
Unicode algorithms for LuaTEX∗

Marcel Krüger†

February 26, 2022

Dealing with general Unicode encoded data comes with many challenges
because it has to respect individual concerns of many different scripts and lan-
guages. The Unicode consortium maintains multiple useful algorithms which
can sometimes make this task much easier.

lua-uni-algos tries to make the most fundamental algorithms available for
authors of Lua-based packages to aid in handling Unicode data.

Currently this package implements:

Unicode normalization Normalize a given Lua string into any of the normal-
ization forms NFC, NFD, NFKC, or NFKD as specified in the Unicode
standard, section 2.12.

Case folding Fold Unicode codepoints into a form which eliminates all case
distinctions. This can be used for case-independent matching of strings.
Not to be confused with case mapping which maps all characters to
lower/upper/titlecase: In contrast to case mapping, case folding is mostly
locale independent but does not give results which should be shown to
users.

Grapheme cluster segmentation Identify a grapheme cluster, a unit of text
which is perceived as a single character by typical users, according to the
rules in UAX #29, section 3.

1 Normalization
Unicode normalization is handled by the Lua module lua-uni-normalize. You
can either load it directly with

local normalize = require'lua-uni-normalize'

or if you need access to all implemented algorithms you can use

local uni_algos = require'lua-uni-algos'
local normalize = uni_algos.normalize

∗This document corresponds to lua-uni-algos v0.4.1.
†E-Mail: tex@2krueger.de

1

mailto:tex@2krueger.de


Then, four functions are available: normalize.NFC, normalize.NFD, normalize.NFKC,
and normalize.NFKD. If you do not know which of these you need, then you
should probably normalize.NFC. All functions are used in the same way:

local str = "Äpfel…"
print("Original:", str)
print("NFC:", normalize.NFC(str))
print("NFD:", normalize.NFD(str))
print("NFKC:", normalize.NFKC(str))
print("NFKD:", normalize.NFKD(str))

This results in

Original: Äpfel…
NFC: Äpfel…
NFD: Äpfel…
NFKC: Äpfel...
NFKD: Äpfel...

(This example is shown in Latin Modern Mono which has the (for this purpose)
very useful property of not handling combining character very well. In a well-
behaving font, the ‘...C‘ and ‘...D‘ lines should look the same.)

Additionally for direct normalization of LuaTEX node lists is supported.
There are two functions normalize.node.NFC and normalize.direct.NFC tak-
ing upto four parameters: The first parameter is the head of the node list to be
converted. The second parameter is the font id of the affected character nodes.
Only non-protected glyph nodes of the specified font will be normalized. Pass
nil for the font to normalize without respecting the font in the process. The
third parameter is an optional table. If it is not nil, normalization is supressed
if it might add glyph which map to false (or nil) in this table. If the forth
argument is true, normalization will never join two glyph nodes with different
attributes.

For NFD and NFKD equivalent functions exists without the last parameter
(since they never compose nodes, they never have to deal with composing nodes
with different attributes.

NFKC is not supported for node list normalization since the author is not
convinced that there is any usecase for it. (Probably there isn’t any usecase
for node list NFKD normalization either, but that was easy to implement while
NFKC would need separate data tables.

2 Case folding
For case folding load the Lua module lua-uni-case. You can either load it
directly with

local uni_case = require'lua-uni-case'

or if you need access to all implemented algorithms you can use

2



local uni_algos = require'lua-uni-algos'
local uni_case = uni_algos.case

The main function is uni_case.casefold(str, full, special). It ac-
cepts three parameters: A Lua string str to be case folded, a boolean full to
specify if the number of codepoints is allowed to change in the progress (This
should normally be set to true.) and a boolean special which enables special
handling for Turkish languages (In most cases, this should be set to false.)
The function returns the case-folded string:

local str = "Straße…"
print("Original:", str)
print("Case folded (full=false):", uni_case.casefold(str, false, false))
print("Case folded (full=true):", uni_case.casefold(str, true, false))

This results in
Original:Straße…
Case folded (full=false):straße…
Case folded (full=true):strasse…

In most cases, you will want to normalize the string after casefolding.
For cases where you want to casefold something which is not given as a Lua

string, you can use the function uni_case.casefold_lookup(cp, full, special).
Instead of a string, it accepts a codepoint as first parameter and returns a ta-
ble of codepoints. A string can be casefolded by replacing every codepoints
with the sequence of codepoints returned by uni_case.casefold_lookup. If
casefold_lookup returns false or nil, the codepoint should not be changed.

3 Grapheme clusters
Grapheme cluster handling is handled by the Lua module lua-uni-graphemes.
You can either load it directly with

local graphemes = require'lua-uni-graphemes'

or if you need access to all implemented algorithms you can use

local uni_algos = require'lua-uni-algos'
local graphemes = uni_algos.graphemes

Sometimes we want to look at a single character of a string, but identify-
ing what a character is is not that easy in Unicode. A simple example is the
character from the previous section: “Ä” The NFD form is certainly a single
character, but is encoded using two codepoints: U+0041 (LATIN CAPITAL
LETTER A) and U+0308 (COMBINING DIAERESIS). Or the Tamil letter
Ni which is encoded as U+0BA8 (TAMIL LETTER NA) followed by U+0BBF
(TAMIL VOWEL SIGN I). But sometimes it can be useful to identify charac-
ters, e.g. for letterspacing or letterines.

3



There are two main interfaces for this: One iterator for iterating over
grapheme clusters and one direct interface to the underlying state machine:

for final, first, grapheme in graphemes.graphemes'Äpfel' do
print(grapheme)

end

Ä
p
f
e
l

The more powerful state machine interface graphemes.read_codepoint
takes two parameters: A new codepoint and a state. At the beginning, the
state can be omitted. For every codepoint in your input, call the function with
the new codepoint and the last state. Then there are two return values: The
first one is a boolean telling you if the current codepoint is the beginning of a
new cluster, the second is a new state you have to pass with the next codepoint.

So e.g. to find cluster boundaries in the Unicode codepoint sequence U+0041
U+0308 U+0BA8 U+0BBF you could use

local graphemes = require'lua-uni-graphemes'
local new_cluster, state
new_cluster, state = graphemes.read_codepoint(0x0041, state)
print(new_cluster)
new_cluster, state = graphemes.read_codepoint(0x0308, state)
print(new_cluster)
new_cluster, state = graphemes.read_codepoint(0x0BA8, state)
print(new_cluster)
new_cluster, state = graphemes.read_codepoint(0x0BBF, state)
print(new_cluster)

resulting in
true
nil
true
nil
meaning the first and third codepoint start a new cluster.

Do not try to interpret the state, it has no defined values and might change
at any point.

4


	Normalization
	Case folding
	Grapheme clusters

