Lab 1 – Editing, Compiling, and Mapmaking

Introduction

Today we begin the process of writing interactive stories. At a minimum, all stories must have locations for the player to explore. Here is a sample transcript from an extremely simple story with two locations, to give you an idea what the interactions are like:

Outside cave

 You're standing in the bright sunlight just outside of a large, dark, forboding cave, which lies to the north.

>go north

Cave

 You're inside a dark and musty cave. Sunlight pours in from a passage to the south.

Actually, walking around is so common, the player can omit the verb “go” and just use compass directions to indicate where he wants to go.

>south

Outside cave

>look

Outside cave

 You're standing in the bright sunlight just outside of a large, dark, forboding cave, which lies to the north.

Notice that when the player returns to a location he has already been, it just gives him the name of the location. If he wants to read the whole description again, he needs to type “look”. Many commands can be abbreviated, such as “n” for north and “l” for “look”.

>n

Cave

>l

Cave

 You're inside a dark and musty cave. Sunlight pours in from a passage to the south.

There are several special commands available to the player. “inventory” or “i” which lists what the player is carrying. “save” creates a bookmark in the story, and “restore” accesses those bookmarks.

>inventory

You are empty-handed.

TADS

Writing a computer program that can handle all the interactions in just this simple example can be extraordinarily challenging. First, the program must prompt the user for input, then analyze or “parse” the command that the player has typed in. It must identify the verb, the direct object, and other parts of speech. Then it must try to make sense out of the command, and output the appropriate response.

Fortunately, a programming library called TADS (Text Adventure Development System) already does a lot of this. It handles the input/output and the grammatical parsing. All you have to do is program the locations, objects and characters. This allows you to concentrate on the actual content of your story.

Rule #1: Always start with a map.

Good programmers always plan out what they are going to program before they start typing. Before programming your story, you must start with a map of all the locations in your story and illustrate how they connect to one another.

Here is what the above example would look like:

Using the editor

To type a program, you must use an editor. You may use any editor you wish, but if you have no preference, I suggest you use PFE (Programmer’s File Editor) which is already installed on your computer in

C:\PROGRAM FILES\TADS TOOLS\EDITOR. There may be a shortcut to the editor already on your desktop.

An editor is a bit different from a word processor (like Microsoft Word). Unlike word processors, editors don’t embed the text with font and formatting information that might confuse the program compiler. Editors often contain a number of other features useful to programmers such as line number information and smart indenting. However, you can expect many of the editing features to work much like a word processor (Home key, End key, Page Up, Page Down, Delete, Backspace, Insert, text highlighting, and cut and paste all work the same).

Once you have started the editor, select File-New. Then File-Save the empty file as lab1.t on your floppy disk (drive a:\). All TADS program names must end in “.t”.

Type the following program exactly as written here. Use the Tab key to indent.

#include <adv.t>

#include <std.t>

startroom:
room

 sdesc = "Outside cave"

 ldesc = "You're standing in the bright sunlight just outside of a

 large, dark, forboding cave, which lies to the north. "

 north = cave

;

cave:
room

 sdesc = "Cave"

 ldesc = "You're inside a dark and musty cave. Sunlight pours in from a

 passage to the south. "

 south = startroom

;

This is the entire program for the example. This program illustrates what object-oriented programming is all about. Object-oriented programmers create classes that provide general behavior, and then create objects that are specific instances of the more general classes. The objects have properties which distinguish them from one another.

Let’s discuss the program briefly, line-by-line.

#include <adv.t>

#include <std.t>

These two statements include the files adv.t and std.t which provide many built-in classes for you to use when programming your story. For example, adv.t contains the definition of the class “room”, which is used twice in the above program.

startroom:
room

This line declares an object called “startroom” which is an instance of the class “room”. TADS already knows how rooms work, so you just need to define a few properties to make this room unique. Every story must have exactly one room called “startroom”, and that’s where the player will start.

 sdesc = "Outside cave"

This line defines the “Short description” (sdesc) property of startroom.

 ldesc = "You're standing in the bright sunlight just outside of a

 large, dark, forboding cave, which lies to the north. "

This line defines the “Long description” (ldesc) property of startroom. Note that there are two spaces after the period. That is because another sentence might be printed out after the long description, so we want to make sure we have spaces there.

 north = cave

This says that the room object called “cave” lies to the north of this room. TADS understands the directions north, south, east, west, ne, se, nw, sw, up, down, in, and out.

;

The semicolon says that you’re done defining the startroom object.

cave:
room

 sdesc = "Cave"

 ldesc = "You're inside a dark and musty cave. Sunlight pours in from a

 passage to the south. "

 south = startroom

;

Another object called “cave”, also a “room”, is defined. It’s much like the other room, but with different information filled in for each of its properties.

Compiling

Once you have finished writing your program, don’t forget to save it. The next step is to compile your program into a game file. Hit the F11 key, and if it’s not already filled in, for the “Command” enter tc32.exe “%p” and for the “Working Directory” enter C:\Program Files\Tads Tools\. Then hit Okay. Another window will pop up displaying any error messages from your compile. When you are done reading the messages, you can close the window.

If you didn’t receive any error messages, then your program was compiled into a game file. Look for your game file (lab1.gam) in the same directory where you saved lab1.t. Double-click on it to test your program. Does your program respond just like the sample transcript? What happens if you type an invalid direction like “Go east”? Experiment for a while.

Homework Lab Assignment

Start a new file called “home1.t”. Draw a map containing at least four interconnecting locations. Use a fantastical setting, or use your house if you can’t think of anything. Then write the program for the locations you have mapped out. Use good writing skills and try to come up with interesting descriptions for each of the locations. Compile your program and have a friend test it.

Read the Suspect transcript handed out in class to see what a more complex interactive story is like.

Outside Cave

Cave

PAGE
1

