IAB - loT Semantic Interoperability Workshop 2016

Semantic Interoperability Requires

Self-describing Interaction Models
HATEOAS for the Internet of Things

Matthias Kovatsch Yassin N. Hassan Klaus Hartke
Siemens AG / ETH Zurich ETH Zurich Universitat Bremen TZI
kovatsch@inf.ethz.ch yhassan@student.ethz.ch hartke@tzi.org

Abstract—Most efforts for semantic interoperability in the Internet of Things (loT) focus
on the information model. This is indeed a crucial aspect to make use of the data
produced by loT devices. To enable robust machine-to-machine communication that can
handle change in a global system, however, semantic interoperability also requires a
machine-understandable interaction model. In the World Wide Web, the Hypermedia as
the Engine of Application State (HATEOAS) principle of REST is such a mechanism that
provides functional descriptions for the APls. The interaction is modelled in atomic
operations (request-response exchanges resulting from links or forms) that have semantic
annotations to describe the function (link and form relation types). We argue for a
combination of information model semantics (e.g., RDF) with interaction model semantics
(i.,e., hypermedia controls) that make APl operation explicit, and hence
machine-understandable.

Introduction

The Internet of Things (loT) is expected to connect numerous digital services with physical objects.
Many of the devices will be autonomous, that is, they perform machine-to-machine communication
without human interaction. For this to be possible, the complete interaction must be
machine-understandable. This includes two parts:

e An information model that describes the exchanged information, and
e an interaction model that describes the possible interactions with a service.

Various standardization groups have defined data formats such as IPSO Smart Objects [IPSO] or the
ZigBee Cluster Library [ZCL], which also have a conceptual model for the data. Semantic models such
as the Resource Description Framework (RDF) [RDF] could be used to build an information model
across the different consortia, as they usually share a common meta model. The advantage of semantic
information models is that machines can interpret meaning from the data itself without the need to know
the meta model. Furthermore, it allows for the interlinking of data models, so that a model from one
application domain can be integrated with another [LD].

Orthogonal to that, interaction models tell a machine how an API is used and can drive the interaction
during runtime. Usually, this part is hard-coded in machine clients: A developer uses a textual
description of the API to implement the necessary protocol steps. Here, more formal description such as
RAML [RAML] can help to generate the necessary stubs. This approach is not a problem when it is
cheap to upgrade all clients to the new API version, which is usually the case for smartphone apps that

1



talk to cloud back-ends of the same vendor. However, when billions of small, independent nodes provide
services to billions of clients, the cost of breaking the API is very high, as a developer has to intervene
and upgrade all clients to the new service API.

When a machine client can discover the possible interactions with a service, it could adapt to changes
by itself. The REST architectural style [REST] provides such a mechanism for the interaction model:
Hypermedia As The Engine Of Application State (HATEOAS). Here, the server provides in-band
descriptions of the API through the publication of links and forms. Only the atomic interaction steps
(following links and submitting forms) have to be shared a priori. Each interaction step corresponds to a
request-response exchange. This mechanism lets machines not only handle change over time, but also
enables interoperability between changing APIs from different manufacturers.

Hypermedia Controls

Hypermedia is a well known concept in the Web. There, people find information by following links and
interact with Web services by using forms. The idea of self-describing interaction models is to apply this
concept to machine-to-machine communication. The crucial point here is that the machines need to
understand what the links and forms mean. This is in contrast to the Web, where a human user
interprets the links and forms in their context and knows which link to follow or how to fill out a form.

Link relation types [RFC5988] is a concept that attaches machine-understandable meaning to links. Link
relation types are used in the Web when the Web browser needs to discover by itself without human
intervention, for example, the stylesheet of a Web page. Link relation types are also used in
microformats to attach machine-readable meaning to links, and in the Atom Syndication Format
[RFC4287]. By defining loT-specific link relation types, it is possible to drive interactions through links
instead of hardcoding URIs into the client, thus making the system flexible enough for later changes.

While link relation types are quite established in the Web, forms do not enjoy a standardised mechanism
for attaching meaning yet. However, it is easily imaginable to have something akin to a "form relation
type" that serves for forms the same way as link relation types for links. Yet a form enables a richer
interaction than a link, as the client can include data when submitting the form. So, in addition to the
form relation type, a machine-understandable form also needs to include a machine-understandable
description of the accepted data, e.g., as a set of machine-understandable input fields similar to
microformat properties.

Hypermedia Client

While the design of the right hypermedia formats and vocabulary for the loT still requires research effort,
the embedding of hypermedia controls on the server side is relatively straight-forward. The consumption
on the client side, however, is challenging. We believe that the lack of proper abstractions to define the
behavior and goals of a hypermedia-driven machine client has led to the pre-dominance of quasi
RESTful applications, where the consumption of a REST APl is hardcoded in the client. Thus, most APIs
also miss the hypermedia controls and no loT-related vocabulary for relation types could emerge.

Ideally, developers would program the behavior of a hypermedia-driven machine client by describing
e the intended Web resource based on its context, independent from the current network
addresses and server structures, and
e the intended resource state based on an information model that can be applied to the
representation formats and forms.



To specify the context of a resource, one or more link relation types need to be given. This usually starts
from the entry URI, from where the client performs an incremental discovery of related resources.

Prototype Implementation

We implemented this abstraction using Futures and provide a Java-based prototype together with
JavaScript wrapper module for scripting”. The description of an intended resource looks as follows:

client = new HypermediaClient("coap://home.local");
resource = client.follow("my-lightbulb-tag")

.follow("lighting-state");
representation = resource.get();

When the developer knows what representation formats to expect [CA], the program API (and hence the
IDE autocomplete feature) can directly offer format-specific methods to consume data or submit forms:

temp = representation.getColorTemp();

newRepresentation.setHSvV(120, 1, 1);

representation.formedit(newRepresentation)
.get();

Often, finding the correct context requires active exploration of multiple links (e.g., to find a lightbulb at a
specific location). Furthermore, it can happen that the client arrives in an unknown context, where none
of the links provide a known relation. In both cases, a crawler that provides specific strategies (e.qg.,
crawl for a hierarchical location identifier) can help:

thing = client.links().use(new ThingCrawler())
.findLocation("/CH/ETH/CAB/51")
findFirstWith("lighting-state");

Optimizations

The incremental discovery in hypermedia-driven applications might appear inefficient due to the high
number of roundtrips, especially for constrained IoT devices. However, there are several optimizations
that can be applied and usually directly result from the REST architectural style. All optimizations are
implemented in our Hypermedia Client.

Caching

Representations can be cached directly on the client or on less constrained intermediaries. Thus, not all
interactions require communication, as requests can be directly answered from the most local cache.
For this to work, it is important that the server provides deliberate caching control information (e.g.,
Max-Age option).

Bookmarks

Bookmarking is an explicit caching strategy controlled by the client. Once the Web resource of interest is
found, the client can store the effective URI and always start the interaction from there (e.g., read a

' GitHub repo URI t.b.d. (will be publicly available on GitHub after clean-up)
3



sensor value or set a parameter). In addition to the URI for the bookmark, it is useful to also store a
recipe how the resource was discovered. In case the resource becomes unavailable, a client can then
efficiently rediscover a resource that fulfills the same purpose (e.g., when the light bulb was replaced or
when the API changed).

Reduced Representations

Similar to bookmarks, clients could cache the discovered interaction model and request an optimized
representation format that omits the hypermedia controls. For instance, when having discovered a
temperature sensor, the client is only interested in the sensor readings, but does not require links for
further interaction. This can be achieved through reduced representations or a format that only carries
data without controls.

Related Work

RESTdesc [REDE] is a community effort to provide functional descriptions for REST APIs (i.e., an
interaction model). Given a goal, this approach uses first-order logic to produce an execution plan from
inference rules over semantic facts (“triples”). Each rule is annotated with with a REST request that
transforms the set of given preconditions into a set of postconditions. This way, the proof for achieving
the goal also contains an ordered list of requests, which represents the execution plan. The drawbacks
of RESTdesc are the performance of semantic reasoners when the number of services and goal
complexity grows, the corruption of the whole system when a single functional description is faulty, and a
cumbersome syntax to formulate complex goals.

CoRE Link Format [RFC6690] and CoRE Interfaces [CI] provide attributes that are related to link and
form relation types. The resource type (rt) is a tag to identify a resource. Opposed to link relation types, it
is an absolute definition, while link relation types are relative and can be combined to incrementally
specify the context of a resource. The interface type (if) is close to a form relation type: It specifies the
possible interactions with the resource, while the content type (ct) attribute tells the client which
representation formats are supported. However, the method and required input fields are implicit and
have to be taken from the specification.

The W3C WoT Interest Group has designed a Thing Description (TD) [TD] that provides metadata and
simple interaction patterns (Properties, Actions, and Events). Rooted in RDF by using JSON-LD
[JSONLD], the metadata is machine-understandable and the model can easily be extended with
domain-specific semantic descriptions, which can even be translated automatically through ontology
mapping. The interaction model of TD, however, is still implicit and the construction of requests is
hardcoded in clients. Thus, the simple interaction pattern cannot evolve over time without breaking
deployed applications. Yet by including hypermedia controls to describe the patterns, the interaction
model would become explicit in machine-understandable form, allowing for a complete solution.

Conclusion

A global information model alone does not solve semantic interoperability. Besides correctly interpreting
data, machines must also be able to understand the API semantics to automatically adapt to change.
Hypermedia controls provide this for the World Wide Web; however, only for human users. Machine
clients are still programmed with an implicit interaction model tied to a specific APl and API version. As
reason for that, we identify the lack of a proper programming abstraction for hypermedia-driven machine
clients.



We experiment with a prototypical hypermedia client that uses Futures to provide developers with a way
to describe Web resources based on their context. This way, environments and server structures can
change over time without breaking the running applications, since the client is able to rediscover its
resources of interest on a replacement device or in a new API version. This shows how hypermedia
controls can enable the 10T to handle change.

It has proven useful to rely on a closed set of vocabulary for individual 0T applications. The vocabulary
used can be grouped and identified by Internet Media Types. By following the recommendation of [CA],
which is that an application needs to list the Internet Media Types used, a machine client can be sure
that it will be able to understand all the vocabulary needed to fulfill its goal. Otherwise, constrained
devices would need to be prepared to dynamically load new vocabularies and perform semantic
reasoning steps.

Reasoning,
Service composition

Metadata, Information model
properties (e.g., W3C Thing Description)
Vocabulary

Link/form relation

types Interaction model

(HATEOAS)
Process control,
Runtime

Figure 1: The symbiosis of information and interaction model

Ultimately, we envision the combination of a self-describing interaction model using hypermedia controls
with a powerful information model as depicted in Figure 1. Semantic reasoning over the information
model on the one hand can be used for the evaluation of metadata, automatic service composition, and
validation of data flows. On the other hand, hypermedia controls ensure interoperability at runtime. Client
and server can evolve over time and new components can be introduced without breaking the
application. This symbiosis would provide the advantages of both worlds and allow for semantic
interoperability in the loT.

References

[CA] K. Hartke. “CoRE Application Descriptions”. I-D.hartke-core-apps-03, 2016.

[Cl] Z. Shelby, M. Vial, M. Koster. “Reusable Interface Definitions for Constrained RESTful
Environments” I-D.ietf-core-interfaces-04, 2015.

[IPSO] IPSO SmartObject Guideline. Technical Guideline (Version 1.0), IPSO Alliance, 2014.

[JSONLD] M. Sporny et al. “JSON-LD 1.0 - A JSON-based serialization for Linked Data”. W3C
Working Draft, 2013.

[LD] T. Bizer, T. Heath, T. Berners-Lee. “Linked data - The Story So Far”. Semantic Services,
Interoperability and Web Applications: Emerging Concepts, 2009, S. 205-227.

[RAML] “RAML 1.0”. Technical specification (RC), 2016.

[RDF] G. Klyne, J. Carroll, B. McBride. “RDF 1.1 Concepts and Abstract Syntax”. W3C

Recommendation, 2014.



[REST]

[REDE]

[RFC4287]
[RFC5988]
[RFC6690]
[TD]

[ZCL]

R. T. Fielding. “Architectural Styles and the Design of Network-based Software
Architectures”. PhD thesis, University of California, Irvine, 2000.

R. Verborgh, V. Haerinck, T. Steiner, D. Van Deursen, S. Van Hoecke, J. De Roo, R. Van
de Walle, J. G. Vallés. “Functional Composition of Sensor Web APIs”. In Proc. SSN,
Boston, USA, 2012.

M. Nottingham, R. Sayre. “The Atom Syndication Format”. RFC 4287, 2005.

M. Nottingham. “Web Linking”. RFC 5988, 2010.

Z. Shelby. “Constrained RESTful Environments (CoRE) Link Format”. RFC 6690, 2012.
D. Peintner, M. Kovatsch. “WoT Current Practices”. Unofficial Draft, 2016.

ZigBee Alliance. “ZigBee Cluster Library”. ZigBee Document 075123r04ZB, 2012.



