patch-2.2.8 linux/include/asm-arm/arch-ebsa285/time.h

Next file: linux/include/asm-arm/arch-ebsa285/timex.h
Previous file: linux/include/asm-arm/arch-ebsa285/system.h
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.2.7/linux/include/asm-arm/arch-ebsa285/time.h linux/include/asm-arm/arch-ebsa285/time.h
@@ -10,116 +10,346 @@
  *  21-Mar-1998	RMK	Created
  *  27-Aug-1998	PJB	CATS support
  *  28-Dec-1998	APH	Made leds optional
+ *  20-Jan-1999	RMK	Started merge of EBSA285, CATS and NetWinder
+ *  16-Mar-1999	RMK	More support for EBSA285-like machines with RTCs in
  */
 
-#define RTC_PORT(x)		(0x72+(x))
-#define RTC_ALWAYS_BCD		1
+#define RTC_PORT(x)		(rtc_base+(x))
+#define RTC_ALWAYS_BCD		0
 
 #include <linux/config.h>
+#include <linux/mc146818rtc.h>
+
+#include <asm/dec21285.h>
 #include <asm/leds.h>
 #include <asm/system.h>
-#include <linux/mc146818rtc.h>
 
-extern __inline__ unsigned long gettimeoffset (void)
+static int rtc_base;
+static unsigned long (*gettimeoffset)(void);
+static int (*set_rtc_mmss)(unsigned long nowtime);
+static long last_rtc_update = 0;	/* last time the cmos clock got updated */
+
+#ifdef CONFIG_LEDS
+static void do_leds(void)
+{
+	static unsigned int count = 50;
+	static int last_pid;
+
+	if (current->pid != last_pid) {
+		last_pid = current->pid;
+		if (last_pid)
+			leds_event(led_idle_end);
+		else
+			leds_event(led_idle_start);
+	}
+		
+	if (--count == 0) {
+		count = 50;
+		leds_event(led_timer);
+	}
+}
+#else
+#define do_leds()
+#endif
+
+#define mSEC_10_from_14 ((14318180 + 100) / 200)
+
+static unsigned long isa_gettimeoffset(void)
+{
+	int count;
+
+	static int count_p = (mSEC_10_from_14/6);    /* for the first call after boot */
+	static unsigned long jiffies_p = 0;
+
+	/*
+	 * cache volatile jiffies temporarily; we have IRQs turned off. 
+	 */
+	unsigned long jiffies_t;
+
+	/* timer count may underflow right here */
+	outb_p(0x00, 0x43);	/* latch the count ASAP */
+
+	count = inb_p(0x40);	/* read the latched count */
+
+	/*
+	 * We do this guaranteed double memory access instead of a _p 
+	 * postfix in the previous port access. Wheee, hackady hack
+	 */
+ 	jiffies_t = jiffies;
+
+	count |= inb_p(0x40) << 8;
+
+	/* Detect timer underflows.  If we haven't had a timer tick since 
+	   the last time we were called, and time is apparently going
+	   backwards, the counter must have wrapped during this routine. */
+	if ((jiffies_t == jiffies_p) && (count > count_p))
+		count -= (mSEC_10_from_14/6);
+	else
+		jiffies_p = jiffies_t;
+
+	count_p = count;
+
+	count = (((mSEC_10_from_14/6)-1) - count) * tick;
+	count = (count + (mSEC_10_from_14/6)/2) / (mSEC_10_from_14/6);
+
+	return count;
+}
+
+static void isa_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+	if (machine_is_netwinder())
+		do_leds();
+
+	do_timer(regs);
+
+	/* If we have an externally synchronized linux clock, then update
+	 * CMOS clock accordingly every ~11 minutes.  Set_rtc_mmss() has to be
+	 * called as close as possible to 500 ms before the new second starts.
+	 */
+	if ((time_status & STA_UNSYNC) == 0 &&
+	    xtime.tv_sec > last_rtc_update + 660 &&
+	    xtime.tv_usec > 50000 - (tick >> 1) &&
+	    xtime.tv_usec < 50000 + (tick >> 1)) {
+		if (set_rtc_mmss(xtime.tv_sec) == 0)
+			last_rtc_update = xtime.tv_sec;
+		else
+			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
+	}
+}
+
+static struct irqaction isa_timer_irq = {
+	isa_timer_interrupt,
+	0,
+	0,
+	"timer",
+	NULL,
+	NULL
+};
+
+__initfunc(static unsigned long
+get_isa_cmos_time(void))
+{
+	unsigned int year, mon, day, hour, min, sec;
+	int i;
+
+	// check to see if the RTC makes sense.....
+	if ((CMOS_READ(RTC_VALID) & RTC_VRT) == 0)
+		return mktime(1970, 1, 1, 0, 0, 0);
+
+	/* The Linux interpretation of the CMOS clock register contents:
+	 * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
+	 * RTC registers show the second which has precisely just started.
+	 * Let's hope other operating systems interpret the RTC the same way.
+	 */
+	/* read RTC exactly on falling edge of update flag */
+	for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
+		if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
+			break;
+
+	for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
+		if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
+			break;
+
+	do { /* Isn't this overkill ? UIP above should guarantee consistency */
+		sec  = CMOS_READ(RTC_SECONDS);
+		min  = CMOS_READ(RTC_MINUTES);
+		hour = CMOS_READ(RTC_HOURS);
+		day  = CMOS_READ(RTC_DAY_OF_MONTH);
+		mon  = CMOS_READ(RTC_MONTH);
+		year = CMOS_READ(RTC_YEAR);
+	} while (sec != CMOS_READ(RTC_SECONDS));
+
+	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+		BCD_TO_BIN(sec);
+		BCD_TO_BIN(min);
+		BCD_TO_BIN(hour);
+		BCD_TO_BIN(day);
+		BCD_TO_BIN(mon);
+		BCD_TO_BIN(year);
+	}
+	if ((year += 1900) < 1970)
+		year += 100;
+	return mktime(year, mon, day, hour, min, sec);
+}
+
+static int
+set_isa_cmos_time(unsigned long nowtime)
+{
+	int retval = 0;
+	int real_seconds, real_minutes, cmos_minutes;
+	unsigned char save_control, save_freq_select;
+
+	save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
+	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
+
+	save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
+	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
+
+	cmos_minutes = CMOS_READ(RTC_MINUTES);
+	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
+		BCD_TO_BIN(cmos_minutes);
+
+	/*
+	 * since we're only adjusting minutes and seconds,
+	 * don't interfere with hour overflow. This avoids
+	 * messing with unknown time zones but requires your
+	 * RTC not to be off by more than 15 minutes
+	 */
+	real_seconds = nowtime % 60;
+	real_minutes = nowtime / 60;
+	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
+		real_minutes += 30;		/* correct for half hour time zone */
+	real_minutes %= 60;
+
+	if (abs(real_minutes - cmos_minutes) < 30) {
+		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+			BIN_TO_BCD(real_seconds);
+			BIN_TO_BCD(real_minutes);
+		}
+		CMOS_WRITE(real_seconds,RTC_SECONDS);
+		CMOS_WRITE(real_minutes,RTC_MINUTES);
+	} else
+		retval = -1;
+
+	/* The following flags have to be released exactly in this order,
+	 * otherwise the DS12887 (popular MC146818A clone with integrated
+	 * battery and quartz) will not reset the oscillator and will not
+	 * update precisely 500 ms later. You won't find this mentioned in
+	 * the Dallas Semiconductor data sheets, but who believes data
+	 * sheets anyway ...                           -- Markus Kuhn
+	 */
+	CMOS_WRITE(save_control, RTC_CONTROL);
+	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
+
+	return retval;
+}
+
+
+
+static unsigned long __ebsa285_text timer1_gettimeoffset (void)
 {
 	unsigned long value = LATCH - *CSR_TIMER1_VALUE;
 
 	return (tick * value) / LATCH;
 }
 
-extern __inline__ int reset_timer (void)
+static void __ebsa285_text timer1_interrupt(int irq, void *dev_id, struct pt_regs *regs)
 {
 	*CSR_TIMER1_CLR = 0;
 
-#ifdef CONFIG_LEDS
-	/*
-	 * Do the LEDs thing on EBSA-285 hardware.
+	/* Do the LEDs things on non-CATS hardware.
 	 */
-	if (!machine_is_cats()) {
-		static unsigned int count = 50;
-		static int last_pid;
-
-		if (current->pid != last_pid) {
-			last_pid = current->pid;
-			if (last_pid)
-				leds_event(led_idle_end);
-			else
-				leds_event(led_idle_start);
-		}
-		
-		if (--count == 0) {
-			count = 50;
-			leds_event(led_timer);
-		}
+	if (!machine_is_cats())
+		do_leds();
+
+	do_timer(regs);
+
+	/* If we have an externally synchronized linux clock, then update
+	 * CMOS clock accordingly every ~11 minutes.  Set_rtc_mmss() has to be
+	 * called as close as possible to 500 ms before the new second starts.
+	 */
+	if ((time_status & STA_UNSYNC) == 0 &&
+	    xtime.tv_sec > last_rtc_update + 660 &&
+	    xtime.tv_usec > 50000 - (tick >> 1) &&
+	    xtime.tv_usec < 50000 + (tick >> 1)) {
+		if (set_rtc_mmss(xtime.tv_sec) == 0)
+			last_rtc_update = xtime.tv_sec;
+		else
+			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
 	}
-#endif
-	
-	return 1;
 }
 
-/*
- * We don't have a RTC to update!
- */
-#define update_rtc()
+static struct irqaction __ebsa285_data timer1_irq = {
+	timer1_interrupt,
+	0,
+	0,
+	"timer",
+	NULL,
+	NULL
+};
+
+static int
+set_dummy_time(unsigned long secs)
+{
+	return 1;
+}
 
 /*
  * Set up timer interrupt, and return the current time in seconds.
  */
-extern __inline__ unsigned long setup_timer (void)
+extern __inline__ void setup_timer(void)
 {
-	int year, mon, day, hour, min, sec;
+	switch(machine_arch_type) {
+	case MACH_TYPE_CO285:
+		/*
+		 * Add-in 21285s shouldn't access the RTC
+		 */
+		rtc_base = 0;
+		break;
 
-	/*
-	 * Default the date to 1 Jan 1970 0:0:0
-	 */
-	year = 1970; mon = 1; day = 1;
-	hour = 0; min = 0; sec = 0;
+	default:
+		rtc_base = 0x70;
+		break;
+	}
+
+	if (rtc_base) {
+		int reg_d, reg_b;
+
+		reg_d = CMOS_READ(RTC_REG_D);
 
-	*CSR_TIMER1_CLR  = 0;
-	*CSR_TIMER1_LOAD = LATCH;
-	*CSR_TIMER1_CNTL = TIMER_CNTL_ENABLE | TIMER_CNTL_AUTORELOAD | TIMER_CNTL_DIV16;
-
-	if (machine_is_cats()) 
-	{
-		int i;
 		/*
-		 * Read the real time from the Dallas chip.  (Code borrowed
-		 * from arch/i386/kernel/time.c).
+		 * make sure the divider is set
 		 */
-		
-		/* The Linux interpretation of the CMOS clock register contents:
-		 * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
-		 * RTC registers show the second which has precisely just started.
-		 * Let's hope other operating systems interpret the RTC the same way.
+		CMOS_WRITE(RTC_REF_CLCK_32KHZ, RTC_REG_A);
+
+		/*
+		 * Set control reg B
+		 *   (24 hour mode, update enabled)
 		 */
+		reg_b = CMOS_READ(RTC_REG_B) & 0x7f;
+		reg_b |= 2;
+		CMOS_WRITE(reg_b, RTC_REG_B);
+
+		if ((CMOS_READ(RTC_REG_A) & 0x7f) == RTC_REF_CLCK_32KHZ &&
+		    CMOS_READ(RTC_REG_B) == reg_b) {
+
+			/*
+			 * Check the battery
+			 */
+			if ((reg_d & 0x80) == 0)
+				printk(KERN_WARNING "RTC: *** warning: CMOS battery bad\n");
+
+			xtime.tv_sec = get_isa_cmos_time();
+			set_rtc_mmss = set_isa_cmos_time;
+		} else
+			rtc_base = 0;
+	}
 
-		/* read RTC exactly on falling edge of update flag */
-		for (i = 0 ; i < 1000000 ; i++)	/* may take up to 1 second... */
-			if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
-				break;
-		for (i = 0 ; i < 1000000 ; i++)	/* must try at least 2.228 ms */
-			if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
-				break;
-		do { /* Isn't this overkill ? UIP above should guarantee consistency */
-			sec = CMOS_READ(RTC_SECONDS);
-			min = CMOS_READ(RTC_MINUTES);
-			hour = CMOS_READ(RTC_HOURS);
-			day = CMOS_READ(RTC_DAY_OF_MONTH);
-			mon = CMOS_READ(RTC_MONTH);
-			year = CMOS_READ(RTC_YEAR);
-		} while (sec != CMOS_READ(RTC_SECONDS));
-		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
-		{
-			BCD_TO_BIN(sec);
-			BCD_TO_BIN(min);
-			BCD_TO_BIN(hour);
-			BCD_TO_BIN(day);
-			BCD_TO_BIN(mon);
-			BCD_TO_BIN(year);
-		}
-		if ((year += 1900) < 1970)
-			year += 100;
+	if (!rtc_base) {
+		/*
+		 * Default the date to 1 Jan 1970 0:0:0
+		 */
+		xtime.tv_sec = mktime(1970, 1, 1, 0, 0, 0);
+		set_rtc_mmss = set_dummy_time;
 	}
 
-	return mktime(year, mon, day, hour, min, sec);
+	if (machine_is_ebsa285()) {
+		gettimeoffset = timer1_gettimeoffset;
+
+		*CSR_TIMER1_CLR  = 0;
+		*CSR_TIMER1_LOAD = LATCH;
+		*CSR_TIMER1_CNTL = TIMER_CNTL_ENABLE | TIMER_CNTL_AUTORELOAD | TIMER_CNTL_DIV16;
+
+		setup_arm_irq(IRQ_TIMER1, &timer1_irq);
+	} else {
+		/* enable PIT timer */
+		/* set for periodic (4) and LSB/MSB write (0x30) */
+		outb(0x34, 0x43);
+		outb((mSEC_10_from_14/6) & 0xFF, 0x40);
+		outb((mSEC_10_from_14/6) >> 8, 0x40);
+
+		gettimeoffset = isa_gettimeoffset;
+
+		setup_arm_irq(IRQ_ISA_TIMER, &isa_timer_irq);
+	}
 }

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)