
reptheorem∗

Jesse Straat

2025-09-03

Abstract

When writing a large manuscript, it is sometimes beneficial to repeat a
theorem (or lemma or . . .) at an earlier or later point for didactical purposes.
However, thmtools’s built-in restatable only allows replicating theorems
after they have been stated, and only in the same document. reptheorem
solves the issue by making use of the .aux file, and also introduces its own
file extension, .thm, to replicate theorems in other files.

Contents

1 Repeating theorems 1

2 Replicating theorems between files 3
2.1 Replicating theorems to subfiles . 3

3 Source code 3

1 Repeating theorems

Let’s say we define a theorem as follows:

\begin{theorem}[Yoneda Lemma]

For \(F\colon \mathcal{C}^\mathrm{op}\to \mathbf{Set}\) a functor,

\([\mathcal{C}^\mathrm{op},\mathbf{Set}](YA, F) \cong F(A)\)%

for all objects \(A\) in \(\mathcal{C}\).

\end{theorem}

Its output is of course

Theorem 1 (Yoneda Lemma). For F : Cop → Set a functor, [Cop,Set](Y A,F) ∼=
F (A) for all objects A in C.

Now let’s say we want to replicate the theorem within the same document.
That is what the new environment makethm is used for.makethm (env.)

\begin{makethm}{theorem}{thm:Yoneda}[Yoneda Lemma]

For \(F\colon \mathcal{C}^\mathrm{op}\to \mathbf{Set}\) a functor,

∗Version v1.4.1, last revised 2025-09-03.

1

\([\mathcal{C}^\mathrm{op},\mathbf{Set}](YA, F) \cong F(A)\)

for all objects \(A\) in \(\mathcal{C}\).

\end{makethm}

Its output is the same (in fact, we’ve secretly used makethm in the previous ex-
ample), but the important difference is that we have saved the theorem for later
use.

The makethm environment takes two mandatory arguments and one optional
one. The first mandatory argument is the type of theorem environment as defined
in amsthm, like theorem, lemma, definition, etc. The second is the theorem’s
label. The label is mandatory since, to replicate the theorem, we need to have
a “name” attached to it. makethm automatically attaches a \label, as well, so
\ref{thm:Yoneda} becomes 1. The optional argument is passed right to the
optional argument of the theorem environment, giving the theorem a name.

Now let’s say we want to replicate the theorem later or earlier in the text. This
may be done if, for example, the theorem is proven at a later point, or we want
to “tease” the reader with a powerful theorem that will be proven later in the
chapter. To do this, we use the \repthm command: \repthm{thm:Yoneda}. This\repthm

outputs the theorem again.

Theorem 1 (Yoneda Lemma). For F : Cop → Set a functor, [Cop,Set](Y A,F) ∼=
F (A) for all objects A in C.

The label of this theorem is a \ref, and automatically links to the original
theorem statement.

If the original theorem statement exists in a different file, or has not been
created yet, we can add a placeholder alt text to the \repthm as an op-
tional argument, which only displays if the theorem is undefined. For example,
\repthm{thm:foo}[bar] returns

Theorem ??. bar

If we do the same without providing an alt text, we get

Theorem ??.

together with a warning: “Package reptheorem: Theorem thm:foo not de-
fined; rebuild your project. If the issue persists, create the theorem using
\begin{makethm} or consider adding alt text to \repthm using the optional pa-
rameter.”

Since we’re using the .aux file, it is possible to replicate a theorem before it is
stated. For example,

\repthm{thm:later}

\begin{makethm}{theorem}{thm:later}

Alligator!

\end{makethm}

returns

Theorem 2. Alligator!

Theorem 2. Alligator!

2

Note that it is necessary to run a .tex file twice to replicate theorems ahead
of time, similarly to how one has to run a file twice to make sure the references
are correct.

It is also possible to use a starred version, \repthm*. It then automatically\repthm*

adds a star to the end of the theorem environment. For example, theorem becomes
theorem*.

2 Replicating theorems between files

Let’s say we have the following files for our project:

foo.tex

bar.tex

Let’s say that we have defined a theorem thm:baz in bar.tex, and we want to
replicate it in foo.tex. To achieve this, we first use the \theoremfile command\theoremfile

in the preamble of bar.tex. This compiles all theorems defined in bar.tex and
outputs them into a file bar.thm. To then import these into foo.tex, we use
\loadtheorems{bar.thm} in the preamble, which loads all theorems saved in\loadtheorems

bar.thm. One can then use \repthm as usual.
Since the .aux file is loaded at \begin{document}, putting \loadtheorems in

the preamble of a file will guarantee that the loaded theorem file will be overwritten
by the theorems in the .aux file, i.e., theorems defined in the same document.
In our example, if we also defined a thm:baz in foo.tex, loading bar.thm into
foo.tex will not overwrite the local thm:baz.

2.1 Replicating theorems to subfiles

Replicating theorems to different files is particularly useful when working in big
documents with multiple subfiles. For example, let’s say we have the files

main.tex

foo.tex

bar.tex

Here, main.tex is generated by including foo.tex and bar.tex as chapters,
creating a single large document. It is now possible to replicate theorems
within the subfiles by running \theoremfile in main.tex, and then using
\loadtheorems{main.thm} in foo.tex and bar.tex. This will allow us to use all
theorems in the final main.tex in each of the subfiles.

3 Source code

1 ⟨∗package⟩
2 \ProvidesPackage{reptheorem}[2025-09-03 v1.4.1 Reptheorem package]

\theoremfile Using \theoremfile will output all saved theorems into an output file. By default,
if your LATEXfile is foo.tex, the output file is foo.thm.

3 \def\reptheorem@theoremfile{\relax}

3

4 \NewDocumentCommand{\theoremfile}{ O{\jobname.thm} }{

5 % O: the path of the file to which we should save theorems

6 %

7 \def\reptheorem@theoremfile{#1}

8 \newwrite\@thmlist

9 \immediate\openout\@thmlist=#1

10 }

\loadtheorems If you have exported saved theorems to a file, you can load them into another file
using the macro \loadtheorems.

11 \NewDocumentCommand{\loadtheorems}{ m }{

12 \IfFileExists{#1}{

13 \makeatletter

14 \input{#1}

15 \makeatother

16 }{

17 \PackageWarning{reptheorem}{%

18 File #1 not found. I will not import any theorems.%

19 }

20 }

21 }

The \makeatletter is included here to assure that any macros that are expanded
into macros that contain an @ are interpreted correctly.

repthm@firstoffive This returns the first of five arguments. It is used to get the theorem number of
a label.

22 \NewExpandableDocumentCommand{\repthm@firstoffive}{ m m m m m }{%

23 #1%

24 }

repthm@ifrefexists This command checks whether a label was defined in the auxiliary file. Using just
\ifcsname r@foo\endcsname is not sufficient, since \ref{foo} defines \r@foo

using a placeholder variable if the reference does not exist.

25 \NewExpandableDocumentCommand{\repthm@ifrefexists}{ m +m +m }{%

26 % m: the label

27 % m: code to run if true

28 % m: code to run if false

29 \ifcsname r@#1\endcsname

30 % reference exists but might be dummy

31 \expandafter\ifx\csname r@#1\endcsname\relax

32 % reference is a dummy

33 #3%

34 \else

35 % reference exists and is not a dummy

36 #2%

37 \fi

38 \else

39 % reference doesn’t exist

40 #3%

41 \fi

42 }

makethm (env.) On to defining the actual theorems to be saved.

4

43 \NewDocumentEnvironment{makethm}{ m m o +b }

44 % m: the type of theorem environment

45 % m: the name of the theorem

46 % o: optional parameter for environment

47 % b: the content of the theorem

48 %

49 {%

50 \IfValueTF{#3}{% Check if theorem has optional arguments

51 \begin{#1}[#3]\label{#2}

52 }{

53 \begin{#1}\label{#2}

54 }

55 % \begin{theorem}

56 #4

57 \providecommand{\label}[1]{}

58 \expandafter\gdef\csname thmtype@#2\endcsname{#1}%

59 \expandafter\long\expandafter\gdef\csname thm@#2\endcsname{#4}%

60 \IfValueT{#3}{% Only save theorem name if it exists

61 \expandafter\gdef\csname thmdesc@#2\endcsname{#3}%

62 }

63 % Saving parameters to aux file

64 \expandafter\long\expandafter\gdef\csname thmoutput@#2\endcsname{%

65 \string\expandafter\string\gdef\noexpand%

66 \csname thmtype@#2\string\endcsname{#1}%

67 ^^J%

68 \string\expandafter\string\long\string\expandafter%

69 \string\gdef\noexpand\csname thm@#2\string\endcsname{#4}%

70 \IfValueT{#3}{%

71 ^^J%

72 \string\expandafter\string\gdef\noexpand%

73 \csname thmdesc@#2\string\endcsname{#3}%

74 }%

75 ^^J%

76 \string\expandafter\string\gdef\noexpand%

77 \csname thmlabel@#2\string\endcsname{%

78 \repthm@ifrefexists{#2}{%

79 \expandafter\repthm@firstoffive\expanded{\csname r@#2\endcsname}%

80 }{}%

81 }%

82 }

83 \write\@auxout{\csname thmoutput@#2\endcsname}

84 \if\reptheorem@theoremfile\relax

85 % No file has been set

86 \else

87 % We have a theorem file

88 % Saving parameters to theorem file

89 \write\@thmlist{\csname thmoutput@#2\endcsname}

90 \fi

91 \end{#1}

92 }{}

\repthm To repeat a theorem, use the \repthm command.
If the theorem type shares its counter with another theorem type, e.g., lemma

having the same counter as thoerem, make sure you have thmtools imported. Its

5

\@counteralias macro is essential for the counters to work.

93 \newcounter{old@counter}

94 \NewDocumentCommand{\repthm}{ s m +o }{

95 % s: optional star to add to theorem environment

96 % m: the name of the theorem

97 % o: alt text

98 \begingroup

99 % Check if thmtype is given

100 \ifcsname thmtype@#2\endcsname%

101 \expandafter\let\expandafter\@@thmtype\csname thmtype@#2\endcsname%

102 \else%

103 \def\@@thmtype{theorem}%

104 \PackageWarning{reptheorem}{%

105 Theorem ’#2’ has unknown theorem type. Assuming it is of

106 type ’theorem’.%

107 }

108 \fi%

109 \edef\@@thmcounter{\@@thmtype}

110 \IfBooleanT{#1}{\edef\@@thmtype{\@@thmtype*}}

111 %

112 % Save theorem counter so we don’t increase it

113 \ifcsname c@\@@thmcounter\endcsname

114 \else

115 \PackageWarning{reptheorem}{%

116 Counter ’\@@thmcounter’ not defined; if theorem

117 ’\@@thmcounter’ shares its counter with another

118 theorem, make sure thmtools is imported.%

119 }

120 \fi

121 \setcounter{old@counter}{\value{\@@thmcounter}}

122 \setcounter{\@@thmcounter}{-900}

123 %

124 % Set label number

125 \repthm@ifrefexists{#2}{%

126 % Reference exists: set number as reference

127 \expandafter\def\csname the\@@thmtype\endcsname{\ref{#2}}

128 }{%

129 % Force label number as saved

130 \ifcsname thmlabel@#2\endcsname

131 \expandafter\def\csname the\@@thmtype\endcsname{%

132 \csname thmlabel@#2\endcsname%

133 }

134 \else

135 % No label number saved: revert to ??

136 \expandafter\def\csname the\@@thmtype\endcsname{\ref{#2}}

137 \fi

138 }

139 %

140 \let\@@theoremnotdefined\relax

141 %

142 \ifcsname thm@#2\endcsname% Check if theorem is even defined

143 % Theorem is defined

144 \expandafter\let\expandafter\@@thm\csname thm@#2\endcsname

145 % Output theorem

6

146 \ifcsname thmdesc@#2\endcsname % Check if theorem has name

147 \begin{\@@thmtype}[\csname thmdesc@#2\endcsname]

148 \@@thm

149 \end{\@@thmtype}

150 \else % No optionals

151 \begin{\@@thmtype}

152 \@@thm

153 \end{\@@thmtype}

154 \fi

155 \else

156 % Theorem undefined

157 \IfValueTF{#3}{

158 \begin{\@@thmtype}

159 #3

160 \end{\@@thmtype}

161 }{% No theorem or alt text provided: throw warning

162 \begin{\@@thmtype}

163 \end{\@@thmtype}

164 \PackageWarning{reptheorem}{%

165 Theorem ’#2’ not defined; rebuild your project.

166 If the issue persists, create the theorem using

167 \begin{makethm} or consider adding alt text to \repthm

168 using the optional parameter.%

169 }

170 }

171 \fi

172 \setcounter{\@@thmcounter}{\value{old@counter}}

173 % Reset theorem counter back to original

174 \endgroup

175 }

176 ⟨/package⟩

Change History

v1.0
General: First public release 1

v1.1
makethm: Now saves theorem

environment type, breaking
backwards compatibility. 4

\repthm: Now saves theorem
environment type, breaking
backwards compatibility. 5

v1.2
makethm: Environment end moved

to fix vertical spacing. 4
Renamed theorem output
variable to be unique for each
theorem. 4

Theorem name is only saved if it
exists. 4

\repthm: Fixed bug where
theorems got a name even if
undefined. 5

v1.3
\repthm: Added hyperref named

destination compatibility by
setting counter to very low
value. 5

Changed thetheorem to csname
to fix compatibility with
theorem types not called
“theorem”. 5

v1.4
\loadtheorems: Now makes @

catcode 11 to fix
incompatibility. 4

makethm: Added theorem label to

7

aux file. 4
\repthm: Added warnings for

unknown counter and unknown
theorem type. 5

If reference doesn’t exist, saved
label is now used instead of ??.
Added star option. 5

v1.4.1
repthm@firstoffive: Added

firstoffive command 4
repthm@ifrefexists: Added

ifrefexists command 4
makethm: Replaced theorem label

saving macro. 4
\repthm: Added fallback for when

no label is saved. 5

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@@theoremnotdefined

. 140

\@@thm 144, 148, 152

\@@thmcounter
. 109, 113, 116,
117, 121, 122, 172

\@@thmtype 101, 103,
109, 110, 127,
131, 136, 147,
149, 151, 153,
158, 160, 162, 163

\@auxout 83

\@thmlist 8, 9, 89

E

environments:

makethm 1, 43

L

\loadtheorems 3, 11

M

makethm (env.) 1, 43

N

\newwrite 8

O

\openout 9

P
\PackageWarning . . .

. 17, 104, 115, 164

R
\reptheorem@theoremfile

. 3, 7, 84
\repthm 2, 93
\repthm* 2
\repthm@firstoffive

. 22, 22, 79
\repthm@ifrefexists

. . . 25, 25, 78, 125

T
\theoremfile 3, 3

8

	Contents
	1 Repeating theorems
	2 Replicating theorems between files
	2.1 Replicating theorems to subfiles

	3 Source code

