown by ‘print ${(t)param}’, hence
judicious use of ‘*’ in pattern is probably necessary.
All other arguments are passed to the compadd builtin.

_path_files
This function is used throughout the completion system to complete filenames. It
allows completion of partial paths. For example, the string ‘/u/i/s/sig’ may be
completed to ‘/usr/include/sys/signal.h’.
The options accepted by both _path_files and _files are:

-f Complete all filenames. This is the default.

-/ Specifies that only directories should be completed.

-g pattern Specifies that only files matching the pattern should be completed.

-W paths Specifies path prefixes that are to be prepended to the string from
the command line to generate the filenames but that should not be
inserted as completions nor shown in completion listings. Here, paths
may be the name of an array parameter, a literal list of paths enclosed
in parentheses or an absolute pathname.

-F ignored-files
This behaves as for the corresponding option to the compadd builtin.
It gives direct control over which filenames should be ignored. If the
option is not present, the ignored-patterns style is used.

Both _path_files and _files also accept the following options which are passed
to compadd: ‘-J’, ‘-V’, ‘-1’, ‘-2’, ‘-n’, ‘-X’, ‘-M’, ‘-P’, ‘-S’, ‘-q’, ‘-r’, and ‘-R’.
Finally, the _path_files function uses the styles expand, ambiguous, special-
dirs, list-suffixes and file-sort described above.

_pick_variant [-c command] [-r name] label=pattern ... label [args ...]
This function is used to resolve situations where a single command name requires
more than one type of handling, either because it has more than one variant or
because there is a name clash between two different commands.

Chapter 20: Completion System 212

The command to run is taken from the first element of the array words unless this
is overridden by the option -c. This command is run and its output is compared
with a series of patterns. Arguments to be passed to the command can be specified
at the end after all the other arguments. The patterns to try in order are given by
the arguments label=pattern; if the output of ‘command args ...’ contains pattern,
then label is selected as the label for the command variant. If none of the patterns
match, the final command label is selected and status 1 is returned.

If the ‘-r name’ is given, the label picked is stored in the parameter named name.

The results are also cached in the cmd variant associative array indexed by the
name of the command run.

_regex_arguments name spec ...
This function generates a completion function name which matches the specifi-
cations spec ..., a set of regular expressions as described below. After running
_regex_arguments, the function name should be called as a normal completion
function. The pattern to be matched is given by the contents of the words array up
to the current cursor position joined together with null characters; no quotation is
applied.

The arguments are grouped as sets of alternatives separated by ‘|’, which are tried
one after the other until one matches. Each alternative consists of a one or more
specifications which are tried left to right, with each pattern matched being stripped
in turn from the command line being tested, until all of the group succeeds or until
one fails; in the latter case, the next alternative is tried. This structure can be
repeated to arbitrary depth by using parentheses; matching proceeds from inside to
outside.

A special procedure is applied if no test succeeds but the remaining command line
string contains no null character (implying the remaining word is the one for which
completions are to be generated). The completion target is restricted to the remain-
ing word and any actions for the corresponding patterns are executed. In this case,
nothing is stripped from the command line string. The order of evaluation of the
actions can be determined by the tag-order style; the various formats supported
by _alternative can be used in action. The descr is used for setting up the array
parameter expl.

Specification arguments take one of following forms, in which metacharacters such
as ‘(’, ‘)’, ‘#’ and ‘|’ should be quoted.

/pattern/ [%lookahead%] [-guard] [:tag:descr:action]
This is a single primitive component. The function tests whether the
combined pattern ‘(#b)((#B)pattern)lookahead*’ matches the com-
mand line string. If so, ‘guard’ is evaluated and its return status is
examined to determine if the test has succeeded. The pattern string
‘[]’ is guaranteed never to match. The lookahead is not stripped from
the command line before the next pattern is examined.

The argument starting with : is used in the same manner as an argument
to _alternative.

A component is used as follows: pattern is tested to see if the com-
ponent already exists on the command line. If it does, any following
specifications are examined to find something to complete. If a com-
ponent is reached but no such pattern exists yet on the command line,
the string containing the action is used to generate matches to insert at
that point.

Chapter 20: Completion System 213

/pattern/+ [%lookahead%] [-guard] [:tag:descr:action]
This is similar to ‘/pattern/ ...’ but the left part of the command
line string (i.e. the part already matched by previous patterns) is also
considered part of the completion target.

/pattern/- [%lookahead%] [-guard] [:tag:descr:action]
This is similar to ‘/pattern/ ...’ but the actions of the current and
previously matched patterns are ignored even if the following ‘pattern’
matches the empty string.

(spec) Parentheses may be used to groups specs; note each parenthesis is a
single argument to _regex_arguments.

spec # This allows any number of repetitions of spec.

spec spec The two specs are to be matched one after the other as described above.

spec | spec
Either of the two specs can be matched.

The function _regex_words can be used as a helper function to generate matches
for a set of alternative words possibly with their own arguments as a command line
argument.
Examples:

_regex_arguments _tst /$’[^\0]#\0’/ \
/$’[^\0]#\0’/ :’compadd aaa’

This generates a function _tst that completes aaa as its only argument. The tag
and description for the action have been omitted for brevity (this works but is not
recommended in normal use). The first component matches the command word,
which is arbitrary; the second matches any argument. As the argument is also
arbitrary, any following component would not depend on aaa being present.

_regex_arguments _tst /$’[^\0]#\0’/ \
/$’aaa\0’/ :’compadd aaa’

This is a more typical use; it is similar, but any following patterns would only match
if aaa was present as the first argument.

_regex_arguments _tst /$’[^\0]#\0’/ \(\
/$’aaa\0’/ :’compadd aaa’ \
/$’bbb\0’/ :’compadd bbb’ \) \#

In this example, an indefinite number of command arguments may be completed.
Odd arguments are completed as aaa and even arguments as bbb. Completion fails
unless the set of aaa and bbb arguments before the current one is matched correctly.

_regex_arguments _tst /$’[^\0]#\0’/ \
\(/$’aaa\0’/ :’compadd aaa’ \| \
/$’bbb\0’/ :’compadd bbb’ \) \#

This is similar, but either aaa or bbb may be completed for any argument. In
this case _regex_words could be used to generate a suitable expression for the
arguments.

_regex_words tag description spec ...
This function can be used to generate arguments for the _regex_arguments com-
mand which may be inserted at any point where a set of rules is expected. The
tag and description give a standard tag and description pertaining to the current
context. Each spec contains two or three arguments separated by a colon: note that
there is no leading colon in this case.

Chapter 20: Completion System 214

Each spec gives one of a set of words that may be completed at this point, together
with arguments. It is thus roughly equivalent to the _arguments function when
used in normal (non-regex) completion.

The part of the spec before the first colon is the word to be completed. This may
contain a *; the entire word, before and after the * is completed, but only the text
before the * is required for the context to be matched, so that further arguments
may be completed after the abbreviated form.

The second part of spec is a description for the word being completed.

The optional third part of the spec describes how words following the one being
completed are themselves to be completed. It will be evaluated in order to avoid
problems with quoting. This means that typically it contains a reference to an array
containing previously generated regex arguments.

The option -t term specifies a terminator for the word instead of the usual space.
This is handled as an auto-removable suffix in the manner of the option -s sep to
_values.

The result of the processing by _regex_words is placed in the array reply, which
should be made local to the calling function. If the set of words and arguments
may be matched repeatedly, a # should be appended to the generated array at that
point.

For example:

local -a reply
_regex_words mydb-commands ’mydb commands’ \
’add:add an entry to mydb:$mydb_add_cmds’ \
’show:show entries in mydb’

_regex_arguments _mydb "$reply[@]"
_mydb "$@"

This shows a completion function for a command mydb which takes two command
arguments, add and show. show takes no arguments, while the arguments for add
have already been prepared in an array mydb_add_cmds, quite possibly by a previous
call to _regex_words.

_requested [-x] [-12VJ] tag [name descr [command args ...]]
This function is called to decide whether a tag already registered by a call to _tags
(see below) has been requested by the user and hence completion should be per-
formed for it. It returns status zero if the tag is requested and non-zero otherwise.
The function is typically used as part of a loop over different tags as follows:

_tags foo bar baz
while _tags; do
if _requested foo; then
... # perform completion for foo

fi
... # test the tags bar and baz in the same way
... # exit loop if matches were generated

done

Note that the test for whether matches were generated is not performed until the
end of the _tags loop. This is so that the user can set the tag-order style to specify
a set of tags to be completed at the same time.

If name and descr are given, _requested calls the _description function with
these arguments together with the options passed to _requested.

Chapter 20: Completion System 215

If command is given, the _all_labels function will be called immediately with the
same arguments. In simple cases this makes it possible to perform the test for the
tag and the matching in one go. For example:

local expl ret=1
_tags foo bar baz
while _tags; do
_requested foo expl ’description’ \

compadd foobar foobaz && ret=0
...
((ret)) || break

done

If the command is not compadd, it must nevertheless be prepared to handle the same
options.

_retrieve_cache cache identifier
This function retrieves completion information from the file given by
cache identifier, stored in a directory specified by the cache-path style which
defaults to ~/.zcompcache. The return status is zero if retrieval was successful.
It will only attempt retrieval if the use-cache style is set, so you can call this
function without worrying about whether the user wanted to use the caching layer.

See _store_cache below for more details.

_sep_parts
This function is passed alternating arrays and separators as arguments. The arrays
specify completions for parts of strings to be separated by the separators. The arrays
may be the names of array parameters or a quoted list of words in parentheses. For
example, with the array ‘hosts=(ftp news)’ the call ‘_sep_parts ’(foo bar)’ @
hosts’ will complete the string ‘f’ to ‘foo’ and the string ‘b@n’ to ‘bar@news’.

This function accepts the compadd options ‘-V’, ‘-J’, ‘-1’, ‘-2’, ‘-n’, ‘-X’, ‘-M’, ‘-P’,
‘-S’, ‘-r’, ‘-R’, and ‘-q’ and passes them on to the compadd builtin used to add the
matches.

_setup tag [group]
This function sets up the special parameters used by the completion system appro-
priately for the tag given as the first argument. It uses the styles list-colors,
list-packed, list-rows-first, last-prompt, accept-exact, menu and force-
list.

The optional group supplies the name of the group in which the matches will be
placed. If it is not given, the tag is used as the group name.

This function is called automatically from _description and hence is not normally
called explicitly.

_store_cache cache identifier params ...
This function, together with _retrieve_cache and _cache_invalid, implements
a caching layer which can be used in any completion function. Data obtained by
costly operations are stored in parameters; this function then dumps the values of
those parameters to a file. The data can then be retrieved quickly from that file via
_retrieve_cache, even in different instances of the shell.

The cache identifier specifies the file which the data should be dumped to. The
file is stored in a directory specified by the cache-path style which defaults to
~/.zcompcache. The remaining params arguments are the parameters to dump to
the file.

Chapter 20: Completion System 216

The return status is zero if storage was successful. The function will only attempt
storage if the use-cache style is set, so you can call this function without worrying
about whether the user wanted to use the caching layer.
The completion function may avoid calling _retrieve_cache when it already has
the completion data available as parameters. However, in that case it should call
_cache_invalid to check whether the data in the parameters and in the cache are
still valid.
See the perl modules completion function for a simple example of the usage of the
caching layer.

_tags [[-C name] tags ...]
If called with arguments, these are taken to be the names of tags valid for comple-
tions in the current context. These tags are stored internally and sorted by using
the tag-order style.
Next, _tags is called repeatedly without arguments from the same completion func-
tion. This successively selects the first, second, etc. set of tags requested by the
user. The return status is zero if at least one of the tags is requested and non-zero
otherwise. To test if a particular tag is to be tried, the _requested function should
be called (see above).
If ‘-C name’ is given, name is temporarily stored in the argument field (the fifth)
of the context in the curcontext parameter during the call to _tags; the field is
restored on exit. This allows _tags to use a more specific context without having
to change and reset the curcontext parameter (which has the same effect).

_values [-O name] [-s sep] [-S sep] [-wC] desc spec ...
This is used to complete arbitrary keywords (values) and their arguments, or lists
of such combinations.
If the first argument is the option ‘-O name’, it will be used in the same way as by
the _arguments function. In other words, the elements of the name array will be
passed to compadd when executing an action.
If the first argument (or the first argument after ‘-O name’) is ‘-s’, the next ar-
gument is used as the character that separates multiple values. This character is
automatically added after each value in an auto-removable fashion (see below); all
values completed by ‘_values -s’ appear in the same word on the command line,
unlike completion using _arguments. If this option is not present, only a single
value will be completed per word.
Normally, _values will only use the current word to determine which values are
already present on the command line and hence are not to be completed again. If
the -w option is given, other arguments are examined as well.
The first non-option argument is used as a string to print as a description before
listing the values.
All other arguments describe the possible values and their arguments in the same
format used for the description of options by the _arguments function (see above).
The only differences are that no minus or plus sign is required at the beginning,
values can have only one argument, and the forms of action beginning with an equal
sign are not supported.
The character separating a value from its argument can be set using the option -S
(like -s, followed by the character to use as the separator in the next argument). By
default the equals sign will be used as the separator between values and arguments.
Example:

_values -s , ’description’ \

Chapter 20: Completion System 217

’*foo[bar]’ \
’(two)*one[number]:first count:’ \
’two[another number]::second count:(1 2 3)’

This describes three possible values: ‘foo’, ‘one’, and ‘two’. The first is described as
‘bar’, takes no argument and may appear more than once. The second is described as
‘number’, may appear more than once, and takes one mandatory argument described
as ‘first count’; no action is specified, so it will not be completed. The ‘(two)’ at
the beginning says that if the value ‘one’ is on the line, the value ‘two’ will no longer
be considered a possible completion. Finally, the last value (‘two’) is described as
‘another number’ and takes an optional argument described as ‘second count’ for
which the completions (to appear after an ‘=’) are ‘1’, ‘2’, and ‘3’. The _values
function will complete lists of these values separated by commas.

Like _arguments, this function temporarily adds another context name component
to the arguments element (the fifth) of the current context while executing the
action. Here this name is just the name of the value for which the argument is
completed.

The style verbose is used to decide if the descriptions for the values (but not those
for the arguments) should be printed.

The associative array val_args is used to report values and their arguments; this
works similarly to the opt_args associative array used by _arguments. Hence the
function calling _values should declare the local parameters state, line, context
and val_args:

local context state line
typeset -A val_args

when using an action of the form ‘->string ’. With this function the context pa-
rameter will be set to the name of the value whose argument is to be completed.

Note also that _values normally adds the character used as the separator between
values as an auto-removable suffix (similar to a ‘/’ after a directory). However, this
is not possible for a ‘->string ’ action as the matches for the argument are generated
by the calling function. To get the usual behaviour, the the calling function can add
the separator x as a suffix by passing the options ‘-qS x’ either directly or indirectly
to compadd.

The option -C is treated in the same way as it is by _arguments. In that case
the parameter curcontext should be made local instead of context (as described
above).

_wanted [-x] [-C name] [-12VJ] tag name descr command args ...
In many contexts, completion can only generate one particular set of matches, usu-
ally corresponding to a single tag. However, it is still necessary to decide whether
the user requires matches of this type. This function is useful in such a case.

The arguments to _wanted are the same as those to _requested, i.e. arguments to
be passed to _description. However, in this case the command is not optional;
all the processing of tags, including the loop over both tags and tag labels and the
generation of matches, is carried out automatically by _wanted.

Hence to offer only one tag and immediately add the corresponding matches with
the given description:

local expl
_wanted tag expl ’description’ \

compadd matches...

Chapter 21: Completion Using compctl 218

Note that, as for _requested, the command must be able to accept options to be
passed down to compadd.
Like _tags this function supports the -C option to give a different name for the
argument context field. The -x option has the same meaning as for _description.

20.7 Completion Directories

In the source distribution, the files are contained in various subdirectories of the Completion
directory. They may have been installed in the same structure, or into one single function
directory. The following is a description of the files found in the original directory structure.
If you wish to alter an installed file, you will need to copy it to some directory which appears
earlier in your fpath than the standard directory where it appears.

Base The core functions and special completion widgets automatically bound to keys.
You will certainly need most of these, though will probably not need to alter them.
Many of these are documented above.

Zsh Functions for completing arguments of shell builtin commands and utility functions
for this. Some of these are also used by functions from the Unix directory.

Unix Functions for completing arguments of external commands and suites of commands.
They may need modifying for your system, although in many cases some attempt is
made to decide which version of a command is present. For example, completion for
the mount command tries to determine the system it is running on, while completion
for many other utilities try to decide whether the GNU version of the command is
in use, and hence whether the --help option is supported.

X, AIX, BSD, ...
Completion and utility function for commands available only on some systems.
These are not arranged hierarchically, so, for example, both the Linux and Debian
directories, as well as the X directory, may be useful on your system.

21 Completion Using compctl

21.1 Types of completion

This version of zsh has two ways of performing completion of words on the command line. New
users of the shell may prefer to use the newer and more powerful system based on shell functions;
this is described in Chapter 20 [Completion System], page 158, and the basic shell mechanisms
which support it are described in Chapter 19 [Completion Widgets], page 144. This chapter
describes the older compctl command.

21.2 Description

compctl [-CDT] options [command ...]
compctl [-CDT] options [-x pattern options - ... --] [+ options [-x ... --] ... [+]] [
command ...]
compctl -M match-specs ...
compctl -L [-CDTM] [command ...]
compctl + command ...

Chapter 21: Completion Using compctl 219

Control the editor’s completion behavior according to the supplied set of options. Various editing
commands, notably expand-or-complete-word, usually bound to tab, will attempt to complete
a word typed by the user, while others, notably delete-char-or-list, usually bound to ^D in
EMACS editing mode, list the possibilities; compctl controls what those possibilities are. They
may for example be filenames (the most common case, and hence the default), shell variables,
or words from a user-specified list.

21.3 Command Flags

Completion of the arguments of a command may be different for each command or may use
the default. The behavior when completing the command word itself may also be separately
specified. These correspond to the following flags and arguments, all of which (except for -L)
may be combined with any combination of the options described subsequently in Section 21.4
[Option Flags], page 220:

command ...
controls completion for the named commands, which must be listed last on the com-
mand line. If completion is attempted for a command with a pathname containing
slashes and no completion definition is found, the search is retried with the last
pathname component. If the command starts with a =, completion is tried with the
pathname of the command.

Any of the command strings may be patterns of the form normally used for filename
generation. These should be be quoted to protect them from immediate expansion;
for example the command string ’foo*’ arranges for completion of the words of
any command beginning with foo. When completion is attempted, all pattern
completions are tried in the reverse order of their definition until one matches. By
default, completion then proceeds as normal, i.e. the shell will try to generate more
matches for the specific command on the command line; this can be overridden by
including -tn in the flags for the pattern completion.

Note that aliases are expanded before the command name is determined unless the
COMPLETE_ALIASES option is set. Commands may not be combined with the -C, -D
or -T flags.

-C controls completion when the command word itself is being completed. If no com-
pctl -C command has been issued, the names of any executable command (whether
in the path or specific to the shell, such as aliases or functions) are completed.

-D controls default completion behavior for the arguments of commands not assigned
any special behavior. If no compctl -D command has been issued, filenames are
completed.

-T supplies completion flags to be used before any other processing is done, even before
processing for compctls defined for specific commands. This is especially useful
when combined with extended completion (the -x flag, see Section 21.6 [Extended
Completion], page 225 below). Using this flag you can define default behavior
which will apply to all commands without exception, or you can alter the standard
behavior for all commands. For example, if your access to the user database is too
slow and/or it contains too many users (so that completion after ‘~’ is too slow to
be usable), you can use

compctl -T -x ’s[~] C[0,[^/]#]’ -k friends -S/ -tn

to complete the strings in the array friends after a ‘~’. The C[...] argument is
necessary so that this form of ~-completion is not tried after the directory name is
finished.

Chapter 21: Completion Using compctl 220

-L lists the existing completion behavior in a manner suitable for putting into a start-up
script; the existing behavior is not changed. Any combination of the above forms, or
the -M flag (which must follow the -L flag), may be specified, otherwise all defined
completions are listed. Any other flags supplied are ignored.

no argument
If no argument is given, compctl lists all defined completions in an abbreviated form;
with a list of options, all completions with those flags set (not counting extended
completion) are listed.

If the + flag is alone and followed immediately by the command list, the completion behavior for
all the commands in the list is reset to the default. In other words, completion will subsequently
use the options specified by the -D flag.
The form with -M as the first and only option defines global matching specifications (see Sec-
tion 19.5 [Matching Control], page 155). The match specifications given will be used for every
completion attempt (only when using compctl, not with the new completion system) and are
tried in the order in which they are defined until one generates at least one match. E.g.:

compctl -M ’’ ’m:{a-zA-Z}={A-Za-z}’

This will first try completion without any global match specifications (the empty string) and, if
that generates no matches, will try case insensitive completion.

21.4 Option Flags

[-fcFBdeaRGovNAIOPZEnbjrzu/12]
[-k array] [-g globstring] [-s subststring]
[-K function]
[-Q] [-P prefix] [-S suffix]
[-W file-prefix] [-H num pattern]
[-q] [-X explanation] [-Y explanation]
[-y func-or-var] [-l cmd] [-h cmd] [-U]
[-t continue] [-J name] [-V name]
[-M match-spec]

The remaining options specify the type of command arguments to look for during completion.
Any combination of these flags may be specified; the result is a sorted list of all the possibilities.
The options are as follows.

21.4.1 Simple Flags

These produce completion lists made up by the shell itself:

-f Filenames and filesystem paths.

-/ Just filesystem paths.

-c Command names, including aliases, shell functions, builtins and reserved words.

-F Function names.

-B Names of builtin commands.

-m Names of external commands.

-w Reserved words.

-a Alias names.

-R Names of regular (non-global) aliases.

Chapter 21: Completion Using compctl 221

-G Names of global aliases.

-d This can be combined with -F, -B, -w, -a, -R and -G to get names of disabled
functions, builtins, reserved words or aliases.

-e This option (to show enabled commands) is in effect by default, but may be combined
with -d; -de in combination with -F, -B, -w, -a, -R and -G will complete names of
functions, builtins, reserved words or aliases whether or not they are disabled.

-o Names of shell options (see Chapter 16 [Options], page 72).

-v Names of any variable defined in the shell.

-N Names of scalar (non-array) parameters.

-A Array names.

-I Names of integer variables.

-O Names of read-only variables.

-p Names of parameters used by the shell (including special parameters).

-Z Names of shell special parameters.

-E Names of environment variables.

-n Named directories.

-b Key binding names.

-j Job names: the first word of the job leader’s command line. This is useful with the
kill builtin.

-r Names of running jobs.

-z Names of suspended jobs.

-u User names.

21.4.2 Flags with Arguments

These have user supplied arguments to determine how the list of completions is to be made up:

-k array Names taken from the elements of $array (note that the ‘$’ does not appear on
the command line). Alternatively, the argument array itself may be a set of space-
or comma-separated values in parentheses, in which any delimiter may be escaped
with a backslash; in this case the argument should be quoted. For example,

compctl -k "(cputime filesize datasize stacksize
coredumpsize resident descriptors)" limit

-g globstring
The globstring is expanded using filename globbing; it should be quoted to protect
it from immediate expansion. The resulting filenames are taken as the possible com-
pletions. Use ‘*(/)’ instead of ‘*/’ for directories. The fignore special parameter
is not applied to the resulting files. More than one pattern may be given separated
by blanks. (Note that brace expansion is not part of globbing. Use the syntax
‘(either|or)’ to match alternatives.)

-s subststring
The subststring is split into words and these words are than expanded using all shell
expansion mechanisms (see Chapter 14 [Expansion], page 32). The resulting words
are taken as possible completions. The fignore special parameter is not applied to
the resulting files. Note that -g is faster for filenames.

Chapter 21: Completion Using compctl 222

-K function
Call the given function to get the completions. Unless the name starts with an
underscore, the function is passed two arguments: the prefix and the suffix of the
word on which completion is to be attempted, in other words those characters be-
fore the cursor position, and those from the cursor position onwards. The whole
command line can be accessed with the -c and -l flags of the read builtin. The
function should set the variable reply to an array containing the completions (one
completion per element); note that reply should not be made local to the function.
From such a function the command line can be accessed with the -c and -l flags
to the read builtin. For example,

function whoson { reply=(‘users‘); }
compctl -K whoson talk

completes only logged-on users after ‘talk’. Note that ‘whoson’ must return an
array, so ‘reply=‘users‘’ would be incorrect.

-H num pattern
The possible completions are taken from the last num history lines. Only words
matching pattern are taken. If num is zero or negative the whole history is searched
and if pattern is the empty string all words are taken (as with ‘*’). A typical use is

compctl -D -f + -H 0 ’’

which forces completion to look back in the history list for a word if no filename
matches.

21.4.3 Control Flags

These do not directly specify types of name to be completed, but manipulate the options that
do:

-Q This instructs the shell not to quote any metacharacters in the possible completions.
Normally the results of a completion are inserted into the command line with any
metacharacters quoted so that they are interpreted as normal characters. This is
appropriate for filenames and ordinary strings. However, for special effects, such as
inserting a backquoted expression from a completion array (-k) so that the expres-
sion will not be evaluated until the complete line is executed, this option must be
used.

-P prefix The prefix is inserted just before the completed string; any initial part already
typed will be completed and the whole prefix ignored for completion purposes. For
example,

compctl -j -P "%" kill

inserts a ‘%’ after the kill command and then completes job names.

-S suffix When a completion is found the suffix is inserted after the completed string. In the
case of menu completion the suffix is inserted immediately, but it is still possible to
cycle through the list of completions by repeatedly hitting the same key.

-W file-prefix
With directory file-prefix: for command, file, directory and globbing completion
(options -c, -f, -/, -g), the file prefix is implicitly added in front of the completion.
For example,

compctl -/ -W ~/Mail maildirs

completes any subdirectories to any depth beneath the directory ~/Mail, although
that prefix does not appear on the command line. The file-prefix may also be of the

Chapter 21: Completion Using compctl 223

form accepted by the -k flag, i.e. the name of an array or a literal list in parenthesis.
In this case all the directories in the list will be searched for possible completions.

-q If used with a suffix as specified by the -S option, this causes the suffix to be removed
if the next character typed is a blank or does not insert anything or if the suffix
consists of only one character and the next character typed is the same character;
this the same rule used for the AUTO_REMOVE_SLASH option. The option is most
useful for list separators (comma, colon, etc.).

-l cmd This option restricts the range of command line words that are considered to be ar-
guments. If combined with one of the extended completion patterns ‘p[...]’, ‘r[...]’,
or ‘R[...]’ (see Section 21.6 [Extended Completion], page 225 below) the range is
restricted to the range of arguments specified in the brackets. Completion is then
performed as if these had been given as arguments to the cmd supplied with the
option. If the cmd string is empty the first word in the range is instead taken as
the command name, and command name completion performed on the first word in
the range. For example,

compctl -x ’r[-exec,;]’ -l ’’ -- find

completes arguments between ‘-exec’ and the following ‘;’ (or the end of the com-
mand line if there is no such string) as if they were a separate command line.

-h cmd Normally zsh completes quoted strings as a whole. With this option, completion can
be done separately on different parts of such strings. It works like the -l option but
makes the completion code work on the parts of the current word that are separated
by spaces. These parts are completed as if they were arguments to the given cmd.
If cmd is the empty string, the first part is completed as a command name, as with
-l.

-U Use the whole list of possible completions, whether or not they actually match
the word on the command line. The word typed so far will be deleted. This is
most useful with a function (given by the -K option) which can examine the word
components passed to it (or via the read builtin’s -c and -l flags) and use its own
criteria to decide what matches. If there is no completion, the original word is
retained. Since the produced possible completions seldom have interesting common
prefixes and suffixes, menu completion is started immediately if AUTO_MENU is set
and this flag is used.

-y func-or-var
The list provided by func-or-var is displayed instead of the list of completions when-
ever a listing is required; the actual completions to be inserted are not affected. It
can be provided in two ways. Firstly, if func-or-var begins with a $ it defines a
variable, or if it begins with a left parenthesis a literal array, which contains the
list. A variable may have been set by a call to a function using the -K option. Oth-
erwise it contains the name of a function which will be executed to create the list.
The function will be passed as an argument list all matching completions, including
prefixes and suffixes expanded in full, and should set the array reply to the result.
In both cases, the display list will only be retrieved after a complete list of matches
has been created.

Note that the returned list does not have to correspond, even in length, to the
original set of matches, and may be passed as a scalar instead of an array. No
special formatting of characters is performed on the output in this case; in particular,
newlines are printed literally and if they appear output in columns is suppressed.

Chapter 21: Completion Using compctl 224

-X explanation
Print explanation when trying completion on the current set of options. A ‘%n’ in
this string is replaced by the number of matches that were added for this explana-
tion string. The explanation only appears if completion was tried and there was
no unique match, or when listing completions. Explanation strings will be listed
together with the matches of the group specified together with the -X option (using
the -J or -V option). If the same explanation string is given to multiple -X options,
the string appears only once (for each group) and the number of matches shown for
the ‘%n’ is the total number of all matches for each of these uses. In any case, the
explanation string will only be shown if there was at least one match added for the
explanation string.
The sequences %B, %b, %S, %s, %U, and %u specify output attributes (bold, standout,
and underline) and %{...%} can be used to include literal escape sequences as in
prompts.

-Y explanation
Identical to -X, except that the explanation first undergoes expansion following the
usual rules for strings in double quotes. The expansion will be carried out after any
functions are called for the -K or -y options, allowing them to set variables.

-t continue
The continue-string contains a character that specifies which set of completion flags
should be used next. It is useful:
(i) With -T, or when trying a list of pattern completions, when compctl would usu-
ally continue with ordinary processing after finding matches; this can be suppressed
with ‘-tn’.
(ii) With a list of alternatives separated by +, when compctl would normally stop
when one of the alternatives generates matches. It can be forced to consider the
next set of completions by adding ‘-t+’ to the flags of the alternative before the ‘+’.
(iii) In an extended completion list (see below), when compctl would normally
continue until a set of conditions succeeded, then use only the immediately following
flags. With ‘-t-’, compctl will continue trying extended completions after the next
‘-’; with ‘-tx’ it will attempt completion with the default flags, in other words those
before the ‘-x’.

-J name This gives the name of the group the matches should be placed in. Groups are
listed and sorted separately; likewise, menu completion will offer the matches in the
groups in the order in which the groups were defined. If no group name is explicitly
given, the matches are stored in a group named default. The first time a group
name is encountered, a group with that name is created. After that all matches
with the same group name are stored in that group.
This can be useful with non-exclusive alternative completions. For example, in

compctl -f -J files -t+ + -v -J variables foo

both files and variables are possible completions, as the -t+ forces both sets of
alternatives before and after the + to be considered at once. Because of the -J
options, however, all files are listed before all variables.

-V name Like -J, but matches within the group will not be sorted in listings nor in menu
completion. These unsorted groups are in a different name space from the sorted
ones, so groups defined as -J files and -V files are distinct.

-1 If given together with the -V option, makes only consecutive duplicates in the group
be removed. Note that groups with and without this flag are in different name
spaces.

Chapter 21: Completion Using compctl 225

-2 If given together with the -J or -V option, makes all duplicates be kept. Again,
groups with and without this flag are in different name spaces.

-M match-spec
This defines additional matching control specifications that should be used only
when testing words for the list of flags this flag appears in. The format of the
match-spec string is described in Section 19.5 [Matching Control], page 155.

21.5 Alternative Completion

compctl [-CDT] options + options [+ ...] [+] command ...

The form with ‘+’ specifies alternative options. Completion is tried with the options before the
first ‘+’. If this produces no matches completion is tried with the flags after the ‘+’ and so on.
If there are no flags after the last ‘+’ and a match has not been found up to that point, default
completion is tried. If the list of flags contains a -t with a + character, the next list of flags is
used even if the current list produced matches.

Additional options are available that restrict completion to some part of the command line; this
is referred to as ‘extended completion’.

21.6 Extended Completion

compctl [-CDT] options -x pattern options - ... --
[command ...]
compctl [-CDT] options [-x pattern options - ... --]
[+ options [-x ... --] ... [+]] [command ...]

The form with ‘-x’ specifies extended completion for the commands given; as shown, it may be
combined with alternative completion using ‘+’. Each pattern is examined in turn; when a match
is found, the corresponding options, as described in Section 21.4 [Option Flags], page 220 above,
are used to generate possible completions. If no pattern matches, the options given before the
-x are used.
Note that each pattern should be supplied as a single argument and should be quoted to prevent
expansion of metacharacters by the shell.
A pattern is built of sub-patterns separated by commas; it matches if at least one of these
sub-patterns matches (they are ‘or’ed). These sub-patterns are in turn composed of other sub-
patterns separated by white spaces which match if all of the sub-patterns match (they are
‘and’ed). An element of the sub-patterns is of the form ‘c[...][...]’, where the pairs of brackets
may be repeated as often as necessary, and matches if any of the sets of brackets match (an
‘or’). The example below makes this clearer.
The elements may be any of the following:

s[string]...
Matches if the current word on the command line starts with one of the strings given
in brackets. The string is not removed and is not part of the completion.

S[string]...
Like s[string] except that the string is part of the completion.

p[from,to]...
Matches if the number of the current word is between one of the from and to pairs
inclusive. The comma and to are optional; to defaults to the same value as from.
The numbers may be negative: -n refers to the n’th last word on the line.

Chapter 22: Zsh Modules 226

c[offset,string]...
Matches if the string matches the word offset by offset from the current word posi-
tion. Usually offset will be negative.

C[offset,pattern]...
Like c but using pattern matching instead.

w[index,string]...
Matches if the word in position index is equal to the corresponding string. Note
that the word count is made after any alias expansion.

W[index,pattern]...
Like w but using pattern matching instead.

n[index,string]...
Matches if the current word contains string. Anything up to and including the
indexth occurrence of this string will not be considered part of the completion, but
the rest will. index may be negative to count from the end: in most cases, index
will be 1 or -1. For example,

compctl -s ’‘users‘’ -x ’n[1,@]’ -k hosts -- talk

will usually complete usernames, but if you insert an @ after the name, names from
the array hosts (assumed to contain hostnames, though you must make the array
yourself) will be completed. Other commands such as rcp can be handled similarly.

N[index,string]...
Like n except that the string will be taken as a character class. Anything up to
and including the indexth occurrence of any of the characters in string will not be
considered part of the completion.

m[min,max]...
Matches if the total number of words lies between min and max inclusive.

r[str1,str2]...
Matches if the cursor is after a word with prefix str1. If there is also a word with
prefix str2 on the command line after the one matched by str1 it matches only if
the cursor is before this word. If the comma and str2 are omitted, it matches if the
cursor is after a word with prefix str1.

R[str1,str2]...
Like r but using pattern matching instead.

q[str]... Matches the word currently being completed is in single quotes and the str begins
with the letter ‘s’, or if completion is done in double quotes and str starts with the
letter ‘d’, or if completion is done in backticks and str starts with a ‘b’.

21.7 Example

compctl -u -x ’s[+] c[-1,-f],s[-f+]’ \
-g ’~/Mail/*(:t)’ - ’s[-f],c[-1,-f]’ -f -- mail

This is to be interpreted as follows:
If the current command is mail, then

if ((the current word begins with + and the previous word is -f) or (the current word
begins with -f+)), then complete the non-directory part (the ‘:t’ glob modifier) of
files in the directory ~/Mail; else
if the current word begins with -f or the previous word was -f, then complete any
file; else
complete user names.

Chapter 22: Zsh Modules 227

22 Zsh Modules

22.1 Description

Some optional parts of zsh are in modules, separate from the core of the shell. Each of these
modules may be linked in to the shell at build time, or can be dynamically linked while the shell
is running if the installation supports this feature. The modules that are bundled with the zsh
distribution are:

zsh/cap Builtins for manipulating POSIX.1e (POSIX.6) capability (privilege) sets.

zsh/clone
A builtin that can clone a running shell onto another terminal.

zsh/compctl
The compctl builtin for controlling completion.

zsh/complete
The basic completion code.

zsh/complist
Completion listing extensions.

zsh/computil
A module with utility builtins needed for the shell function based completion system.

zsh/curses
curses windowing commands

zsh/datetime
Some date/time commands and parameters.

zsh/deltochar
A ZLE function duplicating EMACS’ zap-to-char.

zsh/example
An example of how to write a module.

zsh/files
Some basic file manipulation commands as builtins.

zsh/mapfile
Access to external files via a special associative array.

zsh/mathfunc
Standard scientific functions for use in mathematical evaluations.

zsh/newuser
Arrange for files for new users to be installed.

zsh/parameter
Access to internal hash tables via special associative arrays.

zsh/pcre Interface to the PCRE library.

zsh/regex
Interface to the POSIX regex library.

zsh/sched
A builtin that provides a timed execution facility within the shell.

Chapter 22: Zsh Modules 228

zsh/net/socket
Manipulation of Unix domain sockets

zsh/stat A builtin command interface to the stat system call.

zsh/system
A builtin interface to various low-level system features.

zsh/net/tcp
Manipulation of TCP sockets

zsh/termcap
Interface to the termcap database.

zsh/terminfo
Interface to the terminfo database.

zsh/zftp A builtin FTP client.

zsh/zle The Zsh Line Editor, including the bindkey and vared builtins.

zsh/zleparameter
Access to internals of the Zsh Line Editor via parameters.

zsh/zprof
A module allowing profiling for shell functions.

zsh/zpty A builtin for starting a command in a pseudo-terminal.

zsh/zselect
Block and return when file descriptors are ready.

zsh/zutil
Some utility builtins, e.g. the one for supporting configuration via styles.

22.2 The zsh/cap Module

The zsh/cap module is used for manipulating POSIX.1e (POSIX.6) capability sets. If the
operating system does not support this interface, the builtins defined by this module will do
nothing. The builtins in this module are:

cap [capabilities]
Change the shell’s process capability sets to the specified capabilities, otherwise
display the shell’s current capabilities.

getcap filename ...
This is a built-in implementation of the POSIX standard utility. It displays the
capability sets on each specified filename.

setcap capabilities filename ...
This is a built-in implementation of the POSIX standard utility. It sets the capability
sets on each specified filename to the specified capabilities.

22.3 The zsh/clone Module

The zsh/clone module makes available one builtin command:

clone tty Creates a forked instance of the current shell, attached to the specified tty. In the
new shell, the PID, PPID and TTY special parameters are changed appropriately. $!
is set to zero in the new shell, and to the new shell’s PID in the original shell.

Chapter 22: Zsh Modules 229

The return status of the builtin is zero in both shells if successful, and non-zero on
error.
The target of clone should be an unused terminal, such as an unused virtual console
or a virtual terminal created by
xterm -e sh -c ’trap : INT QUIT TSTP; tty; while :; do sleep 100000000; done’
Some words of explanation are warranted about this long xterm command line:
when doing clone on a pseudo-terminal, some other session ("session" meant as a
unix session group, or SID) is already owning the terminal. Hence the cloned zsh
cannot acquire the pseudo-terminal as a controlling tty. That means two things:
the job control signals will go to the sh-started-by-xterm process group (that’s why
we disable INT QUIT and TSTP with trap; otherwise the while loop could get
suspended or killed)
the cloned shell will have job control disabled, and the job control keys (control-C,
control-\ and control-Z) will not work.
This does not apply when cloning to an unused vc.
Cloning to an used (and unprepared) terminal will result in two processes reading
simultaneously from the same terminal, with input bytes going randomly to either
process.
clone is mostly useful as a shell built-in replacement for openvt.

22.4 The zsh/compctl Module

The zsh/compctl module makes available two builtin commands. compctl, is the old, depre-
cated way to control completions for ZLE. See Chapter 21 [Completion Using compctl], page 218.
The other builtin command, compcall can be used in user-defined completion widgets, see Chap-
ter 19 [Completion Widgets], page 144.

22.5 The zsh/complete Module

The zsh/complete module makes available several builtin commands which can be used in
user-defined completion widgets, see Chapter 19 [Completion Widgets], page 144.

22.6 The zsh/complist Module

The zsh/complist module offers three extensions to completion listings: the ability to high-
light matches in such a list, the ability to scroll through long lists and a different style of menu
completion.

22.6.1 Colored completion listings

Whenever one of the parameters ZLS_COLORS or ZLS_COLOURS is set and the zsh/complist
module is loaded or linked into the shell, completion lists will be colored. Note, however, that
complist will not automatically be loaded if it is not linked in: on systems with dynamic
loading, ‘zmodload zsh/complist’ is required.
The parameters ZLS_COLORS and ZLS_COLOURS describe how matches are highlighted. To turn
on highlighting an empty value suffices, in which case all the default values given below will be
used. The format of the value of these parameters is the same as used by the GNU version of
the ls command: a colon-separated list of specifications of the form ‘name=value’. The name
may be one of the following strings, most of which specify file types for which the value will be
used. The strings and their default values are:

no 0 for normal text (i.e. when displaying something other than a matched file)

Chapter 22: Zsh Modules 230

fi 0 for regular files

di 32 for directories

ln 36 for symbolic links

pi 31 for named pipes (FIFOs)

so 33 for sockets

bd 44;37 for block devices

cd 44;37 for character devices

ex 35 for executable files

mi none for a non-existent file (default is the value defined for fi)

lc \e[for the left code (see below)

rc m for the right code

tc 0 for the character indicating the file type printed after filenames if the LIST_TYPES
option is set

sp 0 for the spaces printed after matches to align the next column

ec none for the end code

Apart from these strings, the name may also be an asterisk (‘*’) followed by any string. The
value given for such a string will be used for all files whose name ends with the string. The name
may also be an equals sign (‘=’) followed by a pattern. The value given for this pattern will
be used for all matches (not just filenames) whose display string are matched by the pattern.
Definitions for both of these take precedence over the values defined for file types and the form
with the leading asterisk takes precedence over the form with the leading equal sign.
The last form also allows different parts of the displayed strings to be colored differently. For
this, the pattern has to use the ‘(#b)’ globbing flag and pairs of parentheses surrounding the
parts of the strings that are to be colored differently. In this case the value may consist of more
than one color code separated by equal signs. The first code will be used for all parts for which
no explicit code is specified and the following codes will be used for the parts matched by the
sub-patterns in parentheses. For example, the specification ‘=(#b)(?)*(?)=0=3=7’ will be used
for all matches which are at least two characters long and will use the code ‘3’ for the first
character, ‘7’ for the last character and ‘0’ for the rest.
All three forms of name may be preceded by a pattern in parentheses. If this is given, the
value will be used only for matches in groups whose names are matched by the pattern given in
the parentheses. For example, ‘(g*)m*=43’ highlights all matches beginning with ‘m’ in groups
whose names begin with ‘g’ using the color code ‘43’. In case of the ‘lc’, ‘rc’, and ‘ec’ codes,
the group pattern is ignored.
Note also that all patterns are tried in the order in which they appear in the parameter value
until the first one matches which is then used.
When printing a match, the code prints the value of lc, the value for the file-type or the last
matching specification with a ‘*’, the value of rc, the string to display for the match itself, and
then the value of ec if that is defined or the values of lc, no, and rc if ec is not defined.
The default values are ISO 6429 (ANSI) compliant and can be used on vt100 compatible ter-
minals such as xterms. On monochrome terminals the default values will have no visible effect.
The colors function from the contribution can be used to get associative arrays containing the
codes for ANSI terminals (see Section 26.9 [Other Functions], page 323). For example, after
loading colors, one could use ‘$colors[red]’ to get the code for foreground color red and
‘$colors[bg-green]’ for the code for background color green.

Chapter 22: Zsh Modules 231

If the completion system invoked by compinit is used, these parameters should not be set directly
because the system controls them itself. Instead, the list-colors style should be used (see
Section 20.3 [Completion System Configuration], page 164).

22.6.2 Scrolling in completion listings

To enable scrolling through a completion list, the LISTPROMPT parameter must be set. Its value
will be used as the prompt; if it is the empty string, a default prompt will be used. The value
may contain escapes of the form ‘%x’. It supports the escapes ‘%B’, ‘%b’, ‘%S’, ‘%s’, ‘%U’, ‘%u’ and
‘%{...%}’ used also in shell prompts as well as three pairs of additional sequences: a ‘%l’ or
‘%L’ is replaced by the number of the last line shown and the total number of lines in the form
‘number/total’; a ‘%m’ or ‘%M’ is replaced with the number of the last match shown and the total
number of matches; and ‘%p’ or ‘%P’ is replaced with ‘Top’, ‘Bottom’ or the position of the first
line shown in percent of the total number of lines, respectively. In each of these cases the form
with the uppercase letter will be replaced with a string of fixed width, padded to the right with
spaces, while the lowercase form will not be padded.
If the parameter LISTPROMPT is set, the completion code will not ask if the list should be shown.
Instead it immediately starts displaying the list, stopping after the first screenful, showing the
prompt at the bottom, waiting for a keypress after temporarily switching to the listscroll
keymap. Some of the zle functions have a special meaning while scrolling lists:

send-break
stops listing discarding the key pressed

accept-line, down-history, down-line-or-history
down-line-or-search, vi-down-line-or-history

scrolls forward one line

complete-word, menu-complete, expand-or-complete
expand-or-complete-prefix, menu-complete-or-expand

scrolls forward one screenful

Every other character stops listing and immediately processes the key as usual. Any key that is
not bound in the listscroll keymap or that is bound to undefined-key is looked up in the
keymap currently selected.
As for the ZLS_COLORS and ZLS_COLOURS parameters, LISTPROMPT should not be set directly
when using the shell function based completion system. Instead, the list-prompt style should
be used.

22.6.3 Menu selection

The zsh/complist module also offers an alternative style of selecting matches from a list, called
menu selection, which can be used if the shell is set up to return to the last prompt after showing
a completion list (see the ALWAYS_LAST_PROMPT option in Chapter 16 [Options], page 72).
Menu selection can be invoked directly by the widget menu-select defined by this module. This
is a standard ZLE widget that can be bound to a key in the usual way as described in Chapter 18
[Zsh Line Editor], page 119.
Alternatively, the parameter MENUSELECT can be set to an integer, which gives the minimum
number of matches that must be present before menu selection is automatically turned on.
This second method requires that menu completion be started, either directly from a widget
such as menu-complete, or due to one of the options MENU_COMPLETE or AUTO_MENU being set.
If MENUSELECT is set, but is 0, 1 or empty, menu selection will always be started during an
ambiguous menu completion.
When using the completion system based on shell functions, the MENUSELECT parameter should
not be used (like the ZLS_COLORS and ZLS_COLOURS parameters described above). Instead, the
menu style should be used with the select=... keyword.

Chapter 22: Zsh Modules 232

After menu selection is started, the matches will be listed. If there are more matches than fit
on the screen, only the first screenful is shown. The matches to insert into the command line
can be selected from this list. In the list one match is highlighted using the value for ma from
the ZLS_COLORS or ZLS_COLOURS parameter. The default value for this is ‘7’ which forces the
selected match to be highlighted using standout mode on a vt100-compatible terminal. If neither
ZLS_COLORS nor ZLS_COLOURS is set, the same terminal control sequence as for the ‘%S’ escape
in prompts is used.
If there are more matches than fit on the screen and the parameter MENUPROMPT is set, its value
will be shown below the matches. It supports the same escape sequences as LISTPROMPT, but
the number of the match or line shown will be that of the one where the mark is placed. If its
value is the empty string, a default prompt will be used.
The MENUSCROLL parameter can be used to specify how the list is scrolled. If the parameter is
unset, this is done line by line, if it is set to ‘0’ (zero), the list will scroll half the number of lines
of the screen. If the value is positive, it gives the number of lines to scroll and if it is negative,
the list will be scrolled the number of lines of the screen minus the (absolute) value.
As for the ZLS_COLORS, ZLS_COLOURS and LISTPROMPT parameters, neither MENUPROMPT nor
MENUSCROLL should be set directly when using the shell function based completion system.
Instead, the select-prompt and select-scroll styles should be used.
The completion code sometimes decides not to show all of the matches in the list. These hidden
matches are either matches for which the completion function which added them explicitly
requested that they not appear in the list (using the -n option of the compadd builtin command)
or they are matches which duplicate a string already in the list (because they differ only in things
like prefixes or suffixes that are not displayed). In the list used for menu selection, however,
even these matches are shown so that it is possible to select them. To highlight such matches
the hi and du capabilities in the ZLS_COLORS and ZLS_COLOURS parameters are supported for
hidden matches of the first and second kind, respectively.
Selecting matches is done by moving the mark around using the zle movement functions. When
not all matches can be shown on the screen at the same time, the list will scroll up and down
when crossing the top or bottom line. The following zle functions have special meaning during
menu selection:

accept-line
accepts the current match and leaves menu selection

send-break
leaves menu selection and restores the previous contents of the command line

redisplay, clear-screen
execute their normal function without leaving menu selection

accept-and-hold, accept-and-menu-complete
accept the currently inserted match and continue selection allowing to select the
next match to insert into the line

accept-and-infer-next-history
accepts the current match and then tries completion with menu selection again; in
the case of files this allows one to select a directory and immediately attempt to
complete files in it; if there are no matches, a message is shown and one can use
undo to go back to completion on the previous level, every other key leaves menu
selection (including the other zle functions which are otherwise special during menu
selection)

undo removes matches inserted during the menu selection by one of the three functions
before

Chapter 22: Zsh Modules 233

down-history, down-line-or-history
vi-down-line-or-history, down-line-or-search

moves the mark one line down

up-history, up-line-or-history
vi-up-line-or-history, up-line-or-search

moves the mark one line up

forward-char, vi-forward-char
moves the mark one column right

backward-char, vi-backward-char
moves the mark one column left

forward-word, vi-forward-word
vi-forward-word-end, emacs-forward-word

moves the mark one screenful down

backward-word, vi-backward-word, emacs-backward-word
moves the mark one screenful up

vi-forward-blank-word, vi-forward-blank-word-end
moves the mark to the first line of the next group of matches

vi-backward-blank-word
moves the mark to the last line of the previous group of matches

beginning-of-history
moves the mark to the first line

end-of-history
moves the mark to the last line

beginning-of-buffer-or-history, beginning-of-line
beginning-of-line-hist, vi-beginning-of-line

moves the mark to the leftmost column

end-of-buffer-or-history, end-of-line
end-of-line-hist, vi-end-of-line

moves the mark to the rightmost column

complete-word, menu-complete, expand-or-complete
expand-or-complete-prefix, menu-expand-or-complete

moves the mark to the next match

reverse-menu-complete
moves the mark to the previous match

vi-insert
this toggles between normal and interactive mode; in interactive mode the keys
bound to self-insert and self-insert-unmeta insert into the command line as
in normal editing mode but without leaving menu selection; after each character
completion is tried again and the list changes to contain only the new matches;
the completion widgets make the longest unambiguous string be inserted in the
command line and undo and backward-delete-char go back to the previous set of
matches

history-incremental-search-forward,
history-incremental-search-backward this starts incremental searches in the list
of completions displayed; in this mode, accept-line only leaves incremental search,
going back to the normal menu selection mode

Chapter 22: Zsh Modules 234

All movement functions wrap around at the edges; any other zle function not listed leaves menu
selection and executes that function. It is possible to make widgets in the above list do the same
by using the form of the widget with a ‘.’ in front. For example, the widget ‘.accept-line’
has the effect of leaving menu selection and accepting the entire command line.

During this selection the widget uses the keymap menuselect. Any key that is not defined in
this keymap or that is bound to undefined-key is looked up in the keymap currently selected.
This is used to ensure that the most important keys used during selection (namely the cursor
keys, return, and TAB) have sensible defaults. However, keys in the menuselect keymap can be
modified directly using the bindkey builtin command (see Section 22.29 [The zsh/zle Module],
page 260). For example, to make the return key leave menu selection without accepting the
match currently selected one could call

bindkey -M menuselect ’^M’ send-break

after loading the zsh/complist module.

22.7 The zsh/computil Module

The zsh/computil module adds several builtin commands that are used by some of the
completion functions in the completion system based on shell functions (see Chapter 20 [Com-
pletion System], page 158). Except for compquote these builtin commands are very specialised
and thus not very interesting when writing your own completion functions. In summary, these
builtin commands are:

comparguments
This is used by the _arguments function to do the argument and command line
parsing. Like compdescribe it has an option -i to do the parsing and initialize
some internal state and various options to access the state information to decide
what should be completed.

compdescribe
This is used by the _describe function to build the displays for the matches and
to get the strings to add as matches with their options. On the first call one of the
options -i or -I should be supplied as the first argument. In the first case, display
strings without the descriptions will be generated, in the second case, the string
used to separate the matches from their descriptions must be given as the second
argument and the descriptions (if any) will be shown. All other arguments are like
the definition arguments to _describe itself.
Once compdescribe has been called with either the -i or the -I option, it can be
repeatedly called with the -g option and the names of five arrays as its arguments.
This will step through the different sets of matches and store the options in the first
array, the strings with descriptions in the second, the matches for these in the third,
the strings without descriptions in the fourth, and the matches for them in the fifth
array. These are then directly given to compadd to register the matches with the
completion code.

compfiles
Used by the _path_files function to optimize complex recursive filename gener-
ation (globbing). It does three things. With the -p and -P options it builds the
glob patterns to use, including the paths already handled and trying to optimize the
patterns with respect to the prefix and suffix from the line and the match specifica-
tion currently used. The -i option does the directory tests for the ignore-parents
style and the -r option tests if a component for some of the matches are equal to
the string on the line and removes all other matches if that is true.

Chapter 22: Zsh Modules 235

compgroups
Used by the _tags function to implement the internals of the group-order style.
This only takes its arguments as names of completion groups and creates the groups
for it (all six types: sorted and unsorted, both without removing duplicates, with
removing all duplicates and with removing consecutive duplicates).

compquote [-p] names ...
There may be reasons to write completion functions that have to add the matches
using the -Q option to compadd and perform quoting themselves. Instead of in-
terpreting the first character of the all_quotes key of the compstate special as-
sociation and using the q flag for parameter expansions, one can use this builtin
command. The arguments are the names of scalar or array parameters and the
values of these parameters are quoted as needed for the innermost quoting level. If
the -p option is given, quoting is done as if there is some prefix before the values of
the parameters, so that a leading equal sign will not be quoted.
The return status is non-zero in case of an error and zero otherwise.

comptags
comptry These implement the internals of the tags mechanism.

compvalues
Like comparguments, but for the _values function.

22.8 The zsh/curses Module

The zsh/curses module makes available one builtin command and various parameters.

22.8.1 Builtin

zcurses init
zcurses end
zcurses addwin targetwin nlines ncols begin y begin x [parentwin]
zcurses delwin targetwin
zcurses refresh [targetwin ...]
zcurses touch targetwin ...
zcurses move targetwin new y new x
zcurses clear targetwin [redraw | eol | bot]
zcurses location targetwin array
zcurses char targetwin character
zcurses string targetwin string
zcurses border targetwin border (
zcurses attr targetwin [{+/-}attribute | fg col/bg col] [...]
zcurses bg targetwin [{+/-}attribute | fg col/bg col | @char] [...]
zcurses scroll targetwin [on | off | {+/-}lines]
zcurses input targetwin [param [kparam [mparam]]]
zcurses mouse [delay num | {+/-}motion]
zcurses timeout targetwin intval
zcurses querychar targetwin [param]

Manipulate curses windows. All uses of this command should be bracketed by
‘zcurses init’ to initialise use of curses, and ‘zcurses end’ to end it; omitting
‘zcurses end’ can cause the terminal to be in an unwanted state.
The subcommand addwin creates a window with nlines lines and ncols columns. Its
upper left corner will be placed at row begin y and column begin x of the screen.
targetwin is a string and refers to the name of a window that is not currently

Chapter 22: Zsh Modules 236

assigned. Note in particular the curses convention that vertical values appear before
horizontal values.
If addwin is given an existing window as the final argument, the new window is
created as a subwindow of parentwin. This differs from an ordinary new window
in that the memory of the window contents is shared with the parent’s memory.
Subwindows must be deleted before their parent. Note that the coordinates of
subwindows are relative to the screen, not the parent, as with other windows.
Use the subcommand delwin to delete a window created with addwin. Note that
end does not implicitly delete windows, and that delwin does not erase the screen
image of the window.
The window corresponding to the full visible screen is called stdscr; it always exists
after ‘zcurses init’ and cannot be delete with delwin.
The subcommand refresh will refresh window targetwin; this is necessary to make
any pending changes (such as characters you have prepared for output with char)
visible on the screen. refresh without an argument causes the screen to be cleared
and redrawn. If multiple windows are given, the screen is updated once at the end.
The subcommand touch marks the targetwins listed as changed. This is necessary
before refreshing windows if a window that was in front of another window (which
may be stdscr) is deleted.
The subcommand move moves the cursor position in targetwin to new coordinates
new y and new x. Note that the subcommand string (but not the subcommand
char) advances the cursor position over the characters added.
The subcommand clear erases the contents of targetwin. One (and no more than
one) of three options may be specified. With the option redraw, in addition the
next refresh of targetwin will cause the screen to be cleared and repainted. With
the option eol, targetwin is only cleared to the end of the current cursor line. With
the option bot, targetwin is cleared to the end of the window, i.e everything to the
right and below the cursor is cleared.
The subcommand location writes various positions associated with targetwin into
the array named array. These are, in order:

The y and x coordinates of the cursor relative to the top left of targetwin

The y and x coordinates of the top left of targetwin on the screen

The size of targetwin in y and x dimensions.

Outputting characters and strings are achieved by char and string respectively.
To draw a border around window targetwin, use border. Note that the border is
not subsequently handled specially: in other words, the border is simply a set of
characters output at the edge of the window. Hence it can be overwritten, can scroll
off the window, etc.
The subcommand attr will set targetwin’s attributes or foreground/background
color pair for any successive character output. Each attribute given on the line may
be prepended by a + to set or a - to unset that attribute; + is assumed if absent. The
attributes supported are blink, bold, dim, reverse, standout, and underline.
Each fg col/bg col attribute (to be read as ‘fg col on bg col’) sets the foreground
and background color for character output. The color default is sometimes avail-
able (in particular if the library is ncurses), specifying the foreground or background
color with which the terminal started. The color pair default/default is always
available.

Chapter 22: Zsh Modules 237

bg overrides the color and other attributes of all characters in the window. Its
usual use is to set the background initially, but it will overwrite the attributes of
any characters at the time when it is called. In addition to the arguments allowed
with attr, an argument @char specifies a character to be shown in otherwise blank
areas of the window. Owing to limitations of curses this cannot be a multibyte
character (use of ASCII characters only is recommended). As the specified set of
attributes override the existing background, turning attributes off in the arguments
is not useful, though this does not cause an error.
The subcommand scroll can be used with on or off to enabled or disable scrolling
of a window when the cursor would otherwise move below the window due to typing
or output. It can also be used with a positive or negative integer to scroll the window
up or down the given number of lines without changing the current cursor position
(which therefore appears to move in the opposite direction relative to the window).
In the second case, if scrolling is off it is temporarily turned on to allow the window
to be scrolled.
The subcommand input reads a single character from the window without echoing
it back. If param is supplied the character is assigned to the parameter param, else
it is assigned to the parameter REPLY.
If both param and kparam are supplied, the key is read in ‘keypad’ mode. In this
mode special keys such as function keys and arrow keys return the name of the key
in the parameter kparam. The key names are the macros defined in the curses.h or
ncurses.h with the prefix ‘KEY_’ removed; see also the description of the parameter
zcurses_keycodes below. Other keys cause a value to be set in param as before.
On a succesful return only one of param or kparam contains a non-empty string;
the other is set to an empty string.
If mparam is also supplied, input attempts to handle mouse input. This is only
available with the ncurses library; mouse handling can be detected by checking for
the exit status of ‘zcurses mouse’ with no arguments. If a mouse button is clicked
(or double- or triple-clicked, or pressed or released with a configurable delay from
being clicked) then kparam is set to the string MOUSE, and mparam is set to an array
consisting of the following elements:

- An identifier to discriminate different input devices; this is only rarely
useful.

- The x, y and z coordinates of the mouse click relative to the full screen,
as three elements in that order (i.e. the y coordinate is, unusually, after
the x coordinate). The z coordinate is only available for a few unusual
input devices and is otherwise set to zero.

- Any events that occurred as separate items; usually there will
be just one. An event consists of PRESSED, RELEASED, CLICKED,
DOUBLE_CLICKED or TRIPLE_CLICKED followed immediately (in the
same element) by the number of the button.

- If the shift key was pressed, the string SHIFT.

- If the control key was pressed, the string CTRL.

- If the alt key was pressed, the string ALT.

Not all mouse events may be passed through to the terminal window; most terminal
emulators handle some mouse events themselves. Note that the ncurses manual
implies that using input both with and without mouse handling may cause the
mouse cursor to appear and disappear.

Chapter 22: Zsh Modules 238

The subcommand mouse can be used to configure the use of the mouse. There is no
window argument; mouse options are global. ‘zcurses mouse’ with no arguments
returns status 0 if mouse handling is possible, else status 1. Otherwise, the possible
arguments (which may be combined on the same command line) are as follows.
delay num sets the maximum delay in milliseconds between press and release events
to be considered as a click; the value 0 disables click resolution, and the default is
one sixth of a second. motion proceeded by an optional ‘+’ (the default) or - turns
on or off reporting of mouse motion in addition to clicks, presses and releases, which
are always reported. However, it appears reports for mouse motion are not currently
implemented.

The subcommand timeout specifies a timeout value for input from targetwin. If
intval is negative, ‘zcurses input’ waits indefinitely for a character to be typed;
this is the default. If intval is zero, ‘zcurses input’ returns immediately; if there
is typeahead it is returned, else no input is done and status 1 is returned. If intval
is positive, ‘zcurses input’ waits intval milliseconds for input and if there is none
at the end of that period returns status 1.

The subcommand querychar queries the character at the current cursor position.
The return values are stored in the array named param if supplied, else in the array
reply. The first value is the character (which may be a multibyte character if
the system supports them); the second is the color pair in the usual fg col/bg col
notation, or 0 if color is not supported. Any attributes other than color that apply
to the character, as set with the subcommand attr, appear as additional elements.

22.8.2 Parameters

ZCURSES_COLORS
Readonly integer. The maximum number of colors the terminal supports. This value
is initialised by the curses library and is not available until the first time zcurses
init is run.

ZCURSES_COLOR_PAIRS
Readonly integer. The maximum number of color pairs fg col/bg col that may be
defined in ‘zcurses attr’ commands; note this limit applies to all color pairs that
have been used whether or not they are currently active. This value is initialised by
the curses library and is not available until the first time zcurses init is run.

zcurses_attrs
Readonly array. The attributes supported by zsh/curses; available as soon as the
module is loaded.

zcurses_colors
Readonly array. The colors supported by zsh/curses; available as soon as the
module is loaded.

zcurses_keycodes
Readonly array. The values that may be returned in the second parameter supplied
to ‘zcurses input’ in the order in which they are defined internally by curses. Not
all function keys are listed, only F0; curses reserves space for F0 up to F63.

zcurses_windows
Readonly array. The current list of windows, i.e. all windows that have been created
with ‘zcurses addwin’ and not removed with ‘zcurses delwin’.

Chapter 22: Zsh Modules 239

22.9 The zsh/datetime Module

The zsh/datetime module makes available one builtin command:

strftime [-s scalar] format epochtime
strftime -r [-q] [-s scalar] format timestring

Output the date denoted by epochtime in the format specified.

With the option -r (reverse), use the format format to parse the input string
timestring and output the number of seconds since the epoch at which the time
occurred. If no timezone is parsed, the current timezone is used; other parameters
are set to zero if not present. If timestring does not match format the command
returns status 1; it will additionally print an error message unless the option -q
(quiet) is given. If timestring matches format but not all characters in timestring
were used, the conversion succeeds; however, a warning is issued unless the option -q
is given. The matching is implemented by the system function strptime; see man
page strptime(3). This means that zsh format extensions are not available, however
for reverse lookup they are not required. If the function is not implemented, the
command returns status 2 and (unless -q is given) prints a message.

If -s scalar is given, assign the date string (or epoch time in seconds if -r is given)
to scalar instead of printing it.

The zsh/datetime module makes available one parameter:

EPOCHSECONDS
An integer value representing the number of seconds since the epoch.

22.10 The zsh/deltochar Module

The zsh/deltochar module makes available two ZLE functions:

delete-to-char
Read a character from the keyboard, and delete from the cursor position up to and
including the next (or, with repeat count n, the nth) instance of that character.
Negative repeat counts mean delete backwards.

zap-to-char
This behaves like delete-to-char, except that the final occurrence of the character
itself is not deleted.

22.11 The zsh/example Module

The zsh/example module makes available one builtin command:

example [-flags] [args ...]
Displays the flags and arguments it is invoked with.

The purpose of the module is to serve as an example of how to write a module.

22.12 The zsh/files Module

The zsh/files module makes some standard commands available as builtins:

chgrp [-hRs] group filename ...
Changes group of files specified. This is equivalent to chown with a user-spec argu-
ment of ‘:group’.

Chapter 22: Zsh Modules 240

chown [-hRs] user-spec filename ...
Changes ownership and group of files specified.
The user-spec can be in four forms:

user change owner to user; do not change group

user:: change owner to user; do not change group

user: change owner to user; change group to user’s primary group

user:group
change owner to user; change group to group

:group do not change owner; change group to group

In each case, the ‘:’ may instead be a ‘.’. The rule is that if there is a ‘:’ then the
separator is ‘:’, otherwise if there is a ‘.’ then the separator is ‘.’, otherwise there
is no separator.
Each of user and group may be either a username (or group name, as appropriate)
or a decimal user ID (group ID). Interpretation as a name takes precedence, if there
is an all-numeric username (or group name).
If the target is a symbolic link, the -h option causes chown to set the ownership of
the link instead of its target.
The -R option causes chown to recursively descend into directories, changing the
ownership of all files in the directory after changing the ownership of the directory
itself.
The -s option is a zsh extension to chown functionality. It enables paranoid be-
haviour, intended to avoid security problems involving a chown being tricked into
affecting files other than the ones intended. It will refuse to follow symbolic links,
so that (for example) ‘‘chown luser /tmp/foo/passwd’’ can’t accidentally chown
/etc/passwd if /tmp/foo happens to be a link to /etc. It will also check where it
is after leaving directories, so that a recursive chown of a deep directory tree can’t
end up recursively chowning /usr as a result of directories being moved up the tree.

ln [-dfis] filename dest
ln [-dfis] filename ... dir

Creates hard (or, with -s, symbolic) links. In the first form, the specified destination
is created, as a link to the specified filename. In the second form, each of the
filenames is taken in turn, and linked to a pathname in the specified directory that
has the same last pathname component.
Normally, ln will not attempt to create hard links to directories. This check can be
overridden using the -d option. Typically only the super-user can actually succeed
in creating hard links to directories. This does not apply to symbolic links in any
case.
By default, existing files cannot be replaced by links. The -i option causes the user
to be queried about replacing existing files. The -f option causes existing files to
be silently deleted, without querying. -f takes precedence.

mkdir [-p] [-m mode] dir ...
Creates directories. With the -p option, non-existing parent directories are first
created if necessary, and there will be no complaint if the directory already exists.
The -m option can be used to specify (in octal) a set of file permissions for the
created directories, otherwise mode 777 modified by the current umask (see man
page umask(2)) is used.

Chapter 22: Zsh Modules 241

mv [-fi] filename dest
mv [-fi] filename ... dir

Moves files. In the first form, the specified filename is moved to the specified
destination. In the second form, each of the filenames is taken in turn, and moved to
a pathname in the specified directory that has the same last pathname component.

By default, the user will be queried before replacing any file that the user cannot
write to, but writable files will be silently removed. The -i option causes the user
to be queried about replacing any existing files. The -f option causes any existing
files to be silently deleted, without querying. -f takes precedence.

Note that this mv will not move files across devices. Historical versions of mv, when
actual renaming is impossible, fall back on copying and removing files; if this be-
haviour is desired, use cp and rm manually. This may change in a future version.

rm [-dfirs] filename ...
Removes files and directories specified.

Normally, rm will not remove directories (except with the -r option). The -d option
causes rm to try removing directories with unlink (see man page unlink(2)), the
same method used for files. Typically only the super-user can actually succeed in
unlinking directories in this way. -d takes precedence over -r.

By default, the user will be queried before removing any file that the user cannot
write to, but writable files will be silently removed. The -i option causes the user to
be queried about removing any files. The -f option causes files to be silently deleted,
without querying, and suppresses all error indications. -f takes precedence.

The -r option causes rm to recursively descend into directories, deleting all files in
the directory before removing the directory with the rmdir system call (see man
page rmdir(2)).

The -s option is a zsh extension to rm functionality. It enables paranoid behaviour,
intended to avoid common security problems involving a root-run rm being tricked
into removing files other than the ones intended. It will refuse to follow sym-
bolic links, so that (for example) ‘‘rm /tmp/foo/passwd’’ can’t accidentally remove
/etc/passwd if /tmp/foo happens to be a link to /etc. It will also check where it
is after leaving directories, so that a recursive removal of a deep directory tree can’t
end up recursively removing /usr as a result of directories being moved up the tree.

rmdir dir ...
Removes empty directories specified.

sync Calls the system call of the same name (see man page sync(2)), which flushes dirty
buffers to disk. It might return before the I/O has actually been completed.

22.13 The zsh/mapfile Module

The zsh/mapfile module provides one special associative array parameter of the same name.

mapfile This associative array takes as keys the names of files; the resulting value is the
content of the file. The value is treated identically to any other text coming from
a parameter. The value may also be assigned to, in which case the file in question
is written (whether or not it originally existed); or an element may be unset, which
will delete the file in question. For example, ‘vared mapfile[myfile]’ works as
expected, editing the file ‘myfile’.

When the array is accessed as a whole, the keys are the names of files in the current
directory, and the values are empty (to save a huge overhead in memory). Thus

Chapter 22: Zsh Modules 242

${(k)mapfile} has the same affect as the glob operator *(D), since files begin-
ning with a dot are not special. Care must be taken with expressions such as rm
${(k)mapfile}, which will delete every file in the current directory without the
usual ‘rm *’ test.
The parameter mapfile may be made read-only; in that case, files referenced may
not be written or deleted.

22.13.1 Limitations

Although reading and writing of the file in question is efficiently handled, zsh’s internal memory
management may be arbitrarily baroque. Thus it should not automatically be assumed that use
of mapfile represents a gain in efficiency over use of other mechanisms. Note in particular that
the whole contents of the file will always reside physically in memory when accessed (possibly
multiple times, due to standard parameter substitution operations). In particular, this means
handling of sufficiently long files (greater than the machine’s swap space, or than the range of
the pointer type) will be incorrect.

No errors are printed or flagged for non-existent, unreadable, or unwritable files, as the parameter
mechanism is too low in the shell execution hierarchy to make this convenient.

It is unfortunate that the mechanism for loading modules does not yet allow the user to specify
the name of the shell parameter to be given the special behaviour.

22.14 The zsh/mathfunc Module

The zsh/mathfunc module provides standard mathematical functions for use when evaluating
mathematical formulae. The syntax agrees with normal C and FORTRAN conventions, for
example,

((f = sin(0.3)))

assigns the sine of 0.3 to the parameter f.

Most functions take floating point arguments and return a floating point value. However, any
necessary conversions from or to integer type will be performed automatically by the shell. Apart
from atan with a second argument and the abs, int and float functions, all functions behave
as noted in the manual page for the corresponding C function, except that any arguments out
of range for the function in question will be detected by the shell and an error reported.

The following functions take a single floating point argument: acos, acosh, asin, asinh, atan,
atanh, cbrt, ceil, cos, cosh, erf, erfc, exp, expm1, fabs, floor, gamma, j0, j1, lgamma, log,
log10, log1p, logb, sin, sinh, sqrt, tan, tanh, y0, y1. The atan function can optionally take
a second argument, in which case it behaves like the C function atan2. The ilogb function
takes a single floating point argument, but returns an integer.

The function signgam takes no arguments, and returns an integer, which is the C variable of
the same name, as described in man page gamma(3). Note that it is therefore only useful
immediately after a call to gamma or lgamma. Note also that ‘signgam(RPAR’ and ‘signgam’ are
distinct expressions.

The following functions take two floating point arguments: copysign, fmod, hypot, nextafter.

The following take an integer first argument and a floating point second argument: jn, yn.

The following take a floating point first argument and an integer second argument: ldexp,
scalb.

The function abs does not convert the type of its single argument; it returns the absolute value
of either a floating point number or an integer. The functions float and int convert their
arguments into a floating point or integer value (by truncation) respectively.

Chapter 22: Zsh Modules 243

Note that the C pow function is available in ordinary math evaluation as the ‘**’ operator and
is not provided here.

The function rand48 is available if your system’s mathematical library has the function
erand48(3). It returns a pseudo-random floating point number between 0 and 1. It takes
a single string optional argument.

If the argument is not present, the random number seed is initialised by three calls to the rand(3)
function — this produces the same random numbers as the next three values of $RANDOM.

If the argument is present, it gives the name of a scalar parameter where the current random
number seed will be stored. On the first call, the value must contain at least twelve hexadecimal
digits (the remainder of the string is ignored), or the seed will be initialised in the same manner
as for a call to rand48 with no argument. Subsequent calls to rand48(param) will then maintain
the seed in the parameter param as a string of twelve hexadecimal digits, with no base signifier.
The random number sequences for different parameters are completely independent, and are
also independent from that used by calls to rand48 with no argument.

For example, consider

print $((rand48(seed)))
print $((rand48()))
print $((rand48(seed)))

Assuming $seed does not exist, it will be initialised by the first call. In the second call, the
default seed is initialised; note, however, that because of the properties of rand() there is
a correlation between the seeds used for the two initialisations, so for more secure uses, you
should generate your own 12-byte seed. The third call returns to the same sequence of random
numbers used in the first call, unaffected by the intervening rand48().

22.15 The zsh/newuser Module

The zsh/newuser module is loaded at boot if it is available, the RCS option is set, and the
PRIVILEGED option is not set (all three are true by default). This takes place immediately after
commands in the global zshenv file (typically /etc/zshenv), if any, have been executed. If the
module is not available it is silently ignored by the shell; the module may safely be removed
from $MODULE_PATH by the administrator if it is not required.

On loading, the module tests if any of the start-up files .zshenv, .zprofile, .zshrc or .zlogin
exist in the directory given by the environment variable ZDOTDIR, or the user’s home directory
if that is not set. The test is not performed and the module halts processing if the shell was in
an emulation mode (i.e. had been invoked as some other shell than zsh).

If none of the start-up files were found, the module then looks for the file newuser first
in a sitewide directory, usually the parent directory of the site-functions directory, and
if that is not found the module searches in a version-specific directory, usually the par-
ent of the functions directory containing version-specific functions. (These directories can
be configured when zsh is built using the --enable-site-scriptdir=dir and --enable-
scriptdir=dir flags to configure, respectively; the defaults are prefix/share/zsh and pre-
fix/share/zsh/$ZSH_VERSION where the default prefix is /usr/local.)

If the file newuser is found, it is then sourced in the same manner as a start-up file. The file is
expected to contain code to install start-up files for the user, however any valid shell code will
be executed.

The zsh/newuser module is then unconditionally unloaded.

Note that it is possible to achieve exactly the same effect as the zsh/newuser module by adding
code to /etc/zshenv. The module exists simply to allow the shell to make arrangements for
new users without the need for invervention by package maintainers and system administrators.

Chapter 22: Zsh Modules 244

The script supplied with the module invokes the shell function zsh-newuser-install. This
may be invoked directly by the user even if the zsh/newuser module is disabled. Note, however,
that if the module is not installed the function will not be installed either. The function is
documented in Section 26.8 [User Configuration Functions], page 322.

22.16 The zsh/parameter Module

The zsh/parameter module gives access to some of the internal hash tables used by the shell
by defining some special parameters.

options The keys for this associative array are the names of the options that can be set and
unset using the setopt and unsetopt builtins. The value of each key is either the
string on if the option is currently set, or the string off if the option is unset. Setting
a key to one of these strings is like setting or unsetting the option, respectively.
Unsetting a key in this array is like setting it to the value off.

commands This array gives access to the command hash table. The keys are the names of
external commands, the values are the pathnames of the files that would be executed
when the command would be invoked. Setting a key in this array defines a new entry
in this table in the same way as with the hash builtin. Unsetting a key as in ‘unset
"commands[foo]"’ removes the entry for the given key from the command hash
table.

functions
This associative array maps names of enabled functions to their definitions. Setting
a key in it is like defining a function with the name given by the key and the body
given by the value. Unsetting a key removes the definition for the function named
by the key.

dis_functions
Like functions but for disabled functions.

builtins This associative array gives information about the builtin commands currently en-
abled. The keys are the names of the builtin commands and the values are either
‘undefined’ for builtin commands that will automatically be loaded from a module
if invoked or ‘defined’ for builtin commands that are already loaded.

dis_builtins
Like builtins but for disabled builtin commands.

reswords This array contains the enabled reserved words.

dis_reswords
Like reswords but for disabled reserved words.

aliases This maps the names of the regular aliases currently enabled to their expansions.

dis_aliases
Like aliases but for disabled regular aliases.

galiases Like aliases, but for global aliases.

dis_galiases
Like galiases but for disabled global aliases.

saliases Like raliases, but for suffix aliases.

dis_saliases
Like saliases but for disabled suffix aliases.

Chapter 22: Zsh Modules 245

parameters
The keys in this associative array are the names of the parameters currently defined.
The values are strings describing the type of the parameter, in the same format used
by the t parameter flag, see Section 14.3 [Parameter Expansion], page 36 . Setting
or unsetting keys in this array is not possible.

modules An associative array giving information about modules. The keys are the names of
the modules loaded, registered to be autoloaded, or aliased. The value says which
state the named module is in and is one of the strings ‘loaded’, ‘autoloaded’, or
‘alias:name’, where name is the name the module is aliased to.

Setting or unsetting keys in this array is not possible.

dirstack A normal array holding the elements of the directory stack. Note that the out-
put of the dirs builtin command includes one more directory, the current working
directory.

history This associative array maps history event numbers to the full history lines.

historywords
A special array containing the words stored in the history.

jobdirs This associative array maps job numbers to the directories from which the job was
started (which may not be the current directory of the job).

The keys of the associative arrays are usually valid job numbers, and these are the
values output with, for example, ${(k)jobdirs}. Non-numeric job references may
be used when looking up a value; for example, ${jobdirs[%+]} refers to the current
job.

jobtexts This associative array maps job numbers to the texts of the command lines that
were used to start the jobs.

Handling of the keys of the associative array is as described for jobdirs above.

jobstates
This associative array gives information about the states of the jobs currently
known. The keys are the job numbers and the values are strings of the form ‘job-
state:mark:pid=state...’. The job-state gives the state the whole job is currently
in, one of ‘running’, ‘suspended’, or ‘done’. The mark is ‘+’ for the current job,
‘-’ for the previous job and empty otherwise. This is followed by one ‘pid=state’
for every process in the job. The pids are, of course, the process IDs and the state
describes the state of that process.

Handling of the keys of the associative array is as described for jobdirs above.

nameddirs
This associative array maps the names of named directories to the pathnames they
stand for.

userdirs This associative array maps user names to the pathnames of their home directories.

funcstack
This array contains the names of the functions currently being executed. The first
element is the name of the function using the parameter.

functrace
This array contains the names and line numbers of the callers corresponding to the
functions currently being executed. The format of each element is name:lineno.

Chapter 22: Zsh Modules 246

22.17 The zsh/pcre Module

The zsh/pcre module makes some commands available as builtins:

pcre_compile [-aimx] PCRE
Compiles a perl-compatible regular expression.
Option -a will force the pattern to be anchored. Option -i will compile a case-
insensitive pattern. Option -m will compile a multi-line pattern; that is, ^ and $ will
match newlines within the pattern. Option -x will compile an extended pattern,
wherein whitespace and # comments are ignored.

pcre_study
Studies the previously-compiled PCRE which may result in faster matching.

pcre_match [-v var] [-a arr] string
Returns successfully if string matches the previously-compiled PCRE.
If the expression captures substrings within parentheses, pcre_match will set the
array $match to those substrings, unless the -a option is given, in which case it will
set the array arr. Similarly, the variable MATCH will be set to the entire matched
portion of the string, unless the -v option is given, in which case the variable var
will be set.

The zsh/pcre module makes available the following test condition:

expr -pcre-match pcre
Matches a string against a perl-compatible regular expression.
For example,
[["$text" -pcre-match ^d+$]] && print text variable contains only "d’s".

22.18 The zsh/regex Module

The zsh/regex module makes available the following test condition:

expr -regex-match regex
Matches a string against a POSIX extended regular expression. The matched por-
tion of the string will normally be placed in the MATCH variable. If there are any
capturing parentheses within the regex, then the match array variable will contain
those.
For example,

[[alphabetical -regex-match ^a([^a]+)a([^a]+)a]] &&
print -l $MATCH X $match

If the option REMATCH_PCRE is not set, then the =~ operator will automatically load
this module as needed and will invoke the -regex-match operator.
If BASH_REMATCH is set, then the array BASH_REMATCH will be set instead of MATCH
and match.

22.19 The zsh/sched Module

The zsh/sched module makes available one builtin command and one parameter.

sched [-o] [+]hh:mm[:ss] command ...
sched [-o] [+]seconds command ...
sched [-item]

Make an entry in the scheduled list of commands to execute. The time may be speci-
fied in either absolute or relative time, and either as hours, minutes and (optionally)

Chapter 22: Zsh Modules 247

seconds separated by a colon, or seconds alone. An absolute number of seconds in-
dicates the time since the epoch (1970/01/01 00:00); this is useful in combination
with the features in the zsh/datetime module, see Section 22.9 [The zsh/datetime
Module], page 239.

With no arguments, prints the list of scheduled commands. If the scheduled com-
mand has the -o flag set, this is shown at the start of the command.

With the argument ‘-item’, removes the given item from the list. The numbering
of the list is continuous and entries are in time order, so the numbering can change
when entries are added or deleted.

Commands are executed either immediately before a prompt, or while the shell’s
line editor is waiting for input. In the latter case it is useful to be able to produce
output that does not interfere with the line being edited. Providing the option -o
causes the shell to clear the command line before the event and redraw it after-
wards. This should be used with any scheduled event that produces visible output
to the terminal; it is not needed, for example, with output that updates a terminal
emulator’s title bar.

zsh scheduled events
A readonly array corresponding to the events scheduled by the sched builtin. The
indices of the array correspond to the numbers shown when sched is run with no
arguments (provided that the KSH_ARRAYS option is not set). The value of the array
consists of the scheduled time in seconds since the epoch (see The zsh/datetime
Module for facilities for using this number), followed by a colon, followed by any
options (which may be empty but will be preceeded by a ‘-’ otherwise), followed by
a colon, followed by the command to be executed.

The sched builtin should be used for manipulating the events. Note that this will
have an immediate effect on the contents of the array, so that indices may become
invalid.

22.20 The zsh/net/socket Module

The zsh/net/socket module makes available one builtin command:

zsocket [-altv] [-d fd] [args]
zsocket is implemented as a builtin to allow full use of shell command line editing,
file I/O, and job control mechanisms.

22.20.1 Outbound Connections

zsocket [-v] [-d fd] filename
Open a new Unix domain connection to filename. The shell parameter REPLY will
be set to the file descriptor associated with that connection. Currently, only stream
connections are supported.

If -d is specified, its argument will be taken as the target file descriptor for the
connection.

In order to elicit more verbose output, use -v.

22.20.2 Inbound Connections

Chapter 22: Zsh Modules 248

zsocket -l [-v] [-d fd] filename
zsocket -l will open a socket listening on filename. The shell parameter REPLY
will be set to the file descriptor associated with that listener.
If -d is specified, its argument will be taken as the target file descriptor for the
connection.
In order to elicit more verbose output, use -v.

zsocket -a [-tv] [-d targetfd] listenfd
zsocket -a will accept an incoming connection to the socket associated with lis-
tenfd. The shell parameter REPLY will be set to the file descriptor associated with
the inbound connection.
If -d is specified, its argument will be taken as the target file descriptor for the
connection.
If -t is specified, zsocket will return if no incoming connection is pending. Other-
wise it will wait for one.
In order to elicit more verbose output, use -v.

22.21 The zsh/stat Module

The zsh/stat module makes available one builtin command under two possible names:

zstat [-gnNolLtTrs] [-f fd] [-H hash] [-A array] [-F fmt] [+element] [file ...]
stat ... The command acts as a front end to the stat system call (see man page stat(2)).

The same command is provided with two names; as the name stat is often used by
an external command it is recommended that only the zstat form of the command
is used. This can be arranged by loading the module with the command ‘zmodload
-F zsh/stat zstat’.
If the stat call fails, the appropriate system error message printed and status 1 is
returned. The fields of struct stat give information about the files provided as
arguments to the command. In addition to those available from the stat call, an
extra element ‘link’ is provided. These elements are:

device The number of the device on which the file resides.

inode The unique number of the file on this device (‘inode’ number).

mode The mode of the file; that is, the file’s type and access permissions.
With the -s option, this will be returned as a string corresponding to
the first column in the display of the ls -l command.

nlink The number of hard links to the file.

uid The user ID of the owner of the file. With the -s option, this is displayed
as a user name.

gid The group ID of the file. With the -s option, this is displayed as a
group name.

rdev The raw device number. This is only useful for special devices.

size The size of the file in bytes.

atime
mtime
ctime The last access, modification and inode change times of the file, respec-

tively, as the number of seconds since midnight GMT on 1st January,
1970. With the -s option, these are printed as strings for the local time

Chapter 22: Zsh Modules 249

zone; the format can be altered with the -F option, and with the -g
option the times are in GMT.

blksize The number of bytes in one allocation block on the device on which the
file resides.

block The number of disk blocks used by the file.

link If the file is a link and the -L option is in effect, this contains the name
of the file linked to, otherwise it is empty. Note that if this element is
selected (‘‘zstat +link’’) then the -L option is automatically used.

A particular element may be selected by including its name preceded by a ‘+’ in
the option list; only one element is allowed. The element may be shortened to any
unique set of leading characters. Otherwise, all elements will be shown for all files.
Options:

-A array Instead of displaying the results on standard output, assign them to an
array, one struct stat element per array element for each file in order.
In this case neither the name of the element nor the name of the files
appears in array unless the -t or -n options were given, respectively. If -
t is given, the element name appears as a prefix to the appropriate array
element; if -n is given, the file name appears as a separate array element
preceding all the others. Other formatting options are respected.

-H hash Similar to -A, but instead assign the values to hash. The keys are the
elements listed above. If the -n option is provided then the name of the
file is included in the hash with key name.

-f fd Use the file on file descriptor fd instead of named files; no list of file
names is allowed in this case.

-F fmt Supplies a strftime (see man page strftime(3)) string for the formatting
of the time elements. The -s option is implied.

-g Show the time elements in the GMT time zone. The -s option is implied.

-l List the names of the type elements (to standard output or an array
as appropriate) and return immediately; options other than -A and
arguments are ignored.

-L Perform an lstat (see man page lstat(2)) rather than a stat system
call. In this case, if the file is a link, information about the link itself
rather than the target file is returned. This option is required to make
the link element useful.

-n Always show the names of files. Usually these are only shown when
output is to standard output and there is more than one file in the list.

-N Never show the names of files.

-o If a raw file mode is printed, show it in octal, which is more useful for
human consumption than the default of decimal. A leading zero will
be printed in this case. Note that this does not affect whether a raw
or formatted file mode is shown, which is controlled by the -r and -s
options, nor whether a mode is shown at all.

-r Print raw data (the default format) alongside string data (the -s for-
mat); the string data appears in parentheses after the raw data.

Chapter 22: Zsh Modules 250

-s Print mode, uid, gid and the three time elements as strings instead of
numbers. In each case the format is like that of ls -l.

-t Always show the type names for the elements of struct stat. Usu-
ally these are only shown when output is to standard output and no
individual element has been selected.

-T Never show the type names of the struct stat elements.

22.22 The zsh/system Module

The zsh/system module makes available three builtin commands and two parameters.

22.23 Builtins

syserror [-e errvar] [-p prefix] [errno | errname]
This command prints out the error message associated with errno, a system error
number, followed by a newline to standard error.
Instead of the error number, a name errname, for example ENOENT, may be used.
The set of names is the same as the contents of the array errnos, see below.
If the string prefix is given, it is printed in front of the error message, with no
intervening space.
If errvar is supplied, the entire message, without a newline, is assigned to the pa-
rameter names errvar and nothing is output.
A return status of 0 indicates the message was successfully printed (although it may
not be useful if the error number was out of the system’s range), a return status of
1 indicates an error in the parameters, and a return status of 2 indicates the error
name was not recognised (no message is printed for this).

sysread [-c countvar] [-i infd] [-o outfd]
[-s bufsize] [-t timeout] [param]

Perform a single system read from file descriptor infd, or zero if that is not given.
The result of the read is stored in param or REPLY if that is not given. If countvar
is given, the number of bytes read is assigned to the parameter named by countvar.
The maximum number of bytes read is bufsize or 8192 if that is not given, however
the command returns as soon as any number of bytes was successfully read.
If timeout is given, it specifies a timeout in seconds, which may be zero to poll the
file descriptor. This is handled by the poll system call if available, otherwise the
select system call if available.
If outfd is given, an attempt is made to write all the bytes just read to the file
descriptor outfd. If this fails, because of a system error other than EINTR or because
of an internal zsh error during an interrupt, the bytes read but not written are stored
in the parameter named by param if supplied (no default is used in this case), and
the number of bytes read but not written is stored in the parameter named by
countvar if that is supplied. If it was successful, countvar contains the full number
of bytes transferred, as usual, and param is not set.
The error EINTR (interrupted system call) is handled internally so that shell inter-
rupts are transparent to the caller. Any other error causes a return.
The possible return statuses are

0 At least one byte of data was successfully read and, if appropriate,
written.

Chapter 22: Zsh Modules 251

1 There was an error in the parameters to the command. This is the only
error for which a message is printed to standard error.

2 There was an error on the read, or on polling the input file descriptor
for a timeout. The parameter ERRNO gives the error.

3 Data were successfully read, but there was an error writing them to
outfd. The parameter ERRNO gives the error.

4 The attempt to read timed out. Note this does not set ERRNO as this is
not a system error.

5 No system error occurred, but zero bytes were read. This usually indi-
cates end of file. The parameters are set according to the usual rules;
no write to outfd is attempted.

syswrite [-c countvar] [-o outfd] data
The data (a single string of bytes) are written to the file descriptor outfd, or 1 if
that is not given, using the write system call. Multiple write operations may be
used if the first does not write all the data.
If countvar is given, the number of byte written is stored in the parameter named
by countvar; this may not be the full length of data if an error occurred.
The error EINTR (interrupted system call) is handled internally by retrying; other-
wise an error causes the command to return. For example, if the file descriptor is
set to non-blocking output, an error EAGAIN (on some systems, EWOULDBLOCK) may
result in the command returning early.
The return status may be 0 for success, 1 for an error in the parameters to the
command, or 2 for an error on the write; no error message is printed in the last
case, but the parameter ERRNO will reflect the error that occurred.

22.24 Parameters

errnos A readonly array of the names of errors defined on the system. These are typically
macros defined in C by including the system header file errno.h. The index of each
name (assuming the option KSH_ARRAYS is unset) corresponds to the error number.
Error numbers num before the last known error which have no name are given the
name Enum in the array.
Note that aliases for errors are not handled; only the canonical name is used.

sysparams
A readonly associative array. The keys are:

pid Returns the process ID of the current process, even in subshells. Com-
pare $$, which returns the process ID of the main shell process.

ppid Returns the process ID of the parent of the current process, even in
subshells. Compare $PPID, which returns the process ID of the parent
of the main shell process.

22.25 The zsh/net/tcp Module

The zsh/net/tcp module makes available one builtin command:

ztcp [-acflLtv] [-d fd] [args]
ztcp is implemented as a builtin to allow full use of shell command line editing, file
I/O, and job control mechanisms.

Chapter 22: Zsh Modules 252

If ztcp is run with no options, it will output the contents of its session table.
If it is run with only the option -L, it will output the contents of the session table
in a format suitable for automatic parsing. The option is ignored if given with a
command to open or close a session. The output consists of a set of lines, one per
session, each containing the following elements separated by spaces:

File descriptor
The file descriptor in use for the connection. For normal inbound (I)
and outbound (O) connections this may be read and written by the usual
shell mechanisms. However, it should only be close with ‘ztcp -c’.

Connection type
A letter indicating how the session was created:

Z A session created with the zftp command.

L A connection opened for listening with ‘ztcp -l’.

I An inbound connection accepted with ‘ztcp -a’.

O An outbound connection created with ‘ztcp host ...’.

The local host
This is usually set to an all-zero IP address as the address of the local-
host is irrelevant.

The local port
This is likely to be zero unless the connection is for listening.

The remote host
This is the fully qualified domain name of the peer, if available, else an
IP address. It is an all-zero IP address for a session opened for listening.

The remote port
This is zero for a connection opened for listening.

22.25.1 Outbound Connections

ztcp [-v] [-d fd] host [port]
Open a new TCP connection to host. If the port is omitted, it will default to port
23. The connection will be added to the session table and the shell parameter REPLY
will be set to the file descriptor associated with that connection.
If -d is specified, its argument will be taken as the target file descriptor for the
connection.
In order to elicit more verbose output, use -v.

22.25.2 Inbound Connections

ztcp -l [-v] [-d fd] port
ztcp -l will open a socket listening on TCP port. The socket will be added to
the session table and the shell parameter REPLY will be set to the file descriptor
associated with that listener.
If -d is specified, its argument will be taken as the target file descriptor for the
connection.
In order to elicit more verbose output, use -v.

Chapter 22: Zsh Modules 253

ztcp -a [-tv] [-d targetfd] listenfd
ztcp -a will accept an incoming connection to the port associated with listenfd.
The connection will be added to the session table and the shell parameter REPLY
will be set to the file descriptor associated with the inbound connection.
If -d is specified, its argument will be taken as the target file descriptor for the
connection.
If -t is specified, ztcp will return if no incoming connection is pending. Otherwise
it will wait for one.
In order to elicit more verbose output, use -v.

22.25.3 Closing Connections

ztcp -cf [-v] [fd]
ztcp -c [-v] [fd]

ztcp -c will close the socket associated with fd. The socket will be removed from
the session table. If fd is not specified, ztcp will close everything in the session
table.
Normally, sockets registered by zftp (see Section 22.28 [The zsh/zftp Module],
page 254) cannot be closed this way. In order to force such a socket closed, use -f.
In order to elicit more verbose output, use -v.

22.25.4 Example

Here is how to create a TCP connection between two instances of zsh. We need to pick an
unassigned port; here we use the randomly chosen 5123.

On host1,

zmodload zsh/net/tcp
ztcp -l 5123
listenfd=$REPLY
ztcp -a $listenfd
fd=$REPLY

The second from last command blocks until there is an incoming connection.

Now create a connection from host2 (which may, of course, be the same machine):

zmodload zsh/net/tcp
ztcp host1 5123
fd=$REPLY

Now on each host, $fd contains a file descriptor for talking to the other. For example, on host1:

print This is a message >&$fd

and on host2:

read -r line <&$fd; print -r - $line

prints ‘This is a message’.

To tidy up, on host1:

ztcp -c $listenfd
ztcp -c $fd

and on host2

ztcp -c $fd

Chapter 22: Zsh Modules 254

22.26 The zsh/termcap Module

The zsh/termcap module makes available one builtin command:

echotc cap [arg ...]
Output the termcap value corresponding to the capability cap, with optional argu-
ments.

The zsh/termcap module makes available one parameter:

termcap An associative array that maps termcap capability codes to their values.

22.27 The zsh/terminfo Module

The zsh/terminfo module makes available one builtin command:

echoti cap [arg]
Output the terminfo value corresponding to the capability cap, instantiated with
arg if applicable.

The zsh/terminfo module makes available one parameter:

terminfo An associative array that maps terminfo capability names to their values.

22.28 The zsh/zftp Module

The zsh/zftp module makes available one builtin command:

zftp subcommand [args]
The zsh/zftp module is a client for FTP (file transfer protocol). It is implemented
as a builtin to allow full use of shell command line editing, file I/O, and job control
mechanisms. Often, users will access it via shell functions providing a more powerful
interface; a set is provided with the zsh distribution and is described in Chapter 25
[Zftp Function System], page 288. However, the zftp command is entirely usable
in its own right.
All commands consist of the command name zftp followed by the name of a subcom-
mand. These are listed below. The return status of each subcommand is supposed
to reflect the success or failure of the remote operation. See a description of the
variable ZFTP_VERBOSE for more information on how responses from the server may
be printed.

22.28.1 Subcommands

open host[:port] [user [password [account]]]
Open a new FTP session to host, which may be the name of a TCP/IP connected
host or an IP number in the standard dot notation. If the argument is in the form
host:port, open a connection to TCP port port instead of the standard FTP port
21. This may be the name of a TCP service or a number: see the description of
ZFTP_PORT below for more information.
If IPv6 addresses in colon format are used, the host should be surrounded
by quoted square brackets to distinguish it from the port, for example
’[fe80::203:baff:fe02:8b56]’. For consistency this is allowed with all forms of
host.
Remaining arguments are passed to the login subcommand. Note that if no ar-
guments beyond host are supplied, open will not automatically call login. If no

Chapter 22: Zsh Modules 255

arguments at all are supplied, open will use the parameters set by the params sub-
command.
After a successful open, the shell variables ZFTP_HOST, ZFTP_PORT, ZFTP_IP and
ZFTP_SYSTEM are available; see ‘Variables’ below.

login [name [password [account]]]
user [name [password [account]]]

Login the user name with parameters password and account. Any of the parameters
can be omitted, and will be read from standard input if needed (name is always
needed). If standard input is a terminal, a prompt for each one will be printed on
standard error and password will not be echoed. If any of the parameters are not
used, a warning message is printed.
After a successful login, the shell variables ZFTP_USER, ZFTP_ACCOUNT and ZFTP_PWD
are available; see ‘Variables’ below.
This command may be re-issued when a user is already logged in, and the server
will first be reinitialized for a new user.

params [host [user [password [account]]]]
params - Store the given parameters for a later open command with no arguments. Only

those given on the command line will be remembered. If no arguments are given,
the parameters currently set are printed, although the password will appear as a
line of stars; the return status is one if no parameters were set, zero otherwise.
Any of the parameters may be specified as a ‘?’, which may need to be quoted to
protect it from shell expansion. In this case, the appropriate parameter will be read
from stdin as with the login subcommand, including special handling of password.
If the ‘?’ is followed by a string, that is used as the prompt for reading the parameter
instead of the default message (any necessary punctuation and whitespace should
be included at the end of the prompt). The first letter of the parameter (only) may
be quoted with a ‘\’; hence an argument "\\$word" guarantees that the string from
the shell parameter $word will be treated literally, whether or not it begins with a
‘?’.
If instead a single ‘-’ is given, the existing parameters, if any, are deleted. In that
case, calling open with no arguments will cause an error.
The list of parameters is not deleted after a close, however it will be deleted if the
zsh/zftp module is unloaded.
For example,

zftp params ftp.elsewhere.xx juser ’?Password for juser: ’

will store the host ftp.elsewhere.xx and the user juser and then prompt the user
for the corresponding password with the given prompt.

test Test the connection; if the server has reported that it has closed the connection
(maybe due to a timeout), return status 2; if no connection was open anyway, return
status 1; else return status 0. The test subcommand is silent, apart from messages
printed by the $ZFTP_VERBOSE mechanism, or error messages if the connection closes.
There is no network overhead for this test.
The test is only supported on systems with either the select(2) or poll(2) system
calls; otherwise the message ‘not supported on this system’ is printed instead.
The test subcommand will automatically be called at the start of any other sub-
command for the current session when a connection is open.

cd directory
Change the remote directory to directory. Also alters the shell variable ZFTP_PWD.

Chapter 22: Zsh Modules 256

cdup Change the remote directory to the one higher in the directory tree. Note that cd
.. will also work correctly on non-UNIX systems.

dir [args...]
Give a (verbose) listing of the remote directory. The args are passed directly to
the server. The command’s behaviour is implementation dependent, but a UNIX
server will typically interpret args as arguments to the ls command and with no
arguments return the result of ‘ls -l’. The directory is listed to standard output.

ls [args] Give a (short) listing of the remote directory. With no args, produces a raw list
of the files in the directory, one per line. Otherwise, up to vagaries of the server
implementation, behaves similar to dir.

type [type]
Change the type for the transfer to type, or print the current type if type is absent.
The allowed values are ‘A’ (ASCII), ‘I’ (Image, i.e. binary), or ‘B’ (a synonym for
‘I’).
The FTP default for a transfer is ASCII. However, if zftp finds that the remote
host is a UNIX machine with 8-bit byes, it will automatically switch to using binary
for file transfers upon open. This can subsequently be overridden.
The transfer type is only passed to the remote host when a data connection is
established; this command involves no network overhead.

ascii The same as type A.

binary The same as type I.

mode [S | B]
Set the mode type to stream (S) or block (B). Stream mode is the default; block
mode is not widely supported.

remote files...
local [files...]

Print the size and last modification time of the remote or local files. If there is
more than one item on the list, the name of the file is printed first. The first
number is the file size, the second is the last modification time of the file in the
format CCYYMMDDhhmmSS consisting of year, month, date, hour, minutes and seconds
in GMT. Note that this format, including the length, is guaranteed, so that time
strings can be directly compared via the [[builtin’s < and > operators, even if they
are too long to be represented as integers.
Not all servers support the commands for retrieving this information. In that case,
the remote command will print nothing and return status 2, compared with status
1 for a file not found.
The local command (but not remote) may be used with no arguments, in which
case the information comes from examining file descriptor zero. This is the same
file as seen by a put command with no further redirection.

get file [...]
Retrieve all files from the server, concatenating them and sending them to standard
output.

put file [...]
For each file, read a file from standard input and send that to the remote host with
the given name.

append file [...]
As put, but if the remote file already exists, data is appended to it instead of
overwriting it.

Chapter 22: Zsh Modules 257

getat file point
putat file point
appendat file point

Versions of get, put and append which will start the transfer at the given point in
the remote file. This is useful for appending to an incomplete local file. However,
note that this ability is not universally supported by servers (and is not quite the
behaviour specified by the standard).

delete file [...]
Delete the list of files on the server.

mkdir directory
Create a new directory directory on the server.

rmdir directory
Delete the directory directory on the server.

rename old-name new-name
Rename file old-name to new-name on the server.

site args...
Send a host-specific command to the server. You will probably only need this if
instructed by the server to use it.

quote args...
Send the raw FTP command sequence to the server. You should be familiar with
the FTP command set as defined in RFC959 before doing this. Useful commands
may include STAT and HELP. Note also the mechanism for returning messages as
described for the variable ZFTP_VERBOSE below, in particular that all messages from
the control connection are sent to standard error.

close
quit Close the current data connection. This unsets the shell parameters ZFTP_HOST,

ZFTP_PORT, ZFTP_IP, ZFTP_SYSTEM, ZFTP_USER, ZFTP_ACCOUNT, ZFTP_PWD,
ZFTP_TYPE and ZFTP_MODE.

session [sessname]
Allows multiple FTP sessions to be used at once. The name of the session is an ar-
bitrary string of characters; the default session is called ‘default’. If this command
is called without an argument, it will list all the current sessions; with an argument,
it will either switch to the existing session called sessname, or create a new session
of that name.
Each session remembers the status of the connection, the set of connection-specific
shell parameters (the same set as are unset when a connection closes, as given
in the description of close), and any user parameters specified with the params
subcommand. Changing to a previous session restores those values; changing to a
new session initialises them in the same way as if zftp had just been loaded. The
name of the current session is given by the parameter ZFTP_SESSION.

rmsession [sessname]
Delete a session; if a name is not given, the current session is deleted. If the current
session is deleted, the earliest existing session becomes the new current session,
otherwise the current session is not changed. If the session being deleted is the only
one, a new session called ‘default’ is created and becomes the current session; note
that this is a new session even if the session being deleted is also called ‘default’.
It is recommended that sessions not be deleted while background commands which
use zftp are still active.

Chapter 22: Zsh Modules 258

22.28.2 Parameters

The following shell parameters are used by zftp. Currently none of them are special.

ZFTP_TMOUT
Integer. The time in seconds to wait for a network operation to complete before
returning an error. If this is not set when the module is loaded, it will be given
the default value 60. A value of zero turns off timeouts. If a timeout occurs on the
control connection it will be closed. Use a larger value if this occurs too frequently.

ZFTP_IP Readonly. The IP address of the current connection in dot notation.

ZFTP_HOST
Readonly. The hostname of the current remote server. If the host was opened as
an IP number, ZFTP_HOST contains that instead; this saves the overhead for a name
lookup, as IP numbers are most commonly used when a nameserver is unavailable.

ZFTP_PORT
Readonly. The number of the remote TCP port to which the connection is open
(even if the port was originally specified as a named service). Usually this is the
standard FTP port, 21.
In the unlikely event that your system does not have the appropriate conversion
functions, this appears in network byte order. If your system is little-endian, the
port then consists of two swapped bytes and the standard port will be reported as
5376. In that case, numeric ports passed to zftp open will also need to be in this
format.

ZFTP_SYSTEM
Readonly. The system type string returned by the server in response to an FTP
SYST request. The most interesting case is a string beginning "UNIX Type: L8",
which ensures maximum compatibility with a local UNIX host.

ZFTP_TYPE
Readonly. The type to be used for data transfers , either ‘A’ or ‘I’. Use the type
subcommand to change this.

ZFTP_USER
Readonly. The username currently logged in, if any.

ZFTP_ACCOUNT
Readonly. The account name of the current user, if any. Most servers do not require
an account name.

ZFTP_PWD Readonly. The current directory on the server.

ZFTP_CODE
Readonly. The three digit code of the last FTP reply from the server as a string.
This can still be read after the connection is closed, and is not changed when the
current session changes.

ZFTP_REPLY
Readonly. The last line of the last reply sent by the server. This can still be read
after the connection is closed, and is not changed when the current session changes.

ZFTP_SESSION
Readonly. The name of the current FTP session; see the description of the session
subcommand.

ZFTP_PREFS
A string of preferences for altering aspects of zftp’s behaviour. Each preference is
a single character. The following are defined:

Chapter 22: Zsh Modules 259

P Passive: attempt to make the remote server initiate data transfers. This
is slightly more efficient than sendport mode. If the letter S occurs
later in the string, zftp will use sendport mode if passive mode is not
available.

S Sendport: initiate transfers by the FTP PORT command. If this occurs
before any P in the string, passive mode will never be attempted.

D Dumb: use only the bare minimum of FTP commands. This prevents
the variables ZFTP_SYSTEM and ZFTP_PWD from being set, and will mean
all connections default to ASCII type. It may prevent ZFTP_SIZE from
being set during a transfer if the server does not send it anyway (many
servers do).

If ZFTP_PREFS is not set when zftp is loaded, it will be set to a default of ‘PS’, i.e.
use passive mode if available, otherwise fall back to sendport mode.

ZFTP_VERBOSE
A string of digits between 0 and 5 inclusive, specifying which responses from the
server should be printed. All responses go to standard error. If any of the numbers
1 to 5 appear in the string, raw responses from the server with reply codes beginning
with that digit will be printed to standard error. The first digit of the three digit
reply code is defined by RFC959 to correspond to:

1. A positive preliminary reply.

2. A positive completion reply.

3. A positive intermediate reply.

4. A transient negative completion reply.

5. A permanent negative completion reply.

It should be noted that, for unknown reasons, the reply ‘Service not available’, which
forces termination of a connection, is classified as 421, i.e. ‘transient negative’, an
interesting interpretation of the word ‘transient’.
The code 0 is special: it indicates that all but the last line of multiline replies
read from the server will be printed to standard error in a processed format. By
convention, servers use this mechanism for sending information for the user to read.
The appropriate reply code, if it matches the same response, takes priority.
If ZFTP_VERBOSE is not set when zftp is loaded, it will be set to the default value
450, i.e., messages destined for the user and all errors will be printed. A null string
is valid and specifies that no messages should be printed.

22.28.3 Functions

zftp_chpwd
If this function is set by the user, it is called every time the directory changes on
the server, including when a user is logged in, or when a connection is closed. In
the last case, $ZFTP_PWD will be unset; otherwise it will reflect the new directory.

zftp_progress
If this function is set by the user, it will be called during a get, put or append
operation each time sufficient data has been received from the host. During a get,
the data is sent to standard output, so it is vital that this function should write to
standard error or directly to the terminal, not to standard output.

Chapter 22: Zsh Modules 260

When it is called with a transfer in progress, the following additional shell parameters
are set:

ZFTP_FILE
The name of the remote file being transferred from or to.

ZFTP_TRANSFER
A G for a get operation and a P for a put operation.

ZFTP_SIZE
The total size of the complete file being transferred: the same as the
first value provided by the remote and local subcommands for a par-
ticular file. If the server cannot supply this value for a remote file being
retrieved, it will not be set. If input is from a pipe the value may be
incorrect and correspond simply to a full pipe buffer.

ZFTP_COUNT
The amount of data so far transferred; a number between zero and
$ZFTP_SIZE, if that is set. This number is always available.

The function is initially called with ZFTP_TRANSFER set appropriately and
ZFTP_COUNT set to zero. After the transfer is finished, the function will be called
one more time with ZFTP_TRANSFER set to GF or PF, in case it wishes to tidy up. It
is otherwise never called twice with the same value of ZFTP_COUNT.

Sometimes the progress meter may cause disruption. It is up to the user to decide
whether the function should be defined and to use unfunction when necessary.

22.28.4 Problems

A connection may not be opened in the left hand side of a pipe as this occurs in a subshell and
the file information is not updated in the main shell. In the case of type or mode changes or
closing the connection in a subshell, the information is returned but variables are not updated
until the next call to zftp. Other status changes in subshells will not be reflected by changes
to the variables (but should be otherwise harmless).

Deleting sessions while a zftp command is active in the background can have unexpected effects,
even if it does not use the session being deleted. This is because all shell subprocesses share
information on the state of all connections, and deleting a session changes the ordering of that
information.

On some operating systems, the control connection is not valid after a fork(), so that operations
in subshells, on the left hand side of a pipeline, or in the background are not possible, as they
should be. This is presumably a bug in the operating system.

22.29 The zsh/zle Module

The zsh/zle module contains the Zsh Line Editor. See Chapter 18 [Zsh Line Editor],
page 119.

22.30 The zsh/zleparameter Module

The zsh/zleparameter module defines two special parameters that can be used to access
internal information of the Zsh Line Editor (see Chapter 18 [Zsh Line Editor], page 119).

keymaps This array contains the names of the keymaps currently defined.

Chapter 22: Zsh Modules 261

widgets This associative array contains one entry per widget defined. The name of the widget
is the key and the value gives information about the widget. It is either the string
‘builtin’ for builtin widgets, a string of the form ‘user:name’ for user-defined
widgets, where name is the name of the shell function implementing the widget, or
it is a string of the form ‘completion:type:name’, for completion widgets. In the
last case type is the name of the builtin widgets the completion widget imitates in
its behavior and name is the name of the shell function implementing the completion
widget.

22.31 The zsh/zprof Module

When loaded, the zsh/zprof causes shell functions to be profiled. The profiling results can
be obtained with the zprof builtin command made available by this module. There is no way
to turn profiling off other than unloading the module.

zprof [-c]
Without the -c option, zprof lists profiling results to standard output. The format
is comparable to that of commands like gprof.

At the top there is a summary listing all functions that were called at least once.
This summary is sorted in decreasing order of the amount of time spent in each.
The lines contain the number of the function in order, which is used in other parts
of the list in suffixes of the form ‘[num]’, then the number of calls made to the
function. The next three columns list the time in milliseconds spent in the function
and its descendents, the average time in milliseconds spent in the function and its
descendents per call and the percentage of time spent in all shell functions used
in this function and its descendents. The following three columns give the same
information, but counting only the time spent in the function itself. The final
column shows the name of the function.

After the summary, detailed information about every function that was invoked
is listed, sorted in decreasing order of the amount of time spent in each function
and its descendents. Each of these entries consists of descriptions for the functions
that called the function described, the function itself, and the functions that were
called from it. The description for the function itself has the same format as in the
summary (and shows the same information). The other lines don’t show the number
of the function at the beginning and have their function named indented to make it
easier to distinguish the line showing the function described in the section from the
surrounding lines.

The information shown in this case is almost the same as in the summary, but only
refers to the call hierarchy being displayed. For example, for a calling function the
column showing the total running time lists the time spent in the described function
and its descendents only for the times when it was called from that particular calling
function. Likewise, for a called function, this columns lists the total time spent in
the called function and its descendents only for the times when it was called from
the function described.

Also in this case, the column showing the number of calls to a function also shows
a slash and then the total number of invocations made to the called function.

As long as the zsh/zprof module is loaded, profiling will be done and multiple
invocations of the zprof builtin command will show the times and numbers of calls
since the module was loaded. With the -c option, the zprof builtin command will
reset its internal counters and will not show the listing.)

Chapter 22: Zsh Modules 262

22.32 The zsh/zpty Module

The zsh/zpty module offers one builtin:

zpty [-e] [-b] name [arg ...]
The arguments following name are concatenated with spaces between, then executed
as a command, as if passed to the eval builtin. The command runs under a newly
assigned pseudo-terminal; this is useful for running commands non-interactively
which expect an interactive environment. The name is not part of the command,
but is used to refer to this command in later calls to zpty.

With the -e option, the pseudo-terminal is set up so that input characters are
echoed.

With the -b option, input to and output from the pseudo-terminal are made non-
blocking.

zpty -d [names ...]
The second form, with the -d option, is used to delete commands previously started,
by supplying a list of their names. If no names are given, all commands are deleted.
Deleting a command causes the HUP signal to be sent to the corresponding process.

zpty -w [-n] name [strings ...]
The -w option can be used to send the to command name the given strings as input
(separated by spaces). If the -n option is not given, a newline is added at the end.

If no strings are provided, the standard input is copied to the pseudo-terminal; this
may stop before copying the full input if the pseudo-terminal is non-blocking.

Note that the command under the pseudo-terminal sees this input as if it were typed,
so beware when sending special tty driver characters such as word-erase, line-kill,
and end-of-file.

zpty -r [-t] name [param [pattern]]
The -r option can be used to read the output of the command name. With only
a name argument, the output read is copied to the standard output. Unless the
pseudo-terminal is non-blocking, copying continues until the command under the
pseudo-terminal exits; when non-blocking, only as much output as is immediately
available is copied. The return status is zero if any output is copied.

When also given a param argument, at most one line is read and stored in the
parameter named param. Less than a full line may be read if the pseudo-terminal is
non-blocking. The return status is zero if at least one character is stored in param.

If a pattern is given as well, output is read until the whole string read matches the
pattern, even in the non-blocking case. The return status is zero if the string read
matches the pattern, or if the command has exited but at least one character could
still be read. As of this writing, a maximum of one megabyte of output can be
consumed this way; if a full megabyte is read without matching the pattern, the
return status is non-zero.

In all cases, the return status is non-zero if nothing could be read, and is 2 if this is
because the command has finished.

If the -r option is combined with the -t option, zpty tests whether output is
available before trying to read. If no output is available, zpty immediately returns
the status 1. When used with a pattern, the behaviour on a failed poll is similar
to when the command has exited: the return value is zero if at least one character
could still be read even if the pattern failed to match.

Chapter 22: Zsh Modules 263

zpty -t name
The -t option without the -r option can be used to test whether the command
name is still running. It returns a zero status if the command is running and a
non-zero value otherwise.

zpty [-L]
The last form, without any arguments, is used to list the commands currently de-
fined. If the -L option is given, this is done in the form of calls to the zpty builtin.

22.33 The zsh/zselect Module

The zsh/zselect module makes available one builtin command:

zselect [-rwe -t timeout -a array] [fd ...]
The zselect builtin is a front-end to the ‘select’ system call, which blocks until
a file descriptor is ready for reading or writing, or has an error condition, with
an optional timeout. If this is not available on your system, the command prints
an error message and returns status 2 (normal errors return status 1). For more
information, see your systems documentation for man page select(3). Note there is
no connection with the shell builtin of the same name.
Arguments and options may be intermingled in any order. Non-option arguments
are file descriptors, which must be decimal integers. By default, file descriptors
are to be tested for reading, i.e. zselect will return when data is available to be
read from the file descriptor, or more precisely, when a read operation from the file
descriptor will not block. After a -r, -w and -e, the given file descriptors are to be
tested for reading, writing, or error conditions. These options and an arbitrary list
of file descriptors may be given in any order.
(The presence of an ‘error condition’ is not well defined in the documentation for
many implementations of the select system call. According to recent versions of the
POSIX specification, it is really an exception condition, of which the only standard
example is out-of-band data received on a socket. So zsh users are unlikely to find
the -e option useful.)
The option ‘-t timeout’ specifies a timeout in hundredths of a second. This may be
zero, in which case the file descriptors will simply be polled and zselect will return
immediately. It is possible to call zselect with no file descriptors and a non-zero
timeout for use as a finer-grained replacement for ‘sleep’; not, however, the return
status is always 1 for a timeout.
The option ‘-a array ’ indicates that array should be set to indicate the file descrip-
tor(s) which are ready. If the option is not given, the array reply will be used for
this purpose. The array will contain a string similar to the arguments for zselect.
For example,

zselect -t 0 -r 0 -w 1

might return immediately with status 0 and $reply containing ‘-r 0 -w 1’ to show
that both file descriptors are ready for the requested operations.
The option ‘-A assoc’ indicates that the associative array assoc should be set to
indicate the file descriptor(s(which are ready. This option overrides the option -a,
nor will reply be modified. The keys of assoc are the file descriptors, and the
corresponding values are any of the characters ‘rwe’ to indicate the condition.
The command returns status 0 if some file descriptors are ready for reading. If the
operation timed out, or a timeout of 0 was given and no file descriptors were ready,
or there was an error, it returns status 1 and the array will not be set (nor modified

Chapter 22: Zsh Modules 264

in any way). If there was an error in the select operation the appropriate error
message is printed.

22.34 The zsh/zutil Module

The zsh/zutil module only adds some builtins:

zstyle [-L [pattern [style]]]
zstyle [-e | - | --] pattern style strings ...
zstyle -d [pattern [styles ...]]
zstyle -g name [pattern [style]]
zstyle -abs context style name [sep]
zstyle -Tt context style [strings ...]
zstyle -m context style pattern

This builtin command is used to define and lookup styles. Styles are pairs of names
and values, where the values consist of any number of strings. They are stored
together with patterns and lookup is done by giving a string, called the ‘context’,
which is compared to the patterns. The definition stored for the first matching
pattern will be returned.
For ordering of comparisons, patterns are searched from most specific to least spe-
cific, and patterns that are equally specific keep the order in which they were defined.
A pattern is considered to be more specific than another if it contains more com-
ponents (substrings separated by colons) or if the patterns for the components are
more specific, where simple strings are considered to be more specific than patterns
and complex patterns are considered to be more specific than the pattern ‘*’.
The first form (without arguments) lists the definitions. Styles are shown in alpha-
betic order and patterns are shown in the order zstyle will test them.
If the -L option is given, listing is done in the form of calls to zstyle. The op-
tional first argument is a pattern which will be matched against the string sup-
plied as the pattern for the context; note that this means, for example, ‘zstyle -L
":completion:*"’ will match any supplied pattern beginning ‘:completion:’, not
just ":completion:*": use ":completion:*" to match that. The optional second
argument limits the output to a specific style (not a pattern). -L is not compatible
with any other options.
The other forms are the following:

zstyle [- | -- | -e] pattern style strings ...
Defines the given style for the pattern with the strings as the value. If
the -e option is given, the strings will be concatenated (separated by
spaces) and the resulting string will be evaluated (in the same way as
it is done by the eval builtin command) when the style is looked up.
In this case the parameter ‘reply’ must be assigned to set the strings
returned after the evaluation. Before evaluating the value, reply is
unset, and if it is still unset after the evaluation, the style is treated as
if it were not set.

zstyle -d [pattern [styles ...]]
Delete style definitions. Without arguments all definitions are deleted,
with a pattern all definitions for that pattern are deleted and if any
styles are given, then only those styles are deleted for the pattern.

zstyle -g name [pattern [style]]
Retrieve a style definition. The name is used as the name of an array
in which the results are stored. Without any further arguments, all

Chapter 22: Zsh Modules 265

patterns defined are returned. With a pattern the styles defined for
that pattern are returned and with both a pattern and a style, the
value strings of that combination is returned.

The other forms can be used to look up or test patterns.

zstyle -s context style name [sep]
The parameter name is set to the value of the style interpreted as a
string. If the value contains several strings they are concatenated with
spaces (or with the sep string if that is given) between them.

zstyle -b context style name
The value is stored in name as a boolean, i.e. as the string ‘yes’ if the
value has only one string and that string is equal to one of ‘yes’, ‘true’,
‘on’, or ‘1’. If the value is any other string or has more than one string,
the parameter is set to ‘no’.

zstyle -a context style name
The value is stored in name as an array. If name is declared as an
associative array, the first, third, etc. strings are used as the keys and
the other strings are used as the values.

zstyle -t context style [strings ...]
zstyle -T context style [strings ...]

Test the value of a style, i.e. the -t option only returns a status (sets
$?). Without any strings the return status is zero if the style is defined
for at least one matching pattern, has only one string in its value, and
that is equal to one of ‘true’, ‘yes’, ‘on’ or ‘1’. If any strings are given
the status is zero if and only if at least one of the strings is equal to
at least one of the strings in the value. If the style is not defined, the
status is 2.
The -T option tests the values of the style like -t, but it returns status
zero (rather than 2) if the style is not defined for any matching pattern.

zstyle -m context style pattern
Match a value. Returns status zero if the pattern matches at least one
of the strings in the value.

zformat -f param format specs ...
zformat -a array sep specs ...

This builtin provides two different forms of formatting. The first form is selected
with the -f option. In this case the format string will be modified by replacing
sequences starting with a percent sign in it with strings from the specs. Each
spec should be of the form ‘char:string ’ which will cause every appearance of the
sequence ‘%char’ in format to be replaced by the string. The ‘%’ sequence may also
contain optional minimum and maximum field width specifications between the ‘%’
and the ‘char’ in the form ‘%min.maxc’, i.e. the minimum field width is given first
and if the maximum field width is used, it has to be preceded by a dot. Specifying
a minimum field width makes the result be padded with spaces to the right if the
string is shorter than the requested width. Padding to the left can be achieved
by giving a negative minimum field width. If a maximum field width is specified,
the string will be truncated after that many characters. After all ‘%’ sequences for
the given specs have been processed, the resulting string is stored in the parameter
param.
The %-escapes also understand ternary expressions in the form used by prompts. The
% is followed by a ‘(’ and then an ordinary format specifier character as described

Chapter 22: Zsh Modules 266

above. There may be a set of digits either before or after the ‘(’; these specify
a test number, which defaults to zero. Negative numbers are also allowed. An
arbitrary delimiter character follows the format specifier, which is followed by a
piece of ‘true’ text, the delimiter character again, a piece of ‘false’ text, and a
closing parenthesis. The complete expression (without the digits) thus looks like
‘%(X.text1.text2)’, except that the ‘.’ character is arbitrary. The value given for
the format specifier in the char:string expressions is evaluated as a mathematical
expression, and compared with the test number. If they are the same, text1 is
output, else text2 is output. A parenthesis may be escaped in text2 as %). Either
of text1 or text2 may contain nested %-escapes.
For example:

zformat -f REPLY "The answer is ’%3(c.yes.no)’." c:3

outputs "The answer is ’yes’." to REPLY since the value for the format specifier c is
3, agreeing with the digit argument to the ternary expression.
The second form, using the -a option, can be used for aligning strings. Here, the
specs are of the form ‘left:right’ where ‘left’ and ‘right’ are arbitrary strings. These
strings are modified by replacing the colons by the sep string and padding the left
strings with spaces to the right so that the sep strings in the result (and hence the
right strings after them) are all aligned if the strings are printed below each other.
All strings without a colon are left unchanged and all strings with an empty right
string have the trailing colon removed. In both cases the lengths of the strings are
not used to determine how the other strings are to be aligned. The resulting strings
are stored in the array.

zregexparse
This implements some internals of the _regex_arguments function.

zparseopts [-D] [-K] [-E] [-a array] [-A assoc] specs
This builtin simplifies the parsing of options in positional parameters, i.e. the set
of arguments given by $*. Each spec describes one option and must be of the form
‘opt[=array]’. If an option described by opt is found in the positional parameters
it is copied into the array specified with the -a option; if the optional ‘=array ’ is
given, it is instead copied into that array.
Note that it is an error to give any spec without an ‘=array ’ unless one of the -a or
-A options is used.
Unless the -E option is given, parsing stops at the first string that isn’t described
by one of the specs. Even with -E, parsing always stops at a positional parameter
equal to ‘-’ or ‘--’.
The opt description must be one of the following. Any of the special characters can
appear in the option name provided it is preceded by a backslash.

name
name+ The name is the name of the option without the leading ‘-’. To specify a

GNU-style long option, one of the usual two leading ‘-’ must be included
in name; for example, a ‘--file’ option is represented by a name of ‘-
file’.
If a ‘+’ appears after name, the option is appended to array each time
it is found in the positional parameters; without the ‘+’ only the last
occurrence of the option is preserved.
If one of these forms is used, the option takes no argument, so parsing
stops if the next positional parameter does not also begin with ‘-’ (unless
the -E option is used).

Chapter 23: Calendar Function System 267

name:
name:-
name:: If one or two colons are given, the option takes an argument; with one

colon, the argument is mandatory and with two colons it is optional.
The argument is appended to the array after the option itself.

An optional argument is put into the same array element as the option
name (note that this makes empty strings as arguments indistinguish-
able). A mandatory argument is added as a separate element unless
the ‘:-’ form is used, in which case the argument is put into the same
element.

A ‘+’ as described above may appear between the name and the first
colon.

The options of zparseopts itself are:

-a array As described above, this names the default array in which to store the
recognised options.

-A assoc If this is given, the options and their values are also put into an asso-
ciative array with the option names as keys and the arguments (if any)
as the values.

-D If this option is given, all options found are removed from the positional
parameters of the calling shell or shell function, up to but not including
any not described by the specs. This is similar to using the shift
builtin.

-K With this option, the arrays specified with the -a and -A options and
with the ‘=array ’ forms are kept unchanged when none of the specs for
them is used. This allows assignment of default values to them before
calling zparseopts.

-E This changes the parsing rules to not stop at the first string that isn’t
described by one of the specs. It can be used to test for or (if used
together with -D) extract options and their arguments, ignoring all other
options and arguments that may be in the positional parameters.

For example,

set -- -a -bx -c y -cz baz -cend
zparseopts a=foo b:=bar c+:=bar

will have the effect of

foo=(-a)
bar=(-b x -c y -c z)

The arguments from ‘baz’ on will not be used.

As an example for the -E option, consider:

set -- -a x -b y -c z arg1 arg2
zparseopts -E -D b:=bar

will have the effect of

bar=(-b y)
set -- -a x -c z arg1 arg2

I.e., the option -b and its arguments are taken from the positional parameters and
put into the array bar.

Chapter 23: Calendar Function System 268

23 Calendar Function System

23.1 Description

The shell is supplied with a series of functions to replace and enhance the traditional Unix
calendar programme, which warns the user of imminent or future events, details of which are
stored in a text file (typically calendar in the user’s home directory). The version provided
here includes a mechanism for alerting the user when an event is due.

In addition a function age is provided that can be used in a glob qualifier; it allows files to be
selected based on their modification times.

The format of the calendar file and the dates used there in and in the age function are described
first, then the functions that can be called to examine and modify the calendar file.

The functions here depend on the availability of the zsh/datetime module which is usually
installed with the shell. The library function strptime() must be available; it is present on
most recent operating systems.

23.2 File and Date Formats

23.2.1 Calendar File Format

The calendar file is by default ~/calendar. This can be configured by the calendar-file style,
see Section 23.4 [Calendar Styles], page 275. The basic format consists of a series of separate
lines, with no indentation, each including a date and time specification followed by a description
of the event.

Various enhancements to this format are supported, based on the syntax of Emacs calendar
mode. An indented line indicates a continuation line that continues the description of the event
from the preceeding line (note the date may not be continued in this way). An initial ampersand
(&) is ignored for compatibility.

An indented line on which the first non-whitespace character is # is not displayed with the
calendar entry, but is still scanned for information. This can be used to hide information useful
to the calendar system but not to the user, such as the unique identifier used by calendar_add.

The Emacs extension that a date with no description may refer to a number of succeeding events
at different times is not supported.

Unless the done-file style has been altered, any events which have been processed are appended
to the file with the same name as the calendar file with the suffix .done, hence ~/calendar.done
by default.

An example is shown below.

23.2.2 Date Format

The format of the date and time is designed to allow flexibility without admitting ambiguity.
(The words ‘date’ and ‘time’ are both used in the documentation below; except where specifically
noted this implies a string that may include both a date and a time specification.) Note that there
is no localization support; month and day names must be in English and separator characters are
fixed. Matching is case insensitive, and only the first three letters of the names are significant,
although as a special case a form beginning "month" does not match "Monday". Furthermore,
time zones are not handled; all times are assumed to be local.

Chapter 23: Calendar Function System 269

It is recommended that, rather than exploring the intricacies of the system, users find a date
format that is natural to them and stick to it. This will avoid unexpected effects. Various key
facts should be noted.
• In particular, note the confusion between month/day/year and day/month/year when the

month is numeric; these formats should be avoided if at all possible. Many alternatives are
available.

• The year must be given in full to avoid confusion, and only years from 1900 to 2099 inclusive
are matched.

The following give some obvious examples; users finding here a format they like and not subject
to vagaries of style may skip the full description. As dates and times are matched separately
(even though the time may be embedded in the date), any date format may be mixed with any
format for the time of day provide the separators are clear (whitespace, colons, commas).

2007/04/03 13:13
2007/04/03:13:13
2007/04/03 1:13 pm
3rd April 2007, 13:13
April 3rd 2007 1:13 p.m.
Apr 3, 2007 13:13
Tue Apr 03 13:13:00 2007
13:13 2007/apr/3

More detailed rules follow.
Times are parsed and extracted before dates. They must use colons to separate hours and
minutes, though a dot is allowed before seconds if they are present. This limits time formats to
the following:
• HH:MM [:SS[.FFFFF]] [am|pm|a.m.|p.m.]
• HH:MM.SS[.FFFFF] [am|pm|a.m.|p.m.]

Here, square brackets indicate optional elements, possibly with alternatives. Fractions of a sec-
ond are recognised but ignored. For absolute times (the normal format require by the calendar
file and the age function) a date is mandatory but a time of day is not; the time returned is
at the start of the date. One variation is allowed: if a.m. or p.m. or one of their variants is
present, an hour without a minute is allowed, e.g. 3 p.m..
Time zones are not handled, though if one is matched following a time specification it will be
removed to allow a surrounding date to be parsed. This only happens if the format of the
timezone is not too unusual. The following are examples of forms that are understood:

+0100
GMT
GMT-7
CET+1CDT

Any part of the timezone that is not numeric must have exactly three capital letters in the name.
Dates suffer from the ambiguity between DD/MM/YYYY and MM/DD/YYYY. It is recom-
mended this form is avoided with purely numeric dates, but use of ordinals, eg. 3rd/04/2007,
will resolve the ambiguity as the ordinal is always parsed as the day of the month. Years must
be four digits (and the first two must be 19 or 20); 03/04/08 is not recognised. Other numbers
may have leading zeroes, but they are not required. The following are handled:
• YYYY/MM/DD

• YYYY-MM-DD

• YYYY/MNM/DD

• YYYY-MNM-DD

Chapter 23: Calendar Function System 270

• DD[th|st|rd] MNM [,] [YYYY]
• MNM DD[th|st|rd][,] [YYYY]
• DD[th|st|rd]/MM [,] YYYY

• DD[th|st|rd]/MM/YYYY

• MM/DD[th|st|rd][,] YYYY

• MM/DD[th|st|rd]/YYYY

Here, MNM is at least the first three letters of a month name, matched case-insensitively. The
remainder of the month name may appear but its contents are irrelevant, so janissary, febrile,
martial, apricot, maybe, junta, etc. are happily handled.
Where the year is shown as optional, the current year is assumed. There are only two such
cases, the form Jun 20 or 14 September (the only two commonly occurring forms, apart from
a "the" in some forms of English, which isn’t currently supported). Such dates will of course
become ambiguous in the future, so should ideally be avoided.
Times may follow dates with a colon, e.g. 1965/07/12:09:45; this is in order to provide a
format with no whitespace. A comma and whitespace are allowed, e.g. 1965/07/12, 09:45.
Currently the order of these separators is not checked, so illogical formats such as 1965/07/12,
: ,09:45 will also be matched. For simplicity such variations are not shown in the list above.
Otherwise, a time is only recognised as being associated with a date if there is only whitespace
in between, or if the time was embedded in the date.
Days of the week are not normally scanned, but will be ignored if they occur at the start of
the date pattern only. However, in contexts where it is useful to specify dates relative to today,
days of the week with no other date specification may be given. The day is assumed to be
either today or within the past week. Likewise, the words yesterday, today and tomorrow are
handled. All matches are case-insensitive. Hence if today is Monday, then Sunday is equivalent
to yesterday, Monday is equivalent to today, but Tuesday gives a date six days ago. This is
not generally useful within the calendar file. Dates in this format may be combined with a time
specification; for example Tomorrow, 8 p.m..
For example, the standard date format:

Fri Aug 18 17:00:48 BST 2006

is handled by matching HH:MM:SS and removing it together with the matched (but unused)
time zone. This leaves the following:

Fri Aug 18 2006

Fri is ignored and the rest is matched according to the standard rules.

23.2.3 Relative Time Format

In certain places relative times are handled. Here, a date is not allowed; instead a combination
of various supported periods are allowed, together with an optional time. The periods must be
in order from most to least significant.
In some cases, a more accurate calculation is possible when there is an anchor date: offsets of
months or years pick the correct day, rather than being rounded, and it is possible to pick a
particular day in a month as ‘(1st Friday)’, etc., as described in more detail below.
Anchors are available in the following cases. If one or two times are passed to the function
calendar, the start time acts an anchor for the end time when the end time is relative (even if
the start time is implicit). When examining calendar files, the scheduled event being examined
anchors the warning time when it is given explicitly by means of the WARN keyword; likewise,
the scheduled event anchors a repitition period when given by the RPT keyword, so that specifi-
cations such as RPT 2 months, 3rd Thursday are handled properly. Finally, the -R argument
to calendar_scandate directly provides an anchor for relative calculations.

Chapter 23: Calendar Function System 271

The periods handled, with possible abbreviations are:

Years years, yrs, ys, year, yr, y, yearly. A year is 365.25 days unless there is an anchor.

Months months, mons, mnths, mths, month, mon, mnth, mth, monthly. Note that m, ms, mn,
mns are ambiguous and are not handled. A month is a period of 30 days rather than
a calendar month unless there is an anchor.

Weeks weeks, wks, ws, week, wk, w, weekly

Days days, dys, ds, day, dy, d, daily

Hours hours, hrs, hs, hour, hr, h, hourly

Minutes minutes, mins, minute, min, but not m, ms, mn or mns

Seconds seconds, secs, ss, second, sec, s

Spaces between the numbers are optional, but are required between items, although a comma
may be used (with or without spaces).

The forms yearly to hourly allow the number to be omitted; it is assumed to be 1. For
example, 1 d and daily are equivalent. Note that using those forms with plurals is confusing;
2 yearly is the same as 2 years, not twice yearly, so it is recommended they only be used
without numbers.

When an anchor time is present, there is an extension to handle regular events in the form of
the nth someday of the month. Such a specification must occur immediately after any year and
month specification, but before any time of day, and must be in the form n(th|st|rd) day, for
example 1st Tuesday or 3rd Monday. As in other places, days are matched case insensitively,
must be in English, and only the first three letters are significant except that a form beginning
‘month’ does not match ‘Monday’. No attempt is made to sanitize the resulting date; attempts
to squeeze too many occurrences into a month will push the day into the next month (but in
the obvious fashion, retaining the correct day of the week).

Here are some examples:

30 years 3 months 4 days 3:42:41
14 days 5 hours
Monthly, 3rd Thursday
4d,10hr

23.2.4 Example

Here is an example calendar file. It uses a consistent date format, as recommended above.

Feb 1, 2006 14:30 Pointless bureaucratic meeting
Mar 27, 2006 11:00 Mutual recrimination and finger pointing
Bring water pistol and waterproofs

Mar 31, 2006 14:00 Very serious managerial pontification
UID 12C7878A9A50

Apr 10, 2006 13:30 Even more pointless blame assignment exercise WARN 30 mins
May 18, 2006 16:00 Regular moaning session RPT monthly, 3rd Thursday

The second entry has a continuation line. The third entry has a continuation line that will not be
shown when the entry is displayed, but the unique identifier will be used by the calendar_add
function when updating the event. The fourth entry will produce a warning 30 minutes before
the event (to allow you to equip yourself appropriately). The fifth entry repeats after a month
on the 3rd Thursday, i.e. June 15, 2006, at the same time.

Chapter 23: Calendar Function System 272

23.3 User Functions

This section describes functions that are designed to be called directly by the user. The first
part describes those functions associated with the user’s calendar; the second part describes the
use in glob qualifiers.

23.3.1 Calendar system functions

calendar [-abdDsv] [-C calfile] [-n num] [-S showprog] [[start] end](
calendar -r [-abdDrsv] [-C calfile] [-n num] [-S showprog] [start]

Show events in the calendar.
With no arguments, show events from the start of today until the end of the next
working day after today. In other words, if today is Friday, Saturday, or Sunday,
show up to the end of the following Monday, otherwise show today and tomorrow.
If end is given, show events from the start of today up to the time and date given,
which is in the format described in the previous section. Note that if this is a date
the time is assumed to be midnight at the start of the date, so that effectively this
shows all events before the given date.
end may start with a +, in which case the remainder of the specification is a relative
time format as described in the previous section indicating the range of time from
the start time that is to be included.
If start is also given, show events starting from that time and date. The word now
can be used to indicate the current time.
To implement an alert when events are due, include calendar -s in your ~/.zshrc
file.
Options:

-a Show all items in the calendar, regardless of the start and end.

-b Brief: don’t display continuation lines (i.e. indented lines following the
line with the date/time), just the first line.

-C calfile Explicitly specify a calendar file instead of the value of the calendar-
file style or the the default ~/calendar.

-d Move any events that have passed from the calendar file to the "done"
file, as given by the done-file style or the default which is the calendar
file with .done appended. This option is implied by the -s option.

-D Turns off the option -d, even if the -s option is also present.

-n num, -num
Show at least num events, if present in the calendar file, regardless of
the start and end.

-r Show all the remaining options in the calendar, ignoring the given end
time. The start time is respected; any argument given is treated as a
start time.

-s Use the shell’s sched command to schedule a timed event that will warn
the user when an event is due. Note that the sched command only runs
if the shell is at an interactive prompt; a foreground taks blocks the
scheduled task from running until it is finished.
The timed event usually runs the programme calendar_show to show
the event, as described in Section 23.5 [Calendar Utility Functions],
page 276.

Chapter 23: Calendar Function System 273

By default, a warning of the event is shown five minutes before it is due.
The warning period can be configured by the style warn-time or for a
single calendar entry by including WARN reltime in the first line of the
entry, where reltime is one of the usual relative time formats.
A repeated event may be indicated by including RPT reldate in the first
line of the entry. After the scheduled event has been displayed it will
be re-entered into the calendar file at a time reldate after the existing
event. Note that this is currently the only use made of the repeat count,
so that it is not possible to query the schedule for a recurrence of an
event in the calendar until the previous event has passed.
It is safe to run calendar -s to reschedule an existing event (if the
calendar file has changed, for example), and also to have it running in
multiples instances of the shell since the calendar file is locked when in
use.
By default, expired events are moved to the "done" file; see the -d
option. Use -D to prevent this.

-S showprog
Explicitly specify a programme to be used for showing events instead of
the value of the show-prog style or the default calendar_show.

-v Verbose: show more information about stages of processing. This is
useful for confirming that the function has successfully parsed the dates
in the calendar file.

calendar_add [-BL] event ...
Adds a single event to the calendar in the appropriate location. The event can
contain multiple lines, as described in Section 23.2 [Calendar File and Date Formats],
page 268. Using this function ensures that the calendar file is sorted in date and
time order. It also makes special arrangments for locking the file while it is altered.
The old calendar is left in a file with the suffix .old.
The option -B indicates that backing up the calendar file will be handled by the
caller and should not be performed by calendar_add. The option -L indicates that
calendar_add does not need to lock the calendar file as it is already locked. These
options will not usually be needed by users.
The function can use a unique identifier stored with each event to ensure that
updates to existing events are treated correctly. The entry should contain the word
UID, followed by whitespace, followed by a word consisting entirely of hexadecimal
digits of arbitrary length (all digits are significant, including leading zeroes). As
the UID is not directly useful to the user, it is convenient to hide it on an indented
continuation line starting with a #, for example:

Aug 31, 2007 09:30 Celebrate the end of the holidays
UID 045B78A0

The second line will not be shown by the calendar function.

calendar_edit
This calls the user’s editor to edit the calendar file. The editor is given by the
variable VISUAL, if set, else the variable EDITOR. If the calendar scheduler was
running, then after editing the file calendar -s is called to update it.
This function locks out the calendar system during the edit. Hence it should be
used to edit the calendar file if there is any possibility of a calendar event occurring
meanwhile.

Chapter 23: Calendar Function System 274

calendar_parse calendar-entry
This is the internal function that analyses the parts of a calendar entry, which is
passed as the only argument. The function returns status 1 if the argument could not
be parsed as a calendar entry and status 2 if the wrong number of arguments were
passed; it also sets the parameter reply to an empty associative array. Otherwise,
it returns status 0 and sets elements of the associative array reply as follows:

timeNL()The time as a string of digits in the same units as
$EPOCHSECONDS

text1 The text from the line not including the date and time of the event, but
including any WARN or RPT keywords and values.

warntimeNL()Any warning time given by the WARN keyword as a string
of digits containing the time at which to warn in the same units as
$EPOCHSECONDS. (Note this is an absolute time, not the relative time
passed down.) Not set no WARN keyword and value were matched.

warnstrNL()The raw string matched after the WARN keyword, else unset.
rpttimeNL()Any recurrence time given by the RPT keyword as a string

of digits containing the time of the recurrenced in the same units as
$EPOCHSECONDS. (Note this is an absolute time.) Not set if no RPT
keyword and value were matched.

rptstrNL()The raw string matched after the RPT keyword, else unset.
text2 The text from the line after removal of the date and any keywords and

values.

)

calendar_showdate [-r] [-f fmt] date-spec ...
The given date-spec is interpreted and the corresponding date and time printed. If
the initial date-spec begins with a + or - it is treated as relative to the current time;
date-specs after the first are treated as relative to the date calculated so far and
a leading + is optional in that case. This allows one to use the system as a date
calculator. For example, calendar_showdate ’+1 month, 1st Friday’ shows the
date of the first Friday of next month.
With the option -r nothing is printed but the value of the date and timein seconds
since the epoch is stored in the parameter REPLY.
With the option -f fmt the given date/time conversion format is passed to strftime;
see notes on the date-format style below.
In order to avoid ambiguity with negative relative date specifications, options must
occur in separate words; in other words, -r and -f should not be combined in the
same word.

calendar_sort
Sorts the calendar file into date and time order. The old calendar is left in a file
with the suffix .old.

23.3.2 Glob qualifiers

The function age can be autoloaded and use separately from the calendar system, although it
uses the function calendar_scandate for date formatting. It requires the zsh/stat builtin,
which makes available the builtin stat. This may conflict with an external programme of the
same name; if it does, the builtin may be disabled for normal operation by including the following
code in an initialization file:

Chapter 23: Calendar Function System 275

zmodload -i zsh/stat
disable stat

age selects files having a given modification time for use as a glob qualifer. The format of the
date is the same as that understood by the calendar system, described in Section 23.2 [Calendar
File and Date Formats], page 268.
The function can take one or two arguments, which can be supplied either directly as command
or arguments, or separately as shell parameters.

print *(e:age 2006/10/04 2006/10/09:)

The example above matches all files modified between the start of those dates. The second
argument may alternatively be a relative time introduced by a +:

print *(e:age 2006/10/04 +5d:)

The example above is equivalent to the previous example.
In addition to the special use of days of the week, today and yesterday, times with no date may
be specified; these apply to today. Obviously such uses become problematic around midnight.

print *(e-age 12:00 13:30-)

The example above shows files modified between 12:00 and 13:00 today.
print *(e:age 2006/10/04:)

The example above matches all files modified on that date. If the second argument is omitted
it is taken to be exactly 24 hours after the first argument (even if the first argument contains a
time).

print *(e-age 2006/10/04:10:15 2006/10/04:10:45-)

The example above supplies times. Note that whitespace within the time and date specification
must be quoted to ensure age receives the correct arguments, hence the use of the additional
colon to separate the date and time.

AGEREF1=2006/10/04:10:15
AGEREF2=2006/10/04:10:45
print *(+age)

This shows the same example before using another form of argument passing. The dates and
times in the parameters AGEREF1 and AGEREF2 stay in effect until unset, but will be overridden
if any argument is passed as an explicit argument to age. Any explicit argument causes both
parameters to be ignored.

23.4 Styles

The zsh style mechanism using the zstyle command is describe in Section 22.34 [The zsh/zutil
Module], page 264. This is the same mechanism used in the completion system.
The styles below are all examined in the context :datetime:function:, for example
:datetime:calendar:.

calendar-file
The location of the main calendar. The default is ~/calendar.

date-format
A strftime format string (see man page strftime(3)) with the zsh extensions %f for
a day of the month with no leading zero or space for single digits, and %k or %l for
the hour of the day on the 24- or 12-hour clock, again with no leading zero or space
for single digits.
This is used for outputting dates in calendar, both to support the -v option and
when adding recurring events back to the calendar file, and in calendar_showdate
as the final output format.

Chapter 23: Calendar Function System 276

If the style is not set, the default used is similar the standard system format as
output by the date command (also known as ‘ctime format’): ‘%a %b %d %H:%M:%S
%Z %Y’.

done-file
The location of the file to which events which have passed are appended. The default
is the calendar file location with the suffix .done. The style may be set to an empty
string in which case a "done" file will not be maintained.

show-prog
The programme run by calendar for showing events. It will be passed the start
time and stop time of the events requested in seconds since the epoch followed by
the event text. Note that calendar -s uses a start time and stop time equal to one
another to indicate alerts for specific events.
The default is the function calendar_show.

warn-time
The time before an event at which a warning will be displayed, if the first line of
the event does not include the text EVENT reltime. The default is 5 minutes.

23.5 Utility functions

calendar_lockfiles
Attempt to lock the files given in the argument. To prevent problems with network
file locking this is done in an ad hoc fashion by attempting to create a symbolic
link to the file with the name file.lockfile. No other system level functions are
used for locking, i.e. the file can be accessed and modified by any utility that does
not use this mechanism. In particular, the user is not prevented from editing the
calendar file at the same time unless calendar_edit is used.
Three attempts are made to lock the file before giving up. If the module
zsh/zselect is available, the times of the attempts are jittered so that multiple
instances of the calling function are unlikely to retry at the same time.
The files locked are appended to the array lockfiles, which should be local to the
caller.
If all files were successully, status zero is returned, else status one.
This function may be used as a general file locking function, although this will only
work if only this mechanism is used to lock files.

calendar_read
This is a backend used by various other functions to parse the calendar file, which
is passed as the only argument. The array calendar_entries is set to the list of
events in the file; no pruning is done except that ampersands are removed from the
start of the line. Each entry may contain multiple lines.

calendar_scandate
This is a generic function to parse dates and times that may be used separately from
the calendar system. The argument is a date or time specification as described in
Section 23.2 [Calendar File and Date Formats], page 268. The parameter REPLY is
set to the number of seconds since the epoch corresponding to that date or time.
By default, the date and time may occur anywhere within the given argument.
Returns status zero if the date and time were successfully parsed, else one.
Options:

Chapter 24: TCP Function System 277

-a The date and time are anchored to the start of the argument; they will
not be matched if there is preceeding text.

-A The date and time are anchored to both the start and end of the argu-
ment; they will not be matched if the is any other text in the argument.

-d Enable additional debugging output.

-m Minus. When -R anchor time is also given the relative time is calculated
backwards from anchor time.

-r The argument passed is to be parsed as a relative time.

-R anchor time
The argument passed is to be parsed as a relative time. The time is rela-
tive to anchor time, a time in seconds since the epoch, and the returned
value is the absolute time corresponding to advancing anchor time by
the relative time given. This allows lengths of months to be correctly
taken into account. If the final day does not exist in the given month,
the last day of the final month is given. For example, if the anchor time
is during 31st January 2007 and the relative time is 1 month, the final
time is the same time of day during 28th February 2007.

-s In addition to setting REPLY, set REPLY2 to the remainder of the argu-
ment after the date and time have been stripped. This is empty if the
option -A was given.

-t Allow a time with no date specification. The date is assumed to be
today. The behaviour is unspecified if the iron tongue of midnight is
tolling twelve.

calendar_show
The function used by default to display events. It accepts a start time and end time
for events, both in epoch seconds, and an event description.
The event is always printed to standard output. If the command line editor is
active (which will usually be the case) the command line will be redisplayed after
the output.
If the parameter DISPLAY is set and the start and end times are the same (indicating
a scheduled event), the function uses the command xmessage to display a window
with the event details.

23.6 Bugs

As the system is based entirely on shell functions (with a little support from the zsh/datetime
module) the mechanisms used are not as robust as those provided by a dedicated calendar utility.
Consequently the user should not rely on the shell for vital alerts.

There is no calendar_delete function.

There is no localization support for dates and times, nor any support for the use of time zones.

Relative periods of months and years do not take into account the variable number of days.

The calendar_show function is currently hardwired to use xmessage for displaying alerts on
X Window System displays. This should be configurable and ideally integrate better with the
desktop.

calendar_lockfiles hangs the shell while waiting for a lock on a file. If called from a scheduled
task, it should instead reschedule the event that caused it.

Chapter 24: TCP Function System 278

24 TCP Function System

24.1 Description

A module zsh/net/tcp is provided to provide network I/O over TCP/IP from within the shell;
see its description in Chapter 22 [Zsh Modules], page 227 . This manual page describes a function
suite based on the module. If the module is installed, the functions are usually installed at the
same time, in which case they will be available for autoloading in the default function search
path. In addition to the zsh/net/tcp module, the zsh/zselect module is used to implement
timeouts on read operations. For troubleshooting tips, consult the corresponding advice for the
zftp functions described in Chapter 25 [Zftp Function System], page 288 .
There are functions corresponding to the basic I/O operations open, close, read and send,
named tcp_open etc., as well as a function tcp_expect for pattern match analysis of data read
as input. The system makes it easy to receive data from and send data to multiple named
sessions at once. In addition, it can be linked with the shell’s line editor in such a way that
input data is automatically shown at the terminal. Other facilities available including logging,
filtering and configurable output prompts.
To use the system where it is available, it should be enough to ‘autoload -U tcp_open’ and
run tcp_open as documented below to start a session. The tcp_open function will autoload the
remaining functions.

24.2 TCP User Functions

24.2.1 Basic I/O

tcp_open [-qz] host port [sess]
tcp_open [-qz] [-s sess | -l sess,...] ...
tcp_open [-qz] [-a fd | -f fd] [sess]

Open a new session. In the first and simplest form, open a TCP connection to host
host at port port; numeric and symbolic forms are understood for both.
If sess is given, this becomes the name of the session which can be used to refer
to multiple different TCP connections. If sess is not given, the function will invent
a numeric name value (note this is not the same as the file descriptor to which
the session is attached). It is recommended that session names not include ‘funny’
characters, where funny characters are not well-defined but certainly do not include
alphanumerics or underscores, and certainly do include whitespace.
In the second case, one or more sessions to be opened are given by name. A single
session name is given after -s and a comma-separated list after -l; both options
may be repeated as many times as necessary. The host and port are read from the
file .ztcp_sessions in the same directory as the user’s zsh initialisation files, i.e.
usually the home directory, but $ZDOTDIR if that is set. The file consists of lines
each giving a session name and the corresponding host and port, in that order (note
the session name comes first, not last), separated by whitespace.
The third form allows passive and fake TCP connections. If the option -a is used,
its argument is a file descriptor open for listening for connections. No function
front-end is provided to open such a file descriptor, but a call to ‘ztcp -l port’ will
create one with the file descriptor stored in the parameter $REPLY. The listening
port can be closed with ‘ztcp -c fd’. A call to ‘tcp_open -a fd’ will block until

Chapter 24: TCP Function System 279

a remote TCP connection is made to port on the local machine. At this point, a
session is created in the usual way and is largely indistinguishable from an active
connection created with one of the first two forms.
If the option -f is used, its argument is a file descriptor which is used directly as if
it were a TCP session. How well the remainder of the TCP function system copes
with this depends on what actually underlies this file descriptor. A regular file is
likely to be unusable; a FIFO (pipe) of some sort will work better, but note that it
is not a good idea for two different sessions to attempt to read from the same FIFO
at once.
If the option -q is given with any of the three forms, tcp_open will not print
informational messages, although it will in any case exit with an appropriate status.
If the line editor (zle) is in use, which is typically the case if the shell is interactive,
tcp_open installs a handler inside zle which will check for new data at the same
time as it checks for keyboard input. This is convenient as the shell consumes no
CPU time while waiting; the test is performed by the operating system. Giving the
option -z to any of the forms of tcp_open prevents the handler from being installed,
so data must be read explicitly. Note, however, this is not necessary for executing
complete sets of send and read commands from a function, as zle is not active at
this point. Generally speaking, the handler is only active when the shell is waiting
for input at a command prompt or in the vared builtin. The option has no effect if
zle is not active; ‘[[-o zle]]’ will test for this.
The first session to be opened becomes the current session and subsequent calls
to tcp_open do not change it. The current session is stored in the parameter
$TCP_SESS; see below for more detail about the parameters used by the system.

tcp_close [-qn] [-a | -l sess,... | sess ...]
Close the named sessions, or the current session if none is given, or all open sessions if
-a is given. The options -l and -s are both handled for consistency with tcp_open,
although the latter is redundant.
If the session being closed is the current one, $TCP_SESS is unset, leaving no current
session, even if there are other sessions still open.
If the session was opened with tcp_open -f, the file descriptor is closed so long as
it is in the range 0 to 9 accessible directly from the command line. If the option -n
is given, no attempt will be made to close file descriptors in this case. The -n option
is not used for genuine ztcp session; the file descriptors are always closed with the
session.
If the option -q is given, no informational messages will be printed.

tcp_read [-bdq] [-t TO] [-T TO]
[-a | -u fd ... | -l sess,... | -s sess ...]

Perform a read operation on the current session, or on a list of sessions if any are
given with -u, -l or -s, or all open sessions if the option -a is given. Any of the
-u, -l or -s options may be repeated or mixed together. The -u option specifies
a file descriptor directly (only those managed by this system are useful), the other
two specify sessions as described for tcp_open above.
The function checks for new data available on all the sessions listed. Unless the
-b option is given, it will not block waiting for new data. Any one line of data
from any of the available sessions will be read, stored in the parameter $TCP_LINE,
and displayed to standard output unless $TCP_SILENT contains a non-empty string.
When printed to standard output the string $TCP_PROMPT will be shown at the start
of the line; the default form for this includes the name of the session being read.

Chapter 24: TCP Function System 280

See below for more information on these parameters. In this mode, tcp_read can
be called repeatedly until it returns status 2 which indicates all pending input from
all specified sessions has been handled.
With the option -b, equivalent to an infinite timeout, the function will block until
a line is available to read from one of the specified sessions. However, only a single
line is returned.
The option -d indicates that all pending input should be drained. In this case
tcp_read may process multiple lines in the manner given above; only the last is
stored in $TCP_LINE, but the complete set is stored in the array $tcp_lines. This
is cleared at the start of each call to tcp_read.
The options -t and -T specify a timeout in seconds, which may be a floating point
number for increased accuracy. With -t the timeout is applied before each line
read. With -T, the timeout applies to the overall operation, possibly including
multiple read operations if the option -d is present; without this option, there is no
distinction between -t and -T.
The function does not print informational messages, but if the option -q is given,
no error message is printed for a non-existent session.
A return status of 2 indicates a timeout or no data to read. Any other non-zero
return status indicates some error condition.
See tcp_log for how to control where data is sent by tcp_read.

tcp_send [-cnq] [-s sess | -l sess,...] data ...
tcp_send [-cnq] -a data ...

Send the supplied data strings to all the specified sessions in turn. The underlying
operation differs little from a ‘print -r’ to the session’s file descriptor, although it
attempts to prevent the shell from dying owing to a SIGPIPE caused by an attempt
to write to a defunct session.
The option -c causes tcp_send to behave like cat. It reads lines from standard
input until end of input and sends them in turn to the specified session(s) exactly
as if they were given as data arguments to individual tcp_send commands.
The option -n prevents tcp_send from putting a newline at the end of the data
strings.
The remaining options all behave as for tcp_read.
The data arguments are not further processed once they have been passed to
tcp_send; they are simply passed down to print -r.
If the parameter $TCP_OUTPUT is a non-empty string and logging is enabled then
the data sent to each session will be echoed to the log file(s) with $TCP_OUTPUT in
front where appropriate, much in the manner of $TCP_PROMPT.

24.2.2 Session Management

tcp_alias [-q] alias=sess ...
tcp_alias [-q] [alias] ...
tcp_alias -d [-q] alias ...

This function is not particularly well tested.
The first form creates an alias for a session name; alias can then be used to refer to
the existing session sess. As many aliases may be listed as required.
The second form lists any aliases specified, or all aliases if none.
The third form deletes all the aliases listed. The underlying sessions are not affected.
The option -q suppresses an inconsistently chosen subset of error messages.

Chapter 24: TCP Function System 281

tcp_log [-asc] [-n | -N] [logfile]
With an argument logfile, all future input from tcp_read will be logged to the
named file. Unless -a (append) is given, this file will first be truncated or created
empty. With no arguments, show the current status of logging.
With the option -s, per-session logging is enabled. Input from tcp_read is output
to the file logfile.sess. As the session is automatically discriminated by the filename,
the contents are raw (no $TCP_PROMPT). The option -a applies as above. Per-session
logging and logging of all data in one file are not mutually exclusive.
The option -c closes all logging, both complete and per-session logs.
The options -n and -N respectively turn off or restore output of data read
by tcp_read to standard output; hence ‘tcp_log -cn’ turns off all output by
tcp_read.
The function is purely a convenient front end to setting the parameters $TCP_LOG,
$TCP_LOG_SESS, $TCP_SILENT, which are described below.

tcp_rename old new
Rename session old to session new. The old name becomes invalid.

tcp_sess [sess [command ...]]
With no arguments, list all the open sessions and associated file descriptors. The
current session is marked with a star. For use in functions, direct access to the pa-
rameters $tcp_by_name, $tcp_by_fd and $TCP_SESS is probably more convenient;
see below.
With a sess argument, set the current session to sess. This is equivalent to changing
$TCP_SESS directly.
With additional arguments, temporarily set the current session while executing the
string command The first argument is re-evaluated so as to expand aliases etc.,
but the remaining arguments are passed through as the appear to tcp_sess. The
original session is restored when tcp_sess exits.

24.2.3 Advanced I/O

tcp_command send-options ... send-arguments ...
This is a convenient front-end to tcp_send. All arguments are passed to tcp_send,
then the function pauses waiting for data. While data is arriving at least every
$TCP_TIMEOUT (default 0.3) seconds, data is handled and printed out according to
the current settings. Status 0 is always returned.
This is generally only useful for interactive use, to prevent the display becoming frag-
mented by output returned from the connection. Within a programme or function
it is generally better to handle reading data by a more explicit method.

tcp_expect [-q] [-p var] [-t to | -T TO]
[-a | -s sess ... | -l sess,...] pattern ...

Wait for input matching any of the given patterns from any of the specified sessions.
Input is ignored until an input line matches one of the given patterns; at this point
status zero is returned, the matching line is stored in $TCP_LINE, and the full set of
lines read during the call to tcp_expect is stored in the array $tcp_expect_lines.
Sessions are specified in the same way as tcp_read: the default is to use the current
session, otherwise the sessions specified by -a, -s, or -l are used.
Each pattern is a standard zsh extended-globbing pattern; note that it needs to
be quoted to avoid it being expanded immediately by filename generation. It must
match the full line, so to match a substring there must be a ‘*’ at the start and

Chapter 24: TCP Function System 282

end. The line matched against includes the $TCP_PROMPT added by tcp_read. It is
possible to include the globbing flags ‘#b’ or ‘#m’ in the patterns to make backrefer-
ences available in the parameters $MATCH, $match, etc., as described in the base zsh
documentation on pattern matching.
Unlike tcp_read, the default behaviour of tcp_expect is to block indefinitely until
the required input is found. This can be modified by specifying a timeout with
-t or -T; these function as in tcp_read, specifying a per-read or overall timeout,
respectively, in seconds, as an integer or floating-point number. As tcp_read, the
function returns status 2 if a timeout occurs.
The function returns as soon as any one of the patterns given match. If the caller
needs to know which of the patterns matched, the option -p var can be used; on
return, $var is set to the number of the pattern using ordinary zsh indexing, i.e.
the first is 1, and so on. Note the absence of a ‘$’ in front of var. To avoid clashes,
the parameter cannot begin with ‘_expect’.
The option -q is passed directly down to tcp_read.
As all input is done via tcp_read, all the usual rules about output of lines read
apply. One exception is that the parameter $tcp_lines will only reflect the line
actually matched by tcp_expect; use $tcp_expect_lines for the full set of lines
read during the function call.

tcp_proxy
This is a simple-minded function to accept a TCP connection and execute a com-
mand with I/O redirected to the connection. Extreme caution should be taken as
there is no security whatsoever and this can leave your computer open to the world.
Ideally, it should only be used behind a firewall.
The first argument is a TCP port on which the function will listen.
The remaining arguments give a command and its arguments to execute with stan-
dard input, standard output and standard error redirected to the file descriptor on
which the TCP session has been accepted. If no command is given, a new zsh is
started. This gives everyone on your network direct access to your account, which
in many cases will be a bad thing.
The command is run in the background, so tcp_proxy can then accept new connec-
tions. It continues to accept new connections until interrupted.

tcp_spam [-ertv] [-a | -s sess | -l sess,...] cmd ...
Execute ‘cmd ...’ for each session in turn. Note this executes the command and
arguments; it does not send the command line as data unless the -t (transmit)
option is given.
The sessions may be selected explicitly with the standard -a, -s or -l options, or
may be chosen implicitly. If none of the three options is given the rules are: first, if
the array $tcp_spam_list is set, this is taken as the list of sessions, otherwise all
sessions are taken. Second, any sessions given in the array $tcp_no_spam_list are
removed from the list of sessions.
Normally, any sessions added by the ‘-a’ flag or when all sessions are chosen implic-
itly are spammed in alphabetic order; sessions given by the $tcp_spam_list array
or on the command line are spammed in the order given. The -r flag reverses the
order however it was arrived it.
The -v flag specifies that a $TCP_PROMPT will be output before each session. This
is output after any modification to TCP SESS by the user-defined tcp_on_spam
function described below. (Obviously that function is able to generate its own
output.)

Chapter 24: TCP Function System 283

If the option -e is present, the line given as cmd ... is executed using eval, otherwise
it is executed without any further processing.

tcp_talk This is a fairly simple-minded attempt to force input to the line editor to go straight
to the default TCP SESSION.
An escape string, $TCP_TALK_ESCAPE, default ‘:’, is used to allow access to normal
shell operation. If it is on its own at the start of the line, or followed only by
whitespace, the line editor returns to normal operation. Otherwise, the string and
any following whitespace are skipped and the remainder of the line executed as shell
input without any change of the line editor’s operating mode.
The current implementation is somewhat deficient in terms of use of the command
history. For this reason, many users will prefer to use some form of alternative
approach for sending data easily to the current session. One simple approach is to
alias some special character (such as ‘%’) to ‘tcp_command --’.

tcp_wait The sole argument is an integer or floating point number which gives the seconds
to delay. The shell will do nothing for that period except wait for input on all TCP
sessions by calling tcp_read -a. This is similar to the interactive behaviour at the
command prompt when zle handlers are installed.

24.2.4 ‘One-shot’ file transfer

tcp_point port
tcp_shoot host port

This pair of functions provide a simple way to transfer a file between two hosts
within the shell. Note, however, that bulk data transfer is currently done using
cat. tcp_point reads any data arriving at port and sends it to standard output;
tcp_shoot connects to port on host and sends its standard input. Any unused port
may be used; the standard mechanism for picking a port is to think of a random
four-digit number above 1024 until one works.
To transfer a file from host woodcock to host springes, on springes:

tcp_point 8091 >output_file

and on woodcock:
tcp_shoot springes 8091 <input_file

As these two functions do not require tcp_open to set up a TCP connection first,
they may need to be autoloaded separately.

24.3 TCP User-defined Functions

Certain functions, if defined by the user, will be called by the function system in certain contexts.
This facility depends on the module zsh/parameter, which is usually available in interactive
shells as the completion system depends on it. None of the functions need be defined; they
simply provide convenient hooks when necessary.
Typically, these are called after the requested action has been taken, so that the various param-
eters will reflect the new state.

tcp_on_alias alias fd
When an alias is defined, this function will be called with two arguments: the name
of the alias, and the file descriptor of the corresponding session.

tcp_on_close sess fd
This is called with the name of a session being closed and the file descriptor which
corresponded to that session. Both will be invalid by the time the function is called.

Chapter 24: TCP Function System 284

tcp_on_open sess fd
This is called after a new session has been defined with the session name and file
descriptor as arguments.

tcp_on_rename oldsess fd newsess
This is called after a session has been renamed with the three arguments old session
name, file descriptor, new session name.

tcp_on_spam sess command ...
This is called once for each session spammed, just before a command is executed
for a session by tcp_spam. The arguments are the session name followed by the
command list to be executed. If tcp_spam was called with the option -t, the first
command will be tcp_send.
This function is called after $TCP_SESS is set to reflect the session to be spammed,
but before any use of it is made. Hence it is possible to alter the value of $TCP_SESS
within this function. For example, the session arguments to tcp_spam could include
extra information to be stripped off and processed in tcp_on_spam.
If the function sets the parameter $REPLY to ‘done’, the command line is not exe-
cuted; in addition, no prompt is printed for the -v option to tcp_spam.

tcp_on_unalias alias fd
This is called with the name of an alias and the corresponding session’s file descriptor
after an alias has been deleted.

24.4 TCP Utility Functions

The following functions are used by the TCP function system but will rarely if ever need to be
called directly.

tcp_fd_handler
This is the function installed by tcp_open for handling input from within the line
editor, if that is required. It is in the format documented for the builtin ‘zle -F’
in Section 18.3 [Zle Builtins], page 120 .
While active, the function sets the parameter TCP_HANDLER_ACTIVE to 1. This allows
shell code called internally (for example, by setting tcp_on_read) to tell if is being
called when the shell is otherwise idle at the editor prompt.

tcp_output [-q] -P prompt -F fd -S sess
This function is used for both logging and handling output to standard output, from
within tcp_read and (if $TCP_OUTPUT is set) tcp_send.
The prompt to use is specified by -P; the default is the empty string. It can contain:

%c Expands to 1 if the session is the current session, otherwise 0. Used
with ternary expresions such as ‘%(c.-.+)’ to output ‘+’ for the current
session and ‘-’ otherwise.

%f Replaced by the session’s file descriptor.

%s Replaced by the session name.

%% Replaced by a single ‘%’.

The option -q suppresses output to standard output, but not to any log files which
are configured.
The -S and -F options are used to pass in the session name and file descriptor for
possible replacement in the prompt.

Chapter 24: TCP Function System 285

24.5 TCP User Parameters

Parameters follow the usual convention that uppercase is used for scalars and integers, while
lowercase is used for normal and associative array. It is always safe for user code to read these
parameters. Some parameters may also be set; these are noted explicitly. Others are included
in this group as they are set by the function system for the user’s benefit, i.e. setting them is
typically not useful but is benign.

It is often also useful to make settable parameters local to a function. For example, ‘local
TCP_SILENT=1’ specifies that data read during the function call will not be printed to standard
output, regardless of the setting outside the function. Likewise, ‘local TCP_SESS=sess’ sets a
session for the duration of a function, and ‘local TCP_PROMPT=’ specifies that no prompt is used
for input during the function.

tcp_expect_lines
Array. The set of lines read during the last call to tcp_expect, including the last
($TCP_LINE).

tcp_filter
Array. May be set directly. A set of extended globbing patterns which, if matched in
tcp_output, will cause the line not to be printed to standard output. The patterns
should be defined as described for the arguments to tcp_expect. Output of line to
log files is not affected.

TCP_HANDLER_ACTIVE
Scalar. Set to 1 within tcp_fd_handler to indicate to functions called recursively
that they have been called during an editor session. Otherwise unset.

TCP_LINE The last line read by tcp_read, and hence also tcp_expect.

TCP_LINE_FD
The file descriptor from which $TCP_LINE was read. ${tcp_by_fd[$TCP_LINE_FD]}
will give the corresponding session name.

tcp_lines
Array. The set of lines read during the last call to tcp_read, including the last
($TCP_LINE).

TCP_LOG May be set directly, although it is also controlled by tcp_log. The name of a file to
which output from all sessions will be sent. The output is proceeded by the usual
$TCP_PROMPT. If it is not an absolute path name, it will follow the user’s current
directory.

TCP_LOG_SESS
May be set directly, although it is also controlled by tcp_log. The prefix for a set
of files to which output from each session separately will be sent; the full filename
is ${TCP_LOG_SESS}.sess. Output to each file is raw; no prompt is added. If it is
not an absolute path name, it will follow the user’s current directory.

tcp_no_spam_list
Array. May be set directly. See tcp_spam for how this is used.

TCP_OUTPUT
May be set directly. If a non-empty string, any data sent to a session by tcp_send
will be logged. This parameter gives the prompt to be used in a file specified by
$TCP_LOG but not in a file generated from $TCP_LOG_SESS. The prompt string has
the same format as TCP_PROMPT and the same rules for its use apply.

Chapter 24: TCP Function System 286

TCP_PROMPT
May be set directly. Used as the prefix for data read by tcp_read which is printed
to standard output or to the log file given by $TCP_LOG, if any. Any ‘%s’, ‘%f’ or
‘%%’ occurring in the string will be replaced by the name of the session, the session’s
underlying file descriptor, or a single ‘%’, respectively. The expression ‘%c’ expands to
1 if the session being read is the current session, else 0; this is most useful in ternary
expressions such as ‘%(c.-.+)’ which outputs ‘+’ if the session is the current one,
else ‘-’.

TCP_READ_DEBUG
May be set directly. If this has non-zero length, tcp_read will give some limited
diagnostics about data being read.

TCP_SECONDS_START
This value is created and initialised to zero by tcp open.
The functions tcp_read and tcp_expect use the shell’s SECONDS parameter for their
own timing purposes. If that parameter is not of floating point type on entry to
one of the functions, it will create a local parameter SECONDS which is floating point
and set the parameter TCP_SECONDS_START to the previous value of $SECONDS. If
the parameter is already floating point, it is used without a local copy being created
and TCP_SECONDS_START is not set. As the global value is zero, the shell elapsed
time is guaranteed to be the sum of $SECONDS and $TCP_SECONDS_START.
This can be avoided by setting SECONDS globally to a floating point value using
‘typeset -F SECONDS’; then the TCP functions will never make a local copy and
never set TCP_SECONDS_START to a non-zero value.

TCP_SESS May be set directly. The current session; must refer to one of the sessions established
by tcp_open.

TCP_SILENT
May be set directly, although it is also controlled by tcp_log. If of non-zero length,
data read by tcp_read will not be written to standard output, though may still be
written to a log file.

tcp_spam_list
Array. May be set directly. See the description of the function tcp_spam for how
this is used.

TCP_TALK_ESCAPE
May be set directly. See the description of the function tcp_talk for how this is
used.

TCP_TIMEOUT
May be set directly. Currently this is only used by the function tcp_command, see
above.

24.6 TCP User-defined Parameters

The following parameters are not set by the function system, but have a special effect if set by
the user.

tcp_on_read
This should be an associative array; if it is not, the behaviour is undefined. Each key
is the name of a shell function or other command, and the corresponding value is a
shell pattern (using EXTENDED_GLOB). Every line read from a TCP session directly
or indirectly using tcp_read (which includes lines read by tcp_expect) is compared

Chapter 25: Zftp Function System 287

against the pattern. If the line matches, the command given in the key is called
with two arguments: the name of the session from which the line was read, and the
line itself.
If any function called to handle a line returns a non-zero status, the line is not output.
Thus a tcp_on_read handler containing only the instruction ‘return 1’ can be used
to suppress output of particular lines (see, however, tcp_filter above). However,
the line is still stored in TCP_LINE and tcp_lines; this occurs after all tcp_on_read
processing.

24.7 TCP Utility Parameters

These parameters are controlled by the function system; they may be read directly, but should
not usually be set by user code.

tcp_aliases
Associative array. The keys are the names of sessions established with tcp_open;
each value is a space-separated list of aliases which refer to that session.

tcp_by_fd
Associative array. The keys are session file descriptors; each value is the name of
that session.

tcp_by_name
Associative array. The keys are the names of sessions; each value is the file descriptor
associated with that session.

24.8 TCP Examples

Here is a trivial example using a remote calculator.
TO create a calculator server on port 7337 (see the dc manual page for quite how infuriating
the underlying command is):

tcp_proxy 7337 dc

To connect to this from the same host with a session also named ‘dc’:
tcp_open localhost 7337 dc

To send a command to the remote session and wait a short while for output (assuming dc is the
current session):

tcp_command 2 4 + p

To close the session:
tcp_close

The tcp_proxy needs to be killed to be stopped. Note this will not usually kill any connections
which have already been accepted, and also that the port is not immediately available for reuse.
The following chunk of code puts a list of sessions into an xterm header, with the current session
followed by a star.

print -n "\033]2;TCP:" ${(k)tcp_by_name:/$TCP_SESS/$TCP_SESS*} "\a"

24.9 TCP Bugs

The function tcp_read uses the shell’s normal read builtin. As this reads a complete line at
once, data arriving without a terminating newline can cause the function to block indefinitely.
Though the function suite works well for interactive use and for data arriving in small amounts,
the performance when large amounts of data are being exchanged is likely to be extremely poor.

Chapter 25: Zftp Function System 288

25 Zftp Function System

25.1 Description

This describes the set of shell functions supplied with the source distribution as an interface to
the zftp builtin command, allowing you to perform FTP operations from the shell command
line or within functions or scripts. The interface is similar to a traditional FTP client (e.g.
the ftp command itself, see man page ftp(1)), but as it is entirely done within the shell all
the familiar completion, editing and globbing features, and so on, are present, and macros are
particularly simple to write as they are just ordinary shell functions.
The prerequisite is that the zftp command, as described in Section 22.28 [The zsh/zftp Module],
page 254 , must be available in the version of zsh installed at your site. If the shell is configured
to load new commands at run time, it probably is: typing ‘zmodload zsh/zftp’ will make sure
(if that runs silently, it has worked). If this is not the case, it is possible zftp was linked into the
shell anyway: to test this, type ‘which zftp’ and if zftp is available you will get the message
‘zftp: shell built-in command’.
Commands given directly with zftp builtin may be interspersed between the functions in this
suite; in a few cases, using zftp directly may cause some of the status information stored in shell
parameters to become invalid. Note in particular the description of the variables $ZFTP_TMOUT,
$ZFTP_PREFS and $ZFTP_VERBOSE for zftp.

25.2 Installation

You should make sure all the functions from the Functions/Zftp directory of the source dis-
tribution are available; they all begin with the two letters ‘zf’. They may already have been
installed on your system; otherwise, you will need to find them and copy them. The directory
should appear as one of the elements of the $fpath array (this should already be the case if they
were installed), and at least the function zfinit should be autoloaded; it will autoload the rest.
Finally, to initialize the use of the system you need to call the zfinit function. The follow-
ing code in your .zshrc will arrange for this; assume the functions are stored in the directory
~/myfns:

fpath=(~/myfns $fpath)
autoload -U zfinit
zfinit

Note that zfinit assumes you are using the zmodload method to load the zftp command.
If it is already built into the shell, change zfinit to zfinit -n. It is helpful (though not
essential) if the call to zfinit appears after any code to initialize the new completion system,
else unnecessary compctl commands will be given.

25.3 Functions

The sequence of operations in performing a file transfer is essentially the same as that in a
standard FTP client. Note that, due to a quirk of the shell’s getopts builtin, for those functions
that handle options you must use ‘--’ rather than ‘-’ to ensure the remaining arguments are
treated literally (a single ‘-’ is treated as an argument).

25.3.1 Opening a connection

zfparams [host [user [password ...]]]
Set or show the parameters for a future zfopen with no arguments. If no arguments
are given, the current parameters are displayed (the password will be shown as a

Chapter 25: Zftp Function System 289

line of asterisks). If a host is given, and either the user or password is not, they
will be prompted for; also, any parameter given as ‘?’ will be prompted for, and if
the ‘?’ is followed by a string, that will be used as the prompt. As zfopen calls
zfparams to store the parameters, this usually need not be called directly.
A single argument ‘-’ will delete the stored parameters. This will also cause the
memory of the last directory (and so on) on the other host to be deleted.

zfopen [-1] [host [user [password [account]]]]
If host is present, open a connection to that host under username user with password
password (and, on the rare occasions when it is necessary, account account). If a
necessary parameter is missing or given as ‘?’ it will be prompted for. If host is not
present, use a previously stored set of parameters.
If the command was successful, and the terminal is compatible with xterm or is sun-
cmd, a summary will appear in the title bar, giving the local host:directory and
the remote host:directory; this is handled by the function zftp_chpwd, described
below.
Normally, the host, user and password are internally recorded for later re-opening,
either by a zfopen with no arguments, or automatically (see below). With the
option ‘-1’, no information is stored. Also, if an open command with arguments
failed, the parameters will not be retained (and any previous parameters will also be
deleted). A zfopen on its own, or a zfopen -1, never alters the stored parameters.
Both zfopen and zfanon (but not zfparams) understand URLs of the form
ftp://host/path... as meaning to connect to the host, then change directory to
path (which must be a directory, not a file). The ‘ftp://’ can be omitted; the
trailing ‘/’ is enough to trigger recognition of the path. Note prefixes other than
‘ftp:’ are not recognized, and that all characters after the first slash beyond host
are significant in path.

zfanon [-1] host

Open a connection host for anonymous FTP. The username used is ‘anonymous’.
The password (which will be reported the first time) is generated as user@host; this
is then stored in the shell parameter $EMAIL_ADDR which can alternatively be set
manually to a suitable string.

25.3.2 Directory management

zfcd [dir]
zfcd -
zfcd old new

Change the current directory on the remote server: this is implemented to have
many of the features of the shell builtin cd.
In the first form with dir present, change to the directory dir. The command ‘zfcd
..’ is treated specially, so is guaranteed to work on non-UNIX servers (note this is
handled internally by zftp). If dir is omitted, has the effect of ‘zfcd ~’.
The second form changes to the directory previously current.
The third form attempts to change the current directory by replacing the first oc-
currence of the string old with the string new in the current directory.
Note that in this command, and indeed anywhere a remote filename is expected,
the string which on the local host corresponds to ‘~’ is converted back to a ‘~’
before being passed to the remote machine. This is convenient because of the way
expansion is performed on the command line before zfcd receives a string. For
example, suppose the command is ‘zfcd ~/foo’. The shell will expand this to a

Chapter 25: Zftp Function System 290

full path such as ‘zfcd /home/user2/pws/foo’. At this stage, zfcd recognises the
initial path as corresponding to ‘~’ and will send the directory to the remote host
as ~/foo, so that the ‘~’ will be expanded by the server to the correct remote
host directory. Other named directories of the form ‘~name’ are not treated in this
fashion.

zfhere Change directory on the remote server to the one corresponding to the current local
directory, with special handling of ‘~’ as in zfcd. For example, if the current local
directory is ~/foo/bar, then zfhere performs the effect of ‘zfcd ~/foo/bar’.

zfdir [-rfd] [-] [dir-options] [dir]
Produce a long directory listing. The arguments dir-options and dir are passed
directly to the server and their effect is implementation dependent, but specifying
a particular remote directory dir is usually possible. The output is passed through
a pager given by the environment variable $PAGER, or ‘more’ if that is not set.
The directory is usually cached for re-use. In fact, two caches are maintained. One
is for use when there is no dir-options or dir, i.e. a full listing of the current remote
directory; it is flushed when the current remote directory changes. The other is kept
for repeated use of zfdir with the same arguments; for example, repeated use of
‘zfdir /pub/gnu’ will only require the directory to be retrieved on the first call.
Alternatively, this cache can be re-viewed with the -r option. As relative directories
will confuse zfdir, the -f option can be used to force the cache to be flushed before
the directory is listed. The option -d will delete both caches without showing a
directory listing; it will also delete the cache of file names in the current remote
directory, if any.

zfls [ls-options] [dir]
List files on the remote server. With no arguments, this will produce a simple list
of file names for the current remote directory. Any arguments are passed directly
to the server. No pager and no caching is used.

25.3.3 Status commands

zftype [type]
With no arguments, show the type of data to be transferred, usually ASCII or
binary. With an argument, change the type: the types ‘A’ or ‘ASCII’ for ASCII data
and ‘B’ or ‘BINARY’, ‘I’ or ‘IMAGE’ for binary data are understood case-insensitively.

zfstat [-v]
Show the status of the current or last connection, as well as the status of some of
zftp’s status variables. With the -v option, a more verbose listing is produced by
querying the server for its version of events, too.

25.3.4 Retrieving files

The commands for retrieving files all take at least two options. -G suppresses remote filename
expansion which would otherwise be performed (see below for a more detailed description of
that). -t attempts to set the modification time of the local file to that of the remote file:
this requires version 5 of perl, see the description of the function zfrtime below for more
information.

zfget [-Gtc] file1 ...
Retrieve all the listed files file1 ... one at a time from the remote server. If a file
contains a ‘/’, the full name is passed to the remote server, but the file is stored
locally under the name given by the part after the final ‘/’. The option -c (cat)

Chapter 25: Zftp Function System 291

forces all files to be sent as a single stream to standard output; in this case the -t
option has no effect.

zfuget [-Gvst] file1 ...
As zfget, but only retrieve files where the version on the remote server is newer (has
a later modification time), or where the local file does not exist. If the remote file
is older but the files have different sizes, or if the sizes are the same but the remote
file is newer, the user will usually be queried. With the option -s, the command
runs silently and will always retrieve the file in either of those two cases. With the
option -v, the command prints more information about the files while it is working
out whether or not to transfer them.

zfcget [-Gt] file1 ...
As zfget, but if any of the local files exists, and is shorter than the corresponding
remote file, the command assumes that it is the result of a partially completed
transfer and attempts to transfer the rest of the file. This is useful on a poor
connection which keeps failing.
Note that this requires a commonly implemented, but non-standard, version of the
FTP protocol, so is not guaranteed to work on all servers.

zfgcp [-Gt] remote-file local-file

zfgcp [-Gt] rfile1 ... ldir

This retrieves files from the remote server with arguments behaving similarly to the
cp command.
In the first form, copy remote-file from the server to the local file local-file.
In the second form, copy all the remote files rfile1 ... into the local directory ldir
retaining the same basenames. This assumes UNIX directory semantics.

25.3.5 Sending files

zfput [-r] file1 ...
Send all the file1 ... given separately to the remote server. If a filename contains a
‘/’, the full filename is used locally to find the file, but only the basename is used
for the remote file name.
With the option -r, if any of the files are directories they are sent recursively with
all their subdirectories, including files beginning with ‘.’. This requires that the
remote machine understand UNIX file semantics, since ‘/’ is used as a directory
separator.

zfuput [-vs] file1 ...
As zfput, but only send files which are newer than their local equivalents, or if the
remote file does not exist. The logic is the same as for zfuget, but reversed between
local and remote files.

zfcput file1 ...
As zfput, but if any remote file already exists and is shorter than the local equiva-
lent, assume it is the result of an incomplete transfer and send the rest of the file to
append to the existing part. As the FTP append command is part of the standard
set, this is in principle more likely to work than zfcget.

zfpcp local-file remote-file

zfpcp lfile1 ... rdir

This sends files to the remote server with arguments behaving similarly to the cp
command.
With two arguments, copy local-file to the server as remote-file.

Chapter 25: Zftp Function System 292

With more than two arguments, copy all the local files lfile1 ... into the existing
remote directory rdir retaining the same basenames. This assumes UNIX directory
semantics.
A problem arises if you attempt to use zfpcp lfile1 rdir, i.e. the second form of
copying but with two arguments, as the command has no simple way of knowing if
rdir corresponds to a directory or a filename. It attempts to resolve this in various
ways. First, if the rdir argument is ‘.’ or ‘..’ or ends in a slash, it is assumed to be
a directory. Secondly, if the operation of copying to a remote file in the first form
failed, and the remote server sends back the expected failure code 553 and a reply
including the string ‘Is a directory’, then zfpcp will retry using the second form.

25.3.6 Closing the connection

zfclose Close the connection.

25.3.7 Session management

zfsession [-lvod] [sessname]
Allows you to manage multiple FTP sessions at once. By default, connections take
place in a session called ‘default’; by giving the command ‘zfsession sessname’
you can change to a new or existing session with a name of your choice. The
new session remembers its own connection, as well as associated shell parameters,
and also the host/user parameters set by zfparams. Hence you can have different
sessions set up to connect to different hosts, each remembering the appropriate host,
user and password.
With no arguments, zfsession prints the name of the current session; with the
option -l it lists all sessions which currently exist, and with the option -v it gives
a verbose list showing the host and directory for each session, where the current
session is marked with an asterisk. With -o, it will switch to the most recent
previous session.
With -d, the given session (or else the current one) is removed; everything to do with
it is completely forgotten. If it was the only session, a new session called ‘default’
is created and made current. It is safest not to delete sessions while background
commands using zftp are active.

zftransfer sess1:file1 sess2:file2
Transfer files between two sessions; no local copy is made. The file is read from
the session sess1 as file1 and written to session sess2 as file file2; file1 and file2
may be relative to the current directories of the session. Either sess1 or sess2 may
be omitted (though the colon should be retained if there is a possibility of a colon
appearing in the file name) and defaults to the current session; file2 may be omitted
or may end with a slash, in which case the basename of file1 will be added. The
sessions sess1 and sess2 must be distinct.
The operation is performed using pipes, so it is required that the connections still be
valid in a subshell, which is not the case under versions of some operating systems,
presumably due to a system bug.

25.3.8 Bookmarks

The two functions zfmark and zfgoto allow you to ‘bookmark’ the present location (host, user
and directory) of the current FTP connection for later use. The file to be used for storing and
retrieving bookmarks is given by the parameter $ZFTP_BMFILE; if not set when one of the two
functions is called, it will be set to the file .zfbkmarks in the directory where your zsh startup
files live (usually ~).

Chapter 25: Zftp Function System 293

zfmark [bookmark]
If given an argument, mark the current host, user and directory under the name
bookmark for later use by zfgoto. If there is no connection open, use the values
for the last connection immediately before it was closed; it is an error if there was
none. Any existing bookmark under the same name will be silently replaced.
If not given an argument, list the existing bookmarks and the points to which they
refer in the form user@host:directory ; this is the format in which they are stored,
and the file may be edited directly.

zfgoto [-n] bookmark
Return to the location given by bookmark, as previously set by zfmark. If the
location has user ‘ftp’ or ‘anonymous’, open the connection with zfanon, so that
no password is required. If the user and host parameters match those stored for
the current session, if any, those will be used, and again no password is required.
Otherwise a password will be prompted for.
With the option -n, the bookmark is taken to be a nickname stored by the ncftp
program in its bookmark file, which is assumed to be ~/.ncftp/bookmarks. The
function works identically in other ways. Note that there is no mechanism for adding
or modifying ncftp bookmarks from the zftp functions.

25.3.9 Other functions

Mostly, these functions will not be called directly (apart from zfinit), but are described here
for completeness. You may wish to alter zftp_chpwd and zftp_progress, in particular.

zfinit [-n]
As described above, this is used to initialize the zftp function system. The -n option
should be used if the zftp command is already built into the shell.

zfautocheck [-dn]
This function is called to implement automatic reopening behaviour, as described in
more detail below. The options must appear in the first argument; -n prevents the
command from changing to the old directory, while -d prevents it from setting the
variable do_close, which it otherwise does as a flag for automatically closing the
connection after a transfer. The host and directory for the last session are stored
in the variable $zflastsession, but the internal host/user/password parameters
must also be correctly set.

zfcd_match prefix suffix

This performs matching for completion of remote directory names. If the remote
server is UNIX, it will attempt to persuade the server to list the remote directory
with subdirectories marked, which usually works but is not guaranteed. On other
hosts it simply calls zfget_match and hence completes all files, not just directories.
On some systems, directories may not even look like filenames.

zfget_match prefix suffix

This performs matching for completion of remote filenames. It caches files for the
current directory (only) in the shell parameter $zftp_fcache. It is in the form to be
called by the -K option of compctl, but also works when called from a widget-style
completion function with prefix and suffix set appropriately.

zfrglob varname

Perform remote globbing, as describes in more detail below. varname is the name
of a variable containing the pattern to be expanded; if there were any matches, the
same variable will be set to the expanded set of filenames on return.

Chapter 25: Zftp Function System 294

zfrtime lfile rfile [time]
Set the local file lfile to have the same modification time as the remote file rfile, or
the explicit time time in FTP format CCYYMMDDhhmmSS for the GMT timezone.
Currently this requires perl version 5 to perform the conversion from GMT to local
time. This is unfortunately difficult to do using shell code alone.

zftp_chpwd
This function is called every time a connection is opened, or closed, or the remote di-
rectory changes. This version alters the title bar of an xterm-compatible or sun-cmd
terminal emulator to reflect the local and remote hostnames and current directories.
It works best when combined with the function chpwd. In particular, a function of
the form

chpwd() {
if [[-n $ZFTP_USER]]; then
zftp_chpwd

else
usual chpwd e.g put host:directory in title bar

fi
}

fits in well.

zftp_progress
This function shows the status of the transfer. It will not write anything unless
the output is going to a terminal; however, if you transfer files in the background,
you should turn off progress reports by hand using ‘zstyle ’:zftp:*’ progress
none’. Note also that if you alter it, any output must be to standard error, as
standard output may be a file being received. The form of the progress meter,
or whether it is used at all, can be configured without altering the function, as
described in the next section.

zffcache This is used to implement caching of files in the current directory for each session
separately. It is used by zfget_match and zfrglob.

25.4 Miscellaneous Features

25.4.1 Configuration

Various styles are available using the standard shell style mechanism, described in Section 22.34
[The zsh/zutil Module], page 264. Briefly, the command ‘zstyle ’:zftp:*’ style value ...’.
defines the style to have value value; more than one value may be given, although that is not
useful in the cases described here. These values will then be used throughout the zftp function
system. For more precise control, the first argument, which gives a context in which the style
applies, can be modified to include a particular function, as for example ‘:zftp:zfget’: the
style will then have the given value only in the zfget function. Values for the same style in
different contexts may be set; the most specific function will be used, where strings are held to
be more specific than patterns, and longer patterns and shorter patterns. Note that only the top
level function name, as called by the user, is used; calling of lower level functions is transparent
to the user. Hence modifications to the title bar in zftp_chpwd use the contexts :zftp:zfopen,
:zftp:zfcd, etc., depending where it was called from. The following styles are understood:

progress Controls the way that zftp_progress reports on the progress of a transfer. If
empty, unset, or ‘none’, no progress report is made; if ‘bar’ a growing bar of inverse

Chapter 25: Zftp Function System 295

video is shown; if ‘percent’ (or any other string, though this may change in future),
the percentage of the file transferred is shown. The bar meter requires that the
width of the terminal be available via the $COLUMNS parameter (normally this is
set automatically). If the size of the file being transferred is not available, bar and
percent meters will simply show the number of bytes transferred so far.
When zfinit is run, if this style is not defined for the context :zftp:*, it will be
set to ‘bar’.

update Specifies the minimum time interval between updates of the progress meter in sec-
onds. No update is made unless new data has been received, so the actual time
interval is limited only by $ZFTP_TIMEOUT.
As described for progress, zfinit will force this to default to 1.

remote-glob
If set to ‘1’, ‘yes’ or ‘true’, filename generation (globbing) is performed on the remote
machine instead of by zsh itself; see below.

titlebar If set to ‘1’, ‘yes’ or ‘true’, zftp_chpwd will put the remote host and remote directory
into the titlebar of terminal emulators such as xterm or sun-cmd that allow this.
As described for progress, zfinit will force this to default to 1.

chpwd If set to ‘1’ ‘yes’ or ‘true’, zftp_chpwd will call the function chpwd when a connection
is closed. This is useful if the remote host details were put into the terminal title
bar by zftp_chpwd and your usual chpwd also modifies the title bar.
When zfinit is run, it will determine whether chpwd exists and if so it will set the
default value for the style to 1 if none exists already.

Note that there is also an associative array zfconfig which contains values used by the function
system. This should not be modified or overwritten.

25.4.2 Remote globbing

The commands for retrieving files usually perform filename generation (globbing) on their argu-
ments; this can be turned off by passing the option -G to each of the commands. Normally this
operates by retrieving a complete list of files for the directory in question, then matching these
locally against the pattern supplied. This has the advantage that the full range of zsh patterns
(respecting the setting of the option EXTENDED_GLOB) can be used. However, it means that the
directory part of a filename will not be expanded and must be given exactly. If the remote
server does not support the UNIX directory semantics, directory handling is problematic and
it is recommended that globbing only be used within the current directory. The list of files in
the current directory, if retrieved, will be cached, so that subsequent globs in the same directory
without an intervening zfcd are much faster.
If the remote-glob style (see above) is set, globbing is instead performed on the remote host:
the server is asked for a list of matching files. This is highly dependent on how the server is
implemented, though typically UNIX servers will provide support for basic glob patterns. This
may in some cases be faster, as it avoids retrieving the entire list of directory contents.

25.4.3 Automatic and temporary reopening

As described for the zfopen command, a subsequent zfopen with no parameters will reopen
the connection to the last host (this includes connections made with the zfanon command).
Opened in this fashion, the connection starts in the default remote directory and will remain
open until explicitly closed.

Chapter 26: User Contributions 296

Automatic re-opening is also available. If a connection is not currently open and a command
requiring a connection is given, the last connection is implicitly reopened. In this case the
directory which was current when the connection was closed again becomes the current directory
(unless, of course, the command given changes it). Automatic reopening will also take place if
the connection was close by the remote server for whatever reason (e.g. a timeout). It is not
available if the -1 option to zfopen or zfanon was used.
Furthermore, if the command issued is a file transfer, the connection will be closed after the
transfer is finished, hence providing a one-shot mode for transfers. This does not apply to
directory changing or listing commands; for example a zfdir may reopen a connection but will
leave it open. Also, automatic closure will only ever happen in the same command as automatic
opening, i.e a zfdir directly followed by a zfget will never close the connection automatically.
Information about the previous connection is given by the zfstat function. So, for example, if
that reports:

Session: default
Not connected.
Last session: ftp.bar.com:/pub/textfiles

then the command zfget file.txt will attempt to reopen a connection to ftp.bar.com, re-
trieve the file /pub/textfiles/file.txt, and immediately close the connection again. On the
other hand, zfcd .. will open the connection in the directory /pub and leave it open.
Note that all the above is local to each session; if you return to a previous session, the connection
for that session is the one which will be reopened.

25.4.4 Completion

Completion of local and remote files, directories, sessions and bookmarks is supported. The
older, compctl-style completion is defined when zfinit is called; support for the new widget-
based completion system is provided in the function Completion/Zsh/Command/_zftp, which
should be installed with the other functions of the completion system and hence should auto-
matically be available.

26 User Contributions

26.1 Description

The Zsh source distribution includes a number of items contributed by the user community.
These are not inherently a part of the shell, and some may not be available in every zsh in-
stallation. The most significant of these are documented here. For documentation on other
contributed items such as shell functions, look for comments in the function source files.

26.2 Utilities

26.2.1 Accessing On-Line Help

The key sequence ESC h is normally bound by ZLE to execute the run-help widget (see Chap-
ter 18 [Zsh Line Editor], page 119). This invokes the run-help command with the command
word from the current input line as its argument. By default, run-help is an alias for the man
command, so this often fails when the command word is a shell builtin or a user-defined function.
By redefining the run-help alias, one can improve the on-line help provided by the shell.

Chapter 26: User Contributions 297

The helpfiles utility, found in the Util directory of the distribution, is a Perl program that
can be used to process the zsh manual to produce a separate help file for each shell builtin
and for many other shell features as well. The autoloadable run-help function, found in
Functions/Misc, searches for these helpfiles and performs several other tests to produce the
most complete help possible for the command.

There may already be a directory of help files on your system; look in /usr/share/zsh or
/usr/local/share/zsh and subdirectories below those, or ask your system administrator.

To create your own help files with helpfiles, choose or create a directory where the individual
command help files will reside. For example, you might choose ~/zsh_help. If you unpacked
the zsh distribution in your home directory, you would use the commands:

mkdir ~/zsh_help
cd ~/zsh_help
man zshall | colcrt - | \
perl ~/zsh-4.3.5/Util/helpfiles

Next, to use the run-help function, you need to add lines something like the following to your
.zshrc or equivalent startup file:

unalias run-help
autoload run-help
HELPDIR=~/zsh_help

The HELPDIR parameter tells run-help where to look for the help files. If your system already
has a help file directory installed, set HELPDIR to the path of that directory instead.

Note that in order for ‘autoload run-help’ to work, the run-help file must be in one of
the directories named in your fpath array (see Section 15.6 [Parameters Used By The Shell],
page 66). This should already be the case if you have a standard zsh installation; if it is not,
copy Functions/Misc/run-help to an appropriate directory.

26.2.2 Recompiling Functions

If you frequently edit your zsh functions, or periodically update your zsh installation to track
the latest developments, you may find that function digests compiled with the zcompile builtin
are frequently out of date with respect to the function source files. This is not usually a problem,
because zsh always looks for the newest file when loading a function, but it may cause slower
shell startup and function loading. Also, if a digest file is explicitly used as an element of fpath,
zsh won’t check whether any of its source files has changed.

The zrecompile autoloadable function, found in Functions/Misc, can be used to keep function
digests up to date.

zrecompile [-qt] [name ...]
zrecompile [-qt] -p args [-- args ...]

This tries to find *.zwc files and automatically re-compile them if at least one of the
original files is newer than the compiled file. This works only if the names stored
in the compiled files are full paths or are relative to the directory that contains the
.zwc file.
In the first form, each name is the name of a compiled file or a directory containing
*.zwc files that should be checked. If no arguments are given, the directories and
*.zwc files in fpath are used.
When -t is given, no compilation is performed, but a return status of zero (true)
is set if there are files that need to be re-compiled and non-zero (false) otherwise.
The -q option quiets the chatty output that describes what zrecompile is doing.

Chapter 26: User Contributions 298

Without the -t option, the return status is zero if all files that needed re-compilation
could be compiled and non-zero if compilation for at least one of the files failed.
If the -p option is given, the args are interpreted as one or more sets of arguments
for zcompile, separated by ‘--’. For example:

zrecompile -p \
-R ~/.zshrc -- \
-M ~/.zcompdump -- \
~/zsh/comp.zwc ~/zsh/Completion/*/_*

This compiles ~/.zshrc into ~/.zshrc.zwc if that doesn’t exist or if it is older than
~/.zshrc. The compiled file will be marked for reading instead of mapping. The
same is done for ~/.zcompdump and ~/.zcompdump.zwc, but this compiled file is
marked for mapping. The last line re-creates the file ~/zsh/comp.zwc if any of the
files matching the given pattern is newer than it.
Without the -p option, zrecompile does not create function digests that do not
already exist, nor does it add new functions to the digest.

The following shell loop is an example of a method for creating function digests for all functions
in your fpath, assuming that you have write permission to the directories:

for ((i=1; i <= $#fpath; ++i)); do
dir=$fpath[i]
zwc=${dir:t}.zwc
if [[$dir == (.|..) || $dir == (.|..)/*]]; then
continue

fi
files=($dir/*(N-.))
if [[-w $dir:h && -n $files]]; then
files=(${${(M)files%/*/*}#/})
if (cd $dir:h &&

zrecompile -p -U -z $zwc $files); then
fpath[i]=$fpath[i].zwc

fi
fi

done

The -U and -z options are appropriate for functions in the default zsh installation fpath; you
may need to use different options for your personal function directories.
Once the digests have been created and your fpath modified to refer to them, you can keep
them up to date by running zrecompile with no arguments.

26.2.3 Keyboard Definition

The large number of possible combinations of keyboards, workstations, terminals, emulators, and
window systems makes it impossible for zsh to have built-in key bindings for every situation.
The zkbd utility, found in Functions/Misc, can help you quickly create key bindings for your
configuration.
Run zkbd either as an autoloaded function, or as a shell script:

zsh -f ~/zsh-4.3.5/Functions/Misc/zkbd

When you run zkbd, it first asks you to enter your terminal type; if the default it offers is
correct, just press return. It then asks you to press a number of different keys to determine
characteristics of your keyboard and terminal; zkbd warns you if it finds anything out of the
ordinary, such as a Delete key that sends neither ^H nor ^?.

Chapter 26: User Contributions 299

The keystrokes read by zkbd are recorded as a definition for an associative array named key,
written to a file in the subdirectory .zkbd within either your HOME or ZDOTDIR directory. The
name of the file is composed from the TERM, VENDOR and OSTYPE parameters, joined by hyphens.

You may read this file into your .zshrc or another startup file with the ‘source’ or ‘.’ commands,
then reference the key parameter in bindkey commands, like this:

source ${ZDOTDIR:-$HOME}/.zkbd/$TERM-$VENDOR-$OSTYPE
[[-n ${key[Left]}]] && bindkey "${key[Left]}" backward-char
[[-n ${key[Right]}]] && bindkey "${key[Right]}" forward-char
etc.

Note that in order for ‘autoload zkbd’ to work, the zkdb file must be in one of the directo-
ries named in your fpath array (see Section 15.6 [Parameters Used By The Shell], page 66).
This should already be the case if you have a standard zsh installation; if it is not, copy
Functions/Misc/zkbd to an appropriate directory.

26.2.4 Dumping Shell State

Occasionally you may encounter what appears to be a bug in the shell, particularly if you are
using a beta version of zsh or a development release. Usually it is sufficient to send a description
of the problem to one of the zsh mailing lists (see Section 2.3 [Mailing Lists], page 2), but
sometimes one of the zsh developers will need to recreate your environment in order to track
the problem down.

The script named reporter, found in the Util directory of the distribution, is provided for this
purpose. (It is also possible to autoload reporter, but reporter is not installed in fpath by
default.) This script outputs a detailed dump of the shell state, in the form of another script
that can be read with ‘zsh -f’ to recreate that state.

To use reporter, read the script into your shell with the ‘.’ command and redirect the output
into a file:

. ~/zsh-4.3.5/Util/reporter > zsh.report

You should check the zsh.report file for any sensitive information such as passwords and delete
them by hand before sending the script to the developers. Also, as the output can be voluminous,
it’s best to wait for the developers to ask for this information before sending it.

You can also use reporter to dump only a subset of the shell state. This is sometimes useful
for creating startup files for the first time. Most of the output from reporter is far more detailed
than usually is necessary for a startup file, but the aliases, options, and zstyles states may
be useful because they include only changes from the defaults. The bindings state may be
useful if you have created any of your own keymaps, because reporter arranges to dump the
keymap creation commands as well as the bindings for every keymap.

As is usual with automated tools, if you create a startup file with reporter, you should edit
the results to remove unnecessary commands. Note that if you’re using the new completion
system, you should not dump the functions state to your startup files with reporter; use the
compdump function instead (see Chapter 20 [Completion System], page 158).

reporter [state ...]
Print to standard output the indicated subset of the current shell state. The state
arguments may be one or more of:

all Output everything listed below.

aliases Output alias definitions.

bindings Output ZLE key maps and bindings.

Chapter 26: User Contributions 300

completion
Output old-style compctl commands. New completion is covered by
functions and zstyles.

functions
Output autoloads and function definitions.

limits Output limit commands.

options Output setopt commands.

styles Same as zstyles.

variables
Output shell parameter assignments, plus export commands for any
environment variables.

zstyles Output zstyle commands.

If the state is omitted, all is assumed.
With the exception of ‘all’, every state can be abbreviated by any prefix, even a
single letter; thus a is the same as aliases, z is the same as zstyles, etc.

26.3 Prompt Themes

26.3.1 Installation

You should make sure all the functions from the Functions/Prompts directory of the source
distribution are available; they all begin with the string ‘prompt_’ except for the special
function‘promptinit’. You also need the ‘colors’ function from Functions/Misc. All of these
functions may already have been installed on your system; if not, you will need to find them
and copy them. The directory should appear as one of the elements of the fpath array (this
should already be the case if they were installed), and at least the function promptinit should
be autoloaded; it will autoload the rest. Finally, to initialize the use of the system you need to
call the promptinit function. The following code in your .zshrc will arrange for this; assume
the functions are stored in the directory ~/myfns:

fpath=(~/myfns $fpath)
autoload -U promptinit
promptinit

26.3.2 Theme Selection

Use the prompt command to select your preferred theme. This command may be added to your
.zshrc following the call to promptinit in order to start zsh with a theme already selected.

prompt [-c | -l]
prompt [-p | -h] [theme ...]
prompt [-s] theme [arg ...]

Set or examine the prompt theme. With no options and a theme argument, the
theme with that name is set as the current theme. The available themes are de-
termined at run time; use the -l option to see a list. The special theme ‘random’
selects at random one of the available themes and sets your prompt to that.
In some cases the theme may be modified by one or more arguments, which should
be given after the theme name. See the help for each theme for descriptions of these
arguments.
Options are:

-c Show the currently selected theme and its parameters, if any.

Chapter 26: User Contributions 301

-l List all available prompt themes.

-p Preview the theme named by theme, or all themes if no theme is given.

-h Show help for the theme named by theme, or for the prompt function if
no theme is given.

-s Set theme as the current theme and save state.

prompt_theme_setup
Each available theme has a setup function which is called by the prompt function
to install that theme. This function may define other functions as necessary to
maintain the prompt, including functions used to preview the prompt or provide
help for its use. You should not normally call a theme’s setup function directly.

26.4 ZLE Functions

26.4.1 Widgets

These functions all implement user-defined ZLE widgets (see Chapter 18 [Zsh Line Editor],
page 119) which can be bound to keystrokes in interactive shells. To use them, your .zshrc
should contain lines of the form

autoload function

zle -N function

followed by an appropriate bindkey command to associate the function with a key sequence.
Suggested bindings are described below.

bash-style word functions
If you are looking for functions to implement moving over and editing words in the
manner of bash, where only alphanumeric characters are considered word characters,
you can use the functions described in the next section. The following is sufficient:

autoload -U select-word-style
select-word-style bash

forward-word-match, backward-word-match
kill-word-match, backward-kill-word-match
transpose-words-match, capitalize-word-match
up-case-word-match, down-case-word-match
select-word-style, match-word-context, match-words-by-style

The eight ‘-match’ functions are drop-in replacements for the builtin widgets without
the suffix. By default they behave in a similar way. However, by the use of styles
and the function select-word-style, the way words are matched can be altered.
The simplest way of configuring the functions is to use select-word-style, which
can either be called as a normal function with the appropriate argument, or invoked
as a user-defined widget that will prompt for the first character of the word style to
be used. The first time it is invoked, the eight -match functions will automatically
replace the builtin versions, so they do not need to be loaded explicitly.
The word styles available are as follows. Only the first character is examined.

bash Word characters are alphanumeric characters only.

normal As in normal shell operation: word characters are alphanumeric char-
acters plus any characters present in the string given by the parameter
$WORDCHARS.

Chapter 26: User Contributions 302

shell Words are complete shell command arguments, possibly including com-
plete quoted strings, or any tokens special to the shell.

whitespace
Words are any set of characters delimited by whitespace.

default Restore the default settings; this is usually the same as ‘normal’.

More control can be obtained using the zstyle command, as described in Sec-
tion 22.34 [The zsh/zutil Module], page 264. Each style is looked up in the context
:zle:widget where widget is the name of the user-defined widget, not the name of
the function implementing it, so in the case of the definitions supplied by select-
word-style the appropriate contexts are :zle:forward-word, and so on. The func-
tion select-word-style itself always defines styles for the context ‘:zle:*’ which
can be overridden by more specific (longer) patterns as well as explicit contexts.
The style word-style specifies the rules to use. This may have the following values.

normal Use the standard shell rules, i.e. alphanumerics and $WORDCHARS, unless
overridden by the styles word-chars or word-class.

specified
Similar to normal, but only the specified characters, and not also al-
phanumerics, are considered word characters.

unspecified
The negation of specified. The given characters are those which will not
be considered part of a word.

shell Words are obtained by using the syntactic rules for generating shell com-
mand arguments. In addition, special tokens which are never command
arguments such as ‘()’ are also treated as words.

whitespace
Words are whitespace-delimited strings of characters.

The first three of those rules usually use $WORDCHARS, but the value in the parameter
can be overridden by the style word-chars, which works in exactly the same way
as $WORDCHARS. In addition, the style word-class uses character class syntax to
group characters and takes precedence over word-chars if both are set. The word-
class style does not include the surrounding brackets of the character class; for
example, ‘-:[:alnum:]’ is a valid word-class to include all alphanumerics plus the
characters ‘-’ and ‘:’. Be careful including ‘]’, ‘^’ and ‘-’ as these are special inside
character classes.
The style skip-chars is mostly useful for transpose-words and similar functions.
If set, it gives a count of characters starting at the cursor position which will not
be considered part of the word and are treated as space, regardless of what they
actually are. For example, if

zstyle ’:zle:transpose-words’ skip-chars 1

has been set, and transpose-words-match is called with the cursor on the X of
fooXbar, where X can be any character, then the resulting expression is barXfoo.
Finer grained control can be obtained by setting the style word-context to an
array of pairs of entries. Each pair of entries consists of a pattern and a subcontext.
The shell argument the cursor is on is matched against each pattern in turn until
one matches; if it does, the context is extended by a colon and the corresponding
subcontext. Note that the test is made against the original word on the line, with
no stripping of quotes. If the cursor is at the end of the line the test is performed

Chapter 26: User Contributions 303

against an empty string; if it is on whitespace between words the test is made against
a single space. Some examples are given below.
Here are some examples of use of the styles, actually taken from the simplified
interface in select-word-style:

zstyle ’:zle:*’ word-style standard
zstyle ’:zle:*’ word-chars ’’

Implements bash-style word handling for all widgets, i.e. only alphanumerics are
word characters; equivalent to setting the parameter WORDCHARS empty for the given
context.

style ’:zle:*kill*’ word-style space

Uses space-delimited words for widgets with the word ‘kill’ in the name. Neither of
the styles word-chars nor word-class is used in this case.
Here are some examples of use of the word-context style to extend the context.

zstyle ’:zle:*’ word-context "*/*" file "[[:space:]]" whitespace
zstyle ’:zle:transpose-words:whitespace’ word-style shell
zstyle ’:zle:transpose-words:filename’ word-style normal
zstyle ’:zle:transpose-words:filename’ word-chars ’’

This provides two different ways of using transpose-words depending on whether
the cursor is on whitespace between words or on a filename, here any word containing
a /. On whitespace, complete arguments as defined by standard shell rules will be
transposed. In a filename, only alphanumerics will be transposed. Elsewhere, words
will be transposed using the default style for :zle:transpose-words.
The word matching and all the handling of zstyle settings is actually implemented
by the function match-words-by-style. This can be used to create new user-
defined widgets. The calling function should set the local parameter curcontext
to :zle:widget, create the local parameter matched_words and call match-words-
by-style with no arguments. On return, matched_words will be set to an array
with the elements: (1) the start of the line (2) the word before the cursor (3) any
non-word characters between that word and the cursor (4) any non-word character
at the cursor position plus any remaining non-word characters before the next word,
including all characters specified by the skip-chars style, (5) the word at or follow-
ing the cursor (6) any non-word characters following that word (7) the remainder of
the line. Any of the elements may be an empty string; the calling function should
test for this to decide whether it can perform its function.
It is possible to pass options with arguments to match-words-by-style to override
the use of styles. The options are:

-w word-style

-s skip-chars

-c word-class

-C word-chars

For example, match-words-by-style -w shell -c 0 may be used to extract the
command argument around the cursor.
The word-context style is implemented by the function match-word-context. This
should not usually need to be called directly.

delete-whole-word-match
This is another function which works like the -match functions described immedi-
ately above, i.e. using styles to decide the word boundaries. However, it is not a
replacement for any existing function.

Chapter 26: User Contributions 304

The basic behaviour is to delete the word around the cursor. There is no numeric
prefix handling; only the single word around the cursor is considered. If the widget
contains the string kill, the removed text will be placed in the cutbuffer for future
yanking. This can be obtained by defining kill-whole-word-match as follows:

zle -N kill-whole-word-match delete-whole-word-match

and then binding the widget kill-whole-word-match.

copy-earlier-word
This widget works like a combination of insert-last-word and copy-prev-shell-
word. Repeated invocations of the widget retrieve earlier words on the relevant
history line. With a numeric argument N, insert the Nth word from the history
line; N may be negative to count from the end of the line.
If insert-last-word has been used to retrieve the last word on a previous history
line, repeated invocations will replace that word with earlier words from the same
line.
Otherwise, the widget applies to words on the line currently being edited. The
widget style can be set to the name of another widget that should be called to
retrieve words. This widget must accept the same three arguments as insert-
last-word.

cycle-completion-positions
After inserting an unambiguous string into the command line, the new function
based completion system may know about multiple places in this string where char-
acters are missing or differ from at least one of the possible matches. It will then
place the cursor on the position it considers to be the most interesting one, i.e. the
one where one can disambiguate between as many matches as possible with as little
typing as possible.
This widget allows the cursor to be easily moved to the other interesting spots. It
can be invoked repeatedly to cycle between all positions reported by the completion
system.

edit-command-line
Edit the command line using your visual editor, as in ksh.

bindkey -M vicmd v edit-command-line

history-search-end
This function implements the widgets history-beginning-search-backward-end
and history-beginning-search-forward-end. These commands work by first
calling the corresponding builtin widget (see Section 18.6.2 [History Control],
page 132) and then moving the cursor to the end of the line. The original cur-
sor position is remembered and restored before calling the builtin widget a second
time, so that the same search is repeated to look farther through the history.
Although you autoload only one function, the commands to use it are slightly
different because it implements two widgets.

zle -N history-beginning-search-backward-end \
history-search-end

zle -N history-beginning-search-forward-end \
history-search-end

bindkey ’\e^P’ history-beginning-search-backward-end
bindkey ’\e^N’ history-beginning-search-forward-end

history-beginning-search-menu
This function implements yet another form of history searching. The text before the
cursor is used to select lines from the history, as for history-beginning-search-

Chapter 26: User Contributions 305

backward except that all matches are shown in a numbered menu. Typing the
appropriate digits inserts the full history line. Note that leading zeroes must be
typed (they are only shown when necessary for removing ambiguity). The entire
history is searched; there is no distinction between forwards and backwards.
With a prefix argument, the search is not anchored to the start of the line; the string
typed by the use may appear anywhere in the line in the history.
If the widget name contains ‘-end’ the cursor is moved to the end of the line inserted.
If the widget name contains ‘-space’ any space in the text typed is treated as a
wildcard and can match anything (hence a leading space is equivalent to giving a
prefix argument). Both forms can be combined, for example:

zle -N history-beginning-search-menu-space-end \
history-beginning-search-menu

history-pattern-search
The function history-pattern-search implements widgets which prompt for a
pattern with which to search the history backwards or forwards. The pattern is in
the usual zsh format, however the first character may be ^ to anchor the search to
the start of the line, and the last character may be $ to anchor the search to the
end of the line. If the search was not anchored to the end of the line the cursor is
positioned just after the pattern found.
The commands to create bindable widgets are similar to those in the example im-
mediately above:

autoload -U history-pattern-search
zle -N history-pattern-search-backward history-pattern-search
zle -N history-pattern-search-forward history-pattern-search

up-line-or-beginning-search, down-line-or-beginning-search
These widgets are similar to the builtin functions up-line-or-search and down-
line-or-search: if in a multiline buffer they move up or down within the buffer,
otherwise they search for a history line matching the start of the current line. In
this case, however, they search for a line which matches the current line up to the
current cursor position, in the manner of history-beginning-search-backward
and -forward, rather than the first word on the line.

incarg Typing the keystrokes for this widget with the cursor placed on or to the left of
an integer causes that integer to be incremented by one. With a numeric prefix
argument, the number is incremented by the amount of the argument (decremented
if the prefix argument is negative). The shell parameter incarg may be set to
change the default increment to something other than one.

bindkey ’^X+’ incarg

incremental-complete-word
This allows incremental completion of a word. After starting this command, a list
of completion choices can be shown after every character you type, which you can
delete with ^H or DEL. Pressing return accepts the completion so far and returns you
to normal editing (that is, the command line is not immediately executed). You can
hit TAB to do normal completion, ^G to abort back to the state when you started,
and ^D to list the matches.
This works only with the new function based completion system.

bindkey ’^Xi’ incremental-complete-word

insert-composed-char
This function allows you to compose characters that don’t appear on the keyboard
to be inserted into the command line. The command is followed by two keys cor-

Chapter 26: User Contributions 306

responding to ASCII characters (there is no prompt). For accented characters, the
two keys are a base character followed by a code for the accent, while for other
special characters the two characters together form a mnemonic for the character to
be inserted. The two-character codes are a subset of those given by RFC 1345 (see
for example http://www.faqs.org/rfcs/rfc1345.html).
The function may optionally be followed by up to two characters which replace one
or both of the characters read from the keyboard; if both characters are supplied,
no input is read. For example, insert-composed-char a: can be used within a
widget to insert an a with umlaut into the command line. This has the advantages
over use of a literal character that it is more portable.
For best results zsh should have been built with support for multibyte characters
(configured with --enable-multibyte); however, the function works for the limited
range of characters available in single-byte character sets such as ISO-8859-1.
The character is converted into the local representation and inserted into the com-
mand line at the cursor position. (The conversion is done within the shell, using
whatever facilities the C library provides.) With a numeric argument, the character
and its code are previewed in the status line
The function may be run outside zle in which case it prints the character (together
with a newline) to standard output. Input is still read from keystrokes.
See insert-unicode-char for an alternative way of inserting Unicode characters
using their hexadecimal character number.
The set of accented characters is reasonably complete up to Unicode character
U+0180, the set of special characters less so. However, it it is very sporadic from that
point. Adding new characters is easy, however; see the function define-composed-
chars. Please send any additions to zsh-workers@sunsite.dk.
The codes for the second character when used to accent the first are as follows. Note
that not every character can take every accent.

! Grave.

’ Acute.

> Circumflex.

? Tilde. (This is not ~ as RFC 1345 does not assume that character is
present on the keyboard.)

- Macron. (A horizonal bar over the base character.)

(Breve. (A shallow dish shape over the base character.)

. Dot above the base character, or in the case of i no dot, or in the case
of L and l a centered dot.

: Diaeresis (Umlaut).

c Cedilla.

_ Underline, however there are currently no underlined characters.

/ Stroke through the base character.

" Double acute (only supported on a few letters).

; Ogonek. (A little forward facing hook at the bottom right of the char-
acter.)

< Caron. (A little v over the letter.)

Chapter 26: User Contributions 307

0 Circle over the base character.

2 Hook over the base character.

9 Horn over the base character.

The most common characters from the Arabic, Cyrillic, Greek and Hebrew alphabets
are available; consult RFC 1345 for the appropriate sequences. In addition, a set
of two letter codes not in RFC 1345 are available for the double-width characters
corresponding to ASCII characters from ! to ~ (0x21 to 0x7e) by preceeding the
character with ^, for example ^A for a double-width A.
The following other two-character sequences are understood.

ASCII characters
These are already present on most keyboards:

<(Left square bracket

// Backslash (solidus)

)> Right square bracket

(! Left brace (curly bracket)

!! Vertical bar (pipe symbol)

!) Right brace (curly bracket)

’? Tilde

Special letters
Characters found in various variants of the Latin alphabet:

ss Eszett (scafes S)

D-, d- Eth

TH, th Thorn

kk Kra

’n ’n

NG, ng Ng

OI, oi Oi

yr yr

ED ezh

Currency symbols
Ct Cent

Pd Pound sterling (also lira and others)

Cu Currency

Ye Yen

Eu Euro (N.B. not in RFC 1345)

Punctuation characters
References to "right" quotes indicate the shape (like a 9 rather than 6)
rather than their grammatical use. (For example, a "right" low double
quote is used to open quotations in German.)

Chapter 26: User Contributions 308

!I Inverted exclamation mark

BB Broken vertical bar

SE Section

Co Copyright

-a Spanish feminine ordinal indicator

<< Left guillemet

-- Soft hyphen

Rg Registered trade mark

PI Pilcrow (paragraph)

-o Spanish masculine ordinal indicator

>> Right guillemet

?I Inverted question mark

-1 Hyphen

-N En dash

-M Em dash

-3 Horizontal bar

:3 Vertical ellipsis

.3 Horizontal midline ellipsis

!2 Double vertical line

=2 Double low line

’6 Left single quote

’9 Right single quote

.9 "Right" low quote

9’ Reversed "right" quote

"6 Left double quote

"9 Right double quote

:9 "Right" low double quote

9" Reversed "right" double quote

/- Dagger

/= Double dagger

Mathematical symbols
DG Degree

-2, +-, -+ - sign, +/- sign, -/+ sign

2S Superscript 2

3S Superscript 3

1S Superscript 1

Chapter 26: User Contributions 309

My Micro

.M Middle dot

14 Quarter

12 Half

34 Three quarters

*X Multiplication

-: Division

%0 Per mille

FA, TE, /0 For all, there exists, empty set

dP, DE, NB Partial derivative, delta (increment), del (nabla)

(-, -) Element of, contains

*P, +Z Product, sum

*-, Ob, Sb Asterisk, ring, bullet

RT, 0(, 00 Root sign, proportional to, infinity

Other symbols
cS, cH, cD, cC

Card suits: spades, hearts, diamonds, clubs

Md, M8, M2, Mb, Mx, MX
Musical notation: crotchet (quarter note), quaver (eighth
note), semiquavers (sixteenth notes), flag sign, natural
signa, sharp sign

Fm, Ml Female, male

Accents on their own
’> Circumflex (same as caret, ^)

’! Grave (same as backtick, ‘)

’, Cedilla

’: Diaeresis (Umlaut)

’m Macron

’’ Acute

insert-files
This function allows you type a file pattern, and see the results of the expansion at
each step. When you hit return, all expansions are inserted into the command line.

bindkey ’^Xf’ insert-files

narrow-to-region [-p pre] [-P post]
[-S statepm | -R statepm] [-n] [start end])
narrow-to-region-invisible

Narrow the editable portion of the buffer to the region between the cursor and the
mark, which may be in either order. The region may not be empty.
narrow-to-region may be used as a widget or called as a function from a user-
defined widget; by default, the text outside the editable area remains visible. A

Chapter 26: User Contributions 310

recursive-edit is performed and the original widening status is then restored.
Various options and arguments are available when it is called as a function.

The options -p pretext and -P posttext may be used to replace the text before and
after the display for the duration of the function; either or both may be an empty
string.

If the option -n is also given, pretext or posttext will only be inserted if there is
text before or after the region respectively which will be made invisible.

Two numeric arguments may be given which will be used instead of the cursor and
mark positions.

The option -S statepm is used to narrow according to the other options while saving
the original state in the parameter with name statepm, while the option -R statepm
is used to restore the state from the parameter; note in both cases the name of
the parameter is required. In the second case, other options and arguments are
irrelevant. When this method is used, no recursive-edit is performed; the calling
widget should call this function with the option -S, perform its own editing on the
command line or pass control to the user via ‘zle recursive-edit’, then call this
function with the option -R. The argument statepm must be a suitable name for
an ordinary parameter, except that parameters beginning with the prefix _ntr_ are
reserved for use within narrow-to-region. Typically the parameter will be local
to the calling function.

narrow-to-region-invisible is a simple widget which calls narrow-to-region
with arguments which replace any text outside the region with ‘...’.

The display is restored (and the widget returns) upon any zle command which would
usually cause the line to be accepted or aborted. Hence an additional such command
is required to accept or abort the current line.

The return status of both widgets is zero if the line was accepted, else non-zero.

Here is a trivial example of a widget using this feature.

local state
narrow-to-region -p $’Editing restricted region\n’ \
-P ’’ -S state

zle recursive-edit
narrow-to-region -R state

insert-unicode-char
When first executed, the user inputs a set of hexadecimal digits. This is terminated
with another call to insert-unicode-char. The digits are then turned into the
corresponding Unicode character. For example, if the widget is bound to ^XU, the
character sequence ‘^XU 4 c ^XU’ inserts L (Unicode U+004c).

See insert-composed-char for a way of inserting characters using a two-character
mnemonic.

predict-on
This set of functions implements predictive typing using history search. After
predict-on, typing characters causes the editor to look backward in the history
for the first line beginning with what you have typed so far. After predict-off,
editing returns to normal for the line found. In fact, you often don’t even need to
use predict-off, because if the line doesn’t match something in the history, adding
a key performs standard completion, and then inserts itself if no completions were
found. However, editing in the middle of a line is liable to confuse prediction; see
the toggle style below.

Chapter 26: User Contributions 311

With the function based completion system (which is needed for this), you should be
able to type TAB at almost any point to advance the cursor to the next ‘‘interesting’’
character position (usually the end of the current word, but sometimes somewhere
in the middle of the word). And of course as soon as the entire line is what you
want, you can accept with return, without needing to move the cursor to the end
first.

The first time predict-on is used, it creates several additional widget functions:

delete-backward-and-predict
Replaces the backward-delete-char widget. You do not need to bind
this yourself.

insert-and-predict
Implements predictive typing by replacing the self-insert widget.
You do not need to bind this yourself.

predict-off
Turns off predictive typing.

Although you autoload only the predict-on function, it is necessary to create a
keybinding for predict-off as well.

zle -N predict-on
zle -N predict-off
bindkey ’^X^Z’ predict-on
bindkey ’^Z’ predict-off

read-from-minibuffer
This is most useful when called as a function from inside a widget, but will work
correctly as a widget in its own right. It prompts for a value below the current
command line; a value may be input using all of the standard zle operations (and
not merely the restricted set available when executing, for example, execute-named-
cmd). The value is then returned to the calling function in the parameter $REPLY
and the editing buffer restored to its previous state. If the read was aborted by a
keyboard break (typically ^G), the function returns status 1 and $REPLY is not set.

If one argument is supplied to the function it is taken as a prompt, otherwise ‘? ’
is used. If two arguments are supplied, they are the prompt and the initial value
of $LBUFFER, and if a third argument is given it is the initial value of $RBUFFER.
This provides a default value and starting cursor placement. Upon return the entire
buffer is the value of $REPLY.

One option is available: ‘-k num’ specifies that num characters are to be read instead
of a whole line. The line editor is not invoked recursively in this case, so depending
on the terminal settings the input may not be visible, and only the input keys are
placed in $REPLY, not the entire buffer. Note that unlike the read builtin num must
be given; there is no default.

The name is a slight misnomer, as in fact the shell’s own minibuffer is not used.
Hence it is still possible to call executed-named-cmd and similar functions while
reading a value.

replace-string, replace-pattern
replace-string-again, replace-pattern-again

The function replace-string implements two widgets. If defined under the same
name as the function, it prompts for two strings; the first (source) string will be
replaced by the second everywhere it occurs in the line editing buffer.

Chapter 26: User Contributions 312

If the widget name contains the word ‘pattern’, for example by defining the widget
using the command ‘zle -N replace-pattern replace-string’, then the replace-
ment is done by pattern matching. All zsh extended globbing patterns can be used
in the source string; note that unlike filename generation the pattern does not need
to match an entire word, nor do glob qualifiers have any effect. In addition, the
replacement string can contain parameter or command substitutions. Furthermore,
a ‘&’ in the replacement string will be replaced with the matched source string,
and a backquoted digit ‘\N ’ will be replaced by the Nth parenthesised expression
matched. The form ‘\{N}’ may be used to protect the digit from following digits.

By default the previous source or replacement string will not be offered for editing.
However, this feature can be activated by setting the style edit-previous in the
context :zle:widget (for example, :zle:replace-string) to true. In addition,
a positive numeric argument forces the previous values to be offered, a negative or
zero argument forces them not to be.

The function replace-string-again can be used to repeat the previous replace-
ment; no prompting is done. As with replace-string, if the name of the widget
contains the word ‘pattern’, pattern matching is performed, else a literal string
replacement. Note that the previous source and replacement text are the same
whether pattern or string matching is used.

For example, starting from the line:

print This line contains fan and fond

and invoking replace-pattern with the source string ‘f(?)n’ and the replacment
string ‘c\1r’ produces the not very useful line:

print This line contains car and cord

The range of the replacement string can be limited by using the narrow-to-region-
invisible widget. One limitation of the current version is that undo will cycle
through changes to the replacement and source strings before undoing the replace-
ment itself.

smart-insert-last-word
This function may replace the insert-last-word widget, like so:

zle -N insert-last-word smart-insert-last-word

With a numeric prefix, or when passed command line arguments in a call from
another widget, it behaves like insert-last-word, except that words in comments
are ignored when INTERACTIVE_COMMENTS is set.

Otherwise, the rightmost ‘‘interesting’’ word from the previous command is found
and inserted. The default definition of ‘‘interesting’’ is that the word contains at
least one alphabetic character, slash, or backslash. This definition may be overridden
by use of the match style. The context used to look up the style is the widget name,
so usually the context is :insert-last-word. However, you can bind this function
to different widgets to use different patterns:

zle -N insert-last-assignment smart-insert-last-word
zstyle :insert-last-assignment match ’[[:alpha:]][][[:alnum:]]#=*’
bindkey ’\e=’ insert-last-assignment

If no interesting word is found and the auto-previous style is set to a true value,
the search continues upward through the history. When auto-previous is unset or
false (the default), the widget must be invoked repeatedly in order to search earlier
history lines.

Chapter 26: User Contributions 313

which-command
This function is a drop-in replacement for the builtin widget which-command. It has
enhanced behaviour, in that it correctly detects whether or not the command word
needs to be expanded as an alias; if so, it continues tracing the command word from
the expanded alias until it reaches the command that will be executed.
The style whence is available in the context :zle:$WIDGET; this may be set to an
array to give the command and options that will be used to investigate the command
word found. The default is whence -c.

26.4.2 Utility Functions

These functions are useful in constructing widgets. They should be loaded with ‘autoload -U
function’ and called as indicated from user-defined widgets.

split-shell-arguments
This function splits the line currently being edited into shell arguments and white-
space. The result is stored in the array reply. The array contains all the parts
of the line in order, starting with any whitespace before the first argument, and
finishing with any whitespace after the last argument. Hence (so long as the option
KSH_ARRAYS is not set) whitespace is given by odd indices in the array and argu-
ments by even indices. Note that no stripping of quotes is done; joining together all
the elements of reply in order is guaranteed to produce the original line.
The parameter REPLY is set to the index of the word in reply which contains the
character after the cursor, where the first element has index 1. The parameter
REPLY2 is set to the index of the character under the cursor in that word, where the
first character has index 1.
Hence reply, REPLY and REPLY2 should all be made local to the enclosing function.
See the function modify-current-argument, described below, for an example of
how to call this function.

modify-current-argument expr-using-$ARG
This function provides a simple method of allowing user-defined widgets to modify
the command line argument under the cursor (or immediately to the left of the
cursor if the cursor is between arguments). The argument should be an expression
which when evaluated operates on the shell parameter ARG, which will have been set
to the command line argument under the cursor. The expression should be suitably
quoted to prevent it being evaluated too early.
For example, a user-defined widget containing the following code converts the char-
acters in the argument under the cursor into all upper case:

modify-current-argument ’${(U)ARG}’

The following strips any quoting from the current word (whether backslashes or one
of the styles of quotes), and replaces it with single quoting throughout:

modify-current-argument ’${(qq)${(Q)ARG}}’

26.4.3 Styles

The behavior of several of the above widgets can be controlled by the use of the zstyle mech-
anism. In particular, widgets that interact with the completion system pass along their context
to any completions that they invoke.

break-keys
This style is used by the incremental-complete-word widget. Its value should
be a pattern, and all keys matching this pattern will cause the widget to stop

Chapter 26: User Contributions 314

incremental completion without the key having any further effect. Like all styles
used directly by incremental-complete-word, this style is looked up using the
context ‘:incremental’.

completer
The incremental-complete-word and insert-and-predict widgets set up their
top-level context name before calling completion. This allows one to define differ-
ent sets of completer functions for normal completion and for these widgets. For
example, to use completion, approximation and correction for normal completion,
completion and correction for incremental completion and only completion for pre-
diction one could use:

zstyle ’:completion:*’ completer \
_complete _correct _approximate

zstyle ’:completion:incremental:*’ completer \
_complete _correct

zstyle ’:completion:predict:*’ completer \
_complete

It is a good idea to restrict the completers used in prediction, because they may
be automatically invoked as you type. The _list and _menu completers should
never be used with prediction. The _approximate, _correct, _expand, and _match
completers may be used, but be aware that they may change characters anywhere
in the word behind the cursor, so you need to watch carefully that the result is what
you intended.

cursor The insert-and-predict widget uses this style, in the context ‘:predict’, to de-
cide where to place the cursor after completion has been tried. Values are:

complete The cursor is left where it was when completion finished, but only if it
is after a character equal to the one just inserted by the user. If it is
after another character, this value is the same as ‘key’.

key The cursor is left after the nth occurrence of the character just inserted,
where n is the number of times that character appeared in the word
before completion was attempted. In short, this has the effect of leaving
the cursor after the character just typed even if the completion code
found out that no other characters need to be inserted at that position.

Any other value for this style unconditionally leaves the cursor at the position where
the completion code left it.

list When using the incremental-complete-word widget, this style says if the matches
should be listed on every key press (if they fit on the screen). Use the context prefix
‘:completion:incremental’.
The insert-and-predict widget uses this style to decide if the completion should
be shown even if there is only one possible completion. This is done if the value
of this style is the string always. In this case the context is ‘:predict’ (not
‘:completion:predict’).

match This style is used by smart-insert-last-word to provide a pattern (using full
EXTENDED_GLOB syntax) that matches an interesting word. The context is the name
of the widget to which smart-insert-last-word is bound (see above). The default
behavior of smart-insert-last-word is equivalent to:

zstyle :insert-last-word match ’*[[:alpha:]/\\]*’

However, you might want to include words that contain spaces:
zstyle :insert-last-word match ’*[[:alpha:][:space:]/\\]*’

Chapter 26: User Contributions 315

Or include numbers as long as the word is at least two characters long:
zstyle :insert-last-word match ’*([[:digit:]]?|[[:alpha:]/\\])*’

The above example causes redirections like "2>" to be included.

prompt The incremental-complete-word widget shows the value of this style in the sta-
tus line during incremental completion. The string value may contain any of the
following substrings in the manner of the PS1 and other prompt parameters:

%c Replaced by the name of the completer function that generated the
matches (without the leading underscore).

%l When the list style is set, replaced by ‘...’ if the list of matches is
too long to fit on the screen and with an empty string otherwise. If the
list style is ‘false’ or not set, ‘%l’ is always removed.

%n Replaced by the number of matches generated.

%s Replaced by ‘-no match-’, ‘-no prefix-’, or an empty string if there
is no completion matching the word on the line, if the matches have no
common prefix different from the word on the line, or if there is such a
common prefix, respectively.

%u Replaced by the unambiguous part of all matches, if there is any, and
if it is different from the word on the line.

Like ‘break-keys’, this uses the ‘:incremental’ context.

stop-keys
This style is used by the incremental-complete-word widget. Its value is
treated similarly to the one for the break-keys style (and uses the same context:
‘:incremental’). However, in this case all keys matching the pattern given as its
value will stop incremental completion and will then execute their usual function.

toggle This boolean style is used by predict-on and its related widgets in the context
‘:predict’. If set to one of the standard ‘true’ values, predictive typing is auto-
matically toggled off in situations where it is unlikely to be useful, such as when
editing a multi-line buffer or after moving into the middle of a line and then deleting
a character. The default is to leave prediction turned on until an explicit call to
predict-off.

verbose This boolean style is used by predict-on and its related widgets in the context
‘:predict’. If set to one of the standard ‘true’ values, these widgets display a
message below the prompt when the predictive state is toggled. This is most useful
in combination with the toggle style. The default does not display these messages.

widget This style is similar to the command style: For widget functions that use zle to
call other widgets, this style can sometimes be used to override the widget which is
called. The context for this style is the name of the calling widget (not the name of
the calling function, because one function may be bound to multiple widget names).

zstyle :copy-earlier-word widget smart-insert-last-word

Check the documentation for the calling widget or function to determine whether
the widget style is used.

26.5 Exception Handling

Two functions are provided to enable zsh to provide exception handling in a form that should
be familiar from other languages.

Chapter 26: User Contributions 316

throw exception
The function throw throws the named exception. The name is an arbitrary string
and is only used by the throw and catch functions. An exception is for the most
part treated the same as a shell error, i.e. an unhandled exception will cause the
shell to abort all processing in a function or script and to return to the top level in
an interactive shell.

catch exception-pattern
The function catch returns status zero if an exception was thrown and the
pattern exception-pattern matches its name. Otherwise it returns status 1.
exception-pattern is a standard shell pattern, respecting the current setting of the
EXTENDED_GLOB option. An alias catch is also defined to prevent the argument to
the function from matching filenames, so patterns may be used unquoted. Note that
as exceptions are not fundamentally different from other shell errors it is possible
to catch shell errors by using an empty string as the exception name. The shell
variable CAUGHT is set by catch to the name of the exception caught. It is possible
to rethrow an exception by calling the throw function again once an exception has
been caught.

The functions are designed to be used together with the always construct described in Section 6.3
[Complex Commands], page 11. This is important as only this construct provides the required
support for exceptions. A typical example is as follows.

{
"try" block
... nested code here calls "throw MyExcept"

} always {
"always" block
if catch MyExcept; then
print "Caught exception MyExcept"

elif catch ’’; then
print "Caught a shell error. Propagating..."
throw ’’

fi
Other exceptions are not handled but may be caught further
up the call stack.

}

If all exceptions should be caught, the following idiom might be preferable.

{
... nested code here throws an exception

} always {
if catch *; then
case $CAUGHT in
(MyExcept)
print "Caught my own exception"
;;
(*)
print "Caught some other exception"
;;

esac
fi

}

Chapter 26: User Contributions 317

In common with exception handling in other languages, the exception may be thrown by code
deeply nested inside the ‘try’ block. However, note that it must be thrown inside the current
shell, not in a subshell forked for a pipeline, parenthesised current-shell construct, or some form
of command or process substitution.

The system internally uses the shell variable EXCEPTION to record the name of the exception
between throwing and catching. One drawback of this scheme is that if the exception is not
handled the variable EXCEPTION remains set and may be incorrectly recognised as the name of
an exception if a shell error subsequently occurs. Adding unset EXCEPTION at the start of the
outermost layer of any code that uses exception handling will eliminate this problem.

26.6 MIME Functions

Three functions are available to provide handling of files recognised by extension, for example
to dispatch a file text.ps when executed as a command to an appropriate viewer.

zsh-mime-setup [-flv]
zsh-mime-handler

These two functions use the files ~/.mime.types and /etc/mime.types, which as-
sociate types and extensions, as well as ~/.mailcap and /etc/mailcap files, which
associate types and the programs that handle them. These are provided on many
systems with the Multimedia Internet Mail Extensions.
To enable the system, the function zsh-mime-setup should be autoloaded and run.
This allows files with extensions to be treated as executable; such files be completed
by the function completion system. The function zsh-mime-handler should not
need to be called by the user.
The system works by setting up suffix aliases with ‘alias -s’. Suffix aliases already
installed by the user will not be overwritten.
Repeated calls to zsh-mime-setup do not override the existing mapping between
suffixes and executable files unless the option -f is given. Note, however, that this
does not override existing suffix aliases assigned to handlers other than zsh-mime-
handler. Calling zsh-mime-setup with the option -l lists the existing mappings
without altering them. Calling zsh-mime-setup with the option -v causes verbose
output to be shown during the setup operation.
The system respects the mailcap flags needsterminal and copiousoutput, see
man page mailcap(4).
The functions use the following styles, which are defined with the zstyle builtin
command (Section 22.34 [The zsh/zutil Module], page 264). They should be de-
fined before zsh-mime-setup is run. The contexts used all start with :mime:, with
additional components in some cases. It is recommended that a trailing * (suitably
quoted) be appended to style patterns in case the system is extended in future.
Some examples are given below.

current-shell
If this boolean style is true, the mailcap handler for the context in
question is run using the eval builtin instead of by starting a new sh
process. This is more efficient, but may not work in the occasional cases
where the mailcap handler uses strict POSIX syntax.

execute-as-is
This style gives a list of patterns to be matched against files passed for
execution with a handler program. If the file matches the pattern, the
entire command line is executed in its current form, with no handler.

Chapter 26: User Contributions 318

This is useful for files which might have suffixes but nonetheless be exe-
cutable in their own right. If the style is not set, the pattern *(*) *(/)
is used; hence executable files are executed directly and not passed to a
handler, and the option AUTO_CD may be used to change to directories
that happen to have MIME suffixes.

file-path
Used if the style find-file-in-path is true for the same context. Set
to an array of directories that are used for searching for the file to be
handled; the default is the command path given by the special param-
eter path. The shell option PATH_DIRS is respected; if that is set, the
appropriate path will be searched even if the name of the file to be han-
dled as it appears on the command line contains a ‘/’. The full context
is :mime:.suffix:, as described for the style handler.

find-file-in-path
If set, allows files whose names do not contain absolute paths to be
searched for in the command path or the path specified by the file-
path style. If the file is not found in the path, it is looked for locally
(whether or not the current directory is in the path); if it is not found
locally, the handler will abort unless the handle-nonexistent style
is set. Files found in the path are tested as described for the style
execute-as-is. The full context is :mime:.suffix:, as described for
the style handler.

flags Defines flags to go with a handler; the context is as for the handler
style, and the format is as for the flags in mailcap.

handle-nonexistent
By default, arguments that don’t correspond to files are not passed to
the MIME handler in order to prevent it from intercepting commands
found in the path that happen to have suffixes. This style may be set to
an array of extended glob patterns for arguments that will be passed to
the handler even if they don’t exist. If it is not explicitly set it defaults
to [[:alpha:]]#:/* which allows URLs to be passed to the MIME
handler even though they don’t exist in that format in the file system.
The full context is :mime:.suffix:, as described for the style handler.

handler Specifies a handler for a suffix; the suffix is given by the context
as :mime:.suffix:, and the format of the handler is exactly that in
mailcap. Note in particular the ‘.’ and trailing colon to distinguish
this use of the context. This overrides any handler specified by the
mailcap files. If the handler requires a terminal, the flags style should
be set to include the word needsterminal, or if the output is to be
displayed through a pager (but not if the handler is itself a pager), it
should include copiousoutput.

mailcap A list of files in the format of ~/.mailcap and /etc/mailcap to be read
during setup, replacing the default list which consists of those two files.
The context is :mime:. A + in the list will be replaced by the default
files.

mailcap-priorities
This style is used to resolve multiple mailcap entries for the same MIME
type. It consists of an array of the following elements, in descending
order of priority; later entries will be used if earlier entries are unable

Chapter 26: User Contributions 319

to resolve the entries being compared. If none of the tests resolve the
entries, the first entry encountered is retained.

files The order of files (entries in the mailcap style) read. Earlier
files are preferred. (Note this does not resolve entries in the
same file.)

priority The priority flag from the mailcap entry. The priority is an
integer from 0 to 9 with the default value being 5.

flags The test given by the mailcap-prio-flags option is used
to resolve entries.

place Later entries are preferred; as the entries are strictly or-
dered, this test always succeeds.

Note that as this style is handled during initialisation, the context is
always :mime:, with no discrimination by suffix.

mailcap-prio-flags
This style is used when the keyword flags is encountered in the list of
tests specified by the mailcap-priorities style. It should be set to a
list of patterns, each of which is tested against the flags specified in the
mailcap entry (in other words, the sets of assignments found with some
entries in the mailcap file). Earlier patterns in the list are preferred to
later ones, and matched patterns are preferred to unmatched ones.

mime-types
A list of files in the format of ~/.mime.types and /etc/mime.types to
be read during setup, replacing the default list which consists of those
two files. The context is :mime:. A + in the list will be replaced by the
default files.

never-background
If this boolean style is set, the handler for the given context is always
run in the foreground, even if the flags provided in the mailcap entry
suggest it need not be (for example, it doesn’t require a terminal).

pager If set, will be used instead of $PAGER or more to handle suffixes where
the copiousoutput flag is set. The context is as for handler, i.e.
:mime:.suffix: for handling a file with the given suffix.

Examples:
zstyle ’:mime:*’ mailcap ~/.mailcap /usr/local/etc/mailcap
zstyle ’:mime:.txt:’ handler less %s
zstyle ’:mime:.txt:’ flags needsterminal

When zsh-mime-setup is subsequently run, it will look for mailcap entries in the
two files given. Files of suffix .txt will be handled by running ‘less file.txt’. The
flag needsterminal is set to show that this program must run attached to a terminal.
As there are several steps to dispatching a command, the following should be checked
if attempting to execute a file by extension .ext does not have the expected effect.
The command ‘alias -s ext’ should show ‘ps=zsh-mime-handler’. If it shows
something else, another suffix alias was already installed and was not overwritten.
If it shows nothing, no handler was installed: this is most likely because no handler
was found in the .mime.types and mailcap combination for .ext files. In that
case, appropriate handling should be added to ~/.mime.types and mailcap.

Chapter 26: User Contributions 320

If the extension is handled by zsh-mime-handler but the file is not opened correctly,
either the handler defined for the type is incorrect, or the flags associated with it are
in appropriate. Running zsh-mime-setup -l will show the handler and, if there
are any, the flags. A %s in the handler is replaced by the file (suitably quoted if
necessary). Check that the handler program listed lists and can be run in the way
shown. Also check that the flags needsterminal or copiousoutput are set if the
handler needs to be run under a terminal; the second flag is used if the output should
be sent to a pager. An example of a suitable mailcap entry for such a program is:

text/html; /usr/bin/lynx ’%s’; needsterminal

pick-web-browser
This function is separate from the two MIME functions described above and can be
assigned directly to a suffix:

autoload -U pick-web-browser
alias -s html=pick-web-browser

It is provided as an intelligent front end to dispatch a web browser. It may be run
as either a function or a shell script. The status 255 is returned if no browser could
be started.
Various styles are available to customize the choice of browsers:

browser-style
The value of the style is an array giving preferences in decreasing order
for the type of browser to use. The values of elements may be

running Use a GUI browser that is already running when an X
Window display is available. The browsers listed in the
x-browsers style are tried in order until one is found; if
it is, the file will be displayed in that browser, so the user
may need to check whether it has appeared. If no running
browser is found, one is not started. Browsers other than
Firefox, Opera and Konqueror are assumed to understand
the Mozilla syntax for opening a URL remotely.

x Start a new GUI browser when an X Window display is
available. Search for the availability of one of the browsers
listed in the x-browsers style and start the first one that
is found. No check is made for an already running browser.

tty Start a terminal-based browser. Search for the availability
of one of the browsers listed in the tty-browsers style and
start the first one that is found.

If the style is not set the default running x tty is used.

x-browsers
An array in decreasing order of preference of browsers to use when run-
ning under the X Window System. The array consists of the command
name under which to start the browser. They are looked up in the
context :mime: (which may be extended in future, so appending ‘*’ is
recommended). For example,

zstyle ’:mime:*’ x-browsers opera konqueror firefox

specifies that pick-web-browser should first look for a runing instance
of Opera, Konqueror or Firefox, in that order, and if it fails to find
any should attempt to start Opera. The default is firefox mozilla
netscape opera konqueror.

Chapter 26: User Contributions 321

tty-browsers
An array similar to x-browsers, except that it gives browsers to use use
when no X Window display is available. The default is elinks links
lynx.

command If it is set this style is used to pick the command used to open a page
for a browser. The context is :mime:browser:new:$browser: to start
a new browser or :mime:browser:running:$browser: to open a URL
in a browser already runing on the current X display, where $browser
is the value matched in the x-browsers or tty-browsers style. The
escape sequence %b in the style’s value will be replaced by the browser,
while %u will be replaced by the URL. If the style is not set, the default
for all new instances is equivalent to %b %u and the defaults for using
running browsers are equivalent to the values kfmclient openURL %u
for Konqueror, firefox -new-tab %u for Firefox, opera -newpage %u
for Opera, and %b -remote "openUrl(%u)" for all others.

26.7 Mathematical Functions

zcalc [expression ...]
A reasonably powerful calculator based on zsh’s arithmetic evaluation facility. The
syntax is similar to that of formulae in most programming languages; see Chap-
ter 11 [Arithmetic Evaluation], page 24 for details. The mathematical library
zsh/mathfunc will be loaded if it is available; see Section 22.14 [The zsh/mathfunc
Module], page 242. The mathematical functions correspond to the raw system li-
braries, so trigonometric functions are evaluated using radians, and so on.

Each line typed is evaluated as an expression. The prompt shows a number, which
corresponds to a positional parameter where the result of that calculation is stored.
For example, the result of the calculation on the line preceded by ‘4> ’ is available
as $4. The last value calculated is available as ans. Full command line editing,
including the history of previous calculations, is available; the history is saved in
the file ~/.zcalc_history. To exit, enter a blank line or type ‘q’ on its own.

If arguments are given to zcalc on start up, they are used to prime the first few
positional parameters. A visual indication of this is given when the calculator starts.

The constants PI (3.14159...) and E (2.71828...) are provided. Parameter assign-
ment is possible, but note that all parameters will be put into the global namespace.

The output base can be initialised by passing the option ‘-#base’, for example ‘zcalc
-#16’ (the ‘#’ may have to be quoted, depending on the globbing options set).

The prompt is configurable via the parameter ZCALCPROMPT, which undergoes stan-
dard prompt expansion. The index of the current entry is stored locally in the first
element of the array psvar, which can be referred to in ZCALCPROMPT as ‘%1v’. The
default prompt is ‘%1v> ’.

The output precision may be specified within zcalc by special commands familiar
from many calculators:

norm The default output format. It corresponds to the printf %g specification.
Typically this shows six decimal digits.

sci digits Scientific notation, corresponding to the printf %g output format with
the precision given by digits. This produces either fixed point or expo-
nential notation depending on the value output.

Chapter 26: User Contributions 322

fix digits Fixed point notation, corresponding to the printf %f output format with
the precision given by digits.

eng digits Exponential notation, corresponding to the printf %E output format with
the precision given by digits.

Other special commands:

local arg ...
Declare variables local to the function. Note that certain variables are
used by the function for its own purposes. Other variables may be used,
too, but they will be taken from or put into the global scope.

function name [body]
Define a mathematical function or (with no body) delete it. The func-
tion is defined using zmathfuncdef, see below.
Note that zcalc takes care of all quoting. Hence for example:

function cube $1 * $1 * $1

defines a function to cube the sole argument.

[#base] When this syntax appears on a line by itself, the default output radix
is set to base. Use, for example, ‘[#16]’ to display hexadecimal output
preceded by an indication of the base, or ‘[##16]’ just to display the
raw number in the given base. Bases themselves are always specified
in decimal. ‘[#]’ restores the normal output format. Note that setting
an output base suppresses floating point output; use ‘[#]’ to return to
normal operation.

See the comments in the function for a few extra tips.

zmathfuncdef mathfunc [body]
A convenient front end to functions -M.
With two arguments, define a mathematical function named mathfunc which can
be used in any form of arithmetic evaluation. body is a mathematical expression to
implement the function. It may contain references to position parameters $1, $2,
... to refer to mandatory parameters and ${1:-defvalue} ... to refer to optional
parameters. Note that the forms must be strictly adhered to for the function to
calculate the correct number of arguments. The implementation is held in a shell
function named zsh_math_func_mathfunc; usually the user will not need to refer
to the shell function directly.
With one argument, remove the mathematical function mathfunc as well as the shell
function implementation.

26.8 User Configuration Functions

The zsh/newuser module comes with a function to aid in configuring shell options for new
users. If the module is installed, this function can also be run by hand. It is available even if
the module’s default behaviour, namely running the function for a new user logging in without
startup files, is inhibited.

zsh-newuser-install [-f]
The function presents the user with various options for customizing their initializa-
tion scripts. Currently only ~/.zshrc is handled. $ZDOTDIR/.zshrc is used instead
if the parameter ZDOTDIR is set; this provides a way for the user to configure a file
without altering an existing .zshrc.

Chapter 26: User Contributions 323

By default the function exits immediately if it finds any of the files .zshenv,
.zprofile, .zshrc, or .zlogin in the appropriate directory. The option -f is
required in order to force the function to continue. Note this may happen even if
.zshrc itself does not exist.
As currently configured, the function will exit immediately if the user has root
privileges; this behaviour cannot be overridden.
Once activated, the function’s behaviour is supposed to be self-explanatory. Menus
are present allowing the user to alter the value of options and parameters. Sugges-
tions for improvements are always welcome.
When the script exits, the user is given the opportunity to save the new file or not;
changes are not irreversible until this point. However, the script is careful to re-
strict changes to the file only to a group marked by the lines ‘# Lines configured
by zsh-newuser-install’ and ‘# End of lines configured by zsh-newuser-
install’. In addition, the old version of .zshrc is saved to a file with the suffix
.zni appended.
If the function edits an existing .zshrc, it is up to the user to ensure that the
changes made will take effect. For example, if control usually returns early from
the existing .zshrc the lines will not be executed; or a later initialization file may
override options or parameters, and so on. The function itself does not attempt to
detect any such conflicts.

26.9 Other Functions

There are a large number of helpful functions in the Functions/Misc directory of the zsh
distribution. Most are very simple and do not require documentation here, but a few are worthy
of special mention.

26.9.1 Descriptions

colors This function initializes several associative arrays to map color names to (and from)
the ANSI standard eight-color terminal codes. These are used by the prompt theme
system (Section 26.3 [Prompt Themes], page 300). You seldom should need to run
colors more than once.
The eight base colors are: black, red, green, yellow, blue, magenta, cyan, and white.
Each of these has codes for foreground and background. In addition there are eight
intensity attributes: bold, faint, standout, underline, blink, reverse, and conceal.
Finally, there are six codes used to negate attributes: none (reset all attributes to
the defaults), normal (neither bold nor faint), no-standout, no-underline, no-blink,
and no-reverse.
Some terminals do not support all combinations of colors and intensities.
The associative arrays are:

color
colour Map all the color names to their integer codes, and integer codes to the

color names. The eight base names map to the foreground color codes,
as do names prefixed with ‘fg-’, such as ‘fg-red’. Names prefixed with
‘bg-’, such as ‘bg-blue’, refer to the background codes. The reverse
mapping from code to color yields base name for foreground codes and
the bg- form for backgrounds.
Although it is a misnomer to call them ‘colors’, these arrays also map
the other fourteen attributes from names to codes and codes to names.

Chapter 26: User Contributions 324

fg
fg bold
fg no bold

Map the eight basic color names to ANSI terminal escape sequences
that set the corresponding foreground text properties. The fg sequences
change the color without changing the eight intensity attributes.

bg
bg bold
bg no bold

Map the eight basic color names to ANSI terminal escape sequences
that set the corresponding background properties. The bg sequences
change the color without changing the eight intensity attributes.

In addition, the scalar parameters reset_color and bold_color are set to the ANSI
terminal escapes that turn off all attributes and turn on bold intensity, respectively.

fned name
Same as zed -f. This function does not appear in the zsh distribution, but can be
created by linking zed to the name fned in some directory in your fpath.

is-at-least needed [present]
Perform a greater-than-or-equal-to comparison of two strings having the format of
a zsh version number; that is, a string of numbers and text with segments separated
by dots or dashes. If the present string is not provided, $ZSH_VERSION is used.
Segments are paired left-to-right in the two strings with leading non-number parts
ignored. If one string has fewer segments than the other, the missing segments are
considered zero.
This is useful in startup files to set options and other state that are not available in
all versions of zsh.

is-at-least 3.1.6-15 && setopt NO_GLOBAL_RCS
is-at-least 3.1.0 && setopt HIST_REDUCE_BLANKS
is-at-least 2.6-17 || print "You can’t use is-at-least here."

nslookup [arg ...]
This wrapper function for the nslookup command requires the zsh/zpty module
(see Section 22.32 [The zsh/zpty Module], page 262). It behaves exactly like the
standard nslookup except that it provides customizable prompts (including a right-
side prompt) and completion of nslookup commands, host names, etc. (if you use the
function-based completion system). Completion styles may be set with the context
prefix ‘:completion:nslookup’.
See also the pager, prompt and rprompt styles below.

run-help cmd
This function is designed to be invoked by the run-help ZLE widget, in place of
the default alias. See ‘Accessing On-Line Help’ (Section 26.2 [Utilities], page 296)
for setup instructions.
In the discussion which follows, if cmd is a filesystem path, it is first reduced to its
rightmost component (the file name).
Help is first sought by looking for a file named cmd in the directory named by the
HELPDIR parameter. If no file is found, an assistant function, alias, or command
named run-help-cmd is sought. If found, the assistant is executed with the rest of
the current command line (everything after the command name cmd) as its argu-
ments. When neither file nor assistant is found, the external command ‘man cmd’ is
run.

Chapter 26: User Contributions 325

An example assistant for the "ssh" command:
run-help-ssh() {

emulate -LR zsh
local -a args
Delete the "-l username" option
zparseopts -D -E -a args l:
Delete other options, leaving: host command
args=(${@:#-*})
if [[${#args} -lt 2]]; then

man ssh
else

run-help $args[2]
fi

}

Several of these assistants are provided in the Functions/Misc directory. These
must be autoloaded, or placed as executable scripts in your search path, in order to
be found and used by run-help.

run-help-git
run-help-svk
run-help-svn

Assistant functions for the git, svk, and svn commands.

tetris Zsh was once accused of not being as complete as Emacs, because it lacked a Tetris
game. This function was written to refute this vicious slander.
This function must be used as a ZLE widget:

autoload -U tetris
zle -N tetris
bindkey keys tetris

To start a game, execute the widget by typing the keys. Whatever command line you
were editing disappears temporarily, and your keymap is also temporarily replaced
by the Tetris control keys. The previous editor state is restored when you quit the
game (by pressing ‘q’) or when you lose.
If you quit in the middle of a game, the next invocation of the tetris widget will
continue where you left off. If you lost, it will start a new game.

zargs [option ... --] [input ...] [-- command [arg ...]]
This function works like GNU xargs, except that instead of reading lines of argu-
ments from the standard input, it takes them from the command line. This is useful
because zsh, especially with recursive glob operators, often can construct a com-
mand line for a shell function that is longer than can be accepted by an external
command.
The option list represents options of the zargs command itself, which are the same
as those of xargs. The input list is the collection of strings (often file names) that
become the arguments of the command, analogous to the standard input of xargs.
Finally, the arg list consists of those arguments (usually options) that are passed to
the command each time it runs. The arg list precedes the elements from the input
list in each run. If no command is provided, then no arg list may be provided, and
in that event the default command is ‘print’ with arguments ‘-r --’.
For example, to get a long ls listing of all plain files in the current directory or its
subdirectories:

autoload -U zargs

Chapter 26: User Contributions 326

zargs -- **/*(.) -- ls -l

Note that ‘--’ is used both to mark the end of the option list and to mark the end
of the input list, so it must appear twice whenever the input list may be empty. If
there is guaranteed to be at least one input and the first input does not begin with
a ‘-’, then the first ‘--’ may be omitted.

In the event that the string ‘--’ is or may be an input, the -e option may be used to
change the end-of-inputs marker. Note that this does not change the end-of-options
marker. For example, to use ‘..’ as the marker:

zargs -e.. -- **/*(.) .. ls -l

This is a good choice in that example because no plain file can be named ‘..’, but
the best end-marker depends on the circumstances.

For details of the other zargs options, see man page xargs(1) or run zargs with the
--help option.

zed [-f] name
zed -b This function uses the ZLE editor to edit a file or function.

Only one name argument is allowed. If the -f option is given, the name is taken to
be that of a function; if the function is marked for autoloading, zed searches for it
in the fpath and loads it. Note that functions edited this way are installed into the
current shell, but not written back to the autoload file.

Without -f, name is the path name of the file to edit, which need not exist; it is
created on write, if necessary.

While editing, the function sets the main keymap to zed and the vi command
keymap to zed-vicmd. These will be copied from the existing main and vicmd
keymaps if they do not exist the first time zed is run. They can be used to provide
special key bindings used only in zed.

If it creates the keymap, zed rebinds the return key to insert a line break and
‘^X^W’ to accept the edit in the zed keymap, and binds ‘ZZ’ to accept the edit in the
zed-vicmd keymap.

The bindings alone can be installed by running ‘zed -b’. This is suitable for putting
into a startup file. Note that, if rerun, this will overwrite the existing zed and zed-
vicmd keymaps.

Completion is available, and styles may be set with the context prefix
‘:completion:zed’.

A zle widget zed-set-file-name is available. This can be called by name from
within zed using ‘\ex zed-set-file-name’ (note, however, that because of zed’s
rebindings you will have to type ^j at the end instead of the return key), or can be
bound to a key in either of the zed or zed-vicmd keymaps after ‘zed -b’ has been
run. When the widget is called, it prompts for a new name for the file being edited.
When zed exits the file will be written under that name and the original file will be
left alone. The widget has no effect with ‘zed -f’.

While zed-set-file-name is running, zed uses the keymap zed-normal-keymap,
which is linked from the main keymap in effect at the time zed initialised its bindings.
(This is to make the return key operate normally.) The result is that if the main
keymap has been changed, the widget won’t notice. This is not a concern for most
users.

Chapter 26: User Contributions 327

zcp [-finqQvwW] srcpat dest
zln [-finqQsvwW] srcpat dest

Same as zmv -C and zmv -L, respectively. These functions do not appear in the zsh
distribution, but can be created by linking zmv to the names zcp and zln in some
directory in your fpath.

zkbd See ‘Keyboard Definition’ (Section 26.2 [Utilities], page 296).

zmv [-finqQsvwW] [-C | -L | -M | -p program] [-o optstring] srcpat dest
Move (usually, rename) files matching the pattern srcpat to corresponding files hav-
ing names of the form given by dest, where srcpat contains parentheses surrounding
patterns which will be replaced in turn by $1, $2, ... in dest. For example,

zmv ’(*).lis’ ’$1.txt’

renames ‘foo.lis’ to ‘foo.txt’, ‘my.old.stuff.lis’ to ‘my.old.stuff.txt’, and
so on.
The pattern is always treated as an EXTENDED_GLOB pattern. Any file whose name
is not changed by the substitution is simply ignored. Any error (a substitution
resulted in an empty string, two substitutions gave the same result, the destination
was an existing regular file and -f was not given) causes the entire function to abort
without doing anything.
Options:

-f Force overwriting of destination files. Not currently passed down to the
mv/cp/ln command due to vagaries of implementations (but you can
use -o-f to do that).

-i Interactive: show each line to be executed and ask the user whether to
execute it. ‘Y’ or ‘y’ will execute it, anything else will skip it. Note that
you just need to type one character.

-n No execution: print what would happen, but don’t do it.

-q Turn bare glob qualifiers off: now assumed by default, so this has no
effect.

-Q Force bare glob qualifiers on. Don’t turn this on unless you are actually
using glob qualifiers in a pattern.

-s Symbolic, passed down to ln; only works with -L.

-v Verbose: print each command as it’s being executed.

-w Pick out wildcard parts of the pattern, as described above, and implicitly
add parentheses for referring to them.

-W Just like -w, with the addition of turning wildcards in the replacement
pattern into sequential ${1} .. ${N} references.

-C
-L
-M Force cp, ln or mv, respectively, regardless of the name of the function.

-p program
Call program instead of cp, ln or mv. Whatever it does, it should at
least understand the form

program -- oldname newname

where oldname and newname are filenames generated by zmv.

Chapter 26: User Contributions 328

-o optstring
The optstring is split into words and passed down verbatim to the cp,
ln or mv command called to perform the work. It should probably begin
with a ‘-’.

Further examples:
zmv -v ’(* *)’ ’${1// /_}’

For any file in the current directory with at least one space in the name, replace
every space by an underscore and display the commands executed.
For more complete examples and other implementation details, see the zmv
source file, usually located in one of the directories named in your fpath, or in
Functions/Misc/zmv in the zsh distribution.

zrecompile
See ‘Recompiling Functions’ (Section 26.2 [Utilities], page 296).

zstyle+ context style value [+ subcontext style value ...]
This makes defining styles a bit simpler by using a single ‘+’ as a special token that
allows you to append a context name to the previously used context name. Like
this:

zstyle+ ’:foo:bar’ style1 value1 \
+ ’:baz’ style2 value2 \
+ ’:frob’ style3 value3

This defines ‘style1’ with ‘value1’ for the context :foo:bar as usual, but it also
defines ‘style2’ with ‘value2’ for the context :foo:bar:baz and ‘style3’ with ‘value3’
for :foo:bar:frob. Any subcontext may be the empty string to re-use the first
context unchanged.

26.9.2 Styles

insert-tab
The zed function sets this style in context ‘:completion:zed:*’ to turn off comple-
tion when TAB is typed at the beginning of a line. You may override this by setting
your own value for this context and style.

pager The nslookup function looks up this style in the context ‘:nslookup’ to determine
the program used to display output that does not fit on a single screen.

prompt
rprompt The nslookup function looks up this style in the context ‘:nslookup’ to set the

prompt and the right-side prompt, respectively. The usual expansions for the PS1
and RPS1 parameters may be used (see Chapter 13 [Prompt Expansion], page 28).

Concept Index 329

Concept Index

$
$0, setting . 83

-
–help . 6
–version . 6

.

.zwc files, creation . 113

A
acquiring zsh by FTP . 1
aliases, completion of . 74
aliases, defining . 91
aliases, expansion . 80
aliases, global . 14
aliases, listing . 91
aliases, removing . 111
aliasing . 14
alternate forms for complex commands. 13
always blocks . 12
ambiguous completion . 75
annoying keyboard, sun . 81
argument splitting, in typeset etc. 85
arithmetic base . 24
arithmetic evaluation . 24
arithmetic expansion . 46
arithmetic operators . 25
array assignment . 58
array expansion style, rc . 38
array parameters, setting . 105
array style, ksh . 85
arrays, behaviour of index zero 85
arrays, ksh style. 85
assignment . 57
author . 1
autoloading functions . 19, 92
availability of zsh . 1

B
background jobs, I/O . 23
background jobs, notification . 82
background jobs, priority of . 82
bases, in arithmetic . 24
bases, output in C format . 83
bash, BASH REMATCH variable 84
beep, ambiguous completion . 75
beep, enabling . 87
beep, history . 78
binding keys . 121
binding widgets . 123
bindings, key . 119
brace expansion . 46
brace expansion, disabling . 76
brace expansion, extending. 75
builtin commands . 91

builtins, utility . 264

C
calendar function system . 268
calling widgets . 123
capabilities, getting from files 228
capabilities, setting . 228
capabilities, setting on files . 228
case selection . 11
case-insensitive globbing, option 75
case-insensitive regular expression matches, option

. 76
cd, automatic . 73
cd, behaving like pushd . 73
cd, to parameter . 73
cd, with .. in argument . 73
character classes . 48
characters, multibyte, in expansion and globbing . . 77
clobbering, of files . 80
cloning the shell . 228
colon modifiers . 34
command execution . 19
command execution, enabling 83
command hashing . 81
command not found, handling of 19
command substitution . 46
commands, alternate forms for complex 13
commands, builtin . 91
commands, complex . 11
commands, disabling . 94
commands, enabling . 95
commands, simple . 9
commands, tracing . 84
comments . 14
comments, in interactive shells 81
compatibility . 7
compatibility, csh . 95
compatibility, ksh . 95
compatibility, sh . 95
compdef, use of by compinit 161
compilation . 113
completion system . 158
completion system, adding definitions 163
completion system, autoloaded functions 161
completion system, bindable commands 195
completion system, choosing completers 190
completion system, completers 191
completion system, configuration 164
completion system, directory structure 218
completion system, initializing 160
completion system, installing 159
completion system, styles . 170
completion system, tags . 166
completion system, utility functions 197
completion widgets, adding specified matches. . . . 149
completion widgets, condition codes 155
completion widgets, creating 124
completion widgets, examining and setting state in

. 145
completion widgets, example 158

Concept Index 330

completion widgets, modifying special parameters
. 153

completion, ambiguous . 75
completion, beep on ambiguous 75
completion, coloured listings 229
completion, controlling 144, 158, 218
completion, exact matches . 75
completion, listing . 75, 229
completion, listing choices . 73
completion, listing choices, bash style 74
completion, listing order . 75
completion, menu . 73, 75
completion, programmable 144, 158, 218
completion, scroll listings . 229
completion, selecting by cursor 231
completion, utility . 234
completion, widgets . 144
complex commands. 11
conditional expression . 13
conditional expressions . 26
continuing jobs automatically 82
continuing loops . 93
coprocess . 9
correction, spelling . 80
csh, compatibility . 95
csh, history style . 85
csh, loop style . 85
csh, null command style . 68
csh, null globbing style . 76
csh, quoting style . 85
csh, redirections with no command 85

D
date string, printing . 239
DEBUG trap, before or after command 83
defining widgets . 123
descriptors, file . 15
directories, changing . 92
directories, hashing . 81
directories, marking . 77
directories, named . 47, 74
directory stack, controlling syntax 73
directory stack, ignoring duplicates 73
directory stack, printing . 94
directory stack, silencing . 73
disabling brace expansion . 76
disabling commands . 94
disowning jobs . 23
doing nothing . 91
doing nothing, successfully . 107
doing nothing, unsuccessfully 95

E
echo, BSD compatible . 85
editing history . 96
editing over slow connection . 66
editing parameters . 123
editor ksh style . 119
editor, enabling . 88
editor, line. 119
editor, overstrike mode . 88
editor, single line mode . 88

eight bit characters, printing . 81
enable globbing qualifiers . 75
enable history substitution . 78
enabling commands . 95
enabling globbing . 76
enabling the beep . 87
enabling the editor . 88
environment, and local parameters 80
EOF, ignoring . 80
evaluating arguments as commands 95
evaluation, arithmetic . 24
event designators, history . 33
execution, of commands . 19
execution, timed . 246
exit status, printing . 81
exit status, trapping . 83
exiting loops . 92
exiting, checking jobs when . 82
expanding parameters . 91
expansion . 32
expansion style, sh . 86
expansion, arithmetic . 46
expansion, brace . 46
expansion, brace, disabling . 76
expansion, brace, extending . 75
expansion, filename. 46
expansion, history . 32
expansion, parameter . 36
expansion, prompt . 28
export, automatic . 80
exporting, and local parameters 80
expressions, conditional . 26

F
field splitting, sh style . 86
field splitting, sh style, parameter 39
file clobbering, allowing . 80
file descriptors . 15
file descriptors, waiting for . 263
file, history . 97
filename expansion . 46
filename expansion, = . 76
filename generation . 47
filename generation, bad pattern 75
files used . 8
files, examining . 248
files, global startup, inhibiting 80
files, listing . 248
files, manipulating . 239
files, marking type of . 75
files, shutdown . 8
files, startup . 8
files, transferring . 254
flags, parameter expansion . 39
flags, shell . 6
floating point parameters . 25
flow control . 80
for loops . 11
FTP . 254
FTP sites for zsh . 1
FTP, functions for using shell as client 288
FTP, starting a session . 254
function return, on error . 83

Concept Index 331

functions . 19
functions, autoloading . 19, 92
functions, math, use of . 25
functions, mathematical . 242
functions, profiling . 261
functions, recompiling . 297
functions, removing . 111
functions, returning from . 104

G
globbing . 32
globbing modifiers . 34
globbing qualifiers, enable. 75
globbing style, sh . 77
globbing, bad pattern . 75
globbing, enabling . 76
globbing, extended . 76
globbing, no matches . 77
globbing, null, style, csh . 76
globbing, of . files . 76
globbing, qualifiers . 53
globbing, sorting numerically . 77
grammar, shell . 9

H
hashing, of commands . 81
hashing, of directories . 81
helpfiles utility . 296
hexadecimal, output in C format 83
history . 32
history beeping . 78
history event designators . 33
history expansion . 32
history modifiers . 34
history style, csh . 85
history word designators . 33
history, appending to a file . 78
history, editing . 96
history, enable substitution . 78
history, expiring duplicates . 78
history, file . 97
history, ignoring all duplicates 78
history, ignoring duplicates . 78
history, ignoring duplicates in search 78
history, ignoring spaces . 78
history, incremental appending to a file 79
history, sharing . 79
history, stack . 96
history, timestamping . 78
history, verifying substitution 79

I
identifiers, non-portable characters in 86
if construct . 11
input, tracing . 84
integer parameters . 25
introduction . 1
invocation . 6
invoking widgets . 123

J
job control, allowing . 82
jobs . 22
jobs, background priority . 82
jobs, background, I/O . 23
jobs, backgrounding . 92
jobs, continuing automatically 82
jobs, disowning . 23, 94
jobs, foregrounding . 97
jobs, HUP . 82
jobs, killing . 99
jobs, list format . 82
jobs, referring to . 23
jobs, resuming . 97
jobs, resuming automatically . 82
jobs, suspending . 23
jobs, waiting for . 112

K
key bindings . 119
keyboard definition . 298
keymaps . 119, 121
keys, binding . 121
keys, rebinding . 121
killing jobs . 99
ksh compatibility . 7
ksh, argument splitting in typeset 85
ksh, array style . 85
ksh, compatibility . 95
ksh, editor mode . 119
ksh, null command style . 68
ksh, option printing style . 85
ksh, redirections with no command 86
ksh, single letter options style 86

L
limits, resource . 99, 111, 112
line editor . 119
line number, in evaluated expression 83
line, reading . 97
links, symbolic . 73
list . 10
loading modules. 115
logging out, checking jobs when 82
long option . 6
loop style, csh . 85
loops, continuing . 93
loops, exiting . 92
loops, for . 11
loops, repeat . 11
loops, until . 11
loops, while . 11

M
mail, warning of reading . 81
mailing lists . 2
marking directories . 77
marking file types . 75
mathematical functions . 242
mathematical functions, use of 25
mode, privileged . 87

Concept Index 332

modifiers . 34
modifiers, precommand . 10
modules . 227
modules, example . 239
modules, loading . 115
modules, writing . 239
multibyte characters, in expansion and globbing . . 77
multios . 17

N
named directories . 47
notification of background jobs 82
null command style. 68
null globbing style, csh . 76

O
octal, arithmetic expressions . 84
octal, output in C format . 83
operators, arithmetic . 25
option printing style, ksh . 85
option printing, ksh style . 85
options . 72
options, aliases . 88
options, description . 72
options, processing . 98
options, setting . 105
options, shell . 6
options, single letter . 88
options, single letter, ksh style 86
options, specifying . 72
options, unsetting . 112
overstrike mode, of editor . 88

P
parameter expansion . 36
parameter expansion flags . 39
parameter expansion style, rc 77
parameter modifiers . 34
parameter names, non-portable characters in 86
parameter, file access via . 241
parameters . 57
parameters, declaring . 107
parameters, editing . 123
parameters, editor . 128
parameters, expanding . 91
parameters, floating point . 25
parameters, integer . 25
parameters, listing . 105
parameters, marking readonly 104
parameters, positional . 105, 106
parameters, setting . 107
parameters, setting array . 105
parameters, special . 244, 260
parameters, substituting unset 77
parameters, unsetting . 112
parameters, warning when created globally 78
parameters, zle . 128
path search, extended . 81
PCRE, regexp . 77
pipeline . 9
precedence of glob operators . 50

precommand modifiers . 10
priority of background jobs . 82
privileged mode . 87
process substitution . 35
prompt expansion . 28
prompt, ! expansion . 82
prompt, % expansion . 83
prompt, parameter expansion 83
prompt, save partial lines . 82
prompt, with CR . 82
pushd, making cd behave like 73
pushd, to home . 73

Q
qualifiers, globbing . 53
querying before rm * . 81
quoting . 14
quoting style, csh . 85
quoting style, rc . 81

R
rc, array expansion style . 38
rc, parameter expansion style 77
rc, quoting style . 81
reading a line . 97
rebinding keys . 121
rebinding widgets . 123
redirection . 15
redirections with no command, csh 85
redirections with no command, ksh 86
redirections with no command, sh 86
referring to jobs . 23
regex . 246
regexp, bash BASH REMATCH variable 84
regexp, PCRE . 77
regular expressions . 246
regular expressions, case-insensitive matching, option

. 76
regular expressions, perl-compatible 246
repeat loops . 11
reporter utility . 299
reserved words . 14
resource limits . 99, 111, 112
restricted shell . 7, 87
resuming jobs automatically . 82
return from function, on error 83
rm *, querying before . 81
rm *, waiting before . 81
roadmap . 4

S
select, system call . 263
selection, case . 11
selection, user . 11
sh compatibility . 7
sh, compatibility . 95
sh, expansion style . 86
sh, field splitting style . 86
sh, field splitting style, parameter 39
sh, globbing style . 77
sh, redirections with no command 86

Concept Index 333

sh, single letter options style . 86
share history . 79
shell flags . 6
shell grammar . 9
shell options . 6
shell, cloning . 228
shell, suspending . 106
shell, timing . 106
shutdown files . 8
signals, trapping . 21, 106
simple commands . 9
single command . 87
single letter options . 88
single letter options, ksh style 86
slash, removing trailing . 74
slow connection, editing over . 66
sockets . 247
sockets, closing TCP . 253
sockets, inbound TCP . 252
sockets, inbound Unix domain. 247
sockets, outbound TCP . 252
sockets, outbound Unix domain 247
sockets, TCP . 251
sockets, Unix domain . 247
spelling correction . 80
stack, history . 96
startup files . 8
startup files, global, inhibiting 80
startup files, sourcing . 80
styles in zftp functions . 294
sublist . 9
subscript flags . 59
subscripts . 58
subshell . 12
substitution, command . 46
substitution, parameter, flags 39
substitution, process. 35
sun keyboard, annoying . 81
suspending jobs . 23
suspending the shell . 106
symbolic links . 73

T
TCP . 251
TCP function system . 278
TCP, example . 253
termcap value, printing . 254
terminal . 228
terminfo value, printing . 254
timed execution . 246
timing . 13
timing the shell . 106
tracing, of commands . 84
tracing, of input lines . 84

trapping signals . 21, 106
traps, asynchronous . 86
traps, DEBUG, before or after command 83
try blocks . 12
tty, freezing . 107

U
umask . 111
unset parameters, substituting 77
until loops . 11
user contributions . 296
user selection . 11
users, watching . 101

W
waiting before rm * . 81
waiting for jobs . 112
watching users . 101
while loops . 11
widgets . 127
widgets, binding . 123
widgets, calling . 123
widgets, defining . 123
widgets, invoking. 123
widgets, rebinding . 123
widgets, standard . 130
widgets, user-defined . 127
windows, curses . 235
word designators, history . 33
writing modules . 239

Z
zftp function system . 288
zftp function system, automatic reopening 295
zftp function system, configuration 294
zftp function system, remote globbing 295
zftp function system, styles . 294
zftp, functions . 259
zftp, parameters . 258
zftp, problems . 260
zftp, subcommands . 254
ZLE . 119
zle, builtin commands . 120
zlogin . 8
zlogout . 8
zprofile . 8
zrecompile utility . 297
zsh/datetime, function system based on 268
zshenv . 8
zshrc . 8
ztcp, function system based on 278

Variables Index 334

Variables Index

!
! . 63

#
. 63

$
$. 63

*
* . 63

-
- . 63

?
? . 63

@
@ . 63

_ . 64

0
0 . 63

A
aliases . 244
all_quotes, compstate . 145
ARGC . 63
argv . 63
ARGV0 . 66

B
BAUD . 66
BAUD, use of . 119
BUFFER . 128
BUFFERLINES . 128
builtins . 244

C
cdpath . 66
CDPATH . 66
chpwd_functions . 21
COLUMNS . 66
COLUMNS, use of . 119
commands . 244
compstate . 145

CONTEXT . 128
context, compstate . 145
context, use of . 202
CPUTYPE . 64
CURRENT . 145
CURSOR . 128
CUTBUFFER . 128

D
dirstack . 245
DIRSTACKSIZE . 66
dis_aliases . 244
dis_builtins. 244
dis_functions . 244
dis_galiases. 244
dis_reswords. 244
dis_saliases. 244

E
EDITOR . 120
EGID . 64
ENV . 66
ENV, use of . 7
EPOCHSECONDS. 239
ERRNO . 64
errnos . 251
EUID . 64
exact, compstate . 146
exact_string, compstate . 146
expl, use of . 203

F
FCEDIT . 66
fignore . 66
FIGNORE . 66
fpath . 66
FPATH . 66
fpath, use of . 19
funcstack . 245
functions . 244
functrace . 245

G
galiases . 244
GID . 64

H
HELPDIR . 297
histchars . 66
HISTCHARS . 67
histchars, use of. 14, 32
HISTCMD . 64
HISTFILE . 67
HISTNO . 128
history . 245
historywords. 245

Variables Index 335

HISTSIZE . 67
HISTSIZE, use of . 32
HOME . 67
HOME, use of . 8
HOST . 64

I
IFS . 67
IFS, use of . 39, 46, 103
ignored, compstate . 146
incarg, use of . 305
insert, compstate. 146
insert_positions, compstate 147
IPREFIX . 145
ISUFFIX . 145

J
jobdirs . 245
jobstates . 245
jobtexts . 245

K
KEYMAP . 128
keymaps . 260
KEYS . 128
KEYTIMEOUT . 67
killring . 128

L
LANG . 67
last_prompt, compstate . 147
LASTSEARCH . 129
LASTWIDGET . 129
LBUFFER . 129
LC_ALL . 67
LC_COLLATE . 67
LC_CTYPE . 67
LC_MESSAGES . 67
LC_NUMERIC . 67
LC_TIME . 67
line, use of . 202
LINENO . 64
LINES . 68
LINES, use of . 119
list, compstate . 147
list_lines, compstate . 147
list_max, compstate . 147
LISTMAX . 68
LOGCHECK . 68
LOGNAME . 64

M
MACHTYPE . 64
MAIL . 68
MAILCHECK . 68
mailpath . 68
MAILPATH . 68
manpath . 68
MANPATH . 68

mapfile . 241
MARK . 129
MENUSELECT . 231
module_path . 68
MODULE_PATH . 68
modules . 245

N
nameddirs . 245
nmatches, compstate . 147
NULLCMD . 68
NULLCMD, ignoring . 85, 86
NULLCMD, use of . 18
NUMERIC . 129

O
old_insert, compstate . 148
old_list, compstate . 148
OLDPWD . 64
opt_args, use of . 202
OPTARG . 64
OPTARG, use of . 98
OPTIND . 64
OPTIND, use of . 98
options . 244
OSTYPE . 64

P
parameter, compstate . 148
parameters . 244
path . 68
PATH . 68
path, use of . 19
pattern_insert, compstate 148
pattern_match, compstate . 148
PENDING . 129
PERIOD . 21
periodic_functions . 21
pipestatus . 64
POSTDISPLAY . 129
POSTEDIT . 68
PPID . 64
PREBUFFER . 129
precmd_functions . 21
PREDISPLAY . 129
preexec_functions . 21
PREFIX . 145
prompt . 68
PROMPT . 68
PROMPT2 . 68
PROMPT3 . 68
PROMPT4 . 68
PS1 . 69
PS2 . 69
PS3 . 69
PS4 . 69
psvar . 69
PSVAR . 69
psvar, use of . 30
PWD . 65

Variables Index 336

Q
QIPREFIX . 145
QISUFFIX . 145
quote, compstate . 148
quoting, compstate . 148

R
RANDOM . 65
RBUFFER . 129
READNULLCMD . 69
READNULLCMD, ignoring . 85, 86
READNULLCMD, use of . 18
redirect, compstate . 148
reply . 69
REPLY . 69
reply, use of 55, 103, 222, 223, 264
REPLY, use of . 11, 55, 103
REPORTTIME . 69
restore, compstate . 148
reswords . 244
RPROMPT . 69
RPROMPT2 . 69
RPS1 . 69
RPS2 . 69

S
saliases . 244
SAVEHIST . 69
SECONDS . 65
SHLVL . 65
signals . 65
SPROMPT . 69
status . 63
STTY . 69
SUFFIX . 145
sysparams . 251

T
tcp_expect_lines . 285
tcp_filter . 285
TCP_HANDLER_ACTIVE . 285
TCP_LINE . 285
TCP_LINE_FD . 285
tcp_lines . 285
TCP_LOG . 285
tcp_no_spam_list . 285
tcp_on_read . 286
TCP_OUTPUT . 285
TCP_PROMPT . 285
TCP_READ_DEBUG . 286
TCP_SECONDS_START . 286
TCP_SESS . 286
TCP_SILENT . 286
tcp_spam_list . 286
TCP_TALK_ESCAPE . 286
TCP_TIMEOUT . 286
TERM . 70
termcap . 254
terminfo . 254
TIMEFMT . 70
TMOUT . 70
TMPPREFIX . 71
to_end, compstate. 149

TRY_BLOCK_ERROR . 65
TTY . 65
TTYIDLE . 65

U
UID . 65
unambiguous, compstate . 149
unambiguous_cursor, compstate 149
unambiguous_positions, compstate 149
userdirs . 245
USERNAME . 65

V
vared, compstate . 149
VENDOR . 65
VISUAL . 120

W
watch . 71
WATCH . 71
watch, use of . 101
WATCHFMT . 71
WIDGET . 129
WIDGETFUNC . 129
widgets . 260
WIDGETSTYLE . 129
WORDCHARS . 72
words . 149

Z
ZBEEP . 72
zcurses_attrs . 238
ZCURSES_COLOR_PAIRS . 238
zcurses_colors . 238
ZCURSES_COLORS . 238
zcurses_keycodes . 238
zcurses_windows . 238
ZDOTDIR . 72
ZDOTDIR, use of . 8
ZFTP_ACCOUNT. 258
ZFTP_CODE . 258
ZFTP_COUNT . 260
ZFTP_FILE . 260
ZFTP_HOST . 258
ZFTP_IP . 258
ZFTP_PORT . 258
ZFTP_PREFS . 258
ZFTP_PWD . 258
ZFTP_REPLY . 258
ZFTP_SESSION. 258
ZFTP_SIZE . 260
ZFTP_SYSTEM . 258
ZFTP_TMOUT . 258
ZFTP_TRANSFER . 260
ZFTP_TYPE . 258
ZFTP_USER . 258
ZFTP_VERBOSE. 259
ZLS_COLORS . 229
ZLS_COLOURS . 229
ZSH_NAME . 65
zsh_scheduled_events . 247
ZSH_VERSION . 66

zshexit_functions . 21

Options Index 337

Options Index

A
ALIASES . 80
ALL_EXPORT . 80
ALWAYS_LAST_PROMPT . 73
ALWAYS_TO_END. 73
APPEND_HISTORY . 78
AUTO_CD . 73
AUTO_CONTINUE. 82
AUTO_LIST . 73
AUTO_MENU . 73
AUTO_NAME_DIRS . 74
AUTO_PARAM_KEYS . 74
AUTO_PARAM_SLASH . 74
AUTO_PUSHD . 73
AUTO_PUSHD, use of . 66
AUTO_REMOVE_SLASH . 74
AUTO_RESUME . 82

B
BAD_PATTERN . 75
BANG_HIST . 78
BARE_GLOB_QUAL . 75
BARE_GLOB_QUAL, use of . 53
BASH_AUTO_LIST . 74
BASH_REMATCH . 84
BEEP . 87
BG_NICE . 82
BRACE_CCL . 75
BRACE_CCL, use of . 46
BRACE_EXPAND . 88
BSD_ECHO . 85
BSD_ECHO, use of . 95

C
C_BASES . 83
C_BASES, use of . 24
CASE_GLOB . 75
CASE_MATCH . 76
CDABLE_VARS . 73
CDABLE_VARS, use of . 102
CHASE_DOTS . 73
CHASE_LINKS . 73
CHASE_LINKS, use of . 103
CHECK_JOBS . 82
CLOBBER . 80
COMPLETE_ALIASES . 74
COMPLETE_IN_WORD . 74
CORRECT . 80
CORRECT_ALL . 80
CSH_JUNKIE_HISTORY . 85
CSH_JUNKIE_HISTORY, use of 33
CSH_JUNKIE_LOOPS . 85
CSH_JUNKIE_QUOTES . 85
CSH_NULL_GLOB. 76
CSH_NULLCMD . 85
CSH_NULLCMD, use of . 18

D
DEBUG_BEFORE_CMD . 83
DOT_GLOB . 88
DVORAK . 80

E
EMACS . 87
EQUALS . 76
ERR_EXIT . 83
ERR_RETURN . 83
EVAL_LINENO . 83
EXEC . 83
EXTENDED_GLOB. 76
EXTENDED_GLOB, use of . 47
EXTENDED_HISTORY . 78

F
FLOW_CONTROL . 80
FUNCTION_ARGZERO . 83

G
GLOB . 76
GLOB, use of . 47
GLOB_ASSIGN . 76
GLOB_COMPLETE. 74
GLOB_DOTS . 76
GLOB_DOTS, setting in pattern 56
GLOB_DOTS, use of . 47
GLOB_SUBST . 76
GLOB_SUBST, toggle . 39
GLOBAL_EXPORT. 80
GLOBAL_RCS . 80
GLOBAL_RCS, use of . 8

H
HASH_ALL . 88
HASH_CMDS . 81
HASH_DIRS . 81
HASH_LIST_ALL. 74
HIST_ALLOW_CLOBBER . 78
HIST_APPEND . 88
HIST_BEEP . 78
HIST_EXPAND . 88
HIST_EXPIRE_DUPS_FIRST . 78
HIST_FIND_NO_DUPS . 78
HIST_IGNORE_ALL_DUPS . 78
HIST_IGNORE_DUPS . 78
HIST_IGNORE_SPACE . 78
HIST_NO_FUNCTIONS . 79
HIST_NO_STORE. 79
HIST_REDUCE_BLANKS . 79
HIST_SAVE_BY_COPY . 79
HIST_SAVE_NO_DUPS . 79
HIST_SUBST_PATTERN . 76
HIST_VERIFY . 79
HUP . 82

Options Index 338

HUP, use of . 23

I
IGNORE_BRACES. 76
IGNORE_EOF . 80
IGNORE_EOF, use of . 95
INC_APPEND_HISTORY . 79
INTERACTIVE . 87
INTERACTIVE, use of . 87
INTERACTIVE_COMMENTS . 81
INTERACTIVE_COMMENTS, use of 14

K
KSH_ARRAYS . 85
KSH_ARRAYS, use of . 58, 105
KSH_AUTOLOAD . 85
KSH_AUTOLOAD, use of . 20
KSH_GLOB . 76
KSH_GLOB, use of . 50
KSH_OPTION_PRINT . 85
KSH_TYPESET . 85
KSH_ZERO_SUBSCRIPT . 85

L
LIST_AMBIGUOUS . 75
LIST_BEEP . 75
LIST_PACKED . 75
LIST_ROWS_FIRST . 75
LIST_TYPES . 75
LOCAL_OPTIONS. 84
LOCAL_TRAPS . 84
LOG . 88
LOGIN . 87
LOGIN, use of . 8
LONG_LIST_JOBS . 82

M
MAGIC_EQUAL_SUBST . 76
MAIL_WARN . 88
MAIL_WARNING . 81
MARK_DIRS . 77
MARK_DIRS, setting in pattern 56
MENU_COMPLETE. 75
MENU_COMPLETE, use of . 140
MONITOR . 82
MONITOR, use of . 22
MULTIBYTE <D> . 77
MULTIOS . 84
MULTIOS, use of . 17

N
NO_GLOBAL_RCS, use of . 8
NO_RCS, use of . 8
NOMATCH . 77
NOMATCH, use of . 47
NOTIFY . 82
NOTIFY, use of . 23
NULL_GLOB . 77
NULL_GLOB, setting in pattern 56

NULL_GLOB, use of . 47
NUMERIC_GLOB_SORT . 77
NUMERIC_GLOB_SORT, setting in pattern 56

O
OCTAL_ZEROES . 84
OCTAL_ZEROES, use of . 24
ONE_CMD . 88
OVERSTRIKE . 88

P
PATH_DIRS . 81
PHYSICAL . 88
POSIX_BUILTINS . 86
POSIX_IDENTIFIERS . 86
PRINT_EIGHT_BIT . 81
PRINT_EXIT_VALUE . 81
PRIVILEGED . 87
PROMPT_BANG . 82
PROMPT_BANG, use of . 28
PROMPT_CR . 82
PROMPT_PERCENT . 83
PROMPT_PERCENT, use of . 28
PROMPT_SP . 82
PROMPT_SUBST . 83
PROMPT_SUBST, use of . 28
PROMPT_VARS . 88
PUSHD_IGNORE_DUPS . 73
PUSHD_MINUS . 73
PUSHD_MINUS, use of 47, 101, 102
PUSHD_SILENT . 73
PUSHD_SILENT, use of . 102
PUSHD_TO_HOME. 73
PUSHD_TO_HOME, use of . 102

R
RC_EXPAND_PARAM . 77
RC_EXPAND_PARAM, toggle . 38
RC_QUOTES . 81
RC_QUOTES, use of . 15
RCS . 80
RCS, use of . 8
REC_EXACT . 75
REMATCH_PCRE . 77
RESTRICTED . 7, 87
RM_STAR_SILENT . 81
RM_STAR_WAIT . 81

S
SH_FILE_EXPANSION . 86
SH_GLOB . 77
SH_NULLCMD . 86
SH_NULLCMD, use of . 18
SH_OPTION_LETTERS . 86
SH_WORD_SPLIT. 86
SH_WORD_SPLIT, toggle . 39
SH_WORD_SPLIT, use of . 42
SHARE_HISTORY. 79
SHIN_STDIN . 87
SHORT_LOOPS . 81

Options Index 339

SINGLE_COMMAND . 87
SINGLE_LINE_ZLE . 88
SINGLE_LINE_ZLE, use of . 119
STDIN . 88
SUN_KEYBOARD_HACK . 81

T
TRACK_ALL . 88
TRANSIENT_RPROMPT . 83
TRAPS_ASYNC . 86
TYPESET_SILENT . 84

U
UNSET . 77

V
VERBOSE . 84
VI . 88

W
WARN_CREATE_GLOBAL . 78

X
XTRACE . 84

Z
ZLE . 88
ZLE, use of . 119

Functions Index 340

Functions Index

-
- . 10

.

. 91

:
: . 91

[
[[. 13

_all_labels . 198
_all_matches. 191
_alternative. 198
_approximate. 191
_arguments . 198
_bash_completions . 195
_cache_invalid . 206
_call_function . 206
_call_program . 206
_combination. 206
_complete . 192
_complete_debug (^X?) . 196
_complete_help (^Xh) . 197
_complete_help_generic . 197
_complete_tag (^Xt) . 197
_correct . 192
_correct_filename (^XC) . 195
_correct_word (^Xc) . 195
_describe . 207
_description. 207
_dispatch . 208
_expand . 193
_expand_alias . 193
_expand_alias (^Xa) . 195
_expand_word (^Xe) . 195
_files . 208
_generic . 196
_gnu_generic. 209
_guard . 209
_history . 193
_history_complete_word (\e/) 196
_ignored . 193
_list . 193
_match . 193
_menu . 194
_message . 209
_most_recent_file (^Xm) . 196
_multi_parts. 209
_next_label . 210
_next_tags (^Xn) . 196
_normal . 210
_oldlist . 194
_options . 211
_options_set. 211

_options_unset . 211
_parameters . 211
_path_files . 211
_pick_variant . 211
_prefix . 194
_read_comp (^X^R). 196
_regex_arguments . 212
_regex_words [-t term] . 213
_requested . 214
_retrieve_cache . 215
_sep_parts . 215
_setup . 215
_store_cache. 215
_tags . 216
_values . 216
_wanted . 217

A
age . 274
alias . 91
alias, use of . 14
always . 12
autoload . 92
autoload, use of . 19

B
bashcompinit. 195
bg . 92
bg, use of . 23
bindkey . 121
bindkey, use of . 119
break . 92
builtin . 10, 92
bye . 92

C
calendar . 272
calendar_add. 273
calendar_edit . 273
calendar_lockfiles . 276
calendar_parse . 273
calendar_read . 276
calendar_scandate . 276
calendar_show . 277
calendar_showdate . 274
calendar_sort . 274
cap . 228
case . 11
catch . 316
cd . 92
chdir . 93
chgrp . 239
chown . 239
chpwd . 21
clone . 228
colors . 323
command . 10, 93
command_not_found_handler . 19

Functions Index 341

compadd . 149
comparguments . 234
compaudit . 160
compctl . 218
compdef . 163
compdescribe. 234
compfiles . 234
compgroups . 234
compinit . 160
compinstall . 159
compquote . 235
compset . 153
comptags . 235
comptry . 235
compvalues . 235
continue . 93
coproc . 9

D
declare . 93
dirs . 94
disable . 94
disable, use of . 14
disown . 94
disown, use of . 23

E
echo . 94
echotc . 254
echoti . 254
emulate . 95
enable . 95
eval . 95
example . 239
exec . 10
exit . 95
export . 95

F
false . 95
fc . 96
fc, use of . 33
fg . 97
fg, use of . 23
float . 97
float, use of . 25
fned . 324
for . 11
foreach . 13
function . 12
function, use of . 19
functions . 97
functions, use of . 19

G
getcap . 228
getln . 97
getopts . 98

H
hash . 98
history . 99

I
if . 11
integer . 99
integer, use of . 25
is-at-least . 324

J
jobs . 99

K
kill . 99

L
let . 99
let, use of . 24
limit . 99
ln . 240
local . 101
log . 101
logout . 101

M
mkdir . 240
mv . 240

N
nocorrect . 10
noglob . 10
nslookup . 324

P
pcre-match . 246
pcre_compile. 246
pcre_match . 246
pcre_study . 246
periodic . 21
pick-web-browser . 320
popd . 101
precmd . 21
preexec . 21
print . 101
printf . 102
pushd . 102
pushln . 103
pwd . 103

R
r . 103
read . 103
readonly . 104
regex-match . 246

Functions Index 342

rehash . 104
repeat . 11
reporter . 299
return . 104
return, use of . 19
rm . 241
rmdir . 241
run-help . 324
run-help, use of . 297
run-help-git. 325
run-help-svk. 325
run-help-svn. 325

S
sched . 246
select . 11
set . 105
set, use of . 58
setcap . 228
setopt . 105
shift . 106
source . 106
stat . 248
strftime . 239
suspend . 106
sync . 241
syserror . 250
sysread . 250

T
tcp_alias . 280
tcp_aliases . 287
tcp_by_fd . 287
tcp_by_name . 287
tcp_close . 279
tcp_command . 281
tcp_expect . 281
tcp_fd_handler . 284
tcp_log . 280
TCP_LOG_SESS. 285
tcp_on_alias. 283
tcp_on_close. 283
tcp_on_open . 283
tcp_on_rename . 284
tcp_on_spam . 284
tcp_on_unalias . 284
tcp_open . 278
tcp_output . 284
tcp_proxy . 282
tcp_read . 279
tcp_rename . 281
tcp_send . 280
tcp_sess . 281
tcp_spam . 282
tcp_talk . 283
tcp_wait . 283
test . 106
throw . 316
time . 13
times . 106
trap . 106
trap, use of . 22

TRAPDEBUG . 22
TRAPERR . 22
TRAPEXIT . 22
TRAPZERR . 22
true . 107
ttyctl . 107
type . 107
typeset . 107
typeset, use of . 57, 58

U
ulimit . 111
umask . 111
unalias . 111
unfunction . 111
unfunction, use of . 19
unhash . 112
unlimit . 112
unset . 112
unsetopt . 112
until . 11

V
vared . 123

W
wait . 112
whence . 112
where . 113
which . 113
while . 11

Z
zargs . 325
zcalc . 321
zcompile . 113
zcompile, use of . 19
zcp . 326
zcurses . 235
zed . 326
zfanon . 289
zfautocheck . 293
zfcd . 289
zfcd_match . 293
zfcget . 291
zfclose . 292
zfcput . 291
zfdir . 290
zffcache . 294
zfgcp . 291
zfget . 290
zfget_match . 293
zfgoto . 293
zfhere . 290
zfinit . 293
zfls . 290
zfmark . 293
zfopen . 289
zformat . 265
zfparams . 288

Functions Index 343

zfpcp . 291
zfput . 291
zfrglob . 293
zfrtime . 293
zfsession . 292
zfstat . 290
zftp . 254
zftp_chpwd, specification 259
zftp_chpwd, supplied version 294
zftp_progress, specification 259
zftp_progress, supplied version 294
zftransfer . 292
zftype . 290
zfuget . 291
zfuput . 291
zkbd . 298
zle . 123

zln . 326
zmathfuncdef. 322
zmodload . 115
zmv . 327
zparseopts . 266
zprof . 261
zpty . 262
zrecompile . 297
zregexparse . 266
zselect . 263
zsh-mime-handler . 317
zsh-mime-setup . 317
zshexit . 21
zsocket . 247
zstyle . 264
zstyle+ . 328
ztcp . 251

Editor Functions Index 344

Editor Functions Index

A
accept-and-hold . 140
accept-and-infer-next-history 140
accept-and-menu-complete . 139
accept-line . 140
accept-line-and-down-history 140
argument-base . 139
auto-suffix-remove . 140
auto-suffix-retain . 140

B
backward-char . 130
backward-delete-char . 135
backward-delete-word . 135
backward-kill-line . 135
backward-kill-word . 135
backward-kill-word-match . 301
backward-word . 130
backward-word-match . 301
beep . 140
beginning-of-buffer-or-history 132
beginning-of-history . 132
beginning-of-line . 131
beginning-of-line-hist . 132

C
capitalize-word . 135
capitalize-word-match . 301
clear-screen. 140
complete-word . 139
copy-earlier-word . 304
copy-prev-shell-word . 136
copy-prev-word . 136
copy-region-as-kill . 136
cycle-completion-positions 304

D
delete-char . 136
delete-char-or-list . 139
delete-to-char . 239
delete-whole-word-match . 303
delete-word . 136
describe-key-briefly . 141
digit-argument . 138
down-case-word . 136
down-case-word-match . 301
down-history. 132
down-line-or-beginning-search 305
down-line-or-history . 132
down-line-or-search . 132

E
edit-command-line . 304
emacs-backward-word . 130
emacs-forward-word . 131
end-of-buffer-or-history . 132

end-of-history . 132
end-of-line . 131
end-of-line-hist . 132
end-of-list . 140
exchange-point-and-mark . 141
execute-last-named-cmd . 141
execute-named-cmd . 141
expand-cmd-path . 139
expand-history . 139
expand-or-complete . 139
expand-or-complete-prefix 139
expand-word . 139

F
forward-char. 131
forward-word. 131
forward-word-match . 301

G
get-line . 141
gosmacs-transpose-chars . 136

H
history-beginning-search-backward 132
history-beginning-search-backward-end. 304
history-beginning-search-forward 135
history-beginning-search-forward-end 304
history-beginning-search-menu 304
history-incremental-search-backward 133
history-incremental-search-forward 133
history-pattern-search . 305
history-pattern-search-backward 305
history-pattern-search-forward 305
history-search-backward . 133
history-search-forward . 134

I
incarg . 305
incremental-complete-word 305
infer-next-history . 134
insert-composed-char . 305
insert-files. 309
insert-last-word . 134
insert-unicode-char . 310

K
kill-buffer . 137
kill-line . 136
kill-region . 137
kill-whole-line . 137
kill-word . 136
kill-word-match . 301

Editor Functions Index 345

L
list-choices. 139
list-expand . 139

M
magic-space . 139
match-word-context . 301
match-words-by-style . 301
menu-complete . 140
menu-expand-or-complete . 140
menu-select . 231
modify-current-argument . 313

N
narrow-to-region . 309
narrow-to-region-invisible 309
neg-argument. 138

O
overwrite-mode . 137

P
pound-insert. 141
predict-off . 310
predict-on . 310
push-input . 141
push-line . 141
push-line-or-edit . 141

Q
quote-line . 137
quote-region. 137
quoted-insert . 137

R
read-command. 142
read-from-minibuffer . 311
recursive-edit . 142
redisplay . 143
redo . 143
replace-pattern . 311
replace-string . 311
replace-string-again . 311
reset-prompt. 143
reverse-menu-complete . 140
run-help . 143

S
select-word-style . 301
self-insert . 138
self-insert-unmeta . 138
send-break . 143
set-mark-command . 143
smart-insert-last-word . 312
spell-word . 143
split-shell-arguments . 313

T
transpose-chars . 138
transpose-words . 138
transpose-words-match . 301

U
undefined-key . 143
undo . 143
universal-argument . 138
up-case-word. 138
up-case-word-match . 301
up-history . 135
up-line-or-beginning-search 305
up-line-or-history . 135
up-line-or-search . 135

V
vi-add-eol . 135
vi-add-next . 135
vi-backward-blank-word . 130
vi-backward-char . 130
vi-backward-delete-char . 135
vi-backward-kill-word . 135
vi-backward-word . 130
vi-beginning-of-line . 131
vi-caps-lock-panic . 140
vi-change . 135
vi-change-eol . 135
vi-change-whole-line . 136
vi-cmd-mode . 140
vi-delete . 136
vi-delete-char . 136
vi-digit-or-beginning-of-line 144
vi-down-line-or-history . 132
vi-end-of-line . 131
vi-fetch-history . 132
vi-find-next-char . 131
vi-find-next-char-skip . 131
vi-find-prev-char . 131
vi-find-prev-char-skip . 131
vi-first-non-blank . 131
vi-forward-blank-word . 131
vi-forward-blank-word-end 131
vi-forward-char . 131
vi-forward-word . 131
vi-forward-word-end . 131
vi-goto-column . 131
vi-goto-mark. 132
vi-goto-mark-line . 132
vi-history-search-backward 133
vi-history-search-forward 134
vi-indent . 136
vi-insert . 136
vi-insert-bol . 136
vi-join . 136
vi-kill-eol . 136
vi-kill-line. 136
vi-match-bracket . 137
vi-open-line-above . 137
vi-open-line-below . 137
vi-oper-swap-case . 137
vi-pound-insert . 141

Editor Functions Index 346

vi-put-after. 137
vi-put-before . 137
vi-quoted-insert . 137
vi-repeat-change . 137
vi-repeat-find . 132
vi-repeat-search . 134
vi-replace . 137
vi-replace-chars . 137
vi-rev-repeat-find . 132
vi-rev-repeat-search . 135
vi-set-buffer . 143
vi-set-mark . 143
vi-substitute . 138
vi-swap-case. 138
vi-undo-change . 143
vi-unindent . 138
vi-up-line-or-history . 135
vi-yank . 138
vi-yank-eol . 138

vi-yank-whole-line . 138

W
what-cursor-position . 143
where-is . 143
which-command . 144, 312

Y
yank . 138
yank-pop . 138

Z
zap-to-char . 239
zle-keymap-select . 130
zle-line-init . 130

Style and Tag Index 347

Style and Tag Index

-
-array-value-, completion context 162
-assign-parameter-, completion context 162
-brace-parameter-, completion context 162
-command-, completion context 162
-condition-, completion context 162
-default-, completion context 162
-equal-, completion context 162
-first-, completion context 162
-math-, completion context 162
-parameter-, completion context 162
-redirect-, completion context 162
-subscript-, completion context 163
-tilde-, completion context 163
-value-, completion context 163

A
accept-exact, completion style 170
accounts, completion tag . 166
add-space, completion style 170
all-expansions, completion tag 166
all-files, completion tag 166
ambiguous, completion style 170
arguments, completion tag 166
arrays, completion tag . 167
assign-list, completion style 170
association-keys, completion tag 167
auto-description, completion style. 171
avoid-completer, completion style 171

B
bookmarks, completion tag 167
break-keys, widget style . 313
builtins, completion tag . 167

C
cache-path, completion style 171
cache-policy, completion style 171
calendar-file . 275
call-command, completion style 171
characters, completion tag 167
chpwd, zftp style . 295
colormapids, completion tag 167
colors, completion tag . 167
command, completion style 171
command-path, completion style 172
commands, completion style 172
commands, completion tag . 167
complete, completion style 172
completer, completion style 172, 314
condition, completion style 172
contexts, completion tag . 167
corrections, completion tag 167
current-shell, MIME style 317
cursor, completion style . 314
cursors, completion tag . 167

D
date-format . 275
default, completion tag . 167
descriptions, completion tag 167
devices, completion tag . 167
directories, completion tag 167
directory-stack, completion tag 167
disabled, completion style 172
displays, completion tag . 167
domains, completion style 172
domains, completion tag . 167
done-file . 276

E
execute-as-is, MIME style 317
expand, completion style . 172
expansions, completion tag 167
extensions, completion tag 167

F
fake, completion style . 173
fake-always, completion style 173
fake-files, completion style 173
fake-parameters, completion style 173
file-descriptors, completion tag 167
file-list, completion style 173
file-path, MIME style . 318
file-patterns, completion style 174
file-sort, completion style 175
files, completion tag . 167
filter, completion style . 175
find-file-in-path, MIME style 318
flags, MIME style . 318
fonts, completion tag . 167
force-list, completion style 175
format, completion style . 175
fstypes, completion tag . 168
functions, completion tag 168

G
glob, completion style . 176
global, completion style . 176
globbed-files, completion tag 168
group-name, completion style 176
group-order, completion style 176
groups, completion style . 176
groups, completion tag . 168

H
handle-nonexistent, MIME style 318
handler, MIME style . 318
hidden, completion style . 176
history-words, completion tag 168
hosts, completion style . 176
hosts, completion tag . 168
hosts-ports, completion style 176

Style and Tag Index 348

I
ignore-line, completion style 177
ignore-parents, completion style 177
ignored-patterns, completion style. 177
indexes, completion tag . 168
insert, completion style . 177
insert-ids, completion style 177
insert-tab, completion style 178, 328
insert-unambiguous, completion style 178
interfaces, completion tag 168

J
jobs, completion tag . 168

K
keep-prefix, completion style 178
keymaps, completion tag . 168
keysyms, completion tag . 168
known-hosts-files . 179

L
last-prompt, completion style 178
libraries, completion tag 168
limits, completion tag . 168
list, completion style . 179
list, widget style . 314
list-colors, completion style 179
list-grouped, completion style 179
list-packed, completion style 179
list-prompt, completion style 179
list-rows-first, completion style 180
list-separator, completion style 180
list-suffixes, completion style 180
local, completion style . 180
local-directories, completion tag 168

M
mail-directory, completion style 180
mailboxes, completion tag 168
mailcap, MIME style . 318
mailcap-prio-flags, MIME style 319
mailcap-priorities, MIME style 318
manuals, completion tag . 168
maps, completion tag . 168
match, widget style . 314
match-original, completion style 180
matcher, completion style 180
matcher-list, completion style 180
max-errors, completion style 181
max-matches-width, completion style 182
menu, completion style . 182
messages, completion tag . 168
mime-types, MIME style . 319
modifiers, completion tag 168
modules, completion tag . 168
muttrc, completion style . 183
my-accounts, completion tag 168

N
named-directories, completion tag 168
names, completion tag . 168
never-background, MIME style 319
newsgroups, completion tag 168
nicknames, completion tag 168
numbers, completion style 183

O
old-list, completion style 183
old-matches, completion style 183
old-menu, completion style 183
options, completion tag . 168
original, completion style 183
original, completion tag . 169
other-accounts, completion tag 169

P
packages, completion tag . 169
packageset, completion style 184
pager, MIME style . 319
pager, nslookup style . 328
parameters, completion tag 169
path, completion style . 184
path-directories, completion tag 169
paths, completion tag . 169
pine-directory, completion style 184
pods, completion tag . 169
ports, completion style . 184
ports, completion tag . 169
prefix-hidden, completion style 184
prefix-needed, completion style 184
prefixes, completion tag . 169
preserve-prefix, completion style 184
printers, completion tag . 169
processes, completion tag 169
processes-names, completion tag 169
progress, zftp style . 294
prompt, nslookup style . 328
prompt, widget style . 315

R
range, completion style . 184
regular, completion style 185
rehash, completion style . 185
remote-access, completion style 185
remote-glob, zftp style . 295
remove-all-dups, completion style 185
rprompt, nslookup style . 328

S
select-prompt, completion style 185
select-scroll, completion style 185
separate-sections, completion style 185
sequences, completion tag 169
sessions, completion tag . 169
show-completer, completion style 185
show-prog . 276
signals, completion tag . 169

Style and Tag Index 349

single-ignored, completion style 185
sort, completion style . 186
special-dirs, completion style 186
squeeze-slashes, completion style 186
stop, completion style . 186
stop-keys, widget style . 315
strings, completion tag . 169
strip-comments, completion style 186
styles, completion tag . 169
subst-globs-only, completion style. 186
substitute, completion style 186
suffix, completion style . 187
suffixes, completion tag . 169

T
tag-order, completion style 187
tags, completion tag . 169
targets, completion tag . 169
time-zones, completion tag 169
titlebar, zftp style . 295
toggle, widget style . 315
types, completion tag . 169

U
update, zftp style . 295
urls, completion style . 189
urls, completion tag . 169

use-cache, completion style 189
use-compctl, completion style 189
use-ip, completion style . 189
use-perl, completion style 190
users, completion style . 190
users, completion tag . 169
users-hosts, completion style 190
users-hosts-ports, completion style 190

V
values, completion tag . 169
variant, completion tag . 169
verbose, completion style 190
verbose, widget style . 315
visuals, completion tag . 169

W
warn-time . 276
warnings, completion tag . 169
widget, widget style . 315
widgets, completion tag . 169
windows, completion tag . 170
word, completion style . 190

Z
zsh-options, completion tag 170

i

Table of Contents

1 The Z Shell Manual . 1
1.1 Producing documentation from zsh.texi . 1

2 Introduction . 1
2.1 Author . 1
2.2 Availability . 1
2.3 Mailing Lists . 2
2.4 The Zsh FAQ . 3
2.5 The Zsh Web Page . 3
2.6 The Zsh Userguide . 3
2.7 The Zsh Wiki . 3
2.8 See Also . 3

3 Roadmap . 4
3.1 When the shell starts . 4
3.2 Interactive Use . 4

3.2.1 Completion . 4
3.2.2 Extending the line editor . 4

3.3 Options . 5
3.4 Pattern Matching . 5
3.5 General Comments on Syntax . 5
3.6 Programming . 5

4 Invocation . 6
4.1 Invocation Options . 6
4.2 Compatibility . 7
4.3 Restricted Shell . 7

5 Files . 8
5.1 Startup/Shutdown Files . 8
5.2 Files . 8

6 Shell Grammar. 9
6.1 Simple Commands & Pipelines . 9
6.2 Precommand Modifiers . 10
6.3 Complex Commands . 11
6.4 Alternate Forms For Complex Commands . 13
6.5 Reserved Words . 14
6.6 Comments . 14
6.7 Aliasing . 14
6.8 Quoting . 14

7 Redirection . 15
7.1 Multios . 17
7.2 Redirections with no command . 18

ii

8 Command Execution . 19

9 Functions . 19
9.1 Autoloading Functions . 19
9.2 Special Functions . 21

10 Jobs & Signals . 22
10.1 Jobs . 22
10.2 Signals . 23

11 Arithmetic Evaluation . 24

12 Conditional Expressions . 26

13 Prompt Expansion . 28
13.1 Expansion of Prompt Sequences . 28
13.2 Simple Prompt Escapes . 28

13.2.1 Special characters . 28
13.2.2 Login information . 29
13.2.3 Shell state . 29
13.2.4 Date and time . 30
13.2.5 Visual effects . 30

13.3 Conditional Substrings in Prompts. 30

14 Expansion . 32
14.1 History Expansion . 32

14.1.1 Overview . 32
14.1.2 Event Designators . 33
14.1.3 Word Designators . 33
14.1.4 Modifiers . 34

14.2 Process Substitution . 35
14.3 Parameter Expansion . 36

14.3.1 Parameter Expansion Flags . 39
14.3.2 Rules . 43
14.3.3 Examples . 45

14.4 Command Substitution . 46
14.5 Arithmetic Expansion . 46
14.6 Brace Expansion . 46
14.7 Filename Expansion . 46
14.8 Filename Generation . 47

14.8.1 Glob Operators . 47
14.8.2 ksh-like Glob Operators . 50
14.8.3 Precedence . 50
14.8.4 Globbing Flags . 50
14.8.5 Approximate Matching . 52
14.8.6 Recursive Globbing . 53
14.8.7 Glob Qualifiers . 53

iii

15 Parameters . 57
15.1 Description . 57
15.2 Array Parameters . 58

15.2.1 Array Subscripts . 58
15.2.2 Array Element Assignment . 59
15.2.3 Subscript Flags . 59
15.2.4 Subscript Parsing . 61

15.3 Positional Parameters . 62
15.4 Local Parameters . 63
15.5 Parameters Set By The Shell . 63
15.6 Parameters Used By The Shell . 66

16 Options . 72
16.1 Specifying Options . 72
16.2 Description of Options . 72

16.2.1 Changing Directories . 73
16.2.2 Completion. 73
16.2.3 Expansion and Globbing . 75
16.2.4 History . 78
16.2.5 Initialisation. 80
16.2.6 Input/Output . 80
16.2.7 Job Control . 82
16.2.8 Prompting . 82
16.2.9 Scripts and Functions . 83
16.2.10 Shell Emulation . 84
16.2.11 Shell State . 87
16.2.12 Zle . 87

16.3 Option Aliases . 88
16.4 Single Letter Options . 88

16.4.1 Default set . 88
16.4.2 sh/ksh emulation set . 90
16.4.3 Also note . 91

17 Shell Builtin Commands . 91

18 Zsh Line Editor . 119
18.1 Description . 119
18.2 Keymaps . 119

18.2.1 Reading Commands . 120
18.3 Zle Builtins . 120
18.4 Widgets . 127
18.5 User-Defined Widgets. 127

18.5.1 Special Widgets . 130
18.6 Standard Widgets . 130

18.6.1 Movement . 130
18.6.2 History Control . 132
18.6.3 Modifying Text . 135
18.6.4 Arguments . 138
18.6.5 Completion . 139
18.6.6 Miscellaneous. 140

iv

19 Completion Widgets . 144
19.1 Description . 144
19.2 Special Parameters . 144
19.3 Builtin Commands . 149
19.4 Condition Codes . 155
19.5 Matching Control . 155
19.6 Completion Widget Example . 158

20 Completion System . 158
20.1 Description . 158
20.2 Initialization . 159

20.2.1 Use of compinit . 160
20.2.2 Autoloaded files . 161
20.2.3 Functions . 163

20.3 Completion System Configuration . 164
20.3.1 Overview. 164
20.3.2 Standard Tags . 166
20.3.3 Standard Styles . 170

20.4 Control Functions . 190
20.5 Bindable Commands . 195
20.6 Utility Functions . 197
20.7 Completion Directories . 218

21 Completion Using compctl. 218
21.1 Types of completion . 218
21.2 Description . 218
21.3 Command Flags . 219
21.4 Option Flags . 220

21.4.1 Simple Flags . 220
21.4.2 Flags with Arguments . 221
21.4.3 Control Flags . 222

21.5 Alternative Completion . 225
21.6 Extended Completion . 225
21.7 Example . 226

22 Zsh Modules . 227
22.1 Description . 227
22.2 The zsh/cap Module . 228
22.3 The zsh/clone Module . 228
22.4 The zsh/compctl Module . 229
22.5 The zsh/complete Module. 229
22.6 The zsh/complist Module . 229

22.6.1 Colored completion listings . 229
22.6.2 Scrolling in completion listings . 231
22.6.3 Menu selection . 231

22.7 The zsh/computil Module . 234
22.8 The zsh/curses Module . 235

22.8.1 Builtin . 235
22.8.2 Parameters . 238

22.9 The zsh/datetime Module . 239
22.10 The zsh/deltochar Module . 239
22.11 The zsh/example Module . 239
22.12 The zsh/files Module . 239

v

22.13 The zsh/mapfile Module . 241
22.13.1 Limitations. 242

22.14 The zsh/mathfunc Module . 242
22.15 The zsh/newuser Module . 243
22.16 The zsh/parameter Module . 244
22.17 The zsh/pcre Module . 246
22.18 The zsh/regex Module . 246
22.19 The zsh/sched Module . 246
22.20 The zsh/net/socket Module . 247

22.20.1 Outbound Connections . 247
22.20.2 Inbound Connections . 247

22.21 The zsh/stat Module . 248
22.22 The zsh/system Module . 250
22.23 Builtins . 250
22.24 Parameters . 251
22.25 The zsh/net/tcp Module . 251

22.25.1 Outbound Connections . 252
22.25.2 Inbound Connections . 252
22.25.3 Closing Connections . 253
22.25.4 Example . 253

22.26 The zsh/termcap Module . 254
22.27 The zsh/terminfo Module . 254
22.28 The zsh/zftp Module . 254

22.28.1 Subcommands . 254
22.28.2 Parameters . 258
22.28.3 Functions . 259
22.28.4 Problems . 260

22.29 The zsh/zle Module . 260
22.30 The zsh/zleparameter Module . 260
22.31 The zsh/zprof Module . 261
22.32 The zsh/zpty Module . 262
22.33 The zsh/zselect Module . 263
22.34 The zsh/zutil Module . 264

23 Calendar Function System . 268
23.1 Description . 268
23.2 File and Date Formats . 268

23.2.1 Calendar File Format . 268
23.2.2 Date Format . 268
23.2.3 Relative Time Format . 270
23.2.4 Example . 271

23.3 User Functions . 272
23.3.1 Calendar system functions . 272
23.3.2 Glob qualifiers . 274

23.4 Styles . 275
23.5 Utility functions . 276
23.6 Bugs . 277

vi

24 TCP Function System . 278
24.1 Description . 278
24.2 TCP User Functions . 278

24.2.1 Basic I/O . 278
24.2.2 Session Management . 280
24.2.3 Advanced I/O . 281
24.2.4 ‘One-shot’ file transfer . 283

24.3 TCP User-defined Functions . 283
24.4 TCP Utility Functions . 284
24.5 TCP User Parameters . 285
24.6 TCP User-defined Parameters . 286
24.7 TCP Utility Parameters . 287
24.8 TCP Examples . 287
24.9 TCP Bugs . 287

25 Zftp Function System . 288
25.1 Description . 288
25.2 Installation . 288
25.3 Functions . 288

25.3.1 Opening a connection . 288
25.3.2 Directory management . 289
25.3.3 Status commands . 290
25.3.4 Retrieving files . 290
25.3.5 Sending files . 291
25.3.6 Closing the connection . 292
25.3.7 Session management . 292
25.3.8 Bookmarks . 292
25.3.9 Other functions . 293

25.4 Miscellaneous Features . 294
25.4.1 Configuration . 294
25.4.2 Remote globbing. 295
25.4.3 Automatic and temporary reopening . 295
25.4.4 Completion . 296

26 User Contributions . 296
26.1 Description . 296
26.2 Utilities . 296

26.2.1 Accessing On-Line Help . 296
26.2.2 Recompiling Functions . 297
26.2.3 Keyboard Definition . 298
26.2.4 Dumping Shell State . 299

26.3 Prompt Themes . 300
26.3.1 Installation . 300
26.3.2 Theme Selection . 300

26.4 ZLE Functions . 301
26.4.1 Widgets . 301
26.4.2 Utility Functions . 313
26.4.3 Styles . 313

26.5 Exception Handling . 315
26.6 MIME Functions . 317
26.7 Mathematical Functions . 321
26.8 User Configuration Functions . 322
26.9 Other Functions . 323

vii

26.9.1 Descriptions . 323
26.9.2 Styles . 328

Concept Index . 329

Variables Index . 334

Options Index . 337

Functions Index . 340

Editor Functions Index . 344

Style and Tag Index . 347

	The Z Shell Manual
	Producing documentation from zsh.texi

	Introduction
	Author
	Availability
	Mailing Lists
	The Zsh FAQ
	The Zsh Web Page
	The Zsh Userguide
	The Zsh Wiki
	See Also

	Roadmap
	When the shell starts
	Interactive Use
	Completion
	Extending the line editor

	Options
	Pattern Matching
	General Comments on Syntax
	Programming

	Invocation
	Invocation Options
	Compatibility
	Restricted Shell

	Files
	Startup/Shutdown Files
	Files

	Shell Grammar
	Simple Commands & Pipelines
	Precommand Modifiers
	Complex Commands
	Alternate Forms For Complex Commands
	Reserved Words
	Comments
	Aliasing
	Quoting

	Redirection
	Multios
	Redirections with no command

	Command Execution
	Functions
	Autoloading Functions
	Special Functions

	Jobs & Signals
	Jobs
	Signals

	Arithmetic Evaluation
	Conditional Expressions
	Prompt Expansion
	Expansion of Prompt Sequences
	Simple Prompt Escapes
	Special characters
	Login information
	Shell state
	Date and time
	Visual effects

	Conditional Substrings in Prompts

	Expansion
	History Expansion
	Overview
	Event Designators
	Word Designators
	Modifiers

	Process Substitution
	Parameter Expansion
	Parameter Expansion Flags
	Rules
	Examples

	Command Substitution
	Arithmetic Expansion
	Brace Expansion
	Filename Expansion
	Filename Generation
	Glob Operators
	ksh-like Glob Operators
	Precedence
	Globbing Flags
	Approximate Matching
	Recursive Globbing
	Glob Qualifiers

	Parameters
	Description
	Array Parameters
	Array Subscripts
	Array Element Assignment
	Subscript Flags
	Subscript Parsing

	Positional Parameters
	Local Parameters
	Parameters Set By The Shell
	Parameters Used By The Shell

	Options
	Specifying Options
	Description of Options
	Changing Directories
	Completion
	Expansion and Globbing
	History
	Initialisation
	Input/Output
	Job Control
	Prompting
	Scripts and Functions
	Shell Emulation
	Shell State
	Zle

	Option Aliases
	Single Letter Options
	Default set
	sh/ksh emulation set
	Also note

	Shell Builtin Commands
	Zsh Line Editor
	Description
	Keymaps
	Reading Commands

	Zle Builtins
	Widgets
	User-Defined Widgets
	Special Widgets

	Standard Widgets
	Movement
	History Control
	Modifying Text
	Arguments
	Completion
	Miscellaneous

	Completion Widgets
	Description
	Special Parameters
	Builtin Commands
	Condition Codes
	Matching Control
	Completion Widget Example

	Completion System
	Description
	Initialization
	Use of compinit
	Autoloaded files
	Functions

	Completion System Configuration
	Overview
	Standard Tags
	Standard Styles

	Control Functions
	Bindable Commands
	Utility Functions
	Completion Directories

	Completion Using compctl
	Types of completion
	Description
	Command Flags
	Option Flags
	Simple Flags
	Flags with Arguments
	Control Flags

	Alternative Completion
	Extended Completion
	Example

	Zsh Modules
	Description
	The zsh/cap Module
	The zsh/clone Module
	The zsh/compctl Module
	The zsh/complete Module
	The zsh/complist Module
	Colored completion listings
	Scrolling in completion listings
	Menu selection

	The zsh/computil Module
	The zsh/curses Module
	Builtin
	Parameters

	The zsh/datetime Module
	The zsh/deltochar Module
	The zsh/example Module
	The zsh/files Module
	The zsh/mapfile Module
	Limitations

	The zsh/mathfunc Module
	The zsh/newuser Module
	The zsh/parameter Module
	The zsh/pcre Module
	The zsh/regex Module
	The zsh/sched Module
	The zsh/net/socket Module
	Outbound Connections
	Inbound Connections

	The zsh/stat Module
	The zsh/system Module
	Builtins
	Parameters
	The zsh/net/tcp Module
	Outbound Connections
	Inbound Connections
	Closing Connections
	Example

	The zsh/termcap Module
	The zsh/terminfo Module
	The zsh/zftp Module
	Subcommands
	Parameters
	Functions
	Problems

	The zsh/zle Module
	The zsh/zleparameter Module
	The zsh/zprof Module
	The zsh/zpty Module
	The zsh/zselect Module
	The zsh/zutil Module

	Calendar Function System
	Description
	File and Date Formats
	Calendar File Format
	Date Format
	Relative Time Format
	Example

	User Functions
	Calendar system functions
	Glob qualifiers

	Styles
	Utility functions
	Bugs

	TCP Function System
	Description
	TCP User Functions
	Basic I/O
	Session Management
	Advanced I/O
	`One-shot' file transfer

	TCP User-defined Functions
	TCP Utility Functions
	TCP User Parameters
	TCP User-defined Parameters
	TCP Utility Parameters
	TCP Examples
	TCP Bugs

	Zftp Function System
	Description
	Installation
	Functions
	Opening a connection
	Directory management
	Status commands
	Retrieving files
	Sending files
	Closing the connection
	Session management
	Bookmarks
	Other functions

	Miscellaneous Features
	Configuration
	Remote globbing
	Automatic and temporary reopening
	Completion

	User Contributions
	Description
	Utilities
	Accessing On-Line Help
	Recompiling Functions
	Keyboard Definition
	Dumping Shell State

	Prompt Themes
	Installation
	Theme Selection

	ZLE Functions
	Widgets
	Utility Functions
	Styles

	Exception Handling
	MIME Functions
	Mathematical Functions
	User Configuration Functions
	Other Functions
	Descriptions
	Styles

	Concept Index
	Variables Index
	Options Index
	Functions Index
	Editor Functions Index
	Style and Tag Index

