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Introduction

SPLinT 1) (Simple Parsing and Lexing in TEX, or, following the great GNU tradition of creating recursive
names, SPLinT Parses Languages in TEX) is a system (or rather a mélange of systems) designed to facilitate
the development of parsing macros in TEX and (to a lesser degree) to assist one in documenting parsers written
in other languages. As an application, parsers for bison and flex input file syntax have been developed,
along with a macro collection that makes it possible to design and pretty print 2) bison grammars and flex
automata using CWEB. The examples directory contains a few other parsers designed to pretty print various
languages (among them is ld, the language of the GNU linker).

2a CWEB and literate programming

Writing software in CWEB involves two programs. The first of these is CTANGLE that outputs the actual
code, intended to be in C. In reality, CTANGLE cares very little about the language it produces. Among the
exceptions are C comments and #line directives that might confuse lesser software but bison is all too happy
to swallow them (there are also some C specific constructs that CTANGLE tries to recognize). CTANGLE’s main
function is to rearrange the text of the program as written by the programmer (in a way that, hopefully,
emphasizes the internal logic of the code) into an appropriate sequence (e.g. all variable declaration must
textually precede their use). All that is required to adopt CTANGLE to produce bison output is some very
rudimentary post- and pre-processing.

Our main concern is thus CWEAVE that not only pretty prints the program but also creates an index,
cross-references all the sections, etc. Getting CWEAVE to pretty print a language other than C requires some
additional effort. A true digital warrior would probably try to decipher CWEAVE’s output ‘in the raw’ but,
alas, my (C)WebFu is not that strong. The loophole comes in the form of a rarely (for a good reason) used
CWEB command: the verbatim (@=...@>) output. The material to be output by this construct undergoes
minimal processing and is put inside \vb{. . .}. All that is needed now is a way to process this virtually
straight text inside TEX.

This manual, as well as nearly every other document that accompanies SPLinT is itself a source for a
computer program (or, as is the case with this document, several programs) that is extracted using CTANGLE.
We refer an interested reader to [CWEB] for a detailed description of the syntax and use patterns of CWEB.
The following is merely a brief overview of the approach.

Every CWEB document is split into sections, each divided into three parts (any one of which can be
empty): the TEX part, the middle part, and the C part (which should more appropriately be called the

1) I was tempted to call the package ParLALRgram which stands for Parsing LALR Grammars or PinT for ‘Parsing in TEX’ but
both sounded too generic. 2) The term pretty printing is used here in its technical sense as one might find that there is noth-
ing pretty about the output of the parsing routines presented in this document.


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code or the program part). The C part of each 1) section carries a name for cross referencing purposes. The
sections themselves are automatically numbered by CWEAVE and their code parts may be referenced from
other sections, as well as included in other sections’ code parts using CWEB’s cross referencing syntax (such
as 〈A production 7b 〉). Using the same name for the C portion in several sections has the effect of merging
the corresponding code fragments. When the section with such a name is used (included) later, all of the
concatenated fragments are included as well, even the ones that appear after the point in the CWEB document
where such inclusion takes place.

The original CWEB macros (from cwebmac.tex) used the numbers generated by CWEAVE to refer to specific
sections. This was true for the table of contents, as well as the index entries. The macros used by SPLinT
adopt a different convention, proposed by N. Ramsey for his literate programming software noweb. In the
new system (which will be referred to as the noweb style of cross referencing), each section is labelled by
the page number where it starts and an alphabetic character that indicates the order of appearance of the
section on the page. Also following noweb, the new macros display links beween the fragments of the same
section in the margins. This allows for quicker navigation between sections of the code and lets the reader
to get a quick overview of what gets ‘collected’ in a given section.

The top level (@**) sections, introducing major portions of the code have also been given more prominent
appearance. They display the chapter number using a large typeface and omit the marginal section reference.
References to such sections are typeset as cnnn where nnn represents the chapter number. While such
references obscure the page number, hopefully one keeps the number of chapters, as well as such references,
small. This modification improves the appearance of the first chapter pages.
CWEB also generates an index of all the identifiers (with some exceptions, such as single letter names)

appearing in the C portion of each section, except those that appear inside the verbatim portions of the code
(i.e. between @= and @>). Since SPLinT uses the verbatim blocks extensively, additional indexing facilities
have been implemented to provide indexing for the non-C languages handled by various SPLinT parsers.

3a Pretty (and not so pretty) printing

Pretty-printing can be narrowly defined as a way to organize the presentation of the program’s text. The
range of visual devices used for this purpose is usually limited to indentation and discrete line skips, to
mimic the capabilities of an old computer terminal. Some authors (see [ACM]) have replaced the term
pretty printing with program visualization to refer to a much broader range of graphic tools for translating
the code (and its meaning) into a richer medium. This manual uses the terms pretty printing and program
visualization interchangeably.

Pretty printing in the broader sense above has been the subject of research for some time. The mono-
graph [ACM] develops a methodical (if not formalized) approach to the design of visualization frameworks
for programming languages (although the main focus is on procedural C-like languages).

A number of papers about pretty printing have appeared since, extending the research to new languages,
and suggesting new visualizatin rules. Unfortunately, most of this research is driven by rules of thumb
and anecdotes (the approach fully embraced by this manual), although there have been a few rigorous
studies investigating isolated visualization techniques (see, for example, the discussion of variable declaration
placement in [Jo]).

Perhaps the only firm conclusion one can draw from this discussion is that writing the code and reading
it are very different activities so facilitating the former may in turn make the latter more difficult and vice
versa. Some well known languages try to arrive at a compromise where the syntax forces a certain style
of presentation on the programmer. An example of a successful language in this group is Python with
its meaningful white space. The author does not share the enthusiasm some programmers express for this
approach.

On the other hand, a language like C does not enforce any presentation format 2). The authors of C even
remarked that semicolons and braces were merely a nod to the compiler (or, one might add, static analysis
software, see [KR]). It may thus seem reasonable that such redundant syntax elements may be replaced by

1) With the exception of the nameless @c (or @p) sections. 2) The ‘feature’ so masterfully exploited by the International Ob-
fuscated C Code Contest (IOCCC) participants.
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different typographic devices (such as judicially chosen skips and indentation, or the choice of fonts) when
(pretty) printing the code.

Even the critics of pretty printing usually concede that well indented code is easier to read. The practice
of using different typefaces to distinguish between various syntactic elements (such as reserved words and
general identifiers) is a subject of some controversy, although not as pronounced as some of the more drastic
approaches (such as completely replacing the brace pairs with indentation as practiced by SPLinT for bison
input or by the authors of [ACM] for the control statements in C).

The goal of SPLinT was not to force any parcticular ‘pretty printing philosophy’ on the programmer
(although, if one uses the macros ‘as is’, some form of quiet approval is assumed . . .) but rather to provide
one with the tools necessary to implement one’s own vision of making the code readable.

One tacit assumption made by the author is that an integral part of any pretty printing strategy is
extracting (some) meaning from the raw text. This is done by parsing the program, the subject we discuss
next. It should be said that it is the parser design in TEX that SPLinT aims to facilitate, with pretty printing
being merely an important application.

4a Parsing and parsers

At an abstract level, a parser is just a routine that transforms text. Naturally, not every possible transfor-
mation is beneficial, so, informally, the value of a parser lies in its ability to expose some meaning in the text.
If valid texts are reduced to a small finite set (while each text can be arbitrarily long) one can concievably
write a primitive string matching algorithm that recognizes whether any given input is an element of such
set, and if it is, which one. Such ‘parsers’ would be rather limited and are only mentioned to illustrate the
point that, in general, the texts being parsed are not required to follow any particular specifiction.

In practice, however, real world parsers rely on the presence of some structure in the input to do their
work. The latter can be introduced by supplying a formal (computable) description of every valid input.
The ‘ridgidity’ of this specification directly affects the sophistication of the parsing algorithm required to
process a valid input (or reject an invalid one).

Parsing algorithms normally follow a model where the text is processed a few symbols at a time and the
information about the symbols already seen is carried in some easily accessible form. ‘A few symbols at a
time’ often translates to ‘at most one symbol’, while ‘easily accessible’ reduces to using a stack-like data
structure for bookkeeping.

A popular way of specifying structure is by using a formal grammar 1) that essentially expresses how some
(preferably meaningful) parts of the text relate to other parts. Keeping with the principle of making the
information about the seen portions of the input easily accessible, practical grammars are normally required
to express the meaning of a fragment in a manner that does not depend on the input that surrounds the
fragment (i.e. to be context-free). Real-world languages rarely satisfy this requirement 2) thus presenting a
challenge to parser generating software that assumes the language is context-free.

Even the task of parsing all context-free languages is too ambitious in most practical scenarios, so further
limitations on the grammar are normally imposed. One may require that the next action of the parsing
algorithm must depend exclusively on the next symbol seen and one of the finitely many states the parser
may be in. The action here simply refers to the choice of the next state, as well as the possible decision to
consume more input or output a portion of the abstract syntax tree which is discussed below.

The same language may have more than one grammar and the choice of the latter normally has a profound
effect on the selection of the parsing algorithm. Without getting too deep into the parsing theory, consider
the following simple sketch.

pexp : ( pexp ) | astring

astring : ◦ | * astring

Informally, the language consists of ‘strings of n *’s nested m parentheses deep’. After parsing such a string,
one might be interested in the values of m and n.

1) While popular, formal grammars are not the only way of describing a language. For example, ‘powers of 2 presented in radix
3’ is a specification that cannot be defined by a context-free grammar, although it is possible to write a (very complex) gram-
mar for it. 2) Processing typedef ’s in C is a well known case of such a language defect.
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The three states the parser may be in are ‘start’, ‘parsing pexp’ and ‘parsing astring’. A quick glance at
the grammar above shows that switching between the states is straightforward (we omit the discussion of
the ‘start’ state for brevity): if the next symbol is (, parse the next pexp, otherwise, if the next symbol is
*, parse astring. Finally, if the next symbol is ) and we are parsing pexp, finish parsing it and look for the
next input, otherwise, we are parsing astring, finish parsing it, make it a pexp, finish parsing a pexp started
by a parenthesis, and look for more input. This unnecessarily long (as well as incomplete and imprecise)
description serves to present a simple fact that the parsing states are most naturally represented by individual
functions resulting in what is known as a recursive descent parser in which the call stack is the ‘data structure’
responsible for keeping track of the parser’s state. One disadvantage of the algorithm above is that the
maximal depth of the call stack reaches m+ n which may present a problem for longer strings.

Computing m and n above now reduces to incrementing an appropriate variable upon exiting the cor-
responding function. More important, however, is the observation that this parser specification can be
extracted from the grammar in a very straightforward fashion. To better illustrate the rôle of the grammar
in the choice of the parsing algorithm, consider the following syntax for the same language:

pexp : ( pexp ) | astring

astring : ◦ | astring *

While the language is unchanged, so the algorithm above still works, the lookahead tokens are not immediately
apparent upon looking at the productions. Some preprocessing must take place before one can decide on the
choice of the parser states and the appropriate lookahead tokens. Such parser generating algorithms indeed
exist and will produce what is known as an LR parser for the fragment above (actually, a simpler LALR parser
may be built for this grammar 1)). One can see that some grammar types may make the selection of the
parsing algorithm more involved. Since SPLinT relies on bison for the generation of the parsing algorithm,
one must ensure that the grammar is LALR(1) 2).

5a Using the bison parser

The process of using SPLinT for writing parsing macros in TEX is treated in considerable detail later in this
document. A shorter (albeit somewhat outdated but still applicable) version of this process is outlined in
[Sh], included as part of SPLinT’s documentation. We begin, instead, by explaining how one such parser can
be used to pretty print a bison grammar. Following the convention mentioned above and putting all non-C
code inside CWEAVE’s verbatim blocks, consider the following (meaningless) code fragment 3). The fragment
contains a mixture of C and bison code, the former appears outside of the verbatim blocks.

@= non_terminal: @>
@= term.1 term.2 {@> a = b; @=}@>
@= | term.3 other_term {@> $$ = $1; @=}@>
@= | still more terms {@> f($1); @=}@>
@= ; @>

The fragment above will appear as (the output of CTANGLE can be examined in sill.y)
〈A silly example 5a 〉 = 6a

5
non terminal :

term1 term2 a⇐ b;
term3 other term Υ ⇐ Υ1 ;
still more terms f(Υ1);

See also sections 6a, 7a, and 7d.

This code is used in section 8a.

1) Both of these algorithms will use the parser stack more efficiently, effectively resolving the ‘call stack depth’ issue mentioned
earlier. 2) The newest versions of bison are capable of processing a much wider set of grammars, although SPLinT can on-
ly handle the bison output for LALR(1) parsers. 3) The software included in the package contains a number of preprocessing
scripts that reduce the necessity of using the verbatim blocks for every line of the bison code so the snippet above can instead
be presented without the distraction of @=...@>, looking more like the ‘native’ bison input
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6a . . . if the syntax is correct. In case it is a bit off (note the missing colon after whoops below), the parser
will give up and you will see a different result. The code in the fragment below is easily recognizable, and
some parts of it (all of C code, in fact) are still pretty printed by CWEAVE. Only the verbatim portion is left
unprocessed. The layout of the original code is reproduced unchanged, including the braces and production
separators (i.e. |) normally removed by the parser for presentation purposes.
〈A silly example 5a 〉 + =

4
5a 7a
5

whoops

term.1 term.2 { a⇐ b; }
| term.3 other_term { Υ ⇐ Υ1 ; }
| still more terms { f(Υ1); }
;

6b The TEX header that makes such output possible is quite plain. In the case of this document it begins as

\input limbo.sty
\input frontmatter.sty
\def\optimization{5}
\input yy.sty

[more code . . .]

The first two lines are presented here merely for completeness: there is no parsing-relevant code in them.
The third line (\def\optimization{5}) may be ignored for now (we discuss some ways the parser code may
be sped up later. The line that follows loads the macros that implement the parsing and scanning machinery.

This is enough to set up all the basic mechanisms used by the parsing and lexing macros. The rest of the
header provides a few definitions to fine tune the typesetting of grammar productions. It starts with

\let\currentparsernamespace\parsernamespace
\let\parsernamespace\mainnamespace
\let\currenttokeneq\tokeneq

\def\tokeneq#1#2{\prettytoken{#1}}
\input bo.tok % re-use token equivalence table to set the

\let\tokeneq\currenttokeneq
\input btokenset.sty

[more code . . .]

We will have a chance to discuss all the \. . .namespace macros later, at this point it will suffice to say that
the lines above are responsible for controlling the typesetting of term names. The file bo.tok consists of a
number of lines like the ones below:

\tokeneq {STRING}{{34}{115}{116}{114}{105}{110}{103}{34}}
\tokeneq {PERCENT_TOKEN}{{34}{37}{116}{111}{107}{101}{110}{34}}

[more code . . .]

The cryptic looking sequences of integers above are strings of ASCII codes of the letters that form the
name that bison uses when it needs to refer to the corresponding token (thus, the second one is "%token"
which might help explain why such an indirect scheme has been chosen). The macro \tokeneq is defined
in yymisc.sty, which in turn is input by yy.sty but what about the token names themselves? In this
case they were extracted automatically from the CWEB source file by the bootstrapping parser during the
CWEAVE processing stage. All of these definitions can be overwritten to get the desired output (say, one
might want to typeset ID in a roman font, as ‘identifier’; all that needs to be done to make this possible is to
provide a macro that says \prettywordpair{ID}{{\rm identifier}} in an appropriate namespace (usually
\hostparternamespace)). The file btokenset.sty input above contains a number of such definitions.
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7a To round off this short overview, I must mention a caveat associated with using the macros in this collection:
while one of the greatest advantages of using CWEB is its ability to rearrange the code in a very flexible way,
the parser will either give up or produce unintended output if this feature is abused while describing the
grammar. For example, in the code below
〈A silly example 5a 〉 + =

4
6a 7d
5

next term :
stuff 〈Rest of line 7c 〉a⇐ f(x);

〈A production 7b 〉

7b the line titled 〈A production 7b 〉 is intended to be a rule defined later. Notice that while it seems that the
parser was able to recognize the first code fragment as a valid bison input, it misplaced the 〈Rest of line 7c 〉,
having erroneously assumed it to be a part of the action code for this grammar (later on we will go into the
details of why it is necessary to collect all the non-verbatim output of CWEAVE, even that which contains no
interesting C code; hint: it has something to do with money ($), also known as math and the way CWEAVE
processes the ‘gaps’ between verbatim sections). The production line that follows did not fare as well: the
parser gave up. There is simply no point in including such a small language fragment as a valid input for
the grammar the parser uses to process the verbatim output.
〈A production 7b 〉 = 7e

5
more stuff in this line {b⇐ g(y); }

See also section 7e.

This code is cited in sections 2a and 7b.

This code is used in sections 7a and 7d.

7c Finally, if you forget that only the verbatim part of the output is looked at by the parser you might get
something unrecognizable, such as
〈Rest of line 7c 〉 = 7f

5
but notall of it

See also section 7f.

This code is cited in section 7b.

This code is used in sections 7a and 7d.

7d To correct this, one can provide a more complete grammar fragment to allow the parser to complete its task
successfully. In some cases, this imposes too strict a constraint on the programmer. Instead, the parser that
pretty prints bison grammars allows one to add hidden context to the code fragments above. The context
is added inside \vb sections using CWEB’s @t. . .@> facility. The CTANGLE output is not affected by this while
the code above can now be typeset as:
〈A silly example 5a 〉 + =

4
7a

next term :
stuff 〈Rest of line 7c 〉 a⇐ f(x);

〈A production 7b 〉

7e . . . even a single line can now be displayed properly.
〈A production 7b 〉 + =

4
7b

more stuff in this line b⇐ g(y);

7f With enough hidden context, even a small rule fragment can be typeset as intended. The ‘action star’ was
inserted to reveal some of the context.
〈Rest of line 7c 〉 + =

4
7c

but not all of it ?
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8a What makes all of this even more confusing is that CTANGLE will have no trouble outputting this as a(n almost,
due to the intentionally bad whoops production above) valid bison file (as can be checked by looking into
sill.y). The author happens to think that one should not fragment the software into pieces that are too
small: bison is not C so it makes sense to write bison code differently. However, if the logic behind your
code organization demands such fine fragmentation, hidden context provides you with a tool to show it off.
A look inside the source of this document shows that adding hidden context can be a bit ugly so it is not
recommended for routine use. The short example above is output in the file below.
〈 sill.y 8a 〉 =
〈A silly example 5a 〉

8b On debugging

This concludes a short introduction to the bison grammar pretty printing using this macro collection. It
would be incomplete, however, without a short reference to debugging 1). There is a fair amount of debugging
information that the macros can output, unfortunately, very little of it is tailored to the use of the macros in
the bison parser. Most of it is designed to help build a new parser. If you find that the bison parser gives
up too often or even crashes (the latter is most certainly a bug in the SPLinT version of the bison parser
itself), the first approach is to make sure that your code compiles, i.e. forget about the printed output and
try to see if the ‘real’ bison accepts the code (just the syntax, no need to worry about conflicts and such).

If this does not shed any light on why the macros seem to fail, turn on the debugging output by saying
\trace. . .true to activate the appropriate trace macros. This may produce a lot of output, even for small
fragments, so turn it on for only a section at a time. If you need still more details of the inner workings of the
parser and the lexer, various other debugging conditionals are available. For example, \yyflexdebugtrue
turns on the debugging output for the scanner. There are a number of such conditionals that are discussed in
the commentary for the appropriate TEX macros. Most of these conditionals are documented in yydebug.sty,
which provides a number of handy shortcuts for a few commonly encountered situations, as well.

Remember, what you are seeing at this point is the parsing process of the bison input file, not the one
for your grammar (which might not even be complete at this point). However, if all of the above fails, you
are on your own: drop me a line if you figure out how to fix any bugs you find.

1) At the moment we are discussing debugging the output produced by CWEAVE when the included bison parser is used, not de-
bugging parsers written with the help of this software: the latter topic is covered in more detail later on.



1
Terminology

This short chapter is an informal listing of a few loose definitions of the concepts used repeatedly in this
documentation. Most of this terminology is rather standard. Formal precision is not the goal here, instead,
intuitive explanations are substituted whenever possible.

bison (as well as flex) parser(s): while, strictly speaking, not a formally defined term, this combination
will always stand for one of the parsers generated by this package designed to parse a subset of the ‘official’
grammar for bison or flex input files. All of these parsers are described later in this documentation. The
term main parser will be used as a substitute in example documentation for the same purpose.
driver: a generic but poorly defined concept. In this documentation it is used predominantly to mean both
the C code and the resulting executable that outputs the TEX macros that contain the parser tables, token
values, etc., for the parsers built by the user. It is understood that the C code of the ‘driver’ is unchanged
and the information about the parser itself is obtained by including the C file produced by bison in the
‘driver’ (see the examples supplied with the package).
lexer: a synonym for scanner, a subroutine that performs the lexical analysis phase of the parsing process,
i.e. groups various characters from the input stream into parser tokens.
namespace: this is an overused bit of terminology meaning a set of names grouped together according
to some relatively well defined principle. In a language without a well developed type system (such as
TEX) it is usually accompanied by a specially designed naming scheme. Parser namespaces are commonly
used in this documentation to mean a collection of all the data structures describing a parser and its state,
including tables, stacks, etc., named by using the ‘root’ name (say \yytable) and adding the name of
the parser (for example, [main]). To support this naming scheme, a number of macros work in unison to
create and rename the ‘data macros’ accordingly 1).
parser stack: a collection of parsers, usually derived from a common set of productions, and sharing
a common lexer. As the name suggests, the parsers in the collection are tried in order until the input
is parsed successfully or every parser has been tried. This terminology may become a source of some
confusion, since each parsing algorithm used by bison maintains several stacks. We will always refer to
them by naming a specific task the stack is used for (such as the value stack or the state stack, etc.).
pretty printing or program visualization: The terms above are used interchangeably in this manual to
mean typesetting the program code in a way that emphasizes its meaning as seen by the author of the
program 2). It is usually assumed that such meaning is extracted by the software (a specially designed
parser) and translated into a suitable visual representation.

1) To be precise, the namespaces in this manual, would more appropriately be referred to as named scopes. The tag names-
pace in C is an example of a (built-in) language namespace where the grammatical rôle of the identifier determines its associa-
tion with the appropriate set. 2) Or the person typesetting the code.


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symbolic switch: a macro (or an associative array of macros) that let the TEX parser generated by the
package associate symbolic term names (called named references in the official bison documentation)
with the terms. Unlike the ‘real’ parser, the parser created with this suite requires some extra setup as
explained in the included examples (one can also consult the source for this documentation which creates
but does not use a symbolic switch).
symbolic term name: (also refered to as a named reference in the bison manual): a (relatively new) way
to refer to stack values in bison. In addition to using the ‘positional’ names such as $n to refer to term
values, one can utilize the new syntax: $[name] (or even $name when the name has a tame enough
syntax). The ‘name ’ can be assigned by the user or can be the name of the nonterminal or token used in
the productions.
term: in a narrow sense, an ‘element’ of a grammar. Instead of a long winded definition, an example,
such as ýidentifierþ should suffice. Terms are further classified into terminals (tokens) and nonterminals
(which may be intuitively thought of as composite terms).
token: in short, an element of a set. Usually encoded as an integer by most parsers, a token is an indivisible
term produced for the parser by the scanner. TEX’s scanner uses a more sophisticated token classification,
for example, (character code, character category) pairs, etc.



2
Languages, scanners, parsers, and TEX

Tokens and tables keep macros in check.
Make ’em with bison, use WEAVE as a tool.
Add TEX and CTANGLE, and C to the pool.
Reduce ’em with actions, look forward, not back.
Macros, productions, recursion and stack!

Computer generated (most likely)

In order to understand the parsing routines in this collection, it would help to gain some familiarity with
the internals of the parsers produced by bison for its intended target: C. A person looking inside a parser
delivered by bison would quickly discover that the parsing procedure itself (yyparse ) occupies a rather small
portion of the file. If (s)he were to further reduce the size of the file by removing all the preprocessor directives
intended to anticipate every conceivable combination of the operating system, compiler, and C dialect, and
various reporting and error logging functions it would become very clear that the most valuable product
of bison’s labor is a collection of integer tables that control the actions of the parser routine. Moreover,
the routine itself is an extremely concise and well-structured loop composed of goto’s and a number of
numerical conditionals. If one could think of a way of accessing arrays and processing conditionals in the
language of one’s choice, once the tables produced by bison have been converted into a form suitable for
the consumption by the appropriate language engine, the parser implementation becomes straightforward.
Or nearly so.

The scanning (or lexing) step of this process—a way to convert a stream of symbols into a stream of
integers, deserves some attention, as well. There are a number of excellent programs written to automate
this step in much the same fashion as bison automates the generation of parsers. One such tool, flex, though
(in the opinion of this author) slightly lacking in the simplicity and elegance when compared to bison, was
used to implement the lexer for this software suite. Lexing in TEX will be discussed in considerable detail
later in this manual.

The language of interest in our case is, of course, TEX, so our future discussion will revolve around the
five elements mentioned above: (1)data structures (mainly arrays and stacks), (2)converting bison’s output
into a form suitable for TEX’s consumption, (3)processing raw streams of TEX’s tokens and converting them
into streams of parser tokens, (4)the implementation of bison’s yyparse in TEX, and, finally, (5)producing
TEX output via syntax-directed translation (which requires an appropriate abstraction to represent bison’s
actions inside TEX). We shall begin by discussing the parsing process itself.


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12a Arrays, stacks, and the parser

Let us briefly examine the programming environment offered by TEX. Designed for typesetting, TEX’s
remarkable language provides a layer of macro processing atop of a set of commands that produce the
output fulfilling its primary mission: delivering page layouts. In The TEXbook, the macro expansion is
likened to mastication, whereas TEX’s main product, the typographic output is the result of its ‘digestion’
process. Not everything that goes through TEX’s digestive tract ends up leaving a trace on the final page: a
file full of \relax’s will produce no output, even though \relax is not a macro, and thus would have to be
processed by TEX at the lowest level.

It is time to describe the details of defining suitable data structures in TEX. At first glance, TEX provides
rather standard means of organizing and using the memory. At the core of its generic programming
environment is an array of \count n registers, which may be viewed as general purpose integer variables
that are randomly accessible by their indices. The integer arithmetic machinery offered by TEX is spartan
but is very adequate for the sort of operations a parser would perform: mostly additions and comparisons.

Is the \count array a good way to store tables in TEX? Probably not. The first factor is the size of
this array: only 256 \count registers exist in a standard TEX (the actual number of such registers on a
typical machine running TEX is significantly higher but this author is a great believer in standards, and to
his knowledge, none of the standardization efforts in the TEX world has resulted in anything even close to
the definitive masterpiece that is The TEXbook). The issue of size can be mitigated to some extent by using
a number of other similar arrays used by TEX (\catcode, \uccode, \dimen, \sfcode and others can be
used for this purpose as long as one takes care to restore the ‘sane’ values before the control is handed off
to TEX’s typesetting mechanisms). If a table has to span several such arrays, however, the complexity of
accessing code would have to increase significantly, and the issue of size would still haunt the programmer.

The second factor is the utilization of several registers by TEX for special purposes (in addition, some
of these registers can only store a limited range of values). Thus, the first 10 \count registers are used
by the plain TEX for (well, intended for, anyway) the purposes of page accounting: their values would
have to be carefully saved and restored before and after each parsing call, respectively. Other registers
(\catcode in particular) have even more disrupting effects on TEX’s internal mechanisms. While all of this
can be managed (after all, using TEX as an arithmetic engine such as a parser suspends the need for any
typographic or other specialized functions controlled by these arrays), the added complexity of using several
memory banks simultaneously and the speed penalty caused by the need to save and restore register values
make this approach much less attractive.

What other means of storing arrays are provided by TEX? Essentially, only three options remain: \token
registers, macros holding whole arrays, and associative arrays accessed through \csname . . . \endcsname. In
the first two cases if care is taken to store such arrays in an appropriate form one can use TEX’s \ifcase
primitive to access individual elements. The trade-off is the speed of such access: it is linear in the size of
the array for most operations, and worse than that for others, such as removing the last item of an array.
Using clever ways of organizing such arrays, one can improve the linear access time to O(log n) by simply
modifying the access macros but at the moment, a straightforward \ifcase is used after expanding a list
macro or the contents of a \token n register in an unoptimized parser. An optimized parser uses associative
arrays.

The array discussion above is just as applicable to stacks (indeed, an array is the most common form
of stack implementation). Since stacks pop up and disappear frequently (what else are stacks to do?), list
macros are usually used to store them. The optimized parser uses a separate \count register to keep track
of the top of the stack in the corresponding associative array 1).

Let us now switch our attention to the code that implements the parser and scanner functions. If one
has spent some time writing TEX macros of any sophistication (or any macros, for that matter) (s)he must
be familiar with the general feeling of frustration and the desire to ‘just call a function here and move on’.
Macros 2) produce tokens, however, and tokens must either expand to nothing or stay and be contributed to
your input, or worse, be out of place and produce an error. One way to sustain a stream of execution with

1) Which means, unfortunately, that making such fully optimized parser reentrant would take an extraordinary amount of ef-
fort. Hence, if reentrancy is a requirement, stacks are better kept inside list macros. 2) Formally defined as ‘. . . special com-
pile-time functions that consume and produce syntax objects’ in [DHB].
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macros is tail recursion (i.e. always expanding the last token left standing).
As we have already discussed, bison’s yyparse ( ) is a well laid out loop organized as a sequence of goto’s

(no reason to become religious about structured programming here). This fact, and the following well known
trick, make C to TEX translation nearly straightforward. The macro TEXniques employed by the sample
code below are further discussed elsewhere in this manual.

label A: ...
[more code . . .]

if(condition)
goto C;

[more code . . .]

label B: ...
[more code . . .]

goto A;
[more code . . .]

label C: ...
[more code . . .]

Given the code on the left (where goto’s are
\if(condition)

\let\next=\labelC
\else

\let\next=\labelAtail

the only means of branching but can appear
inside conditionals), one way to translate it
into TEX is to define a set of macros (call
them \labelA, \labelAtail and so forth for
clarity) that end in \next (a common name
for this purpose). Now, \labelA will imple-
ment the code that comes between label A: and goto C;, whereas \labelAtail
is responsible for the code after goto C; and before label B: (provided no other
goto’s intervene which can always be arranged). The conditional which precedes
goto C; can now be written in TEX as presented on the right, where (condition) is
an appropriate translation of the corresponding condition in the code being trans-
lated (usually, one of ‘=’ or ‘6=’). Further details can be extracted from the TEX
code that implements these functions where the corresponding C code is presented

alongside the macros that mimic its functionality 1). This concludes the overview of the general approach,
It is time to consider the way characters get consumed on the lower levels of the macro hierarchy and the
interaction between the different layers of the package.

13a TEX into tokens

Thus far we have covered the ideas behind items (1) and (4) on our list. It is time to discuss the lowest level
of processing performed by these macros: converting TEX’s tokens into the tokens consumed by the parser,
i.e. part (3) of the plan. Perhaps, it would be most appropriate to begin by reviewing the concept of a token.

As commonly defined, a token is simply an element of a set (see the section on terminology earlier in this
manual). Depending on how much structure the said set possesses, a token can be represented by an integer
or a more complicated data structure. In the discussion below, we will be dealing with two kinds of tokens:
the tokens consumed by the parsers and the TEX tokens seen by the input routines. The latter play the
rôle of characters that combine to become the former. Since bison’s internal representation for its tokens is
non-negative integers, this is what the scanner must produce.

TEX’s tokens are a good deal more sophisticated: they can be either pairs (cch, ccat), where cch is the
character code and ccat is TEX’s category code (1 and 2 for group characters, 5 for end of line, etc.), or
control sequences, such as \relax. Some of these tokens (control sequences and active, i.e. category 13
characters) can have complicated internal structure (expansion). The situation is further complicated by
TEX’s \let facility, which can create ‘character-like’ control sequences, and the lack of conditionals to
distinguish them from the ‘real’ characters. Finally, not all pairs can appear as part of the input (say, there
is no (n, 0) token for any n, in the terminology above).

The scanner expects to see characters in its input, which are represented by their ASCII codes, i.e. integers
between 0 and 255 (actually, a more general notion of the Unicode character is supported but we will
not discuss it further). Before character codes appear as the input to the scanner, however, and make its
integer table-driven mechanism ‘tick’, a lot of work must be done to collect and process the stream of TEX
tokens produced after CWEAVE is done with your input. This work becomes even more complicated when
the typesetting routines that interpret the parser’s output must sneak outside of the parsed stream of text
(which is structured by the parser) and insert the original TEX code produced by CWEAVE into the page.
SPLinT comes with a customizeable input routine of moderate complexity (\yyinput) that classifies all

TEX tokens into seven categories: ‘normal’ spaces (i.e. category 10 tokens, skipped by TEX’s parameter
scanning mechanism), ‘explicit’ spaces (includes the control sequences \let to  , as well as \ ), groups

1) Running the risk of overloading the reader with details, the author would like to note that the actual implementation fol-
lows a slightly different route in order to avoid any \let assignments or changing the meaning of \next
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(avoid using \bgroup and \egroup in your input but ‘real’, {. . .} groups are fine), active characters, normal
characters (of all character categories that can appear in TEX input, including $, ^, #, a–Z, etc.), single letter
control sequences, and multi-letter control sequences. Each of these categories can be processed separately
to ‘fine-tune’ the input routine to the problem at hand. The input routine is not very fast, instead, flexibility
was the main goal. Therefore, if speed is desirable, a customized input routine is a great place to start. As
an example, a minimalistic \yyinputtrivial macro is included.

When \yyinput ‘returns’ by calling \yyreturn (which is a macro you design), your lexing routines have
access to three registers: \yycp@, that holds the character value of the character just consumed by \yyinput,
\yybyte, that most of the time holds the token just removed from the input, and \yybytepure, that
(again, with very few exceptions) holds a ‘normalized’ version of the read character (i.e. a character of the
same character code as \yycp@, and category 12 (to be even more precise (and to use nested parentheses),
‘normalized’ characters have the same category code as that of ‘.’ at the point where yyinput.sty is read)).

Most of the time it is the character code one needs (say, in the case of \{, \}, \& and so on) but under
some circumstances the distinction is important (outside of \vb{. . .}, the sequence \1 has nothing to do with
the digit ‘1’). This mechanism makes it easy to examine the consumed token. It also forms the foundation
of the ‘hidden context’ passing mechanism described later.

The remainder of this section discusses the internals of \yyinput and some of the design trade-offs one
has to make while working on processing general TEX token streams. It is typeset in ‘small print’ and can
be skipped if desired.
To examine every token in its path (including spaces that are
easy to skip), the input routine uses one of the two well-known
TEXnologies: \futurelet\next\examinenext or its equivalent
\afterassignment\examinenext\let\next= . Recursively in-
serting one of these sequences, \yyinput can go through any
list of tokens, as long as it knows where to stop (i.e. return
an end of file character). The signal to stop is provided by
the \yyeof sequence, which should not appear in any ‘ordi-
nary’ text presented for parsing, other than for the purpose of
providing such a stop signal. Even the dependence on \yyeof
can be eliminated if one is willing to invest the time in writ-
ing macros that juggle TEX’s \token registers and only limit
oneself to input from such registers (which is, aside from an ob-
vious efficiency hit, a strain on TEX’s memory, as you have to
store multiple (3 in the general case) copies of your input to be
able to back up when the lexer makes a wrong choice). Another
approach to avoid the use of stop tokens is to store the whole
input as a parameter for the appropriate macro. This scheme
is remarkably powerful and can produce expandable versions
of very complicated routines, although the amount of effort re-
quired to write such macros grows at a frightening rate. As
the text inside \vb{. . .} is nearly always well structured, the
care that \yyinput takes in processing such character lists is
an overkill. In a more ‘hostile’ environment (such as the one
encountered by the now obsolete \Tex macros), however, this
extra attention to detail pays off in the form of a more robust
input mechanism.
One subtlety deserves a special mention here, as it can be im-
portant to the designer of ‘higher-level’ scanning macros. Two
types of tokens are extremely difficult to deal with whenever
TEX’s own lexing mechanisms are used: (implicit) spaces and
even more so, braces. We will only discuss braces here, however,
almost everything that follows applies equally well to spaces
(category 10 tokens to be precise), with a few simplifications
(or complications, in a couple of places). To understand the
difficulty, let’s consider one of the approaches above:

\futurelet\next\examinenext.

The macro \examinenext usually looks at \next and inserts
another macro (usually also called \next) at the very end of
its expansion list. This macro usually takes one parameter,
to consume the next token. This mechanism works flawlessly,
until the lexer encounters a {br,sp}ace. The \next sequence,

seen by \examinenext contains a lot of information about the
brace ahead: it knows its category code (left brace, so 1),
its character code (in case there was, say a \catcode‘\[=1 
earlier) but not whether it is a ‘real’ brace (i.e. a character {1)
or an implicit one (a \bgroup). There is no way to find that
out until the control sequence ‘launched’ by \examinenext sees
the token as a parameter.
If the next token is a ‘real’ brace, however, \examinenext’s suc-
cessor will never see the token itself: the braces are stripped by
TEX’s scanning mechanism. Even if it finds a \bgroup as the
parameter, there is no guarantee that the actual input was not
{\bgroup}. One way to handle this is by applying \string be-
fore consuming the next token. If prior to expanding \string
care has been taken to set the \escapechar appropriately (re-
member, we know the character code of the next token in ad-
vance), as soon as one sees a character with \escapechar’s
character code, (s)he knows that an implicit brace has just
been seen. One added complication to all this is that a very
determined programmer can insert an active character (using,
say, the \uccode mechanism) that has the same character code
as the brace token that it has been \let to! Even setting this
disturbing possibility aside, the \string mechanism (or, its
cousin, \meaning) is far from perfect: both produce a sequence
of category 12 and 10 tokens that are mixed into the original
input. If it is indeed a brace character that we just saw, we
can consume the next token and move on but what if this
was a control sequence? After all, just as easily as \string
makes a sequence into characters, \csname . . . \endcsname pair
will make any sequence of characters into a control sequence
so determining the end the character sequence produced by
\string may prove impossible.

Huh . . .

What we need is a backup mechanism: keeping a copy of the
token sequence ahead, one can use \string to see whether
the next token is a real brace first, and if it is, consume it
and move on (the active character case can be handled as
the implicit case below, with one extra backup to count how
many tokens have been consumed). At this point the brace
has to be reinserted in case, at some point, a future ‘back up’
requires that the rest of the tokens are removed from the output
(to avoid ‘Too many }’s’ complaints from TEX). This can be
done by using the \iftrue{\else}\fi trick (and a generous
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sprinkling of \expandafters). Of course, some bookkeeping
is needed to keep track of how deep inside the braced groups
we are. For an implicit brace, more work is needed: read all
the characters that \string produced (and maybe more), then
remember the number of characters consumed. Remove the
rest of the input using the method described above and restart
the scanning from the same point knowing that the next token
can be scanned as a parameter.
Another strategy is to design a general enough macro that
counts tokens in a token register and simply recount the tokens
after every brace was consumed.
Either way, it takes a lot of work. If anyone would like to pur-
sue the counting strategy, simple counting macros are provided
in /examples/count/count.sty. The macros in this example
supply a very general counting mechanism that does not de-
pend on \yyeof (or any other token) being ‘special’ and can
count the tokens in any token register, as long as none of those

tokens is an \outer control sequence. In other words, if the
macro is used immediately after the assignment to the token
register, it should always produce a correct count.
Needless to say, if such a general mechanism is desired, one
has to look elsewhere. The added complications of treating
spaces (TEX tends to ignore them most of the time) make this
a torturous exercise in TEX’s macro wizardry.
The included \yyinput has two ways of dealing with braces:
strip them or view the whole group as a token. Pick one or
write a different \yyinput. Spaces, implicit or explicit, are
reported as a specially selected character code and consumed
with a likeness of \afterassignment\moveon\let\next= . This
behavior can be adjusted if needed.
Now that a steady stream of character codes is arriving at
\yylex after \yyreturn the job of converting it into numerical
tokens is performed by the scanner (or lexer , or tokenizer , or
even tokener), discussed in the next section.

15a Lexing in TEX

In a typical system that uses a parser to process text, the parsing pass is usually split into several stages:
the raw input, the lexical analysis (or simply lexing), and the parsing proper. The lexing pass (also called
scanning, we use these terms interchangeably) clumps various sequences of characters into tokens to facilitate
the parsing stage. The reasons for this particular hierarchy are largely pragmatic and are partially historic
(there is no reason that parsing cannot be done in multiple phases, as well, although it usually isn’t).

If one recalls a few basic facts from the formal language theory, it becomes obvious that a lexer, that
parses regular languages, can be (in theory) replaced by an LALR parser, that parses context-free ones (or
some subset thereof, which is still a super set of all regular languages). A common justification given for
creating specialized lexers is efficiency and speed. The reality is somewhat more subtle. While we do care
about the efficiency of parsing in TEX, having a specialized scanner is important for a number of different
reasons.

The real advantage of having a dedicated scanner is the ease with which it can match incomplete inputs
and back up. A parser can, of course, recognize any valid input that is also acceptable to a lexer, as well as
reject any input that does not form a valid token. Between those two extremes, however, lies a whole realm
of options that a traditional parser will have great difficulty exploring. Thus, to mention just one example, it
is relatively easy to set up a DFA 1) so that the longest matching input is accepted. The only straightforward
way to do this with a traditional parser is to parse longer and longer inputs again and again. While this
process can be optimized to a certain degree, the fact that a parser has a stack to maintain limits its ability
to back up 2).

As an aside, the mechanism by which CWEB assembles its ‘scraps’ into chunks of recognized code is
essentially iterative lexing, very similar to what a human does to make sense of complicated texts. Instead
of trying to match the longest running piece of text, CWEB simply looks for patterns to combine inputs into
larger chunks, which can later be further combined. Note that this is not quite the same as the approach
taken by, say GLR parsers, where the parser must match the whole input or declare a failure. Where a
CWEB-type parser may settle for the first available match (or the longest available) a GLR parser must try all
possible matches or use an algorithm to reject the majority of the ones that are bound to fail in the end.

This ‘CWEB way’ is also different from a traditional ‘strict’ LR parser/scanner approach and certainly
deserves serious consideration when the text to be parsed possesses some rigid structure but the parser is
only allowed to process it one small fragment at a time.

Returning to the present macro suite, the lexer produced by flex uses integer tables similar to those
employed by bison so the usual TEXniques used in implementing \yyparse are fully applicable to \yylex.

An additional advantage provided by having a flex scanner implemented as part of the suite is the
availability of the original bison scanner written in C for the use by the macro package.

1) Which stands for Deterministic Finite Automaton, a common (and mathematically unique) way of implementing a scanner
for regular languages. Incidentally LALR mentioned above is short for Look Ahead Left to Right. 2) It should be also men-
tioned that the fact that the lexing pass takes place prior to the parser consuming the resulting tokens allows one to process
some grammars that are not context free. See, for example the parser hack used to process typedef s in C.
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This said, the code generated by flex contains a few idiosyncrasies not present in the bison output.
These ‘quirks’ mostly involve handling of end of input and error conditions. A quick glance at the \yylex
implementation will reveal a rather extensive collection of macros designed to deal with end of input actions.

Another difficulty one has to face in translating flex output into TEX is a somewhat unstructured
namespace delivered in the final output (this is partially due to the POSIX standard that flex strives
to follow). One consequence of this ‘messy’ approach is that the writer of a flex scanner targeted to TEX
has to declare flex ‘states’ (more properly called subautomata) twice: first for the benefit of flex itself,
and then again, in the C preamble portion of the code to output the states to be used by the action code
in the lexer. Define_State(. . .) macro is provided for this purpose. This macro can be used explicitly by
the programmer or be inserted by a specially designed parser. Using CWEB helps to keep these declarations
together.

The ‘hand-off’ from the scanner to the parser is implemented through a pair of registers: \yylval, a
token register containing the value of the returned token and \yychar, a \count register that contains the
numerical value of the token to be returned.

Upon matching a token, the scanner passes one crucial piece of information to the programmer: the
character sequence representing the token just matched (\yytext). This is not the whole story though
as there are three more token sequences that are made available to the parser writer whenever a token is
matched.

The first of these is simply a ‘normalized’ version of \yytext (called \yytextpure). In most cases it is
a sequence of TEX tokens with the same character codes as the one in \yytext but with their category
codes set to 12 (see the discussion of \yybytepure above). In cases when the tokens in \yytext are not
(cch, ccat) pairs, a few simple conventions are followed, some of which will be explained below. This sequence
is provided merely for convenience and its typical use is to generate a key for an associative array.

The other two sequences are special ‘stream pointers’ that provide access to the extended scanner mecha-
nism in order to implement the passing of the ‘formatting hints’ to the parser, as well as incorporate CWEAVE
formatted code into the input, without introducing any changes to the original grammar. As the mechanism
itself and the motivation behind it are somewhat subtle, let us spend a few moments discussing the range of
formatting options desirable in a generic pretty-printer.

Unlike strict parsers employed by most compilers, a parser designed for pretty printing cannot afford being
too picky about the structure of its input ([Go] calls such parsers ‘loose’). To provide a simple illustration,
an isolated identifier, such as ‘lg_integer’ can be a type name, a variable name, or a structure tag (in a
language like C for example). If one expects the pretty printer to typeset this identifier in a correct style,
some context must be supplied, as well. There are several strategies a pretty printer can employ to get a
hold of the necessary context. Perhaps the simplest way to handle this, and to reduce the complexity of the
pretty printing algorithm is to insist on the programmer providing enough context for the parser to do its
job. For short examples like the one above, this may be an acceptable strategy. Unfortunately, it is easy
to come up with longer snippets of grammatically deficient text that a pretty printer should be expected to
handle. Some pretty printers, such as the one employed by CWEB and its ilk (the original WEB, FWEB), use a
very flexible bottom-up technique that tries to make sense of as large a portion of the text as it can before
outputting the result (see also [Wo], which implements a similar algorithm in LATEX).

The expectation is that this algorithm will handle the majority (about 90%? it would be interesting to
carry out a study in the spirit of the ones discussed in [Jo] to find out) of the cases with the remaining few
left for the author to correct. The question is, how can such a correction be applied?
CWEB itself provides two rather different mechanisms for handling these exceptions. The first uses direct

typesetting commands (for example, @/ and @# for canceling and introducing a line break, resp.) to change
the typographic output.

The second (preferred) way is to supply hidden context to the pretty-printer. Two commands, @; and
@[. . .@] are used for this purpose. The former introduces a ‘virtual semicolon’ that acts in every way like a
real one except it is not typeset (it is not output in the source file generated by CTANGLE either but this has
nothing to do with pretty printing, so I will not mention CTANGLE anymore). For instance, from the parser’s
point of view, if the preceding text was parsed as a ‘scrap’ of type exp, the addition of @; will make it into a
‘scrap’ of type stmt in CWEB’s parlance. The second construct (@[. . .@]), is used to create an exp scrap out
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of whatever happens to be inside the brackets.
This is a powerful tool at the author’s disposal. Stylistically, such context hints are the right way to

handle exceptions, since using them forces the writer to emphasize the logical structure of the formal text.
If the pretty printing style is changed later on, the texts with such hidden contexts should be able to survive
intact in the final document (as an example, using a break after every statement in C may no longer be
considered appropriate, so any forced break introduced to support this convention would now have to be
removed, whereas @;’s would simply quietly disappear into the background).

The same hidden context idea has another important advantage: with careful grammar fragmenting
(facilitated by CWEB’s or any other literate programming tool’s ‘hypertext’ structure) and a more diverse
hidden context (or even arbitrary hidden text) mechanism, it is possible to use a strict parser to parse
incomplete language fragments. For example, the productions that are needed to parse C’s expressions form
a complete subset of the grammar. If the grammar’s ‘start’ symbol is changed to expression (instead of the
translation-unit as it is in the full C grammar), a variety of incomplete C fragments can now be parsed and
pretty-printed. Whenever such granularity is still too ‘coarse’, carefully supplied hidden context will give
the pretty printer enough information to adequately process each fragment. A number of such sub-parsers
can be tried on each fragment (this may sound computationally expensive, however, in practice, a carefully
chosen hierarchy of parsers will finish the job rather quickly) until a correct parser produced the desired
output (this approach is similar to, although not quite the same as the one employed by the General LR
parsers).

This somewhat lengthy discussion brings us to the question directly related to the tools described in this
manual: how does one provide typographical hints or hidden context to the parser?

One obvious solution is to build such hints directly into the grammar. The parser designer can, for instance,
add new tokens (say, BREAK_LINE) to the grammar and extend the production set to incorporate the new
additions. The risk of introducing new conflicts into the grammar is low (although not entirely non-existent,
due to the lookahead limitations of LR(1) grammars) and the changes required are easy, although very tedious,
to incorporate.

In addition to being labor intensive, this solution has two other significant shortcomings: it alters the
original grammar and hides its logical structure; it also ‘bakes in’ the pretty-printing conventions into the
language structure (making the ‘hidden’ context much less ‘stealthy’). It does avoid the ‘synchronicity
problem’ mentioned below.

A marginally better technique is to introduce a new regular expression recognizable by the scanner which
will then do all the necessary bookkeeping upon matching the sequence. All the difficulties with altering the
grammar mentioned above apply in this case, as well, only at the ‘lexical analysis level’. At a minimum, the
set of tokens matched by the scanner would have to be altered.

A much more satisfying approach, however, involves inserting the hints at the input stage and passing this
information to the scanner and the parser as part of the token ‘values’. The hints themselves can masquerade
as characters ignored by the scanner (white space 1), for example) and preprocessed by a specially designed
input routine. The scanner then simply passes on the values to the parser. This makes hints, in effect,
invisible.

The difficulty now lies in synchronizing the token production with the parser. This subtle complication is
very familiar to anyone who has designed TEX’s output routines: the parser and the lexer are not synchronous,
in the sense that the scanner might be reading several (in the case of the general LR(n) parsers) tokens 2)
ahead of the parser before deciding on how to proceed (the same way TEX can consume a whole paragraph’s
worth of text before exercising its page builder).

If we simple-mindedly let the scanner return every hint it has encountered so far, we may end up feeding
the parser the hints meant for the token that appears after the fragment the parser is currently working on.
In other words, when the scanner ‘backs up’ it must correctly back up the hints as well.

This is exactly what the scanner produced by the tools in this package does: along with the main stream

1) Or even the ‘intercharacter space’, to make the hints truly invisible to the scanner. 2) Even if one were to somehow miti-
gate the effects of the lookahead in the parser , the scanner would still have to read the characters of the current token up to
(and, in some cases, beyond) the (token’s) boundary which, in most cases, is the whitespace, possibly hiding the next hint.
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of tokens meant for the parser, it produces two 1) hidden streams (called the \yyformat stream and the
\yystash stream) and provides the parser with two strings (currently only strings of digits are used although
arbitrary sequences of TEX tokens can be used as pointers) with the promise that all the ‘hints’ between the
beginning of the corresponding stream and the point labeled by the current stream pointer appeared among
the characters up to and, possibly, including the ones matched as the current token. The macros to extract
the relevant parts of the streams (\consumelistupto and its cousins) are provided for the convenience of
the parser designer.

What the parser does with these pointers and the information they provide, is up to the parser designer
(the parsers for flex and bison syntax in this package use somewhat different strategies). The \yystash
stream currently collects all the typesetting commands inserted by CWEB to be possibly used in displaying
the action code in bison productions, for example. Because of this, it may appear in somewhat unexpected
places, introducing spaces where the programmer did not neccessarily intend (such as at the beginning of the
line, etc.). To mitigate this problem, the \yystash stream macros are implemented to be entirely invisible
to the lexer. Making them produce spaces is also possible, and some examples are provided in symbols.sty.
The interested reader can consult the input routine macros in yyinput.sty for the details of the internal
representation of the streams.

In the interest of full disclosure, it should be pointed out that this simple technique introduces a significant
strain on TEX’s computational resources: the lowest level macros, the ones that handle character input
and are thus executed (in some cases multiple times), for every character in the input stream are rather
complicated and therefore, slow. Whenever the use of such streams is not desired a simpler input routine
can be written to speed up the process (see \yyinputtrivial for a working example of such macro).

Finally, while probably not directly related to the present discussion, this approach has one more interesting
feature: after the parser is finished, the parser output and the streams exist ‘statically’, fully available for
any last minute postprocessing or for debugging purposes, if necessary 2). Under most circumstances, the
parser output is ‘executed’ and the macros in the output are the ones reading the various streams using the
pointers supplied at the parsing stage (at least, this is the case for all the parsers supplied with the package).

18a Inside semantic actions: switch statements and ‘functions’ in TEX

So far we have looked at the lexer for your input, and a grammar ready to be put into action (we will talk
about actions a few moments later). It is time to discuss how the tables produced by bison get converted
into TEX macros that drive the parser in TEX.

The tables that drive the bison input parsers are collected in {b,d,f,g,n}yytab.tex, small_tab.tex
and other similarly named files 3). Each one of these files contains the tables that implement a specific parser
used during different stages of processing. Their exact function is well explained in the source file produced
by bison (how this is done is detailed elsewhere, see [Ah] for a good reference). It would suffice to mention
here that there are three types of tables in this file: (1)numerical tables such as \yytable and \yycheck
(both are either TEX’s token registers in an unoptimized parser or associate arrays in an optimized version
of such as discussed below), (2)a string array \yytname, and (3)an action switch. The action switch is what
gets called when the parser does a reduction. It is easy to notice that the numerical tables come ‘premade’
whereas the string array consisting of token names is difficult to recognize. This is intentional: this form of
initialization is designed to allow the widest range of characters to appear inside names. The macros that
do this reside in yymisc.sty. The generated table files also contain constant and token declarations used
by the parser.

The description of the process used to output bison tables in an appropriate form continues in the section
about outputting TEX tables, we pick it up here with the description of the syntax-directed translation and

1) There would be no difficulty in splitting either of these streams into multiple ‘substreams’ by modifying the stream extrac-
tion macros accordingly. 2) One may think of the parser output as an executable abstract syntax tree (AST or EAST if one
likes cute abbreviations, or even eAST for an extra touch of modernity). This parser feature is used to implement the facility
that allows easy referencing of productions in the section that implements the action code for one. See yyunion.sty and the
source of this file (splint.w) for details. 3) Incidentally, one of the names above is not used anymore. See the cweb directory
after a successful build to find out which. Aren’t footnotes great?!
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the actions. The line
\switchon\next\in\currentswitch

is responsible for calling an appropriate action in the current switch, as is easy to infer. A switch is also a
macro that consists of strings of TEX tokens intermixed with TEX macros inside braces. Each group of macros
gets executed whenever the character or the group of characters in \next matches a substring preceding
the braced group. If there are two different substrings that match, only the earliest group of macros gets
expanded. Before a state is used, a special control sequence, \setspecialcharsfrom\switchname can be
used to put the TEX tokens in a form suitable for the consumption by \switchon’s. The most important
step it performs is it turns every token in the list into a character with the same character code and category
12 . Thus \{ becomes {12. There are other ways of inserting tokens into a state: enclosing a token or a
string of tokens in \raw...\raw adds it to the state macro unchanged. If you have a sequence of category
12 characters you want to add to the state, put it after \classexpand (such sequences are usually prepared
by the \setspecialchars macro that uses the token tables generated by bison from your grammar).

You can give a case a readable label (say, brackets) and enclose this label in \raw. . .\raw. A word of
caution: an ‘a’ inside of \raw. . .\raw (which is most likely an a11 unless you played with the category codes
before loading the \switchon macros) and the one outside it are two different characters, as one is no longer
a letter (category 11) in the eyes of TEX whereas the other one still is. For this reason one should not use
characters other than letters in h{is,er} state names if such characters can form tokens by themselves: the
way a state picks an action does not distinguish between, say, a ‘(’ in ‘(letter)’ and a stand alone ‘(’ and
may pick an action that you did not intend 1). This applies even if ‘(’ is not among the characters explicitly
inserted in the state macro: if an action for a given character is not found in the state macro, the \switchon
macro will insert a current \default action instead, which most often you would want to be \yylex or
\yyinput (i.e. skip this token). If a single ‘(’ or ‘)’ matches the braced group that follows ‘(letter)’ chaos
may ensue (most likely TEX will keep reading past the \end or \yyeof that should have terminated the
input). Make the names of character categories as unique as possible: the \switchon is simply a string
matching mechanism, with the added differentiation between characters of different categories.

Finally, the construct \statecommentanything\statecomment allows you to insert comments in the state
sequence (note that the state name is put at the beginning of the state macro (by \setspecialcharsfrom)
in the form of a special control sequence that expands to nothing: this elaborate scheme is needed because
another control sequence can be \let to the state macro which makes the debugging information difficult to
decipher). The debugging mode for the lexer implemented with these macros is activated by \tracedfatrue.

The functionality of the \switchon (as well as the \switchonwithtype, which is capable of some rudi-
mentary type checking) macros has been implemented in a number of other macro packages (see [Fi] that
discusses the well-known and widely used \CASE and \FIND macros). The macros in this collection have
the additional property that the only assignments that persist after the \switchon completes are the ones
performed by the user code inside the selected case.

This last property of the switch macros is implemented using another mechanism that is part of this macro
suite: the ‘subroutine-like’ macros, \begingroup. . .\tokreturn. For examples, an interested reader can take
a look at the macros included with the package. A typical use is \begingroup. . .\tokreturn{}{\toks0 }{}
which will preserve all the changes to \toks0 and have no other side effects (if, for example, in typical TEX
vernacular, \next is used to implement tail recursion inside the group, after the \tokreturn, \next will
still have the same value it had before the group was entered). This functionality comes at the expense of
some computational efficiency.

This covers most of the routine computations inside semantic actions, all that is left is a way to ‘tap’ into
the stack automaton built by bison using an interface similar to the special $n variables utilized by the
‘genuine’ bison parsers (i.e. written in C or any other target language supported by bison).

This rôle is played by the several varieties of \yy p command sequences (for the sake of completeness, p
stands for one of (n), [name], ]name[ or n, here n is a string of digits, and a ‘name’ is any name acceptable

1) One way to mitigate this is by putting such named states at the end of the switch, after the actions labelled by the stan-
dalone characters. There is nothing special about non-letter characters, of course. To continue the letter example, placing a
state named let after the letter one will make it essentially invisible to the switch macros for the reasons explained before
this footnote.
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as a symbolic name for a term in bison). Instead of going into the minutia of various flavors of \yy-macros,
let me just mention that one can get by with only two ‘idioms’ and still be able to write parsers of arbitrary
sophistication: \yy(n) can be treated as a token register containing the value of the n-th term of the rule’s
right hand side, n > 0. The left hand side of a production is accessed through \yyval. A convenient
shortcut is \yy0{TEX material} which will expand (as in \edef) the ‘TEX material’ inside the braces and
store the result in \yyval (note that this only works if a sequence of 0s, possibly followed or preceeded by
spaces are the only tokens between \yy and the opening braces; see the discussion of \bb macros below for
a description of what happens in other cases). Thus, a simple way to concatenate the values of the first two
production terms is \yy0{\the\yy(1)\the\yy(2)}. The included bison parser can also be used to provide
support for ‘symbolic names’, analogous to bison’s $[name] but a bit more effort is required on the user’s
part to initialize such support. Using symbolic names can make the parser more readable and maintainable,
however.

There is also a \bbn macro, that has no analogue in the ‘real’ bison parsers, and provides access to the
term values in the ‘natural order’ (e.g. \bb1 is the last term in the part of the production preceeding the
action). Its intended use is with the ‘inline’ rules (see the main parser for such examples). As of version
3.0 bison no longer outputs yyrhs and yyprhs , which makes it impossible to produce the yyrthree array
necessary for processing such rules in the ‘left to right’ order. One might also note that the new notation
is better suited for the inline rules since the value that is pushed on the stack is that of \bb0, i.e. the term
implicitly inserted by bison. Be aware that there are no \bb[·] or \bb(·) versions of these macros, for
obvious reasons 1). A less obvious feature of this macro is its ‘nonexpandable’ nature. This means they
cannot be used inside \edef (just like its \yyn counterpart, it makes several assignments which will not
be executed by \edef). Thus, the most common use pattern is \bbn{\toksm} (where n > 0) with a
subsequent expansion of \toksm 2). Making these macros expandable is certainly possible but does not
seem crucial for the intended limited use pattern.

Finally, the scripts included with SPLinT include a postprocessor (see the appropriate Makefile for further
details) that allows the use of the ‘native’ bison term references (i.e. of the form $. . .) to access the value
stack 3). Utilizing the postprocessor allows any syntax for term references used by bison to be used inside
TeX. . . C macros. In this case a typical idiom is \the$[term_name] to get the value of term name. While
storing a new value for the term (i.e. modifying the value stack) is also possible, it is not very straightforward
and thus not recommended. This applies to all forms of term references discussed above.

Naturally, a parser writer may need a number of other data abstractions to complete the task. Since
these are highly dependent on the nature of the processing the parser is supposed to provide, we refer the
interested reader to the parsers included in the package as a source of examples of such specialized data
structures.

One last remark about the parser operation is worth making here: the parser automaton itself does not
make any \global assignments. This (along with some careful semantic action writing) can be used to
‘localize’ the effects of the parser operation and, most importantly, to create ‘reentrant’ parsers that can, e.g.
call themselves recursively.

1) The obvious reason is the mechanism used by \yy[·] and \yy(·) to make them expandable. These macros are basically ref-
erences to the appropriate token registers. Since the \bb macros were designed for the environment where \yylen is unknown,
establishing such references before the action is executed is not possible. A less obvious reason is the author’s lazy approach.
2) Similar to how \yyn macros work, whenever n > 0, this pattern simply puts the contents of the braced group that follows
in front of a (braced) single expansion of the appropriate value on the stack. If, as in the example above, the contents of the
braced group are \toksm, this effectively stores the value of the braced group in the token register. In the case n = 0 the mean-
ing is different: the stack value corresponding to the implicit term becomes the expanded (by \edef) contents of the braced
group following \bbn. 3) Incidentally, bison itself uses a preprocessor (M4) to turn its term references into valid C.
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21a ‘Optimization’

By default, the generated parser and scanner keep all of their tables in separate token registers. Each stack
is kept in a single macro (this description is further complicated by the support for parser namespaces that
exists even for unoptimized parsers but this subtlety will not be mentioned again—see the macros in the
package for further details). Thus, every time a table is accessed, it has to be expanded making the table
access latency linear in the size of the table. The same holds for stacks and the action ‘switches’, of course.
While keeping the parser tables (which are immutable) in token registers does not have any better rationale
than saving the control sequence memory (the most abundant memory in TEX), this way of storing stacks
does have an advantage when multiple parsers get to play simultaneously. All one has to do to switch from
one parser to another is to save the state by renaming the stack control sequences.

When the parser and scanner are ‘optimized’, all these control sequenced are ‘spread over’ appropriate
associative arrays. One caveat to be aware of: the action switches for both the parser and the scanner have to
be output differently (a command line option is used to control this) for optimized and unoptimized parsers.
While it is certainly possible to optimize only some of the parsers (if your document uses multiple) or even
only some parts of a given parser (or scanner), the details of how to do this are rather technical and are left
for the reader to discover by reading the examples supplied with the package. At least at the beginning it is
easier to simply set the highest optimization level and use it consistently throughout the document.

21b TEX with a different slant or do you C an escape?

Some TEX productions below probably look like alien script. The authors of [Er] cite a number of reasons to
view pretty printing of TEX in general as a nearly impossible task. The macros included with the package
follow a very straightforward strategy and do not try to be very comprehensive. Instead, the burden of
presenting TEX code in a readable form is placed on the programmer. Appropriate hints can be supplied
by means of indenting the code, using assignments (=) where appropriate, etc. If you would rather look at
straight TEX instead, the line \def\texnspace{other} at the beginning of this section can be uncommented
and nox•( Υ← 〈Υ1〉 ) becomes \noexpand \inmath { \yy 0{ \yy 1{ } } }. There is, however, more to this story.
A look at the actual file will reveal that the line above was typed as

TeX_( "/noexpand/inmath{/yy0{/yy1{}}}" );

The ‘escape character’ is leaning the other way! The lore of TEX is uncompromising: ‘\’ is the escape
character. What is the reason to avoid it in this case?

The mystery is not very deep: ‘/’ was chosen as an escape character by the parser macros (a quick glance
at ?yytab.tex will reveal as much). There is, of course, nothing sacred (other than tradition, which this
author is trying his hardest to follow) about what character code the escape character has. The reason to
look for an alternative is straightforward: ‘\’ is a special character in C, as well (also an ‘escape’, in fact).
The line TeX_( "..." ); is a macro-call but . . . in C. This function simply prints out (almost ‘as-is’) the
line in parenthesis. An attempt at TeX_( "\noexpand" ); would result in

01 01

02 oexpand 02

Other escape combinations 1) are even worse: most are simply undefined. If anyone feels trapped without
an escape, however, the same line can be typed as

TeX_( "\\noexpand\\inmath{\\yy0{\\yy1{}}}" );

Twice the escape!
If one were to look even closer at the code, another oddity stands out: there are no $’s anywhere in sight.

The big money, $ is a beloved character in bison. It is used in action code to reference the values of the
appropriate terms in a production. If mathematics pays your bills, use \inmath instead.

1) Here is a full list of defined escaped characters in C: \a, \b, \f, \n, \r, \t, \v, \[octal digit ], \’, \", \?, \\, \x, \u, \U. Note
that the last three combinations must be followed by a specific string of characters to appear in the input without generating
errors.
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The bison parser stack

The input language for bison loosely follows the BNF notation, with a few enhancements, such as the
syntax for actions, to implement the syntax-directed translation, as well as various declarations for tokens,
nonterminals, etc.

On the one hand, the language is relatively easy to handle, is nearly whitespace agnostic, on the other, a
primitive parser is required for some basic setup even at a very early stage, so the design must be carefully
thought out. This bootstrapping step is discussed in more detail further down.

The path chosen here is by no means optimal. What it lacks in efficiency, though, it may amply gain
in practicality, as we reuse the original grammar used by bison to produce the parser(s) for both pretty
printing and bootstrapping. Some minor subtleties arising from this approach are explained in later sections.

As was described in the discussion of parser stacks above, to pretty print a variety of grammar fragments,
one may employ a parser stack derived from the original grammar. The most common unit of a bison
grammar is a set of productions. It is thus natural to begin our discussion of the parsers in the bison stack
with the parser responsible for processing individual rules.

One should note that the productions below are not directly concerned with the typesetting of the grammar.
Instead, this task is delegated to the macros in yyunion.sty and its companions. The first pass of the parser
merely constructs an ‘executable abstract syntax tree’ (or EAST 1)) which can serve very diverse purposes:
from collecting token declarations in the boostrapping pass to typesetting the grammar rules. This allows
for a great deal of flexibility in where and when the parsing results are used. A clear divide between the
parsing step and the typesetting step provides for better debugging facilities, as well as more reliable macro
design.

It would be impossible to completely avoid the question of the visual presentation of the bison input,
however. It has already been pointed out that the syntax adopted by bison is nearly insensitive to whitespace.
This makes writing bison grammars easier. On the other hand, presenting a grammar is best done using a
variety of typographic devices that take advantage of the meaningful positioning of text on the page: skips,
indents, etc. Therefore, the macros for bison pretty printing trade a number of bison syntax elements
(such as |, ;, action braces, etc.) for the careful placement of each fragment of the input on the page. The
syntax tree generated by the parsers in the bison stack is not fully faithful in that it does not preserve every
syntactic element from the original input. Thus, e.g. optional semicolons (;opt) never find their way into the
tree and their original position is lost 2).

1) One may argue that EAST is still merely a syntactic construct requiring a proper macro framework for its execution and
should be called a ‘weak executable syntax tree’ or WEST. This acronym extravagnza is heading south so we shall stop here.
2) The opposite is true about the whitespace the parser sees (or stash as it is called in this document): all of it is carefully pack-
aged into streams, as was described earlier.


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Let’s take a short break for a broad overview of the input file. The basic structure is that of an ordinary
bison file that produces plain C output. The C actions, however, are programmed to output TEX. The
bison sections (separated by %% (shown (pretty printed) as 〈%〉 below)) appear between the successive dotted
lines. A number of sections are empty, since the generated C is rather trivial.
〈 bg.yy ch3 〉 =
·····································································
〈Grammar parser C preamble 38i 〉
·····································································
〈Grammar parser bison options 26a 〉
〈union〉 〈Union of grammar parser types 39a 〉
·····································································
〈Grammar parser C postamble 38j 〉
·····································································
〈Tokens and types for the grammar parser 26b 〉

〈Fake start symbol for rules only grammar 27d 〉
〈Parser common productions 29c 〉
〈Parser grammar productions 32a 〉

24a Bootstrapping

Bootstrap parser is defined next. The purpose of the bootstrapping parser is to collect a minimal amount of
information to ‘spool up’ the ‘production’ parsers. To understand its inner workings and the reasons behind
it, consider what happens following a declaration such as %token TOKEN "token" (or, as it would be typeset
by the macros in this package ‘〈token〉 TOKEN token’; see the index entries for more details). The two names
for the same token are treated very differently. TOKEN becomes an enum constant in the C parser generated
by bison. Even when that parser becomes part of the ‘driver’ program that outputs the TEX version of the
parser tables, there is no easy way to output the names of the appropriate enum constants. The other name
("token") becomes an entry in the yytname array. These names can be output by either the ‘driver’ or TEX
itself after the \yytname table has been input. The scanner, on the other hand, will use the first version
(TOKEN). Therefore, it is important to establish an equivalence between the two versions of the name. In the
‘real’ parser, the token values are output in a special header file. Hence, one has to either parse the header
file to establish the equivalences or find some other means to find out the numerical values of the tokens.

One approach is to parse the file containing the declarations and extract the equivalences between the
names from it. This is precisely the function of the bootstrap parser. Since the lexer is reused, some token
values need to be known in advance (and the rest either ignored or replaced by some ‘made up’ values).
These tokens are ‘hard coded’ into the parser file generated by bison and output using a special function.
The switch ‘#define BISON_BOOTSTRAP_MODE’ tells the ‘driver’ program to output the hard coded token
values.

Note that the equivalence of the two versions of token names would have to be established every time a
‘string version’ of a token is declared in the bison file and the ‘macro name version’ of the token is used
by the corresponding scanner. To establish this equivalence, however, the bootstrapping parser below is not
always necessary (see the xxpression example, specifically, the file xxpression.w in the examples directory
for an example of using a different parser for this purpose). The reason it is necessary here is that a parser
for an appropriate subset of the bison syntax is not yet available (indeed, any functional parser for a bison
syntax subset would have to use the same scanner (unless you want to write a custom scanner for it), which
would need to know how to output tokens, for which it would need a parser for a subset of bison syntax . . . it
is a genuine ‘chicken and egg’ problem). Hence the need for ‘bootstrap’. Once a functional parser for a large
enough subset of the bison input grammar is operational, it can be used to pair up the token names. The
bootstrap parser is not strictly minimal in that it is also capable of parsing the 〈nterm〉 declarations. This
ability is not utilized by the parsers in SPLinT, however (nor is the accompanying bootstrap lexer designed
to output the 〈nterm〉 tokens), and was added for the scenarios other than bootstrapping.

The second, perhaps even more important function of the bootstrap process is to collect information about
the scanner’s states. The mechanism is slightly different from that for token definition gathering. While
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the token equivalences are collected purely in ‘TEX mode’, the bootstrap mode parser collects all the state
names into a special C header file. The reason is simple: unlike the token values, the numerical values of
the scanner states are not passed to the ‘driver’ program in any data structure (the yytname array) and are
instead defined as ordinary (C) macros. The header file is the information the ‘driver’ file needs to output
the state values for the use by the lexer.

Naturally, to accomplish their task, the lexer and the parser emplyed in state gathering need the state and
token information, as well. Fortunately, the parser is a subset of the flex input parser that does not define
any ‘string’ names for it tokens. Similarly, the lexer collects all the necessary tokens in the INITIAL state 1).

To reiterate a point made in the middle of this section, the bootstrapping process described here is
necessary to ‘spool up’ the bison and flex input parsers. A simpler procedure may be followed while
designing other custom parsers where the programmer uses, say the full bison parser to collect information
about the token equivalences (whether such information is needed to make the parser operational or just to
facilitate the typesetting of the token names). By adding custom ‘bootstrapping’ macros to the ones defined
in yyunion.sty, a number of different preprocessing tasks can be accomplished.
〈 bb.yy 24a 〉 =
·····································································
〈Grammar parser C preamble 38i 〉
# define BISON_BOOTSTRAP_MODE
·····································································
〈Grammar parser bison options 26a 〉
〈union〉 〈Union of grammar parser types 39a 〉
·····································································
〈Bootstrap parser C postamble 38k 〉
·····································································
〈Tokens and types for the grammar parser 26b 〉

〈Fake start symbol for bootstrap grammar 27f 〉
〈Parser bootstrap productions 30i 〉

This code is cited in section 28b.

25a Prologue and full parsers

The prologue parser is responsible for parsing various grammar declarations as well as parser options.
〈 bd.yy 25a 〉 =
·····································································
〈Grammar parser C preamble 38i 〉
·····································································
〈Grammar parser bison options 26a 〉
〈union〉 〈Union of grammar parser types 39a 〉
·····································································
〈Grammar parser C postamble 38j 〉
·····································································
〈Tokens and types for the grammar parser 26b 〉

〈Fake start symbol for prologue grammar 28b 〉
〈Parser common productions 29c 〉
〈Parser prologue productions 28d 〉

25b The full bison input parser is used when a complete bison file is expected. It is also capable of parsing a
‘skeleton’ of such a file, similar to the one that follows this paragraph. As a stopgap measure, the skeleton
of a flex scanner is also parsed by this parser, as they have an almost identical structure. This is not a

1) An additional subtlety is the necessity to gracefully handle (and, in some cases, cause) the multiple possible failures for
which the lexer redefines enter to fail immediately when attempting to switch states. Note that the bootstrap mode parser
looks at sections other than those where the declarations reside and must fail quickly and quietly in such cases.
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perfect arrangement, however, since it precludes one from putting the constructs that this parser does not
recognize into the outline. To give an example, one cannot put flex specific options into such ‘skeleton’.
〈 bf.yy 25b 〉 =
·····································································
〈Grammar parser C preamble 38i 〉
·····································································
〈Grammar parser bison options 26a 〉
〈union〉 〈Union of grammar parser types 39a 〉
·····································································
〈Grammar parser C postamble 38j 〉
·····································································
〈Tokens and types for the grammar parser 26b 〉

〈Parser common productions 29c 〉
〈Parser prologue productions 28d 〉
〈Parser grammar productions 32a 〉
〈Parser full productions 27b 〉

26a The first two options below are essential for the parser operation as each of them makes bison produce
additional tables (arrays) used in the operation (or bootstrapping) of bison parsers. The start symbol
can be set implicitly by listing the appropriate production first. Modern bison also allows specifying the
kind of parsing algorithm to be used (provided the supplied grammar is in the appropriate class): LALR(n),
LR(n), GLR, etc. The default is to use the LALR(1) algorithm (with the corresponding assumption about the
grammar) which can also be set explicitly by putting

〈define〉 lr.type canonical-lr

in with the rest of the options. Using other types of grammars will wreak havoc on the parsing algorithm
hardcoded into SPLinT (see yyparse.sty) as well as on the production of \stashed and \format streams.
〈Grammar parser bison options 26a 〉 =
〈token table〉 ?
〈parse.trace〉 ? (set as 〈debug〉)
〈start〉 input

This code is used in sections ch3, 24a, 25a, and 25b.

26b Token declarations

Most of the original comments present in the grammar file used by bison itself have been preserved and
appear in italics at the beginning of the appropriate section.

To facilitate the bootstrapping of the parser (see above), some declarations have been separated into their
own sections. Also, a number of new rules have been introduced to create a hierarchy of ‘subparsers’ that
parse subsets of the grammar. We begin by listing most of the tokens used by the grammar. Only the string
versions are kept in the yytname array, which, in part is the reason for a special bootstrapping parser as
explained earlier.
〈Tokens and types for the grammar parser 26b 〉 = 30b

5
"end of file"m ýstringþ 〈token〉 〈nterm〉
〈type〉 〈destructor〉 〈printer〉 〈left〉
〈right〉 〈nonassoc〉 〈precedence〉 〈prec〉
〈dprec〉 〈merge〉
〈Global Declarations 27a 〉

See also sections 30b and 35a.

This code is used in sections ch3, 24a, 25a, and 25b.
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27a We continue with the list of tokens below, following the layout of the original parser.
〈Global Declarations 27a 〉 =
〈code〉 〈default-prec〉 〈define〉 〈defines〉
〈error-verbose〉 〈expect〉 〈expect-rr〉 〈<flag>〉
〈file-prefix〉 〈glr-parser〉 〈initial-action〉 〈language〉
〈name-prefix〉 〈no-default-prec〉 〈no-lines〉 〈nondet. parser〉
〈output〉 〈require〉 〈skeleton〉 〈start〉
〈token-table〉 〈verbose〉 〈yacc〉 "{...}"m

"%?{...}"m "[identifier]"m char epilogue

"="m ýidentifierþ ýidentifier: þ 〈%〉
"|"m "%{...%}"m ";"m <tag>
"<*>"m "<>"m int 〈param〉

This code is used in section 26b.

27b Grammar productions

We are ready to describe the top levels of the parse tree. The first ‘sub parser’ we consider is a ‘full’ parser,
that is the parser that expects a full grammar file, complete with the prologue, declarations, etc. This parser
can be used to extract information from the grammar that is otherwise absent from the executable code
generated by bison. This includes, for example, the ‘name’ part of $[name]. This parser is therefore used
to generate the ‘symbolic switch’ to provide support for symbolic term names similar to the ‘genuine’ bison’s
$[. . .] syntax.

The action of the parser in this case is simply to separate the accumulated ‘parse tree’ from the auxiliary
information carried by the parser on the stack.
〈Parser full productions 27b 〉 =
input : prologue declarations 〈%〉 grammar epilogueopt 〈Extract the grammar from a full file 27c 〉

This code is used in section 25b.

27c 〈Extract the grammar from a full file 27c 〉 =
\finishlist { \expandafter \yyfirstoftwo val Υ3 } . complete the list /
Ω\expandafter { \romannumeral 0

\executelistat { \expandafter \yyfirstoftwo val Υ3 }{ 0 } }

This code is used in section 27b.

27d Another subgrammar deals with the syntax of isolated bison rules. This is the most commonly used
‘subparser’ since a rules cluster is the most natural ‘unit’ to include in a CWEB file.
〈Fake start symbol for rules only grammar 27d 〉 =
input : grammar epilogueopt 〈 Save the grammar 27e 〉

This code is used in section ch3.

27e 〈Save the grammar 27e 〉 =
\finishlist { \expandafter \yyfirstoftwo val Υ1 } . complete the list /
Ω\expandafter { \romannumeral 0

\executelistat { \expandafter \yyfirstoftwo val Υ1 }{ 0 } }

This code is used in section 27d.

27f The bootstrap parser has a very narrow set of goals: it is concerned with 〈token〉 declarations only in order to
supply the token information to the lexer (since, as noted above, such information is not kept in the yytname
array). The parser can also parse 〈nterm〉 declarations but the bootstrap lexer ignores the 〈nterm〉 token,
since the bison grammar does not use one. It also extends the syntax of a grammar declaration by allowing
a declaration with or without a semicolon at the end (the latter is only allowed in the prologue). This works
since the token declarations have been carefully separated from the rest of the grammar in different CWEB
sections. The range of tokens output by the bootstrap lexer is limited, hence most of the other rules are
ignored.
〈Fake start symbol for bootstrap grammar 27f 〉 =
input : grammar declarations Ω = Υ1
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grammar declarations :
symbol declaration ;opt 〈Carry on 28a 〉
grammar declarations symbol declaration ;opt Υ← 〈val Υ1val Υ2〉

;opt : ◦ | ;
This code is used in section 24a.

28a The following is perhaps the most common action performed by the parser. It is done automatically by the
parser code but this feature is undocumented so we supply an explicit action in each case.
〈Carry on 28a 〉 =

Υ← 〈val Υ1〉
This code is used in sections 27f, 28g, 29c, 31a, 31b, 31d, 32b, 38c, and 38d.

28b Next comes a subgrammar for processing prologue declarations. Finer differentiation is possible but the
‘subparsers’ described here work pretty well and impose a mild style on the grammar writer. Note that these
rules are not part of the official bison input grammar and are added to make the typesetting of ‘file outlines’
(e.g. 〈 bb.yy 24a 〉 above) possible.
〈Fake start symbol for prologue grammar 28b 〉 =
input : prologue declarations epilogueopt 〈Save the declarations 28c 〉

prologue declarations 〈%〉 〈%〉 epilogue 〈 Save the declarations 28c 〉
prologue declarations 〈%〉 〈%〉 〈Save the declarations 28c 〉

This code is used in section 25a.

28c 〈Save the declarations 28c 〉 =
\finishlist { \expandafter \yyfirstoftwo val Υ1 } . complete the list /
Ω\expandafter { \romannumeral 0

\executelistat { \expandafter \yyfirstoftwo val Υ1 }{ 0 } }

This code is used in section 28b.

28d Declarations: before the first 〈%〉. We are now ready to deal with the specifics of the declarations themselves.
〈Parser prologue productions 28d 〉 = 28g

5
prologue declarations :
◦ 〈 Start with an empty list of declarations 28e 〉
prologue declarations prologue declaration 〈Attach a prologue declaration 28f 〉

See also sections 28g and 38g.

This code is used in sections 25a and 25b.

28e 〈Start with an empty list of declarations 28e 〉 =
\initlist { \prologuedeclarationsprefix prologue_declarations }

Υ← 〈{ \prologuedeclarationsprefix prologue_declarations }{ nx∅ }〉
defx \prologuedeclarationsprefix { .\prologuedeclarationsprefix }

This code is used in section 28d.

28f 〈Attach a prologue declaration 28f 〉 =
〈Attach a productions cluster 32d 〉

This code is used in section 28d.

28g Here is a list of most kinds of declarations that can appear in the prologue. The scanner returns the ‘stream
pointers’ for all the keywords so the declaration ‘structures’ pass on those pointers to the grammar list. The
original syntax has been left intact even though for the purposes of this parser some of the inline rules are
unnecessary.
〈Parser prologue productions 28d 〉 + =

4
28d 38g

5
prologue declaration :

grammar declaration 〈Carry on 28a 〉
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%{...%} Υ← 〈nx
\prologuecode val Υ1〉

〈?〉 Υ← 〈nx
\optionflag val Υ1〉

〈define〉 variable value Υ← 〈nx
\vardef { val Υ2 }{ val Υ3 }val Υ1〉

〈defines〉 Υ← 〈nx
\optionflag { defines }{ }val Υ1〉

〈defines〉 ýstringþ va← 〈 defines 〉〈Prepare one parametric option 29a 〉
〈error-verbose〉 Υ← 〈nx

\optionflag { error verbose }{ }val Υ1〉
〈expect〉 int va← 〈 expect 〉〈Prepare a generic one parametric option 29b 〉
〈expect-rr〉 int va← 〈 expect-rr 〉〈Prepare a generic one parametric option 29b 〉
〈file-prefix〉 ýstringþ va← 〈 file prefix 〉〈Prepare one parametric option 29a 〉
〈glr-parser〉 Υ← 〈nx

\optionflag { glr parser }{ }val Υ1〉
〈initial-action〉 {...} Υ← 〈nx

\initaction val Υ2〉
〈language〉 ýstringþ va← 〈 language 〉〈Prepare one parametric option 29a 〉
〈name-prefix〉 ýstringþ va← 〈 name prefix 〉〈Prepare one parametric option 29a 〉
〈no-lines〉 Υ← 〈nx

\optionflag { no lines }{ }val Υ1〉
〈nondet. parser〉 Υ← 〈nx

\optionflag { nondet. parser }{ }val Υ1〉
〈output〉 ýstringþ va← 〈 output 〉〈Prepare one parametric option 29a 〉
〈param〉 � params . . . | Υ← 〈nx

\paramdef { val Υ3 }val Υ1〉
〈require〉 ýstringþ va← 〈 require 〉〈Prepare one parametric option 29a 〉
〈skeleton〉 ýstringþ va← 〈 skeleton 〉〈Prepare one parametric option 29a 〉
〈token-table〉 Υ← 〈nx

\optionflag { token table }{ }val Υ1〉
〈verbose〉 Υ← 〈nx

\optionflag { verbose }{ }val Υ1〉
〈yacc〉 Υ← 〈nx

\optionflag { yacc }{ }val Υ1〉
; Υ← 〈nx∅〉

params :
params {...} Υ← 〈val Υ1

nx
\braceit val Υ2〉

{...} Υ← 〈nx
\braceit val Υ1〉

29a This is a typical parser action: encapsulate the ‘type’ of the construct just parsed and attach some auxiliary
info, in this case the stream pointers.
prologue declaration : 〈defines〉 ýstringþ | 〈output〉 ýstringþ | 〈require〉 ýstringþ

The productions above are typical examples.
〈Prepare one parametric option 29a 〉 =

Υ← 〈nx
\oneparametricoption { val va }{

nx
\stringify val Υ2 }val Υ1〉

This code is used in section 28g.

29b A variation on the theme above where the parameter is not a ýstringþ.
prologue declaration : 〈expect〉 int | 〈expect-rr〉 int | 〈start〉 symbol

A sample of the rules to which the code below applies are given above.
〈Prepare a generic one parametric option 29b 〉 =

Υ← 〈nx
\oneparametricoption { val va }{ val Υ2 }val Υ1〉

This code is used in sections 28g and 29c.

29c Grammar declarations. These declarations can appear in both the prologue and the rules sections. Their
treatment is very similar to the prologue-only options.
〈Parser common productions 29c 〉 = 30c

5
grammar declaration :

precedence declaration 〈Carry on 28a 〉
symbol declaration 〈Carry on 28a 〉
〈start〉 symbol va← 〈 start 〉〈Prepare a generic one parametric option 29b 〉
code props type {...} generic symlist 〈Assign a code fragment to symbols 30a 〉
〈default-prec〉 Υ← 〈nx

\optionflag { default prec. }{ }val Υ1〉
〈no-default-prec〉 Υ← 〈nx

\optionflag { no default prec. }{ }val Υ1〉
〈code〉 {...} Υ← 〈nx

\codeassoc { code }{ }val Υ2val Υ1〉
〈code〉 ýidentifierþ {...} Υ← 〈nx

\codeassoc { code }{ nx
\idit val Υ2 }val Υ3val Υ1〉
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code props type :
〈destructor〉 Υ← 〈{ destructor }val Υ1〉
〈printer〉 Υ← 〈{ printer }val Υ1〉

See also sections 30c, 30g, 31a, 31b, 37f, and 38h.

This code is used in sections ch3, 25a, and 25b.

30a 〈Assign a code fragment to symbols 30a 〉 =
π1(Υ1) 7→ va . name of the property /
π1(Υ2) 7→ vb . contents of the braced code /
π2(Υ2) 7→ vc . braced code format pointer /
π3(Υ2) 7→ vd . braced code stash pointer /
π2(Υ1) 7→ ve . code format pointer /
π3(Υ1) 7→ vf . code stash pointer /
Υ← 〈nx

\codepropstype { val va }{ val vb }{ val Υ3 }{ val vc }{ val vd }{ val ve }{ val vf }〉
This code is used in section 29c.

30b 〈Tokens and types for the grammar parser 26b 〉 + =
4
26b 35a

5
〈union〉

30c 〈Parser common productions 29c 〉 + =
4
29c 30g

5
union name : ◦ | ýidentifierþ . . . | 〈Turn an identifier into a term 38a 〉
grammar declaration : 〈union〉 union name {...} 〈Prepare union definition 30d 〉
symbol declaration : 〈type〉 <tag> symbols1 〈Define symbol types 30e 〉
precedence declaration :

precedence declarator tagopt symbols.prec 〈Define symbol precedences 30f 〉
precedence declarator :

〈left〉 | 〈right〉 | 〈nonassoc〉 | 〈precedence〉 . . . | Υ← 〈nx
\preckind { precedence }val Υ1〉

tagopt : ◦ | <tag> . . . | 〈Prepare a <tag> 30h 〉

30d 〈Prepare union definition 30d 〉 =
Υ← 〈nx

\codeassoc { union }{ val Υ2 }val Υ3val Υ1〉
This code is used in section 30c.

30e 〈Define symbol types 30e 〉 =
Υ← 〈nx

\typedecls { nx
\tagit val Υ2 }{ val Υ3 }val Υ1〉

This code is used in section 30c.

30f 〈Define symbol precedences 30f 〉 =
π3(Υ1) 7→ va . format pointer /
π4(Υ1) 7→ vb . stash pointer /
π2(Υ1) 7→ vc . kind of precedence /
Υ← 〈nx

\precdecls { val vc }{ val Υ2 }{ val Υ3 }{ val va }{ val vb }〉
This code is used in section 30c.

30g The bootstrap grammar forms the smallest subset of the full grammar.
〈Parser common productions 29c 〉 + =

4
30c 31a

5
〈Parser bootstrap productions 30i 〉

30h 〈Prepare a <tag> 30h 〉 =
Υ← 〈nx

\tagit val Υ1〉
This code is used in sections 30c, 31b, and 31c.

30i These are the two most important rules for the bootstrap parser. The reasons for the 〈token〉 declarations to
be collected during the bootstrap pass are outlined in the section on bootstrapping. The 〈nterm〉 declarations
are not strictly necessary for boostrapping the parsers included in SPLinT but they are added for the cases
when the bootstrap mode is used for purposes other than bootstrapping SPLinT.
〈Parser bootstrap productions 30i 〉 = 31c

5
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symbol declaration :
〈nterm〉 � symbol defs1 . . . | Υ← 〈nx

\ntermdecls { val Υ3 }val Υ1〉
〈token〉 � symbol defs1 . . . | Υ← 〈nx

\tokendecls { val Υ3 }val Υ1〉
See also sections 31c, 31d, 37e, and 37i.

This code is used in sections 24a and 30g.

31a Just like symbols1 but accept int for the sake of POSIX. Perhaps the only point worth mentioning here is the
inserted separator (\hspace {p0}{p1}, typeset as  p1

p0
). Like any other separator, it takes two parameters,

the stream pointers p0 and p1. In this case, however, both pointers are null since there seems to be no other
meaningful assignment. If any formatting or stash information is needed, it can be extracted by the symbols
themselves.
〈Parser common productions 29c 〉 + =

4
30g 31b

5
symbols.prec :

symbol.prec 〈Carry on 28a 〉
symbols.prec symbol.prec Υ← 〈val Υ1

nx 0
0 val Υ2〉

symbol.prec :
symbol Υ← 〈nx

\symbolprec { val Υ1 }{ }〉
symbol int Υ← 〈nx

\symbolprec { val Υ1 }{ val Υ2 }〉

31b One or more symbols to be 〈type〉’d.
〈Parser common productions 29c 〉 + =

4
31a 37f

5
〈union〉.intval:

symbols1 symbol

symbols1 :
symbol 〈Carry on 28a 〉
symbols1 symbol Υ← 〈val Υ1

nx 0
0 val Υsymbol〉

generic symlist :
generic symlist item 〈Carry on 28a 〉
generic symlist generic symlist item Υ← 〈val Υ1

nx 0
0 val Υ2〉

generic symlist item : symbol | tag . . . | 〈Carry on 28a 〉
tag : <tag> | <*> | <> . . . | 〈Carry on 28a 〉

31c One token definition.
〈Parser bootstrap productions 30i 〉 + =

4
30i 31d

5
symbol def :

<tag> 〈Prepare a <tag> 30h 〉
id | id int | id string as id | id int string as id . . . | Υ← 〈nx

\onesymbol { val Υ1 }{ val Υ2 }{ val Υ3 }〉

31d One or more symbol definitions.
〈Parser bootstrap productions 30i 〉 + =

4
31c 37e

5
symbol defs1 :

symbol def 〈Carry on 28a 〉
symbol defs1 symbol def 〈Add a symbol definition 31e 〉

31e 〈Add a symbol definition 31e 〉 =
π2(Υ2) 7→ va . the identifier /
π4(va) 7→ vb . the format pointer /
π5(va) 7→ vc . the stash pointer /
Υ← 〈val Υ1

nx val vc
val vb

val Υ2〉
This code is used in section 31d.
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32a The grammar section: between the two 〈%〉’s. Finally, the following few short sections define the syntax of
bison’s rules.
〈Parser grammar productions 32a 〉 = 32b

5
grammar :

rules or grammar declaration 〈 Start with a production cluster 32c 〉
grammar rules or grammar declaration 〈Attach a productions cluster 32d 〉

See also sections 32b, 35b, and 37h.

This code is used in sections ch3 and 25b.

32b Rules syntax

As a bison extension, one can use the grammar declarations in the body of the grammar. What follows is
the syntax of the right hand side of a grammar rule. The type declarations for various non-terminals are
used exclusively by the postprocessor whenever the ‘native’ bison term references are used (see elsewhere
for details).
〈Parser grammar productions 32a 〉 + =

4
32a 35b

5
〈union〉.intval:

rhs id colon named ref opt rhses1 |

rules or grammar declaration :
rules 〈Form a productions cluster 33a 〉
grammar declaration ; 〈Carry on 28a 〉
error ; \errmessage { parsing error! }

rules : id colon named ref opt � rhses1 . . . | 〈Complete a production 33b 〉
rhses1 :

rhs 〈 Start the right hand side 33c 〉
rhses1 | 〈 Insert local formatting 34b 〉

rhs 〈Add a right hand side to a production 34c 〉
rhses1 ; 〈Carry on 28a 〉

32c The next few actions describe what happens when a left hand side is attached to a rule.
〈Start with a production cluster 32c 〉 =

\initlist { \grammarprefix grammar }

π1(Υ1) 7→ va . type of the last addition /
Υ← 〈{ \grammarprefix grammar }{ val va }〉
\appendtolistx { \grammarprefix grammar }{ val Υ1 }

defx \grammarprefix { .\grammarprefix }

This code is used in section 32a.

32d 〈Attach a productions cluster 32d 〉 =
π2(Υ1) 7→ va . type of the last rule /
π1(Υ1) 7→ vc . pointer to the accumulated rules /
π1(Υ2) 7→ vb . type of the new rule /
let default \positionswitchdefault

switch (val vb) ε \positionswitch . determine the position of the first token in the group /
. determine the spacing between sections /

defx next { val va }

defx default { val vb } . reuse \default /
ifx next default

let default \separatorswitchdefaulteq

switch (val va) ε \separatorswitcheq

else
va ← va +s vb

let default \separatorswitchdefaultneq

switch (val va) ε \separatorswitchneq

fi
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\appendtolistx { val vc }{ val \postoks val vdval Υ2 }

Υ← 〈{ val vc }{ val vb }〉
This code is used in sections 28f and 32a.

33a 〈Form a productions cluster 33a 〉 =
π2(Υ1) 7→ va . \prodheader /
π2(va) 7→ vb . \idit /
π4(vb) 7→ vc . format stream pointer /
π5(vb) 7→ vd . stash stream pointer /
π3(Υ1) 7→ vb . \rules /
Υ← 〈nx

\oneproduction { val vaval vb }{ val vc }{ val vd }〉
This code is used in section 32b.

33b Several productions for a given nonterminal are collected in a ‘production cluster’:
rules :

id colon named ref opt (we simply return pointers below)
rhses1 〈Complete a production 33b 〉

The inline action does nothing at the moment and is omitted in the main text.
〈Complete a production 33b 〉 =
π4(Υid colon) 7→ va . format stream pointer /
π5(Υid colon) 7→ vb . stash stream pointer /
\finishlist { val Υrhses1 } . complete the list of rules /
Υ← 〈nx

\pcluster { nx
\prodheader { val Υid colon }{ val Υnamed ref opt }

{ val va }{ val vb } }{
nx

\rules { nx
\executelist { val Υrhses1 } } }〉

This code is used in section 32b.

33c It is important to format the right hand side properly, since we would like to indicate that an action is inlined
by an indentation.
rhses1 : rhs 〈Start the right hand side 33c 〉

The ‘layout’ of the \rhs ‘structure’ includes a ‘boolean’ to indicate whether the right hand side ends with
an action. Since the action can be implicit, this decision has to be postponed until, say, a semicolon is seen.
No formatting or stash pointers are added for implicit actions.
〈Start the right hand side 33c 〉 =

\initlist { \rhsesoneprefix rhses1 }

Υ← 〈\rhsesoneprefix rhses1〉
defx \rhsesoneprefix { .\rhsesoneprefix }

π`(Υrhs) 7→ va val va

if ( rhs = full )
\appendtolistx { val Υ }{ val Υrhs }

else . right hand side does not end with an action, fake one /
π{}(Υrhs) 7→ va . rules /
\yytoksempty va← 〈 va← 〈 p. . .q 〉 〉{ }

\appendtolistx { val Υ }{ nx
\rhs { val va

nx
\rarhssep { 0 }{ 0 }

nx
\actbraces { }{ }{ 0 }{ 0 }nx

\bdend }{ }{ nxrhs = full } }
fi

This code is used in section 32b.

33d Using standard notation, here is what the middle action does. The part of the rule this action applies to is
given below for reference. This action may have been omitted altogether but it serves as a good illustration
of how ‘inline actions’ work.
rhses1 : rhses1 | 〈 Insert local formatting 34b 〉

The terms are counted from left (deeper in the value stack) to right (on top of the value stack) although Υ0

(which is the same as Υ) is the rightmost term, i.e. the implicit action itself.
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What the parser sees at this point are the first two terms on the stack (i.e. rhses1 and |) and is ready to
make a reduction which will push the value of the term corresponding to the inline action (i.e. 〈 Insert local
formatting 34b 〉) on the stack.

The way bison does this is by introducing a new grammar term (named $@n for some integer n) for each
inline action and adding a new rule that reduces an empty sequence of terms to $@n. The action for this
rule is the inline action. In our case this would read as

$@n : ◦ 〈 Insert local formatting 34b 〉

. . .except the parser knows what the state of the stack is at this point and thus the code inside 〈 Insert local
formatting 34b 〉 can now refer to the terms on the stack as described above.
〈Old ‘Insert local formatting’ 33d 〉 =

\appendtolistx { val Υ1 }{
nx

\midf val Υ2 }

34a However, if the length of the rule preceding the inline action is not known to the parser in advance (as is the
case for the parsers SPLinT generates using any version of bison that is > 3.0) a different way of accessing
the stack is necessary. This notation is also more natural as it counts the terms from right to left, i.e. ‘into
the depths of the stack’ (for example 2Υ is the register holding the value of rhses1). It is worth noting that
in this case Υ0 and Υ are still the same register, the one that holds the value of the term corresponding to
the inline action itself.
〈Newer ‘Insert local formatting’ 34a 〉 =

2Υ→ [va] 1Υ→ [vb]
\appendtolistx { val va }{

nx
\midf val vb }

34b Finally, using the ‘native’ way of referring to term values results in the most natural code. In this case, one
can mix numeric and symbolic references for both implicit and explicit rules.
〈 Insert local formatting 34b 〉 =

\appendtolistx { val Υrhses }{
nx

\midf val Υmid }

This code is cited in sections 33d and 34c.

This code is used in section 32b.

34c Productions are collected in a ‘productions cluster’ (not an official term) by the following action:
rhses1 : rhses1 | � rhs . . . | 〈Add a right hand side to a production 34c 〉

As can be seen in the code below, no pointers are provided for an implicit action (since there are no tokens
associated with it).

Processing a set of rules involves a large number of reexpansions. This seems to be a good place to use a
list to store the nodes (see yycommon.sty for details on list macros). While providing a noticeable speed up,
this technique significantly complicates the debugging of the grammar. In particular, inspecting a parsed
table supplies very little information if the list not expanded. The macros in yyunion.sty provide a special
debugging namespace where the expansion of the parser produced control sequences may be modified to
safely expand the generated table.

The code below relies on the inline action 〈 Insert local formatting 34b 〉 above to store the relevant
information from Υ1 (corresponding to rhses1) in Υ3 (which is the inline action ‘term’ � in the production
above).
〈Add a right hand side to a production 34c 〉 =
π`(Υ4) 7→ va val va

if ( rhs = full )
\appendtolistx { val Υ1 }{

nx
\rrhssep val Υ2val Υ4 }

else
π{}(Υ4) 7→ va

\yytoksempty va← 〈 va← 〈 p. . .q 〉 〉{ }

\appendtolistx { val Υ1 }{
nx

\rrhssep val Υ2
nx

\rhs { val va
nx

\rarhssep { 0 }{ 0 } . streams have already been grabbed /
nx

\actbraces { }{ }{ 0 }{ 0 }nx
\bdend }{ }{ nxrhs = full } }
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fi
Υ← 〈val Υ1〉

This code is used in section 32b.

35a 〈Tokens and types for the grammar parser 26b 〉 + =
4

30b

〈empty〉

35b The centerpiece of the grammar is the syntax of the right hand side of a production. Various ‘precedence
hints’ must be attached to an appropriate portion of the rule, just before an action (which can be inline,
implicit or both in this case).
〈Parser grammar productions 32a 〉 + =

4
32b 37h

5
rhs :
◦ 〈Make an empty right hand side 35c 〉
rhs symbol named ref opt 〈Add a term to the right hand side 35d 〉
rhs {...} named ref opt 〈Add an action to the right hand side 35e 〉
rhs %?{...} 〈Add a predicate to the right hand side 36a 〉
rhs 〈empty〉 〈Add 〈empty〉 to the right hand side 36b 〉
rhs 〈prec〉 symbol 〈Add a precedence directive to the right hand side 36c 〉
rhs 〈dprec〉 int 〈Add a 〈dprec〉 directive to the right hand side 37a 〉
rhs 〈merge〉 <tag> 〈Add a 〈merge〉 directive to the right hand side 37b 〉

named ref opt :
◦ 〈Create an empty named reference 37c 〉
"[identifier]"m 〈Create a named reference 37d 〉

35c The simplest form of the right hand side is an empty rule. In this case the parser must make a reduction
based on the lookahead only (or the current state), i.e. no tokens are consumed from the input.
〈Make an empty right hand side 35c 〉 =

Υ← 〈nx
\rhs { }{ }{ nxrhs = not full }〉

This code is used in section 35b.

35d Adding a bison term to the right hand side involves collecting of several pieces of information. One of them
is the (optional) symbolic named that can be used by the action code to refer to the place on the value stack
that is allocated for this term.
rhs : rhs symbol named ref opt 〈Add a term to the right hand side 35d 〉

The space between the term and the preceeding part of the rule may depend on the type of rule element
that appears at the end of the rule parsed so far.
〈Add a term to the right hand side 35d 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

\yytoksempty vb← 〈 〉{
π4(Υ2) 7→ vc

π5(Υ2) 7→ vd

vb ← vb +sx [ { val vc }{ val vd } ]
}

Υ← 〈nx
\rhs { val vaval vb

nx
\termname { val Υ2 }{ val Υ3 } }{

nx }{ nxrhs = not full }〉
This code is used in section 35b.

35e Action processing is somewhat complicated since the action can be either inline or terminal, affecting the
typesetting.
rhs : rhs {...} named ref opt 〈Add an action to the right hand side 35e 〉

Additionally, an action may follow an empty rule in which case a special term must be added to aid the
reader.
〈Add an action to the right hand side 35e 〉 =
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π{}(Υ1) 7→ va

π`(Υ1) 7→ vb val vb

if ( rhs = full ) . the first half ends with an action /
va ← va +sx [ nx

\arhssep { 0 }{ 0 }nxp. . .q ] . no pointers to streams /
fi
\yytoksempty va← 〈 va← 〈 p. . .q 〉 〉{ }

π1(Υ2) 7→ vb . the contents of the braced code /
π2(Υ2) 7→ vc . the format stream pointer /
π3(Υ2) 7→ vd . the stash stream pointer /
Υ← 〈nx

\rhs { val va
nx

\rarhssep { val vc }{ val vd }
nx

\actbraces { val vb }{ val Υ3 }{ val vc }{ val vd }
nx

\bdend }

{ nx
\arhssep }{ nxrhs = full }〉

This code is used in section 35b.

36a 〈Add a predicate to the right hand side 36a 〉 =
π{}(Υ1) 7→ va

π`(Υ1) 7→ vb val vb

if ( rhs = full ) . the first half ends with an action /
va ← va +sx [ nx

\arhssep { 0 }{ 0 }nxp. . .q ] . no pointers to streams /
fi
\yytoksempty va← 〈 va← 〈 p. . .q 〉 〉{ }

π1(Υ2) 7→ vb . the contents of the braced code /
π2(Υ2) 7→ vc . the format stream pointer /
π3(Υ2) 7→ vd . the stash stream pointer /
Υ← 〈nx

\rhs { val va
nx

\rarhssep { val vc }{ val vd }
nx

\bpredicate { val vb }{ }{ val vc }{ val vd }
nx

\bdend }{ nx
\arhssep }{ nxrhs = full }〉

This code is used in section 35b.

36b An empty right hand side may be specified explicitly by using 〈empty〉 as the sole token in the production.
This will increase the readability of the grammar by making the programmer’s intentions more transparent.
〈Add 〈empty〉 to the right hand side 36b 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

\yytoksempty vb← 〈 〉{
π4(Υ2) 7→ vc

π5(Υ2) 7→ vd

vb ← vb +sx [ { val vc }{ val vd } ]
}

Υ← 〈nx
\rhs { val vaval vb

nxp. . .q }{ nx }{ nxrhs = not full }〉
This code is used in section 35b.

36c 〈Add a precedence directive to the right hand side 36c 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc val vc

if ( rhs = full )
Υ← 〈nx

\sprecop { val Υ3 }val Υ2〉 . reuse \yyval /
\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx

\rhs { val va }{ val vb }{
nxrhs = full }〉

else
Υ← 〈nx

\rhs { val va
nx

\sprecop { val Υ3 }val Υ2 }{ val vb }{
nxrhs = not full }〉

fi

This code is used in section 35b.
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37a 〈Add a 〈dprec〉 directive to the right hand side 37a 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc val vc

if ( rhs = full )
Υ← 〈nx

\dprecop { val Υ3 }val Υ2〉 . reuse \yyval /
\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx

\rhs { val va }{ val vb }{
nxrhs = full }〉

else
Υ← 〈nx

\rhs { val va
nx

\dprecop { val Υ3 }val Υ2 }{ val vb }{
nxrhs = not full }〉

fi

This code is used in section 35b.

37b 〈Add a 〈merge〉 directive to the right hand side 37b 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc val vc

if ( rhs = full )
Υ← 〈nx

\mergeop { nx
\tagit val Υ3 }val Υ2〉 . reuse \yyval /

\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx

\rhs { val va }{ val vb }{
nxrhs = full }〉

else
Υ← 〈nx

\rhs { val va
nx

\mergeop { nx
\tagit val Υ3 }val Υ2 }{ val vb }{

nxrhs = not full }〉
fi

This code is used in section 35b.

37c 〈Create an empty named reference 37c 〉 =
Υ← 〈〉

This code is used in section 35b.

37d 〈Create a named reference 37d 〉 =
〈Turn an identifier into a term 38a 〉

This code is used in section 35b.

37e Identifiers and other symbols

Identifiers are returned as uniqstr values by the scanner. Depending on their use, we may need to make
them genuine symbols. We, on the other hand, simply copy the values returned by the scanner.
〈Parser bootstrap productions 30i 〉 + =

4
31d 37i

5
id :

ýidentifierþ 〈Turn an identifier into a term 38a 〉
char 〈Turn a character into a term 38b 〉

37f 〈Parser common productions 29c 〉 + =
4
31b 38h

5
〈Definition of symbol 37g 〉

37g 〈Definition of symbol 37g 〉 =
symbol :

id 〈Turn an identifier into a symbol 38c 〉
string as id 〈Turn a string into a symbol 38d 〉

This code is used in section 37f.

37h 〈Parser grammar productions 32a 〉 + =
4

35b

id colon : ýidentifier: þ 〈Prepare the left hand side 38e 〉

37i A string used as an ýidentifierþ.
〈Parser bootstrap productions 30i 〉 + =

4
37e

string as id : ýstringþ 〈Prepare a string for use 38f 〉
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38a The remainder of the action code is trivial but we reserved the placeholders for the appropriate actions in
case the parser gains some sophistication in processing low level types (or starts expecting different types
from the scanner).
〈Turn an identifier into a term 38a 〉 =

Υ← 〈nx
\idit val Υ1〉

This code is used in sections 30c, 37d, 37e, 38e, and 38g.

38b 〈Turn a character into a term 38b 〉 =
Υ← 〈nx

\charit val Υ1〉
This code is used in section 37e.

38c 〈Turn an identifier into a symbol 38c 〉 =
〈Carry on 28a 〉

This code is used in section 37g.

38d 〈Turn a string into a symbol 38d 〉 =
〈Carry on 28a 〉

This code is used in section 37g.

38e 〈Prepare the left hand side 38e 〉 =
〈Turn an identifier into a term 38a 〉

This code is used in section 37h.

38f 〈Prepare a string for use 38f 〉 =
Υ← 〈nx

\stringify val Υ1〉
This code is used in sections 37i and 38g.

38g Variable and value. The ýstringþ form of variable is deprecated and is not M4-friendly. For example, M4
fails for %define "[" "value".
〈Parser prologue productions 28d 〉 + =

4
28g

variable : ýidentifierþ | ýstringþ . . . | 〈Prepare a string for use 38f 〉
value : ◦ | ýidentifierþ | ýstringþ | {...} . . . | Υ← 〈nx

\bracedvalue val Υ1〉

38h 〈Parser common productions 29c 〉 + =
4
37f

epilogueopt : ◦ | 〈%〉 epilogue

38i C preamble for the grammar parser. In this case, there are no ‘real’ actions that our grammar performs,
only TEX output, so this section is empty.
〈Grammar parser C preamble 38i 〉 =
This code is used in sections ch3, 24a, 25a, and 25b.

38j C postamble for the grammar parser. It is tricky to insert function definitions that use bison’s internal types,
as they have to be inserted in a place that is aware of the internal definitions but before said definitions are
used.
〈Grammar parser C postamble 38j 〉 =
This code is used in sections ch3, 25a, 25b, and 38k.

38k 〈Bootstrap parser C postamble 38k 〉 =
〈Grammar parser C postamble 38j 〉
〈Bootstrap token output 38l 〉

This code is used in section 24a.

38l 〈Bootstrap token output 38l 〉 =
void bootstrap tokens (char ∗bootstrap token format ){

#define register token d (name ) fprintf (tables out , bootstrap token format , #name ,name , #name );
〈Bootstrap token list 38m 〉

#undef register token d
}

This code is used in section 38k.

38m Here is the minimal list of tokens needed to make the lexer operational just enough to extract the rest of
the token information from the grammar.
〈Bootstrap token list 38m 〉 =

register token d (ID)
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register token d (PERCENT_TOKEN)
register token d (STRING)

This code is used in section 38l.

39a Union of types

This section of the bison input lists the types that may appear on the value stack. Since TEX does not
provide any mechanism for type checking (nor is it clear how to translate a C union into any data structure
usable in TEX), this section is left (nearly) empty. The reason for the lonely type below is the postprocessor
that facilitates the use of bison ‘native’ term references (see elsewhere). In order to translate such references
into appropriate TEX code, the postprocessor must let bison calculate offsets into the value stack, which
requires assigning types to various terminals and non-terminals. The specific type has no significance.
〈Union of grammar parser types 39a 〉 =

int intval ;

This code is used in sections ch3, 24a, 25a, and 25b.
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4
The scanner for bison syntax

The fact that bison has a relatively straightforward grammar is partly due to the sophistication of its
scanner. The primary reason for this increased complexity is bison’s awareness of syntax variations in its
input files. In addition to the grammar syntax, the parser has to be able to deal with extended C syntax
inside bison’s actions.

Since the names of the scanner states reside in the common namespace with other variables, in order to
make the TEX version of the scanner aware of the numerical values of the states, a special procedure is
required. It is executed as part of flex’s user initialization code but the data for it has to be collected
separately. The procedure is declared in the preamble section of the scanner.

Below, we follow the same convention (of italicizing the original comments) as in the code for the parser.
〈 lo.ll ch4 〉 =
〈Grammar lexer definitions 41a 〉
············································
〈Grammar lexer C preamble 43c 〉
············································
〈Grammar lexer options 43d 〉

〈Grammar token regular expressions 43e 〉

void define all states (void)
{

〈Collect state definitions for the grammar lexer 42c 〉
}

41a Definitions and state declarations

It is convenient to abbreviate some commonly used subexpressions.
〈Grammar lexer definitions 41a 〉 = 42a

5
〈Grammar lexer states 42d 〉
〈letter〉 [.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_]
〈notletter〉 [.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_]c \ [%{]
〈id〉 〈letter〉 (〈letter〉 | [-0–9])∗
〈int〉 [0–9]+

See also sections 42a and 42b.

This code is used in section ch4.





 DEFINITIONS AND STATE DECLARATIONS SPLINT 104
113

42a Zero or more instances of backslash-newline. Following gcc, allow white space between the backslash and the
newline.
〈Grammar lexer definitions 41a 〉 + =

4
41a 42b

5
〈splice〉 (\ [ 〈f〉〈t〉〈v〉]∗〈n〉)∗

42b An equal sign, with optional leading whitespaces. This is used in some deprecated constructs.
〈Grammar lexer definitions 41a 〉 + =

4
42a

〈eqopt〉 ([〈 〉]∗=)?

42c This is how the code for state value output is put inside the routine mentioned above. The state information
is collected by a special small scanner that is coupled with the bootstrap parser. This way, all the necessary
token information comes ‘hardwired’ in the bootstrap parser, and the small scanner itself does not use any
state manipulation and thus can get away with using no state setup. It can, however, scan just enough of
the flex syntax to extract the state information from it (only the state names are needed) and output it in
the form of a header file for the ‘real’ lexer output ‘driver’ to use.
〈Collect state definitions for the grammar lexer 42c 〉 =
#define register name (name ) Define State (#name ,name )

#include "lo_states.h"

#undef register name

This code is used in section ch4.

42d A C-like comment in directives/rules.
〈Grammar lexer states 42d 〉 = 42e

5
〈state-x〉f SC YACC COMMENT

See also sections 42e, 42f, 42g, 42h, 42i, 43a, and 43b.

This code is used in section 41a.

42e Strings and characters in directives/rules.
〈Grammar lexer states 42d 〉 + =

4
42d 42f

5
〈state-x〉f SC ESCAPED STRING SC ESCAPED CHARACTER

42f A identifier was just read in directives/rules. Special state to capture the sequence ‘identifier:’.
〈Grammar lexer states 42d 〉 + =

4
42e 42g

5〈state-x〉f SC AFTER IDENTIFIER

42g POSIX says that a tag must be both an id and a C union member, but historically almost any character is
allowed in a tag. We disallow Λ, as this simplifies our implementation. We match angle brackets in nested
pairs: several languages use them for generics/template types.
〈Grammar lexer states 42d 〉 + =

4
42f 42h

5
〈state-x〉f SC TAG

42h Four types of user code:
prologue (code between %{ %} in the first section, before 〈%〉);
actions, printers, union, etc, (between braced in the middle section);
epilogue (everything after the second 〈%〉);
predicate (code between %?{ and } in middle section);
〈Grammar lexer states 42d 〉 + =

4
42g 42i

5
〈state-x〉f SC PROLOGUE SC BRACED CODE SC EPILOGUE SC PREDICATE

42i C and C++ comments in code.
〈Grammar lexer states 42d 〉 + =

4
42h 43a

5
〈state-x〉f SC COMMENT SC LINE COMMENT
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43a Strings and characters in code.
〈Grammar lexer states 42d 〉 + =

4
42i 43b

5
〈state-x〉f SC STRING SC CHARACTER

43b Bracketed identifiers support.
〈Grammar lexer states 42d 〉 + =

4
43a

〈state-x〉f SC BRACKETED ID SC RETURN BRACKETED ID

43c 〈Grammar lexer C preamble 43c 〉 =
#include <stdint.h>

#include <stdbool.h>

This code is used in section ch4.

43d The code for the generated scanner is highly dependent on the options supplied. Most of the options below
are essential for the scheme adopted in this package to work.
〈Grammar lexer options 43d 〉 =
〈option〉f bison-bridge

〈option〉f noyywrap

〈option〉f nounput

〈option〉f noinput

〈option〉f reentrant

〈option〉f noyy_top_state

〈option〉f debug

〈option〉f stack

〈output to〉f "lo.c"

This code is used in section ch4.

43e Tokenizing with regular expressions

Here is a full list of regular expressions recognized by the bison scanner.
〈Grammar token regular expressions 43e 〉 =
〈Scan grammar white space 43f 〉
〈Scan bison directives 44a 〉
〈Do not support zero characters 47c 〉
〈Scan after an identifier, check whether a colon is next 47d 〉
〈 Scan bracketed identifiers 48b 〉
〈Scan a yacc comment 49c 〉
〈Scan a C comment 49d 〉
〈Scan a line comment 49e 〉
〈Scan a bison string 49f 〉
〈Scan a character literal 50a 〉
〈 Scan a tag 50c 〉
〈Decode escaped characters 50f 〉
〈Scan user-code characters and strings 51a 〉
〈Strings, comments etc. found in user code 51b 〉
〈Scan code in braces 51c 〉
〈Scan prologue 52b 〉
〈Scan the epilogue 52d 〉
〈Add the scanned symbol to the current string 52f 〉

This code is used in section ch4.

43f 〈Scan grammar white space 43f 〉 =
INITIAL SC AFTER IDENTIFIER SC BRACKETED ID SC RETURN BRACKETED ID

++

. comments and white space

, warn〈 stray ‘,’ treated as white space 〉
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[ 〈f〉〈n〉〈t〉〈v〉] ←↩
// .∗ continue
/* \contextstate \YYSTART enter(SC_YACC_COMMENT) continue

. #line directives are not documented, and may be withdrawn or modified in future versions of bison

a #line 〈int〉 ( " .∗")?〈n〉 continue

This code is used in section 43e.

44a For directives that are also command line options, the regex must be "%..." after "[-_]"’s are removed, and
the directive must match the --long option name, with a single string argument. Otherwise, add exceptions
to ../build-aux/cross-options.pl. For most options the scanner returns a pair of pointers as the value.
〈Scan bison directives 44a 〉 =
INITIAL

++

%binary returnp 〈nonassoc〉
%code returnp 〈code〉
%debug 〈 Set 〈debug〉 flag 46a 〉
%default-prec returnp 〈default-prec〉
%define returnp 〈define〉
%defines returnp 〈defines〉
%destructor returnp 〈destructor〉
%dprec returnp 〈dprec〉
%empty returnp 〈empty〉
%error-verbose returnp 〈error-verbose〉
%expect returnp 〈expect〉
%expect-rr returnp 〈expect-rr〉
%file-prefix returnp 〈file-prefix〉
%fixed-output-files returnp 〈yacc〉
%initial-action returnp 〈initial-action〉
%glr-parser returnp 〈glr-parser〉
%language returnp 〈language〉
%left returnp 〈left〉
%lex-param 〈Return lexer parameters 46b 〉
%locations 〈 Set 〈locations〉 flag 46c 〉
%merge returnp 〈merge〉
%name-prefix returnp 〈name-prefix〉
%no-default-prec returnp 〈no-default-prec〉
%no-lines returnp 〈no-lines〉
%nonassoc returnp 〈nonassoc〉
%nondeterministic-parser returnp 〈nondet. parser〉
%nterm returnp 〈nterm〉
%output returnp 〈output〉
%param 〈Return lexer and parser parameters 46d 〉
%parse-param 〈Return parser parameters 46e 〉
%prec returnp 〈prec〉
%precedence returnp 〈precedence〉
%printer returnp 〈printer〉
%pure-parser 〈 Set 〈pure-parser〉 flag 46f 〉
%require returnp 〈require〉
%right returnp 〈right〉
%skeleton returnp 〈skeleton〉
%start returnp 〈start〉
%term returnp 〈token〉
%token returnp 〈token〉
%token-table returnp 〈token-table〉
%type returnp 〈type〉
%union returnp 〈union〉
%verbose returnp 〈verbose〉
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%yacc returnp 〈yacc〉
. deprecated

%default[-_]prec deprecated〈 %default-prec 〉
%error[-_]verbose deprecated〈 %define parse.error verbose 〉
%expect[-_]rr deprecated〈 %expect-rr 〉
%file-prefix〈eqopt〉 deprecated〈 %file-prefix 〉
%fixed[-_]output[-_]files deprecated〈 %fixed-output-files 〉
%name[-_]prefix〈eqopt〉 deprecated〈 %name-prefix 〉
%no[-_]default[-_]prec deprecated〈 %no-default-prec 〉
%no[-_]lines deprecated〈 %no-lines 〉
%output〈eqopt〉 deprecated〈 %output 〉
%pure[-_]parser deprecated〈 %pure-parser 〉
%token[-_]table deprecated〈 %token-table 〉
. semantic predicate

%? [ 〈f〉〈n〉〈t〉〈v〉]∗{ enter(SC_PREDICATE) continue
%〈id〉 | %〈notletter〉 ([〈§〉])+ 〈Possibly complain about a bad directive 46g 〉
= returnp "="m

| returnp "|"m

; returnp ";"m

〈id〉 〈Prepare an identifier 46h 〉
〈int〉 defx next { \yylval { nx

\anint { val \yytext }

{ val \yyfmark }{ val \yysmark } } }next
returnl int

0[xX] [0–9abcdefABCDEF]+ defx next { \yylval { nx
\hexint { val \yytext }

{ val \yyfmark }{ val \yysmark } } }next
returnl int

. identifiers may not start with a digit; yet, don’t silently accept 1foo as 1 foo

〈int〉〈id〉 fatal〈 invalid identifier: val \yytext 〉
. characters

’ enter(SC_ESCAPED_CHARACTER) continue

. strings

" enter(SC_ESCAPED_STRING) continue

. prologue

%{ 〈 Start assembling prologue code 47b 〉
. code in between braces; originally preceded by \STRINGGROW but it is omitted here

{ \lonesting 0R enter(SC_BRACED_CODE) continue

. a type

<*> returnp "<*>"m

<> returnp "<>"m

< \lonesting = 0R enter(SC_TAG) continue
%% 〈 Switch sections 47a 〉
[ let \bracketedidstr = ∅

\bracketedidcontextstate \YYSTART

enter(SC_BRACKETED_ID) continue

〈EOF〉 \yyterminate . 〈EOF〉 in INITIAL /
[[%A–Za–z0–9_<>{}"’*;|=/, 〈f〉〈n〉〈t〉〈v〉]c+ | . 〈Process a bad character 45a 〉

This code is used in section 43e.

45a We present the ‘bad character’ code first, before going into the details of the character matching by the rest
of the lexer.
〈Process a bad character 45a 〉 =

\expandafter let \expandafternext \csname lexspecial[val \yytextpure ]\endcsname
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ifx next ◦
ift [bad char]

fatal〈 invalid character(s): val \yytext 〉
fi

else
\expandafter \lexspecialchar \expandafter {next }{ val \yyfmark }{ val \yysmark }continue

fi

This code is used in section 44a.

46a 〈Set 〈debug〉 flag 46a 〉 =
defx next { \yylval { { parse.trace }{ debug }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈<flag>〉

This code is used in section 44a.

46b 〈Return lexer parameters 46b 〉 =
defx next { \yylval { { lex-param }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈param〉

This code is used in section 44a.

46c 〈Set 〈locations〉 flag 46c 〉 =
defx next { \yylval { { locations }{ }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈<flag>〉

This code is used in section 44a.

46d 〈Return lexer and parser parameters 46d 〉 =
defx next { \yylval { { both-param }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈param〉

This code is used in section 44a.

46e 〈Return parser parameters 46e 〉 =
defx next { \yylval { { parse-param }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈param〉

This code is used in section 44a.

46f 〈Set 〈pure-parser〉 flag 46f 〉 =
defx next { \yylval { { api.pure }{ pure-parser }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈<flag>〉

This code is used in section 44a.

46g 〈Possibly complain about a bad directive 46g 〉 =
ift [bad char]

warn〈 invalid directive: val \yytext 〉
fi

This code is used in section 44a.

46h At this point we save the spelling and the location of the identifier. The token is returned later, after the
context is known.
〈Prepare an identifier 46h 〉 =

defx next { \yylval { { val \yytextpure }{ val \yytext }

{ val \yyfmark }{ val \yysmark } } }next
let \bracketedidstr = ∅
enter(SC_AFTER_IDENTIFIER) continue

This code is used in section 44a.
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47a 〈Switch sections 47a 〉 =
add\percentpercentcount 1R

ifω \percentpercentcount = 2R

enter(SC_EPILOGUE)
fi
returnp 〈%〉

This code is used in section 44a.

47b 〈Start assembling prologue code 47b 〉 =
defx next { \postoks { { val \yyfmark }{ val \yysmark } } }next
enter(SC_PROLOGUE) continue

This code is used in section 44a.

47c Supporting 08 complexifies our implementation for no expected added value.
〈Do not support zero characters 47c 〉 =
SC ESCAPED CHARACTER SC ESCAPED STRING SC TAG

++

08 warn〈 invalid null character 〉
This code is used in section 43e.

47d 〈Scan after an identifier, check whether a colon is next 47d 〉 =
SC AFTER IDENTIFIER

++

[ 〈Process the bracketed part of an identifier 47e 〉
: 〈Process a colon after an identifier 47f 〉
〈EOF〉 〈End the scan with an identifier 48a 〉
. 〈Process a character after an identifier 47g 〉

This code is used in section 43e.

47e 〈Process the bracketed part of an identifier 47e 〉 =
ifx \bracketedidstr∅

\bracketedidcontextstate \YYSTART enter(SC_BRACKETED_ID)
\yybreak continue

else
\ROLLBACKCURRENTTOKEN

enter(SC_RETURN_BRACKETED_ID)
\yybreak { returnl ýidentifierþ }

\yycontinue

This code is used in section 47d.

47f 〈Process a colon after an identifier 47f 〉 =
ifx \bracketedidstr∅

enter(INITIAL)
else

enter(SC_RETURN_BRACKETED_ID)
fi
returnl ýidentifier: þ

This code is used in section 47d.

47g 〈Process a character after an identifier 47g 〉 =
\ROLLBACKCURRENTTOKEN

ifx \bracketedidstr∅
enter(INITIAL)

else
enter(SC_RETURN_BRACKETED_ID)

fi
returnl ýidentifierþ

This code is used in section 47d.
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48a 〈End the scan with an identifier 48a 〉 =
ifx \bracketedidstr∅

enter(INITIAL)
else

enter(SC_RETURN_BRACKETED_ID)
fi
\ROLLBACKCURRENTTOKEN

returnl ýidentifierþ

This code is used in section 47d.

48b 〈Scan bracketed identifiers 48b 〉 = 49a
5

SC BRACKETED ID
++

〈EOF〉 〈Complain about unexpected end of file inside brackets 48f 〉
〈id〉 〈Process bracketed identifier 48c 〉
] 〈Finish processing bracketed identifier 48d 〉
[].A–Za–z0–9_/ 〈f〉〈n〉〈t〉〈v〉]c+ | . 〈Complain about improper identifier characters 48e 〉

See also section 49a.

This code is used in section 43e.

48c 〈Process bracketed identifier 48c 〉 =
ifx \bracketedidstr∅

defx \bracketedidstr { { val \yytextpure }{ val \yytext }

{ val \yyfmark }{ val \yysmark } }

\yybreak continue
else

\yybreak {warn〈 unexpected identifier

in bracketed name: val \yytext } }

\yycontinue

This code is used in section 48b.

48d 〈Finish processing bracketed identifier 48d 〉 =
enterx \bracketedidcontextstate

ifx \bracketedidstr∅
\yybreak {warn〈 an identifier expected 〉 }

else
ifω \bracketedidcontextstate = state(INITIAL) ◦

\expandafter \yylval \expandafter { \bracketedidstr }

let \bracketedidstr = ∅
\yybreak@ { returnl "[identifier]"m }

else
\yybreak@ continue

fi
\yycontinue

This code is used in section 48b.

48e 〈Complain about improper identifier characters 48e 〉 =
fatal〈 invalid character(s) in bracketed name: val \yytext 〉

This code is used in section 48b.

48f 〈Complain about unexpected end of file inside brackets 48f 〉 =
enterx \bracketedidcontextstate

fatal〈 unexpected end of file inside brackets 〉
This code is used in section 48b.
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49a 〈Scan bracketed identifiers 48b 〉 + =
4

48b

SC RETURN BRACKETED ID
++

. 〈Return a bracketed identifier 49b 〉

49b 〈Return a bracketed identifier 49b 〉 =
\ROLLBACKCURRENTTOKEN

\expandafter \yylval \expandafter { \bracketedidstr }

let \bracketedidstr = ∅
enter(INITIAL)
returnl "[identifier]"m

This code is used in section 49a.

49c Scanning a yacc comment. The initial /* is already eaten.
〈Scan a yacc comment 49c 〉 =
SC YACC COMMENT

++

〈EOF〉 fatal〈 unexpected end of file in a comment 〉
*/ enterx \contextstate continue
. | 〈n〉 continue

This code is used in section 43e.

49d Scanning a C comment. The initial /* is already eaten.
〈Scan a C comment 49d 〉 =
SC COMMENT

++

〈EOF〉 fatal〈 unexpected end of file in a comment 〉
*〈splice〉/ \STRINGGROW enterx \contextstate continue

This code is used in section 43e.

49e Scanning a line comment. The initial // is already eaten.
〈Scan a line comment 49e 〉 =
SC LINE COMMENT

++

〈EOF〉 enterx \contextstate \ROLLBACKCURRENTTOKEN

continue

〈n〉 \STRINGGROW enterx \contextstate continue
〈splice〉 \STRINGGROW continue

This code is used in section 43e.

49f Scanning a bison string, including its escapes. The initial quote is already eaten.
〈Scan a bison string 49f 〉 =
SC ESCAPED STRING

++

〈EOF〉 fatal〈 unexpected end of file in a string 〉
" 〈Finish a bison string 49g 〉
〈n〉 fatal〈 unexpected end of line in a string 〉

This code is used in section 43e.

49g 〈Finish a bison string 49g 〉 =
\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \laststringraw }

{ val \yyfmark }{ val \yysmark } } }next
enter(INITIAL)
returnl ýstringþ

This code is used in section 49f.
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50a Scanning a bison character literal, decoding its escapes. The initial quote is already eaten.
〈Scan a character literal 50a 〉 =
SC ESCAPED CHARACTER

++

〈EOF〉 fatal〈 unexpected end of file in a literal 〉
’ 〈Return an escaped character 50b 〉
〈n〉 fatal〈 unexpected end of line in a literal 〉

This code is used in section 43e.

50b 〈Return an escaped character 50b 〉 =
\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \laststringraw }

{ val \yyfmark }{ val \yysmark } } }next
\STRINGFREE

enter(INITIAL)
returnl char

This code is used in section 50a.

50c Scanning a tag. The initial angle bracket is already eaten.
〈Scan a tag 50c 〉 =
SC TAG

++

> 〈Finish a tag 50d 〉
([<>]c | ->)+ \STRINGGROW continue
< 〈Raise nesting level 50e 〉
〈EOF〉 fatal〈 unexpected end of file in a literal 〉

This code is used in section 43e.

50d 〈Finish a tag 50d 〉 =
add\lonesting −1R

ifω \lonesting < 0R

\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \laststringraw }

{ val \yyfmark }{ val \yysmark } } }next
\STRINGFREE

enter(INITIAL)
\yybreak { returnl <tag> }

else
\STRINGGROW \yybreak continue

\yycontinue

This code is used in section 50c.

50e This is a slightly different rule from the original scanner. We do not perform yyleng computations, so it
makes sense to raise the nesting level one by one.
〈Raise nesting level 50e 〉 =

\STRINGGROW

add\lonesting 1R

continue

This code is used in section 50c.

50f 〈Decode escaped characters 50f 〉 =
SC ESCAPED STRING SC ESCAPED CHARACTER

++

\ [0–7]{1,3} \STRINGGROW continue
\x [0–9abcdefABCDEF]+ \STRINGGROW continue
\a \STRINGGROW continue
\b \STRINGGROW continue
\f \STRINGGROW continue
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\n \STRINGGROW continue
\r \STRINGGROW continue
\t \STRINGGROW continue
\v \STRINGGROW continue
\(" | ’ | ? | \) . \["’?\] is shorter but confuses xgettext /

\STRINGGROW continue

\(u | U [0–9abcdefABCDEF]{4}) [0–9abcdefABCDEF]{4} \STRINGGROW continue
\(. | 〈n〉) fatal〈 invalid character after \: val \yytext 〉

This code is used in section 43e.

51a 〈Scan user-code characters and strings 51a 〉 =
SC CHARACTER SC STRING

++

〈splice〉 | \〈splice〉[〈n〉[]]c \STRINGGROW continue

SC CHARACTER
++

’ \STRINGGROW enterx \contextstate continue
〈n〉 fatal〈 unexpected end of line instead of a character 〉
〈EOF〉 fatal〈 unexpected end of file instead of a character 〉

SC STRING
++

" \STRINGGROW enterx \contextstate continue
〈n〉 fatal〈 unexpected end of line instead of a character 〉
〈EOF〉 fatal〈 unexpected end of file instead of a character 〉

This code is used in section 43e.

51b 〈Strings, comments etc. found in user code 51b 〉 =
SC BRACED CODE SC PROLOGUE SC EPILOGUE SC PREDICATE

++

’ \STRINGGROW \contextstate \YYSTART enter(SC_CHARACTER) continue
" \STRINGGROW \contextstate \YYSTART enter(SC_STRING) continue
/〈splice〉* \STRINGGROW \contextstate \YYSTART enter(SC_COMMENT) continue
/〈splice〉/ \STRINGGROW \contextstate \YYSTART enter(SC_LINE_COMMENT) continue

This code is used in section 43e.

51c Scanning some code in braces (actions, predicates). The initial { is already eaten.
〈Scan code in braces 51c 〉 =
SC BRACED CODE SC PREDICATE

++

{ | <〈splice〉% \STRINGGROW add\lonesting 1R continue
%〈splice〉> \STRINGGROW add\lonesting −1R continue
<〈splice〉< . Tokenize <<% correctly (as << %) rather than incorrectly (as < <%). /

\STRINGGROW continue

〈EOF〉 fatal〈 unexpected end of line inside braced code 〉

SC BRACED CODE
++

} 〈Add closing brace to the braced code 51d 〉

SC PREDICATE
++

} 〈Add closing brace to a predicate 52a 〉
This code is used in section 43e.

51d Unlike the original lexer, we do not return the closing brace as part of the braced code.
〈Add closing brace to the braced code 51d 〉 =

add\lonesting −1R

ifω \lonesting < 0R

\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \yyfmark }{ val \yysmark } } }next
enter(INITIAL)
\yybreak { returnl "{...}"m }
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else
\STRINGGROW

\yybreak continue
\yycontinue

This code is used in section 51c.

52a 〈Add closing brace to a predicate 52a 〉 =
add\lonesting −1R

ifω \lonesting < 0R

\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \yyfmark }{ val \yysmark } } }next
enter(INITIAL)
\yybreak { returnl "%?{...}"m }

else
\STRINGGROW

\yybreak continue
\yycontinue

This code is used in section 51c.

52b Scanning some prologue: from %{ (already scanned) to %}.
〈Scan prologue 52b 〉 =
SC PROLOGUE

++

%} 〈Finish braced code 52c 〉
〈EOF〉 fatal〈 unexpected end of file inside prologue 〉

This code is used in section 43e.

52c 〈Finish braced code 52c 〉 =
\STRINGFINISH

defx next { \yylval { { val \laststring }val \postoks { val \yyfmark }{ val \yysmark } } }next
enter(INITIAL)
returnl "%{...%}"m

This code is used in section 52b.

52d Scanning the epilogue (everything after the second 〈%〉, which has already been eaten).
〈Scan the epilogue 52d 〉 =
SC EPILOGUE

++

〈EOF〉 〈Handle end of file in the epilogue 52e 〉
This code is used in section 43e.

52e 〈Handle end of file in the epilogue 52e 〉 =
\ROLLBACKCURRENTTOKEN

\STRINGFINISH

\yylval = \laststring

enter(INITIAL)
returnl epilogue

This code is used in section 52d.

52f By default, grow the string obstack with the input.
〈Add the scanned symbol to the current string 52f 〉 =
SC COMMENT SC LINE COMMENT SC BRACED CODE SC PREDICATE SC PROLOGUE SC EPILOGUE SC STRING SC CHARACTER

SC ESCAPED STRING SC ESCAPED CHARACTER
+

. ←↩

SC COMMENT SC LINE COMMENT SC BRACED CODE SC PREDICATE SC PROLOGUE SC EPILOGUE
+

〈n〉 \STRINGGROW continue

This code is used in section 43e.



5
The flex parser stack

The scanner generator, flex, uses bison to produce a parser for its input language. Its lexer is output by
flex itself so both are reused to generate the parser and the scanner for pretty printing flex input.

This task is made somewhat complicated by the dependence of the flex input scanner on the correctly
placed whitespace 1), as well as the reliance of the said scanner on rather involved state switching. Therefore,
making subparsers for different fragments of flex input involves not only choosing an appropriate subset of
grammar rules to correctly process the grammatic constructs but also setting up the correct lexer states.

The first subparser is designed to process a complete flex file. This parser is not currently part of any
parser stack and is only used for testing. This is the only parser that does not rely on any custom adjustments
to the lexer state to operate correctly.
〈 fip.yy ch5 〉 =
···············································
〈Preamble for the flex parser 55c 〉
···············································
〈Options for flex parser 53a 〉
〈union〉
···············································
〈Postamble for flex parser 63e 〉
···············································
〈Token definitions for flex input parser 54d 〉

〈Productions for flex parser 55d 〉

53a The selection of options for bison parsers suitable for SPLinT has been discussed earlier so we list them here
without further comments.
〈Options for flex parser 53a 〉 =
〈token table〉 ?
〈parse.trace〉 ? (set as 〈debug〉)
〈start〉 goal

This code is used in sections ch5, 54a, 54b, and 54c.

1) For example, each regular expression definition in section 1 must start at the beginning of the line.


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54a A parser for section 1 (definitions and declarations). This parser requires a custom lexer, as discussed above,
to properly set up the state. Short of this, the lexer may produce the wrong kind of tokens or even generate
an error.
〈 ddp.yy 54a 〉 =
···············································
〈Preamble for the flex parser 55c 〉
···············································
〈Options for flex parser 53a 〉
〈union〉
···············································
〈Postamble for flex parser 63e 〉
···············································
〈Token definitions for flex input parser 54d 〉

〈Exclusive productions for flex section 1 parser 56c 〉
〈Productions for flex section 1 parser 56e 〉

54b A parser for section 2 (rules and actions). This subparser must also use a custom set up for its lexer as
discussed above.
〈 rap.yy 54b 〉 =
···············································
〈Preamble for the flex parser 55c 〉
···············································
〈Options for flex parser 53a 〉
〈union〉
···············································
〈Postamble for flex parser 63e 〉
···············································
〈Token definitions for flex input parser 54d 〉

〈 Special flex section 2 parser productions 57p 〉
〈Productions for flex section 2 parser 57r 〉

54c A parser for just the regular expression syntax. A custom lexer initialization must precede the use of this
parser, as well.
〈 rep.yy 54c 〉 =
···············································
〈Preamble for the flex parser 55c 〉
···············································
〈Options for flex parser 53a 〉
〈union〉
···············································
〈Postamble for flex parser 63e 〉
···············································
〈Token definitions for flex input parser 54d 〉

〈 Special productions for regular expressions 59i 〉
〈Rules for flex regular expressions 59k 〉

54d Token and state declarations for the flex input scanner

Needless to say, the original grammar used by flex was not designed with pretty printing in mind (and
why would it be?). Instead, efficiency was the goal which resulted in a number of lexical constructs being
processed ‘on the fly’, as the lexer encounters them. Such syntax fragments never reach the parser, and
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would not have a chance to be displayed by our routines, unless some grammar extensions and alterations
were introduced.

To make the pretty printing possible, a number of new tokens have been introduced below that are later
used in a few altered or entirely new grammar productions.
〈Token definitions for flex input parser 54d 〉 = 55a

5
char num SECTEND 〈state〉
〈xtate〉 ýnameþ PREVCCL 〈EOF〉
〈option〉 〈outfile〉 〈prefix〉 〈yyclass〉
〈header〉 〈extra type〉 〈tables〉 〈αn〉
〈αβ〉 〈 〉 〈7→〉 〈0..9〉
〈§〉 〈a..z〉 〈2〉 〈.〉
〈 〉 〈A..Z〉 〈0..Z〉 〈¬αn〉
〈¬αβ〉 〈¬ 〉 〈¬ 7→〉 〈¬0..9〉
〈¬§〉 〈¬a..z〉 〈¬2〉 〈¬.〉
〈¬ 〉 〈¬A..Z〉 〈¬0..Z〉

〈left〉 \ ∪
See also sections 55a and 55b.

This code is used in sections ch5, 54a, 54b, and 54c.

55a We introduce an additional option type to capture all the non-parametric options used by the flex lexer.
The original lexer processes these options at the point of recognition, while the typesetting parser needs to
be aware of them.
〈Token definitions for flex input parser 54d 〉 + =

4
54d 55b

5
〈top〉 〈pointer*〉 〈array〉 〈def〉
〈defre〉 〈other〉 〈deprecated〉

55b POSIX and AT&T lex place the precedence of the repeat operator, {}, below that of concatenation. Thus,
ab{3} is ababab. Most other POSIX utilities use an Extended Regular Expression (ERE) precedence that
has the repeat operator higher than concatenation. This causes ab{3} to yield abbb.

In order to support the POSIX and AT&T precedence and the flex precedence we define two token sets for
the begin and end tokens of the repeat operator, {p and }p. The lexical scanner chooses which tokens to
return based on whether posix compat or lex compat are specified. Specifying either posix compat or
lex compat will cause flex to parse scanner files as per the AT&T and POSIX-mandated behavior.
〈Token definitions for flex input parser 54d 〉 + =

4
55a

{p }p {f }f

55c The grammar for flex input

The original grammar has been carefully split into sections to facilitate the assembly of various subparsers
in the flex’s stack. Neither the flex parser nor its scanner are part of the bootstrap procedure which
simplifies both the input file organization, as well as the macro design. Some amount of preprocessing is still
necessary, however, to extract the state names from the lexer file (see above for the explanation). We can
nevertheless get away with an empty C preamble.
〈Preamble for the flex parser 55c 〉 =
This code is used in sections ch5, 54a, 54b, and 54c.

55d 〈Productions for flex parser 55d 〉 = 56b
5

goal : initlex sect1 sect1end sect2 initforrule 〈Assemble a flex input file 56a 〉
sect1end : SECTEND 〈Copy the value 63b 〉
initlex : ◦

See also section 56b.

This code is used in section ch5.
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56a 〈Assemble a flex input file 56a 〉 =
\finishlist { val Υ4 }

Υ← 〈val Υ2
nx

\executelist { val Υ4 }〉
This code is used in section 55d.

56b 〈Productions for flex parser 55d 〉 + =
4

55d

〈Productions for flex section 1 parser 56e 〉
〈Productions for flex section 2 parser 57r 〉

56c 〈Exclusive productions for flex section 1 parser 56c 〉 =
goal : sect1 〈Assemble a flex section 1 file 56d 〉

This code is used in section 54a.

56d 〈Assemble a flex section 1 file 56d 〉 =
Ω\expandafter { val Υ1 }

This code is used in section 56c.

56e 〈Productions for flex section 1 parser 56e 〉 = 56o
5

sect1 :
sect1 startconddecl namelist1 〈Add start condition declarations 56f 〉
sect1 options 〈Add options to section 1 56g 〉
◦ 〈Create an empty section 1 56h 〉
error 〈Report an error in section 1 and quit 56i 〉

startconddecl :
〈state〉 〈Prepare a state declaration 56j 〉
〈xtate〉 〈Prepare an exclusive state declaration 56k 〉

namelist1 :
namelist1 ýnameþ 〈Add a name to a list 56l 〉
ýnameþ 〈 Start a namelist1 with a name 56m 〉
error 〈Report an error in namelist1 and quit 56n 〉

See also section 56o.

This code is used in sections 54a and 56b.

56f 〈Add start condition declarations 56f 〉 =
Υ← 〈val Υ1

nx
\flscondecl val Υ2{ val Υ3 }〉

This code is used in section 56e.

56g 〈Add options to section 1 56g 〉 =
Υ← 〈val Υ1val Υ2〉

This code is used in section 56e.

56h 〈Create an empty section 1 56h 〉 =
Υ← 〈〉

This code is used in section 56e.

56i 〈Report an error in section 1 and quit 56i 〉 =
\yyerror

This code is used in section 56e.

56j 〈Prepare a state declaration 56j 〉 =
Υ← 〈{ s }val Υ1〉

This code is used in section 56e.

56k 〈Prepare an exclusive state declaration 56k 〉 =
Υ← 〈{ x }val Υ1〉

This code is used in section 56e.

56l 〈Add a name to a list 56l 〉 =
Υ← 〈val Υ1

nx
\flnamesep { }{ }nx

\flname val Υ2〉
This code is used in section 56e.

56m 〈Start a namelist1 with a name 56m 〉 =
Υ← 〈nx

\flname val Υ1〉
This code is used in section 56e.

56n 〈Report an error in namelist1 and quit 56n 〉 =
\yyerror

This code is used in section 56e.

56o 〈Productions for flex section 1 parser 56e 〉 + =
4

56e

options :
〈option〉 optionlist 〈Start an options list 57a 〉
〈pointer*〉 〈Add a pointer option 57b 〉
〈array〉 〈Add an array option 57c 〉
〈top〉 \n 〈Add a 〈top〉 directive 57d 〉
〈def〉 〈defre〉 〈Add a regular expression definition 57e 〉
〈deprecated〉 〈Output a deprecated option 57o 〉
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optionlist : optionlist option | ◦ . . . | 〈Make an empty option list 57g 〉
option :
〈outfile〉 = ýnameþ 〈Record the name of the output file 57h 〉
〈extra type〉 = ýnameþ 〈Declare an extra type 57i 〉
〈prefix〉 = ýnameþ 〈Declare a prefix 57j 〉
〈yyclass〉 = ýnameþ 〈Declare a class 57k 〉
〈header〉 = ýnameþ 〈Declare the name of a header 57l 〉
〈tables〉 = ýnameþ 〈Declare the name for the tables 57m 〉
〈other〉 〈Output a non-parametric option 57n 〉

57a 〈Start an options list 57a 〉 =
Υ← 〈nx

\floptions { val Υ2 }〉
This code is used in section 56o.

57b 〈Add a pointer option 57b 〉 =
Υ← 〈nx

\flptropt val Υ1〉
This code is used in section 56o.

57c 〈Add an array option 57c 〉 =
Υ← 〈nx

\flarrayopt val Υ1〉
This code is used in section 56o.

57d 〈Add a 〈top〉 directive 57d 〉 =
Υ← 〈nx

\fltopopt val Υ1val Υ2〉
This code is used in section 56o.

57e 〈Add a regular expression definition 57e 〉 =
Υ← 〈nx

\flredef val Υ1val Υ2〉
This code is used in section 56o.

57f 〈Add an option to a list 57f 〉 =
Υ← 〈val Υ1val Υ2〉

This code is used in section 56o.

57g 〈Make an empty option list 57g 〉 =
Υ← 〈〉

This code is used in section 56o.

57h 〈Record the name of the output file 57h 〉 =
Υ← 〈nx

\flopt { file }val Υ3〉
This code is used in section 56o.

57i 〈Declare an extra type 57i 〉 =
Υ← 〈nx

\flopt { xtype }val Υ3〉
This code is used in section 56o.

57j 〈Declare a prefix 57j 〉 =
Υ← 〈nx

\flopt { prefix }val Υ3〉
This code is used in section 56o.

57k 〈Declare a class 57k 〉 =
Υ← 〈nx

\flopt { yyclass }val Υ3〉
This code is used in section 56o.

57l 〈Declare the name of a header 57l 〉 =
Υ← 〈nx

\flopt { header }val Υ3〉
This code is used in section 56o.

57m 〈Declare the name for the tables 57m 〉 =
Υ← 〈nx

\flopt { tables }val Υ3〉
This code is used in section 56o.

57n 〈Output a non-parametric option 57n 〉 =
Υ← 〈nx

\flopt { other }val Υ1〉
This code is used in section 56o.

57o 〈Output a deprecated option 57o 〉 =
Υ← 〈nx

\flopt { deprecated }val Υ1〉
This code is used in section 56o.

57p 〈Special flex section 2 parser productions 57p 〉 =
goal : sect2 〈Output section 2 57q 〉

This code is used in section 54b.

57q 〈Output section 2 57q 〉 =
\finishlist { val Υ1 }

Ω\expandafter { \expandafter \executelist \expandafter { val Υ1 } }

This code is used in section 57p.

57r This portion of the grammar was changed to make it possible to read the action code.
〈Productions for flex section 2 parser 57r 〉 = 58e

5
sect2 :

sect2 scon initforrule flexrule \n \n 〈Add a rule to section 2 58a 〉
sect2 scon { sect2 } 〈Add a group of rules to section 2 58b 〉
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◦ 〈 Start an empty section 2 58c 〉
sect2 \n 〈Add a bare action 58d 〉

initforrule : ◦ \flin@ruletrue continue

See also sections 58e and 59h.

This code is used in sections 54b and 56b.

58a The production below describes the most typical way a regular expression is assigned an action. The
redundant term initforrule is a standard bison trick to make sure that the appropriate initializations happen
at the right time.
sect2 : sect2 scon initforrule flexrule \n \n 〈Add a rule to section 2 58a 〉

The original production has been modified so that the pretty printing parser has a chance to consume the
action code. The second \n is output by the action processing code.
〈Add a rule to section 2 58a 〉 =

\ifflcontinued@action

vb← 〈 \flactionc 〉
else

vb← 〈 \flaction 〉
fi
va\expandafter { \astformat@flaction } . capture the formatting action /
Υ← 〈val Υ1〉
\appendtolistx { val Υ1 }{ val vb← 〈 val Υ2 〉{ val Υ4 }val Υ5val Υ6{ val va } }

let \astformat@flaction∅ . reset the format /

This code is used in section 57r.

58b For convenience, rules that are active in the same set of states may be grouped together. This pattern is the
subject of the next production.
sect2 : sect2 scon { sect2 } 〈Add a group of rules to section 2 58b 〉

The original parser ignores the braces while the pretty printing parser uses the pointers associated with the
braces to collect and process the accumulated stash. This is how comments and CWEB section references are
typeset.
〈Add a group of rules to section 2 58b 〉 =

Υ← 〈val Υ1〉
\finishlist { val Υ4 }

\appendtolistx { val Υ1 }{
nx

\flactiongroup { val Υ2 }val Υ3{
nx

\executelist { val Υ4 } }val Υ5 }

This code is used in section 57r.

58c Simple left recursive terms like sect2 are very suitable for being implemented as a list (see the macros in
yycommon.sty for the details on the list implementation). The ‘type’ of sect2 is a (symbolic pointer to a)
list of items built up from an empty initial list. This production initializes the list (with the name identical
to the terminal on the left hand side of the production) and updates the list name (rather the name’s prefix)
for future invocations of this action.
〈Start an empty section 2 58c 〉 =

\initlist { \secttwoprefix sect2 }

Υ← 〈\secttwoprefix sect2〉
defx \secttwoprefix { \secttwoprefix . }

This code is used in section 57r.

58d 〈Add a bare action 58d 〉 =
Υ← 〈val Υ1〉
\appendtolistx { val Υ1 }{

nx
\flbareaction val Υ2 }

This code is used in section 57r.

58e 〈Productions for flex section 2 parser 57r 〉 + =
4
57r 59h

5
scon stk ptr : ◦



212
223 SPLINT THE GRAMMAR FOR FLEX INPUT 

scon :
< scon stk ptr namelist2 > 〈Create a list of start conditions 59a 〉
< * > 〈Create a universal start condition 59b 〉
◦ 〈Create an empty start condition 59c 〉

namelist2 :
namelist2 , sconname 〈Add a start condition to a list 59d 〉
sconname 〈Start a list with a start condition name 59e 〉
error 〈Report an error in a start condition list 59f 〉

sconname : ýnameþ 〈Make a ýnameþ into a start condition 59g 〉

59a Start conditions are just names. The data structure that is output has location pointers for the streams to
enable interaction with CWEB. These pointers are in turn the values of the angle bracket tokens that enclose
the list of start conditions.

Start condition lists may be collected in their own sections, while the list itself may be followed by a
comment. The pointers mentioned above are used to typeset the comments and section references.
〈Create a list of start conditions 59a 〉 =

Υ← 〈nx
\flsconlist { val Υ1 }{ val Υ3 }{ val Υ4 }〉

This code is used in section 58e.

59b 〈Create a universal start condition 59b 〉 =
Υ← 〈nx

\flsconuniv val Υ3〉
This code is used in section 58e.

59c 〈Create an empty start condition 59c 〉 =
Υ← 〈〉

This code is used in section 58e.

59d 〈Add a start condition to a list 59d 〉 =
Υ← 〈val Υ1

nx
\flnamesep val Υ2val Υ3〉

This code is used in section 58e.

59e 〈Start a list with a start condition name 59e 〉 =
〈Copy the value 63b 〉

This code is used in section 58e.

59f 〈Report an error in a start condition list 59f 〉 =
\yyerror

This code is used in section 58e.

59g 〈Make a ýnameþ into a start condition 59g 〉 =
Υ← 〈nx

\flname val Υ1〉
This code is used in section 58e.

59h The syntax of regular expressions

The productions in this section define the syntax of flex regular expressions in detail. The same productions
are used for parsing isolated regular expressions (e.g. to present example code). A few of these productions
have been modified to suit the needs of the pretty printing parser.
〈Productions for flex section 2 parser 57r 〉 + =

4
58e

〈Rules for flex regular expressions 59k 〉

59i 〈Special productions for regular expressions 59i 〉 =
goal : flexrule 〈Output a regular expression 59j 〉

This code is used in section 54c.

59j The parsed regular expression is output in the \table register. It is important to ensure that whenever this
parser is used inside another parser that uses \table for output, the changes to this register stay local. The
\frexproc macro in yyunion.sty ensures that all the changes are local to the parsing macro.
〈Output a regular expression 59j 〉 =

ΩΥ1

This code is used in section 59i.

59k Regular expressions are parsed using the following productions. There are two major cases: rules active only
at the beginning of the line, and the rest. From the typesetting parser’s point of view, there is not much
difference between the two (certainly not enough to justify singling out the rules at the beginning of the line
into their own production) but it was decided to keep the original grammar rules for consistency.
〈Rules for flex regular expressions 59k 〉 = 60e

5
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exrule :
^ rule 〈Match a rule at the start of the line 60a 〉
rule 〈Match an ordinary rule 60c 〉
〈EOF〉 〈Match an end of file 60b 〉
error 〈Report an error and quit 60d 〉

See also sections 60e, 61a, 61g, 62h, and 63a.

This code is used in sections 54c and 59h.

60a 〈Match a rule at the start of the line 60a 〉 =
va\expandafter { \astformat@flrule }

let \astformat@flrule∅
Υ← 〈nx

\flbolrule { val Υ2 }{ val va }〉
This code is used in section 59k.

60b 〈Match an end of file 60b 〉 =
Υ← 〈nx

\fleof val Υ1〉
This code is used in section 59k.

60c 〈Match an ordinary rule 60c 〉 =
va\expandafter { \astformat@flrule }

let \astformat@flrule∅
Υ← 〈nx

\flrule { val Υ1 }{ val va }〉
This code is used in section 59k.

60d 〈Report an error and quit 60d 〉 =
\yyerror

This code is used in section 59k.

60e Another broad overview of regular expression types before diving into the details of various operations. Note
that the only trailing context that SPLinT output lexer can process is the end of line ($) due to the way the
scanner routine is written. It does not affect its ability to pretty print the appropriate rules (for a lexer that
is produced by flex itself, for example).
〈Rules for flex regular expressions 59k 〉 + =

4
59k 61a

5
rule :

re2 re 〈Match a regular expression with a trailing context 60f 〉
re2 re $ 〈Disallow a repeated trailing context 60g 〉
re $ 〈Match a regular expression at the end of the line 60h 〉
re 〈Match an ordinary regular expression 60i 〉

re :
re | series 〈Match a sequence of alternatives 60j 〉
series 〈Match a sequence of singletons 60k 〉

re2 : re / 〈Prepare to match a trailing context 60l 〉

60f 〈Match a regular expression with a trailing
context 60f 〉 =

π2(Υ1) 7→ vaπ3(Υ1) 7→ vb

Υ← 〈nx
\flretrail { val va }{ val vb }{ val Υ2 }〉

This code is used in section 60e.

60g 〈Disallow a repeated trailing context 60g 〉 =
\yyerror

This code is used in section 60e.

60h 〈Match a regular expression at the end of the
line 60h 〉 =

Υ← 〈nx
\flreateol { val Υ1 }val Υ2〉

This code is used in section 60e.

60i 〈Match an ordinary regular expression 60i 〉 =
〈Copy the value 63b 〉

This code is used in section 60e.

60j 〈Match a sequence of alternatives 60j 〉 =
Υ← 〈val Υ1

nx
\flor val Υ2val Υ3〉

This code is used in section 60e.

60k 〈Match a sequence of singletons 60k 〉 =
〈Copy the value 63b 〉

This code is used in section 60e.

60l 〈Prepare to match a trailing context 60l 〉 =
Υ← 〈nx

\fltrail { val Υ1 }{ val Υ2 }〉
This code is used in section 60e.
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61a Atoms

Every regular expression is assembled of atomic subexpressions, each of which may be modified by an
repetition operator that establishes how many times a given pattern can repeat to stay part of the original
atom. New atomic expressions (or singletons as they are called below) can be formed the usual way, by
enclosing a regular expression in parentheses.

As explained above, braced repetition operators may have different binding strengths, depending on the
options supplied to flex. The pretty printing in both cases is identical as only the application scopes of the
operator differ, and not its meaning.
〈Rules for flex regular expressions 59k 〉 + =

4
60e 61g

5
series :

series singleton 〈Extend a series by a singleton 61b 〉
singleton 〈Match a singleton 61c 〉
series {p num , num }p 〈Match a series of specific length 61d 〉
series {p num , }p 〈Match a series of minimal length 61e 〉
series {p num }p 〈Match a series of exact length 61f 〉

61b 〈Extend a series by a singleton 61b 〉 =
Υ← 〈val Υ1val Υ2〉

This code is used in section 61a.

61c 〈Match a singleton 61c 〉 =
〈Copy the value 63b 〉

This code is used in section 61a.

61d 〈Match a series of specific length 61d 〉 =
〈Create a series of specific length 61k 〉

This code is used in section 61a.

61e 〈Match a series of minimal length 61e 〉 =
〈Create a series of minimal length 61l 〉

This code is used in section 61a.

61f 〈Match a series of exact length 61f 〉 =
〈Create a series of exact length 62a 〉

This code is used in section 61a.

61g 〈Rules for flex regular expressions 59k 〉 + =
4
61a 62h

5
singleton :

singleton * 〈Create a lazy series match 61h 〉
singleton + 〈Create a nonempty series match 61i 〉
singleton ? 〈Create a possible single match 61j 〉
singleton {f num , num }f 〈Create a series of specific length 61k 〉
singleton {f num , }f 〈Create a series of minimal length 61l 〉
singleton {f num }f 〈Create a series of exact length 62a 〉
. 〈Match (almost) any character 62b 〉
fullccl 〈Match a character class 62c 〉
PREVCCL 〈Match a PREVCCL 62d 〉
" string " 〈Match a string 62e 〉
( re ) 〈Match an atom 62f 〉
char 〈Match a specific character 62g 〉

61h 〈Create a lazy series match 61h 〉 =
Υ← 〈nx

\flrepeat { val Υ1 }〉
This code is used in section 61g.

61i 〈Create a nonempty series match 61i 〉 =
Υ← 〈nx

\flrepeatstrict { val Υ1 }〉
This code is used in section 61g.

61j 〈Create a possible single match 61j 〉 =
Υ← 〈nx

\flrepeatonce { val Υ1 }〉
This code is used in section 61g.

61k 〈Create a series of specific length 61k 〉 =
Υ← 〈nx

\flrepeatnm { val Υ1 }{ val Υ3 }{ val Υ5 }〉
This code is used in sections 61d and 61g.

61l 〈Create a series of minimal length 61l 〉 =
Υ← 〈nx

\flrepeatgen { val Υ1 }{ val Υ3 }〉
This code is used in sections 61e and 61g.
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62a 〈Create a series of exact length 62a 〉 =
Υ← 〈nx

\flrepeatn { val Υ1 }{ val Υ3 }〉
This code is used in sections 61f and 61g.

62b 〈Match (almost) any character 62b 〉 =
Υ← 〈nx

\fldot val Υ1〉
This code is used in section 61g.

62c 〈Match a character class 62c 〉 =
〈Copy the value 63b 〉

This code is used in section 61g.

62d 〈Match a PREVCCL 62d 〉 =
〈Copy the value 63b 〉

This code is used in section 61g.

62e 〈Match a string 62e 〉 =
Υ← 〈nx

\flstring { val Υ1 }{ val Υ2 }{ val Υ3 }〉
This code is used in section 61g.

62f 〈Match an atom 62f 〉 =
va\expandafter { \astformat@flparens }

let \astformat@flparens∅
Υ← 〈nx

\flparens { val Υ1 }{ val Υ2 }{ val Υ3 }{ val va }〉
This code is used in section 61g.

62g 〈Match a specific character 62g 〉 =
Υ← 〈nx

\flchar val Υ1〉
This code is used in section 61g.

62h Characters

Several facilities are available to specify sets of characters, including built-in characters classes such as
whitespace, printable characters, alphanumerics, etc. Some simple boolean operaions are also supported to
make specifying character classes more efficient.
〈Rules for flex regular expressions 59k 〉 + =

4
61g 63a

5
fullccl :

fullccl \ braceccl 〈 Subtract a character class 62i 〉
fullccl ∪ braceccl 〈Create a union of character classes 62j 〉
braceccl 〈Turn a basic character class into a character class 62k 〉

braceccl :
[ ccl ] 〈Create a character class 62l 〉
[ ^ ccl ] 〈Complement a character class 62m 〉

ccl :
ccl char – char 〈Add a range to a character class 62n 〉
ccl char 〈Add a character to a character class 62o 〉
ccl ccl expr 〈Add an expression to a character class 62p 〉
◦ 〈Create an empty character class 62q 〉

62i 〈Subtract a character class 62i 〉 =
Υ← 〈nx

\flccldiff { val Υ1 }{ val Υ3 }〉
This code is used in section 62h.

62j 〈Create a union of character classes 62j 〉 =
Υ← 〈nx

\flcclunion { val Υ1 }{ val Υ3 }〉
This code is used in section 62h.

62k 〈Turn a basic character class into a character
class 62k 〉 =

〈Copy the value 63b 〉
This code is used in section 62h.

62l 〈Create a character class 62l 〉 =
Υ← 〈nx

\flbraceccl { val Υ1 }{ val Υ2 }{ val Υ3 }〉
This code is used in section 62h.

62m 〈Complement a character class 62m 〉 =
Υ← 〈nx

\flbracecclneg

{ val Υ1 }{ val Υ3 }{ val Υ4 }〉

This code is used in section 62h.

62n 〈Add a range to a character class 62n 〉 =
Υ← 〈val Υ1

nx
\flcclrnge

{ nx
\flchar val Υ2 }{

nx
\flchar val Υ4 }〉

This code is used in section 62h.

62o 〈Add a character to a character class 62o 〉 =
Υ← 〈val Υ1

nx
\flchar val Υ2〉

This code is used in section 62h.

62p 〈Add an expression to a character class 62p 〉 =
Υ← 〈val Υ1

nx
\flcclexpr val Υ2〉

This code is used in section 62h.

62q 〈Create an empty character class 62q 〉 =
Υ← 〈〉

This code is used in section 62h.
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63a Special character classes

Various character classes are predefined in flex. These include alphabetic and alphanumeric characters,
digits, blank characters, upper and lower case characters, etc.
〈Rules for flex regular expressions 59k 〉 + =

4
62h

ccl expr :
〈αn〉 | 〈αβ〉 | 〈 〉 | 〈7→〉 | 〈0..9〉 | 〈§〉 . . . | 〈Copy the value 63b 〉
〈a..z〉 | 〈2〉 | 〈.〉 | 〈 〉 | 〈0..Z〉 | 〈A..Z〉 . . . | 〈Copy the value 63b 〉
〈¬αn〉 | 〈¬αβ〉 | 〈¬ 〉 | 〈¬ 7→〉 | 〈¬0..9〉 | 〈¬§〉 . . . | 〈Copy the value 63b 〉
〈¬2〉 | 〈¬.〉 | 〈¬ 〉 | 〈¬0..Z〉 | 〈¬a..z〉 | 〈¬A..Z〉 . . . | 〈Copy the value 63b 〉

string : string char | ◦ . . . | 〈Make an empty regular expression string 63d 〉

63b 〈Copy the value 63b 〉 =
Υ← 〈val Υ1〉

This code is used in sections 55d, 59e, 60i, 60k, 61c, 62c, 62d, 62k, and 63a.

63c 〈Extend a flex string by a character 63c 〉 =
Υ← 〈val Υ1

nx
\flchar val Υ2〉

This code is used in section 63a.

63d 〈Make an empty regular expression string 63d 〉 =
Υ← 〈〉

This code is used in section 63a.

63e The postamble is empty for now.
〈Postamble for flex parser 63e 〉 =
This code is used in sections ch5, 54a, 54b, and 54c.
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6
The lexer for flex syntax

The original lexer for flex grammar relies on a few rules that use ‘trailing context’. The lexing mechanism
implemented by SPLinT cannot process such rules properly in general. The rules used by flex match fixed-
length trailing context only, which makes it possible to replace them with ordinary patterns and use yyless ( )
in the actions.
〈 fil.ll ch6 〉 =
········································
〈Preamble for flex lexer 65b 〉
········································
〈Options for flex input lexer 66a 〉
〈Output file for flex input lexer 66b 〉
〈 State definitions for flex input lexer 66d 〉
〈Definitions for flex input lexer 66e 〉

〈Postamble for flex input lexer 67a 〉
〈Common patterns for flex lexer 67b 〉
〈Patterns for flex lexer 68c 〉

〈Auxilary code for flex lexer 78d 〉

65a Bootstrap lexer.
〈 ssfs.ll 65a 〉 =
········································
〈Preamble for flex lexer 65b 〉
········································
〈Options for flex input lexer 66a 〉
〈Output file for the bootstrap flex lexer 66c 〉
〈Definitions for flex input lexer 66e 〉

〈Common patterns for flex lexer 67b 〉
〈Catchall rule for the bootstrap lexer 78f 〉

〈Auxilary code for the bootstrap flex lexer 79a 〉

65b 〈Preamble for flex lexer 65b 〉 =
This code is used in sections ch6 and 65a.


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66a There are a few options that are necessary to ensure that the lexer functions properly. Some of them (like
caseless) directly affect the behavior of the scanner, others (e.g. noyy_top_state) prevent generation of
unnecessary code.
〈Options for flex input lexer 66a 〉 =
〈option〉f caseless

〈option〉f nodefault

〈option〉f stack

〈option〉f noyy_top_state

〈option〉f nostdinit

〈option〉f bison-bridge

〈option〉f noyywrap

〈option〉f nounput

〈option〉f noinput

〈option〉f reentrant

〈option〉f debug

〈option〉f stack

This code is used in sections ch6 and 65a.

66b 〈Output file for flex input lexer 66b 〉 =
〈output to〉f "fil.c"

This code is used in section ch6.

66c 〈Output file for the bootstrap flex lexer 66c 〉 =
〈output to〉f "ssfs.c"

This code is used in section 65a.

66d Regular expression and state definitions

The lexer uses a large number of states to control its operation. Both section 1 and section 2 rules rely on
the scanner being in the appropriate state. Otherwise (see symbols.sty example) the lexer may parse the
same fragment in a wrong context.
〈State definitions for flex input lexer 66d 〉 =
〈state-x〉f SECT2 SECT2 PROLOG SECT3 CODEBLOCK PICKUPDEF SC CARETISBOL NUM QUOTE

〈state-x〉f FIRSTCCL CCL ACTION RECOVER COMMENT ACTION STRING PERCENT BRACE ACTION

〈state-x〉f OPTION LINEDIR CODEBLOCK MATCH BRACE

〈state-x〉f GROUP WITH PARAMS

〈state-x〉f GROUP MINUS PARAMS

〈state-x〉f EXTENDED COMMENT

〈state-x〉f COMMENT DISCARD

This code is used in section ch6.

66e Somewhat counterintuitively, flex definitions do not always have to be fully formed regular expressions. For
example, after

〈BOGUS〉 ^[a-

one can form the following action:

〈BOGUS〉t] ;

although without the ‘^’ in the definition of ‘〈BOGUS〉’ flex would have put a ‘)’ inside the character class.
We will assume such (rather counterproductive) tricks are not used. If the definition is not a well-formed
regular expression the pretty printing will be suspended.
〈Definitions for flex input lexer 66e 〉 =
〈 +〉 [〈 〉]+
〈 ∗〉 [〈 〉]∗
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〈NOT_WS〉 [〈 〉〈r〉〈n〉]c
〈←↩〉 〈r〉?〈n〉

〈NAME〉 ([〈αβ〉_] [〈αn〉_-]∗)
〈NOT_NAME〉 [〈αβ〉_*〈n〉]c+

〈SCNAME〉 〈NAME〉
〈ESCSEQ〉 (\([〈n〉]c | [0–7]{1,3} | x [〈0..Z〉]{1,2}))
〈FIRST_CCL_CHAR〉 ([\〈n〉]c | 〈ESCSEQ〉)
〈CCL_CHAR〉 ([\〈n〉]]c | 〈ESCSEQ〉)
〈CCL_EXPR〉 ([: ^? [〈αβ〉]+:])
〈LEXOPT〉 [porkacne]
〈M4QSTART〉 [[

〈M4QEND〉 ]]

This code is used in sections ch6 and 65a.

67a 〈Postamble for flex input lexer 67a 〉 =
This code is used in section ch6.

67b Regular expressions for flex input scanner

The code below treats 〈pointer〉 and 〈array〉 the same way it treats 〈option〉 while typesetting.
〈Common patterns for flex lexer 67b 〉 =
INITIAL

++

a 〈 +〉 \flindented@codetrue enter(CODEBLOCK) continue
a /* push state(COMMENT) continue
a #〈 ∗〉line〈 +〉 push state(LINEDIR) continue
a %s 〈NAME〉? returnp 〈state〉
a %x 〈NAME〉? returnp 〈xtate〉
a %{ .∗〈←↩〉 〈Start a C code section 67c 〉
a %top [〈 〉]∗{ [〈 〉]∗〈←↩〉 〈Begin the 〈top〉 directive 67d 〉
a %top .∗ fatal〈 malformed ’% top’ directive 〉
〈 +〉 ; . discard /
a %% .∗ 〈 Start section 2 68a 〉
a %pointer .∗〈←↩〉 \flinc@linenum returnl 〈pointer*〉
a %array .∗〈←↩〉 \flinc@linenum returnl 〈array〉
a %option enter(OPTION) returnl 〈option〉
a %〈LEXOPT〉〈 ∗〉 [〈0..9〉]∗〈 ∗〉〈←↩〉 \flinc@linenum returnopt 〈deprecated〉
a %〈LEXOPT〉〈 +〉 .∗〈←↩〉 \flinc@linenum returnopt 〈deprecated〉
a %[porksexcan{}]c .∗ fatal〈 unrecognized ’%’ directive: val \yytext 〉
a 〈NAME〉 〈Copy the name and start a definition 68b 〉
〈SCNAME〉 \RETURNNAME

a 〈 ∗〉〈←↩〉 \flinc@linenum continue . allows blank lines in section 1 /
〈 ∗〉〈←↩〉 \flinc@linenum continue . maybe end of comment line /

This code is used in sections ch6 and 65a.

67c 〈Start a C code section 67c 〉 =
\flinc@linenum

\flindented@codefalse enter(CODEBLOCK)
continue

This code is used in section 67b.

67d Ignore setting brace start line as it is only used internally to report errors.
〈Begin the 〈top〉 directive 67d 〉 =

\flinc@linenum

def \flbrace@depth { 1 }

push state(CODEBLOCK_MATCH_BRACE) continue

This code is used in section 67b.
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68a 〈Start section 2 68a 〉 =
def \flsectnum { 2 }def \flbracelevel { 0 }

enter(SECT2 PROLOG) returnp SECTEND

This code is used in section 67b.

68b 〈Copy the name and start a definition 68b 〉 =
\fldidadeffalse enter(PICKUPDEF)
returnvp 〈def〉

This code is used in section 67b.

68c 〈Patterns for flex lexer 68c 〉 = 69a
5

COMMENT
++

*/ continue
* continue
〈M4QSTART〉 continue
〈M4QEND〉 continue
[*〈n〉]c continue
〈←↩〉 \flinc@linenum continue

COMMENT DISCARD
++ . This is the same as COMMENT, but is discarded rather than output. /

*/ continue
* continue
[*〈n〉]c continue
〈←↩〉 \flinc@linenum continue

EXTENDED COMMENT
++

) continue
[〈n〉)]c+ continue
〈←↩〉 \flinc@linenum continue

LINEDIR
++

〈n〉 continue
[〈0..9〉]+ \fllinenum = \number val \yytext continue
" ["〈n〉]c∗" continue . ignore the file name in the line directives /
. continue . ignore spurious characters /

CODEBLOCK
++

a %} .∗〈←↩〉 \flinc@linenum enter(INITIAL) continue
〈M4QSTART〉 continue
〈M4QEND〉 continue
. continue
〈←↩〉 \flinc@linenum \ifflindented@code enter(INITIAL) fi continue

CODEBLOCK MATCH BRACE
++

} 〈Pop state if code braces match 68d 〉
{ \flinc \flbrace@depth continue
〈←↩〉 \flinc@linenum continue
〈M4QSTART〉 continue
〈M4QEND〉 continue
[{}〈r〉〈n〉]c continue
〈EOF〉 fatal〈 Unmatched ’{’ 〉

See also sections 69a, 69d, 71c, 71d, 71h, 75c, 76b, 77b, 78a, and 78c.

This code is used in section ch6.

68d 〈Pop state if code braces match 68d 〉 =
\fldec \flbrace@depth

ifω \flbrace@depth = 0R ◦
returnx\n

else
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continue
fi

This code is used in section 68c.

69a 〈Patterns for flex lexer 68c 〉 + =
4
68c 69d

5
PICKUPDEF

++

〈 +〉 continue
〈NOT WS〉 [〈r〉〈n〉]c∗ 〈Skip trailing whitespace, save the definition 69b 〉
〈←↩〉 〈Complain if not inside a definition, continue otherwise 69c 〉

69b 〈Skip trailing whitespace, save the definition 69b 〉 =
defx \flnmdef { { val \yytext }{ val \yytextpure }{ val \yyfmark }{ val \yysmark } }

\fldidadeftrue continue

This code is used in section 69a.

69c 〈Complain if not inside a definition, continue otherwise 69c 〉 =
\iffldidadef

\yylval \expandafter { \flnmdef }

\yybreak { \flinc@linenum enter(INITIAL) returnl 〈defre〉 }
else

\yybreak { fatal〈 incomplete name definition 〉 }
\yycontinue

This code is used in section 69a.

69d 〈Patterns for flex lexer 68c 〉 + =
4
69a 71c

5
OPTION

++

〈←↩〉 \flinc@linenum enter(INITIAL) continue
〈 +〉 \floption@sensetrue continue
= returnc

no 〈Toggle option sense 70a 〉
7bit returnopt 〈other〉
8bit returnopt 〈other〉
align returnopt 〈other〉
always-interactive returnopt 〈other〉
array returnopt 〈other〉
ansi-definitions returnopt 〈other〉
ansi-prototypes returnopt 〈other〉
backup returnopt 〈other〉
batch returnopt 〈other〉
bison-bridge returnopt 〈other〉
bison-locations returnopt 〈other〉
c++ returnopt 〈other〉
caseful | case-sensitive returnopt 〈other〉
caseless | case-insensitive returnopt 〈other〉
debug returnopt 〈other〉
default returnopt 〈other〉
ecs returnopt 〈other〉
fast returnopt 〈other〉
full returnopt 〈other〉
input returnopt 〈other〉
interactive returnopt 〈other〉
lex-compat 〈 Set lex compat 71a 〉
posix-compat 〈 Set posix compat 71b 〉
main returnopt 〈other〉
meta-ecs returnopt 〈other〉
never-interactive returnopt 〈other〉
perf-report returnopt 〈other〉
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pointer returnopt 〈other〉
read returnopt 〈other〉
reentrant returnopt 〈other〉
reject returnopt 〈other〉
stack returnopt 〈other〉
stdinit returnopt 〈other〉
stdout returnopt 〈other〉
unistd returnopt 〈other〉
unput returnopt 〈other〉
verbose returnopt 〈other〉
warn returnopt 〈other〉
yylineno returnopt 〈other〉
yymore returnopt 〈other〉
yywrap returnopt 〈other〉
yy_push_state returnopt 〈other〉
yy_pop_state returnopt 〈other〉
yy_top_state returnopt 〈other〉
yy_scan_buffer returnopt 〈other〉
yy_scan_bytes returnopt 〈other〉
yy_scan_string returnopt 〈other〉
yyalloc returnopt 〈other〉
yyrealloc returnopt 〈other〉
yyfree returnopt 〈other〉
yyget_debug returnopt 〈other〉
yyset_debug returnopt 〈other〉
yyget_extra returnopt 〈other〉
yyset_extra returnopt 〈other〉
yyget_leng returnopt 〈other〉
yyget_text returnopt 〈other〉
yyget_lineno returnopt 〈other〉
yyset_lineno returnopt 〈other〉
yyget_in returnopt 〈other〉
yyset_in returnopt 〈other〉
yyget_out returnopt 〈other〉
yyset_out returnopt 〈other〉
yyget_lval returnopt 〈other〉
yyset_lval returnopt 〈other〉
yyget_lloc returnopt 〈other〉
yyset_lloc returnopt 〈other〉
extra-type returnl 〈extra type〉
outfile returnl 〈outfile〉
prefix returnl 〈prefix〉
yyclass returnl 〈yyclass〉
header (-file)? returnl 〈header〉
tables-file returnl 〈tables〉
tables-verify returnopt 〈other〉
" ["〈n〉]c∗" defx \flnmstr { { val \yytext }{ val \yytextpure } }returnvp ýnameþ
(([a–mo–z] | n[a–np–z]) [〈αβ〉-+]∗) | . fatal〈 unrecognized %option: val \yytext 〉

70a 〈Toggle option sense 70a 〉 =
\iffloption@sense

\floption@sensefalse

else
\floption@sensetrue

fi continue

This code is used in section 69d.
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71a 〈Set lex compat 71a 〉 =
\iffloption@sense

\fllex@compattrue

else
\fllex@compatfalse

fi returnopt 〈other〉
This code is used in section 69d.

71b 〈Set posix compat 71b 〉 =
\iffloption@sense

\flposix@compattrue

else
\flposix@compatfalse

fi returnopt 〈other〉
This code is used in section 69d.

71c The RECOVER state is never used for typesetting and is only added for completeness.
〈Patterns for flex lexer 68c 〉 + =

4
69d 71d

5
RECOVER

+

.∗〈←↩〉 \flinc@linenum enter(INITIAL) continue

71d Like bison, flex allows insertion of C code in the middle of the input file.
〈Patterns for flex lexer 68c 〉 + =

4
71c 71h

5
SECT2 PROLOG

++

a %{ .∗ 〈Consume the brace and increment the brace level 71e 〉
a %} .∗ 〈Consume the brace and decrement the brace level 71f 〉
a 〈 +〉 .∗ continue
a 〈NOT WS〉 .∗ 〈Begin section 2, prepare to reread, or ignore braced code 71g 〉
. continue
〈←↩〉 \flinc@linenum continue
〈EOF〉 def \flsectnum { 0 }\yyterminate

71e All the code inside is ignored.
〈Consume the brace and increment the brace level 71e 〉 =

\flinc \flbracelevel \yyless { 2 }continue

This code is used in section 71d.

71f 〈Consume the brace and decrement the brace level 71f 〉 =
\fldec \flbracelevel \yyless { 2 }continue

This code is used in section 71d.

71g 〈Begin section 2, prepare to reread, or ignore braced code 71g 〉 =
ifω \flbracelevel > 0R

\yybreak continue
else

\yybreak { \yysetbol { 1R }enter(SECT2) \yyless { 0 }continue }
\yycontinue

This code is used in section 71d.

71h A pattern below (for the character class processing) had to be broken into two lines. A special symbol (�)
has been inserted to indicate that a break had occured.

The macros for flex typesetting use a different mechanism from that of bison macros and allow typo-
graphic corrections to be applied to sections of the flex code represented by various nonterminals. These
corrections can also be delayed. For the details, an interested reader may consult yyunion.sty.



 REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER SPLINT 298
301

〈Patterns for flex lexer 68c 〉 + =
4
71d 75c

5
SECT2

++

a 〈 ∗〉〈←↩〉 \flinc@linenum continue . allow blank lines in section 2 /
a 〈 ∗〉%{ 〈 Start braced code in section 2 72a 〉
a 〈 ∗〉< \ifflsf@skip@ws else enter(SC) fi \yylexreturnraw <

a 〈 ∗〉^ \yylexreturnraw ^

" enter(QUOTE) returnx\flquotechar

{[〈0..9〉] 〈Process a repeat pattern 72b 〉
$([〈 〉] | 〈←↩〉) \yyless { 1 }\yylexreturnraw \$

〈 +〉%{ 〈Process braced code in the middle of section 2 72c 〉
〈 +〉| .∗〈←↩〉 〈Process a deferred action 73a 〉
a 〈 +〉/* 〈Process a comment inside a pattern 73b 〉
a 〈 +〉 ; . allow indented rules /
〈 +〉 〈Decide whether to start an action or skip whitespace inside a rule 73c 〉
〈 ∗〉〈←↩〉 〈Finish the line and/or action 73d 〉
a 〈 ∗〉<<EOF>> ←↩
<<EOF>> returnp 〈EOF〉
a %% .∗ 〈 Start section 3 74a 〉
[(〈FIRST CCL CHAR〉 | 〈CCL EXPR〉)�
(〈CCL CHAR〉 | 〈CCL EXPR〉)∗ 〈 Start processing a character class 74b 〉

{-} returnl \
{+} returnl ∪
{〈NAME〉} [〈 〉]? 〈Process a named expression after checking for whitespace at the end 74c 〉
/* 〈Decide if this is a comment 74d 〉
(?# 〈Determine if this is extended syntax or return a parenthesis 75a 〉
(? 〈Determine if this is a parametric group or return a parenthesis 75b 〉
( \flsf@push \yylexreturnraw \(

) \flsf@pop \yylexreturnraw \)

[/|*+?.(){}] returnc

. \RETURNCHAR

72a 〈Start braced code in section 2 72a 〉 =
def \flbracelevel { 1 }

\indented@codefalse \doing@codeblocktrue

enter(PERCENT_BRACE_ACTION)
continue

This code is used in section 71h.

72b 〈Process a repeat pattern 72b 〉 =
\yyless { 1 }enter(NUM)
\iffllex@compat

\yybreak { returnl {p }

else
\ifflposix@compat

\yybreak@ { returnl {p }

else
\yybreak@ { returnl {f }

fi
\yycontinue

This code is used in section 71h.

72c 〈Process braced code in the middle of section 2 72c 〉 =
def \flbracelevel { 1 }

enter(PERCENT_BRACE_ACTION)
\ifflin@rule

\fldoing@rule@actiontrue

\flin@rulefalse
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\yybreak { returnx\n }

else
\yybreak continue

\yycontinue

This code is used in section 71h.

73a This action has been changed to accomodate the new grammar. The separator (|) is treated as an ordinary
(empty) action.
〈Process a deferred action 73a 〉 =

\ifflsf@skip@ws . whitespace ignored, still inside a pattern /
\yylessafter { }

\yybreak continue
else

\flinc@linenum

\fldoing@rule@actiontrue

\flin@rulefalse

\flcontinued@actiontrue

\unput { \n }

enter(ACTION)
\yybreak { returnx\n }

\yycontinue

This code is used in section 71h.

73b 〈Process a comment inside a pattern 73b 〉 =
\ifflsf@skip@ws

push state(COMMENT_DISCARD)
else

\unput { \/ * }

def \flbracelevel { 0 }

\flcontinued@actionfalse

enter(ACTION)
fi continue

This code is used in section 71h.

73c 〈Decide whether to start an action or skip whitespace inside a rule 73c 〉 =
\ifflsf@skip@ws

\yybreak continue
else

def \flbracelevel { 0 }

\flcontinued@actionfalse

enter(ACTION)
\ifflin@rule

\fldoing@rule@actiontrue

\flin@rulefalse

\yybreak@ { returnx\n }

else
\yybreak@ continue

fi
\yycontinue

This code is used in section 71h.

73d 〈Finish the line and/or action 73d 〉 =
\ifflsf@skip@ws

\flinc@linenum

\yybreak continue
else
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def \flbracelevel { 0 }

\flcontinued@actionfalse

enter(ACTION)
\unput { \n }

\ifflin@rule

\fldoing@rule@actiontrue

\flin@rulefalse

\yybreak@ { returnx\n }

else
\yybreak@ continue

fi
\yycontinue

This code is used in section 71h.

74a 〈Start section 3 74a 〉 =
def \flsectnum { 3 }

enter(SECT3)
\yyterminate

This code is used in section 71h.

74b 〈Start processing a character class 74b 〉 =
defx \flnmstr { val \yytext }

\yyless { 1 }

enter(FIRSTCCL)
\yylexreturnraw [

This code is used in section 71h.

74c Return a special char and return the whitespace back into the input. The braces and the possible trailing
whitespace will be dealt with by the typesetting code.
〈Process a named expression after checking for whitespace at the end 74c 〉 =

defx \flend@ch { val \yytextlastchar }

ifω \flend@ch = ‘\} ◦
\flend@is@wsfalse

else
\flend@is@wstrue

fi
va\expandafter { \astformat@flnametok }

let \astformat@flnametok∅
defx next { \yylval { { nx

\flnametok { val \yytext }{ val va } }{ }{ val \yyfmark }{ val \yysmark } } }next
\ifflend@is@ws

\unput { }

fi
returnl char

This code is used in section 71h.

74d 〈Decide if this is a comment 74d 〉 =
\ifflsf@skip@ws

push state(COMMENT_DISCARD)
continue

else
\yyless { 1 }

\yylexreturnraw \/

fi

This code is used in section 71h.
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75a 〈Determine if this is extended syntax or return a parenthesis 75a 〉 =
\iffllex@compat

\yybreak { \yyless { 1 }\flsf@push \yylexreturnraw ( }

else
\ifflposix@compat

\yybreak@ { \yyless { 1 }\flsf@push \yylexreturnraw ( }

else
\yybreak@ {push state(EXTENDED_COMMENT) }

fi
\yycontinue

This code is used in section 71h.

75b 〈Determine if this is a parametric group or return a parenthesis 75b 〉 =
\flsf@push

\iffllex@compat

\yybreak { \yyless { 1 } }

else
\ifflposix@compat

\yybreak@ { \yyless { 1 } }

else
\yybreak@ { enter(GROUP_WITH_PARAMS) }

fi
\yycontinue

\yylexreturnraw (

This code is used in section 71h.

75c 〈Patterns for flex lexer 68c 〉 + =
4
71h 76b

5
SC

++

〈 ∗〉〈←↩〉〈 ∗〉 \flinc@linenum . allow blank lines and continuations /
[,*] returnc

> enter(SECT2) returnc

>^ enter(CARETISBOL) \yyless { 1 }\yylexreturnraw >

〈SCNAME〉 \RETURNNAME

. fatal〈 bad <start condition>: val \yytext 〉

CARETISBOL
+

^ enter(SECT2) returnc

QUOTE
++

["〈n〉]c \RETURNCHAR

" enter(SECT2) returnx\flquotechar

〈←↩〉 fatal〈 missing quote 〉

GROUP WITH PARAMS
++

: enter(SECT2) continue
- enter(GROUP_MINUS_PARAMS) continue
i \flsf@case@instrue continue
s \flsf@dot@alltrue continue
x \flsf@skip@wstrue continue

GROUP MINUS PARAMS
++

: enter(SECT2) continue
i \flsf@case@insfalse continue
s \flsf@dot@allfalse continue
x \flsf@skip@wsfalse continue

FIRSTCCL
++

^[-]〈n〉]c enter(CCL) \yyless { 1 }\yylexreturnraw ^

^(- | ]) \yyless { 1 }\yylexreturnraw ^
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. enter(CCL) \RETURNCHAR

CCL
++

-[]〈n〉]c \yyless { 1 }\yylexreturnraw -

[]〈n〉]c \RETURNCHAR

] enter(SECT2) returnc

. | 〈←↩〉 fatal〈 bad character class 〉

FIRSTCCL CCL
++

[:alnum:] set Υ and returnccl 〈αn〉
[:alpha:] set Υ and returnccl 〈αβ〉
[:blank:] set Υ and returnccl 〈 〉
[:cntrl:] set Υ and returnccl 〈7→〉
[:digit:] set Υ and returnccl 〈0..9〉
[:graph:] set Υ and returnccl 〈§〉
[:lower:] set Υ and returnccl 〈a..z〉
[:print:] set Υ and returnccl 〈2〉
[:punct:] set Υ and returnccl 〈.〉
[:space:] set Υ and returnccl 〈 〉
[:upper:] set Υ and returnccl 〈A..Z〉
[:xdigit:] set Υ and returnccl 〈0..Z〉
[:^alnum:] set Υ and returnccl 〈¬αn〉
[:^alpha:] set Υ and returnccl 〈¬αβ〉
[:^blank:] set Υ and returnccl 〈¬ 〉
[:^cntrl:] set Υ and returnccl 〈¬ 7→〉
[:^digit:] set Υ and returnccl 〈¬0..9〉
[:^graph:] set Υ and returnccl 〈¬§〉
[:^lower:] set Υ and returnccl 〈¬a..z〉
[:^print:] set Υ and returnccl 〈¬2〉
[:^punct:] set Υ and returnccl 〈¬.〉
[:^space:] set Υ and returnccl 〈¬ 〉
[:^upper:] set Υ and returnccl 〈¬A..Z〉
[:^xdigit:] set Υ and returnccl 〈¬0..Z〉
〈CCL EXPR〉 fatal〈 bad character class expression: val \yytext 〉

NUM
++

[〈0..9〉]+ returnv num
, returnc

} 〈Finish the repeat pattern 76a 〉
. fatal〈 bad character inside { }’s 〉
〈←↩〉 fatal〈 missing nx

\} 〉

76a 〈Finish the repeat pattern 76a 〉 =
enter(SECT2)
\iffllex@compat

\yybreak { returnl }p }

else
\ifflposix@compat

\yybreak@ { returnl }p }

else
\yybreak@ { returnl }f }

fi
\yycontinue

This code is used in section 75c.

76b 〈Patterns for flex lexer 68c 〉 + =
4
75c 77b

5
PERCENT BRACE ACTION

++

〈 ∗〉%} .∗ def \flbracelevel { 0 }continue
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ACTION
+

/* push state(COMMENT) continue

CODEBLOCK ACTION
++

reject continue
yymore continue

〈M4QSTART〉 continue
〈M4QEND〉 continue
. continue
〈←↩〉 〈Process a newline inside a braced group 77a 〉

77a This actions has been modified to output \n.
〈Process a newline inside a braced group 77a 〉 =

\flinc@linenum

ifω \flbracelevel = 0R

\iffldoing@rule@action

returnx\n

else
continue

fi
\fldoing@rule@actionfalse

\fldoing@codeblockfalse

enter(SECT2)
else

\iffldoing@codeblock

\ifflindented@code

\fldoing@rule@actionfalse

\fldoing@codeblockfalse

enter(SECT2)
fi

fi
continue

fi

This code is used in section 76b.

77b 〈Patterns for flex lexer 68c 〉 + =
4
76b 78a

5
ACTION

++ . reject and yymore ( ) are checked for above, in PERCENT BRACE ACTION /
{ \flinc \flbracelevel continue
} \fldec \flbracelevel continue
〈M4QSTART〉 continue
〈M4QEND〉 continue
[〈αβ〉_{}"’/〈n〉[]]c+ continue
[[]] continue
〈NAME〉 continue
’ ([’\〈n〉]c | \.)∗’ continue
" enter(ACTION_STRING) continue
〈←↩〉 〈Process a newline inside an action 77c 〉
. continue

77c This actions has been modified to output \n.
〈Process a newline inside an action 77c 〉 =

\flinc@linenum

ifω \flbracelevel = 0R

\iffldoing@rule@action

returnx\n

else
continue
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fi
\fldoing@rule@actionfalse

enter(SECT2)
fi

This code is used in section 77b.

78a 〈Patterns for flex lexer 68c 〉 + =
4
77b 78c

5
ACTION STRING

++

["\〈n〉]c+ continue
\. continue
〈←↩〉 \flinc@linenum enter(ACTION) continue
" enter(ACTION) continue
. continue

COMMENT COMMENT DISCARD ACTION ACTION STRING
+

〈EOF〉 fatal〈 EOF encountered inside an action 〉

EXTENDED COMMENT GROUP WITH PARAMS GROUP MINUS PARAMS
+

〈EOF〉 fatal〈 EOF encountered inside pattern 〉

SECT2 QUOTE FIRSTCCL CCL
+

〈ESCSEQ〉 〈Process an escaped sequence 78b 〉

78b 〈Process an escaped sequence 78b 〉 =
ifω \YYSTART = \number \csname flexstate\parsernamespace FIRSTCCL\endcsname ◦

enter(CCL)
fi
\RETURNCHAR

This code is used in section 78a.

78c 〈Patterns for flex lexer 68c 〉 + =
4

78a

SECT3
++

〈M4QSTART〉 continue
〈M4QEND〉 continue
[[]〈n〉]c∗(〈n〉?) continue
(. | 〈n〉) continue
〈EOF〉 def \flsectnum { 0 }\yyterminate

〈∗〉+
. | 〈n〉 fatal〈 bad character: val \yytext 〉

78d 〈Auxilary code for flex lexer 78d 〉 =
void define all states (void)
{
〈Collect state definitions for the flex lexer 78e 〉

}
This code is used in section ch6.

78e 〈Collect state definitions for the flex lexer 78e 〉 =
#define register name (name ) Define State (#name ,name )

#include "fil_states.h"

#undef register name

This code is used in section 78d.

78f 〈Catchall rule for the bootstrap lexer 78f 〉 =
〈∗〉+

. \yyerrterminate

This code is used in section 65a.
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79a The drive expects this function to be defined but the bootstrap lexer has no need for it. We leave it in to
appease the compiler.
〈Auxilary code for the bootstrap flex lexer 79a 〉 =

void define all states (void)
{
〈Collect state definitions for the bootstrap flex lexer 79b 〉

}
This code is used in section 65a.

79b 〈Collect state definitions for the bootstrap flex lexer 79b 〉 =
#define register name (name ) Define State (#name ,name ) . The INITIAL state is generated automatically /

#undef register name

This code is used in section 79a.
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7
The name parser

What follows is an example parser for the term name processing. This approach (i.e. using a ‘full blown’
parser/scanner combination) is probably not the best way to implement such machinery but its main purpose
is to demonstrate a way to create a separate parser for local purposes. The name parser is what allows one
to automatically typeset term names such as example1 and %option_name as example1 and 〈option_name〉.
〈 small_parser.yy ch7 〉 =
························································
〈Name parser C preamble 85g 〉
························································
〈Bison options 81a 〉
〈union〉 〈Union of parser types 85i 〉
························································
〈Name parser C postamble 85h 〉
························································
〈Token and types declarations 81b 〉

〈Parser productions 81c 〉

81a 〈Bison options 81a 〉 =
〈token table〉 ?
〈parse.trace〉 ? (set as 〈debug〉)
〈start〉 full name

This code is used in section ch7.

81b 〈Token and types declarations 81b 〉 =
%[ a . . . Z 0 . . . 9 ]∗ [ a . . . Z 0 . . . 9 ]∗ opt na

ext l r [ 0 . . . 9 ]∗
* or ? \c ýmeta identifierþ

This code is used in section ch7.

81c 〈Parser productions 81c 〉 =
full name :

identifier string suffixesopt 〈Compose the full name 82a 〉
ýmeta identifierþ 〈Turn a ýmeta identifierþ into a full name 82b 〉
quoted name suffixesopt 〈Compose the full name 82a 〉





 THE NAME PARSER SPLINT 329
333

identi�er string :
%[ a . . . Z 0 . . . 9 ]∗ 〈Attach option name 82c 〉
[ a . . . Z 0 . . . 9 ]∗ 〈 Start with an identifier 83a 〉
< [ a . . . Z 0 . . . 9 ]∗ > 〈 Start with a tag 83b 〉
’ * or ? ’ 〈 Start with a quoted string 83c 〉
’ \c ’ 〈 Start with an escaped character 83d 〉
’ > ’ 〈 Start with a > string 83f 〉
’ < ’ 〈 Start with a < string 83e 〉
’ . ’ 〈 Start with a . string 83j 〉
’ _ ’ 〈 Start with an _ string 83g 〉
’ - ’ 〈 Start with a - string 83h 〉
’ $ ’ 〈 Start with a $ string 83i 〉
$ 〈Prepare a bison stack name 83k 〉
qualifier 〈Turn a qualifier into an identifier 84a 〉
identifier string [ a . . . Z 0 . . . 9 ]∗ 〈Attach an identifier 84b 〉
identifier string qualifier 〈Attach qualifier to a name 84c 〉
identifier string [ 0 . . . 9 ]∗ 〈Attach an integer 84d 〉

quoted name :
" %[ a . . . Z 0 . . . 9 ]∗ " 〈Process quoted option 84f 〉
" [ a . . . Z 0 . . . 9 ]∗ " 〈Process quoted name 84e 〉

su�xesopt :
◦ Υ← 〈〉
. Υ← 〈nx

\dotsp nx
\sfxnone 〉

. suffixes 〈Attach suffixes 84g 〉

. qualified suffixes 〈Attach qualified suffixes 84h 〉
su�xes :

[ a . . . Z 0 . . . 9 ]∗ 〈 Start with a named suffix 84i 〉
[ 0 . . . 9 ]∗ 〈 Start with a numeric suffix 85a 〉
suffixes . 〈Add a dot separator 85b 〉
suffixes [ a . . . Z 0 . . . 9 ]∗ 〈Attach a named suffix 85d 〉
suffixes [ 0 . . . 9 ]∗ 〈Attach integer suffix 85c 〉
qualifier . Υ← 〈nx

\sfxn val Υ1
nx

\dotsp 〉
suffixes qualifier . Υ← 〈val Υ1

nx
\sfxn val Υ2

nx
\dotsp 〉

quali�ed su�xes :
suffixes qualifier 〈Attach a qualifier 85e 〉
qualifier 〈 Start suffixes with a qualifier 85f 〉

quali�er : opt | na | ext | l | r . . . | Υ← 〈val Υ1〉
This code is used in section ch7.

82a 〈Compose the full name 82a 〉 =
Υ← 〈val Υ1val Υ2〉 \namecharsΥ

This code is used in section 81c.

82b 〈Turn a ýmeta identifierþ into a full name 82b 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

Υ← 〈nx
\idstr { val va }{ val vb }〉 \namecharsΥ

This code is used in section 81c.

82c 〈Attach option name 82c 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

Υ← 〈nx
\optstr { val va }{ val vb }〉

This code is used in section 81c.
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83a 〈Start with an identifier 83a 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

Υ← 〈nx
\idstr { val va }{ val vb }〉

This code is used in sections 81c and 84a.

83b Tags are recognized as a separate syntax element although no special processing is performed by the name
parser or the associated macros.
〈Start with a tag 83b 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

Υ← 〈nx
\idstr { <val va> }{ <val vb> }〉

This code is used in section 81c.

83c 〈Start with a quoted string 83c 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

\sansfirst vb

Υ← 〈nx
\chstr { val vb }{ val vb }

nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

83d 〈Start with an escaped character 83d 〉 =
π2(Υ2) 7→ vb

Υ← 〈nx
\chstr { val vb }{ val vb }

nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

83e 〈Start with a < string 83e 〉 =
Υ← 〈nx

\chstr { < }{ < }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

83f 〈Start with a > string 83f 〉 =
Υ← 〈nx

\chstr { \greaterthan }{ \greaterthan }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

83g 〈Start with an _ string 83g 〉 =
Υ← 〈nx

\chstr { \uscoreletter }{ \uscoreletter }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

83h 〈Start with a - string 83h 〉 =
Υ← 〈nx

\chstr { - }{ - }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

83i 〈Start with a $ string 83i 〉 =
Υ← 〈nx

\chstr { \safemath }{ \safemath }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

83j 〈Start with a . string 83j 〉 =
Υ← 〈nx

\chstr { . }{ . }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

83k 〈Prepare a bison stack name 83k 〉 =
Υ← 〈nx

\bidstr { nx
\$ }{ \safemath }〉

This code is used in section 81c.
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84a 〈Turn a qualifier into an identifier 84a 〉 =
〈Start with an identifier 83a 〉

This code is used in section 81c.

84b 〈Attach an identifier 84b 〉 =
π2(Υ1) 7→ va

va ← va +sx [  ]
π1(Υ2) 7→ vb

va ← va +s vb

π3(Υ1) 7→ vb

vb ← vb +sx [  ]
π2(Υ2) 7→ vc

vb ← vb +s vc

Υ← 〈nx
\idstr { val va }{ val vb }〉

This code is used in sections 81c and 84c.

84c 〈Attach qualifier to a name 84c 〉 =
〈Attach an identifier 84b 〉

This code is used in section 81c.

84d An integer at the end of an identifier (such as id1 ) is interpreted as a suffix (similar to the way META-
FONT treats identifiers, and mft typesets them, 1) as id1) to mitigate a well-intentioned but surprisingly
inconvenient feature of CTANGLE, namely outputting something like id.1 as id .1 in an attempt to make
sure that integers do not interfere with structure dereferences. For this to produce meaningful results, a
stricter interpretation of [ a . . . Z 0 . . . 9 ]∗ syntax is required, represented by the 〈id strict〉 syntax below.
〈Attach an integer 84d 〉 =

Υ← 〈val Υ1
nx

\dotsp nx
\sfxi val Υ2〉

This code is used in section 81c.

84e 〈Process quoted name 84e 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

Υ← 〈nx
\idstr { val va }{ val vb }

nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

84f 〈Process quoted option 84f 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

Υ← 〈nx
\optstr { val va }{ val vb }

nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81c.

84g 〈Attach suffixes 84g 〉 =
Υ← 〈nx

\dotsp val Υ2〉
This code is used in sections 81c and 84h.

84h 〈Attach qualified suffixes 84h 〉 =
〈Attach suffixes 84g 〉

This code is used in section 81c.

84i 〈Start with a named suffix 84i 〉 =
Υ← 〈nx

\sfxn val Υ1〉
This code is used in section 81c.

1) This allows, for example, names like pterm0q while leaving pchar2intq in its ‘natural’ form.
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85a 〈Start with a numeric suffix 85a 〉 =
Υ← 〈nx

\sfxi val Υ1〉
This code is used in section 81c.

85b 〈Add a dot separator 85b 〉 =
Υ← 〈val Υ1

nx
\dotsp 〉

This code is used in section 81c.

85c 〈Attach integer suffix 85c 〉 =
Υ← 〈val Υ1

nx
\sfxi val Υ2〉

This code is used in section 81c.

85d 〈Attach a named suffix 85d 〉 =
Υ← 〈val Υ1

nx
\sfxn val Υ2〉

This code is used in section 81c.

85e 〈Attach a qualifier 85e 〉 =
Υ← 〈val Υ1

nx
\qual val Υ2〉

This code is used in section 81c.

85f 〈Start suffixes with a qualifier 85f 〉 =
Υ← 〈nx

\qual val Υ1〉
This code is used in section 81c.

85g C preamble. In this case, there are no ‘real’ actions that our grammar performs, only TEX output, so this
section is empty.
〈Name parser C preamble 85g 〉 =
This code is used in section ch7.

85h C postamble. It is tricky to insert function definitions that use bison’s internal types, as they have to be
inserted in a place that is aware of the internal definitions but before said definitions are used.
〈Name parser C postamble 85h 〉 =
This code is used in section ch7.

85i Union of types.
〈Union of parser types 85i 〉 =
This code is used in section ch7.
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8
The name scanner

The scanner for lexing term names is admittedly ad hoc and rather redundant. A minor reason for this
is to provide some flexibility for name typesetting. Another reason is to let the existing code serve as a
template for similar procedures in other projects. At the same time, it must be pointed out that this scanner
is executed multiple times for every bison section, so its efficiency directly affects the speed at which the
parser operates.
〈 small_lexer.ll ch8 〉 =
〈Lexer definitions 87a 〉
································
〈Lexer C preamble 88b 〉
································
〈Lexer options 88c 〉

〈Regular expressions 88d 〉

void define all states (void)
{

〈Collect all state definitions 87b 〉
}

87a The tokens consumed by the name parser must represent a relatively fine classification of various identifier
substrings to be able to detect various suffixes.
〈Lexer definitions 87a 〉 =
〈Lexer states 88a 〉
〈letter〉 [_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]
〈c-escchar〉 \[fnrtv]
〈wc〉 ([\’"$.<>]c \ [_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0–9] | \.)
〈id〉 〈letter〉 (〈letter〉 | [-0–9])∗
〈id_strict〉 〈letter〉 ((〈letter〉 | [-0–9])∗〈letter〉)?
〈meta_id〉 *〈id strict〉 *?

〈int〉 [0–9]+

This code is used in section ch8.

87b 〈Collect all state definitions 87b 〉 =
#define register name (name ) Define State (#name ,name ) . nothing for now /

#undef register name

This code is used in section ch8.
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88a Strings and characters in directives/rules.
〈Lexer states 88a 〉 =
〈state-x〉f SC ESCAPED STRING SC ESCAPED CHARACTER

This code is used in section 87a.

88b 〈Lexer C preamble 88b 〉 =
#include <stdint.h>

#include <stdbool.h>

This code is used in section ch8.

88c 〈Lexer options 88c 〉 =
〈option〉f bison-bridge

〈option〉f noyywrap

〈option〉f nounput

〈option〉f noinput

〈option〉f reentrant

〈option〉f noyy_top_state

〈option〉f debug

〈option〉f stack

〈output to〉f "small lexer.c"

This code is used in section ch8.

88d 〈Regular expressions 88d 〉 =
〈 Scan white space 88e 〉
〈Scan identifiers 88f 〉

This code is used in section ch8.

88e White space skipping.
〈Scan white space 88e 〉 =

[ 〈f〉〈n〉〈t〉〈v〉] continue

This code is used in section 88d.

88f This collection of regular expressions might seem redundant, and in its present state, it certainly is. However,
if later on the typesetting style for some of the keywords would need to be adjusted, such changes would be
easy to implement, since the template is already here.
〈Scan identifiers 88f 〉 =

%binary returnv %[ a . . . Z 0 . . . 9 ]∗
%code returnv %[ a . . . Z 0 . . . 9 ]∗
%debug returnv %[ a . . . Z 0 . . . 9 ]∗
%default-prec returnv %[ a . . . Z 0 . . . 9 ]∗
%define returnv %[ a . . . Z 0 . . . 9 ]∗
%defines returnv %[ a . . . Z 0 . . . 9 ]∗
%destructor returnv %[ a . . . Z 0 . . . 9 ]∗
%dprec returnv %[ a . . . Z 0 . . . 9 ]∗
%empty returnv %[ a . . . Z 0 . . . 9 ]∗
%error-verbose returnv %[ a . . . Z 0 . . . 9 ]∗
%expect returnv %[ a . . . Z 0 . . . 9 ]∗
%expect-rr returnv %[ a . . . Z 0 . . . 9 ]∗
%file-prefix returnv %[ a . . . Z 0 . . . 9 ]∗
%fixed-output-files returnv %[ a . . . Z 0 . . . 9 ]∗
%initial-action returnv %[ a . . . Z 0 . . . 9 ]∗
%glr-parser returnv %[ a . . . Z 0 . . . 9 ]∗
%language returnv %[ a . . . Z 0 . . . 9 ]∗
%left returnv %[ a . . . Z 0 . . . 9 ]∗
%lex-param returnv %[ a . . . Z 0 . . . 9 ]∗
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%locations returnv %[ a . . . Z 0 . . . 9 ]∗
%merge returnv %[ a . . . Z 0 . . . 9 ]∗
%name-prefix returnv %[ a . . . Z 0 . . . 9 ]∗
%no-default-prec returnv %[ a . . . Z 0 . . . 9 ]∗
%no-lines returnv %[ a . . . Z 0 . . . 9 ]∗
%nonassoc returnv %[ a . . . Z 0 . . . 9 ]∗
%nondeterministic-parser returnv %[ a . . . Z 0 . . . 9 ]∗
%nterm returnv %[ a . . . Z 0 . . . 9 ]∗
%output returnv %[ a . . . Z 0 . . . 9 ]∗
%param returnv %[ a . . . Z 0 . . . 9 ]∗
%parse-param returnv %[ a . . . Z 0 . . . 9 ]∗
%prec returnv %[ a . . . Z 0 . . . 9 ]∗
%precedence returnv %[ a . . . Z 0 . . . 9 ]∗
%printer returnv %[ a . . . Z 0 . . . 9 ]∗
%pure-parser returnv %[ a . . . Z 0 . . . 9 ]∗
%require returnv %[ a . . . Z 0 . . . 9 ]∗
%right returnv %[ a . . . Z 0 . . . 9 ]∗
%skeleton returnv %[ a . . . Z 0 . . . 9 ]∗
%start returnv %[ a . . . Z 0 . . . 9 ]∗
%term returnv %[ a . . . Z 0 . . . 9 ]∗
%token returnv %[ a . . . Z 0 . . . 9 ]∗
%token-table returnv %[ a . . . Z 0 . . . 9 ]∗
%type returnv %[ a . . . Z 0 . . . 9 ]∗
%union returnv %[ a . . . Z 0 . . . 9 ]∗
%verbose returnv %[ a . . . Z 0 . . . 9 ]∗
%yacc returnv %[ a . . . Z 0 . . . 9 ]∗
%default[-_]prec returnv %[ a . . . Z 0 . . . 9 ]∗
%error[-_]verbose returnv %[ a . . . Z 0 . . . 9 ]∗
%expect[-_]rr returnv %[ a . . . Z 0 . . . 9 ]∗
%fixed[-_]output[-_]files returnv %[ a . . . Z 0 . . . 9 ]∗
%name[-_]prefix returnv %[ a . . . Z 0 . . . 9 ]∗
%no[-_]default[-_]prec returnv %[ a . . . Z 0 . . . 9 ]∗
%no[-_]lines returnv %[ a . . . Z 0 . . . 9 ]∗
%pure[-_]parser returnv %[ a . . . Z 0 . . . 9 ]∗
%token[-_]table returnv %[ a . . . Z 0 . . . 9 ]∗
% (〈letter〉 | [0–9] | [-_] | % | [<>])+ returnv %[ a . . . Z 0 . . . 9 ]∗
. suffixes

opt returnv opt

na returnv na

ext returnv ext

l returnv l

r returnv r

. delimeters

[<>$._’"] returnc

〈c-escchar〉 returnv \c
〈wc〉 returnv * or ?

. identifiers and other names

〈id strict〉 〈Prepare to process an identifier 90a 〉
〈meta id〉 〈Prepare to process a meta-identifier 90b 〉
〈int〉 returnv [ 0 . . . 9 ]∗
. everything else

. 〈React to a bad character 90c 〉
This code is used in section 88d.
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90a 〈Prepare to process an identifier 90a 〉 =
returnv [ a . . . Z 0 . . . 9 ]∗

This code is used in section 88f.

90b 〈Prepare to process a meta-identifier 90b 〉 =
returnv ýmeta identifierþ

This code is used in section 88f.

90c 〈React to a bad character 90c 〉 =
ift [bad char]

fatal〈 invalid character(s): val \yytext 〉
fi

This code is used in section 88f.
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Forcing bison and flex to output TEX

Instead of implementing a bison (or flex) ‘plugin’ for outputting TEX parser, the code that follows produces
a separate executable that outputs all the required tables after the inclusion of an ordinary C parser produced
by bison (or a scanner produced by flex). The actions in both bison parser and flex scanner are assumed
to be merely printf ( ) statements that output the ‘real’ TEX actions. The code below simply cycles through
all such actions to output an ‘action switch’ appropriate for use with TEX. In every other respect, the
included parser or scanner can use any features allowed in ‘real’ parsers and scanners.

91a Common routines

The ‘top’ level of the scanner and parser ‘drivers’ is very similar, and is therefore separated into a few
sections that are common to both drivers. The layout is fairly typical and follows a standard ‘initialize-input-
process-output-clean up’ scheme. The logic behind each section of the program will be explained in detail
below.

The section below is called 〈C postamble 91a 〉 because the output of the tables can happen only after the
bison (or flex) generated .c file is included and all the data structures are known.

The actual ‘assembly’ of each driver has to be done separately due to some ‘singularities’ of the CWEB
system and the design of this software. All the essential routines are presented in the sections below, though.
〈C postamble 91a 〉 =
〈Auxiliary function definitions 100a 〉
int main (int argc , char ∗∗argv )
{
〈Local variable and type declarations 93c 〉
〈Establish defaults 101b 〉
〈Command line processing variables 101e 〉
〈Process command line options 101f 〉
switch (mode ) {
〈Various output modes 92a 〉

default: break;
}
fprintf (stderr , "Outputting tables and actions\n");
if (tables out ) {

fprintf (stderr , "   tables ... ");
〈Perform output 96a 〉
fprintf (stderr , "actions ... ");
〈Output action switch, if any 99f 〉
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}
else {

fprintf (stderr , "No output, exiting\n");
exit (0);

}
fprintf (stderr , "done, cleaning up\n");
〈Clean up 93b 〉
return 0;

}
This code is cited in section 91a.

92a Not all the code can be supplied at this stage (most of the routines here are at the ‘top’ level so the specifics
have to be ‘filled-in’ by each driver), so many of the sections above are placeholders for the code provided
by a specific driver. However, we still need to supply a trivial definition here to placate CWEAVE whenever
this portion of the code is used isolated in documentation.
〈Various output modes 92a 〉 =
This code is used in section 91a.

92b Standard library declarations for memory management routines, some syntactic sugar, command line pro-
cessing, and variadic functions are all that is needed.
〈Outer definitions 92b 〉 = 101c

5
#include <stdlib.h>

#include <stdbool.h>

#include <stdarg.h>

#include <assert.h>

#include <string.h>

See also section 101c.

This code is used in section 98a.

92c This code snippet is a payment for some poor (in my view) philosophy on the part of the bison and flex
developers. There used to be an option in bison to output just the tables and the action code but it had
never worked correctly and it was simply dropped in the latest version. Instead, one can only get access to
bison’s goodies as part of a tangled mess of #define’s and error processing code. Had the tables and the
parser function itself been considered separate, well isolated sections of bison’s output, there would simply
be no reason for dirty tricks like the one below, one would be able to write custom error processing functions,
unicorns would roam the Earth and pixies would hand open sourced tablets to everyone. At a minimum, it
would have been a much cleaner, modular approach.

As of version 3.0 of bison some critical arrays, namely, yyprhs and yyrhs are no longer generated (even
internally) which significantly reduces bison’s useability as a parser generator. As an example, the yyrthree
array, which is necessary for processing ‘inline’ actions is computed in bs.w using the two arrays mentioned
in the previous sentence. There does not seem to be any other way to access this information. A number
of tools (GNU and otherwise) have taken the path of narrowing the field of application to a few use cases
envisioned by the maintainers. This includes compilers, as well.

There is a strange reluctance on the part of the gcc team to output any intermediate code other than the
results of preprocessing and assembly. I have seen an argument that involves some sort of appeal to making
the code difficult to close source but the logic of it escaped me completely (well, there is logic to it, however
choosing poor design in order to punish a few bad players seems like a rather inferior option).

Ideally, there should be no such thing as a parser generator, or a compiler, for that matter: all of these are
just basic table driven rewriting routines. Tables are hard but table driven code should not be. If one had
access to the tables themselves, and some canonical examples of code driven by such tables, like yyparse ( )
and yylex ( ), the flexibility of these tools would improve tremendously. Barring that, this is what we have
to do now.

There are several ways to gain write access to the data declared const in C, like passing its address
to a function with no prototype. All these methods have one drawback: the loopholes that make them
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possible have been steadily getting on the chopping block of the C standards committee. Indeed, const data
should be constant. Even if one succeeds in getting access, there is no reason to believe that the data is not
allocated in a write-only region of the memory. The cleanest way to get write access then is to eliminate
const altogether. The code should have the same semantics after that, and the trick is only marginally bad.

The last two definitions are less innocent (and, at least the second one, are prohibited by the ISO standard
(clause 6.10.8(2), see [ISO/C11])) but gcc does not seem to mind, and it gets rid of warnings about dropping
a const qualifier whenever an assert is encountered. Since the macro is not recursively expanded, this will
only work if . . .FUNCTION__ is treated as a pseudo-variable, as it is in gcc, not a macro.

#define const
#define __PRETTY_FUNCTION__ (char ∗) __PRETTY_FUNCTION__
#define __FUNCTION__ (char ∗) __FUNCTION__

93a The output file has to be known to both parts of the code, so it is declared at the very beginning of the
program. We also add some syntactic sugar for loops.

#define forever for ( ; ; )
〈Common code for C preamble 93a 〉 =
#include <stdio.h>

FILE ∗tables out ;

93b The clean-up portion of the code can be left empty, as all it does is close the output file, which can be left
to the operating system but we take care of it ourselves to keep out code ‘clean’ 1).
〈Clean up 93b 〉 =

fclose (tables out );

This code is used in section 91a.

93c There is a descriptor controlling the output of the program as a whole. The code below is an example of
a literate programming technique that will be used repeatedly to maintain large structures that can grow
during the course of the program design. Note that the name of each table is only mentioned once, the rest
of the code is generic.

Technically speaking, all of this can be done with C preprocessor macros of moderate complexity, taking
advantage of its expansion rules but it is not nearly as transparent as the CWEB approach.
〈Local variable and type declarations 93c 〉 = 94b

5
struct output d {
〈Output descriptor fields 93d 〉
};
struct output d output desc ⇐ {〈Default outputs 94a 〉};

See also sections 94b, 97d, 98d, 100b, and 101d.

This code is used in section 91a.

93d To declare each table field in the global output descriptor, all one has to do is to provide a general pattern.
〈Output descriptor fields 93d 〉 = 97b

5
#define register table d (name ) bool output ##name :1;
〈Table names 96c 〉

#undef register table d

See also sections 97b and 98e.

This code is used in section 93c.

1) In case the reader has not noticed yet, this is a weak attempt at humor to break the monotony of going through the lines of
CTANGLE’d code
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94a Same for assigning default values to each field.
〈Default outputs 94a 〉 = 97c

5
#define register table d (name ) .output ##name ⇐ 0, . do not output any tables by default /
〈Table names 96c 〉

#undef register table d

See also sections 97c and 99a.

This code is used in section 93c.

94b Each descriptor is populated using the same approach.
〈Local variable and type declarations 93c 〉 + =

4
93c 97d

5
#define register table d (name ) struct table d name## desc ⇐ {0};
〈Table names 96c 〉

#undef register table d

94c The flag --optimize-tables affects the way tables are output.
〈Global variables and types 94c 〉 = 94e

5
static int optimize tables ⇐ 0;

See also sections 94e, 96d, 97a, 98c, and 99g.

This code is used in section 98a.

94d It is set using the command line option below.
〈Options without arguments 94d 〉 = 96e

5
register option ("optimize-tables",no argument ,&optimize tables , 1, "")

See also section 96e.

This code is used in section 102a.

94e The reason to implement the table output routine as a macro is to avoid writing separate functions for tables
of different types of data (stings as well as integers). The output is controlled by each table’s descriptor
defined below. A more sophisticated approach is possible but this code is merely a ‘patch’ so we are not
after full generality 1).

#define output table (table desc , table name , stream )
if (output desc .output ##table name ) {

int i, j ⇐ 0;
if (optimize tables ) {

fprintf (stream , "\\setoptopt{%s}%%\n", table desc .name );
if (nottable desc .optimized numeric) {

fprintf (stream , "\\beginoptimizednonnumeric{%s}%%\n", table desc .name );
}
for (i⇐ 0; i < sizeof (table name )/sizeof (table name [0])− 1; i++) {

if (table desc .formatter ) {
table desc .formatter (stream , i);
}
else {

fprintf (stream , table desc .optimized numeric , table desc .name , i, table name [i]);
}

}
if (table desc .formatter ) {

table desc .formatter (stream ,−i);
}
else {

1) A somewhat cleaner way to achieve the same effect is to use the _Generic facility of C11.
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fprintf (stream , table desc .optimized numeric , table desc .name , i, table name [i]);
}
if (table desc .cleanup) {

table desc .cleanup(&table desc);
}

}
else {

fprintf (stream , table desc .preamble , table desc .name );
for (i⇐ 0; i < sizeof (table name )/sizeof (table name [0])− 1; i++) {

if (table desc .formatter ) {
j

+⇐ table desc .formatter (stream , i);
}
else {

if (table name [i]) {
j

+⇐ fprintf (stream , table desc .separator , table name [i]);
}
else {
j

+⇐ fprintf (stream , "%s", table desc .null );
}
}
if (j > MAX_PRETTY_LINE ∧ table desc .prettify ) {

fprintf (stream , "\n");
j ⇐ 0;
}

}
if (table desc .formatter ) {

table desc .formatter (stream ,−i);
}
else {

if (table name [i]) {
fprintf (stream , table desc .postamble , table name [i]);
}
else {

fprintf (stream , "%s", table desc .null postamble );
}

}
if (table desc .cleanup) {

table desc .cleanup(&table desc);
}

}
}

〈Global variables and types 94c 〉 + =
4
94c 96d

5
struct table d {
〈Generic table desciptor fields 95a 〉
};

95a 〈Generic table desciptor fields 95a 〉 =
char ∗name ;
char ∗preamble ;
char ∗separator ;
char ∗postamble ;
char ∗null postamble ;
char ∗null ;
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char ∗optimized numeric ;
bool prettify ;

int(∗formatter )(FILE ∗, int);
void(∗cleanup)(struct table d ∗);

This code is used in section 94e.

96a Tables are output first. The action output code must come last since it changes the values of the tables to
achieve its goals. Again, a different approach is possible, that saves the data first but simplicity was deemed
more important than total generality at this point.
〈Perform output 96a 〉 = 99b

5
〈Output all tables 96b 〉

See also section 99b.

This code is used in section 91a.

96b One more application of ‘gather the names first then process’ technique.
〈Output all tables 96b 〉 =
#define register table d (name ) output table (name## desc ,name , tables out );
〈Table names 96c 〉

#undef register table d

This code is used in section 96a.

96c Tables will be output by each driver. Placeholder here, for CWEAVE’s piece of mind.
〈Table names 96c 〉 =
This code is used in sections 93d, 94a, 94b, 96b, and 109a.

96d Action output invokes a totally new level of dirty code. If tables, constants, and tokens are just data
structures, actions are executable commands. We can only hope to cycle through all the actions, which is
enough to successfully use bison and flex to generate TEX. The switch statement containing the actions
is embedded in the parser function so to get access to each action one has to coerce yyparse ( ) to jump to
each case. Here is where we need the table manipulation. The appropriate code is highly specific to the
program used (since bison and flex parsing and scanning functions had to be ‘reverse engineered’ to make
them do what we want), so at this point we simply declare the options controlling the level of detail and the
type of actions output.
〈Global variables and types 94c 〉 + =

4
94e 97a

5
static int bare actions ⇐ 0;
. (static for local variables) and int to pacify the compiler (for a constant initializer and compatible type) /

static int optimize actions ⇐ 0;

96e The first of the following options allows one to output an action switch without the actions themselves. It
is useful when one needs to output a TEX parser for a grammar file that is written in C. In this case it
will be impossible to cycle through actions (as no setup code has been executed), so the parser invocation is
omitted.

The second option splits the action switch into several macros to speed up the processing of the action
code.

The last argument of the ‘flexible’ macro below is supposed to be an extended description of each option
which can be later utilized by a usage ( ) function.
〈Options without arguments 94d 〉 + =

4
94d

register option ("bare-actions",no argument ,&bare actions , 1, "")
register option ("optimize-actions",no argument ,&optimize actions , 1, "")
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97a The rest of the action output code mimics that for table output, starting with the descriptor. To make the
output format more flexible, this descriptor should probably be turned into a specialized routine.
〈Global variables and types 94c 〉 + =

4
96d 98c

5
struct action d {

char ∗preamble ;
char ∗act setup ;
char ∗act suffix ;
char ∗action 1;
char ∗action n;
char ∗postamble ;

void(∗print rule )(int);
void(∗cleanup)(struct action d ∗);
};

97b 〈Output descriptor fields 93d 〉 + =
4
93d 98e

5
bool output actions :1;

97c Nothing is output by default, including actions.
〈Default outputs 94a 〉 + =

4
94a 99a

5
.output actions ⇐ 0,

97d 〈Local variable and type declarations 93c 〉 + =
4
94b 98d

5
struct action d action desc ⇐ {0};

97e Each function below outputs the TEX code of the appropriate action when the action is ‘run’ by the action
output switch. The main concern in designing these functions is to make the code easier to look at. Further
explanation is given in the grammar file. If the parser is doing its job, this is the only place where one would
actually see these as functions (or, rather, macros).

In case one wishes to use the ‘native’ bison way of referencing terms (i.e. something along the lines
of \the$[term]) these macros should be used with a trailing underscore (say, TeXa_) to let the postprocessor
know that the code inside should be postprocessed. The postprocessor will then create three files: one,
destined for CWEAVE, will use the same macro withough the underscore (i.e. TeXa to continue our example,
and have the native bison terms replaced wih the appropriate TEX commands. Another file is intended
for CTANGLE, where the whole macro will be replaced first with a special identifier, which in turn, after
CTANGLE finishes, will be replaced by an appropriately constructed call to TeX__. The third file will contain
the substitutions.

In compliance with paragraph 6.10.8(2) 1) of the ISO C11 standard the names of these macros do not start
with an underscore, since the first letter of TeX is uppercase 2).

#define TeX_(string ) fprintf (tables out , "          %s%%\n", string )
#define TeXb(string ) TeX_(string )
#define TeXa(string ) TeX_(string )
#define TeXf(string ) TeX_(string )
#define TeXfo(string ) TeX_(string )
#define TeXao(string ) TeX_(string )
#define YY_FATAL_ERROR(message )

fprintf (tables out , "          /yylexcomplain{%s}/yylexerrterminate%%\n",message )
〈C preamble 97e 〉 = 98a

5
#define TeX__(string , . . . ) fprintf (tables out , "          "string"%%\n", __VA_ARGS__)

See also section 98a.

1) [. . .] Any other predefined macro names shall begin with a leading underscore followed by an uppercase letter or a second un-
derscore. 2) One might wonder why one of these functions is defined as a CWEB macro while the other is put into the pream-
ble ‘by hand’. It really makes no difference, however, the reason the second macro is defined explicitly is CWEB’s lack of aware-
ness of ‘variadic’ macros which produces undesirable typesetting artefacts.
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98a If a full parser is not needed, the lexing mechanism is not required. To satisfy the compiler and the linker,
the lexer and other functions still have to be declared and defined, since these functions are referred to in
the body of the parser. The details of these declarations can be found in the driver code.
〈C preamble 97e 〉 + =

4
97e

〈Outer definitions 92b 〉;
〈Global variables and types 94c 〉
〈Auxiliary function declarations 99i 〉

98b We begin with a few macros to facilitate the output of tables in the format that TEX can understand. As
there is no perfect way to represent an array in TEX a rather weak compromise was settled upon. Further
explanation of this choice is given in the TEX file that implements the TEX parser for the bison input
grammar.

#define tex table generic(table name ) table name## desc .preamble ⇐ "\\newtable{%s}{%%\n";
table name## desc .separator ⇐ "%d\\or ";
table name## desc .postamble ⇐ "%d}%%\n";
table name## desc .null postamble ⇐ "0}%%\n";
table name## desc .null ⇐ "0\\or ";
table name## desc .optimized numeric ⇐ "\\expandafter\\def\\csname %s\\parserna\

mespace %d\\endcsname{%d}%%\n";
table name## desc .prettify ⇐ true ;
table name## desc .formatter ⇐ Λ;
table name## desc .cleanup ⇐ Λ;
output desc .output ##table name ⇐ 1;

#define tex table (table name ) tex table generic(table name );
table name## desc .name ⇐ #table name ;

98c An approach paralleling the table output scheme is taken with constants. Since constants are C macros one
has to be careful to avoid the temptation of using constant names directly as names for fields in structures.
They will simply be replaced by the constants’ values. When the names are concatenated with other tokens,
however, the C preprocessor postpones the macro expansion until the concatenation is complete (see clauses
6.10.3.1, 6.10.3.2, and 6.10.3.3 of the ISO C Standard, [ISO/C11]). Unless the result of the concatenation is
still expandable, the expansion will halt 1).
〈Global variables and types 94c 〉 + =

4
97a 99g

5
struct const d {

char ∗format ;
char ∗name ;
int value ;
};

98d 〈Local variable and type declarations 93c 〉 + =
4
97d 100b

5
#define register const d (c name , . . . ) struct const d c name## desc ;
〈Constant names 99d 〉

#undef register const d

98e 〈Output descriptor fields 93d 〉 + =
4

97b

#define register const d (c name , . . . ) bool output ##c name :1;
〈Constant names 99d 〉

#undef register const d

1) Another trick to halt expansion is to use function macros which will expand only when they are followed by parentheses.
Since we do not have control over how constants are defined by bison, we cannot take advantage of this feature of the C pre-
processor.
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99a 〈Default outputs 94a 〉 + =
4

97c

#define register const d (c name , . . . ) .output ##c name ⇐ 0,
〈Constant names 99d 〉

#undef register const d

99b 〈Perform output 96a 〉 + =
4

96a

fprintf (tables out , "%%\n%% constant definitions\n%%\n");
〈Output constants 99c 〉

99c 〈Output constants 99c 〉 =
{ int any constants ⇐ 0;

#define register const d (c name , . . . )
if (output desc .output ##c name ) {

const out (tables out , c name## desc)
any constants ⇐ 1;

}
〈Constant names 99d 〉

#undef register const d
if (any constants ) ; . this is merely a placeholder statement /
}

This code is used in section 99b.

99d Constants are very driver specific, so to make CWEAVE happy . . .
〈Constant names 99d 〉 =
This code is used in sections 98d, 98e, 99a, and 99c.

99e A macro to help with constant output.
#define const out (stream , c desc) fprintf (stream , c desc .format , c desc .name , c desc .value );

99f Action switch output routines modify the automata tables and therefore have to be output last. Since action
output is highly automaton specific, we leave this section blank here, to pacify CWEAVE in case this file is
typeset by itself.
〈Output action switch, if any 99f 〉 =
This code is used in section 91a.

99g Error codes

〈Global variables and types 94c 〉 + =
4

98c

enum err codes {
〈Error codes 99h 〉 LAST_ERROR
};

99h 〈Error codes 99h 〉 = 115a
5

NO_MEMORY, BAD_STRING, BAD_MIX_FORMAT,

See also section 115a.

This code is used in section 99g.

99i A lot more care is necessary to output the token table. A number of precautions are taken to ensure that
a maximum possible range of names can be passed safely to TEX. This involves some manipulation of
\catcode’s and control characters. The complicated part is left to TEX so the output code can be kept
simple. The helper function below is used to ‘combine’ two strings.
#define MAX_PRETTY_LINE 100
〈Auxiliary function declarations 99i 〉 =

char ∗mix string (char ∗format , . . . );

This code is used in section 98a.
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100a 〈Auxiliary function definitions 100a 〉 =
char ∗mix string (char ∗format , . . . )
{

char ∗buffer ;
size t size ⇐ 0;
int length ⇐ 0;
int written ⇐ 0;
char ∗formatp ⇐ format ;
va list ap , ap save ;

va start (ap , format );
va copy (ap save , ap);
size ⇐ strnlen (format , MAX_PRETTY_LINE ∗ 5);
if (size > MAX_PRETTY_LINE ∗ 5) {

fprintf (stderr , "%s: runaway string?\n", func );
exit (BAD_STRING);

}
while ((formatp ⇐ strstr (formatp , "%"))) {

switch (formatp [1]) {
case ’s’:

length ⇐ strnlen (va arg (ap , char ∗), MAX_PRETTY_LINE ∗ 5);
if (length > MAX_PRETTY_LINE ∗ 5) {

fprintf (stderr , "%s: runaway string?\n", func );
exit (BAD_STRING);

}
size

+⇐ length ;

size
−⇐ 2;

formatp ++;
break;

case ’%’:
size−−;

formatp
+⇐ 2;

default: printf ("%s: cannot handle %%%c in mix string format\n", func , formatp [1]);
exit (BAD_MIX_FORMAT);

}
}
buffer ⇐ (char ∗) malloc(sizeof (char) ∗ size + 1);
if (buffer ) {

written ⇐ vsnprintf (buffer , size + 1, format , ap save );
if (written < 0 ∨ written > size ) {

fprintf (stderr , "%s: runaway string?\n", func );
exit (BAD_STRING);

}
}
else {

fprintf (stderr , "%s: failed to allocate memory for the output string\n", func );
exit (NO_MEMORY);

}
va end (ap);
va end (ap save );
return buffer ;

}
This code is used in section 91a.

100b Initial setup

Depending on the output mode (right now only TEX and ‘tokens only’ (in the bison ‘driver’) are supported)
the format of each table, action field and token has to be set up.
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〈Local variable and type declarations 93c 〉 + =
4
98d 101d

5
enum output mode {
〈Output modes 101a 〉 LAST_OUT
};

101a And to calm down CWEAVE . . .

〈Output modes 101a 〉 =
This code is used in section 100b.

101b TEX is the main output mode.
〈Establish defaults 101b 〉 =

enum output mode mode ⇐ TEX_OUT;

This code is used in section 91a.

101c Command line processing

This program uses a standard way of parsing the command line, based on getopt long . At the heart of the
setup are the array below with a couple of supporting variables.
〈Outer definitions 92b 〉 + =

4
92b

#include <unistd.h>

#include <getopt.h>

#include <string.h>

101d 〈Local variable and type declarations 93c 〉 + =
4

100b

const char ∗usage ⇐ "%s [options] output_file\n";

101e 〈Command line processing variables 101e 〉 =
int c, option index ⇐ 0;

enum higher options {
NON_OPTION ⇐ FF16, 〈Higher index options 102c 〉 LAST_HIGHER_OPTION
};
static struct option long options [ ]⇐ {
〈Long options array 102a 〉
{0, 0, 0, 0}};

This code is used in section 91a.

101f The main loop of the command line option processing follows. This can be used as a template for setting
up the option processing. The specific cases are added to in the course of adding new features.
〈Process command line options 101f 〉 =

opterr ⇐ 0; . we do our own error reporting /

forever
{
c⇐ getopt long (argc , argv , (char[ ]){’:’, 〈 Short option list 102b 〉}, long options ,&option index );
if (c = −1) break;
switch (c) {
case 0: . it is a flag, the name is kept in long options [option index ].name , and the value can be found in

long options [option index ].val /
break;

〈Cases affecting the whole program 103c 〉;
〈Cases involving specific modes 103d 〉;
case ’?’:

fprintf (stderr , "Unknown option: ‘%s’, see ‘Usage’ below\n\n", argv [optind − 1]);
fprintf (stderr , usage , argv [0]);
exit (1);
break;
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case ’:’:
fprintf (stderr , "Missing argument for ‘%s’\n\n", argv [optind − 1]);
fprintf (stderr , usage , argv [0]);
exit (1);
break;

default:
printf ("warning: feature ‘%c’ is not yet implemented\n", c);

}
}
if (optind > argc) {

fprintf (stderr , "No output file specified!\n");
}
else {

tables out ⇐ fopen (argv [optind ++], "w");
}
if (optind < argc) {

printf ("script files to be loaded: ");
while (optind < argc) printf ("%s ", argv [optind ++]);
putchar (’\n’);

}
This code is used in section 91a.

102a 〈Long options array 102a 〉 =
#define register option (name , arg flag , loc , val , exp) {name , arg flag , loc , val },
〈Options without shortcuts 103b 〉
〈Options with shortcuts 103a 〉
〈Options without arguments 94d 〉

#undef register option

This code is used in section 101e.

102b In addition to spelling out the full command line option name (such as --help) getopt long gives the user
a choice of using a shortcut (say, -h). As individual options are treated in drivers themselves, there are no
shortcuts to supply at this point. We leave this section (and a number of others) empty to be filled in with
the driver specific code to pacify CWEAVE.
〈Short option list 102b 〉 =
#define dd optional argument , ’:’, ’:’

#define dd required argument , ’:’

#define dd no argument

#define register option (name , arg flag , loc , val , . . . ) , val dd ##arg flag
〈Options with shortcuts 103a 〉

#undef register option

#undef dd optional argument

#undef dd required argument

#undef dd no argument

This code is used in section 101f.

102c Some options have one-letter ‘shortcuts’, whereas others only exist in ‘fully spelled-out’ form. To easily keep
track of the latter, a special enumerated list is declared. To add to this list, simply add to the CWEB section
below.
〈Higher index options 102c 〉 =
#define register option (name , arg flag , loc , val , . . . ) val ,
〈Options without shortcuts 103b 〉

#undef register option

This code is used in section 101e.
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103a 〈Options with shortcuts 103a 〉 =
This code is used in sections 102a and 102b.

103b 〈Options without shortcuts 103b 〉 =
This code is used in sections 102a and 102c.

103c 〈Cases affecting the whole program 103c 〉 =
This code is used in section 101f.

103d 〈Cases involving specific modes 103d 〉 =
This code is used in section 101f.

103e bison specific routines

The placeholder code left blank in the common routines is filed in with the code relevant to the output of
parser tables in the following sections.

103f Tables

Here are all the parser table names. Some tables are not output but adding one to the list in the future will
be easy: it does not even have to be done here.
〈Parser table names 103f 〉 = 104d

5
register table d (yytranslate )
register table d (yyr1 )
register table d (yyr2 )
register table d (yydefact )
register table d (yydefgoto)
register table d (yypact )
register table d (yypgoto)
register table d (yytable )
register table d (yycheck )
register table d (yystos )
register table d (yytname )
register table d (yyprhs )
register table d (yyrhs )

See also section 104d.

103g One special table requires a little bit more preparation. This is a table that lists the depth of the stack before
an implicit terminal. It is not one of the tables that is used by bison itself but is needed if the symbolic
name processing is to be implemented (bison has access to this information ‘on the fly’). The ‘new’ bison
(starting with version 3.0) does not generate yyprhs and yyrhs or any other arrays that contain similar
information, so we fake them here if such a crippled version of bison is used.

The yyrimplicit array will be used by the table output code, together with the postprocessor to output right
hand side lengths for the term references that require them in the case when the ‘native’ bison references
are used.
〈Variables and types local to the parser 103g 〉 = 106b

5
unsigned int yyrthree [YYNRULES + 1]⇐ {0};
int yyrimplicit [YYNRULES + 1]⇐ {0};

#ifdef BISON_IS_CRIPPLED

unsigned int yyrhs [YYNRULES + 1]⇐ {−1};
unsigned int yyprhs [YYNRULES + 1]⇐ {0};

#endif

See also sections 106b and 113b.
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104a We populate this table below . . .

〈Parser defaults 104a 〉 =
#ifndef BISON_IS_CRIPPLED

assert (YYNRULES + 1 = sizeof (yyprhs )/sizeof (yyprhs [0]));
{

int i, j;

for (i⇐ 1; i 6 YYNRULES; i++) {
for (j ⇐ 0; yyrhs [yyprhs [i] + j] 6= −1; j++) {

assert (yyprhs [i] + j < sizeof (yyrhs ));
assert (j < yyr1 [i]);
if (〈This is an implicit term 104b 〉) {
〈Find the rule that defines it and set yyrthree 104c 〉

}
}
}
}

#endif

104b 〈This is an implicit term 104b 〉 =
(strlen (yytname [yyrhs [yyprhs [i] + j]]) > 1) ∧ (yytname [yyrhs [yyprhs [i] + j]][0] =

’$’) ∧ (yytname [yyrhs [yyprhs [i] + j]][1] = ’@’)

This code is used in section 104a.

104c 〈Find the rule that defines it and set yyrthree 104c 〉 =
int rule number ;

for (rule number ⇐ 1; rule number < YYNRULES; rule number ++) {
if (yyr1 [rule number ] = yyrhs [yyprhs [i] + j]) {

yyrthree [rule number ]⇐ j;
break;

}
}
assert (rule number < YYNRULES);

This code is used in section 104a.

104d . . . and add its name to the list.
〈Parser table names 103f 〉 + =

4
103f

register table d (yyrthree )

104e We list some macros that are used to assist the post processor and take advantage of the yyrimlicit array. As
at this time the size of the array is unknown (the preamble is included before the parser file by mkeparser.w
so the number of rules is unknown at this point), we declare the array as a pointer.

#define BZ(term , anchor ) ( ( ( YYSTYPE ∗ ) &(term ) ) − ( ( YYSTYPE ∗ ) &(anchor ) ) +1 )
#define BZZ(term , anchor ) ( ( yyrimplicit p [yyn ] ⇐ ( (yyrimplicit p [yyn ] < 0) ? yyrimplicit p [yyn ] : ( (

YYSTYPE ∗ ) &(term ) ) − ( ( YYSTYPE ∗ ) &(anchor ) ) +1 ) ) , ( ( YYSTYPE ∗ ) &(term ) ) − (
( YYSTYPE ∗ ) &(anchor ) ) +1 )

〈C setup code specific to bison 104e 〉 =
int ∗yyrimplicit p ;

104f 〈Output parser semantic actions 104f 〉 = 105a
5

yyrimplicit p ⇐ yyrimplicit ;

See also section 105a.
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105a Actions

There are several ways of making yyparse ( ) execute all portions of the action code. The one chosen here
makes sure that none of the tables gets written past its last element. To see how it works, it might be helpful
to ‘walk through’ bison’s output to see how each change affects the generated parser.
〈Output parser semantic actions 104f 〉 + =

4
104f

if (output desc .output actions ) {
int i, j;

fprintf (tables out , "%s", action desc .preamble );
if (notbare actions ) {

yypact [0]⇐ YYPACT_NINF;
yypgoto [0]⇐ −1;
yydefgoto [0]⇐ YYFINAL;

}
for (i⇐ 1; i < sizeof (yyr1 )/sizeof (yyr1 [0]); i++) {

fprintf (tables out , action desc .act setup , i, yyr2 [i]− 1);
if (action desc .print rule ) {

action desc .print rule (i);
}
if (yyr2 [i] > 0) {

if (action desc .action 1) {
fprintf (tables out , "%s", action desc .action 1);

}
}
for (j ⇐ 2; j 6 yyr2 [i]; j++) {

if (action desc .action n) {
fprintf (tables out , action desc .action n, j);

}
}
if (notbare actions ) {

yyr1 [i]⇐ YYNTOKENS;
yydefact [0]⇐ i;
yyrimplicit [i]⇐ −yyr2 [i];
yyr2 [i]⇐ 0;
yyparse (YYPARSE_PARAMETERS);

}
fprintf (tables out , action desc .act suffix , i, yyr2 [i]− 1);

}
fprintf (tables out , "%s", action desc .postamble );
if (action desc .cleanup) {

action desc .cleanup(&action desc);
}
}
for (int i⇐ 1; i < YYNRULES + 1; i++) {

if (yyrimplicit [i] > 0) {
fprintf (tables out , "\\yyimplicitlengthset{%d}{%d}%%\n", i, yyrimplicit [i]);

}
}

105b Constants

A generic list of constants to be used later in different contexts is defined below. As before, the appropriate
macro will be defined generically to do what is required with these names (for example, we can turn each
name into a string for reporting purposes).
〈Parser constants 105b 〉 =

register const d (YYEMPTY)
register const d (YYPACT_NINF)
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register const d (YYLAST)
register const d (YYNTOKENS)
register const d (YYNRULES)
register const d (YYNSTATES)
register const d (YYFINAL)

#ifndef YYEOF

register const d (YYSYMBOL_YYEOF)

#endif

This code is used in section 111b.

106a Constants defined to maintain compatibility with the older versions of bison.
〈Parser virtual constants 106a 〉 =

register const d (YYSYMBOL_YYEOF, YYEOF)

This code is used in section 111b.

106b Tokens

Similar techniques are employed in token output. Tokens are parser specific (the scanner only needs their
numeric values) so we need some flexibility to output them in a desired format. For special purposes (say
changing the way tokens are typeset) we can control the format tokens are output in.
〈Variables and types local to the parser 103g 〉 + =

4
103g 113b

5
char ∗token format char ⇐ Λ;
char ∗token format affix ⇐ Λ;
char ∗token format suffix ⇐ Λ;
char ∗bootstrap token format ⇐ Λ;

106c 〈Parser specific options without shortcuts 106c 〉 = 108c
5

register option ("token-format-char", required argument , 0, TOKEN_FORMAT_CHAR, "")
register option ("token-format-affix", required argument , 0, TOKEN_FORMAT_AFFIX, "")
register option ("token-format-suffix", required argument , 0, TOKEN_FORMAT_SUFFIX, "")
register option ("bootstrap-token-format", required argument , 0, BOOTSTRAP_TOKEN_FORMAT, "")

See also sections 108c and 112c.

106d 〈Handle parser output options 106d 〉 = 112e
5

case TOKEN_FORMAT_CHAR:
token format char ⇐ (char ∗) malloc((strlen (optarg ) + 1) ∗ sizeof (char));
strcpy (token format char , optarg );
break;

case TOKEN_FORMAT_AFFIX:
token format affix ⇐ (char ∗) malloc((strlen (optarg ) + 1) ∗ sizeof (char));
strcpy (token format affix , optarg );
break;

case TOKEN_FORMAT_SUFFIX:
token format suffix ⇐ (char ∗) malloc((strlen (optarg ) + 1) ∗ sizeof (char));
strcpy (token format suffix , optarg );
break;

case BOOTSTRAP_TOKEN_FORMAT:
bootstrap token format ⇐ (char ∗) malloc((strlen (optarg ) + 1) ∗ sizeof (char));
strcpy (bootstrap token format , optarg );
break;

See also sections 112e and 113c.

106e 〈Parser specific output descriptor fields 106e 〉 =
bool output tokens :1;
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107a No tokens are output by default.
〈Parser specific default outputs 107a 〉 =
.output tokens ⇐ 0,

107b The only part of the code below that needs any explanation is the ‘bootstrap’ token output. In bison every
token has three attributes: its ‘macro name’ (say, STRING) that is used by the parse code internally, its
‘print name’ ("string" to continue the example) that bison uses to print the token names in its diagnostic
messages, and its numeric value (that can be assigned implicitly by bison itself or explicitly by the user).
Only the ‘print names’ are kept in the yytname array so to reuse the scanner used by bison we either have
to extract the token ‘macro names’ from the C code ourselves to pass them on to the lexer, or use a special
‘stripped down’ version of a bison grammar parser to extract the names from the parser’s bison grammar.
To do this, some token names would still need to be known to the scanner. These tokens are selected by
hand to make the ‘bootstrapping’ parser operational. The token list for the bison grammar parser can be
examined as part of the appropriate driver file.
〈Output parser tokens 107b 〉 =

if (output desc .output tokens ) {
int i;
int length ;
char token ;
char ∗token name ;
bool too creative ⇐ false ;

for (i⇐ 258; i < sizeof (yytranslate )/sizeof (yytranslate [0]); i++) {
token name ⇐ yytname [yytranslate [i]];
if (token name ) {

fprintf (tables out , token format affix , yytranslate [i], i);
length ⇐ 0;
while ((token ⇐ ∗token name )) {

if (token format char ) {
length

+⇐ fprintf (tables out , token format char , (unsigned int) token );
}
if (token < ◦40 ∨ token = ◦177 ) {

too creative ⇐ true ;
}
token name ++;

}
fprintf (tables out , token format suffix , too creative ? ".unprintable." : yytname [yytranslate [i]]);

}
}
}

#ifdef BISON_BOOTSTRAP_MODE

fprintf (tables out , "\\bootstrapmodetrue\n");
fprintf (tables out , "%% token values needed to bootstrap the parser\n");
bootstrap tokens (bootstrap token format );

#endif

107c The size of the token name table is useful to determine, say, how many ‘named’ tokens the parser uses.
〈Output parser constants 107c 〉 =

fprintf (tables out , "\\constset{YYTRANSLATESIZE}{%d}%%\n", (int)(sizeof (yytranslate )/sizeof (yytranslate [0])));

107d Output modes

The code below can be easily extended and modified to output parser tables, actions, and constants in a
language of one’s choice. We are only interested in TEX, however, thus other modes are very rudimentary
or non-existent at this point.
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108a Token only mode

Token only output mode does exactly what is expected: outputs token names and values in the format of
your choosing.
〈Parser specific output modes 108a 〉 = 108f

5
TOKEN_ONLY_OUT,

See also sections 108f and 108h.

108b 〈Handle parser related output modes 108b 〉 = 108g
5

case TOKEN_ONLY_OUT:
〈Prepare token only output environment 108e 〉
break;

See also sections 108g and 108i.

108c 〈Parser specific options without shortcuts 106c 〉 + =
4
106c 112c

5
register option ("token-only-mode",no argument , 0, TOKEN_ONLY_MODE, "")

108d 〈Configure parser output modes 108d 〉 =
case TOKEN_ONLY_MODE:

mode ⇐ TOKEN_ONLY_OUT;
break;

108e 〈Prepare token only output environment 108e 〉 =
if (nottoken format char ) {

token format char ⇐ "{%u}";
}
if (nottoken format affix ) {

token format affix ⇐ "%% token: %d, token value: %d\n\\prettytoken@{";
}
if (nottoken format suffix ) {

token format suffix ⇐ "}%% %s\n";
}
output desc .output tokens ⇐ 1;

This code is used in section 108b.

108f Generic output

Generic output is not programmed yet.
〈Parser specific output modes 108a 〉 + =

4
108a 108h

5
GENERIC_OUT,

108g 〈Handle parser related output modes 108b 〉 + =
4
108b 108i

5
case GENERIC_OUT:

printf ("This mode is not supported yet\n");
exit (0);
break;

108h TEX output

The TEX mode is the main reason for this software.
〈Parser specific output modes 108a 〉 + =

4
108f

TEX_OUT,

108i 〈Handle parser related output modes 108b 〉 + =
4

108g

case TEX_OUT:
〈Set up TEX table output for parser tables 109a 〉
〈Prepare TEX format for semantic action output 110b 〉
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〈Prepare TEX format for parser constants 111b 〉
〈Prepare TEX format for parser tokens 112a 〉
break;

109a Some tables require name adjustments due to TEX’s reluctance to treat digits as part of a name.
〈Set up TEX table output for parser tables 109a 〉 = 110a

5
#define register table d (name )tex table (name );
〈Table names 96c 〉

#undef register table d
yyr1 desc .name ⇐ "yyrone";
yyr2 desc .name ⇐ "yyrtwo";

See also section 110a.

This code is used in section 108i.

109b The memory allocated for the yytname table is released at the end.
〈Helper functions declarations for for parser output 109b 〉 =

void yytname cleanup(struct table d ∗table );
int yytname formatter tex (FILE ∗stream , int index );
int yytname formatter (FILE ∗stream , int index );

109c There are a number of helper functions to output complicated names in TEX. The safest way seems to be to
output those as sequences of ASCII codes to accommodate names like $end safely. TEX’s ^^. . . convention is
supported as well.
〈Helper functions for parser output 109c 〉 = 111a

5
void yytname cleanup(struct table d ∗table )
{

free (table⇁separator );
free (table⇁null );

}
int yytname formatter tex (FILE ∗stream , int index )
{

char ∗token name ⇐ yytname [index ];
unsigned char token ;
int length ⇐ 0;

fprintf (stream , "\\addname ");
while ((token ⇐ ∗token name )) {

if (token < ◦40 ∨ token = ◦177 ) { . unprintable characters /
fprintf (stream , "^^%c", token < ◦100 ? (unsigned char)(token + ◦100 ) : (unsigned char)(token − 100));

length
+⇐ 3;

}
else {

fprintf (stream , "%c", token );
length ++;

}
token name ++;

}
fprintf (stream , "\n");
return length ;

}
int yytname formatter (FILE ∗stream , int index )
{

char ∗token name ;
unsigned char token ;
int length ⇐ 0;
bool too creative ⇐ false ; . to indicate if the name is too dangerous to print /
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fprintf (stream , "\\addname");
if (index > 0) { . this is not the last name /

token name ⇐ yytname [index ];
if (token name = Λ) {

token name ⇐ "Υimpossible";
}
while ((token ⇐ ∗token name )) {

length
+⇐ fprintf (stream , "{%u}", (unsigned int) token );

if (token < ◦40 ∨ token = ◦177 ) {
too creative ⇐ true ;

}
token name ++;

}
fprintf (stream , "%% %s\n", too creative ? ".unprintable." : yytname [index ]);

}
else { . this is the last name /

token name ⇐ yytname [−index ];
if (token name = Λ) {

token name ⇐ "Υimpossible";
}
while ((token ⇐ ∗token name )) {

length
+⇐ fprintf (stream , "{%u}", (unsigned int) token );

token name ++;
if (token < ◦40 ∨ token = ◦177 ) {

too creative ⇐ true ;
}

}
fprintf (stream , "%% %s\n\\end\n%%\n",

too creative ? ".unprintable." : (yytname [−index ] ? yytname [−index ] : "end of array"));
}
return length ;

}
See also section 111a.

110a 〈Set up TEX table output for parser tables 109a 〉 + =
4

109a

yytname desc .preamble ⇐ "%%\n\\newtable{yytname}{}\\tempca0\\relax%% a robust way to\
 add the yytname array\n";

yytname desc .separator ⇐ Λ;
yytname desc .postamble ⇐ Λ;
yytname desc .null ⇐ Λ;
yytname desc .null postamble ⇐ Λ;
yytname desc .optimized numeric ⇐ Λ;
yytname desc .prettify ⇐ false ;
yytname desc .formatter ⇐ yytname formatter ;
yytname desc .cleanup ⇐ Λ;
output desc .output yytname ⇐ 1;

110b 〈Prepare TEX format for semantic action output 110b 〉 =
if (optimize actions ) {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax % see the documentation for an explanation of this trick\n"

"\\def\\yybigswitch#1{%%\n"

"    \\csname dobisonaction\\number #1\\parsernamespace\\endcsname\n"

"}\\stashswitch{yybigswitch}%%\n";
action desc .act setup ⇐ "\n\\expandafter\\def\\csname dobisonaction%d\\parsernamespa\

ce\\endcsname{%%\n%%";
action desc .act suffix ⇐ "}%% end of rule %d\n";
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action desc .action 1 ⇐ Λ;
action desc .action n ⇐ Λ;
action desc .postamble ⇐ "\n\\catcode‘\\/=12\\relax\n\n";
action desc .print rule ⇐ print rule ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
else {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax % see the documentation for an explanation of this trick\n"

"\\def\\yybigswitch#1{%%\n"

"  \\ifcase#1\\relax\n";
action desc .act setup ⇐ "      \\or %% (rule %d) ";
action desc .act suffix ⇐ "";
action desc .action 1 ⇐ Λ;
action desc .action n ⇐ Λ;
action desc .postamble ⇐ "  \\else\n  \\fi\n}\\stashswitch{yybigswitch}%%\n\\catcode‘\

\\/=12\\relax\n\n";
action desc .print rule ⇐ print rule ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
This code is used in section 108i.

111a Grammar rules are listed in a readable form alongside the action code to make it possible to quickly find an
appropriate action. The rules are not output if a crippled bison is used.
〈Helper functions for parser output 109c 〉 + =

4
109c

void print rule (int n)
{

fprintf (tables out , "%s%s:  ", (n < 10 ∧ notoptimize actions ? " " : ""), yytname [yyr1 [n]]);

#ifndef BISON_IS_CRIPPLED

int i;

i⇐ yyprhs [n];
if (yyrhs [i] < 0) {

fprintf (tables out , "<empty>");
}
else {

while (yyrhs [i] > 0) {
fprintf (tables out , "%s ", yytname [yyrhs [i]]);
i++;

}
}

#endif
fprintf (tables out , "\n");

}

111b TEX constant output is another place where the techniques described above are applied. As before, the macro
handles the repetitive work of initialization, declaration, etc in each place where the corresponding constant
is mentioned. The exceptions are YYPACT_NINF and YYSYMBOL_YYEOF that have to be handled separately
because the underscore in its name makes it difficult to use it as a command sequence name.
〈Prepare TEX format for parser constants 111b 〉 =
#define register const d (c name ) c name## desc .format ⇐ "\\constset{%s}{%d}%%\n";

c name## desc .name ⇐ #c name ;
c name## desc .value ⇐ c name ;
output desc .output ##c name ⇐ 1;
〈Parser constants 105b 〉
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#undef register const d

#ifdef YYEOF . other values have already been set correctly /

#define register const d (c name , vvalue ) c name## desc .format ⇐ "\\constset{%s}{%d}%%\n";
c name## desc .name ⇐ #c name ;
c name## desc .value ⇐ vvalue ;
output desc .output ##c name ⇐ 1;
〈Parser virtual constants 106a 〉

#undef register const d

#endif
YYPACT_NINF_desc .name ⇐ "YYPACTNINF";
YYSYMBOL_YYEOF_desc .name ⇐ "YYSYMBOLxYYEOF";

This code is used in section 108i.

112a Token definitions round off the TEX output mode.
〈Prepare TEX format for parser tokens 112a 〉 =

token format char ⇐ Λ; . do not output individual characters /
if (nottoken format affix ) {

token format affix ⇐ "\\tokenset{%d}{%d}";
}
if (nottoken format suffix ) {

token format suffix ⇐ "%% %s\n";
}
if (notbootstrap token format ) {

bootstrap token format ⇐ "\\expandafter\\def\\csname token\\parsernamespace %s\\endcs\
name{%d}%% %s\n";

} . output desc .output tokens ⇐ 1; is no longer necessary as it is done entirely in TEX /

This code is used in section 108i.

112b Command line options

We start with the most obvious option, the one begging for help.

112c 〈Parser specific options without shortcuts 106c 〉 + =
4

108c

register option ("help",no argument , 0, LONG_HELP, "")

112d 〈Shortcuts for command line options affecting parser output 112d 〉 =
, ’h’

112e 〈Handle parser output options 106d 〉 + =
4
106d 113c

5
case ’h’: . short help /

fprintf (stderr , "Usage: %s [options] output_file\n", argv [0]);
exit (0);
break; . should not be needed /

case LONG_HELP:
fprintf (stderr ,

"%s [--mode=TeX:options] output_file outputs tables\n""    and constants for a TeX parser\n",
argv [0]);

exit (0);
break; . should not be needed /

112f 〈Parser specific options with shortcuts 112f 〉 =
register option ("debug", optional argument , 0, ’b’, "")
register option ("mode", required argument , 0, ’m’, "")
register option ("table-separator", required argument , 0, ’z’, "")
register option ("format", required argument , 0, ’f’, "") . name? /
register option ("table", required argument , 0, ’t’, "") . specific table /
register option ("constant", required argument , 0, ’c’, "") . specific constant /
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register option ("name-length", required argument , 0, ’l’, "") . change MAX_NAME_LENGTH /
register option ("token", required argument , 0, ’n’, "") . specific token /
register option ("run-parse", required argument , 0, ’p’, "") . run the parser /
register option ("parse-file", required argument , 0, ’i’, "") . input for the parser /

113a The string below is a list of short options.

113b A few options can be discussed immediately.
〈Variables and types local to the parser 103g 〉 + =

4
106b

char ∗table separator ⇐ "%s ";

113c 〈Handle parser output options 106d 〉 + =
4

112e

case ’m’: . output mode /
switch (optarg [0]) {
case ’T’: case ’t’:

mode ⇐ TEX_OUT;
break;

case ’b’: case ’B’: case ’g’: case ’G’:
mode ⇐ GENERIC_OUT;
break;

default:
break;

}
break;

case ’z’: table separator ⇐ (char ∗) malloc((strlen (optarg ) + 1) ∗ sizeof (char));
strcpy (table separator , optarg );
break;

113d flex specific routines

The output of the scanner automaton follows the steps similar to the ones taken during the parser output.
The major difference is in the output of actions and constants.

113e Tables

As in the case of a parser we start with all the table names.
〈Scanner table names 113e 〉 =

register table d (yy accept )
register table d (yy ec)
register table d (yy meta )
register table d (yy base )
register table d (yy def )
register table d (yy nxt )
register table d (yy chk )

113f Actions

The scanner function, yylex ( ), has been reverse engineered to execute all portions of the action code. The
method chosen here makes sure that none of the tables gets written past its last element.
〈Variables and types local to the scanner driver 113f 〉 = 115b

5
int max yybase entry ⇐ 0;
int max yyaccept entry ⇐ 0;
int max yynxt entry ⇐ 0;
int max yy ec entry ⇐ 0;

See also sections 115b and 119g.
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114a The ‘exotic’ scanner constants treated below are the constants used to control the scanner code itself.
Unfortunately they are not given any names that can be used by the ‘driver’ to output them in a simple
way.
〈Compute exotic scanner constants 114a 〉 =
{

int i;

for (i⇐ 0; i < sizeof (yy base )/sizeof (yy base [0]); i++) {
if (yy base [i] > max yybase entry ) {

max yybase entry ⇐ yy base [i];
}
}
for (i⇐ 0; i < sizeof (yy nxt )/sizeof (yy nxt [0]); i++) {

if (yy nxt [i] > max yynxt entry ) {
max yynxt entry ⇐ yy nxt [i];

}
}
for (i⇐ 0; i < sizeof (yy accept )/sizeof (yy accept [0]); i++) {

if (yy accept [i] > max yyaccept entry ) {
max yyaccept entry ⇐ yy accept [i];

}
}
for (i⇐ 0; i < sizeof (yy ec)/sizeof (yy ec [0]); i++) {

if (yy ec [i] > max yy ec entry ) {
max yy ec entry ⇐ yy ec [i];

}
}
}

114b 〈Output scanner actions 114b 〉 =
if (output desc .output actions ) {

int i, j;

yyscan t fake scanner ;
fprintf (tables out , "%s", action desc .preamble );
if (notbare actions ) {

if (yylex init (&fake scanner )) {
printf ("Cannot initialize the scanner\n");

}
yy ec [0]⇐ 0;
yy base [1]⇐ max yybase entry ;
yy base [2]⇐ 0;
yy chk [0]⇐ 2;
yy chk [max yybase entry ]⇐ 1;
yy nxt [max yybase entry ]⇐ 1;
yy nxt [0]⇐ 1;
fprintf (stderr , "max entry: %d\n",max yybase entry );

}
for (i⇐ 1; i 6 max yyaccept entry ; i++) {

fprintf (tables out , action desc .act setup , i);
if (i = YY_END_OF_BUFFER) {

fprintf (tables out , " %% YY_END_OF_BUFFER\n%s\n", "          \\yylexeofaction");
}
else {

fprintf (tables out , "\n");
if (notbare actions ) {

((struct yyguts t ∗) fake scanner )⇁yy hold char ⇐ 0;
yy accept [1]⇐ i;
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if (i% 10 = 0) {
fprintf (stderr , ".");

}
yylex (Λ, fake scanner );

}
}
fprintf (tables out , action desc .act suffix , i);

}
fprintf (tables out , "      %% end of file states:\n%s\n",

"      %#define YY_STATE_EOF(state) (YY_END_OF_BUFFER + state + 1)");
if (max eof state = 0) { . in case the user has not declared any states /

max eof state ⇐ YY_STATE_EOF(INITIAL);
}
for ( ; i 6 max eof state ; i++) {

fprintf (tables out , action desc .act setup , i);
if (notbare actions ) {

fprintf (tables out , "\n");
((struct yyguts t ∗) fake scanner )⇁yy hold char ⇐ 0;
yy accept [1]⇐ i;
yylex (Λ, fake scanner );

}
fprintf (tables out , action desc .act suffix , i);

}
fprintf (tables out , "%s", action desc .postamble );
if (action desc .cleanup) {

action desc .cleanup(&action desc);
}
}
〈Compute magic constants 115c 〉
〈Output states 116b 〉;
fprintf (tables out , "\\constset{YYECMAGIC}{%d}%%\n", yy ec magic);
fprintf (tables out , "\\constset{YYMAXEOFSTATE}{%d}%%\n",max eof state );

115a 〈Error codes 99h 〉 + =
4

99h

BAD_SCANNER,

115b 〈Variables and types local to the scanner driver 113f 〉 + =
4
113f 119g

5
int yy ec magic ;

115c The ‘magic’ constants are similar to the ‘exotic’ ones mentioned above except the methods used to compute
them rely on reverse engineering the scanner function. Since this changes the scanner tables it has to be
done after the ‘driver’ has finished going through all the actions.
〈Compute magic constants 115c 〉 =
{

int i, j;
char fake yytext [YY_MORE_ADJ + 1];

yyscan t yyscanner ;

struct yyguts t ∗yyg ;

if (yylex init (&yyscanner )) {
printf ("Cannot initialize the scanner\n");
exit (BAD_SCANNER);

}
yyg ⇐ (struct yyguts t ∗) yyscanner ;
yyg⇁yy start ⇐ 0;
yy set bol (0);
yyg⇁yytext ptr ⇐ fake yytext ;
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yyg⇁yy c buf p ⇐ yyg⇁yytext ptr + 1 + YY_MORE_ADJ;
fake yytext [YY_MORE_ADJ]⇐ 0; . ∗yy cp ⇐ 0; /
yy accept [0]⇐ 0;
yy base [0]⇐ 0;
for (i⇐ 0; i < sizeof (yy chk )/sizeof (yy chk [0]); i++) {

yy chk [i]⇐ 0;
}
for (i⇐ 0; i < sizeof (yy nxt )/sizeof (yy nxt [0]); i++) {

yy nxt [i]⇐ i;
}
yy ec magic ⇐ yy get previous state (yyscanner );

}
This code is used in section 114b.

116a State names

There is no easy way to output the symbolic names for states, so this has to be done by hand while the
actions are output. The state names are accumulated in a list structure and are printed out after the action
output is complete.

Note that parsing the scanner file is only partially helpful (even though the extended parser and scanner
can recognize the %x option). All that can be done is output the state names but not their numerical values,
since all such names are macros whose values are only known to the flex generated scanner.
#define Define State (st name , st num ) do {

struct lexer state d ∗this state ;
this state ⇐ malloc(sizeof (struct lexer state d ));
this state⇁name ⇐ st name ;
this state⇁value ⇐ st num ;
this state⇁next ⇐ Λ;
if (last state ) {

last state⇁next ⇐ this state ;
last state ⇐ this state ;

}
else {

last state ⇐ state list ⇐ this state ;
}
if (YY_STATE_EOF(st num ) > max eof state ) {

max eof state ⇐ YY_STATE_EOF(st num );
}
} while (0);

〈Scanner variables and types for C preamble 116a 〉 =
int max eof state ⇐ 0;
struct lexer state d {

char ∗name ;
int value ;
struct lexer state d ∗next ;
};
struct lexer state d ∗state list ⇐ Λ;
struct lexer state d ∗last state ⇐ Λ;

116b 〈Output states 116b 〉 =
{

struct lexer state d ∗current state ;
struct lexer state d ∗next state ;

current state ⇐ next state ⇐ state list ;
if (current state ) {
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fprintf (tables out , "\\def\\setflexstates{%%\n""  \\stateset{INITIAL}{%d}%%\n", INITIAL);
while (current state ) {

fprintf (tables out , "  \\stateset{%s}{%d}%%\n", current state⇁name , current state⇁value );
current state ⇐ current state⇁next ;
free (next state );
next state ⇐ current state ; . the name field is not deallocated because it is not allocated on the heap /

}
fprintf (tables out , "}%%\n%%\n");

}
}

This code is used in section 114b.

117a Constants

The few hard coded constants needed for the lexer to work are listed here.
〈Scanner constants 117a 〉 =

register const d (YY_END_OF_BUFFER_CHAR)
register const d (YY_NUM_RULES)
register const d (YY_END_OF_BUFFER)

This code is used in section 118b.

117b Output modes

The output modes are the same as those in the parser driver with some minor changes.

117c Generic output

Generic output is not programmed yet.
〈Scanner specific output modes 117c 〉 = 117e

5
GENERIC_OUT,

See also section 117e.

117d 〈Handle scanner output modes 117d 〉 = 117f
5

case GENERIC_OUT:
printf ("This mode is not supported yet\n");
exit (0);
break;

See also section 117f.

117e TEX mode

The TEX mode is the main focus of this software.
〈Scanner specific output modes 117c 〉 + =

4
117c

TEX_OUT,

117f 〈Handle scanner output modes 117d 〉 + =
4

117d

case TEX_OUT:
〈Set up TEX format for scanner tables 117g 〉
〈Set up TEX format for scanner actions 118a 〉
〈Prepare TEX format for scanner constants 118b 〉
break;

117g 〈Set up TEX format for scanner tables 117g 〉 =
tex table generic(yy accept );
yy accept desc .name ⇐ "yyaccept";
tex table generic(yy ec);
yy ec desc .name ⇐ "yyec";
tex table generic(yy meta );
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yy meta desc .name ⇐ "yymeta";
tex table generic(yy base );
yy base desc .name ⇐ "yybase";
tex table generic(yy def );
yy def desc .name ⇐ "yydef";
tex table generic(yy nxt );
yy nxt desc .name ⇐ "yynxt";
tex table generic(yy chk );
yy chk desc .name ⇐ "yychk";

This code is used in section 117f.

118a 〈Set up TEX format for scanner actions 118a 〉 =
if (optimize actions ) {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax\n%\n"

"\\def\\yydoactionswitch#1{%%\n"

"    \\let\\yylextail\\yylexcontinue\n"

"    \\csname doflexaction\\number #1\\parsernamespace\\endcsname\n"

"    \\yylextail\n"

"}\\stashswitch{yydoactionswitch}%\n";
action desc .act setup ⇐ "\n\\expandafter\\def\\csname doflexaction%d\\parsernamespac\

e\\endcsname{%%";
action desc .act suffix ⇐ "}%% end of rule %d\n";
action desc .action 1 ⇐ Λ;
action desc .action n ⇐ Λ;
action desc .postamble ⇐ "\\catcode‘\\/=12\\relax\n%\n";
action desc .print rule ⇐ Λ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
else {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax\n%\n"

"\\def\\yydoactionswitch#1{%%\n  \\let\\yylextail\\yylexcontinue\n"

"  \\ifcase#1\\relax\n";
action desc .act setup ⇐ "      \\or\n""      \\YYRULESETUP %% (rule %d) ";
action desc .act suffix ⇐ "      %% end of rule %d\n";
action desc .action 1 ⇐ Λ;
action desc .action n ⇐ Λ;
action desc .postamble ⇐ "  \\else\n  \\fi\n  \\yylextail\n}\\stashswitch{yydoactions\

witch}%\n\\catcode‘\\/=12\\relax\n%\n";
action desc .print rule ⇐ Λ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
This code is used in section 117f.

118b TEX constant output is another place where the techniques described above are applied. A few names are
handled separately, because they contain underscores.
〈Prepare TEX format for scanner constants 118b 〉 =
#define register const d (c name ) c name## desc .format ⇐ "\\constset{%s}{%d}%%\n";

c name## desc .name ⇐ #c name ;
c name## desc .value ⇐ c name ;
output desc .output ##c name ⇐ 1;
〈Scanner constants 117a 〉

#undef register const d
YY_END_OF_BUFFER_CHAR_desc .name ⇐ "YYENDOFBUFFERCHAR";
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YY_NUM_RULES_desc .name ⇐ "YYNUMRULES";
YY_END_OF_BUFFER_desc .name ⇐ "YYENDOFBUFFER";

This code is used in section 117f.

119a 〈Output exotic scanner constants 119a 〉 =
fprintf (tables out , "\\constset{YYMAXREALCHAR}{%ld}%%\n", sizeof (yy accept )/(sizeof (yy accept [0]))− 1);
fprintf (tables out , "\\constset{YYBASEMAXENTRY}{%d}%%\n",max yybase entry );
fprintf (tables out , "\\constset{YYNXTMAXENTRY}{%d}%%\n",max yynxt entry );
fprintf (tables out , "\\constset{YYMAXRULENO}{%d}%%\n",max yyaccept entry );
fprintf (tables out , "\\constset{YYECMAXENTRY}{%d}%%\n",max yy ec entry );

119b Command line options

We start with the most obvious option, the one begging for help.

119c 〈Scanner specific options without shortcuts 119c 〉 =
register option ("help",no argument , 0, LONG_HELP, "")

119d 〈Shortcuts for command line options affecting scanner output 119d 〉 =
, ’h’

119e 〈Handle scanner output options 119e 〉 = 119h
5

case ’h’: . short help /
fprintf (stderr , "Usage: %s [options] output_file\n", argv [0]);
exit (0);
break; . should not be needed /

case LONG_HELP:
fprintf (stderr ,

"%s [--mode=TeX:options] output_file outputs tables\n""    and constants for a TeX scanner\n",
argv [0]);

exit (0);
break; . should not be needed /

See also section 119h.

119f 〈Scanner specific options with shortcuts 119f 〉 =
register option ("debug", optional argument , 0, ’b’, "")
register option ("mode", required argument , 0, ’m’, "")
register option ("table-separator", required argument , 0, ’z’, "")
register option ("format", required argument , 0, ’f’, "") . name? /
register option ("table", required argument , 0, ’t’, "") . specific table /
register option ("constant", required argument , 0, ’c’, "") . specific constant /
register option ("name-length", required argument , 0, ’l’, "") . change MAX_NAME_LENGTH /
register option ("token", required argument , 0, ’n’, "") . specific token /
register option ("run-scan", required argument , 0, ’p’, "") . run the scanner /
register option ("scan-file", required argument , 0, ’i’, "") . input for the scanner /

119g A few options can be immediately discussed.
〈Variables and types local to the scanner driver 113f 〉 + =

4
115b

int debug level ⇐ 0;
char ∗table separator ⇐ "%s ";

119h 〈Handle scanner output options 119e 〉 + =
4

119e

case ’b’: . debug (level) /
debug level ⇐ optarg ? atoi (optarg ) : 1;
break;

case ’m’: . output mode /
switch (optarg [0]) {
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case ’T’: case ’t’:
mode ⇐ TEX_OUT;
break;

case ’b’: case ’B’: case ’g’: case ’G’:
mode ⇐ GENERIC_OUT;
break;

default:
break;

}
break;

case ’z’: table separator ⇐ (char ∗) malloc((strlen (optarg ) + 1) ∗ sizeof (char));
strcpy (table separator , optarg );
break;



10
Philosophy

This section should, perhaps, be more appropriately called rant but philosophy sounds more academic. The
design of any software involves numerous choices, and SPLinT is no exception. Some of these choices are
explained in the appropriate places in the package files. This section collects a few ‘big picture’ viewpoints
that did not fit elsewhere.

121a On typographic convention

It must seem quite perplexing to some readers that a manual focussing on pretty-printing shows such a
wanton disregard for good typographic style. Haphazard choice of layouts to present programming constructs,
random overabundance of fonts on almost every page are just a few of the many typographic sins and design
guffaws so amply manifested in this opus. The author must take full responsibility for the lack of taste in
this document and has only one argument in his defense: this is not merely a book for a good night read
but a piece of technical documentation.

In many ways, the goal of this document is somewhat different from that of a well-written manual: to
display the main features prominently and in logical order. After all, this is a package that is intended to
help write such manuals so it must inevitably present some use cases that exhibit a variety of typographic
styles achievable with SPLinT. Needless to say, variety and consistency seldom go hand in hand and it is
the consistency that makes for a pretty page. One of the objectives has been to reveal a number of quite
technical programming constructs so one should keep in mind that it is assumed that the reader will want to
look up the input files to see how some (however ugly and esoteric) typographic effects have been achieved.

On the other hand, to quote a cliché, beauty is in the eyes of the beholder so what makes a book readable (or
even beautiful) may well depend on the reader’s background. As an example, letterspacing as a typographic
device is almost universally reviled in Western typography (aside from a few niche uses such as setting titles).
In Russian, however (at least until recently), letterspacing has been routinely used for emphasis (or, as a
Russian would put it, e m p h a s i s) in lieu of, say, italics. Before I hear any objections from typography
purists, let me just say that this technique fits in perfectly with the way emphasis works in the Russian
speech: the speaker slowly enunciates the sounds of each word (incidentally, emphasizing emphasis this way
is a perfect example of the inevitable failure of any attempted letterspaced highlighting in most English
texts). Letterspaced sentences are easy to find on a page, and they set a special reading rhythm, which is an
added bonus in many cases, although their presense openly violates the ‘universally gray pages are a must’
dogma.

One final remark concerns the abundance of footnotes in this manual. I confess, there is almost no reason
for it . . . except I like footnotes! They help introduce the air of mystery and adventure to an otherwise


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boring text. They are akin to the author wispering a secret in the reader’s ear 1).

122a Why GPL

Selecting the license for this project involves more than the availability of the source code. TEX, by its
very nature is an interpreted 2) language, so it is not a matter of hiding anything from the reader or a
potential programmer. The C code is a different matter but the source is not that complicated. Reducing
the licensing issue to the ability of someone else to see the source code is a great oversimplification. Short
of getting into too many details of the so-called ‘open source licenses’ (other than GPL) and arguing with
their advocates, let me simply express my lack of understanding of the arguments purporting that BSD-style
licenses introduce more freedom by allowing a software vendor to incorporate the BSD-licensed software into
their products. What benefit does one derive from such ‘extension’ of software freedom? Perhaps the hope
that the ‘open source’ (for the lack of a better term) will prompt the vendor to follow the accepted free
(or any other, for that matter!) software standards and make its software more interoperable with the free
alternatives? A well-known software giant’s embrace, extend, extinguish philosophy shows how näıve and
misplaced such hopes are.

I am not going to argue for the benefits of free software at length, either (such benefits seem self-evident
to me, although the readers should feel free to disagree). Let me just point out that the software companies
enjoy quite a few freedoms that we, as software consumers elect to afford them. Among such freedoms are
the ability to renege on any promises made to us and withdraw any guarantees that we might enjoy. As
a result of such ‘release of any responsibility’, the claims of increased reliability or better support for the
commercial software sound a bit hollow. Free software, of course, does not provide any guarantees, either
but ‘you get what you paid for’.

Another well spread industry tactic is user brainwashing and changing the culture (usually for the worse)
in order to promote new ‘user-friendly’ features of commercial software. Instead of taking advantage of
computers as cognitive machines we have come to view them as advanced media players that we interact
with through artificial, unnatural interfaces. Meaningless terminology (‘UX’ for ‘user experience’? What in
the world is ‘user experience’?) proliferates, and programmers are all too happy to deceive themselves with
their newly discovered business prowess.

One would hope that the somewhat higher standards of the ‘real’ manufacturers might percolate to the
software world, however, the reality is very different. Not only has life-cycle ‘engineering’ got to the point
where manufacturers can predict the life spans of their products precisely, embedded software in those
products has become an enabling technology that makes this ‘life design’ much easier.

In effect, by embedding software in their products, hardware manufacturers not only piggy-back on
software’s perceived complexity, and argue that such complex systems cannot be made reliable, they have an
added incentive to uphold this image. The software weighs nothing, memory is cheap, consumers are easy
to deceive, thus ‘software is expensive’ and ‘reliable software is prohibitively so’. Designing reliable software
is quite possible, though, just look at programmable thermostats, simple cellphones and other ‘invisible’
gadgets we enjoy. The ‘software ideology’ with its ‘IP’ lingo is spreading like a virus even through the world
of real things. We now expect products to break and are too quick to forgive sloppy (or worse, malicious)
engineering that goes into everyday things. We are also getting used to the idea that it is the manufacturers
that get to dictate the terms of use for ‘their’ products and that we are merely borrowing ‘their’ stuff.

The GPL was conceived as an antidote to this scourge. This license is a remarkable piece of ‘legal
engineering’: a self-propagating contract with a clearly outlined set of goals. While by itself it does not
guarantee reliability or quality, it does inhibit the spread of the ‘IP’ (which is sometimes sarcastically, though
quite perceptively, ‘deabbreviated’ as Imaginary Property) disease through software.

The industry has adapted, of course. So called (non GPL) ‘open source licenses’, that are supposed to be
an improvement on GPL, are a sort of ‘immune reaction’ to the free software movement. Describing GPL
as ‘viral’, creating dismissive acronims such as FLOSS to refer to the free software, and spreading outright
misinformation about GPL are just a few of the tactics employed by the software companies. Convince and
confuse enough apathetic users and the protections granted by GPL are no longer visible.

1) Breaking convention by making the pages even less uniform is an added bonus. 2) There are some exceptions to this, in
the form of preloaded formats.
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123a Why not C++ or OOP in general

The choice of the language was mainly driven by æsthetic motives: C++ has a bloated and confusing standard,
partially supported by various compilers. It seems that there is no agreement on what C++ really is or how to
use some of its constructs. This is all in contrast to C with its well defined and concise body of specifications
and rather well established stylistics. The existence of ‘obfuscated C’ is not good evidence of deficiency and
C++ is definitely not immune to this malady.

Object oriented design has certainly taken on an aura of a religious dictate, universally adhered to and
forcefully promoted by its followers. Unfortunately, the definition of what constitutes an ‘object-oriented’
approach is rather vague. A few informal concepts are commonly tossed about to give the illusion of a
well developed abstraction (such as ‘polymorphism’, ‘encapsulation’, and so on) but definitions vary in both
length and content, depending on the source.

On the syntactic level, some features of object-oriented languages are undoubtedly very practical (such as
a this pointer in C++), however, many of those features can be effectively emulated with some clever uses of
an appropriate preprocessor (there are a few exceptions, of course, this being one of them). The rest of the
‘object-oriented philosophy’ is just that: a design philosophy. Before that we had structured programming,
now there are patterns, extreme, agile, reactive, etc. They might all find their uses, however, there are
always numerous exceptions (sometimes even global variables and goto’s have their place, as well).

A pedantic reader might point out a few object-oriented features even in the TEX portion of the package
and then accuse the author of being ‘inconsistent’. I am always interested in possible improvements in style
but I am unlikely to consider any changes based solely on the adherence to any particular design fad.

In short, OOP was not shunned simply because a ‘non-OOP’ language was chosen, instead, whatever
approach or style was deemed most effective was used. The author’s judgment has not always been perfect,
of course, and given a good reason, changes can be made, including the choice of the language. ‘Make it
object-oriented’ is neither a good reason nor a clearly defined one, however.

123b Why not ∗TEX

Simple. I rarely, if ever 1), use it and have no idea of how packages, classes, etc., are designed. I have heard
it has impressive mechanisms for dealing with various problems commonly encountered in TEX. Sadly, my
knowledge of ∗TEX machinery is almost nonexistent 2). This may change but right now I have tried to make
the macros as generic as possible, hopefully making ∗TEX adaptation easy 3).

The following quote from [Ho] makes me feel particularly uneasy about the current state of development
of various TEX variants: “Finally, to many current programmers WEB source simply feels over-documented
and even more important is that the general impression is that of a finished book: sometimes it seems like
WEB actively discourages development. This is a subjective point, but nevertheless a quite important one.”

Discouraging development seems like a good feature to me. Otherwise we are one step away from
encouraging writing poor software with inadequate tools merely ‘to encourage development’.

The feeling of a WEB source being over-documented is most certainly subjective, and, I am sure, not shared
by all ‘current programmers’. The advantage of using WEB-like tools, however, is that it gives the programmer
the ability to place vital information where it does not distract the reader (‘developer’, ‘maintainer’, call it
whatever you like) from the logical flow of the code.

Some of the complaints in [Ho] are definitely justified (see below for a few similar criticisms of CWEB),
although it seems that a better approach would be to write an improved tool similar to WEB, rather than
give up all the flexibility such a tool provides.

1) In some cases, a publisher would only accept a LATEX document, sadly. Better than most alternatives though. 2) I am well
familiar with the programming that went into LATEX, which is of highest quality. I do not share the design philosophy though
and try to use only the most standard features 3) Unfortunately some redesign would be certainly necessary. Thus, SPLinT
relies on the way plain TEX allocates token registers so if the corresponding scheme in LATEX is drastically different, this por-
tion of the macros would have to be rewritten.
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124a Why CWEB

CWEB is not as polished as TEX but it works and has a number of impressive features. It is, regrettably,
a ‘niche’ tool and a few existing extensions of CWEB and software based on similar ideas do not enjoy the
popularity they deserve. Literate philosophy has been largely neglected even though it seems to have a more
logical foundation than OOP. Under these circumstances, CWEB seemed to be the best available option.

124b Some CWEB idiosynchrasies

CWEB was among the first tools for literate programming intended for public use 1). By almost every measure
it is a very successful design: the program mostly does what is intended, was used in a number of projects,
and made a significant contribution to the practice of literate programming. It also gave rise to a multitude
of similar software packages (see, for example, noweb by N. Ramsey, [Ra]), which proves the vitality of the
approach taken by the authors of CWEB.

While the value of CWEB is not in dispute, it would be healthy to outline a few deficiencies 2) that became
apparent after intensive (ab)use of this software. Before we proceed to list our criticisms, however, the author
must make a disclaimer that not only most of the complaints below stem from trying to use CWEB outside of
its intended field of application but such use has also been hampered by the author’s likely lack of familiarity
with some ot CWEB’s features.

The first (non)complaint that must be mentioned here is CWEB’s narrow focus on C-styled languages. The
‘grammar’ used to process the input is hard coded in CWEAVE, so any changes to it inevitably involve rewriting
portions of the code and rebuilding CWEAVE. As C11 came to prominence, a few of its constructs have been
left behind by CWEAVE. Among the most obvious of these are variadic macros and compound literals. The
former is only a problem in CWEB’s @d style definitions (which are of questionable utility to begin with) while
the lack of support for the latter may be somewhat amended by the use of @[. . .@] and @; constructs to
manipulate CWEAVE’s perception of a given chunk as either an exp or a stmt. This last mechanism of syntactic
markup is spartan but remarkably effective, although the code thus annotated tends to be hard to read in
the editor (while resulting in just as beautifully typeset pages, nonetheless).

Granted, CWEB’s stated goal was to bring the technique of literate programming to C, C++, and related
languages so the criticism above must be viewed in this context. Since CWEAVE outputs TEX, one avenue
for customizing its use to one’s needs is modifying the macros in cwebmac.tex. SPLinT took this route
by rewriting a number of macros, ranging from simple operator displays (replacing, say, ‘=’ with ‘⇐’) to
extensively customizing the indexing mechanism.

Unfortunately, this strategy could only take one thus far. The TEX output produced by CWEAVE does not
always avail itself to this approach readily. To begin with, while combining its ‘chunks’ into larger ones,
CWEAVE dives in and out of the math mode unpredictably, so any macros trying to read their ‘environment’
must be ready to operate both inside and outside of the math mode and leave the proper mode behind when
they are done. The situation is not helped by the fact that both the beginning and the end of the math
mode in TEX are marked by the same character ($, and it costs you, indeed) so ‘expandable’ macros are
difficult to design.

Adding to these difficulties is CWEAVE’s facility to insert raw TEX material in the middle of its input (the
@t. . .@> construct). While rather flexible, by default it puts all such user supplied TEX fragments inside an
\hbox which brings with it all the advantages, and, unfortunately, disadvantages of grouping, inability to
introduce line breaks within the fragment, etc. There is, of course, an easy fix to most of these woes, outlined
in CWEB’s manual: one can simply type @t} TEX stuff {@> which inserts \hbox{} TEX stuff {} into CWEAVE’s
output. The cost of this hack (aside from looking and feeling rather ugly on the editor screen, not to mention
disrupting the editor’s brace accounting) is a superfluous \hbox{} left behind before the ‘TEX stuff’. The
programmer provided TEX code is unable to remove this box (at the macro level, i.e. in TEX’s ‘mouth’ using
D. Knuth’s terminology, one may still succeed with the \lastbox approach unless the \hbox was inserted in
the main vertical mode) and it may result in an unwanted blank line, slow down the typesetting, etc. Most
of these side-effects are easily treatable but it would still be nice if a true ‘asm style’ insertion of raw TEX

1) The original WEB was designed to support DEK’s TEX and METAFONT projects and was inteded for PASCAL family languages.
2) Quirks would be a better term.
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were possible 1).
Continuing with the theme of inserting TEX material into CWEAVE output, another one of CWEB’s inflexibil-

ities is the lack of means of inserting TEX between sections. While inserting pure text may be arranged by
putting a codeless section after the one with the code (appropriate macros can be written to suppress the
generation of a reference to such a section), inserting command sequences that affect, say, the typesetting
style of the consequent sections is not so easy. The trick with a ‘fake’ section below will be quite visible in
the final output which is almost always undesirable. Using the @t mechanism is also far from ideal.

In general, the lack of structure in CWEAVE’s generated TEX seems to hinder even seemingly legitimate uses
of cwebmac.tex macros. Even such a natural desire as to use a different type size for the C portions of the
CWEB input is unexpectedly tricky to implement. Modifying the \B macro results in rather wasteful multiple
reading of the tokens in the C portion, not to mention the absense of any guarantee that \B can find the end
of its argument (the macros used by SPLinT look for the \par inserted by CWEAVE whenever \B is output
but an unsuspecting programmer may disrupt this mechanism by inserting h{is, her} own \par using the
@t facility with the aim to put a picture in the middle of the code, for example.

The authors of CWEB understood the importance of the cross-referencing facilities provided by their program.
There are several control sequences dedicated to indexing alone (which itself has been the subject of criticism
aimed at CWEB). The indexing mechanism addresses a number of important needs, although it does not seem
to be as flexible as required in some instances. For example, most book indices are split into sections
according to the first letter of the indexed word to make it easier to find the desired term in the index (or
to establish that it is not indexed). Doing so in CWEB requires some macro acrobatics, to say the least.

Also absent is a facility to explicitly inhibit the indexing of a specific word (in CWEAVE’s own source, the
references for pp fill up several lines in the index) or limit it to definitions only (as CWEAVE automatically
does for single letter identifiers). This too, can be fixed by writing new indexing macros.

Finally, the index is created at the point of CWEAVE invocation, before any pagination information becomes
available. It is therefore difficult to implement any page oriented referencing scheme. Instead, the index and
all the other cross referencing facilities are tied to section numbers. In the vast majority of cases, this is a
superior scheme: sections tend to be short and the index creation is fast. Sometimes, however, it is useful
to provide the page information to the index macros. Unfortunately, after the index creation is completed,
any connection between the words in the original document and those in the index is lost.

The indexing macros in SPLinT that deal with bison and flex code have the advantage of being able
to use the page numbers so a better indexing scheme is possible. The section numbering approach taken
by SPLinT approximately follows that of noweb: the section reference consists of two parts, where the first
is the page number the section starts on, and the the second is the index of the section within the page.
Within the page, sections are indexed by (sequences of) letters of the aphabet (a. . .z and, in the rarest
of cases, aa. . .zz and so on). Numbering the sections themselves is not terribly complicated. Where it
gets interesting, is during the production of the index entries based on this system. When the sections are
short, just referencing the section where the term appears works well. Sometimes, however, a section is split
between two or more pages, in which case the indexing macros provide a compromise: whenever the term
appears on a page different from the one on which the corresponding section starts, the index entry for that
term uses the page number instead of the section reference. The difference between the two is easy to see,
since the page number does not have any alphabetic characters in it.

This is not exactly how the references work in noweb, since noweb ignores the TEX portion of the section
and only references the code chunks but it is similar in spirit. Other conveniences, also borrowed from noweb,
are the references in the margins that allow the reader to jump from one chink to the next whenever the
code chunk is composed of several sections. All of these changes are implemented with macros only, so, for
example, the finer section number/page number scheme is not available for the index entries produced by
CWEAVE itself. In the case of CWEB generated entries only the section numbers are used (which in most cases
do provide the correct page number as part of the reference, however).

To conclude this Festivus 2) style airing of grievances, let me state once again that CWEB is a remarkable

1) It must be said that in the majority of cases such side-effects are indeed desirable, and save the programmer some typing
but it seems that the @t facility was not well thought out in its entirety. 2) Yes, I am old enough to know what this means.
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tool, and incredibly useful as it is, although it does test one’s ability to write sophisticated TEX if subtle
effects are desired. Finally, when all else fails, one is free to modify CWEB itself or even write one’s own
literate programming tool.

126a Why not GitHub c©, Bitbucket c©, etc

Git is fantastic software that is used extensively in the development of SPLinT. The distribution archive is a
Git repository. The use of centralized services such as GitHub c© 1), however, seems redundant. The standard
cycle, ‘clone-modify-create pull request’ works the same even when ‘clone’ is replaced by ‘download’. Thus,
no functionality is lost. This might change if the popularity of the package unexpectedly increases.

On the other hand, GitHub c© and its cousins are commercial entities, whose availability in the future is not
guaranteed (nothing is certain, of course, no matter what distribution method is chosen). Keeping SPLinT
as an archive of a Git repository seems like an efficient way of being ready for an unexpected change.

1) A recent aquisition of GitHub c© by a company that not so long ago used expletives to refer to the free software movement
only strengthens my suspicions, although everyone is welcome to draw their own conclusions.
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Checklists

This (experimental) section serves to aid in the testing and extension of SPLinT by formalizing a number
of procedures in the form of a checklist. After having witnessed first hand the effectiveness of checklists in
aviation, the author feels that a similar approach will be beneficial in programming, as well. Most of these
tests can and should be automated but the applicable situations are rather rare so the automation has not
been implemented yet.

General checklist.

Have the checklists in this section been followed?
Have all the examples been built and tested?

make: this would build the ld parser, as well as other parts, like ssfo.pdf, etc.
symbols
xxpression (both make and make test)
expression (both make and make test)
once in a while it is useful to run a tool like diffpdf to check that the generated output does not
change unexpectedly
parsec (not part of SPLinT)

Have the changes been documented?
If any limitations have been removed, has this been reflected in the documentation, examples, such as
symbols.sty?
If any new conditionals have been added, does yydebug.sty provide a way to check their status, if
appropriate?
If any new script option has been added, has the script documentation been updated?

If a new process has been introduced, has it been reflected in any of the checklists in this section?

Rewriting checklist.

Is the output of the new system identical?
once in a while it is useful to run a tool like diffpdf to check that the generated output does not
change unexpectedly
has diff been used to check that .gdx and .gdy files produced are (nearly) identical?
has diff been used to check that .sns files produced by symbols and xxpression examples are
(nearly) identical?


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Index

This section is, perhaps, the most valuable product of CWEB’s labors. It lists references to definitions (set in
italic) as well as uses for each C identifier used in the source. Special facilities have been added to extend the
indexing to bison grammar terms, flex regular expression names and state names, as well as flex options,
and TEX control sequences encountered in bison actions. Definitions of tokens (via 〈token〉, 〈nterm〉 and
〈type〉 directives) are typeset in bold. The bison and TEX entries are put in distinct sections of the index in
order to keep the separation between the C entries and the rest. It may be worth noting that the definition of
the symbol is listed under both its ‘macro name’ (such as CHAR, typeset as char in the case of the grammar
below), as well as its ‘string’ name if present (to continue the previous example, "char" is synonymous with
char after a declaration such as ‘〈token〉 char "char"’), while the use of the term lists whichever token
form was referenced at the point of use (both forms are accessible when the entry is typeset for the index
and a macro can be written to mention the other form as well). The original syntax of bison allows the
programmer to declare tokens such as { and } and the indexing macros honor this convention even though
in a typeless environment such as the one the present typesetting parser is operating in such declarations
are redundant. The indexing macros also record the use of such character tokens. The quotes indicate
that the ‘string’ form of the token’s name was used. A section set in italic references the point where the
corresponding term appeared on the left hand side of a production. A production:

left hand side :
term1 term2 term3 \do \something \withΥ1

inside the TEX part of a CWEB section will generate several index entries, as well, including the entries for
any material inside the action, mimicking CWEB’s behavior for the inline C (|. . .|). Such entries (except for
the references to the C code inside actions) are labeled with ◦, to provide a reminder of their origin.

This parser collection, as well as the indexing facilities therein have been designed to showcase the broadest
range of options available to the user and thus it does not always exhibit the most sane choices one could
make (for example, using a full blown parser for term names is poor design but it was picked to demonstrate
multiple parsers in one program). The same applies to the way the index is constructed (it would be easy
to only use the ‘string’ name of the token if available, thus avoiding referencing the same token twice).

TEX control sequences are listed following the index of all bison and flex entries. The different sections
of the index are separated by a dinkus (∗ ∗ ∗). Since it is nearly impossible to determine at what point
a TEX macro is defined (and most of them are defined outside of the CWEB sources), only their uses are
listed (to be more precise, every appearance of a macro is assumed to be its use). In a few cases, a ‘graphic’
representation for a control sequence appears in the index (for example, π1 represents \getfirst). The index
entries are ordered alphabetically. The latter may not be entirely obvious in the cases when the ‘graphical


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representation’ of the corresponding token manifests a significant departure from its string version (such as
Υ1 instead of \yy (1)). Incidentally, for the examples on this page (as well an example in the section about
TEX pretty-printing) both the ‘graphic’ as well as ‘text’ versions of the control sequence are indexed. It is
instructive to verify that their location in the index corresponds to the ‘spelling’ of their visual representation
(thus, π1 appears under ‘p’). One should also be aware that the indexing of some terms has been suppressed,
since they appear too often.

Υ: 5a, 6a
Υ1 : 5a, 6a

func : 100a
__FUNCTION__: 92c
__PRETTY_FUNCTION__: 92c
__VA_ARGS__: 97e
desc : 94b, 96b, 98b, 98d, 99c, 111b,

118b
register const d : 98d, 98e, 99a, 99c,

105b, 106a, 111b, 117a, 118b
register name : 42c, 78e, 79b, 87b
register table d : 93d, 94a, 94b, 96b,

103f, 104d, 109a, 113e
register token d : 38l, 38m

A ···················································
abstract syntax tree: 4a
act setup : 97a, 105a, 110b, 114b, 118a
act suffix : 97a, 105a, 110b, 114b, 118a
action d: 97a, 97d
action desc : 97d, 105a, 110b, 114b, 118a
action n: 97a, 105a, 110b, 118a
action1: 97a, 105a, 110b, 118a
all : 7c
anchor : 104e
any constants : 99c
ap : 100a
ap save : 100a
arg flag : 102a, 102b, 102c
argc : 91a, 101f
argv : 91a, 101f, 112e, 119e
assert : 92c, 104a, 104c
atoi : 119h

B ···················································
BAD_MIX_FORMAT: 99h, 100a
BAD_SCANNER: 115a, 115c
BAD_STRING: 99h, 100a
bare actions : 96d, 96e, 105a, 114b
BISON_BOOTSTRAP_MODE: 24a, 107b
BISON_IS_CRIPPLED: 103g, 104a, 111a
bootstrap token format : 38l, 106b, 106d,

107b, 112a
BOOTSTRAP_TOKEN_FORMAT: 106c, 106d
bootstrap tokens : 38l, 107b
bootstrapping: ch3, 24a
brace start line : 67d
buffer : 100a
but : 7c
BZ: 104e
BZZ: 104e

C ···················································
c: 101e
c desc : 99e
c name : 98d, 98e, 99a, 99c, 111b, 118b
char2int : 84d
cleanup : 94e, 95a, 97a, 98b, 105a, 110a,

110b, 114b, 118a
const: 92c
const d: 98c, 98d
const out : 99c, 99e

context-free: 4a
current state : 116b

D ··················································
dd : 102b
dd no argument : 102b
dd optional argument : 102b
dd required argument : 102b
debug level : 119g, 119h
define all states : ch4, 78d, 79a, ch8
Define State : 42c, 78e, 79b, 87b, 116a
dinkus (∗ ∗ ∗): ch13

E ···················································
err codes: 99g
exit : 91a, 100a, 101f, 108g, 112e, 115c,

117d, 119e
exp : 102a

F ···················································
fake scanner : 114b
fake yytext : 115c
false : 107b, 109c, 110a
fclose : 93b
Festivus: 124b
fopen : 101f
forever: 93a, 101f
format : 98c, 99e, 99i, 100a, 111b, 118b
formatp : 100a
formatter : 94e, 95a, 98b, 110a
fprintf : 38l, 91a, 94e, 97e, 99b, 99e,

100a, 101f, 105a, 107b, 107c, 109c,
111a, 112e, 114b, 116b, 119a, 119e

free : 109c, 116b
FUNCTION__: 92c

G ···················································
GENERIC_OUT: 108f, 108g, 113c, 117c,

117d, 119h
getopt long : 101c, 101f, 102b
grammar: 4a

H ··················································
higher options: 101e

I ····················································
i: 94e, 104a, 105a, 107b, 111a, 114a,

114b, 115c
ID: 38m
id1 : 84d
index : 109b, 109c
INITIAL: 114b, 116b
intval : 39a
it : 7c

J ···················································
j: 94e, 104a, 105a, 114b, 115c

L ···················································
LAST_ERROR: 99g
LAST_HIGHER_OPTION: 101e
LAST_OUT: 100b
last state : 116a
length : 100a, 107b, 109c

lexer state d: 116a, 116b
literate programming: 124b
loc : 102a, 102b, 102c
LONG_HELP: 112c, 112e, 119c, 119e
long options : 101e, 101f

M ··················································
main : 91a
malloc : 100a, 106d, 113c, 116a, 119h
max eof state : 114b, 116a
MAX_NAME_LENGTH: 112f, 119f
MAX_PRETTY_LINE: 94e, 99i, 100a
max yy ec entry : 113f, 114a, 119a
max yyaccept entry : 113f, 114a, 114b,

119a
max yybase entry : 113f, 114a, 114b,

119a
max yynxt entry : 113f, 114a, 119a
message : 97e
mix string : 99i, 100a
mode : 91a, 101b, 108d, 113c, 119h

N ··················································
n: 111a
name : 38l, 42c, 78e, 79b, 87b, 93d, 94a,

94b, 94e, 95a, 96b, 98b, 98c, 99e, 101f,
102a, 102b, 102c, 109a, 111b, 116a,
116b, 117g, 118b

next : 116a, 116b
next state : 116b
no argument : 94d, 96e, 108c, 112c, 119c
NO_MEMORY: 99h, 100a
NON_OPTION: 101e
noweb: 124b
null : 94e, 95a, 98b, 109c, 110a
null postamble : 94e, 95a, 98b, 110a

O ··················································
of : 7c
optarg : 106d, 113c, 119h
opterr : 101f
optimize actions : 96d, 96e, 110b, 111a,

118a
optimize tables : 94c, 94d, 94e
optimized numeric : 94e, 95a, 98b, 110a
optind : 101f
option : 101e
option index : 101e, 101f
optional argument : 112f, 119f
output : 93d, 94a, 94e, 98b, 98e, 99a,

99c, 111b, 118b
output actions : 97b, 97c, 105a, 110b,

114b, 118a
output d: 93c
output desc : 93c, 94e, 98b, 99c, 105a,

107b, 108e, 110a, 110b, 111b, 112a,
114b, 118a, 118b

output mode: 100b, 101b
output table : 94e, 96b
output tokens : 106e, 107a, 107b, 108e,

112a
output yytname : 110a
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P ···················································
parser: 4a
parser stack: ch3
PERCENT_TOKEN: 38m
postamble : 94e, 95a, 97a, 98b, 105a,

110a, 110b, 114b, 118a
pp : 124b
preamble : 94e, 95a, 97a, 98b, 105a, 110a,

110b, 114b, 118a
prettify : 94e, 95a, 98b, 110a
print rule : 97a, 105a, 110b, 111a, 118a
printf : ch9, 100a, 101f, 108g, 114b, 115c,

117d
putchar : 101f

R ···················································
recursive descent parser: 4a
register option : 94d, 96e, 102a, 102b,

102c, 106c, 108c, 112c, 112f, 119c,
119f

reject : 77b
required argument : 106c, 112f, 119f
rule number : 104c

S ···················································
scanner states: ch4
separator : 94e, 95a, 98b, 109c, 110a
size : 100a
st name : 116a
st num : 116a
state list : 116a, 116b
stderr : 91a, 100a, 101f, 112e, 114b, 119e
strcpy : 106d, 113c, 119h
stream : 94e, 99e, 109b, 109c
string : 97e
STRING: 38m
strlen : 104b, 106d, 113c, 119h
strnlen : 100a
strstr : 100a
syntax-directed translation: ch3

T ···················································
table : 109b, 109c
table d: 94b, 94e, 95a, 109b, 109c
table desc : 94e
table name : 94e, 98b
table separator : 113b, 113c, 119g, 119h
tables out : 38l, 91a, 93a, 93b, 96b, 97e,

99b, 99c, 101f, 105a, 107b, 107c, 111a,
114b, 116b, 119a

term : 104e
term0 : 84d
TEX_: 97e, other refs.
TeX__: 97e
TEX_OUT: 101b, 108h, 108i, 113c, 117e,

117f, 119h
tex table : 98b, 109a
tex table generic : 98b, 117g
TEX(a): 97e, other refs.
TEX(ao): 97e, other refs.
TEX(b): 97e, other refs.

TEX(f): 97e, other refs.
TEX(fo): 97e, other refs.
this state : 116a
token : 107b, 109c
token format affix : 106b, 106d, 107b,

108e, 112a
TOKEN_FORMAT_AFFIX: 106c, 106d
token format char : 106b, 106d, 107b,

108e, 112a
TOKEN_FORMAT_CHAR: 106c, 106d
TOKEN_FORMAT_SUFFIX: 106c, 106d
token format suffix : 106b, 106d, 107b,

108e, 112a
token name : 107b, 109c
TOKEN_ONLY_MODE: 108c, 108d
TOKEN_ONLY_OUT: 108a, 108b, 108d
too creative : 107b, 109c
true : 98b, 107b, 109c

U ··················································
uniqstr : 37e
usage : 96e, 101d, 101f

V ···················································
va arg : 100a
va copy : 100a
va end : 100a
va start : 100a
val : 101f, 102a, 102b, 102c
value : 98c, 99e, 111b, 116a, 116b, 118b
verbatim block: 2a
vsnprintf : 100a
vvalue : 111b

W ··················································
written : 100a

X ···················································
xgettext : 50f

Y ···················································
yy accept : 113e, 114a, 114b, 115c, 117g,

119a
yy accept desc : 117g
yy base : 113e, 114a, 114b, 115c, 117g
yy base desc : 117g
yy c buf p : 115c
yy chk : 113e, 114b, 115c, 117g
yy chk desc : 117g
yy cp : 115c
yy def : 113e, 117g
yy def desc : 117g
yy ec : 113e, 114a, 114b, 117g
yy ec desc : 117g
yy ec magic : 114b, 115b, 115c
YY_END_OF_BUFFER: 114b, 117a
YY_END_OF_BUFFER_CHAR: 117a
YY_END_OF_BUFFER_CHAR_desc : 118b
YY_END_OF_BUFFER_desc : 118b
YY_FATAL_ERROR: 97e
yy get previous state : 115c
yy hold char : 114b
yy meta : 113e, 117g

yy meta desc : 117g
YY_MORE_ADJ: 115c
YY_NUM_RULES: 117a
YY_NUM_RULES_desc : 118b
yy nxt : 113e, 114a, 114b, 115c, 117g
yy nxt desc : 117g
yy set bol : 115c
yy start : 115c
YY_STATE_EOF: 114b, 116a
yycheck : 103f
yydefact : 103f, 105a
yydefgoto : 103f, 105a
YYEMPTY: 105b
YYEOF: 105b, 106a, 111b
YYFINAL: 105a, 105b
yyg : 115c
yyguts t : 114b, 115c
YYLAST: 105b
yyleng : 50e
yyless : ch6
yylex : 92c, 113f, 114b
yylex init : 114b, 115c
yymore : 77b
yyn : 104e
YYNRULES: 103g, 104a, 104c, 105a, 105b
YYNSTATES: 105b
YYNTOKENS: 105a, 105b
yypact : 103f, 105a
YYPACT_NINF: 105a, 105b
YYPACT_NINF_desc : 111b
yyparse : ch2, 12a, 92c, 96d, 105a
YYPARSE_PARAMETERS: 105a
yypgoto : 103f, 105a
yyprhs : 18a, 92c, 103f, 103g, 104a, 104b,

104c, 111a
yyrhs : 18a, 92c, 103f, 103g, 104a, 104b,

104c, 111a
yyrimlicit : 104e
yyrimplicit : 103g, 104f, 105a
yyrimplicit p : 104e, 104f
yyrthree : 18a, 92c, 103g, 104c, 104d
yyr1 : 103f, 104a, 104c, 105a, 111a
yyr1 desc : 109a
yyr2 : 103f, 105a
yyr2 desc : 109a
yyscan t : 114b, 115c
yyscanner : 115c
yystos : 103f
YYSTYPE: 104e
YYSYMBOL_YYEOF: 105b, 106a
YYSYMBOL_YYEOF_desc : 111b
yytable : 103f
yytext ptr : 115c
yytname : 24a, 26b, 27f, 103f, 104b, 107b,

109b, 109c, 111a
yytname cleanup : 109b, 109c
yytname desc : 110a
yytname formatter : 109b, 109c, 110a
yytname formatter tex : 109b, 109c
yytranslate : 103f, 107b, 107c

BISON, FLEX, AND TEX INDICES

〈 〉: 53, 61, 74
〈 〉: 53, 61, 74
/: 58
$: 58, 58◦, 80, 80◦, 81◦

〈%〉: 24◦, 27a, 27b, 28b, 28d◦, 31◦, 38h,
40◦, 45, 50◦

〈<flag>〉: 27a, 44, 44, 44

%[ a . . . Z 0 . . . 9 ]∗: 79, 80, 86, 87
〈array〉: 65◦

〈code〉: 27a, 29c, 42
〈debug〉: 42◦, 44◦

〈default-prec〉: 27a, 29c, 42
〈define〉: 27a, 29, 42
〈defines〉: 27a, 29, 42

〈destructor〉: 26b, 29c, 42
〈dprec〉: 26b, 35b, 35b◦, 36◦, 42
〈empty〉: 34, 35b, 35b◦, 36b◦, 42
〈error-verbose〉: 27a, 29, 42
〈expect〉: 27a, 29, 42
〈expect-rr〉: 27a, 29, 42
〈file-prefix〉: 27a, 29, 42
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〈glr-parser〉: 27a, 29, 42
〈initial-action〉: 27a, 29, 42
〈language〉: 27a, 29, 42
〈left〉: 26b, 30c, 42
〈locations〉: 42◦, 44◦

〈merge〉: 26b, 35b, 35b◦, 36◦, 42
〈name-prefix〉: 27a, 29, 42
〈no-default-prec〉: 27a, 29c, 42
〈no-lines〉: 27a, 29, 42
〈nonassoc〉: 26b, 30c, 42
〈nondet. parser〉: 27a, 29, 42
〈nterm〉: 24a◦, 26b, 27f◦, 30i, 30i◦, 42,

129◦

〈option〉: 65◦

〈option_name〉: 79◦

〈output〉: 27a, 29, 42
〈param〉: 27a, 29, 44, 44, 44
〈pointer〉: 65◦

〈prec〉: 26b, 35b, 42
〈precedence〉: 26b, 30c, 42
〈printer〉: 26b, 30, 42
〈pure-parser〉: 42◦, 44◦

〈require〉: 27a, 29, 42
〈right〉: 26b, 30c, 42
〈skeleton〉: 27a, 29, 42
〈start〉: 27a, 29c, 42
〈token〉: 24a◦, 26b, 27f◦, 31, 30i◦, 42,

129◦

〈token-table〉: 27a, 29, 42
〈top〉: 54◦, 55◦, 65◦, 65◦

〈type〉: 26b, 30c, 31b◦, 42, 129◦

〈union〉: 30b, 30c, 42
〈verbose〉: 27a, 29, 42
〈yacc〉: 27a, 29, 42, 43
^: 58, 60
*: 4a◦, 5◦, 57, 59
* or ?: 79, 80, 87
<: 57, 80, 80◦, 81◦

〈?〉: 27a, 29
<tag>: 27a
>: 57, 80, 80◦, 81◦

[: 60
[ 0 . . . 9 ]∗: 79, 80, 87
[ a . . . Z 0 . . . 9 ]∗: 79, 80, 82◦, 88
]: 60
{: 55, 129◦

{f : 53, 59, 70
{p: 53, 53◦, 59, 70

}: 55, 129◦

}f : 53, 59, 74
}p: 53, 53◦, 59, 74

(: 4a◦, 5◦, 59
): 4a◦, 5◦, 59
+: 59
-: 80, 80◦, 81◦

〈7→〉: 53, 61, 74
–: 60
=: 55
_: 80, 80◦, 81◦

|: 33d◦, 58
\: 53, 60, 70
\c: 79, 80, 87
\n: 54, 55, 56, 56◦, 75◦, 75◦

,: 57, 59, 59
;opt: ch3◦, 28, 28

.: 53, 59, 80, 80◦, 81◦

〈.〉: 61, 74
?: 59

’: 80
": 59, 80
"%{...%}"m: 27a, 50
"%{...%}": 27a, 29
"%?{...}"m: 27a, 50
"%?{...}": 27a, 35b
"<*>"m: 27a, 43
"<*>": 27a, 31b
"<>"m: 27a, 43
"<>": 27a, 31b
<tag>: 27a, 30c, 30c◦, 30h◦, 31b, 31c,

31c◦, 35b, 48
"[identifier]"m: 27a, 35b, 46, 47
"[identifier]": 27a
"{...}"m: 27a, 49
"{...}": 27a, 29, 29c, 30c, 35b, 38g
"="m: 27a, 43
"=": 27a
"|"m: 27a, 43
"|": 27a, 32b, 32b
";"m: 27a, 43
";": 27a, 28, 29, 32b
"end of file"m: 26b
ýidentifier: þ: 27a, 37h, 45
"identifier:": 27a
〈0..9〉: 53, 61, 74
〈0..Z〉: 53, 61, 74

A ···················································
〈A..Z〉: 53, 61, 74
〈a..z〉: 53, 61, 74
all: 7f
〈αβ〉: 53, 61, 74
〈αn〉: 53, 61, 74
〈array〉: 53, 54, 65
astring: 4a◦, 5◦, 4a◦, 5◦

B ···················································
〈§〉: 53, 61, 74
bison options example: 26a
$@n: 33d◦, 33d◦

braceccl: 60, 60
but: 7f

C ···················································
ccl: 60, 60
ccl expr: 60, 61
char: 27a, 37e, 48, 53, 59, 60, 61, 72,

72◦, 129◦

char2int: 82◦

code props type: 29c, 29c

D ··················································
〈def〉: 53, 54, 66
〈defre〉: 53, 54, 67
〈deprecated〉: 53, 54, 65

E ···················································
〈EOF〉: 53, 58, 70
◦ (empty rhs): 4a◦, 5◦, 28, 28d, 30c, 33d◦,

35b, 38g, 38h, 53, 54, 55, 56, 56, 57,
60, 61, 80

end of file: 26b
epilogue: 27a, 28b, 38h, 50
epilogueopt: 27b, 27d, 28b, 38h

error: 32b, 54, 57, 58
example1: 79◦

expression: 17◦

ext: 79, 80, 87
〈extra type〉: 53, 55, 68

F ···················································
flexrule: 55, 57, 58
full name: 79
fullccl: 59, 60, 60

G ···················································
generic symlist: 29c, 31b, 31b
generic symlist item: 31b, 31b
goal: 53, 54, 55, 57
grammar: 27b, 27d, 32a, 32a
grammar declaration: 27f◦, 28g, 29c, 30c,

32b
grammar declarations: 28, 27f, 28

H ··················································
〈header〉: 53, 55, 68

I ····················································
id: 31c, 37e, 37g
id colon: 32b, 32b, 33b◦, 37h
id1: 82◦

ýidentifierþ: 10◦, 27a, 29c, 30c, 37e, 37i◦,
38g, 45, 45, 46

identifier string: 80, 79, 80
in: 7e
initforrule: 53, 56, 55, 56◦

initlex: 53, 53
� (inline action): 29, 30i, 31, 32b
input: 27b, 27d, 27f, 28b
int: 27a, 29, 31a, 31a◦, 31c, 35b, 43
it: 7f

L ···················································
Λ: 40◦

l: 79, 80, 87
left hand side: 129◦

lex compat: 53◦

line: 7e
lr.type: 26a◦

M ··················································
ýmeta identifierþ: 79, 79, 79◦, 80◦, 88
mid: 34b◦

more: 5a, 7e

N ··················································
na: 79, 80, 87
ýnameþ: 53, 54, 55, 57, 57◦, 57◦, 68
named ref opt: 32b, 32b, 33b◦, 35b, 35b

namelist1: 54, 54, 54◦, 54◦, 54◦

namelist2: 57, 57
〈¬ 〉: 53, 61, 74
〈¬ 〉: 53, 61, 74
〈¬ 7→〉: 53, 61, 74
〈¬.〉: 53, 61, 74
〈¬0..9〉: 53, 61, 74
〈¬0..Z〉: 53, 61, 74
〈¬A..Z〉: 53, 61, 74
〈¬a..z〉: 53, 61, 74
〈¬αβ〉: 53, 61, 74
〈¬αn〉: 53, 61, 74
〈¬§〉: 53, 61, 74
〈¬2〉: 53, 61, 74
next term: 7a, 7d
non terminal: 5a
not: 7f
num: 53, 59, 59, 74

O ··················································
of: 7f
opt: 79, 80, 87
〈option〉: 53, 55, 54, 55, 65
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optionlist: 55, 54, 55
options: 54, 54
〈other〉: 53, 55, 67, 68, 69, 69
other term: 5a
〈outfile〉: 53, 55, 68

P ···················································
PREVCCL: 53, 59, 59◦, 60◦

params: 29, 29
〈parse.trace〉: 26a, 51, 79
pexp: 4a◦, 5◦, 4a◦, 5◦

〈pointer*〉: 53, 54, 65
posix compat: 53◦

precedence declaration: 29c, 30c
precedence declarator: 30c, 30c
〈prefix〉: 53, 55, 68
prologue declaration: 28d, 28g
prologue declarations: 27b, 28b, 28d, 28d

Q ··················································
qualified suffixes: 80, 80
qualifier: 80, 80
quoted name: 80, 79

R ···················································
r: 79, 80, 87
re: 58, 58, 59
re2: 58, 58
rhs: 32b, 32b, 33c◦, 35b, 35b
rhses: 34b◦

rhses1: 32b, 32b, 32b, 33b◦, 33d◦

rhses1: 34a◦, 34c◦

rule: 58, 58
rules: 32b, 32b
rules or grammar declaration: 32a, 32b

S ···················································
SECTEND: 53, 53, 66
scon: 55, 57
scon stk ptr: 56, 57
sconname: 57, 57
sect1: 53, 54, 54, 54
sect1end: 53, 53
sect2: 53, 55, 55, 55, 56, 56◦

series: 58, 59, 59
singleton: 59, 59◦, 59, 59
〈start〉: 26a, 51, 79
startconddecl: 54, 54
〈state〉: 53, 54, 65
still: 5a
string: 26b, 29, 29b◦, 37i, 38g, 38g◦, 47,

59, 61, 61
string as id: 31c, 37g, 37i
stuff: 7a, 7d, 7e
suffixes: 80, 80
suffixesopt: 80, 79

symbol: 29c, 31a, 31b, 31b, 31b◦, 35b,
37f◦, 37g, 37g◦

symbol declaration: 28, 29c, 30c, 30i
symbol def: 31c, 31d
symbol defs1: 30i, 31, 31d, 31d
symbol.prec: 31a, 31a
symbols1: 30c, 31a◦, 31b, 31b, 31b
symbols.prec: 30c, 31a, 31a

T ···················································
TOKEN (example): 24a
〈tables〉: 53, 55, 68
tag: 31b, 31b
tagopt: 30c, 30c

term name: 20◦

term1: 5a, 129◦

term2: 5a, 129◦

term3: 5a, 129◦

term0: 82◦

terms: 5a
this: 7e
"token" (example): 24a
〈token table〉: 26a, 51, 79
〈top〉: 53, 54
translation-unit: 17◦

U ··················································
∪: 53, 60, 70
〈union〉: 24, 25, 25a, 26, 51, 52, 52,

52, 79
union name: 30c, 30c

V ···················································
value: 29, 38g
variable: 29, 38g

X ···················································
〈xtate〉: 53, 54, 65

Y ···················································
〈yyclass〉: 53, 55, 68

Z ···················································
〈2〉: 53, 61, 74

FLEX INDEX

〈 〉: 40, 70
〈 ∗〉: 64, 65, 70, 73, 74
〈 +〉: 64, 65, 67, 67, 69, 70
〈 〉: 64, 65, 65, 70
*: 76, 76
〈0..9〉: 65, 66, 70, 74
� separator, flex: 69
〈0..Z〉: 65

A ···················································
ACTION: 64, 71, 71, 71, 72, 75, 75, 76
ACTION_STRING: 64, 75, 76
〈αβ〉: 65, 68, 75
〈αn〉: 65

B ···················································
〈BOGUS〉: 64◦

〈§〉: 43
bison-bridge: 41, 64, 86

C ···················································
CARETISBOL: 64, 73
CCL: 64, 73, 74, 76, 76
〈CCL_CHAR〉: 65, 70
〈CCL_EXPR〉: 65, 70, 74
CODEBLOCK: 64, 65, 65, 66, 75
CODEBLOCK_MATCH_BRACE: 64, 65, 66
COMMENT: 64, 65, 66, 66◦, 75, 76
COMMENT_DISCARD: 64, 66, 71, 72, 76
〈c-escchar〉: 85, 87
caseless: 64

D ··················································
debug: 41, 64, 86
(no)default: 64

E ···················································
〈EOF〉: 43, 43◦, 45, 46, 47, 47, 47, 47, 48,

48, 49, 49, 50, 50, 66, 69, 76, 76
〈ESCSEQ〉: 65, 65, 76
EXTENDED_COMMENT: 64, 66, 73, 76
〈eqopt〉: 40, 43

F ···················································
〈FIRST_CCL_CHAR〉: 65, 70
FIRSTCCL: 64, 72, 73, 74, 76
"fil.c": 64
flex options example: 41

G ···················································
GROUP_MINUS_PARAMS: 64, 73, 76
GROUP_WITH_PARAMS: 64, 73, 73, 76

I ····················································
INITIAL: 25◦, 41, 42, 43◦, 45, 45, 46, 46,

47, 47, 48, 48, 49, 50, 50, 50, 65, 66,
67, 67, 69, 77◦

〈id〉: 39, 43, 46, 85
〈id_strict〉: 82◦, 85, 85, 87
(no)input: 41, 64, 86
〈int〉: 39, 42, 43, 85, 87

L ···················································
〈LEXOPT〉: 65, 65
LINEDIR: 64, 65, 66
〈letter〉: 39, 39, 85, 85, 87
"lo.c": 41

M ··················································
〈M4QEND〉: 65, 66, 75, 75, 76
〈M4QSTART〉: 65, 66, 75, 75, 76
〈meta_id〉: 85, 87

N ··················································
〈NAME〉: 65, 65, 65, 70, 75
〈NOT_NAME〉: 65
〈NOT_WS〉: 65, 67, 69
NUM: 64, 70, 74
〈←↩〉: 65, 65, 66, 67, 67, 69, 69, 70, 73,

74, 75, 75, 76
〈notletter〉: 39, 43

O ··················································
OPTION: 64, 65, 67
〈option〉f : 41, 64, 86
〈output to〉f : 41, 64, 64, 86

P ···················································
PERCENT_BRACE_ACTION: 64, 70, 70, 74,

75◦

PICKUPDEF: 64, 66, 67

Q ··················································
QUOTE: 64, 70, 73, 76

R ···················································
RECOVER: 64, 69, 69◦

reentrant: 41, 64, 86

S ···················································
SC: 64, 70, 73
SC_AFTER_IDENTIFIER: 40, 41, 44, 45
SC_BRACED_CODE: 40, 43, 49, 49, 50
SC_BRACKETED_ID: 41, 41, 43, 45, 46
SC_CHARACTER: 41, 49, 49, 50
SC_COMMENT: 40, 47, 49, 50
SC_EPILOGUE: 40, 45, 49, 50, 50
SC_ESCAPED_CHARACTER: 40, 43, 45, 48,

48, 50, 86
SC_ESCAPED_STRING: 40, 43, 45, 47, 48,

50, 86
SC_LINE_COMMENT: 40, 47, 49, 50
SC_PREDICATE: 40, 43, 49, 49, 50
SC_PROLOGUE: 40, 45, 49, 50, 50
SC_RETURN_BRACKETED_ID: 41, 41, 45, 45,

45, 46, 47
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SC_STRING: 41, 49, 49, 50
SC_TAG: 40, 43, 45, 48
SC_YACC_COMMENT: 40, 42, 47
〈SCNAME〉: 65, 65, 73
SECT2: 64, 69, 70, 73, 74, 74, 75, 76, 76
SECT2 PROLOG: 64, 66, 69
SECT3: 64, 72, 76
"small_lexer.c": 86
〈splice〉: 40, 47, 47, 49, 49, 49
"ssfs.c": 64
stack: 41, 64, 86
〈state-x〉f : 40, 40, 40, 40, 40, 40, 41,

41, 64, 86
(no)stdinit: 64

U ··················································
(no)unput: 41, 64, 86

W ··················································
〈wc〉: 85, 87

Y ···················································
(no)yy_top_state: 41, 64, 86
(no)yywrap: 41, 64, 86

TEX INDEX

\/ : 71, 72
\$ : 70, 81
%: 43, 65, 68
{ (\lbchar): 66
\} : 72, 74
\( : 70
\) : 70
−1R (\m@ne): 48, 49, 49, 50
\: 49
0R (\z@): 43, 48, 49, 50, 66, 69, 75, 75
1R (\@ne): 45, 48, 49, 69
2R (\tw@): 45

A ···················································
\actbraces : 33c, 34c, 35e
add (\advance): 45, 48, 48, 49, 49, 50
\anint : 43
A← A+sx B (\appendr): 35d, 35e, 36a,

36b, 82
\appendtolistx : 32c, 32d, 33c, 34, 34a,

34b, 34c, 56, 56, 56
\arhssep : 35e, 36a
\astformat@flaction : 56
\astformat@flnametok : 72
\astformat@flparens : 60
\astformat@flrule : 58, 58

B ···················································
\bdend : 33c, 34c, 35e, 36a
\bidstr : 81
\bpredicate : 36a
\bracedvalue : 38g
\braceit : 29
\bracketedidcontextstate : 43, 45, 46,

46
\bracketedidstr : 43, 44, 45, 45, 45, 46,

46, 46, 47

C ···················································
\charit : 37
\chstr : 81, 81, 81, 81, 81, 81, 81, 81
\codeassoc : 29c, 30d
\codepropstype : 30a
A← A+s B (\concat): 32d, 82
\contextstate : 42, 47, 47, 47, 49, 49
continue (\yylexnext): several refs.

\csname : 43, 76

D ··················································
def (\def): 65, 66, 69, 70, 70, 71, 71, 72,

72, 74, 76
defx (\edef): 28e, 32c, 32d, 33c, 43, 44,

44, 44, 44, 44, 44, 44, 45, 46, 47, 48,
48, 49, 50, 50, 56, 67, 68, 72, 72

\default : 32d
deprecated (\yypdeprecated): 43
\do : 129◦

\doing@codeblocktrue : 70
\dotsp : 80, 82, 82, 83
\dprecop : 36

E ···················································
else (\else): several refs.
∅ (\empty): 28e, 29, 43, 44, 45, 45, 45,

46, 46, 46, 47, 56, 58, 58, 60, 72
p. . .q (\emptyterm): 33c, 34c, 35e, 36a,

36b
\endcsname : 43, 76
enter (\yyBEGIN): several refs.
enterx (\yyBEGINr): 46, 46, 47, 47, 47,

49
\errmessage : 32b
\executelist : 33b, 54, 55, 56
\executelistat : 27c, 27e, 28c
\expandafter : 27c, 27e, 28c, 43, 44, 46,

47, 54, 55, 56, 58, 58, 60, 67, 72

F ···················································
fatal (\yyfatal): 43, 44, 46, 46, 47, 47,

47, 48, 48, 49, 49, 49, 50, 65, 66, 67,
68, 73, 74, 76, 76, 88

fi (\fi): several refs.
\finishlist : 27c, 27e, 28c, 33b, 54, 55,

56
\flaction : 56
\flactionc : 56
\flactiongroup : 56
\flarrayopt : 55
\flbareaction : 56
\flbolrule : 58
\flbrace@depth : 65, 66, 66
\flbraceccl : 60
\flbracecclneg : 60
\flbracelevel : 66, 69, 69, 69, 70, 70,

71, 71, 72, 74, 75, 75, 75
\flccldiff : 60
\flcclexpr : 60
\flcclrnge : 60
\flcclunion : 60
\flchar : 60, 60, 60, 61
\flcontinued@actionfalse : 71, 71, 72
\flcontinued@actiontrue : 71
\fldec : 66, 69, 75
\fldidadeffalse : 66
\fldidadeftrue : 67
\fldoing@codeblockfalse : 75
\fldoing@rule@actionfalse : 75, 76
\fldoing@rule@actiontrue : 70, 71, 71,

72
\fldot : 60
\flend@ch : 72
\flend@is@wsfalse : 72
\flend@is@wstrue : 72
\fleof : 58
\flin@rulefalse : 70, 71, 71, 72
\flin@ruletrue : 56

\flinc : 66, 69, 75
\flinc@linenum : 65, 65, 65, 66, 67, 67,

69, 69, 70, 71, 71, 73, 75, 75, 76
\flindented@codefalse : 65
\flindented@codetrue : 65
\fllex@compatfalse : 69
\fllex@compattrue : 69
\fllinenum : 66
\flname : 54, 54, 57
\flnamesep : 54, 57
\flnametok : 72
\flnmdef : 67, 67
\flnmstr : 68, 72
\flopt : 55, 55, 55, 55, 55, 55, 55, 55
\floption@sensefalse : 68
\floption@sensetrue : 67, 68
\floptions : 55
\flor : 58
\flparens : 60
\flposix@compatfalse : 69
\flposix@compattrue : 69
\flptropt : 55
\flquotechar : 70, 73
\flreateol : 58
\flredef : 55
\flrepeat : 59
\flrepeatgen : 59
\flrepeatn : 60
\flrepeatnm : 59
\flrepeatonce : 59
\flrepeatstrict : 59
\flretrail : 58
\flrule : 58
\flscondecl : 54
\flsconlist : 57
\flsconuniv : 57
\flsectnum : 66, 69, 72, 76
\flsf@case@insfalse : 73
\flsf@case@instrue : 73
\flsf@dot@allfalse : 73
\flsf@dot@alltrue : 73
\flsf@pop : 70
\flsf@push : 70, 73, 73
\flsf@skip@wsfalse : 73
\flsf@skip@wstrue : 73
\flstring : 60
\fltopopt : 55
\fltrail : 58

G ···················································
\getfirst : 129◦

\grammarprefix : 32c
\greaterthan : 81

H ··················································
\hexint : 43
 (\hspace): 31a, 31a◦, 31b, 31e, 35d,

36b

I ····················································
\idit : 29c, 37
\idstr : 80, 81, 81, 82, 82
\ifflcontinued@action : 56
\iffldidadef : 67
\iffldoing@codeblock : 75
\iffldoing@rule@action : 75, 75
\ifflend@is@ws : 72
\ifflin@rule : 70, 71, 72
\ifflindented@code : 66, 75
\iffllex@compat : 70, 73, 73, 74
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\iffloption@sense : 68, 69, 69
\ifflposix@compat : 70, 73, 73, 74
\ifflsf@skip@ws : 70, 71, 71, 71, 71, 72
ifω (\ifnum): 45, 46, 48, 49, 50, 66, 69,

72, 75, 75, 76
if ( rhs = full ) (\ifrhsfull): 33c, 34c,

35e, 36a, 36c, 36, 37b
ift [bad char] (\iftracebadchars): 44,

44, 88
ifx (\ifx): 32d, 44, 45, 45, 45, 46, 46, 46
ε (\in): 32d
\indented@codefalse : 70
\initaction : 29
\initlist : 28e, 32c, 33c, 56
\inmath : 21b◦

L ···················································
\laststring : 47, 48, 48, 49, 50, 50, 50
\laststringraw : 47, 48, 48
\let : 32d, 43, 43, 44, 46, 47, 56, 58, 58,

60, 72
\lexspecialchar : 44
\lonesting : 43, 48, 48, 49, 49, 50

M ··················································
\mergeop : 37b
\midf : 34, 34a, 34b

N ··················································
\n : 66, 71, 71, 71, 72, 75, 75
\namechars : 80, 80
\next : several refs.
\noexpand : 21b◦

\ntermdecls : 30i
\number : 66, 76
nx (\nx): several refs.

O ··················································
Ω (\table): 27c, 27e, 27f, 28c, 54, 55, 57
\oneparametricoption : 29a, 29b
\oneproduction : 33a
\onesymbol : 31c
\optionflag : 29, 29c
\optstr : 80, 82

P ···················································
\paramdef : 29
\parsernamespace : 76
\pcluster : 33b
\percentpercentcount : 45
π1 (\getfirst): 30a, 32c, 32d, 35e, 36a,

80, 80, 81, 81, 81, 82, 82, 82, 129◦,
130◦

π2 (\getsecond): 30a, 30f, 31e, 32d, 33a,
35e, 36a, 58, 80, 80, 81, 81, 81, 81, 82,
82, 82

π3 (\getthird): 30a, 30f, 33a, 35e, 36a,
58, 82

π4 (\getfourth): 30f, 31e, 33a, 33b, 35d,
36b

π5 (\getfifth): 31e, 33a, 33b, 35d, 36b
π↔ (\rhscnct): 35d, 36b, 36c, 36, 36
π{} (\rhscont): 33c, 34c, 35d, 35e, 36a,

36b, 36c, 36, 36
π` (\rhsbool): 33c, 34c, 35e, 36a, 36c,

36, 37b
pop state (\yypopstate): 66, 66
\positionswitch : 32d
\positionswitchdefault : 32d
\postoks : 32d, 45, 50
\precdecls : 30f

\preckind : 30c
\prodheader : 33b
\prologuecode : 29
\prologuedeclarationsprefix : 28e
push state (\yypushstate): 65, 65, 71,

72, 73, 75

Q ··················································
\qual : 83, 83

R ···················································
\RETURNCHAR : 70, 73, 74, 76
\RETURNNAME : 65, 73
\ROLLBACKCURRENTTOKEN : 45, 45, 46, 47,

47, 50
\rarhssep : 33c, 34c, 35e, 36a
◦ (\relax): 44, 46, 66, 72, 76
returnopt (\yyflexoptreturn): 65, 67,

68, 69, 69
returnc (\yylexreturnchar): 67, 70, 73,

74, 87
returnl (\yylexreturn): 43, 44, 44, 44,

44, 44, 44, 45, 45, 45, 46, 46, 47, 47,
48, 48, 49, 50, 50, 50, 65, 67, 68, 70,
70, 72, 74

returnp (\yylexreturnptr): 42, 43, 45,
65, 66, 70

returnv (\yylexreturnval): 74, 86, 87,
88, 88

returnvp (\yylexreturnsym): 66, 68

returnx (\yylexreturnxchar): 66, 70,
71, 71, 71, 72, 73, 75, 75

\rhs : 33c, 33c◦, 34c, 35c, 35d, 35e, 36a,
36b, 36c, 36, 37b

\rhsesoneprefix : 33c
rhs = not full (\rhsfullfalse): 35c, 35d,

36b, 36c, 36, 37b
rhs = full (\rhsfulltrue): 33c, 34c, 35e,

36a, 36c, 36, 37b
\romannumeral : 27c, 27e, 28c
\rrhssep : 34c
\rules : 33b

S ···················································
\STRINGFINISH : 47, 48, 48, 49, 50, 50, 50
\STRINGFREE : 48, 48
\STRINGGROW : 47, 47, 48, 48, 48, 48, 49,

49, 49, 49, 50, 50, 50
\safemath : 81, 81
\sansfirst : 81
\secttwoprefix : 56
\separatorswitchdefaulteq : 32d
\separatorswitchdefaultneq : 32d
\separatorswitcheq : 32d
\separatorswitchneq : 32d
set Υ and returnccl (\xcclreturn): 74
\sfxi : 82, 83, 83
\sfxn : 80, 82, 83
\sfxnone : 80
\something : 129◦

 (\space): 82
\sprecop : 36c
state (\yylexstate): 46
\stringify : 29a, 38f
\supplybdirective : 36c, 36, 37b
switch (\switchon): 32d
\symbolprec : 31a

T ···················································
\tagit : 30e, 30h, 37b

\termname : 35d
\termvstring : 81, 81, 81, 81, 81, 81, 81,

81, 82, 82
7→ (\to): 30a, 30f, 31e, 32c, 32d, 33a,

33b, 33c, 34c, 35d, 35e, 36a, 36b, 36c,
36, 36, 37b, 58, 80, 80, 81, 81, 81, 81,
82, 82, 82

\tokendecls : 31
\typedecls : 30e

U ··················································
\unput : 71, 71, 72, 72
\uscoreletter : 81

V ···················································
va (\toksa): 29, 29a, 29b, 29c, 30a, 30f,

31e, 32c, 32d, 33a, 33b, 33c, 34a, 34c,
35d, 35e, 36a, 36b, 36c, 36, 36, 37b, 56,
58, 58, 58, 60, 72, 80, 80, 81, 81, 81,
82, 82, 82

val · or x·y (\the): several refs.
\vardef : 29
vb (\toksb): 30a, 30f, 31e, 32d, 33a, 33b,

34a, 35d, 35e, 36a, 36b, 36c, 36, 36,
37b, 56, 58, 80, 80, 81, 81, 81, 81, 82,
82, 82

vc (\toksc): 30a, 30f, 31e, 32d, 33a, 35d,
35e, 36a, 36b, 36c, 36, 37b, 82

vd (\toksd): 30a, 32d, 33a, 35d, 35e,
36a, 36b

ve (\tokse): 30a
vf (\toksf): 30a

\visflag : 81, 81, 81, 81, 81, 81, 81, 81,
82, 82

W ··················································
warn (\yywarn): 41, 44, 45, 46, 46
\with : 129◦

Y ···················································
Υ (\yyval): 33c, 33d◦, 34a◦, 36c, 36, 37b,

80, 80
Υ? (\yy): several refs.

?Υ (\bb): 34a, 34a◦

\YYSTART : 42, 43, 45, 49, 76
\yy : several refs.
\yybreak : 45, 46, 46, 48, 49, 50, 50, 67,

69, 70, 71, 71, 71, 71, 73, 73, 74
\yybreak@ : 46, 70, 71, 72, 73, 73, 74
\yycontinue : 45, 46, 46, 48, 50, 50, 67,

69, 70, 71, 71, 71, 72, 73, 73, 74
\yyerror : 54, 54, 57, 58, 58
\yyerrterminate : 76
\yyfirstoftwo : 27c, 27e, 28c
\yyfmark : 43, 44, 44, 44, 44, 44, 44, 44,

44, 45, 46, 47, 48, 48, 49, 50, 50, 67,
72

\yyless : 69, 69, 69, 70, 70, 72, 72, 73,
73, 73, 74

\yylessafter : 71
\yylexreturnraw : 70, 72, 72, 73, 73, 73,

74
\yylval : 43, 44, 44, 44, 44, 44, 44, 44,

46, 47, 47, 48, 48, 49, 50, 50, 50, 67,
72

\yysetbol : 69
\yysmark : 43, 44, 44, 44, 44, 44, 44, 44,

44, 45, 46, 47, 48, 48, 49, 50, 50, 67,
72

\yyterminate : 43, 69, 72, 76
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\yytext : 43, 44, 44, 44, 46, 46, 49, 65,
66, 67, 68, 72, 72, 73, 74, 76, 88

\yytextlastchar : 72
\yytextpure : 43, 44, 46, 67, 68

\yytoksempty : 33c, 34c, 35d, 35e, 36a,
36b

A LIST OF ALL SECTIONS

〈A production 7b, 7e 〉 Cited in sections 2a and 7b. Used in sections 7a and 7d.

〈A silly example 5a, 6a, 7a, 7d 〉 Used in section 8a.

〈Add 〈empty〉 to the right hand side 36b 〉 Used in section 35b.

〈Add a 〈top〉 directive 57d 〉 Used in section 56o.

〈Add a 〈dprec〉 directive to the right hand side 37a 〉 Used in section 35b.

〈Add a 〈merge〉 directive to the right hand side 37b 〉 Used in section 35b.

〈Add a bare action 58d 〉 Used in section 57r.

〈Add a character to a character class 62o 〉 Used in section 62h.

〈Add a dot separator 85b 〉 Used in section 81c.

〈Add a group of rules to section 2 58b 〉 Used in section 57r.

〈Add a name to a list 56l 〉 Used in section 56e.

〈Add a pointer option 57b 〉 Used in section 56o.

〈Add a precedence directive to the right hand side 36c 〉 Used in section 35b.

〈Add a predicate to the right hand side 36a 〉 Used in section 35b.

〈Add a range to a character class 62n 〉 Used in section 62h.

〈Add a regular expression definition 57e 〉 Used in section 56o.

〈Add a right hand side to a production 34c 〉 Used in section 32b.

〈Add a rule to section 2 58a 〉 Used in section 57r.

〈Add a start condition to a list 59d 〉 Used in section 58e.

〈Add a symbol definition 31e 〉 Used in section 31d.

〈Add a term to the right hand side 35d 〉 Used in section 35b.

〈Add an action to the right hand side 35e 〉 Used in section 35b.

〈Add an array option 57c 〉 Used in section 56o.

〈Add an expression to a character class 62p 〉 Used in section 62h.

〈Add an option to a list 57f 〉 Used in section 56o.

〈Add closing brace to a predicate 52a 〉 Used in section 51c.

〈Add closing brace to the braced code 51d 〉 Used in section 51c.

〈Add options to section 1 56g 〉 Used in section 56e.

〈Add start condition declarations 56f 〉 Used in section 56e.

〈Add the scanned symbol to the current string 52f 〉 Used in section 43e.

〈Assemble a flex input file 56a 〉 Used in section 55d.

〈Assemble a flex section 1 file 56d 〉 Used in section 56c.

〈Assign a code fragment to symbols 30a 〉 Used in section 29c.

〈Attach a named suffix 85d 〉 Used in section 81c.

〈Attach a productions cluster 32d 〉 Used in sections 28f and 32a.

〈Attach a prologue declaration 28f 〉 Used in section 28d.

〈Attach a qualifier 85e 〉 Used in section 81c.

〈Attach an identifier 84b 〉 Used in sections 81c and 84c.

〈Attach an integer 84d 〉 Used in section 81c.

〈Attach integer suffix 85c 〉 Used in section 81c.

〈Attach option name 82c 〉 Used in section 81c.

〈Attach qualified suffixes 84h 〉 Used in section 81c.

〈Attach qualifier to a name 84c 〉 Used in section 81c.

〈Attach suffixes 84g 〉 Used in sections 81c and 84h.

〈Auxilary code for flex lexer 78d 〉 Used in section ch6.

〈Auxilary code for the bootstrap flex lexer 79a 〉 Used in section 65a.

〈Auxiliary function declarations 99i 〉 Used in section 98a.

〈Auxiliary function definitions 100a 〉 Used in section 91a.
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〈Begin section 2, prepare to reread, or ignore braced code 71g 〉 Used in section 71d.

〈Begin the 〈top〉 directive 67d 〉 Used in section 67b.

〈Bison options 81a 〉 Used in section ch7.

〈Bootstrap parser C postamble 38k 〉 Used in section 24a.

〈Bootstrap token list 38m 〉 Used in section 38l.

〈Bootstrap token output 38l 〉 Used in section 38k.

〈Carry on 28a 〉 Used in sections 27f, 28g, 29c, 31a, 31b, 31d, 32b, 38c, and 38d.

〈Cases affecting the whole program 103c 〉 Used in section 101f.

〈Cases involving specific modes 103d 〉 Used in section 101f.

〈Catchall rule for the bootstrap lexer 78f 〉 Used in section 65a.

〈Clean up 93b 〉 Used in section 91a.

〈Collect all state definitions 87b 〉 Used in section ch8.

〈Collect state definitions for the flex lexer 78e 〉 Used in section 78d.

〈Collect state definitions for the bootstrap flex lexer 79b 〉 Used in section 79a.

〈Collect state definitions for the grammar lexer 42c 〉 Used in section ch4.

〈Command line processing variables 101e 〉 Used in section 91a.

〈Common code for C preamble 93a 〉
〈Common patterns for flex lexer 67b 〉 Used in sections ch6 and 65a.

〈Complain about improper identifier characters 48e 〉 Used in section 48b.

〈Complain about unexpected end of file inside brackets 48f 〉 Used in section 48b.

〈Complain if not inside a definition, continue otherwise 69c 〉 Used in section 69a.

〈Complement a character class 62m 〉 Used in section 62h.

〈Complete a production 33b 〉 Used in section 32b.

〈Compose the full name 82a 〉 Used in section 81c.

〈Compute exotic scanner constants 114a 〉
〈Compute magic constants 115c 〉 Used in section 114b.

〈Configure parser output modes 108d 〉
〈Constant names 99d 〉 Used in sections 98d, 98e, 99a, and 99c.

〈Consume the brace and decrement the brace level 71f 〉 Used in section 71d.

〈Consume the brace and increment the brace level 71e 〉 Used in section 71d.

〈Copy the name and start a definition 68b 〉 Used in section 67b.

〈Copy the value 63b 〉 Used in sections 55d, 59e, 60i, 60k, 61c, 62c, 62d, 62k, and 63a.

〈Create a character class 62l 〉 Used in section 62h.

〈Create a lazy series match 61h 〉 Used in section 61g.

〈Create a list of start conditions 59a 〉 Used in section 58e.

〈Create a named reference 37d 〉 Used in section 35b.

〈Create a nonempty series match 61i 〉 Used in section 61g.

〈Create a possible single match 61j 〉 Used in section 61g.

〈Create a series of exact length 62a 〉 Used in sections 61f and 61g.

〈Create a series of minimal length 61l 〉 Used in sections 61e and 61g.

〈Create a series of specific length 61k 〉 Used in sections 61d and 61g.

〈Create a union of character classes 62j 〉 Used in section 62h.

〈Create a universal start condition 59b 〉 Used in section 58e.

〈Create an empty character class 62q 〉 Used in section 62h.

〈Create an empty named reference 37c 〉 Used in section 35b.

〈Create an empty section 1 56h 〉 Used in section 56e.

〈Create an empty start condition 59c 〉 Used in section 58e.

〈Decide if this is a comment 74d 〉 Used in section 71h.

〈Decide whether to start an action or skip whitespace inside a rule 73c 〉 Used in section 71h.

〈Declare a class 57k 〉 Used in section 56o.

〈Declare a prefix 57j 〉 Used in section 56o.

〈Declare an extra type 57i 〉 Used in section 56o.
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〈Declare the name for the tables 57m 〉 Used in section 56o.

〈Declare the name of a header 57l 〉 Used in section 56o.

〈Decode escaped characters 50f 〉 Used in section 43e.

〈Default outputs 94a, 97c, 99a 〉 Used in section 93c.

〈Define symbol precedences 30f 〉 Used in section 30c.

〈Define symbol types 30e 〉 Used in section 30c.

〈Definition of symbol 37g 〉 Used in section 37f.

〈Definitions for flex input lexer 66e 〉 Used in sections ch6 and 65a.

〈Determine if this is a parametric group or return a parenthesis 75b 〉 Used in section 71h.

〈Determine if this is extended syntax or return a parenthesis 75a 〉 Used in section 71h.

〈Disallow a repeated trailing context 60g 〉 Used in section 60e.

〈Do not support zero characters 47c 〉 Used in section 43e.

〈End the scan with an identifier 48a 〉 Used in section 47d.

〈Error codes 99h, 115a 〉 Used in section 99g.

〈Establish defaults 101b 〉 Used in section 91a.

〈Exclusive productions for flex section 1 parser 56c 〉 Used in section 54a.

〈Extend a flex string by a character 63c 〉 Used in section 63a.

〈Extend a series by a singleton 61b 〉 Used in section 61a.

〈Extract the grammar from a full file 27c 〉 Used in section 27b.

〈Fake start symbol for bootstrap grammar 27f 〉 Used in section 24a.

〈Fake start symbol for prologue grammar 28b 〉 Used in section 25a.

〈Fake start symbol for rules only grammar 27d 〉 Used in section ch3.

〈Find the rule that defines it and set yyrthree 104c 〉 Used in section 104a.

〈Finish a bison string 49g 〉 Used in section 49f.

〈Finish a tag 50d 〉 Used in section 50c.

〈Finish braced code 52c 〉 Used in section 52b.

〈Finish processing bracketed identifier 48d 〉 Used in section 48b.

〈Finish the line and/or action 73d 〉 Used in section 71h.

〈Finish the repeat pattern 76a 〉 Used in section 75c.

〈Form a productions cluster 33a 〉 Used in section 32b.

〈Generic table desciptor fields 95a 〉 Used in section 94e.

〈Global Declarations 27a 〉 Used in section 26b.

〈Global variables and types 94c, 94e, 96d, 97a, 98c, 99g 〉 Used in section 98a.

〈Grammar lexer C preamble 43c 〉 Used in section ch4.

〈Grammar lexer definitions 41a, 42a, 42b 〉 Used in section ch4.

〈Grammar lexer options 43d 〉 Used in section ch4.

〈Grammar lexer states 42d, 42e, 42f, 42g, 42h, 42i, 43a, 43b 〉 Used in section 41a.

〈Grammar parser C postamble 38j 〉 Used in sections ch3, 25a, 25b, and 38k.

〈Grammar parser C preamble 38i 〉 Used in sections ch3, 24a, 25a, and 25b.

〈Grammar parser bison options 26a 〉 Used in sections ch3, 24a, 25a, and 25b.

〈Grammar token regular expressions 43e 〉 Used in section ch4.

〈Handle end of file in the epilogue 52e 〉 Used in section 52d.

〈Handle parser output options 106d, 112e, 113c 〉
〈Handle parser related output modes 108b, 108g, 108i 〉
〈Handle scanner output modes 117d, 117f 〉
〈Handle scanner output options 119e, 119h 〉
〈Helper functions declarations for for parser output 109b 〉
〈Helper functions for parser output 109c, 111a 〉
〈Higher index options 102c 〉 Used in section 101e.

〈 Insert local formatting 34b 〉 Cited in sections 33d and 34c. Used in section 32b.

〈Lexer C preamble 88b 〉 Used in section ch8.

〈Lexer definitions 87a 〉 Used in section ch8.
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〈Lexer options 88c 〉 Used in section ch8.

〈Lexer states 88a 〉 Used in section 87a.

〈Local variable and type declarations 93c, 94b, 97d, 98d, 100b, 101d 〉 Used in section 91a.

〈Long options array 102a 〉 Used in section 101e.

〈Make a ýnameþ into a start condition 59g 〉 Used in section 58e.

〈Make an empty option list 57g 〉 Used in section 56o.

〈Make an empty regular expression string 63d 〉 Used in section 63a.

〈Make an empty right hand side 35c 〉 Used in section 35b.

〈Match (almost) any character 62b 〉 Used in section 61g.

〈Match a PREVCCL 62d 〉 Used in section 61g.

〈Match a character class 62c 〉 Used in section 61g.

〈Match a regular expression at the end of the line 60h 〉 Used in section 60e.

〈Match a regular expression with a trailing context 60f 〉 Used in section 60e.

〈Match a rule at the start of the line 60a 〉 Used in section 59k.

〈Match a sequence of alternatives 60j 〉 Used in section 60e.

〈Match a sequence of singletons 60k 〉 Used in section 60e.

〈Match a series of exact length 61f 〉 Used in section 61a.

〈Match a series of minimal length 61e 〉 Used in section 61a.

〈Match a series of specific length 61d 〉 Used in section 61a.

〈Match a singleton 61c 〉 Used in section 61a.

〈Match a specific character 62g 〉 Used in section 61g.

〈Match a string 62e 〉 Used in section 61g.

〈Match an atom 62f 〉 Used in section 61g.

〈Match an end of file 60b 〉 Used in section 59k.

〈Match an ordinary regular expression 60i 〉 Used in section 60e.

〈Match an ordinary rule 60c 〉 Used in section 59k.

〈Name parser C postamble 85h 〉 Used in section ch7.

〈Name parser C preamble 85g 〉 Used in section ch7.

〈Newer ‘Insert local formatting’ 34a 〉
〈Old ‘Insert local formatting’ 33d 〉
〈Options for flex input lexer 66a 〉 Used in sections ch6 and 65a.
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