
The luaotfload package

LaTeX3 Project
Elie Roux · Khaled Hosny · Philipp Gesang · Ulrike Fischer · Marcel Krüger

Home: https://github.com/latex3/luaotfload

2024-12-03 v3.29

Abstract

This package is an adaptation of the ConTEXt font loading system. It allows for
loading OpenType fonts with an extended syntax and adds support for a variety of
font features.

After discussion of the font loading API, this manual gives an overview of the
core components of Luaotfload: The packaged font loader code, the names database,
configuration, and helper functions on the Lua end.

Contents
1 Engine and version support 3

2 Changes 3
2.1 New in version 3.29 . 3
2.2 New in version 3.28 . 3
2.3 New in version 3.24 . 3
2.4 New in version 3.23 . 3
2.5 New in version 3.22 . 3
2.6 New in version 3.21 (by Ulrike Fischer/Marcel Krüger) 4
2.7 New in version 3.20 (by Ulrike Fischer/Marcel Krüger) 4
2.8 New in version 3.19 (by Ulrike Fischer/Marcel Krüger) 4
2.9 New in version 3.18 (by Ulrike Fischer/Marcel Krüger) 4
2.10 New in version 3.17 (by Ulrike Fischer/Marcel Krüger) 4
2.11 New in version 3.16 (by Ulrike Fischer/Marcel Krüger) 4
2.12 New in version 3.15 (by Ulrike Fischer/Marcel Krüger) 5
2.13 New in version 3.14 (by Ulrike Fischer/Marcel Krüger) 5
2.14 New in version 3.13 (by Ulrike Fischer/Marcel Krüger) 5
2.15 New in version 3.12 (by Ulrike Fischer/Marcel Krüger) 6
2.16 New in version 3.11 (by Ulrike Fischer/Marcel Krüger) 6
2.17 New in version 3.10 (by Ulrike Fischer/Marcel Krüger) 6
2.18 New in version 3.00 (by Ulrike Fischer/Marcel Krüger) 6
2.19 New in version 2.99 (by Ulrike Fischer) 7
2.20 New in version 2.98 (by Ulrike Fischer) 7
2.21 New in version 2.97 (by Ulrike Fischer) 7
2.22 New in version 2.96 (by Ulrike Fischer) 7
2.23 New in version 2.95 (by Ulrike Fischer) 7
2.24 New in version 2.94 (by Ulrike Fischer) 7

1

https://github.com/latex3/luaotfload

2.25 New in version 2.93 (by Ulrike Fischer) 8
2.26 New in version 2.92 (by Ulrike Fischer) 8
2.27 New in version 2.91 (by Ulrike Fischer) 8
2.28 New in version 2.9 (by Ulrike Fischer) . 8

3 Introduction 9

4 Thanks 9

5 Loading Fonts 9
5.1 Prefix – the luaotfloadWay . 10
5.2 Bracketed Lookups . 10
5.3 Compatibility . 11
5.4 Examples . 11

5.4.1 Loading by File Name . 11
5.4.2 Loading by Font Name . 12
5.4.3 Modifiers . 12

6 Font features 13
6.1 Basic font features . 13
6.2 Non-standard font features . 22

7 Combining fonts 22
7.1 Fallbacks . 22
7.2 Combinations . 23

8 Font names database 23
8.1 luaotfload-tool . 24
8.2 Search Paths . 24
8.3 Querying from Outside . 24
8.4 Blacklisting Fonts . 25

9 The Fontloader 26
9.1 Overview . 26
9.2 Contents and Dependencies . 26
9.3 Packaging . 28

10 Configuration Files 29

11 Auxiliary Functions 30
11.1 Callback Functions . 30

11.1.1 Compatibility with Earlier Versions 31
11.1.2 Patches . 31

11.2 Package Author’s Interface . 31
11.2.1 Font Properties . 32
11.2.2 Database . 32

11.3 Format Author’s Interface . 33
11.3.1 Color setting . 33
11.3.2 Color selection . 33

12 Troubleshooting 34
12.1 Database Generation . 34
12.2 Font Features . 34
12.3 LuaTEX Programming . 35

13 License 35

2

Appendix: Manual of luaotfload.conf 38

Appendix: Manual of luaotfload-tool 45

1 Engine and version support

luaotfload is a quite large and complex package. It imports code from context which
is actively developed along with the luatex binary. It is not possible to support a large
number of engines variants or versions.

Supported is the luatex versions of a current TeXLive 2019 (and a current MiKTeX).
Beginning with version 3.1 of this package also luahbtex is supported.

2 Changes

2.1 New in version 3.29

• Preserve subtypes while letterspacing.

• Improve logging for auxiliary functions.

• Improve cache path selection when parts of cache path are not writable.

• Fix broken luaotfload-tool.

2.2 New in version 3.28

• Improving compatibility with Windows paths

2.3 New in version 3.24

• Add experimental configuration option to change default font lookup location
precedence.

• Support xdvipsk in DVI mode

• Preserve soft-hyphens when dropping default ignorable characters

• Hash cache keys to better support certain rather inflexible operating systems

• Various bug fixes

2.4 New in version 3.23

• More reliable ToUnicode mappings in Harf mode

• Various bug fixes

2.5 New in version 3.22

• Tailored case mappings

• Avoid database rebuilds when switching Lua versions

• Improved attribute settings of ActualText nodes in harf mode

• Callback-based customization for color parameter

• Various bug fixes

3

2.6 New in version 3.21 (by Ulrike Fischer/Marcel Krüger)

• Fix performance regression introduced in version 3.19.

• More reliably support TrueType based variable fonts in harf mode.

2.7 New in version 3.20 (by Ulrike Fischer/Marcel Krüger)

• A bug in luaotfload-tool has been corrected.

• The directory for the font name database has been corrected and no longer uses
the development directory.

2.8 New in version 3.19 (by Ulrike Fischer/Marcel Krüger)

• When used with LuaTEX 1.15.0 or newer, variable fonts are supported when using
the harf shaper too.

• A new algorithm for selecting fonts based on font family names allows to more
reliably load fonts based on their family name.

• The compiled font database gets compressed to reduce disk space and improve
performance on newer systems.

• Broken rendering of some TrueType based variable fonts has been fixed.

• Text automatically gets normalized to Unicode’s NFC before shaping. This im-
proves rendering for text written in decomposed forms for many fonts. This can
be turned off by passing the -normalize font feature.

• A number of small bugfixes.

2.9 New in version 3.18 (by Ulrike Fischer/Marcel Krüger)

• Now variable fonts can be loaded with default values without specifying any ex-
plicit axis values.

• A number of small bugfixes.

2.10 New in version 3.17 (by Ulrike Fischer/Marcel Krüger)

• The experimental support for OpenType variable fonts has been extended to more
reliably support modern fonts.

• A number of small bugfixes.

2.11 New in version 3.16 (by Ulrike Fischer/Marcel Krüger)

• The entry point is called luaotfload.lua instead of luaotfload-main.lua (but the old
name is still provided for compatibility).

• pre/post_shaping_filter callbacks has been added.

• The number of lua-files and submodules shown in the log-file has been reduced.
But it is extended again by setting the environment variable LUAOTFLOAD_TRACE_SUBMODULES=1.

4

• The HarfBuzz based shaper will in some situations drop hyphenation points. This
happens less frequently now since the new version uses first/second discretionar-
ies (the mechanism described in the LuaTeX manual, section 5.6 for the of-f-ice
example) to support a limited amount of nesting.

• When the node shaper is used, experimental support for OpenType variable fonts
has been added. To use them, set the font feature axis to a comma separated list
of axis names and values. (E.g. axis=weight=600) The supported axis names and
value range depend on the font (see page 21).

• The font features upper and lower can be used to map the text of a font to upper or
lowercase before displaying it. Currently this implements the untailored Unicode
case mapping algorithm, but it is planned to add tailoring later (see page 20).

• A number of small bugfixes.

2.12 New in version 3.15 (by Ulrike Fischer/Marcel Krüger)

• The font database is updated more reliably if fonts get deleted.

• In multiple error cases, error messages are shown instead of silently generating
bad output.

• Write glyph ids instead of internal identifiers to DVI files. This allows using
OpenType fonts when working with dvilualatex. (This requires additional support
from the DVI reader)

• The set of font features which are enabled by default has been changed to be moreChange!
similar to HarfBuzz. Especially “Above-base mark Positioning” (abvm), “Below-
base mark Positioning” (blwm), “Contextual Alternates” (calt), “Cursive Position-
ing” (curs), “Distances” (dist), and “Required Contextual Alternates” (rclt) are now
enabled by default for all scripts.

• Added a mathfontdimen font feature which allows emulating fontdimen values
from xetex or traditional TEX math fonts.

• Initial support for variable fonts in node mode.

2.13 New in version 3.14 (by Ulrike Fischer/Marcel Krüger)

• a bug in luaotfload-tool has been corrected (reported on the texlive list)

• the fontloader has been patched to resolve a problemwith color fonts and save/re-
store pairs (issue #124)

2.14 New in version 3.13 (by Ulrike Fischer/Marcel Krüger)

• A problem with text fonts with minimal math table has been fixed (issue #148):Change!
In new luaotfload versions, math parameters will only be loaded for fonts with
script=math. If you do want to set math parameters for fonts with other scripts,
add -nomathparam. We strongly recommend against setting math parameters for
text fonts because these would overwrite parameters from actual math fonts.

• A bug in harf-mode that could lead to missing chars and freezing was corrected
(issue #141).

5

https://github.com/latex3/luaotfload/issues/124
https://github.com/latex3/luaotfload/issues/148
https://github.com/latex3/luaotfload/issues/141

• A font size problem in harf-mode has been fixed (issue #147).

• An error if the main function was called twice has been fixed (issue #145).

• Allow .ttf fonts to be loaded with a map file with luahbtex (issue #142) (issue #143).

• Fonts installed for a single user on windows are now found (issue #138).

• A problem with wrong TEX-ligatures in harf mode has been fixed (issue #139).

• The debugging output has been changed (issue #131).

• A missing “capital sharp s” (U+1E9E) in a font is replaced by SS instead of giving
a missing character message: ẞ or SS

• The color handling has been improved so that it is now compatible with the lua-
color package.

2.15 New in version 3.12 (by Ulrike Fischer/Marcel Krüger)

• Corrected a number of small bugs in harf mode.

• Extension of the color key to allow coloring of specific output glyphs, see page 14Experimental!

• A new fallback key to allow to define fallback fonts, see page 19Experimental!

• A new multiscript key to allow to use a font for more than one script, see page 18Experimental!

2.16 New in version 3.11 (by Ulrike Fischer/Marcel Krüger)

• Changed the handling of the script key in harf mode to be more compatible with
behaviour of the node mode. It now expects the name of a script that is actually
in the font instead of a ISO 15924 script tag. See issue 117.

• Corrected a number of small typos and bugs in harf mode.

2.17 New in version 3.10 (by Ulrike Fischer/Marcel Krüger)

• The package has been moved to the github of the LaTeX3 Project and is nowmain-
tained officially by the LaTeX3 Project team.

• Code to use the harfbuzz library of luahbtex has been added. See the description
of the harf mode.

• fonts in ttc-collections can now be indexed by name.

• To reduce the pollution of the global lua environment a number of lua tables have
been removed. Only the tables luaotfload, fonts and nodes have been kept there.

• The fontloader has been synched with the context files from 2019-10-29.

2.18 New in version 3.00 (by Ulrike Fischer/Marcel Krüger)

• Default Ignorable characters are now invisible by default (issue 63). This can be
deactivated with the option invisible.

6

https://github.com/latex3/luaotfload/issues/147
https://github.com/latex3/luaotfload/issues/145
https://github.com/latex3/luaotfload/issues/142
https://github.com/latex3/luaotfload/issues/143
https://github.com/latex3/luaotfload/issues/138
https://github.com/latex3/luaotfload/issues/139
https://github.com/latex3/luaotfload/issues/131

2.19 New in version 2.99 (by Ulrike Fischer)

• Code cleanup.

• The fontloader has been synched with the context files from 2019-08-11.

2.20 New in version 2.98 (by Ulrike Fischer)

• The handling of missing chars has been changed. In This version a missing charbreaking change!
will insert the /.notdef char of the fonts (this is sometimes a space, sometimes a
rectangle with a cross) and no longer simply ignore the glyph. This behaviour can
be reverted by using notdef=false as font feature.

• The font feature embolden can now be used to fake a bold font.

• The fontloader has been synched with the context files from 2019-07-04.

2.21 New in version 2.97 (by Ulrike Fischer)

• the new generic fontloader improves the handling of large fonts (but some fonts
still need a 64bit luatex version to create the font files).

• A number of small bug (also in luaotfload-tool) have been corrected, see the NEWS
file for details.

2.22 New in version 2.96 (by Ulrike Fischer)

• In version 2.95 letterspacing was broken due to a change in the fontloader (issueIncompatible change!
38). This has been repaired. At the same time a number of oddities and bugs in
the letterspacing has been corrected. This can change existing documents. See
page 16 for more information.

• A problem with the detection of bold fonts has been corrected (issue 41, pull re-
quest 42).

2.23 New in version 2.95 (by Ulrike Fischer)

• This version imports from context the generic fontloader in the version of 2019-01-
28. Contrary to the last announcement, it still works with luatex 1.07. So updates
will continue.

• The handling of the lucida-fonts had been improved (issue 33).

• tex-files are no longer misused as font fallbacks (issue 35).

• The resolver code has be refactorated (pull request 36).

2.24 New in version 2.94 (by Ulrike Fischer)

• This version imports from context the generic fontloader in the version of 2018-
12-19. It is the last version that works with luatex 1.07 and texlive 2018. As context
has moved to luatex 1.09 newer versions of the fontloader needs now this luatex
version too. This means that until the texlive 2018 freeze there will be probably
no update of luaotfload.

7

• This version changes the handling of the mode key. It no longer accepts only the
values base and node, but can be used to load a font with an alternative font load-
er/renderer.

2.25 New in version 2.93 (by Ulrike Fischer)

Mainly internal clean up of the version info to allow automatic versioning.

2.26 New in version 2.92 (by Ulrike Fischer)

• Better devanagari support (issue #9).

• Luaotfload doesn’t work when luatex is used with the option --safer. So it now
aborts cleanly when the option is detected – but you still can get errors from
fontspec later! (issue #12).

• The syntax file: for legacy font works again (issue #11).

• The fontloader has been synched with the newest context version from october,
18.

2.27 New in version 2.91 (by Ulrike Fischer)

This version mostly correct two bugs found in the previous fontloader: Glyphvariants
weren’t copied and pasted correctly. Glyphs encoded in the PUA couldn’t be accessed
anymore.

2.28 New in version 2.9 (by Ulrike Fischer)

On the one side there is not very much new in this version: The native components of
Luaotfload are nearly unchanged. A few bugs have been corrected, the various files lists
which loads the components of the font loader have been cleaned up.

On the other side there is a lot new:

• Fontloader
The fontloader files imported from ConTEXt have been updated to the current ver-
sion. This was necessary to make Luaotfload compatible with the coming LuaTEX
1.08/1.09. Compared to the previous version from february 2017 quite a number
of things have changed. Most importantly the handling of arabic fonts has greatly
improved. But this also means that changes in the output are possible.

• Lualibs
The update of the fontloader files also required an update of the Lualibs package.
This Luaotfload version needs version 2.6 of Lualibs.

• Maintenance
As the current maintainer wasn’t available and it was urgent to get a Luaot-
fload compatible with LuaTEX 1.08/1.09 maintenance has been transferred to Ul-
rike Fischer and Marcel Krüger. The package was maintained and developed at
https://github.com/u-fischer/luaotfload.

8

https://github.com/u-fischer/luaotfload

• Documentation
The core of documentation is nearly unchanged. I added this introduction. I
recreated with the help of @marmot the graphic on 37. I updated the file lists.
I imported as appendix pdf versions of the two man files which are part of the
Luaotfload documentation.

3 Introduction

Font management and installation has always been painful with TEX. A lot of files are
needed for one font (tfm, pfb, map, fd, vf), and due to the 8-Bit encoding each font is
limited to 256 characters.

But the font world has evolved since the original TEX, and new typographic systems
have appeared, most notably the so called smart font technologies like OpenType fonts
(otf).

These fonts can contain many more characters than TEX fonts, as well as additional
functionality like ligatures, old-style numbers, small capitals, etc., and support more
complex writing systems like Arabic and Indic1 scripts.

OpenType fonts are widely deployed and available for all modern operating systems.
As of 2013 they have become the de facto standard for advanced text layout.
However, until recently the only way to use them directly in the TEX world was with

the X ETEX engine.
Unlike X ETEX, LuaTEX has no built-in support for OpenType or technologies other

than the original TEX fonts.
Instead, it provides hooks for executing Lua code during the TEX run that allow

implementing extensions for loading fonts andmanipulating how input text is processed
without modifying the underlying engine.

This is where luaotfload comes into play: Based on code from ConTEXt, it extends
LuaTEX with functionality necessary for handling OpenType fonts.

Additionally, it provides means for accessing fonts known to the operating system
conveniently by indexing the metadata.

4 Thanks

Luaotfload is part of LuaLATEX, the community-driven project to provide a foundation
for using the LATEX format with the full capabilities of the LuaTEX engine. As such,
the distinction between end users, contributors, and project maintainers is intentionally
kept less strict, lest we unduly personalize the common effort.

Nevertheless, the current maintainers would like to express their gratitude to Khaled
Hosny, Akira Kakuto, Hironori Kitagawa and Dohyun Kim. Their contributions – be it
patches, advice, or systematic testing – made the switch from version 1.x to 2.2 possi-
ble. Also, Hans Hagen, the author of the font loader, made porting the code to LATEX a
breeze due to the extra effort he invested into isolating it from the rest of ConTEXt, not
to mention his assistance in the task and willingness to respond to our suggestions.

5 Loading Fonts

luaotfload supports an extended font request syntax:
1Unfortunately, the default fontloader of luaotfload doesn‘t support many Indic scripts correctly. For these

scripts it is recommended to use the harf mode along with the binary luahbtex.

9

\font\foo = {⟨prefix⟩:⟨font name⟩:⟨font features⟩}⟨TEX font features⟩

The curly brackets are optional and escape the spaces in the enclosed font name. Alter-
natively, double quotes serve the same purpose. A selection of individual parts of the
syntax are discussed below; for a more formal description see figure 1.

5.1 Prefix – the luaotfload Way

In luaotfload, the canonical syntax for font requests requires a prefix:

\font\fontname = ⟨prefix⟩:⟨fontname⟩…
where ⟨prefix⟩ is either file: or name:.2 It determines whether the font loader should
interpret the request as a file name or font name, respectively, which again influences
how it will attempt to locate the font. Examples for font names are “Latin Modern Italic”,
“GFS Bodoni Rg”, and “PT Serif Caption” – they are the human readable identifiers usu-
ally listed in drop-down menus and the like.3 In order for fonts installed both in system
locations and in your texmf to be accessible by font name, luaotfload must first collect
the metadata included in the files. Please refer to section 8 below for instructions on
how to create the database.

File names are whatever your file system allows them to be, except that that they
may not contain the characters (, :, and /. As is obvious from the last exception, the
file: lookup will not process paths to the font location – only those files found when
generating the database are addressable this way. Continue below in the X ETEX section
if you need to load your fonts by path. The file names corresponding to the example
font names above are lmroman12-italic.otf, GFSBodoni.otf, and PTZ56F.ttf.

5.2 Bracketed Lookups

Bracketed lookups allow for arbitrary character content to be used in a definition. A
simple bracketed request looks follows the scheme

\font\fontname = [⟨/path/to/file⟩]

Inside the square brackets, every character except for a closing bracket is permitted,
allowing for arbitrary paths to a font file – including Windows style paths with UNC
or drive letter prepended – to be specified. The Luaotfload syntax differs from X ETEX in
that the subfont selector goes after the closing bracket:

\font\fontname = [⟨/path/to/file⟩] (n)

Naturally, path-less file names are equally valid and processed the same way as an
ordinary file: lookup.

2Luaotfload also knows two further prefixes, kpse: and my:. A kpse lookup is restricted to files that can be
found by kpathsea and will not attempt to locate system fonts. This behavior can be of value when an extra
degree of encapsulation is needed, for instance when supplying a customized tex distribution.

The my lookup takes this a step further: it lets you define a custom resolver function and hook it into the
resolve_font callback. This ensures full control over how a file is located. For a working example see the test
in the luaotfload repo.

3Font names may appear like a great choice at first because they offer seemingly more intuitive identifiers
in comparison to arguably cryptic file names: “PT Sans Bold” is a lot more descriptive than PTS75F.ttf. On
the other hand, font names are quite arbitrary and there is no universal method to determine their meaning.
While luaotfload provides fairly sophisticated heuristic to figure out a matching font style, weight, and optical
size, it cannot be relied upon to work satisfactorily for all font files. For an in-depth analysis of the situation
and how broken font names are, please refer to this post by Hans Hagen, the author of the font loader. If in
doubt, use filenames. luaotfload-tool can perform the matching for you with the option --find=<name>, and
you can use the file name it returns in your font definition.

10

https://github.com/latex3/luaotfload/blob/main/testfiles/my-resolver.lvt
https://github.com/latex3/luaotfload/blob/main/testfiles/my-resolver.lvt
http://www.ntg.nl/pipermail/ntg-context/2013/073889.html

5.3 Compatibility

In addition to the regular prefixed requests, luaotfload accepts loading fonts the X ETEX
way. There are again two modes: bracketed and unbracketed. For the bracketed variety,
see above, 5.2.

Unbracketed (or, for lack of a better word: anonymous) font requests resemble the
conventional TEX syntax.

\font\fontname = ⟨font name⟩ …

However, they have a broader spectrum of possible interpretations: before anything
else, luaotfload attempts to load a traditional TEX Font Metric (tfm or ofm). If this fails,
it performs a path: lookup, which itself will fall back to a file: lookup. Lastly, if none of
the above succeeded, attempt to resolve the request as a name: lookup by searching the
font index for ⟨font name⟩. The behavior of this “anonymous” lookup is configurable,
see the configuration manpage for details.

Furthermore, luaotfload supports the slashed (shorthand) font style notation from
X ETEX.

\font\fontname = ⟨font name⟩/⟨modifier⟩ …

Currently, four style modifiers are supported: I for italic shape, B for bold weight, BI or
IB for the combination of both. Other “slashed” modifiers are too specific to the X ETEX
engine and have no meaning in LuaTEX.

5.4 Examples

5.4.1 Loading by File Name

For example, conventional TEX font can be loaded with a file: request like so:

\font \lmromanten = {file:ec-lmr10} at 10pt

The OpenType version of Janusz Nowacki’s font Antykwa Półtawskiego4 in its con-
densed variant can be loaded as follows:

\font \apcregular = file:antpoltltcond-regular.otf at 42pt

The next example shows how to load the Porson font digitized by the Greek Font
Society using X ETEX-style syntax and an absolute path from a non-standard directory:

\font \gfsporson = "[/tmp/GFSPorson.otf]" at 12pt

TrueType collection files (the extension is usually .ttc) contain more than a single
font. In order to refer to these subfonts, the respective index or the respective PostScript
font name may be added in parentheses after the file name.5

\font \cambriamain = "file:cambria.ttc(0)" at 10pt
\font \cambriamath = "file:cambria.ttc(1)" at 10pt
\font \Cambriamain = "file:cambria.ttc(Cambria)" at 10pt

4http://jmn.pl/antykwa-poltawskiego/, also available in in TEX Live.
5Incidentally, this syntactical detail also prevents one from loading files that end in balanced parentheses.

11

http://jmn.pl/antykwa-poltawskiego/

\font \Cambriamath = "file:cambria.ttc(CambriaMath)" at 10pt

and likewise, requesting subfont inside a TTC container by path:

\font \asanamain = "[/home/typesetter/.fonts/math/asana.ttc](0):mode=node;+tlig" at 10pt
\font \asanamath = "[/home/typesetter/.fonts/math/asana.ttc](1):mode=base" at 10pt

5.4.2 Loading by Font Name

The name: lookup does not depend on cryptic filenames:

\font \pagellaregular = {name:TeX Gyre Pagella} at 9pt

A bit more specific but essentially the same lookup would be:

\font \pagellaregular = {name:TeX Gyre Pagella Regular} at 9pt

Which fits nicely with the whole set:

\font \pagellaregular = {name:TeX Gyre Pagella Regular} at 9pt
\font \pagellaitalic = {name:TeX Gyre Pagella Italic} at 9pt
\font \pagellabold = {name:TeX Gyre Pagella Bold} at 9pt
\font \pagellabolditalic = {name:TeX Gyre Pagella Bolditalic} at 9pt
{\pagellaregular foo bar baz\endgraf }
{\pagellaitalic foo bar baz\endgraf }
{\pagellabold foo bar baz\endgraf }
{\pagellabolditalic foo bar baz\endgraf }
...

5.4.3 Modifiers

If the entire Iwona family6 is installed in some location accessible by luaotfload, the
regular shape can be loaded as follows:

\font \iwona = Iwona at 20pt

To load the most common of the other styles, the slash notation can be employed as
shorthand:

\font \iwonaitalic = Iwona/I at 20pt
\font \iwonabold = Iwona/B at 20pt
\font \iwonabolditalic = Iwona/BI at 20pt

which is equivalent to these full names:

\font \iwonaitalic = "Iwona Italic" at 20pt
\font \iwonabold = "Iwona Bold" at 20pt
\font \iwonabolditalic = "Iwona BoldItalic" at 20pt

6http://jmn.pl/kurier-i-iwona/, also in TEX Live.

12

http://jmn.pl/kurier-i-iwona/

6 Font features

Font features are the second to last component in the general scheme for font requests:

\font\foo = ”⟨prefix⟩:⟨font name⟩:⟨font features⟩⟨TEX font features⟩”

If style modifiers are present (X ETEX style), they must precede ⟨font features⟩.
The element ⟨font features⟩ is a semicolon-separated list of feature tags7 and font

options. Prepending a font feature with a + (plus sign) enables it, whereas a - (minus)
disables it. For instance, the request

\font \test = LatinModernRoman:+clig;-kern

activates contextual ligatures (clig) and disables kerning (kern). Alternatively the op-
tions true or false can be passed to the feature in a key/value expression. The following
request has the same meaning as the last one:

\font \test = LatinModernRoman:clig=true;kern=false

Furthermore, this second syntax is required should a font feature accept other options
besides a true/false switch. For example, stylistic alternates (salt) are variants of given
glyphs. They can be selected either explicitly by supplying the variant index (starting
from one), or randomly by setting the value to, obviously, random.

\font \librmsaltfirst = LatinModernRoman:salt=1

6.1 Basic font features

• mode
luaotfload had three OpenType processing modes: base, node and harf.
base mode works by mapping OpenType features to traditional TEX ligature and
kerning mechanisms. Supporting only non-contextual substitutions and kerning
pairs, it is the slightly faster, albeit somewhat limited, variant. node mode works
by processing TEX’s internal node list directly at the Lua end and supports a wider
range ofOpenType features. The downside is that the intricate operations required
for node mode may slow down typesetting especially with complex fonts and it
does not work in math mode.
By default luaotfload is in node mode, and base mode has to be requested where
needed, e. g. for math fonts.
harf mode is new in version 3.1 and needs the new luahbtex engine (the mode is
ignored if luahbtex is not used). With it is possible to render a font using the harf-
buzz library in-built in the new engine. harf mode improves greatly the rendering
of indic and arabic scripts and is highly recommended for such scripts.
When using harf mode it is required to set also the script correctly.

\font \burmesefont ={file:NotoSerifMyanmar-Regular.ttf:mode=harf;script=mym2;}

\font \devafont ={file:NotoSansDevanagari-Regular.ttf:mode=harf;script=dev2;}

7Cf. http://www.microsoft.com/typography/otspec/featurelist.htm.

13

http://www.microsoft.com/typography/otspec/featurelist.htm

\font \banglafont ={name:Noto Sans Bengali:mode=harf;script=ben2;}

\font \tibetanfont ={name:Noto Serif Tibetan:mode=harf;script=tibt;}

မ္မတေီခါင်းေလာင်း�ကီ

क्र�क�

কণ্যা এখন িক কিরেব

སེྐྱས་ཙམ་ཉི ད་ནས་ཆེ་མཐོ ངས་དང༌།

It is possible to call other font renderers with the mode key. A simple example
with a plain reader can be found at https://github.com/latex3/luaotfload/pull/
26#issuecomment-437716326.

• shaper
If luahbtex and harf mode are used it is possible to specify a shaper, like graphite2
or ot (open type).

\pardir TRT\textdir TRT

\font \test ={file:AwamiNastaliq-Regular.ttf:mode=harf;shaper=ot}

ےئمیلشَرْاُ

\pardir TRT\textdir TRT

\font \test ={file:AwamiNastaliq-Regular.ttf:mode=harf;shaper=graphite2}

اُ
ُ
ر
�
ْ�َ

�
ۓ����

• script
An OpenType script tag;8 the default value is dflt. Some fonts, including very
popular ones by foundries like Adobe, do not assign features to the dflt script, in
which case the script needs to be set explicitly.

• language
An OpenType language system identifier,9 defaulting to dflt.

• color
A font color, defined as a triplet of two-digit hexadecimal rgb values, with an
optional fourth value for transparency (where 00 is completely transparent and FF
is opaque).
For example, in order to set text in semitransparent red:

\font \test = "Latin Modern Roman:color=FF0000BB"

Experimental! The color key has been extended to accept a table with color dec-NEW in v3.12!
8See http://www.microsoft.com/typography/otspec/scripttags.htm for a list of valid values. For scripts de-

rived from the Latin alphabet the value latn is good choice.
9Cf. http://www.microsoft.com/typography/otspec/languagetags.htm.

14

https://github.com/latex3/luaotfload/pull/26#issuecomment-437716326
https://github.com/latex3/luaotfload/pull/26#issuecomment-437716326
http://www.microsoft.com/typography/otspec/scripttags.htm
http://www.microsoft.com/typography/otspec/languagetags.htm

larations of (output) glyphs. For example

\directlua {

luaotfload.add_colorscheme("myscheme",

{

["00FFFF30"] = {"default"},

["FF0000"] = {"kabeng","ebeng"},

["00FF00"] = {"ivowelsignbeng"},

["0000FF"] = {369} })

}

The keys in such a table are like above RGB colors with an optional transparency
setting. The values are either lists of glyph names or GID numbers. Both types are
font dependent! Not every font use the same glyph names (or even glyph names
at all). GID number are font specific anyway. The GID can be found by looking
up the [”index”] entry in the lua file of a font.
Such a colorscheme can then be used like this:

\font \test ={name:Noto Sans Bengali:mode=harf;script=bng2;color=myscheme}

and then would give this output:
কণ্যা এখন িক কিরেব িকন্দ্র

• axis&instance
Experimental! Support for OpenType variable fonts. Variable fonts use very dif-NEW in v3.15!
ferent implementations in harf compared to base and node mode, so in case of unex-
pected behavior it can make sense to try the other mode.

To specify the parameters of a variable font, you can either specify a predefined
instance of the font by passing the associated “subfamily” name to instance or
parameters for individual axis can be provided using the axis feature. You can not
use instance and axis together.
For example (needs the variable Fraunces font installed)

\def \fraunces #1#2{ \font \varfont = "Fraunces/B:mode=node;#1;" at #2pt\varfont

}

\fraunces {axis={wght=Regular}}{10}Regular font\par

\fraunces {axis={wght=Black}}{10}Black variant (aka. very bold)\par

\fraunces {axis={wght=Black,opsz=10}}{10}Black again, but with

correct optical size\par

\fraunces {axis={weight=100,opsz=10}}{10}Let's try giving axis values

numerically\par

\fraunces {instance=semibold}{10}A semi-bold one given as

a instance

15

(Corresponding to

\verb |axis={opsz=144,wght=600,SOFT=100,WONG=1}|)\par

Regular font

Black variant (aka. very bold)

Black again, butwith correct optical size

Let's try giving axis values numerically

A semi-bold one given as a instance
(Corresponding to axis={opsz=144,wght=600,SOFT=100,WONG=1})

• embolden
A factor, defined as a decimal number.
For example

\font \test = "Latin Modern Roman:mode=node;embolden=2;"

Dies is not bold. Dies is a faked bold font.

• kernfactor & letterspace
Define a font with letterspacing (tracking) enabled. In luaotfload, letterspacing is
implemented by inserting additional kerning between glyphs.
This approach is derived from and still quite similar to the character kerning
(\setcharacterkerning / \definecharacterkerning & al.) functionality of Context,
see the file typo-krn.lua there. The main difference is that luaotfload does not
use LuaTEX attributes to assign letterspacing to regions, but defines virtual let-
terspaced versions of a font.
The option kernfactor accepts a numeric value that determines the letterspacing
factor to be applied to the font size. E. g. a kern factor of 0.42 applied to a 10 pt
font results in 4.2 pt of additional kerning applied to each pair of glyphs.
Spaces between words are now stretched too. This is consistent with the X ETEXNEW in v2.96!
behaviour (and the amount of stretching should be similar). This naturally changes
the output of a document. In case you want the old behaviour back use

\directlua {luaotfload.letterspace.keepwordspacing = true}

The difference between both options is obvious:
N e w : h e l l o w o r l d
O l d : h e l l o w o r l d
Ligatures are no longer split into their component glyphs. This change too makeNEW in v2.96!
the luaotfloadmore compatible with X ETEX. It also makes it much easier to activate
or deactivate ligature sets in letterspaced fonts. If you want to split ligatures, you
should deactivate as you would do it with a not-letterspaced font, e.g. with the
fontspec Ligatures option, or the low-level -liga and similar.
With s tandard l iga tu res : fi – ff

16

Only wi th t l i g : f i – f f
No l iga tu res : f i - - f f
For compatibility with X ETEX an alternative letterspace option is supplied that
interprets the supplied value as a percentage of the font size but is otherwise iden-
tical to kernfactor. Consequently, both definitions in below snippet yield the same
letterspacing width:

\font \iwonakernedA = "file:Iwona-Regular.otf:kernfactor=0.125"

\font \iwonakernedB = "file:Iwona-Regular.otf:letterspace=12.5"

The microtype package uses a special implementation of letterspacing, and the
commands \lsstyle and \textls are not affected by these changes.
Setting the ligatures with the font options is the recommended way, to activate
or deactivate them. In case of special requirements specific pairs of letters and
ligatures may be exempt from letterspacing by defining the Lua functions keepto-
gether and keepligature, respectively, inside the namespace luaotfload.letterspace.
Both functions are called whenever the letterspacing callback encounters an ap-
propriate node or set of nodes. If they return a true-ish value, no extra kern is
inserted at the current position. keeptogether receives a pair of consecutive glyph
nodes in order of their appearance in the node list. keepligature receives a single
node which can be analyzed into components. (For details refer to the glyph nodes
section in the LuaTEX reference manual.) The implementation of both functions
is left entirely to the user.

• protrusion & expansion
These keys control microtypographic features of the font, namely character pro-
trusion and font expansion. Their arguments are names of Lua tables that contain
values for the respective features.10 For both, only the set default is predefined.
For example, to define a font with the default protrusion vector applied11:

\font \test = LatinModernRoman:protrusion=default

• invisible
Default Ignorable characters are control characters that should be invisible by
default even if the font has glyphs for them. Since version 3.0 luaotfload makes
them invisible, this can be switch on and off with the invisible. By default it is
on.
For example

10For examples of the table layout please refer to the section of the file luaotfload-fonts-ext.lua where the
default values are defined. Alternatively and with loss of information, you can dump those tables into your
terminal by issuing

\directlua {inspect(fonts.protrusions.setups.default)
inspect(fonts.expansions.setups.default)}

at some point after loading luaotfload.sty.
11You also need to set pdfprotrudechars=2 and pdfadjustspacing=2 to activate protrusion and expansion, re-

spectively. See the pdfTEX manualfor details.

17

http://mirrors.ctan.org/systems/pdftex/manual/pdftex-a.pdf

\font \amiri ={file:amiri-regular.ttf} at 20pt \amiri

\char "200D�\char "200D

 ي

\font \amiri ={file:amiri-regular.ttf:-invisible;} at 20pt \amiri

\char "200D�\char "200D

‍ي‍

• multiscript
In fonts many shaping rules are implemented only for specific scripts and so youNew in 3.12 – experimental
get correct typesetting only if the script feature is correctly set. This means that
to write a text which uses more than one script you have to declare a font for each
script and switch fonts even if the font contains glyphs for all scripts. multiscript
tries to help here. The feature is experimental and bound to change. Feedback is
welcome but you use it at your risk.
multiscript allows you to declare fonts for various script. The value is either auto
described below, or a name which has been previously declared or a combination
of both. An example for such a named multiscript could look like this (the colors
are only for demonstration):

\directlua {

luaotfload.add_multiscript

("cyrlgrekbeng",

{

Cyrl = "DejaVuSans:mode=node;script=cyrl;color=FF0000;",

Grek = "texgyreheros:mode=harf;script=grek;color=0000FF;",

Beng = "NotoSansBengali:mode=harf;script=bng2;color=00FF00;"

}

)

}

cyrlgrekbeng is the name of the multiscript (the name is case insensitive). The
keys are ISO language tags (not open type tags!). They are case insensitive too:
the example uses an uppercase letter for ISO tags to differentiate them from script
tags. The values are font declarations.
The multiscript can then be used in a font like this:

\font \test ={name:DejaVuSans:mode=node;multiscript=cyrlgrekbeng;}

This would lead to this output:
„á123!?“ „π́123!?“ „a!?“ „Б123!?“ a „িক123“

18

It shows that fonts are switched with the scripts.
Be aware of the following drawbacks:

– Quite a lot chars can and should be used with more than one script, they
belong to the Common or Inherited class. Examples are punctuation chars,
digits, accents but also emoji. Currently these chars follow the active script.
That’s why the digits are all typeset with a different font, the accent over the
pi is different to the one over the a, and why the opening quote is sometimes
different to the closing quote. It is clear that some tools to force a script (and
so a font) locally and globally for such chars are needed.

– multiscript doesn’t change hyphenation patterns or other language or script
related features.

– Language packages like babel or polyglossia have code to change the script
too which could interfere or clash. This hasn’t been tested yet.

– multiscript can slow down the compilation.

It is possible to use the value auto with multiscript. luaotfload will then switch
the script if it detects a char belonging to another script (and if the font support
this script). This can be useful for fonts supporting more than one script or when
using the fallback key described below.
It is also possible to combine auto with a named multiscript with the syntax mul-
tiscript=auto+name. The rules of the named multiscript will in such cases take
precedence and auto used only for other scripts.

• fallback
This allows you to define a chain of fonts which are used if glyphs are missing inNew in 3.12 – experimental
the main font. It works only for text fonts, not for math fonts set with the unicode-
math package. The feature is experimental and bound to change. Feedback is
welcome but you use it at your risk. For example

\directlua

{luaotfload.add_fallback

("myfallback",

{

"DejaVuSans:mode=harf;script=grek;color=FF0000;",

"cmuserif:mode=node;script=cyrl;color=00FF00;",

"NotoSansBengali:mode=harf;script=bng2;color=0000FF;",

"NotoColorEmoji:mode=harf;"

}

)

}

This fallback can then be used e.g. like this:

\font \test ={name:LatinModernRoman:mode=node;fallback=myfallback;}

19

1234 á π́ a!? π123!? a БѨ123!? a 😀 িকa „π“ a „Б“
Interesting points in the output are

– The accent over the pi, the digits and the quotes are all from the base font.
Only missing glyphs are from the fallback.

– The cyrillic is printed with the DejaVu font, despite the fact that is sets the
script to grek and that the next font in the fallback chain would fit better.

– The duck emoji is from the Noto font, while the face is from DejaVu as it
comes first in the chain.

The fallback can be combined with the multiscript. For example

\font \test ={name:LatinModernRoman:mode=node;fallback=myfallback;multiscript=auto;}

1234 á π́ a!? π123!? a БѨ123!? a 😀 িকa „π“ a „Б“
Now the accent over the pi is better. The digits after the pi and the closing quote
use the DejaVu font. The digits after the cyrillic use the LatinModern font because
of an interesting “feature” of this font: It claims to know the cyrl script despite the
fact that it doesn’t contain any cyrillic glyphs.
fallback can be nested: fonts in the fallback table can refer to another fallback
table.
As with the multiscript key more control over the used glyph and script in edge
cases will be needed.

• upper/lower
The font features upper and lower can be used to map the text of a font to upper orNew in 3.16
lowercase before displaying it.
By default the casemapping is automatically tailored based on the active language
font feature. This automatic tailoring can be overwritten by passing a two letter
language tag to the upper or lower feature. In addition to ordinary language tags,
the tags el-x-iota, hy-x-yiwn and de-x-eszett can be used. el-x-iota adapts the
greek rules for uppercasing to keep iota subscripts as combining characters which
sufficiently well behaving fonts can render in appropriate ways while the default
for greek is to convert these into capital iotas. de-x-eszett adapts uppercasing for
german to use the capital eszett instead of uppercasing the eszett to double capital
s.

\font \test ={kpse:LinLibertine_R.otf:mode=node;+upper;}

\test Grüße

\font \test ={kpse:LinLibertine_R.otf:mode=node;upper=de-x-eszett;}

\test Grüße

GRÜSSE GRÜẞE

\font \test ={kpse:LinLibertine_R.otf:mode=node;script=grek;+upper;}

20

No specified language: {\test ���������� ����}\par

\font \test ={kpse:LinLibertine_R.otf:mode=node;script=grek;language=ell;+upper;}

Greek uppercasing: {\test ���������� ����}\par

\font \test ={kpse:LinLibertine_R.otf:mode=node;script=grek;language=ell;+upper=el-x-iota;}

Greek variant: {\test ���������� ����}\par

No specified language: ΕἸΣΕΝΈΓΚΉΙΣ ἩΜΑ͂Σ
Greek uppercasing: ΕΙΣΕΝΕΓΚΗΙΣ ΗΜΑΣ
Greek variant: ΕΙΣΕΝΕΓΚῌΣ ΗΜΑΣ

• Variable fonts
When the node shaper is used, experimental support for OpenType variable fontsNew in 3.16
has been added. To use them, set the font feature axis to a comma separated list of
axis names and values. (E.g. axis=weight=600) The supported axis names and value
range depend on the font (see page 21). The following listing shows an example
with the Source Code Variable font:

\documentclass{article}
\DeclareFontFamily{TU}{sourcecode-variable}{}
\newcommand\DeclareSourceVariable[2]{%

\DeclareFontShape{TU}{sourcecode-variable}{#1}{n}{%
<-> \UnicodeFontFile{SourceCodeVariable-Roman.otf}

{\UnicodeFontTeXLigatures axis={weight=#2};}%
}{}%
\DeclareFontShape{TU}{sourcecode-variable}{#1}{it}{%
<-> \UnicodeFontFile{SourceCodeVariable-Italic.otf}

{\UnicodeFontTeXLigatures axis={weight=#2};}%
}{}%

}
\DeclareSourceVariable{ul}{200}
\DeclareSourceVariable{el}{250}
\DeclareSourceVariable{l}{300}
\DeclareSourceVariable{sl}{350}
\DeclareSourceVariable{m}{400}
\DeclareSourceVariable{sb}{500}
\DeclareSourceVariable{b}{600}
\DeclareSourceVariable{eb}{700}
\DeclareSourceVariable{ub}{900}
\begin{document}
\fontfamily{sourcecode-variable}\selectfont
\fontseries{ul}\selectfont a\textit{b}
\fontseries{el}\selectfont c\textit{d}
\fontseries{l}\selectfont e\textit{f}
\fontseries{sl}\selectfont g\textit{h}
\fontseries{m}\selectfont i\textit{j}
\fontseries{sb}\selectfont k\textit{l}
\fontseries{b}\selectfont m\textit{n}
\fontseries{eb}\selectfont o\textit{p}
\fontseries{ub}\selectfont q\textit{r}

21

\end{document}

6.2 Non-standard font features

luaotfload adds a number of features that are not defined in the original OpenType speci-
fication, most of them aiming at emulating the behavior familiar from other TEX engines.
Currently (2014) there are three of them:

• anum
Substitutes the glyphs in the ascii number range with their counterparts from
eastern Arabic or Persian, depending on the value of language.

• tlig
Applies legacy TEX ligatures12:
“ ‘‘ ” ’’
‘ ‘ ’ ’
” ” – --
— --- ¡ !‘
¿ ?‘

• itlc
Computes italic correction values (active by default).

7 Combining fonts

Beside the new keys multiscript and fallback described earlier Version 2.7 and later sup-
port another method to combine characters from multiple fonts into a single virtualized
one. This requires that the affected fonts be loaded in advance as well as a special request
syntax. Furthermore, this allows to define fallback fonts to supplement fonts that may
lack certain required glyphs.

Combinations are created by defining a font using the combo: prefix.

7.1 Fallbacks

For example, the Latin Modern family of fonts does, as indicated in the name, not pro-
vide Cyrillic glyphs. If Latin script dominates in the copy with interspersed Cyrillic,
a fallback can be created from a similar looking font like Computer Modern Unicode,
taking advantage of the fact that it too derives from Knuth’s original Computer Modern
series:

\input luaotfload.sty
\font \lm = file:lmroman10-regular.otf:mode=base
\font \cmu = file:cmunrm.otf:mode=base
\font \lmu = "combo: 1->\fontid \lm ; 2->\fontid \cmu ,fallback"
\lmu Eh bien, mon prince. Gênes et Lueques ne sont plus que des

apanages, des ��������, de la famille Buonaparte.
\bye

12These contain the feature set trep of earlier versions of luaotfload.
Note to X ETEX users: this is the equivalent of the assignment mapping=text-tex using X ETEX’s input remap-

ping feature.

22

As simple as this may look on the first glance, this approach is entirely inappropriate
if more than a couple letters are required from a different font. Because the combina-
tion pulls nothing except the glyph data, all of the important other information that
constitute a proper font – kerning, styles, features, and suchlike – will be missing.

7.2 Combinations

Generalizing the idea of a fallback font, it is also possible to pick definite sets of glyphs
from multiple fonts. On a bad day, for instance, it may be the sanest choice to start out
with EB Garamond italics, typeset all decimal digits in the bold italics of GNU Freefont,
and tone down the punctuation with extra thin glyphs from Source Sans:

\def \feats {-tlig;-liga;mode=base;-kern}
\def \fileone {EBGaramond12-Italic.otf}
\def \filetwo {FreeMonoBoldOblique.otf}
\def \filethree {SourceSansPro-ExtraLight.otf}
\input luaotfload.sty
\font \one = file:\fileone :\feats
\font \two = file:\filetwo :\feats
\font \three = file:\filethree :\feats
\font \onetwothree = "combo: 1 -> \fontid \one ;

2 -> \fontid \two , 0x30-0x39;
3 -> \fontid \three , 0x21*0x3f; "

{\onetwothree \TeX —0123456789—?!}
\bye

Despite the atrocious result, the example demonstrates well the syntax that is used to
specify ranges and fonts. Fonts are being referred to by their internal index which can
be obtained by passing the font command into the \fontid macro, e. g. \fontid\one, after
a font has been defined. The first component of the combination is the base font which
will be extended by the others. It is specified by the index alone.

All further fonts require either the literal fallback or a list of codepoint definitions
to be appended after a comma. The elements of this list again denote either single code-
points like 0x21 (referring to the exclamation point character) or ranges of codepoints
(0x30-0x39). Elements are separated by the ASCII asterisk character (*). The characters
referenced in the list will be imported from the respective font, if available.

8 Font names database

As mentioned above, luaotfload keeps track of which fonts are available to LuaTEX by
means of a database. This allows referring to fonts not only by explicit filenames but
also by the proper names contained in the metadata which is often more accessible to
humans.13

When luaotfload is asked to load a font by a font name, it will check if the database
exists and load it, or else generate a fresh one. Should it then fail to locate the font, an
update to the database is performed in case the font has been added to the system only
recently. As soon as the database is updated, the resolver will try and look up the font
again, all without user intervention. The goal is for luaotfload to act in the background

13The tool otfinfo (comes with TEX Live), when invoked on a font file with the -i option, lists the variety
of name fields defined for it.

23

http://www.lcdf.org/type/

Table 1: List of paths searched for each supported operating system.

and behave as unobtrusively as possible, while providing a convenient interface to the
fonts installed on the system.

Generating the database for the first time may take a while since it inspects every
font file on your computer. This is particularly noticeable if it occurs during a typesetting
run. In any case, subsequent updates to the database will be quite fast.

8.1 luaotfload-tool

It can still be desirable at times to do some of these steps manually, and without having
to compile a document. To this end, luaotfload comes with the utility luaotfload-tool
that offers an interface to the database functionality. Being a Lua script, there are two
ways to run it: either make it executable (chmod +x on unixoid systems) or pass it as an
argument to texlua.14 Invoked with the argument --update it will perform a database
update, scanning for fonts not indexed.

luaotfload-tool --update

Adding the --force switch will initiate a complete rebuild of the database.

luaotfload-tool --update --force

8.2 Search Paths

luaotfload scans those directories where fonts are expected to be located on a given sys-
tem. On a Linux machine it follows the paths listed in the Fontconfig configuration files;
consult man 5 fonts.conf for further information. On Windows systems, the standard
location is Windows\\Fonts, while Mac OS X requires a multitude of paths to be exam-
ined. The complete list is is given in table 1. Other paths can be specified by setting the
environment variable OSFONTDIR. If it is non-empty, then search will be extended to the
included directories.

Windows % WINDIR%\ Fonts
Linux /usr/local/etc/fonts/fonts.conf and

/etc/fonts/fonts.conf
Mac ~/Library/Fonts,

/Library/Fonts,
/System/Library/Fonts, and
/Network/Library/Fonts

8.3 Querying from Outside

luaotfload-tool also provides rudimentary means of accessing the information collected
in the font database. If the option --find=name is given, the script will try and search
the fonts indexed by luaotfload for a matching name. For instance, the invocation

14Tests by the maintainer show only marginal performance gain by running with Luigi Scarso’s LuajitTEX,
which is probably due to the fact that most of the time is spent on file system operations.

Note: On MS Windows systems, the script can be run either by calling the wrapper application luaotfload-
tool.exe or as texlua.exe luaotfload-tool.lua.

24

https://foundry.supelec.fr/projects/luajittex/

luaotfload-tool --find="Iwona Regular"

will verify if “Iwona Regular” is found in the database and can be readily requested in a
document.

If you are unsure about the actual font name, then add the -F (or --fuzzy) switch
to the command line to enable approximate matching. Suppose you cannot precisely
remember if the variant of Iwona you are looking for was “Bright” or “Light”. The query

luaotfload-tool -F --find="Iwona Bright"

will tell you that indeed the latter name is correct.
Basic information about fonts in the database can be displayed using the -i option

(--info).

luaotfload-tool -i --find="Iwona Light Italic"

The meaning of the printed values is described in section 4.4 of the LuaTEX reference
manual.15

For a much more detailed report about a given font try the -I option instead
(--inspect).

luaotfload-tool -I --find="Iwona Light Italic"

luaotfload-tool --helpwill list the available command line switches, including some
not discussed in detail here. For a full documentation of luaotfload-tool and its capabil-
ities refer to the manpage (man 1 luaotfload-tool).16

8.4 Blacklisting Fonts

Some fonts are problematic in general, or just in LuaTEX. If you find that compiling
your document takes far too long or eats away all your system’s memory, you can track
down the culprit by running luaotfload-tool -v to increase verbosity. Take a note of the
filename of the font that database creation fails with and append it to the file luaotfload-
blacklist.cnf.

A blacklist file is a list of font filenames, one per line. Specifying the full path to
where the file is located is optional, the plain filename should suffice. File extensions
(.otf, .ttf, etc.) may be omitted. Anything after a percent (\%) character until the end of
the line is ignored, so use this to add comments. Place this file to some locationwhere the
kpse library can find it, e. g. texmf-local/tex/luatex/luaotfload if you are running TEX
Live,17 or just leave it in the working directory of your document. luaotfload reads all
files named luaotfload-blacklist.cnf it finds, so the fonts in ./luaotfload-blacklist.cnf
extend the global blacklist.

Furthermore, a filename prepended with a dash character (-) is removed from the
blacklist, causing it to be temporarily whitelisted without modifying the global file. An
example with explicit paths:

/Library/Fonts/GillSans.ttc -/Library/Fonts/Optima.ttc

15In TEX Live: texmf-dist/doc/luatex/base/luatexref-t.pdf.
16Or see luaotfload-tool.rst in the source directory.
17You may have to run mktexlsr if you created a new file in your texmf tree.

25

9 The Fontloader

9.1 Overview

To a large extent, luaotfload relies on code originally written by Hans Hagen for the
ConTEXt format. It integrates the font loader, written entirely in Lua, as distributed in
the LuaTEX-Fonts package. The original Lua source files have been combined using the
ConTEXt packaging library into a single, self-contained blob. In this form the font loader
depends only on the lualibs package and requires only minor adaptions to integrate into
luaotfload.

The guiding principle is to let ConTEXt/LuaTEX-Fonts take care of the implementa-
tion, and update the imported code as frequently as necessary. As maintainers, we aim
at importing files from upstream essentially unmodified, except for renaming them to
prevent name clashes. This job has been greatly alleviated since the advent of LuaTEX-
Fonts, prior to which the individual dependencies had to be manually spotted and ex-
tracted from the ConTEXt source code in a complicated and error-prone fashion.

9.2 Contents and Dependencies

Below is a commented list of the files distributed with luaotfload in one way or the other.
See see the figure on page 37 for a graphical representation of the dependencies. Through
the script mkimport a ConTEXt library is invoked to create the luaotfload fontloader as a
merged (amalgamated) source file.18 This file constitutes the “default fontloader” and is
part of the luaotfload package as fontloader-YY-MM-DD.lua, where the uppercase letters
are placeholders for the build date. A companion to it, luatex-basics-gen.lua (renamed
to fontloader-basics-gen.lua in luaotfload) must be loaded beforehand to set up parts
of the environment required by the ConTEXt libraries. During a TEX run, the fontloader
initialization and injection happens in the module luaotfload-init.lua. Additionally, the
“reference fontloader” as imported from LuaTEX-Fonts is provided as the file fontloader-
reference.lua. This file is self-contained in that it packages all the auxiliary Lua libraries
too, as Luaotfload did up to the 2.5 series; since that job has been offloaded to the Lualibs
package, loading this fontloader introduces a certain code duplication.

A number of Lua utility libraries are not part of the luaotfload fontloader, contrary
to its equivalent in LuaTEX-Fonts. These are already provided by the lualibs and have
thus been omitted from the merge.19

• l-lua.lua

• l-lpeg.lua

• l-function.lua

• l-string.lua

• l-table.lua

• l-io.lua

• l-file.lua

• l-boolean.lua

• l-math.lua

• l-unicode.lua

• util-str.lua

• util-fil.lua

18In ConTEXt, this facility can be accessed by means of a script which is integrated into mtxrun as a subcom-
mand. Run mtxrun --script package --help to display further information. For the actual merging code see
the file util-mrg.lua that is part of ConTEXt.

19Faithful listeners will remember the pre-2.6 era when the fontloader used to be integrated as-is which
caused all kinds of code duplication with the pervasive lualibs package. This conceptual glitch has since been
amended by tightening the coupling with the excellent ConTEXt toolchain.

26

http://wiki.contextgarden.net
https://bitbucket.org/phg/context-mirror/src/beta/scripts/context/lua/mtx-package.lua?at=beta

The reference fontloader is home to several Lua files that can be grouped twofold as
below:

• The font loader itself. These files have been written for LuaTEX-Fonts and they are
distributed along with luaotfload so as to resemble the state of the code when it
was imported. Their purpose is either to give a slightly aged version of a file if
upstream considers latest developments for not yet ready for use outside Context;
or, to install placeholders or minimalist versions of APIs relied upon but usually
provided by parts of Context not included in the fontloader.

– luatex-basics-nod.lua

– luatex-basics-chr.lua

– luatex-fonts-mis.lua

– luatex-fonts-enc.lua

– luatex-fonts-syn.lua

– luatex-fonts-tfm.lua

– luatex-fonts-def.lua

– luatex-fonts-ext.lua

– luatex-fonts-lig.lua

– luatex-fonts-gbn.lua

– luatex-fonts.lua

• Code related to font handling and node processing, taken directly from ConTEXt.

– data-con.lua

– font-ini.lua

– font-con.lua

– font-cid.lua

– font-map.lua

– font-vfc.lua

– font-otr.lua

– font-cff.lua

– font-ttf.lua

– font-dsp.lua

– font-oti.lua

– font-ott.lua

– font-otl.lua

– font-oto.lua

– font-otj.lua

– font-oup.lua

– font-ota.lua

– font-ots.lua

– font-otc.lua

– font-osd.lua

– font-ocl.lua

– font-onr.lua

– font-one.lua

– font-afk.lua

– font-lua.lua

– font-def.lua

– font-shp.lua

– font-imp-tex.lua

– font-imp-ligatures.lua

– font-imp-italics.lua

– font-imp-effects.lua

As an alternative to the merged file, Luaotfload may load individual unpackaged Lua
libraries that come with the source, or even use the files from Context directly. Thus
if you prefer running bleeding edge code from the ConTEXt beta, choose the context
fontloader via the configuration file (see sections 10 and 9.3 below).

Also, the merged file at some point loads the Adobe Glyph List from a Lua table that
is contained in luaotfload-glyphlist.lua, which is automatically generated by the script

27

mkglyphlist.20 There is a make target glyphs that will create a fresh glyph list so we don’t
need to import it from ConTEXt any longer.

In addition to these, luaotfload requires a number of files not contained in the merge.
Some of these have no equivalent in LuaTEX-Fonts or ConTEXt, some were taken unmod-
ified from the latter.

• luaotfload-features.lua – font feature handling; incorporates some of the code
from font-otc from ConTEXt;

• luaotfload-configuration.lua – handling of luaotfload.conf(5).

• luaotfload-log.lua – overrides the ConTEXt logging functionality.

• luaotfload-loaders.lua – registers readers in the fontloader for various kinds of
font formats

• luaotfload-parsers.lua – various lpeg-based parsers.

• luaotfload-database.lua – font names database.

• luaotfload-resolvers.lua – file name resolvers.

• luaotfload-colors.lua – color handling.

• luaotfload-auxiliary.lua – access to internal functionality for package authors
(proposals for additions welcome).

• luaotfload-letterspace.lua – font-based letterspacing.

• luaotfload-filelist.lua – data about the files in the package.

9.3 Packaging

The fontloader code is integrated as an isolated component that can be switched out on
demand. To specify the fontloader you wish to use, the configuration file (described in
section 10) provides the option fontloader. Its value can be one of the identifiers default
or reference (see above, section 9.2) or the name of a file somewhere in the search path
of LuaTEX. This will make Luaotfload locate the ConTEXt source by means of kpathsea
lookups and use those instead of the merged package. The parameter may be extended
with a path to the ConTEXt texmf, separated with a colon:

[run]
fontloader = context:~/context/tex/texmf-context

This setting allows accessing an installation – e. g. the standalone distribution or a
source repository – outside the current TEX distribution.

Like the Lualibs package, the fontloader is deployed as amerged package containing a
series of Lua files joined together in their expected order and stripped of non-significant
parts. The mkimport utility assists in pulling the files from a ConTEXt tree and packaging
them for use with Luaotfload.The state of the files currently in Luaotfload’s repository
can be queried:

20See luaotfload-font-enc.lua. The hard-coded file name is why we have to replace the procedure that loads
the file in luaotfload-init.lua.

28

./scripts/mkimport news

The subcommand for importing takes the prefix of the desired ConTEXt texmf as an
optional argument:

./scripts/mkimport import ~/context/tex/texmf-context

Whereas the command for packaging requires a path to the package description file
and the output name to be passed.

./scripts/mkimport package fontloader-custom.lua

From the toplevel makefile, the targets import and package provide easy access to the
commands as invoked during the Luaotfload build process.21 These will call mkimport
script with the correct parameters to generate a datestamped package. Whether files
have been updated in the upstreamdistribution can be queried by ./scripts/mkimport news.
This will compare the imported files with their counterparts in the ConTEXt distribution
and report changes.

10 Configuration Files

Caution: For the authoritative documentation, consult the manpage for
luaotfload.conf(5).

The runtime behavior of Luaotfload can be customized by means of a configuration
file. At startup, it attempts to locate a file called luaotfload.conf or luaotfloadrc at a
number of candidate locations:

• ./luaotfload.conf

• ./luaotfloadrc

• $XDG_CONFIG_HOME/luaotfload/luaotfload.conf

• $XDG_CONFIG_HOME/luaotfload/luaotfload.rc

• /.luaotfloadrc

Caution: The configuration potentially modifies the final document. A
project-local file belongs under version control along with the rest of the
document. This is to ensure that everybody who builds the project also re-
ceives the same customizations as the author.

The syntax is fairly close to the format used by git-config(1) which in turn was
derived from the popular .INI format: Lines of key-value pairs are grouped under differ-
ent configuration “sections”.22 An example for customization via luaotfload.conf might
look as below:

; Example luaotfload.conf containing a rudimentary configuration

21Hint for those interested in the packaging process: issue make show for a list of available build routines.
22The configuration parser in luoatfload-parsers.luamight be employed by other packages for similar pur-

poses.

29

[db]
update-live = false

[run]
color-callback = pre_linebreak_filter
definer = info_patch
log-level = 5

[default-features]
global = mode=base

This specifies that for the given project, Luaotfload shall not attempt to automatically
scan for fonts if it can’t resolve a request. The font-based colorization will happen during
LuaTEX’s pre-linebreak filter. The fontloader will output verbose information about the
fonts at definition time along with globally increased verbosity. Lastly, the fontloader
defaults to the less expensive base mode like it does in ConTEXt.

11 Auxiliary Functions

With release version 2.2, Luaotfload received additional functions for package authors to
call from outside (see the file luaotfload-auxiliary.lua for details). The purpose of this
addition twofold. Firstly, luaotfload failed to provide a stable interface to internals in the
past which resulted in an unmanageable situation of different packages abusing the raw
access to font objects bymeans of the patch_font callback. When the structure of the font
object changed due to an update, all of these imploded and several packages had to be
fixed while simultaneously providing fallbacks for earlier versions. Now the patching is
done on the luaotfload side and can be adapted with future modifications to font objects
without touching the packages that depend on it. Second, some the capabilities of the
font loader and the names database are not immediately relevant in luaotfload itself but
might nevertheless be of great value to package authors or end users.

Note that the current interface is not yet set in stone and the development team is
open to suggestions for improvements or additions.

11.1 Callback Functions

The patch_font callback is inserted in the wrapper luaotfload provides for the font def-
inition callback. At this place it allows manipulating the font object immediately after
the font loader is done creating it. For a short demonstration of its usefulness, here is a
snippet that writes an entire font object to the file fontdump.lua:

\input luaotfload.sty
\directlua {

local dumpfile = "fontdump.lua"
local dump_font = function (tfmdata)
local data = table.serialize(tfmdata)
io.savedata(dumpfile, data)

end
luatexbase.add_to_callback(
"luaotfload.patch_font",
dump_font,
"my_private_callbacks.dump_font"

)
}
\font \dumpme = name:Iwona

30

\bye

Beware: this creates a Lua file of around 150,000 lines of code, taking up 3 mb of
disk space. By inspecting the output you can get a first impression of how a font is
structured in LuaTEX’s memory, what elements it is composed of, and in what ways it
can be rearranged.

The pre_shaping_filter and post_shaping_filter callbacks are a pair of (reverse)list call-
backs running immediately before and after luaotfload shapes the text. They both use
the interface

function(head, groupcode, direction)

where head is the head of the to be shaped list, groupcode is the groupcode as doc-
umented for pre_linebreak_filter and hpack_filter and direction is the current direction.

Since most font processing happens during shaping, LuaTEX’s ligaturing and kerning
callbacks are not involved in most ligature generation and kerning decisions and should
therefore not be relied upon. Font processing for fonts loaded with mode=base might
happen in any of these places.

The specific time when extended features are applied is unspecified and might not
be consistent.

11.1.1 Compatibility with Earlier Versions

As has been touched on in the preface to this section, the structure of the object as
returned by the fontloader underwent rather drastic changes during different stages of
its development, and not all packages that made use of font patching have kept up with
every one of it. To ensure compatibility with these as well as older versions of some
packages, luaotfload sets up copies of or references to data in the font table where it
used to be located. For instance, important parameters like the requested point size, the
units factor, and the font name have again been made accessible from the toplevel of the
table even though they were migrated to different subtables in the meantime.

11.1.2 Patches

These are mostly concerned with establishing compatibility with X ETEX.

• set_sscale_dimens
Calculate \fontdimens 10 and 11 to emulate X ETEX.

• set_capheight
Calculates \fontdimen 8 like X ETEX.

• patch_cambria_domh
Correct some values of the font Cambria Math.

11.2 Package Author’s Interface

As LuaTEX release 1.0 is nearing, the demand for a reliable interface for package authors
increases.

31

11.2.1 Font Properties

Below functions mostly concern querying the different components of a font like for
instance the glyphs it contains, or what font features are defined for which scripts.

• aux.font_has_glyph (id : int, index : int)
Predicate that returns true if the font id has glyph index.

• aux.slot_of_name(id : int, name : string)
Translates a name for a glyph in font id to the corresponding glyph slot which
can be used e.g. as an argument to \char. The number is assigned by the luaotfload
code and not related to the glyph index (GID) of the font as stored in the [index]
field of the lua-file.

• aux.gid_of_name(id : int, name : string)
Translates a name for a glyph in font id to the corresponding glyph index (GID)New version 3.12
as stored in the [index] field.

• aux.name_of_slot(id : int, slot : int)
The inverse of slot_of_name; note that this might be incomplete as multiple
glyph names may map to the same codepoint, only one of which is returned by
name_of_slot.

• aux.gid_of_name(id : int, name : string)
Translates a Glyph name to the corresponding GID in font id. This corresponds
to the value returned by \XeTeXglyphindex in X ETEX.

• aux.provides_script(id : int, script : string)
Test if a font supports script.

• aux.provides_language(id : int, script : string, language : string)
Test if a font defines language for a given script.

• aux.provides_feature(id : int, script : string, language : string, feature : string)
Test if a font defines feature for language for a given script.

• aux.get_math_dimension(id : int, dimension : string)
Get the dimension dimension of font id.

• aux.sprint_math_dimension(id : int, dimension : string)
Same as get_math_dimension(), but output the value in scaled points at the TEX
end.

11.2.2 Database

• aux.read_font_index (void)
Read the index file from the appropriate location (usually the bytecode file
luaotfload-names.luc somewhere in the texmf-var tree) and return the result as
a table. The file is processed with each call so it is up to the user to store the result
for later access.

• aux.font_index (void)
Return a reference of the font names table used internally by luaotfload. The index

32

will be read if it has not been loaded up to this point. Also a font scan that over-
writes the current index file might be triggered. Since the return value points to
the actual index, any modifications to the table might influence runtime behavior
of luaotfload.

11.3 Format Author’s Interface

Additionally some functions are provided which should only be needed for format au-
thors trying to integrate luaotfload’s color handling with the conventions of a specific
format.

End users should never have to work with these.

11.3.1 Color setting

luaotfload’s color feature can apply color in two different ways: By default it inserts
pdf_colorstack whatsits containing the PDF code to change the color.

Alternatively a function can be provided which gets called on every glyph node to
be colored. This function can then e.g. apply an attribute which gets interpreted later.

This can be enabled separately for colors and transparency by passing such callback
functions:

• luaotfload.set_colorhandler((head : node, n : node, color : string) -> (head : node,
n : node)
Mark the node n in the list starting with head to be colored with color color.
By default the color is represented by literal PDF code setting the color.

• luaotfload.set_transparenthandler((head : node, n : node, level : string) -> (head
: node, n : node)
Mark the node n in the list starting with head to be set transparently with trans-
parency level level.
By default the transparency level is represented by literal PDF code setting the
transparency.

When these functions aren’t used, then the color is set based on colorstack 0. By
default a new colorstack is allocated for transparency, but alternatively an existing col-
orstack for this purpose can be set:

• luaotfload.set_transparent_colorstack(stack : int)
Use colorstack stack for setting transparency.

11.3.2 Color selection

Additionally the translation of the argument to color to an actual PDF color can be
customized though three exclusive callbacks:

Since there is only a single color feature which sets both the color and the trans-
parency, the first callback luaotfload.split_color gets called with a single string repre-
senting the feature value and is supposed to return two values representing the color
and the transparency part.

The default implementation splits the string the feature value at a comma and strips
outer spaces for both result values, except the HTML style 8 hexdigit RGBA values get
split into the first 6 and the last two digits.

33

Afterwards the return values get passed to the luaotfload.parse_color respectively
luaotfload.parse_transparent callbacks (except that false and nil skip the corresponding
callback).

These callbacks should translate these strings components into valid PDF commands
applyind the described color or transparency.

All error handling and reporting should be done in the callbacks.

12 Troubleshooting

12.1 Database Generation

If you encounter problems with some fonts, please first update to the latest version of
this package before reporting a bug, as luaotfload is under active development and still a
moving target. The development takes place on github at https://github.com/lualatex/
luaotfload where there is an issue tracker for submitting bug reports, feature requests
and the likes.

Bug reports are more likely to be addressed if they contain the output of

luaotfload-tool --diagnose=environment,files,permissions

Consult the man page for a description of these options.
Errors during database generation can be traced by increasing the verbosity level

and redirecting log output to stdout:

luaotfload-tool -fuvvv --log=stdout

or to a file in /tmp:

luaotfload-tool -fuvvv --log=file

In the latter case, invoke the tail(1) utility on the file for live monitoring of the progress.
If database generation fails, the font last printed to the terminal or log file is likely to

be the culprit. Please specify it when reporting a bug, and blacklist it for the time being
(see above, page 25).

12.2 Font Features

A common problem is the lack of features for some OpenType fonts even when speci-
fied. This can be related to the fact that some fonts do not provide features for the dflt
script (see above on page 14), which is the default one in this package. If this happens,
assigning a noth script when the font is defined should fix it. For example with latn:

\font \test = file:MyFont.otf:script=latn;+liga;

You can get a list of features that a font defines for scripts and languages by querying
it in luaotfload-tool:

luaotfload-tool --find="Iwona" --inspect

34

https://github.com/lualatex/luaotfload
https://github.com/lualatex/luaotfload

12.3 LuaTEX Programming

Another strategy that helps avoiding problems is to not access raw LuaTEX internals
directly. Some of them, even though they are dangerous to access, have not been over-
ridden or disabled. Thus, whenever possible prefer the functions in the aux namespace
over direct manipulation of font objects. For example, raw access to the font.fonts table
like:

local somefont = font.fonts[2]

can render already defined fonts unusable. Instead, the function font.getfont() should be
used because it has been replaced by a safe variant.

However, font.getfont() only covers fonts handled by the font loader, e. g. OpenType
and TrueType fonts, but not tfm or ofm. Should you absolutely require access to all
fonts known to LuaTEX, including the virtual and autogenerated ones, then you need to
query both font.getfont() and font.fonts. In this case, best define you own accessor:

local unsafe_getfont = function (id)
local tfmdata = font.getfont (id)
if not tfmdata then

tfmdata = font.fonts[id]
end
return tfmdata

end
--- use like getfont()
local somefont = unsafe_getfont (2)

13 License

luaotfload is licensed under the terms of the GNU General Public License version 2.0.
Following the underlying fontloader code luaotfload recognizes only that exact version
as its license. The „any later version” clause of the original license text as copyrighted
by the Free Software Foundation does not apply to either luaotfload or the code imported
from ConTEXt.

The complete text of the license is given as a separate file COPYING in the toplevel
directory of the Luaotfload Git repository.
Distributions probably package it as doc/luatex/luaotfload/COPYING in the relevant texmf
tree.

35

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.fsf.org/
https://github.com/latex3/luaotfload/blob/main/COPYING

⟨definition⟩ ::= ‘\font’, csname, ‘=’, ⟨font request⟩, [⟨size⟩] ;
⟨size⟩ ::= ‘at’, dimension ;
⟨font request⟩ ::= ‘”’, ⟨unquoted font request⟩ ‘”’

| ‘{’, ⟨unquoted font request⟩ ‘}’
| ⟨unquoted font request⟩ ;

⟨unquoted font request⟩ ::= ⟨specification⟩, [‘:’, ⟨feature list⟩]
| ⟨path lookup⟩, [[‘:’], ⟨feature list⟩] ;

⟨specification⟩ ::= ⟨prefixed spec⟩, [⟨subfont no⟩], { ⟨modifier⟩ }
| ⟨anon lookup⟩, { ⟨modifier⟩ } ;

⟨prefixed spec⟩ ::= ‘combo:’, ⟨combo list⟩
| ‘file:’, ⟨file lookup⟩
| ‘name:’, ⟨name lookup⟩ ;

⟨combo list⟩ ::= ⟨combo def 1⟩, { ‘;’, ⟨combo def ⟩ } ;
⟨combo def 1⟩ ::= ⟨combo id⟩, ‘->’, ⟨combo id⟩ ;
⟨combo def ⟩ ::= ⟨combo id⟩, ‘->’, ⟨combo id chars⟩ ;
⟨combo id⟩ ::= (‘(’, { digit }, ‘)’ | { digit }) ;
⟨combo id chars⟩ ::= (‘(’, { digit }, ‘,’, ⟨combo chars⟩, ‘)’

| { digit }) ;
⟨combo chars⟩ ::= ‘fallback’

| { ⟨combo range⟩, { ‘*’, ⟨combo range⟩ } } ;
⟨combo range⟩ ::= ⟨combo num⟩, [‘-’, ⟨combo num⟩] ;
⟨combo num⟩ ::= ‘0x’, { hexdigit }

| ‘U+’, { digit }
| { digit } ;

⟨file lookup⟩ ::= { ⟨name character⟩ } ;
⟨name lookup⟩ ::= { ⟨name character⟩ } ;
⟨anon lookup⟩ ::= tfmname | ⟨name lookup⟩ ;
⟨path lookup⟩ ::= ‘[’, { ⟨path content⟩ }, ‘]’, [⟨subfont no⟩] ;
⟨path content⟩ ::= ⟨path balanced⟩

| ‘\’, all_characters
| all_characters - ‘]’

⟨path balanced⟩ ::= ‘[’, [⟨path content⟩], ‘]’
⟨modifier⟩ ::= ‘/’, (‘I’ | ‘B’ | ‘BI’ | ‘IB’ | ‘S=’, { digit }) ;
⟨subfont no⟩ ::= ‘(’, { digit }, ‘)’ ;
⟨feature list⟩ ::= ⟨feature expr⟩, { ‘;’, ⟨feature expr⟩ } ;
⟨feature expr⟩ ::= feature_id, ‘=’, feature_value

| ⟨feature switch⟩, feature_id ;
⟨feature switch⟩ ::= ‘+’ | ‘-’ ;
⟨name character⟩ ::= all_characters - (‘(’ | ‘/’ | ‘:’) ;

Figure 1: Font request syntax. Braces or double quotes around the specification rule
will preserve whitespace in file names. In addition to the font style modifiers (slash-
notation) given above, there are others that are recognized but will be silently ignored:
aat, icu, and gr. The special terminals are: feature_id for a valid font feature name
and feature_value for the corresponding value. tfmname is the name of a tfm file.
digit again refers to bytes 48–57, and all_characters to all byte values. csname and
dimension are the TEX concepts.

36

luaotfload-filelist.lua luaotfload-auxiliary.lua

luaotfload-colors.lua luaotfload-configuration.lua

luaotfload-database.lua luaotfload-features.lua

luaotfload-letterspace.lua luaotfload-embolden.lua

luaotfload-notdef.lua luaotfload-harf-define.lua

luaotfload-harf-plug.lua luaotfload-loaders.lua

luaotfload-multiscript.lua luaotfload-scripts.lua

luaotfload-szss.lua luaotfload-fallback.lua

luaotfload-parsers.lua luaotfload-resolvers.lua

luaotfload-unicode.lua luaotfload-tounicode.lua

luaotfload-dvi.lua

Luaotfload Libraries

luaotfload-blacklist.cnf

l-lua.lua l-lpeg.lua l-function.lua l-string.lua

l-table.lua l-io.lua l-file.lua l-boolean.lua

l-math.lua l-unicode.lua util-str.lua util-fil.lua

Lualibs – Lua Libraries from Context

luaotfload.lua
luaotfload-names.lua.gz
luaotfload-names.luc

luaotfload-init.lua

luaotfload-log.lua

fontloader-basics-gen.lua

fontloader-YY-MM-DD.lua

Fontloader

data-con.lua font-ini.lua font-con.lua
font-cid.lua font-map.lua font-vfc.lua
font-otr.lua font-cff.lua font-ttf.lua
font-dsp.lua font-oti.lua font-ott.lua
font-otl.lua font-oto.lua font-otj.lua
font-oup.lua font-ota.lua font-ots.lua
font-otc.lua font-osd.lua font-ocl.lua
font-onr.lua font-one.lua font-afk.lua
font-lua.lua font-def.lua font-shp.lua
font-imp-tex.lua font-imp-ligatures.lua
font-imp-italics.lua font-imp-effects.lua

Font and Node Libraries from Context

luatex-basics-nod.lua luatex-basics-chr.lua
luatex-fonts-mis.lua luatex-fonts-enc.lua
luatex-fonts-tfm.lua luatex-fonts-def.lua
luatex-fonts-ext.lua luatex-fonts-lig.lua
luatex-fonts-gbn.lua

Font Loader (LuaTeX-Fonts)

Merged libraries

mkimport

mkglyphlist

mkcharacters

mkstatus

mktests

Standalone scripts

luaotfload-glyphlist.lua

luaotfload-characters.lua

luaotfload-tool.lua

luaotfload-diagnostics.lua

luaotfload-status.lua

luaotfload-database.lua

main
()

luaotfload-database.lua

main()

init_early()

init_e
arl

y()

init_main()

unmerged

merged

pulls

pulls

merges

luatex-fonts-enc.lua
luaotfload-auxiliary.lua

generates
from

glyphlist.txt

generates
from

Context’s
char-def.lua

--update

version
information

- -diagnose

hash files

generates
fro

m

dis
tri

bu
tio

n
fil

es

It looks complicated
because it is complicated!

37

luaotfload.conf
Luaotfload configuration file

Date: 2024-12-03
Copyright: GPL v2.0
Version: 3.29
Manual section: 5
Manual group: text processing

SYNOPSIS
• ./luaotfload{.conf,rc}

• XDG_CONFIG_HOME/luaotfload/luaotfload{.conf,rc}

• ~/.luaotfloadrc

DESCRIPTION
Thefile luaotfload.conf contains configuration options for Luaotfload, a font loading
and font management component for LuaTeX.

EXAMPLE
A small Luaotfload configuration file with few customizations could look as follows:

[db]

formats = afm,ttf

compress = false

[misc]

termwidth = 60

[run]

log-level = 6

This will make Luaotfload ignore all font files except for PostScript binary fonts
with a matching AFM file, and Truetype fonts. Also, an uncompressed index file will
be dumped which is going to be much larger than the default gzip’ed index. The ter-
minal width is truncated to 60 characters which influences the verbose output during

1

38

38

indexing. Finally, the verbosity is increased greatly: each font file being processed
will be printed to the stdout on a separate line, along with lots of other information.

To observe the difference in behavior, save above snippet to ./luaotfload.conf

and update the font index:

luaotfload-tool --update --force

The current configuration can be written to disk using luaotfload-tool:

luaotfload-tool --dumpconf > luaotfload.conf

The result can itself be used as a configuration file.

SYNTAX
The configuration file syntax follows the common INI format. For a more detailed
description please refer to the section “CONFIGURATION FILE” of git-config(1). A
brief list of rules is given below:

• Blank lines and lines starting with a semicolon (;) are ignored.
• A configuration file is partitioned into sections that are declared by
specifying the section title in brackets on a separate line:

[some-section]

... section content ...

• Sections consist of one or more variable assignments of the form
variable-name = value E. g.:

[foo]

bar = baz

quux = xyzzy

...

• Section and variable names may contain only uppercase and lower-
case letters as well as dashes (-).

VARIABLES
Variables in belong into a configuration section and their values must be of a certain
type. Some of them have further constraints. For example, the “color callback” must
be a string of one of the values post_linebreak_filter, pre_linebreak_filter, or
pre_output_filter, defined in the section run of the configuration file.

Currently, the configuration is organized into four sections:

db Options relating to the font index.

misc Options without a clearly defined category.

paths Path and file name settings.

run Options controlling runtime behavior of Luaotfload.

The list of valid variables, the sections they are part of and their type is given
below. Types represent Lua types that the values must be convertible to; they are
abbreviated as follows: s for the string type, n for number, b for boolean. A value of
nil means the variable is unset.

2

Section db

variable type default
compress b true

designsize-dimen b bp

formats s "otf,ttf,ttc"

location-precedence s "system,texmf,local

max-fonts n 2^51

scan-local b false

skip-read b false

strip b true

update-live b true

Theflag compress determineswhether the font index (usually luaotfload-names.lua[.gz]
will be stored in compressed forms. If unset it is equivalent of passing --no-compress
to luaotfload-tool. Since the file is only created for convenience and has no effect
on the runtime behavior of Luaotfload, the flag should remain set. Most editors come
with zlib support anyways.

The setting designsize-dimen applies when looking up fonts from families with
design sizes. In Opentype, these are specified as “decipoints” where one decipoint
equals ten DTP style “big points”. When indexing fonts these values are converted to
sp. In order to treat the values as though they were specified in TeX points or Didot
points, set designsize-dimen to pt or dd.

The list of formatsmust be a comma separated sequence of strings containing one
or more of these elements:

• otf (OpenType format),

• ttf and ttc (TrueType format),

• afm (Adobe Font Metrics),

It corresponds loosely to the --formats option to luaotfload-tool. Invalid or
duplicate members are ignored; if the list does not contain any useful identifiers, the
default list "otf,ttf,ttc" will be used.

The variable location-precedence selects where and in which order luaotfload
searches for fonts. Fonts in earlier locations are preferred. The three supported loca-
tions are system for system specific font directories, texmf for fonts which are part of
the TeX{} distribution and local for local fonts.

The variable max-fonts determines after processing how many font files the font
scanner will terminate the search. This is useful for debugging issues with the font
index and has the same effect as the option --max-fonts to luaotfload-tools.

The scan-local flag, if set, will incorporate the current working directory as a font
search location. NB: This will potentially slow down document processing because
a font index with local fonts will not be saved to disk, so these fonts will have to be
re-indexed whenever the document is built. Setting scan_local to false is the same
as removing local from location-precedence.

3

The skip-read flag is only useful for debugging: It makes Luaotfload skip read-
ing fonts. The font information for rebuilding the index is taken from the presently
existing one.

Unsetting the strip flag prevents Luaotfload from removing data from the index
that is only useful when processing font files. NB: this can increase the size of the
index files significantly and has no effect on the runtime behavior.

If update-live is set, Luaotfload will reload the database if it cannot find a re-
quested font. Those who prefer to update manually using luaotfload-tool should
unset this flag. This option does not affect rebuilds due to version mismatch.

Section default-features

By default Luaotfload enables node mode and picks the default font features that
are prescribed in the OpenType standard. This behavior may be overridden in the
default-features section. Global defaults that will be applied for all scripts can be
set via the global option, others by the script they are to be applied to. For example,
a setting of

[default-features]

global = mode=base,color=0000FF

dflt = smcp,onum

would force base mode, tint all fonts blue and activate small capitals and text fig-
ures globally. Features are specified as a comma separated list of variables or variable-
value pairs. Variables without an explicit value are set to true.

Section misc

variable type default
statistics b false

termwidth n nil

version s <Luaotfload version>
keepnames b true

With statistics enabled, extra statistics will be collected during index creation
and appended to the index file. It may then be queried at the Lua end or inspected by
reading the file itself.

The value of termwidth, if set, overrides the value retrieved by querying the prop-
erties of the terminal in which Luatex runs. This is useful if the engine runs with
shell_escape disabled and the actual terminal dimensions cannot be retrieved.

The value of version is derived from the version string hard-coded in the Luaot-
fload source. Override at your own risk.

The keepnames option decides if the ConTeXt fontloader should keep names it
considers useless or if they should be discarded. This option only takes effect after
font caches are regenererated.

4

Section paths

variable type default
cache-dir s "fonts"

names-dir s "names"

index-file s "luaotfload-names.lua"

lookups-file s "luaotfload-lookup-cache.lua"

The paths cache-dir and names-dir determine the subdirectory inside the Luaot-
fload subtree of the luatex-cache directory where the font cache and the font index
will be stored, respectively.

Inside the index directory, the names of the index file and the font lookup cache
will be derived from the respective values of index-file and lookups-file. This is
the filename base for the bytecode compiled version as well as – for the index – the
gzipped version.

Section run

variable type default
anon-sequence s "tex,path,name"

color-callback s "post_linebreak_filter"

definer s "patch"

log-level n 0

resolver s "cached"

fontloader s "default"

default_dvi_driver s "dvisvgm"

Unqualified font lookups are treated with the flexible “anonymous” mechanism.
This involves a chain of lookups applied successively until the first one yields a match.
By default, the lookup will first search for TFM fonts using the Kpathsea library. If
this wasn’t successful, an attempt is made at interpreting the request as an absolute
path (like the [/path/to/font/foo.ttf] syntax) or a file name (file:foo.ttf). Fi-
nally, the request is interpreted as a font name and retrieved from the index (name:Foo
Regular). This behavior can be configured by specifying a list as the value to anon-

sequence. Available items are tex, path, name – representing the lookups described
above, respectively –, and file for searching a filename but not an absolute path.
Also, my lookups are valid values but they should only be used from within TeX doc-
uments, because there is no means of customizing a my lookups on the command line.

The color-callback option determines the stage at which fonts that defined with
a color=xxyyzz featurewill be colorized. By default this happens in a post_linebreak_filter
but alternatively the pre_linebreak_filter or pre_output_filter may be chosen,
which is faster but might produce inconsistent output. The pre_output_filter used
to be the default in the 1.x series of Luaotfload, whilst later versions up to and in-
cluding 2.5 hooked into the pre_linebreak_filter which naturally didn’t affect any
glyphs inserting during hyphenation. Both are kept around as options to restore the
previous behavior if necessary.

5

The definer allows for switching the define_font callback. Apart from the de-
fault patch one may also choose the generic one that comes with the vanilla font-
loader. Beware that this might break tools like Fontspec that rely on the patch_font
callback provided by Luaotfload to perform important corrections on font data.

The fontloader backend can be selected by setting the value of fontloader. The
most important choices are default, which will load the dedicated Luaotfload font-
loader, and reference, the upstream package as shipped with Luaotfload. Other than
those, a file name accessible via kpathsea can be specified.

Alternatively, the individual files that constitute the fontloader can be loaded di-
rectly. While less efficient, this greatly aids debugging since error messages will ref-
erence the actual line numbers of the source files and explanatory comments are not
stripped. Currently, three distinct loading strategies are available: unpackaged will
load the batch that is part of Luaotfload. These contain the identical source code that
the reference fontloader has been compiled from. Another option, context will at-
tempt to load the same files by their names in the Context format from the search
path. Consequently this option allows to use the version of Context that comes with
the TeX distribution. Distros tend to prefer the stable version (“current” in Context
jargon) of those files so certain bugs encountered in the more bleeding edge Luaot-
fload can be avoided this way. A third option is to use contextwith a colon to specify
a directory prefix where the TEXMF is located that the files should be loaded from,
e. g. context:~/context/tex/texmf-context. This can be used when referencing
another distribution like the Context minimals that is installed under a different path
not indexed by kpathsea.

The value of log-level sets the default verbosity of messages printed by Luaot-
fload. Only messages defined with a verbosity of less than or equal to the supplied
value will be output on the terminal. At a log level of five Luaotfload can be very
noisy. Also, printing too many messages will slow down the interpreter due to line
buffering being disabled (see setbuf(3)).

The resolver setting allows choosing the font name resolution function: With
the default value cached Luaotfload saves the result of a successful font name request
to a cache file to speed up subsequent lookups. The alternative, normal circumvents
the cache and resolves every request individually. (Since to the restructuring of the
font name index in Luaotfload 2.4 the performance difference between the cached and
uncached lookups should be marginal.)

When luaotfload is used in DVImode, the default_dvi_driver option determines
how OpenType fonts are represented in the DVI output. In most cases the default
value dvisvgm should be set, it uses a format supported by multiple backends includ-
ing dvipdfmx and dvisvgm which uses GIDs to identify characters. Setting this to
xdvipsk uses an unstable internal format instead which will change depending on
the luaotfload, engine, or font version. No one should rely on the mapping between
DVI character codes and font glyphs in this mode unless they tightly control all in-
volved versions and are deeply familiar with the implementation.

FILES
Luaotfload only processes the first configuration file it encounters at one of the search
locations. The file name may be either luaotfload.conf or luaotfloadrc, except for
the dotfile in the user’s home directory which is expected at ~/.luaotfloadrc.

Configuration files are located following a series of steps. The search terminates

6

as soon as a suitable file is encountered. The sequence of locations that Luaotfload
looks at is

i. The current working directory of the LuaTeX process.

ii. The subdirectory luaotfload/ inside the XDG configuration tree, e. g. /home/oenothea/config/luaotfload/.

iii. The dotfile.

iv. The TEXMF (using kpathsea).

SEE ALSO
luaotfload-tool(1), luatex(1), lua(1)

• texdoc luaotfload to display the PDF manual for the Luaotfload package

• Luaotfload development https://github.com/latex3/luaotfload

• LuaLaTeX mailing list http://tug.org/pipermail/lualatex-dev/

• LuaTeX http://luatex.org/

• Luaotfload on CTAN http://ctan.org/pkg/luaotfload

REFERENCES
• TheXDGbase specification http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.
html.

AUTHORS
Luaotfload was developed by the LuaLaTeX dev team (https://github.com/lualatex/).
It is currently maintained by the LaTeX Project Team at https://github.com/latex3/
luaotfload

This manual page was written by Philipp Gesang <phg@phi-gamma.net>.

7

luaotfload-tool
generate and query the Luaotfload font names database

Date: 2024-12-03
Copyright: GPL v2.0
Version: 3.29
Manual section: 1
Manual group: text processing

SYNOPSIS
luaotfload-tool [-bcDfFiIlLnpqRSuvVhw]

luaotfload-tool –update [–force] [–quiet] [–verbose] [–prefer-texmf] [–dry-
run] [–formats=[+|-]EXTENSIONS] [–no-compress] [–no-strip] [–local] [
–max-fonts=N]

luaotfload-tool –find=FONTNAME [–fuzzy] [–info] [–inspect] [–no-reload
]

luaotfload-tool –flush-lookups
luaotfload-tool –cache=DIRECTIVE
luaotfload-tool –list=CRITERION[:VALUE] [–fields=F1,F2,…,Fn]
luaotfload-tool –bisect=DIRECTIVE
luaotfload-tool –help
luaotfload-tool –version
luaotfload-tool –show-blacklist
luaotfload-tool –diagnose=CHECK
luaotfload-tool –conf=FILE –dumpconf

DESCRIPTION
luaotfload-tool accesses the font names database that is required by the Luaotfload
package. There are two general modes: update and query.

• update: update the database or rebuild it entirely;

• query: resolve a font name or display close matches.

1

45

45

OPTIONS

update mode
–update, -u Update the database; indexes new fonts.

–force, -f Force rebuilding of the database; re-indexes all
fonts.

–local, -L Include font files in $PWD. This option will cause
large parts of the database to be rebuilt. Thus it
is quite inefficient. Additionally, if local font files
are found, the database is prevented from being
saved to disk, so the local fonts need to be parsed
with every invocation of luaotfload-tool.

–no-reload, -n Suppress auto-updates to the database (e.g. when
--find is passed an unknown name).

–no-compress, -c Do not filter the plain text version of the font in-
dex through gzip. Useful for debugging if your
editor is built without zlib.

–prefer-texmf, -p Organize the file name database in a way so that
it prefer fonts in the TEXMF tree over system
fonts if they are installed in both.

–formats=EXTENSIONS Extensions of the font files to index. Where
EXTENSIONS is a comma-separated list of sup-
ported file extensions (otf, ttf, ttc). If the list is
prefixed with a + sign, the given list is added to
the currently active one; - subtracts. Default:
otf,ttf,ttc. Examples:

1) --formats=-ttc,ttf would skip TrueType
fonts and font collections;

2) --formats=otf would scan only OpenType
files;

3) --formats=+afm includes binary Postscript
files accompanied by an AFM file.

query mode
–find=NAME Resolve a font name; this looks up <name> in the

database and prints the file name it is mapped
to. --find also understands request syntax, i.e.
--find=file:foo.otf checkswhether foo.otf is
indexed.

–fuzzy, -F Show approximate matches to the file name if the
lookup was unsuccessful (requires --find).

2

–info, -i Display basic information to a resolved font file
(requires --find).

–inspect, -I Display detailed information by loading the font
and analyzing the font table; very slow! For the
meaning of the returned fields see the LuaTeX
documentation. (requires --find).

–list=CRITERION Show entries, whereCRITERION is one of the fol-
lowing:

1) the character *, selecting all entries;
2) a field of a database entry, for instance ver-

sion or format*, according to which the out-
put will be sorted. Information in an un-
stripped database (see the option --no-strip
above) is nested: Subfields of a record can
be addressed using the -> separator, e. g.
file->location, style->units_per_em, or
names->sanitized->english->prefmodifiers.
NB: shell syntax requires that arguments con-
taining -> be properly quoted!

3) an expression of the form field:value to
limit the output to entrieswhose fieldmatches
value. The value can contain * to match an
arbitrary number of characters.

For example, in order to output file names and
corresponding versions, sorted by the font for-
mat:

./luaotfload-tool.lua --list="format" --fields="file->base,version"

This prints:

otf latinmodern-math.otf Version 1.958

otf lmromancaps10-oblique.otf 2.004

otf lmmono8-regular.otf 2.004

otf lmmonoproplt10-bold.otf 2.004

otf lmsans10-oblique.otf 2.004

otf lmromanslant8-regular.otf 2.004

otf lmroman12-italic.otf 2.004

otf lmsansdemicond10-oblique.otf 2.004

...

–fields=FIELDS Comma-separated list of fields that should be printed.
Information in an unstripped database (see the
option --no-strip above) is nested: Subfields of
a record can be addressed using the -> separator,
e. g. file->location, style->units_per_em, or
names->sanitized->english->subfamily. The de-
fault is plainname,version*. (Onlymeaningful with
--list.)

3

font and lookup caches
–flush-lookups Clear font name lookup cache (experimental).

–cache=DIRECTIVE Cache control, where DIRECTIVE is one of the
following:

1) purge -> delete Lua files from cache;
2) erase -> delete Lua and Luc files from cache;
3) show -> print stats.

debugging methods
–show-blacklist, -b Show blacklisted files (not directories).

–dry-run, -D Don’t load fontswhen updating the database; scan
directories only. (For debugging file system re-
lated issues.)

–no-strip Do not strip redundant information after build-
ing the database. Warning: this will inflate the
index to about two to three times the normal size.

–max-fonts=N Process at most N font files, including fonts al-
ready indexed in the count.

–bisect=DIRECTIVE Bisection of the font database. This mode is in-
tended as assistance in debugging the Luatex en-
gine, especiallywhen trackingmemleaks or buggy
fonts.
DIRECTIVE can be one of the following:

1) run -> Make luaotfload-tool respect the
bisection progresswhen running. Combined
with --update and possibly --force thiswill
only process the files from the start up until
the pivot and ignore the rest.

2) start -> Start bisection: create a bisection
state file and initialize the low, high, and
pivot indices.

3) stop -> Terminate the current bisection ses-
sion by deleting the state file.

4) good | bad -> Mark the section processed
last as “good” or “bad”, respectively. The
next bisection step will continue with the
bad section.

5) status -> Print status information about the
current bisection session. Hint: Use with
higher verbosity settings for more output.

4

Abisection session is initiated by issuing the start
directive. This sets the pivot to the middle of the
list of available font files. Now run luaotfload-tool
with the --update flag set aswell as --bisect=run:
only the fonts up to the pivot will be considered.
If that task exhibited the issue you are tracking,
then tell Luaotfload using --bisect=bad. The next
step of --bisect=runwill continue bisectionwith
the part of the files below the pivot. Likewise, is-
sue --bisect=good in order to continue with the
fonts above the pivot, assuming the tested part of
the list did not trigger the bug.
Once the culprit font is tracked down, good or bad
will have no effect anymore. run will always end
up processing the single font file that was left.
Use --bisect=stop to clear the bisection state.

miscellaneous
–verbose=N, -v Set verbosity level to n or the number of repeti-

tions of -v.

–quiet No verbose output (log level set to zero).

–log=CHANNEL Redirect log output (for database troubleshoot-
ing), where CHANNEL can be

1) stdout -> all output will be dumped to the
terminal (default); or

2) file -> write to a file to the temporary di-
rectory (the name will be chosen automati-
cally.

–version, -V Show version numbers of components as well as
some basic information and exit.

–help, -h Show help message and exit.

–diagnose=CHECK Run the diagnostic procedure CHECK. Available
procedures are:

1) files -> check Luaotfload files for modifi-
cations;

2) permissions -> check permissions of cache
directories and files;

3) environment -> print relevant environment
and kpse variables;

4) repository -> check the git repository for
new releases,

5

5) index -> check database, display informa-
tion about it.

Procedures can be chained by concatenatingwith
commas, e.g. --diagnose=files,permissions. Spec-
ify thorough to run all checks.

–conf=FILE Read the configuration from FILE. See luaotfload.conf(%)
for documentation concerning the format and avail-
able options.

–dumpconf Print the currently active configuration; the out-
put can be saved to a file and used for bootstrap-
ping a custom configuration files.

–aliases Dump the font name database as a kpathsea aliases
file. This option is experimental and might go
away.

FILES
The font name database is usually located in the directory texmf-var/luatex-cache/generic/names/
($TEXMFCACHE as set in texmf.cnf) of your TeX Live distribution as a zlib-compressed
file luaotfload-names.lua.gz. The experimental lookup cache will be created as
luaotfload-lookup-cache.lua in the same directory. These Lua tables are not used
directly by Luaotfload, though. Instead, they are compiled to Lua bytecode which is
written to corresponding files with the extension .luc in the same directory. When
modifying the files by hand keep in mind that only if the bytecode files are missing
will Luaotfload use the plain version instead. Both kinds of files are safe to delete, at
the cost of regenerating them with the next run of LuaTeX.

SEE ALSO
luaotfload.conf(5), luatex(1), lua(1)

• texdoc luaotfload to display the manual for the Luaotfload package

• Luaotfload development https://github.com/latex3/luaotfload

• LuaLaTeX mailing list http://tug.org/pipermail/lualatex-dev/

• LuaTeX http://luatex.org/

• ConTeXt http://wiki.contextgarden.net

• Luaotfload on CTAN http://ctan.org/pkg/luaotfload

BUGS
Tons, probably.

6

AUTHORS
Luaotfload was developed by the LuaLaTeX dev team (https://github.com/lualatex/).
It is currently maintained by the LaTeX Project Team at https://github.com/latex3/
luaotfload The fontloader code is provided by Hans Hagen of Pragma ADE, Hasselt
NL (http://pragma-ade.com/).

This manual page was written by Philipp Gesang <phg@phi-gamma.net>.

7

	Contents
	1 Engine and version support
	2 Changes
	2.1 New in version 3.29
	2.2 New in version 3.28
	2.3 New in version 3.24
	2.4 New in version 3.23
	2.5 New in version 3.22
	2.6 New in version 3.21 (by Ulrike Fischer/Marcel Krüger)
	2.7 New in version 3.20 (by Ulrike Fischer/Marcel Krüger)
	2.8 New in version 3.19 (by Ulrike Fischer/Marcel Krüger)
	2.9 New in version 3.18 (by Ulrike Fischer/Marcel Krüger)
	2.10 New in version 3.17 (by Ulrike Fischer/Marcel Krüger)
	2.11 New in version 3.16 (by Ulrike Fischer/Marcel Krüger)
	2.12 New in version 3.15 (by Ulrike Fischer/Marcel Krüger)
	2.13 New in version 3.14 (by Ulrike Fischer/Marcel Krüger)
	2.14 New in version 3.13 (by Ulrike Fischer/Marcel Krüger)
	2.15 New in version 3.12 (by Ulrike Fischer/Marcel Krüger)
	2.16 New in version 3.11 (by Ulrike Fischer/Marcel Krüger)
	2.17 New in version 3.10 (by Ulrike Fischer/Marcel Krüger)
	2.18 New in version 3.00 (by Ulrike Fischer/Marcel Krüger)
	2.19 New in version 2.99 (by Ulrike Fischer)
	2.20 New in version 2.98 (by Ulrike Fischer)
	2.21 New in version 2.97 (by Ulrike Fischer)
	2.22 New in version 2.96 (by Ulrike Fischer)
	2.23 New in version 2.95 (by Ulrike Fischer)
	2.24 New in version 2.94 (by Ulrike Fischer)
	2.25 New in version 2.93 (by Ulrike Fischer)
	2.26 New in version 2.92 (by Ulrike Fischer)
	2.27 New in version 2.91 (by Ulrike Fischer)
	2.28 New in version 2.9 (by Ulrike Fischer)

	3 Introduction
	4 Thanks
	5 Loading Fonts
	5.1 Prefix – the luaotfload Way
	5.2 Bracketed Lookups
	5.3 Compatibility
	5.4 Examples
	5.4.1 Loading by File Name
	5.4.2 Loading by Font Name
	5.4.3 Modifiers

	6 Font features
	6.1 Basic font features
	6.2 Non-standard font features

	7 Combining fonts
	7.1 Fallbacks
	7.2 Combinations

	8 Font names database
	8.1 luaotfload-tool
	8.2 Search Paths
	8.3 Querying from Outside
	8.4 Blacklisting Fonts

	9 The Fontloader
	9.1 Overview
	9.2 Contents and Dependencies
	9.3 Packaging

	10 Configuration Files
	11 Auxiliary Functions
	11.1 Callback Functions
	11.1.1 Compatibility with Earlier Versions
	11.1.2 Patches

	11.2 Package Author’s Interface
	11.2.1 Font Properties
	11.2.2 Database

	11.3 Format Author’s Interface
	11.3.1 Color setting
	11.3.2 Color selection

	12 Troubleshooting
	12.1 Database Generation
	12.2 Font Features
	12.3 LuaTeX Programming

	13 License
	Appendix: Manual of luaotfload.conf
	Appendix: Manual of luaotfload-tool

