
The Lua-UCA library
Michal Hoftich∗

Version v0.1e
2025-03-31

Contents
1 Introduction 1

1.1 Usage . 2
1.2 Use with Xindex processor . 2
1.3 Use with LuaJIT . 2
1.4 Change sorting rules . 2

1.4.1 Script reordering . 3
1.5 Headers for index entries . 4
1.6 Unicode normalization . 4

2 What is missing 4

3 Available Languages 4

4 Lua-UCA hacking 5
4.1 Install . 5
4.2 New language support . 5
4.3 Support files in the source distribution 6
4.4 Testing . 6

5 License 6

6 Changelog 7

1 Introduction
This package adds support for the Unicode collation algorithm1 for Lua 5.3 and
later. It is mainly intended for use with LuaTEXand working TEX distribution,
but it can work also as a standalone Lua module. You will need to install a
required Lua-uni-algos2 package by hand in that case.

∗<michal.h21@gmail.com>
1https://unicode.org/reports/tr10/
2https://github.com/latex3/lua-uni-algos

1

michal.h21@gmail.com
https://unicode.org/reports/tr10/
https://github.com/latex3/lua-uni-algos

1.1 Usage
To sort a table using Czech collation rules:

kpse.set_program_name "luatex"

local ducet = require "lua-uca.lua-uca-ducet"

local collator = require "lua-uca.lua-uca-collator"

local languages = require "lua-uca.lua-uca-languages"

local collator_obj = collator.new(ducet)

-- load Czech rules

collator_obj = languages.cs(collator_obj)

local t = {"cihla", "chochol", "hudba", "jasan", "čáp"}

table.sort(t, function(a,b)

return collator_obj:compare_strings(a,b)

end)

for _, v in ipairs(t) do

print(v)

end

The output:

cihla čáp hudba chochol jasan

More samples of the library usage can be found in the source repository of
this package on Github3.

1.2 Use with Xindex processor
Xindex4 is flexible index processor written in Lua by Herbert Voß. It has built-
in Lua-UCA support starting with version 0.23. The support can be requested
using the -u option:

xindex -u -l no -c norsk filename.idx

1.3 Use with LuaJIT
The default version of lua-uca-ducet fails with Luajit. You can use alternative
version of this file, lua-uca-ducet-jit.

1.4 Change sorting rules
The simplest way to change the default sorting order is to use the tailor_string
method of the collator_obj object. It updates the collator object using special
syntax which is subset of the format used by the Unicode locale data markup
language5.

3https://github.com/michal-h21/lua-uca
4https://www.ctan.org/pkg/xindex
5https://www.unicode.org/reports/tr35/tr35-collation.html#Orderings

2

https://github.com/michal-h21/lua-uca
https://www.ctan.org/pkg/xindex
https://www.unicode.org/reports/tr35/tr35-collation.html#Orderings

collator_obj:tailor_string "&a<b"

Full example with Czech rules:

kpse.set_program_name "luatex"

local ducet = require "lua-uca.lua-uca-ducet"

local collator = require "lua-uca.lua-uca-collator"

local languages = require "lua-uca.lua-uca-languages"

local collator_obj = collator.new(ducet)

local tailoring = function(s) collator_obj:tailor_string(s) end

tailoring "&c<č<<<Č"

tailoring "&h<ch<<<cH<<<Ch<<<CH"

tailoring "&R<ř<<<Ř"

tailoring "&s<š<<<Š"

tailoring "&z<ž<<<Ž"

Note that the sequence of letters ch, Ch, cH and CH will be sorted after h
It is also possible to expand a letter to multiple letters, like this example

for DIN 2:

tailoring "&Ö=Oe"

tailoring "&ö=oe"

Some languages, like Norwegian, sort uppercase letters before lowercase.
This can be enabled using collator_obj:uppercase_first() function:

local tailoring = function(s) collator_obj:tailor_string(s) end

collator_obj:uppercase_first()

tailoring("&D<<đ<<<Đ<<ð<<<Ð")

tailoring("&th<<<þ")

tailoring("&TH<<<Þ")

tailoring("&Y<<ü<<<Ü<<ű<<<Ű")

tailoring("&ǀ<æ<<<Æ<<ä<<<Ä<ø<<<Ø<<ö<<<Ö<<ő<<<Ő<å<<<Å<<<aa<<<Aa<<<AA")

tailoring("&oe<<œ<<<Œ")

Some languages, for example Canadian French, sort accent backwards, like
gêne < gëne < gêné. In this case, you can set the collator_obj.accents_backward
variable to true.

1.4.1 Script reordering

Many languages sort different scripts after the script this language uses. As
Latin based scripts are sorted first, it is necessary to reorder scripts in such
cases.

The collator_obj:reorder function takes table with scripts that need to
be reordered. For example Cyrillic can be sorted before Latin using:

collator_obj:reorder {"cyrillic"}

In German or Czech, numbers should be sorted after all other characters.
This can be done using:

3

collator_obj:reorder {"others", "digits"}

The special keyword ”others” means that the scripts that follows in the table
will be sorted at the very end.

1.5 Headers for index entries
In some languages, for example Czech, multiple letters may count as one
character. This is the case of the ch character.

Lua-UCA provides function collator_obj:get_lowest_char(). It returns
table with UTF-8 codepoints for correct first character for a given language
that can be used for example as an index header.

local czech = collator.new(ducet)

languages.cs(czech)

-- first we need to convert string to codepoints

local codepoints = czech:string_to_codepoints("Chrobák")

local first_char = czech:get_lowest_char(codepoints)

-- it should print letters "ch"

print(utf8.char(table.unpack(first_char)))

-- you can also specify position of the character

local second_char = czech:get_lowest_char(codepoints, 2)

-- it should print letter "h", as it is second codepoint in the string

print(utf8.char(table.unpack(second_char)))

1.6 Unicode normalization
By default, no Unicode normalization is used internally. You can explicitly
request normalization that use the Uninormalize package6. Note that it will
significantly increase the procesing time.

There are two normalization methods, NFC and NFD. They can be enabled
using collation.use_nfc() and collation.use_nfd() functions.

2 What is missing
• Algorithm for setting implicit sort weights of characters that are not

explicitly listed in DUCET.
• Special handling of CJK scripts.

3 Available Languages
The lua-uca-languages library provides the following langauges: af, am, ar,

as, az, be, bg, bn, bs, bs_cyrl, ca, chr, cs, cy, da, de, de_din2, dsb,

dz, ee, el, en, eo, es, et, fa, fi, fil, fo, fr, fr_backward_accents,

ga, gl, gu, ha, haw, he, hi, hr, hsb, hu, hy, id, ig, is, it, ja, ka,

kk, kl, km, kn, ko, kok, ky, lb, lkt, ln, lo, lt, lv, mk, ml, mn, mr,

ms, mt, my, nb, ne, nl, nn, no, om, or, pa, pl, ps, pt, ro, ru, se, si,

6https://ctan.org/pkg/uninormalize?lang=en

4

https://ctan.org/pkg/uninormalize?lang=en

sk, sl, smn, sq, sr, sr_latn, sv, sw, ta, te, th, tk, to, tr, ug, uk,

ur, uz, vi, vo, wae, wo, yi, yo, zh, zu

If you want to requrest language not listed in this listing, or if you had
created support code for one, please contact the package author by mail or
using issue tracker on package’s Github profile.

4 Lua-UCA hacking
You need the full installation from Github7 in order to do stuff described in
this section. Package distributed on CTAN doesn’t contain all necessary files.

4.1 Install
The package needs to download Unicode collation data and convert it to a Lua
table. It depends on wget and unzip utilities. All files can be downloaded using
Make:

make

To install the package in the local TEXMF tree, run:

make install

4.2 New language support
To add a new language, add new function to src/lua-uca/lua-uca-languages.lua
file. The function name should be short language code. Example function for
the Russian language:

languages.ru = function(collator_obj)

collator_obj:reorder{ "cyrillic" }

return collator_obj

end

The language function takes the Collator object as a parameter. Methods
showed in the Change sorting rules section can be used with this object.

The data/common/collation/ directory in the source repository contains
files from the CLDR project. They contain rules for many languages. The files
needs to be normalized to the NFC form8, for example using:

cat cs.xml | uconv -x any-nfc -o cs.xml

The uconv utility is a part of the ICU Project9.
Sorting rules for a language are placed in the <collation> element. Multi-

ple <collation> elements may be present in the XML file. It is usually best to
chose the one with attribute type="standard".

The following example contains code from da.xml:
7https://github.com/michal-h21/lua-uca
8https://en.wikipedia.org/wiki/Unicode_equivalence
9http://userguide.icu-project.org/

5

https://github.com/michal-h21/lua-uca
https://en.wikipedia.org/wiki/Unicode_equivalence
http://userguide.icu-project.org/

[caseFirst upper]

&D<<đ<<<Đ<<ð<<<Ð

&th<<<þ

&TH<<<Þ

&Y<<ü<<<Ü<<ű<<<Ű

&[before 1]ǀ<æ<<<Æ<<ä<<<Ä<ø<<<Ø<<ö<<<Ö<<ő<<<Ő<å<<<Å<<<aa<<<Aa<<<AA

&oe<<œ<<<Œ

This is translated to Lua code in lua-uca-languages.lua in the following
way:

languages.da = function(collator_obj)

-- helper function for more readable tailoring definition

local tailoring = function(s) collator_obj:tailor_string(s) end

collator_obj:uppercase_first()

tailoring("&D<<đ<<<Đ<<ð<<<Ð")

tailoring("&th<<<þ")

tailoring("&TH<<<Þ")

tailoring("&Y<<ü<<<Ü<<ű<<<Ű")

tailoring("&ǀ<æ<<<Æ<<ä<<<Ä<ø<<<Ø<<ö<<<Ö<<ő<<<Ő<å<<<Å<<<aa<<<Aa<<<AA")

tailoring("&oe<<œ<<<Œ")

return collator_obj

end

Pull requests with new language support are highly appreciated.

4.3 Support files in the source distribution
The xindex directory contains some examples for configuration of Xindex, Lua
based indexing system. Run make xindex command to compile them.

Xindex has built-in support for Lua-UCA since version 0.23, it can be re-
quested using the -u option.

The tools/indexing-sample.lua file provides a simple indexing processor,
independent of any other tool.

4.4 Testing
You can run unit tests using the following command:

make test

Testing requires Busted10 testing framework installed on your system. Tests
are placed in the spec directory and they provide more examples of the package
usage.

5 License
Copyright 2021 Michal Hoftich

10https://olivinelabs.com/busted/

6

https://olivinelabs.com/busted/

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ”Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

6 Changelog
2025-03-31

• fixed de_din2 sorting rules (thanks to Herbert Voss).

2024-05-09

• version 0.1d released.

2024-05-07

• fixed French support (thanks to Daniel Flipo).

2024-05-04

• fixed Chinese support (thanks to Zeping Lee).
• version 0.1c released.

2022-03-08

• working on better French support (thanks to Daniel Flipo).
• don’t use NFC normalization.
• added accents_backward option.

2021-11-10

• version 0.1b released.

2021-11-09

• cache string to codepoint conversion.
• use NFC normalization with LuaTeX.

7

2021-09-16

• version 0.1a released.
• added sorting rules for all languages contained in CLDR collation files.

2020-06-09

• moved development information that depends on files not distributed on
CTAN to HACKING.md.

• extended documentation.

2020-03-24

• version 0.1 released.
• initial version for CTAN.

8

	Contents
	1 Introduction
	1.1 Usage
	1.2 Use with Xindex processor
	1.3 Use with LuaJIT
	1.4 Change sorting rules
	1.4.1 Script reordering

	1.5 Headers for index entries
	1.6 Unicode normalization

	2 What is missing
	3 Available Languages
	4 Lua-UCA hacking
	4.1 Install
	4.2 New language support
	4.3 Support files in the source distribution
	4.4 Testing

	5 License
	6 Changelog

