
Datatracker Testing
Making the users happy 

by catching bugs

Contents
• How test coverage has changed

• Catching data corruption

• Finding user points of pain

• Dead code removal

• Chasing the holy grail of full test coverage

What you measure is what
you get …

Test coverage measurements
In March 2015, we started to measure test coverage
(code coverage, template coverage, and URL coverage)
as part of the test suite.

We also made the test suite fail if new code had less
test coverage than that of the latest release, ensuring
that the coverage could go up, but not easily down.

Test coverage since
measurement start

Table 1

Weeks Release Code Templates Urls

0 2015-03-10 20:14:17 5.12.1 0.5939973868265314 0.6505576208178439 0.5163934426229508

1 2015-03-17 11:14:26 5.12.2 0.6619815668202764 0.6505576208178439 0.5163934426229508

1 2015-03-19 23:48:03 5.12.3 0.6620075263036633 0.6505576208178439 0.5163934426229508

2 2015-03-25 19:48:25 5.13.0 0.6783063492673922 0.671003717472119 0.5655737704918032

3 2015-04-02 19:18:10 5.13.1 0.6806554602454129 0.667953667953668 0.5755693581780539

5 2015-04-13 20:24:22 6.0.0 0.6809926894959599 0.6711538461538461 0.5767634854771784

5 2015-04-15 19:16:32 6.0.1 0.6808739806124019 0.6711538461538461 0.5767634854771784

7 2015-04-27 08:49:43 6.0.2 0.6809490900714121 0.6730769230769231 0.5767634854771784

9 2015-05-13 17:15:23 6.0.3 0.6820026027711857 0.6768642447418738 0.5802469135802469

15 2015-06-23 19:56:13 6.0.4 0.6832098953958922 0.6793893129770993 0.5813008130081301

19 2015-07-21 10:04:01 6.1.0 0.6845803266236232 0.6818181818181818 0.5821501014198783

20 2015-07-25 16:23:08 6.2.0 0.6852993457130971 0.6818181818181818 0.5821501014198783

21 2015-08-01 14:43:28 6.3.0 0.6856150681312044 0.6848030018761726 0.586

21 2015-08-06 18:25:18 6.4.0 0.6853157398680491 0.6848030018761726 0.586

24 2015-08-23 19:31:50 6.4.1 0.6865666083199881 0.6842105263157895 0.586

30 2015-10-08 19:29:52 6.4.2 0.6864409935575169 0.6842105263157895 0.586

31 2015-10-10 10:09:00 6.5.0 0.6930051328163052 0.685981308411215 0.5956607495069034

31 2015-10-13 16:39:20 6.5.1 0.6916118421052632 0.685981308411215 0.5956607495069034

31 2015-10-14 18:57:56 6.6.0 0.6968134436324518 0.6937269372693727 0.6003898635477583

32 2015-10-19 16:04:44 6.6.1 0.6972123368920522 0.6911764705882353 0.6003898635477583

32 2015-10-22 14:39:06 6.7.0 0.6987312657664342 0.6911764705882353 0.6011673151750972

33 2015-10-24 20:14:48 6.7.1 0.6991954321308071 0.6937269372693727 0.6019417475728155

33 2015-10-27 15:35:29 6.7.2 0.6991731246987282 0.6937269372693727 0.6019417475728155

0

0.25

0.5

0.75

1

0d 61d 122d 183d 244d 305d 366d 427d 488d 549d 610d 671d 732d

Code Templates Urls

�1

However …

All bugs are not
of the same nature

Bug: Document history with
wrong event dates

We recently had a case where new code added events
with the wrong timestamp to a document’s history.

While it was fairly easy, in that case, to fix up both the
code and the database entries, it points to a class of
errors that unit tests aren’t good at discovering.

Unit tests are normally written to confirm that the
code is doing what the programmer believes is correct
behaviour for a given page or function, not to confirm
general expectations about data structures.

Bug: Meeting sessions with
multiple time slots

In another recent case, we had some sessions that
somehow had been associated with multiple time slots,
something which should never happen.

Again a case of bad data in the database, fairly easy to
fix. It is however hard to know just where and when
the bad data was introduced, and hard to write unit
tests to catch this.

Programming by Contract
Some languages have explicit support for Programming
by Contract (or Design by Contract), which is a way to
make sure that certain pre- and post-conditions always
are fulfilled when entering/leaving a function or
method. The term was introduced by Bertrand Meyer,
with his language Eiffel.

The idea is closely related to the idea of invariants,
which is quite a bit older, and promoted by for
instance Niklaus Wirth (of Algol, Pascal, Modula-2,
Euler, Oberon languages fame).

Checking invariants, pre- and
post-conditions

Python is not designed with specific support for
programming by contract, but it has the assert
statement, which lets us write code that gives an
exception when we violate a pre- or post-condition or
an invariant.

Assertions are not meant for use in handling of bad
data, bad user input or the like — they are there to
catch programming bugs close to the point in code
where the bug is, and close in time to when the buggy
code is executed.

Fast and slow assertions
Some invariants can be very fast to check. In this case,
the Python assert statement, which remains active in
production code, would be the right thing. If we had
had a suitable assertion about event timestamps, we
would have caught that error early and would not have
added bad event timestamps to the database.

Other invariants can be much slower to check. In this
case, a suitably designed function, say debug.assert()
which is active only during development seems best.  
It doesn’t offer the same level of protection, but should
catch invariant violations during development testing.

Proposal for use of assertions
We start to use assert and debug.assert()
statements in the code, and add a test to the test suite
which measures the ratio between number of asserts
and lines of code, and warns if the ratio is dropping.

We cannot however use quite the same approach as for
test coverage, where the test suite always fails if the
coverage drops, forcing the coverage always upwards:
100% coverage is good, but 100% assert statements is
not. On the order of 1 statement for every 50 lines of
code seems a reasonable ambition.

Analytics

Points of pain
How can we most effectively improve responsiveness?
(i.e., which often used pages are slow and should be
speeded up?)

Which pages are frequently used, and should be
available with few clicks — but are not?

Are there pages which are often used together, which
could be rearranged to provide all information on one
page?

Analytics
There exists a number of analytics apps for Django,
which should let us answer those questions, and more,
in order to improve

• Responsiveness

• Navigation

• Page composition

Should we explore these, and start using one or more,
in order to collect data that will let us improve things?

Proposal for analytics
Spend some time (a man-week?), before we get to the
point of doing serious performance improvement
work, in assessing and trying out analytics apps for
Django; and then settle on one or more and integrate
it. Some possibilities seen are:

• django-analytical

• django-sitemetrics

• django-tracking-analyzer

http://django-analytical.readthedocs.io/en/stable/
https://github.com/idlesign/django-sitemetrics
http://django-tracking-analyzer.readthedocs.io/en/latest/

Dead Code

Test coverage since
measurement start

Table 1

Weeks Release Code Templates Urls

0 2015-03-10 20:14:17 5.12.1 0.5939973868265314 0.6505576208178439 0.5163934426229508

1 2015-03-17 11:14:26 5.12.2 0.6619815668202764 0.6505576208178439 0.5163934426229508

1 2015-03-19 23:48:03 5.12.3 0.6620075263036633 0.6505576208178439 0.5163934426229508

2 2015-03-25 19:48:25 5.13.0 0.6783063492673922 0.671003717472119 0.5655737704918032

3 2015-04-02 19:18:10 5.13.1 0.6806554602454129 0.667953667953668 0.5755693581780539

5 2015-04-13 20:24:22 6.0.0 0.6809926894959599 0.6711538461538461 0.5767634854771784

5 2015-04-15 19:16:32 6.0.1 0.6808739806124019 0.6711538461538461 0.5767634854771784

7 2015-04-27 08:49:43 6.0.2 0.6809490900714121 0.6730769230769231 0.5767634854771784

9 2015-05-13 17:15:23 6.0.3 0.6820026027711857 0.6768642447418738 0.5802469135802469

15 2015-06-23 19:56:13 6.0.4 0.6832098953958922 0.6793893129770993 0.5813008130081301

19 2015-07-21 10:04:01 6.1.0 0.6845803266236232 0.6818181818181818 0.5821501014198783

20 2015-07-25 16:23:08 6.2.0 0.6852993457130971 0.6818181818181818 0.5821501014198783

21 2015-08-01 14:43:28 6.3.0 0.6856150681312044 0.6848030018761726 0.586

21 2015-08-06 18:25:18 6.4.0 0.6853157398680491 0.6848030018761726 0.586

24 2015-08-23 19:31:50 6.4.1 0.6865666083199881 0.6842105263157895 0.586

30 2015-10-08 19:29:52 6.4.2 0.6864409935575169 0.6842105263157895 0.586

31 2015-10-10 10:09:00 6.5.0 0.6930051328163052 0.685981308411215 0.5956607495069034

31 2015-10-13 16:39:20 6.5.1 0.6916118421052632 0.685981308411215 0.5956607495069034

31 2015-10-14 18:57:56 6.6.0 0.6968134436324518 0.6937269372693727 0.6003898635477583

32 2015-10-19 16:04:44 6.6.1 0.6972123368920522 0.6911764705882353 0.6003898635477583

32 2015-10-22 14:39:06 6.7.0 0.6987312657664342 0.6911764705882353 0.6011673151750972

33 2015-10-24 20:14:48 6.7.1 0.6991954321308071 0.6937269372693727 0.6019417475728155

33 2015-10-27 15:35:29 6.7.2 0.6991731246987282 0.6937269372693727 0.6019417475728155

0

0.25

0.5

0.75

1

0d 61d 122d 183d 244d 305d 366d 427d 488d 549d 610d 671d 732d

Code Templates Urls

�1

Diminishing Returns
As we continue to add tests to the test suite, we’re
seeing diminishing returns in total test coverage —
even if the new tests cover the new code, we’re
sometimes seeing that it gets harder to push the total
coverage noticeably upwards. This is expected.

However, it also brings us this: I’ve recently examined
some modules which had good coverage, but were not
at 100%, and found a very nice thing:

We’re now getting to a point where the test coverage is
good enough to be useful in showing dead code :-)

Proposal for cleanup
Let’s put an activity on the list of maintenance tasks
which is to go over modules with code test coverage
above about 80% and see if the parts without coverage
are actually dead code that can never be reached by our
tests because it isn’t used in rendering any pages.

Maybe it’s a good idea to schedule such an activity
right after regular Django version upgrades; that would
give us a reminder now and then to do a scan for dead
code, and it would happen at a point where one had
already been all over the code looking for upgrade
issues.

Testing the Test Coverage

Testing Code Test Coverage
Today we measure code test coverage as a per-file
percentage and an overall percentage. This lets us fail
the test coverage test if the overall percentage goes
down, and it has served us well in increasing coverage.

However, what if new or changed lines of code were
directly checked for test coverage, and if not covered
would cause a test coverage test to fail? We would
know immediately which changed lines need tests.

The Python coverage module emits per-line coverage
information, so creating this kind of test is feasible.

Test-Driven Development
This would to some extent promote Test-Driven
Development (TDD), as it would encourage writing
the tests first, so as to have successful tests as soon as
the code works.

It would also encourage tests which exercised all paths
through if statements, something the current
percentage-based test coverage test doesn’t do.

Proposal for changed testing
of code coverage

Add a new code coverage test which checks the code
coverage of modified lines of code, requiring that new
and changed lines are covered by tests in order for this
code coverage test to pass.

This would not replace the current test, but add
another way to point out places where test coverage is
missing.

