loT Semantic Interoperability Workshop
Terminology

Benoit Claise

Why Focusing on Terminology?

- To avoid confusion
- To facilitate the workshop discussions
- Different background = different terminology

- To save time later

Clarification on Information Model versus Data
Model

“The main purpose of an IM 1s to model managed objects at a
conceptual level, independent of any specific
implementations or protocols used to transport the data.
[...]

DMs, conversely, are defined at a lower level of
abstraction and include many details. They are intended
for implementors and include protocol-specific constructs.”

-— RFC 3444 On the Difference between Information Models and Data
Models

Clarification on IM versus DM

M ——>» conceptual/abstract model
| for designers and operators
fomm - fomm - -
| | |
DM DM DM ——> concrete/detailed model

for implementors

Clarification on IM versus DM

UML

MIB YANG IPFIX
(SMI) (YANG) (IPFIX IE)

BGP
FlowSpec

(types)

IM

DM

Data Model Mapping

- Mapping data between data models, as opposed to translating data models
- Mainly hardcoded in NMS, painful, costly

- Example: prefix
- ipAddressPrefixTable: MIB module
- sourcelPv4Prefix(8), sourcelPv6Prefix(170) in IPFIX
- source prefix (2), BGP flow spec
- Syslog: plain english text

« YANG
- RADIUS
- Diameter

. you-name-it

IETF and IM/DM | ETF

- We don’t specifiy many IM, we focus on DM
- With YANG as THE data model language for configuration

- Why?
- Timing: We need to move faster
- Opensource: pressure versus standards
- Operators: « give me something | could use », for automation
- We can'’t derive the full DMs from the IM

- However, IM
- Is good as a starting point
- Should lead/help to DM definition

Data Model Driven Management

Acting on resources

Module my-interfaces ({

{

namespace “com.my-interfaces”;

container| interfaces|{

list interface| {
key name;

Teatf name | type string;

leaf Jadmin-status| { type

rpc [flap-interface
input

{

leaf|name| { type string;

}
output {

enum; }

leaf result { type boolean; }

}

-

-

GET : Gets a resource

GET /restconf/data/ ‘interfaces
GET /restconf/data/ ‘interfaces/interface/<some

POST /restconf/operations/ -flap-interface
+ JSON/XML Form Data (including name)

PUT /restconf/data/ ‘interfaces/interface/<some
name> + JSON/XML Form Data (name, admin-status)

———

Terminology/Relationships as an example

Data Moc
(schema

el Language
anguage)

Data Moc
Encoding

Protocol

eling (schema)

(serialization)

YANG

)
YANG Data Model

A
XML JSON
—)

NETCONF RESTCONF

Data Models Driven Management

- APIs derived from the data models:

- Data Model Language: YANG

- The protocol: NETCONF or RESTCONF

- The encoding: JSON or XML

- The programming language: Python, Ruby, Java, C, Erlang, ...

- Industry focusing on YANG as the data modeling language for
services and devices

- Scripting: easy to create, hard to maintain/clean-up
=> Data model-driven set of APIs

Data Models = APIs

10

Inserting some (loT) keywords in here...

M

DM Lang
DM

Enc.

Prot.

SMI

}

YANG

!

SENML

MIB Module

-

YANG Data Model

/\

CBOR

——

XML

JSON

]

COMI

COAP

NETCONF

RESTCONF

Which Terms are we Missing?

- Metadata: additional information that complements an object instance
- Instance: an instantiation of a managed object

- Ontology: ...

12

Conclusions

- Let’s be precise about terminology
- Automation is required. Hence data model driven management

- Think carefully about your (common) data model language(s)

13

loT Semantic Interoperability Workshop
Terminology

Benoit Claise

