
The vinum Volume Manager

1. Synopsis
No matter the type of disks, there are always potential problems. The disks can be too small, too
slow, or too unreliable to meet the system’s requirements. While disks are getting bigger, so are
data storage requirements. Often a file system is needed that is bigger than a disk’s capacity.
Various solutions to these problems have been proposed and implemented.

One method is through the use of multiple, and sometimes redundant, disks. In addition to
supporting various cards and controllers for hardware Redundant Array of Independent Disks
RAID systems, the base FreeBSD system includes the vinum volume manager, a block device driver
that implements virtual disk drives and addresses these three problems. vinum provides more
flexibility, performance, and reliability than traditional disk storage and implements RAID-0, RAID-1,
and RAID-5 models, both individually and in combination.

This chapter provides an overview of potential problems with traditional disk storage, and an
introduction to the vinum volume manager.


vinum is deprecated and is not present in FreeBSD 15.0 and later. Users are
advised to migrate to gconcat(8), gmirror(8), gstripe(8), graid(8), or zfs(8).



Starting with FreeBSD 5, vinum has been rewritten to fit into the GEOM
architecture, while retaining the original ideas, terminology, and on-disk
metadata. This rewrite is called gvinum (for GEOM vinum). While this chapter uses
the term vinum, any command invocations should be performed with gvinum. The
name of the kernel module has changed from the original vinum.ko to
geom_vinum.ko, and all device nodes reside under /dev/gvinum instead of
/dev/vinum. As of FreeBSD 6, the original vinum implementation is no longer
available in the code base.

Table of Contents
1. Synopsis . 1

2. Access Bottlenecks . 2

3. Data Integrity. 3

4. vinum Objects . 4

5. Some Examples . 6

6. Object Naming. 12

7. Configuring vinum. 14

8. Using vinum for the Root File System . 15

1

https://man.freebsd.org/cgi/man.cgi?query=gconcat&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=gmirror&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=gstripe&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=graid&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=zfs&sektion=8&format=html
https://docs.freebsd.org/en/books/handbook/#geom
https://docs.freebsd.org/en/books/handbook/#geom

2. Access Bottlenecks
Modern systems frequently need to access data in a highly concurrent manner. For example, large
FTP or HTTP servers can maintain thousands of concurrent sessions and have multiple 100 Mbit/s
connections to the outside world, well beyond the sustained transfer rate of most disks.

Current disk drives can transfer data sequentially at up to 70 MB/s, but this value is of little
importance in an environment where many independent processes access a drive, and where they
may achieve only a fraction of these values. In such cases, it is more interesting to view the problem
from the viewpoint of the disk subsystem. The important parameter is the load that a transfer
places on the subsystem, or the time for which a transfer occupies the drives involved in the
transfer.

In any disk transfer, the drive must first position the heads, wait for the first sector to pass under
the read head, and then perform the transfer. These actions can be considered to be atomic as it
does not make any sense to interrupt them.

Consider a typical transfer of about 10 kB: the current generation of high-performance disks can
position the heads in an average of 3.5 ms. The fastest drives spin at 15,000 rpm, so the average
rotational latency (half a revolution) is 2 ms. At 70 MB/s, the transfer itself takes about 150 μs,
almost nothing compared to the positioning time. In such a case, the effective transfer rate drops to
a little over 1 MB/s and is clearly highly dependent on the transfer size.

The traditional and obvious solution to this bottleneck is "more spindles": rather than using one
large disk, use several smaller disks with the same aggregate storage space. Each disk is capable of
positioning and transferring independently, so the effective throughput increases by a factor close
to the number of disks used.

The actual throughput improvement is smaller than the number of disks involved. Although each
drive is capable of transferring in parallel, there is no way to ensure that the requests are evenly
distributed across the drives. Inevitably the load on one drive will be higher than on another.

The evenness of the load on the disks is strongly dependent on the way the data is shared across the
drives. In the following discussion, it is convenient to think of the disk storage as a large number of
data sectors which are addressable by number, rather like the pages in a book. The most obvious
method is to divide the virtual disk into groups of consecutive sectors the size of the individual
physical disks and store them in this manner, rather like taking a large book and tearing it into
smaller sections. This method is called concatenation and has the advantage that the disks are not
required to have any specific size relationships. It works well when the access to the virtual disk is
spread evenly about its address space. When access is concentrated on a smaller area, the
improvement is less marked. Concatenated Organization illustrates the sequence in which storage
units are allocated in a concatenated organization.

2

Figure 1. Concatenated Organization

An alternative mapping is to divide the address space into smaller, equal-sized components and
store them sequentially on different devices. For example, the first 256 sectors may be stored on the
first disk, the next 256 sectors on the next disk and so on. After filling the last disk, the process
repeats until the disks are full. This mapping is called striping or RAID-0.

RAID offers various forms of fault tolerance, though RAID-0 is somewhat misleading as it provides
no redundancy. Striping requires somewhat more effort to locate the data, and it can cause
additional I/O load where a transfer is spread over multiple disks, but it can also provide a more
constant load across the disks. Striped Organization illustrates the sequence in which storage units
are allocated in a striped organization.

Figure 2. Striped Organization

3. Data Integrity
The final problem with disks is that they are unreliable. Although reliability has increased
tremendously over the last few years, disk drives are still the most likely core component of a
server to fail. When they do, the results can be catastrophic and replacing a failed disk drive and
restoring data can result in server downtime.

One approach to this problem is mirroring, or RAID-1, which keeps two copies of the data on
different physical hardware. Any write to the volume writes to both disks; a read can be satisfied
from either, so if one drive fails, the data is still available on the other drive.

Mirroring has two problems:

3

• It requires twice as much disk storage as a non-redundant solution.

• Writes must be performed to both drives, so they take up twice the bandwidth of a non-
mirrored volume. Reads do not suffer from a performance penalty and can even be faster.

An alternative solution is parity, implemented in RAID levels 2, 3, 4 and 5. Of these, RAID-5 is the
most interesting. As implemented in vinum, it is a variant on a striped organization which
dedicates one block of each stripe to parity one of the other blocks. As implemented by vinum, a
RAID-5 plex is similar to a striped plex, except that it implements RAID-5 by including a parity block
in each stripe. As required by RAID-5, the location of this parity block changes from one stripe to the
next. The numbers in the data blocks indicate the relative block numbers.

Figure 3. RAID-5 Organization

Compared to mirroring, RAID-5 has the advantage of requiring significantly less storage space. Read
access is similar to that of striped organizations, but write access is significantly slower,
approximately 25% of the read performance. If one drive fails, the array can continue to operate in
degraded mode where a read from one of the remaining accessible drives continues normally, but a
read from the failed drive is recalculated from the corresponding block from all the remaining
drives.

4. vinum Objects
To address these problems, vinum implements a four-level hierarchy of objects:

• The most visible object is the virtual disk, called a volume. Volumes have essentially the same
properties as a UNIX® disk drive, though there are some minor differences. For one, they have
no size limitations.

• Volumes are composed of plexes, each of which represent the total address space of a volume.
This level in the hierarchy provides redundancy. Think of plexes as individual disks in a
mirrored array, each containing the same data.

• Since vinum exists within the UNIX® disk storage framework, it would be possible to use
UNIX® partitions as the building block for multi-disk plexes. In fact, this turns out to be too
inflexible as UNIX® disks can have only a limited number of partitions. Instead, vinum
subdivides a single UNIX® partition, the drive, into contiguous areas called subdisks, which are
used as building blocks for plexes.

• Subdisks reside on vinumdrives, currently UNIX® partitions. vinum drives can contain any

4

number of subdisks. With the exception of a small area at the beginning of the drive, which is
used for storing configuration and state information, the entire drive is available for data
storage.

The following sections describe the way these objects provide the functionality required of vinum.

4.1. Volume Size Considerations
Plexes can include multiple subdisks spread over all drives in the vinum configuration. As a result,
the size of an individual drive does not limit the size of a plex or a volume.

4.2. Redundant Data Storage
vinum implements mirroring by attaching multiple plexes to a volume. Each plex is a
representation of the data in a volume. A volume may contain between one and eight plexes.

Although a plex represents the complete data of a volume, it is possible for parts of the
representation to be physically missing, either by design (by not defining a subdisk for parts of the
plex) or by accident (as a result of the failure of a drive). As long as at least one plex can provide the
data for the complete address range of the volume, the volume is fully functional.

4.3. Which Plex Organization?
vinum implements both concatenation and striping at the plex level:

• A concatenated plex uses the address space of each subdisk in turn. Concatenated plexes are the
most flexible as they can contain any number of subdisks, and the subdisks may be of different
length. The plex may be extended by adding additional subdisks. They require less CPU time
than striped plexes, though the difference in CPU overhead is not measurable. On the other
hand, they are most susceptible to hot spots, where one disk is very active and others are idle.

• A striped plex stripes the data across each subdisk. The subdisks must all be the same size and
there must be at least two subdisks to distinguish it from a concatenated plex. The greatest
advantage of striped plexes is that they reduce hot spots. By choosing an optimum sized stripe,
about 256 kB, the load can be evened out on the component drives. Extending a plex by adding
new subdisks is so complicated that vinum does not implement it.

vinum Plex Organizations summarizes the advantages and disadvantages of each plex
organization.

Table 1. vinum Plex Organizations

5

Plex type Minimum
subdisks

Can add subdisks Must be equal
size

Application

concatenated 1 yes no Large data storage
with maximum
placement
flexibility and
moderate
performance

striped 2 no yes High performance
in combination
with highly
concurrent access

5. Some Examples
vinum maintains a configuration database which describes the objects known to an individual
system. Initially, the user creates the configuration database from one or more configuration files
using gvinum(8). vinum stores a copy of its configuration database on each disk device under its
control. This database is updated on each state change, so that a restart accurately restores the state
of each vinum object.

5.1. The Configuration File
The configuration file describes individual vinum objects. The definition of a simple volume might
be:

 drive a device /dev/da3h
 volume myvol
 plex org concat
 sd length 512m drive a

This file describes four vinum objects:

• The drive line describes a disk partition (drive) and its location relative to the underlying
hardware. It is given the symbolic name a. This separation of symbolic names from device
names allows disks to be moved from one location to another without confusion.

• The volume line describes a volume. The only required attribute is the name, in this case myvol.

• The plex line defines a plex. The only required parameter is the organization, in this case concat.
No name is necessary as the system automatically generates a name from the volume name by
adding the suffix .px, where x is the number of the plex in the volume. Thus this plex will be
called myvol.p0.

• The sd line describes a subdisk. The minimum specifications are the name of a drive on which
to store it, and the length of the subdisk. No name is necessary as the system automatically
assigns names derived from the plex name by adding the suffix .sx, where x is the number of

6

https://man.freebsd.org/cgi/man.cgi?query=gvinum&sektion=8&format=html

the subdisk in the plex. Thus vinum gives this subdisk the name myvol.p0.s0.

After processing this file, gvinum(8) produces the following output:

gvinum -> create config1
Configuration summary
Drives: 1 (4 configured)
Volumes: 1 (4 configured)
Plexes: 1 (8 configured)
Subdisks: 1 (16 configured)

 D a State: up Device /dev/da3h Avail: 2061/2573 MB
(80%)

 V myvol State: up Plexes: 1 Size: 512 MB

 P myvol.p0 C State: up Subdisks: 1 Size: 512 MB

 S myvol.p0.s0 State: up PO: 0 B Size: 512 MB

This output shows the brief listing format of gvinum(8). It is represented graphically in A Simple
vinum Volume.

Figure 4. A Simple vinum Volume

This figure, and the ones which follow, represent a volume, which contains the plexes, which in
turn contains the subdisks. In this example, the volume contains one plex, and the plex contains

7

https://man.freebsd.org/cgi/man.cgi?query=gvinum&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=gvinum&sektion=8&format=html

one subdisk.

This particular volume has no specific advantage over a conventional disk partition. It contains a
single plex, so it is not redundant. The plex contains a single subdisk, so there is no difference in
storage allocation from a conventional disk partition. The following sections illustrate various more
interesting configuration methods.

5.2. Increased Resilience: Mirroring
The resilience of a volume can be increased by mirroring. When laying out a mirrored volume, it is
important to ensure that the subdisks of each plex are on different drives, so that a drive failure
will not take down both plexes. The following configuration mirrors a volume:

 drive b device /dev/da4h
 volume mirror
 plex org concat
 sd length 512m drive a
 plex org concat
 sd length 512m drive b

In this example, it was not necessary to specify a definition of drive a again, since vinum keeps
track of all objects in its configuration database. After processing this definition, the configuration
looks like:

 Drives: 2 (4 configured)
 Volumes: 2 (4 configured)
 Plexes: 3 (8 configured)
 Subdisks: 3 (16 configured)

 D a State: up Device /dev/da3h Avail: 1549/2573 MB
(60%)
 D b State: up Device /dev/da4h Avail: 2061/2573 MB
(80%)

 V myvol State: up Plexes: 1 Size: 512 MB
 V mirror State: up Plexes: 2 Size: 512 MB

 P myvol.p0 C State: up Subdisks: 1 Size: 512 MB
 P mirror.p0 C State: up Subdisks: 1 Size: 512 MB
 P mirror.p1 C State: initializing Subdisks: 1 Size: 512
MB

 S myvol.p0.s0 State: up PO: 0 B Size: 512 MB
 S mirror.p0.s0 State: up PO: 0 B Size: 512 MB
 S mirror.p1.s0 State: empty PO: 0 B Size: 512 MB

A Mirrored vinum Volume shows the structure graphically.

8

Figure 5. A Mirrored vinum Volume

In this example, each plex contains the full 512 MB of address space. As in the previous example,
each plex contains only a single subdisk.

5.3. Optimizing Performance
The mirrored volume in the previous example is more resistant to failure than an unmirrored
volume, but its performance is less as each write to the volume requires a write to both drives,
using up a greater proportion of the total disk bandwidth. Performance considerations demand a
different approach: instead of mirroring, the data is striped across as many disk drives as possible.
The following configuration shows a volume with a plex striped across four disk drives:

 drive c device /dev/da5h
 drive d device /dev/da6h
 volume stripe
 plex org striped 512k
 sd length 128m drive a
 sd length 128m drive b
 sd length 128m drive c
 sd length 128m drive d

As before, it is not necessary to define the drives which are already known to vinum. After
processing this definition, the configuration looks like:

 Drives: 4 (4 configured)

9

 Volumes: 3 (4 configured)
 Plexes: 4 (8 configured)
 Subdisks: 7 (16 configured)

 D a State: up Device /dev/da3h Avail: 1421/2573
MB (55%)
 D b State: up Device /dev/da4h Avail: 1933/2573
MB (75%)
 D c State: up Device /dev/da5h Avail: 2445/2573
MB (95%)
 D d State: up Device /dev/da6h Avail: 2445/2573
MB (95%)

 V myvol State: up Plexes: 1 Size: 512 MB
 V mirror State: up Plexes: 2 Size: 512 MB
 V striped State: up Plexes: 1 Size: 512 MB

 P myvol.p0 C State: up Subdisks: 1 Size: 512 MB
 P mirror.p0 C State: up Subdisks: 1 Size: 512 MB
 P mirror.p1 C State: initializing Subdisks: 1 Size: 512
MB
 P striped.p1 State: up Subdisks: 1 Size: 512 MB

 S myvol.p0.s0 State: up PO: 0 B Size: 512 MB
 S mirror.p0.s0 State: up PO: 0 B Size: 512 MB
 S mirror.p1.s0 State: empty PO: 0 B Size: 512 MB
 S striped.p0.s0 State: up PO: 0 B Size: 128 MB
 S striped.p0.s1 State: up PO: 512 kB Size: 128 MB
 S striped.p0.s2 State: up PO: 1024 kB Size: 128 MB
 S striped.p0.s3 State: up PO: 1536 kB Size: 128 MB

10

Figure 6. A Striped vinum Volume

This volume is represented in A Striped vinum Volume. The darkness of the stripes indicates the
position within the plex address space, where the lightest stripes come first and the darkest last.

5.4. Resilience and Performance
With sufficient hardware, it is possible to build volumes which show both increased resilience and
increased performance compared to standard UNIX® partitions. A typical configuration file might
be:

 volume raid10
 plex org striped 512k
 sd length 102480k drive a
 sd length 102480k drive b
 sd length 102480k drive c
 sd length 102480k drive d
 sd length 102480k drive e
 plex org striped 512k
 sd length 102480k drive c
 sd length 102480k drive d
 sd length 102480k drive e
 sd length 102480k drive a
 sd length 102480k drive b

The subdisks of the second plex are offset by two drives from those of the first plex. This helps to
ensure that writes do not go to the same subdisks even if a transfer goes over two drives.

11

A Mirrored represents the structure of this volume.

Figure 7. A Mirrored, Striped vinum Volume

6. Object Naming
vinum assigns default names to plexes and subdisks, although they may be overridden. Overriding
the default names is not recommended as it does not bring a significant advantage and it can cause
confusion.

Names may contain any non-blank character, but it is recommended to restrict them to letters,
digits and the underscore characters. The names of volumes, plexes, and subdisks may be up to 64
characters long, and the names of drives may be up to 32 characters long.

vinum objects are assigned device nodes in the hierarchy /dev/gvinum. The configuration shown
above would cause vinum to create the following device nodes:

• Device entries for each volume. These are the main devices used by vinum. The configuration
above would include the devices /dev/gvinum/myvol, /dev/gvinum/mirror, /dev/gvinum/striped,
/dev/gvinum/raid5 and /dev/gvinum/raid10.

• All volumes get direct entries under /dev/gvinum/.

• The directories /dev/gvinum/plex, and /dev/gvinum/sd, which contain device nodes for each plex
and for each subdisk, respectively.

For example, consider the following configuration file:

12

 drive drive1 device /dev/sd1h
 drive drive2 device /dev/sd2h
 drive drive3 device /dev/sd3h
 drive drive4 device /dev/sd4h
 volume s64 setupstate
 plex org striped 64k
 sd length 100m drive drive1
 sd length 100m drive drive2
 sd length 100m drive drive3
 sd length 100m drive drive4

After processing this file, gvinum(8) creates the following structure in /dev/gvinum:

 drwxr-xr-x 2 root wheel 512 Apr 13
16:46 plex
 crwxr-xr-- 1 root wheel 91, 2 Apr 13 16:46 s64
 drwxr-xr-x 2 root wheel 512 Apr 13 16:46 sd

 /dev/vinum/plex:
 total 0
 crwxr-xr-- 1 root wheel 25, 0x10000002 Apr 13 16:46 s64.p0

 /dev/vinum/sd:
 total 0
 crwxr-xr-- 1 root wheel 91, 0x20000002 Apr 13 16:46 s64.p0.s0
 crwxr-xr-- 1 root wheel 91, 0x20100002 Apr 13 16:46 s64.p0.s1
 crwxr-xr-- 1 root wheel 91, 0x20200002 Apr 13 16:46 s64.p0.s2
 crwxr-xr-- 1 root wheel 91, 0x20300002 Apr 13 16:46 s64.p0.s3

Although it is recommended that plexes and subdisks should not be allocated specific names,
vinum drives must be named. This makes it possible to move a drive to a different location and still
recognize it automatically. Drive names may be up to 32 characters long.

6.1. Creating File Systems
Volumes appear to the system to be identical to disks, with one exception. Unlike UNIX® drives,
vinum does not partition volumes, which thus do not contain a partition table. This has required
modification to some disk utilities, notably newfs(8), so that it does not try to interpret the last letter
of a vinum volume name as a partition identifier. For example, a disk drive may have a name like
/dev/ad0a or /dev/da2h. These names represent the first partition (a) on the first (0) IDE disk (ad)
and the eighth partition (h) on the third (2) SCSI disk (da) respectively. By contrast, a vinum volume
might be called /dev/gvinum/concat, which has no relationship with a partition name.

To create a file system on this volume, use newfs(8):

newfs /dev/gvinum/concat

13

https://man.freebsd.org/cgi/man.cgi?query=gvinum&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=newfs&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=newfs&sektion=8&format=html

7. Configuring vinum
The GENERIC kernel does not contain vinum. It is possible to build a custom kernel which includes
vinum, but this is not recommended. The standard way to start vinum is as a kernel module.
kldload(8) is not needed because when gvinum(8) starts, it checks whether the module has been
loaded, and if it is not, it loads it automatically.

7.1. Startup
vinum stores configuration information on the disk slices in essentially the same form as in the
configuration files. When reading from the configuration database, vinum recognizes a number of
keywords which are not allowed in the configuration files. For example, a disk configuration might
contain the following text:

volume myvol state up
volume bigraid state down
plex name myvol.p0 state up org concat vol myvol
plex name myvol.p1 state up org concat vol myvol
plex name myvol.p2 state init org striped 512b vol myvol
plex name bigraid.p0 state initializing org raid5 512b vol bigraid
sd name myvol.p0.s0 drive a plex myvol.p0 state up len 1048576b driveoffset 265b
plexoffset 0b
sd name myvol.p0.s1 drive b plex myvol.p0 state up len 1048576b driveoffset 265b
plexoffset 1048576b
sd name myvol.p1.s0 drive c plex myvol.p1 state up len 1048576b driveoffset 265b
plexoffset 0b
sd name myvol.p1.s1 drive d plex myvol.p1 state up len 1048576b driveoffset 265b
plexoffset 1048576b
sd name myvol.p2.s0 drive a plex myvol.p2 state init len 524288b driveoffset 1048841b
plexoffset 0b
sd name myvol.p2.s1 drive b plex myvol.p2 state init len 524288b driveoffset 1048841b
plexoffset 524288b
sd name myvol.p2.s2 drive c plex myvol.p2 state init len 524288b driveoffset 1048841b
plexoffset 1048576b
sd name myvol.p2.s3 drive d plex myvol.p2 state init len 524288b driveoffset 1048841b
plexoffset 1572864b
sd name bigraid.p0.s0 drive a plex bigraid.p0 state initializing len 4194304b driveoff
set 1573129b plexoffset 0b
sd name bigraid.p0.s1 drive b plex bigraid.p0 state initializing len 4194304b driveoff
set 1573129b plexoffset 4194304b
sd name bigraid.p0.s2 drive c plex bigraid.p0 state initializing len 4194304b driveoff
set 1573129b plexoffset 8388608b
sd name bigraid.p0.s3 drive d plex bigraid.p0 state initializing len 4194304b driveoff
set 1573129b plexoffset 12582912b
sd name bigraid.p0.s4 drive e plex bigraid.p0 state initializing len 4194304b driveoff
set 1573129b plexoffset 16777216b

The obvious differences here are the presence of explicit location information and naming, both of

14

https://man.freebsd.org/cgi/man.cgi?query=kldload&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=gvinum&sektion=8&format=html

which are allowed but discouraged, and the information on the states. vinum does not store
information about drives in the configuration information. It finds the drives by scanning the
configured disk drives for partitions with a vinum label. This enables vinum to identify drives
correctly even if they have been assigned different UNIX® drive IDs.

7.1.1. Automatic Startup

Gvinum always features an automatic startup once the kernel module is loaded, via loader.conf(5).
To load the Gvinum module at boot time, add geom_vinum_load="YES" to /boot/loader.conf.

When vinum is started with gvinum start, vinum reads the configuration database from one of the
vinum drives. Under normal circumstances, each drive contains an identical copy of the
configuration database, so it does not matter which drive is read. After a crash, however, vinum
must determine which drive was updated most recently and read the configuration from this drive.
It then updates the configuration, if necessary, from progressively older drives.

8. Using vinum for the Root File System
For a machine that has fully-mirrored file systems using vinum, it is desirable to also mirror the
root file system. Setting up such a configuration is less trivial than mirroring an arbitrary file
system because:

• The root file system must be available very early during the boot process, so the vinum
infrastructure must already be available at this time.

• The volume containing the root file system also contains the system bootstrap and the kernel.
These must be read using the host system’s native utilities, such as the BIOS, which often cannot
be taught about the details of vinum.

In the following sections, the term "root volume" is generally used to describe the vinum volume
that contains the root file system.

8.1. Starting up vinum Early Enough for the Root File
System
vinum must be available early in the system boot as loader(8) must be able to load the vinum
kernel module before starting the kernel. This can be accomplished by putting this line in
/boot/loader.conf:

geom_vinum_load="YES"

8.2. Making a vinum-based Root Volume Accessible to
the Bootstrap
The current FreeBSD bootstrap is only 7.5 KB of code and does not understand the internal vinum
structures. This means that it cannot parse the vinum configuration data or figure out the elements

15

https://man.freebsd.org/cgi/man.cgi?query=loader.conf&sektion=5&format=html
https://man.freebsd.org/cgi/man.cgi?query=loader&sektion=8&format=html

of a boot volume. Thus, some workarounds are necessary to provide the bootstrap code with the
illusion of a standard a partition that contains the root file system.

For this to be possible, the following requirements must be met for the root volume:

• The root volume must not be a stripe or RAID-5.

• The root volume must not contain more than one concatenated subdisk per plex.

Note that it is desirable and possible to use multiple plexes, each containing one replica of the root
file system. The bootstrap process will only use one replica for finding the bootstrap and all boot
files, until the kernel mounts the root file system. Each single subdisk within these plexes needs its
own a partition illusion, for the respective device to be bootable. It is not strictly needed that each
of these faked a partitions is located at the same offset within its device, compared with other
devices containing plexes of the root volume. However, it is probably a good idea to create the
vinum volumes that way so the resulting mirrored devices are symmetric, to avoid confusion.

To set up these a partitions for each device containing part of the root volume, the following is
required:

1. The location, offset from the beginning of the device, and size of this device’s subdisk that
is part of the root volume needs to be examined, using the command:

gvinum l -rv root

vinum offsets and sizes are measured in bytes. They must be divided by 512 to obtain the
block numbers that are to be used by bsdlabel.

2. Run this command for each device that participates in the root volume:

bsdlabel -e devname

devname must be either the name of the disk, like da0 for disks without a slice table, or the
name of the slice, like ad0s1.

If there is already an a partition on the device from a pre-vinum root file system, it should
be renamed to something else so that it remains accessible (just in case), but will no longer
be used by default to bootstrap the system. A currently mounted root file system cannot be
renamed, so this must be executed either when being booted from a "Fixit" media, or in a
two-step process where, in a mirror, the disk that is not been currently booted is
manipulated first.

The offset of the vinum partition on this device (if any) must be added to the offset of the
respective root volume subdisk on this device. The resulting value will become the offset
value for the new a partition. The size value for this partition can be taken verbatim from
the calculation above. The fstype should be 4.2BSD. The fsize, bsize, and cpg values should
be chosen to match the actual file system, though they are fairly unimportant within this
context.

16

That way, a new a partition will be established that overlaps the vinum partition on this
device. bsdlabel will only allow for this overlap if the vinum partition has properly been
marked using the vinum fstype.

3. A faked a partition now exists on each device that has one replica of the root volume. It is
highly recommendable to verify the result using a command like:

fsck -n /dev/devnamea

It should be remembered that all files containing control information must be relative to the root
file system in the vinum volume which, when setting up a new vinum root volume, might not
match the root file system that is currently active. So in particular, /etc/fstab and /boot/loader.conf
need to be taken care of.

At next reboot, the bootstrap should figure out the appropriate control information from the new
vinum-based root file system, and act accordingly. At the end of the kernel initialization process,
after all devices have been announced, the prominent notice that shows the success of this setup is
a message like:

Mounting root from ufs:/dev/gvinum/root

8.3. Example of a vinum-based Root Setup
After the vinum root volume has been set up, the output of gvinum l -rv root could look like:

...
Subdisk root.p0.s0:
 Size: 125829120 bytes (120 MB)
 State: up
 Plex root.p0 at offset 0 (0 B)
 Drive disk0 (/dev/da0h) at offset 135680 (132 kB)

Subdisk root.p1.s0:
 Size: 125829120 bytes (120 MB)
 State: up
 Plex root.p1 at offset 0 (0 B)
 Drive disk1 (/dev/da1h) at offset 135680 (132 kB)

The values to note are 135680 for the offset, relative to partition /dev/da0h. This translates to 265
512-byte disk blocks in `bsdlabel’s terms. Likewise, the size of this root volume is 245760 512-byte
blocks. /dev/da1h, containing the second replica of this root volume, has a symmetric setup.

The bsdlabel for these devices might look like:

...

17

8 partitions:
size offset fstype [fsize bsize bps/cpg]
 a: 245760 281 4.2BSD 2048 16384 0 # (Cyl. 0*- 15*)
 c: 71771688 0 unused 0 0 # (Cyl. 0 - 4467*)
 h: 71771672 16 vinum # (Cyl. 0*- 4467*)

It can be observed that the size parameter for the faked a partition matches the value outlined
above, while the offset parameter is the sum of the offset within the vinum partition h, and the
offset of this partition within the device or slice. This is a typical setup that is necessary to avoid the
problem described in Nothing Boots. The entire a partition is completely within the h partition
containing all the vinum data for this device.

In the above example, the entire device is dedicated to vinum and there is no leftover pre-vinum
root partition.

8.4. Troubleshooting
The following list contains a few known pitfalls and solutions.

8.4.1. System Bootstrap Loads, but System Does Not Boot

If for any reason the system does not continue to boot, the bootstrap can be interrupted by pressing
space at the 10-seconds warning. The loader variable vinum.autostart can be examined by typing
show and manipulated using set or unset.

If the vinum kernel module was not yet in the list of modules to load automatically, type load
geom_vinum.

When ready, the boot process can be continued by typing boot -as which -as requests the kernel to
ask for the root file system to mount (-a) and make the boot process stop in single-user mode (-s),
where the root file system is mounted read-only. That way, even if only one plex of a multi-plex
volume has been mounted, no data inconsistency between plexes is being risked.

At the prompt asking for a root file system to mount, any device that contains a valid root file
system can be entered. If /etc/fstab is set up correctly, the default should be something like
ufs:/dev/gvinum/root. A typical alternate choice would be something like ufs:da0d which could be a
hypothetical partition containing the pre-vinum root file system. Care should be taken if one of the
alias a partitions is entered here, that it actually references the subdisks of the vinum root device,
because in a mirrored setup, this would only mount one piece of a mirrored root device. If this file
system is to be mounted read-write later on, it is necessary to remove the other plex(es) of the
vinum root volume since these plexes would otherwise carry inconsistent data.

8.4.2. Only Primary Bootstrap Loads

If /boot/loader fails to load, but the primary bootstrap still loads (visible by a single dash in the left
column of the screen right after the boot process starts), an attempt can be made to interrupt the
primary bootstrap by pressing space . This will make the bootstrap stop in stage two. An attempt can
be made here to boot off an alternate partition, like the partition containing the previous root file

18

https://docs.freebsd.org/en/books/handbook/#boot-boot1

system that has been moved away from a.

8.4.3. Nothing Boots, the Bootstrap Panics

This situation will happen if the bootstrap had been destroyed by the vinum installation.
Unfortunately, vinum accidentally leaves only 4 KB at the beginning of its partition free before
starting to write its vinum header information. However, the stage one and two bootstraps plus the
bsdlabel require 8 KB. So if a vinum partition was started at offset 0 within a slice or disk that was
meant to be bootable, the vinum setup will trash the bootstrap.

Similarly, if the above situation has been recovered, by booting from a "Fixit" media, and the
bootstrap has been re-installed using bsdlabel -B as described in stage two, the bootstrap will trash
the vinum header, and vinum will no longer find its disk(s). Though no actual vinum configuration
data or data in vinum volumes will be trashed, and it would be possible to recover all the data by
entering exactly the same vinum configuration data again, the situation is hard to fix. It is
necessary to move the entire vinum partition by at least 4 KB, to have the vinum header and the
system bootstrap no longer collide.

19

https://docs.freebsd.org/en/books/handbook/#boot-boot1

	The vinum Volume Manager
	Table of Contents
	1. Synopsis
	2. Access Bottlenecks
	3. Data Integrity
	4. vinum Objects
	5. Some Examples
	6. Object Naming
	7. Configuring vinum
	8. Using vinum for the Root File System

