

Industrial applications-oriented, microwave modeling in Elmer

Roman Szewczyk ^{1,2}, Anna Ostaszewska-Liżewska ^{1,2}, Dominika Kopala ¹, Jakub Szałatkiewicz ^{2,3}

roman.szewczyk@pw.edu.pl, anna.lizewska@pw.edu.pl, dominika.kopala.stud@pw.edu.pl, jakub.szalatkiewicz@gmail.com

¹⁾ Warsaw University of Technology, Faculty of Mechatronics

²⁾ Łukasiewicz Research Network - Industrial Research Institute for Automation and Measurements, Warsaw, Poland

³⁾ Phoenix Surowce sp. zoo, Warsaw, Poland

20.05.2021 Warsaw-Espoo, Elmer FEM free webinar series

Plan of the presentation:

Roman Szewczyk (PhD., DSc., ProfTitul.) - few words about the history and the most important ideas behind our work.

Anna Ostaszewska-Liżewska (PhD.) – meshing for Elmer microwave modelling, problems with presentation of 3D vector fields.

Dominika Kopala (engineer, M.Sc.-student) – microwave models and .sif file

Jakub Szałatkiewicz (PhD., DSc.) – practical applications of microwave technology and Elmer models

Warsaw University of Technology Faculty of Mechatronics

Leading Polish technical university since 1915 19 faculties, 30 000 students

ŁUKASIEWICZ Research Network – Industrial Research Institute for Automation and Measurements

Technology transfer oriented, public research institute, since 1965.

Both in Warsaw, Poland

Our adventure with ELMER FEM started in 2012.

In cooperation with **RADWAG**, Polish private company we undertaken the development of laboratory microwave moisture analyzers – tool for assessment of humidity level in biological materials, such as wood, yoghurt, etc.

Laboratory microwave moisture analyzers:

- 2 producers around the world,
- very expensive,
- highly profitable.

Barrier:

Microwave chamber of laboratory microwave moisture analyzer has to be kept in resonance.

To determine the geometry of the microwave chamber suitable for the resonance, you need to model it using finite elements method.

Cost of commercial software – half of our project's budget.

Solution: ELMER FEM

ELMER TEAM: developed microwave module for ELMER FEM

PIAP, WUT: developed the project of microwave chamber

RADWAG: developed the laboratory microwave moisture analyzer and introduced it to the global market

Third company in the global market!

https://radwag.com/en/ pmv-50-microwave-moisture-analyzer,4,401-153

Now, we use **ELMER FEM** as a standard for our education and research.

- No problem with commercialization.
- Easy integration in large software structures for optimization.
- Possible to integrate our own models (tensor description of permeability -- mechanical stresses dependences).

R. Szewczyk, M. Nowicki, A. Ostaszewska-Liżewska,
A. Bieńkowski, P. Nowak, M. Malinen
"Accuracy of frame-shaped samples based measurements of magnetoelastic characteristics of soft magnetic materials" *Measurement* 162 (2020) 107899

Let us guide you through all microwave system modelling process.

First: tetrahedral meshes for modelling

First: tetrahedral meshes for modelling - why Netgen?

More control -> external mesh generators -> open source:

- **GMSH** the most popular, fast, light and user friendly, with GUI
- Salome a great cross platform for pre- and postprocessing
- FreeCAD parametric modelling
- Netgen modules for mesh optimization and mesh refinement, writes meshes in Elmer format (linear only)

algebraic3d

```
# ----- Waveguide -----
solid UP_PIPE = plane(0,0,0;0,0,-1);
solid DOWN_PIPE = plane(0,0,300;0,0,1);
solid PIPE = cylinder(0,0,-100;0,0,400;80);
solid WAVEGUIDE = PIPE and DOWN PIPE and UP PIPE;
```

```
# ----- Chamber -----
solid UP_BOX = plane(0,0,240;0,0,-1);
solid DOWN_BOX = plane(0,0,720;0,0,1);
solid BOX = cylinder(0,0,200;0,0,800;151);
solid CAVITY = BOX and DOWN_BOX and UP_BOX;
```

```
# ----- Join waveguide + chamber -----
solid MIC = WAVEGUIDE or CAVITY;
```

generate object
tlo MIC;

Step one: define gometry

1. Define solid primitives

2. Conduct a logical operation

3. Generate solid

algebraic3d

generate object
tlo PIPE;

y ₽_x

Netgen 6.2-dev

Lifehack alert!

algebraic3d#

generate object
tlo WAVEGUIDE;

algebraic3d#

```
----- Waveguide ------
solid UP_PIPE = plane(0,0,0;0,0,-1);
solid DOWN_PIPE = plane(0,0,300;0,0,1);
solid PIPE = cylinder(0,0,-100;0,0,400;80);
solid WAVEGUIDE = PIPE and DOWN PIPE and UP PIPE;
```

```
# ----- Chamber ------
solid UP_BOX = plane(0,0,240;0,0,-1);
solid DOWN_BOX = plane(0,0,720;0,0,1);
solid BOX = cylinder(0,0,200;0,0,800;151);
solid CAVITY = BOX and DOWN BOX and UP BOX;
```

```
# ----- Join waveguide + chamber ------
solid MIC = WAVEGUIDE or CAVITY;
```

generate object
tlo MIC; Generate the final solid only

Lifehack alert: changing units in Netgen

algebraic3d#

Geometry defined in meters

----- Join waveguide + chamber ----solid MIC = WAVEGUIDE or CAVITY;

```
# generate object
tlo MIC;
```


Step two: generate the mesh

NGSolve - D:/MESwork/A_Elmer seminar/Komora_model/NETGEN/cavity_org.geo

File Geometry Mesh View Refinement Special Help Solve

Quit Generate Mesh Stop

₽[×]

Mes	hing Optio	าร		-		\times							
<u>G</u> eneral	Mesh Size	STL Charts	<u>O</u> ptimizer	<u>D</u> ebug									
General	meshing o	ptions											
	Mesh	granularity:	very fine		-								
	First St	ep:	Analyze G	eometry	•								
	Last St	ep:	Optimize	Volume	•								
	Print N	Aessages:	Little		•								
Additional meshing options Separate meshing thread Second order elements Quad dominated Invert volume elements Invert surface elements Automatic Z-refinement Selement order Parallel meshing 4 Reference Number of meshing threads													
	Apply			Do	one								

- 0 ×

Center

Visual Solve PDE Recent Geometry - Zoom All

Netgen 6.2-dev

0	NGSolve - D:/MESwork/A Elme	r seminar/Komora model/NETGEN/cavity org.geo
•	reasone symillswong/r_line	r serimar, tornora_model, nerdera, early_org.geo

File	Geom	etry	Mesh	View	Refinement	Special	Help	Solve	
C	Quit	Ger	nerate M	lesh	Stop				

₽×

🧳 Mes	hing Optior	าร		_		×
General	Mesh Size	STL Charts	<u>Optimizer</u>	<u>D</u> ebug		
		max m min m mesh-size	esh-size 10 esh-size 0 grading 0.1			
	mesh-size	file:		Bro	wse	
CSG me	sh-size					
			5 Elem	ents per cu ents per ec	urvature r Ige	adius
STI me	h-cize				- j -	
STE IIIC.	AT-312C	F	5 🔽 ST	L - chart di	istance	
	-		3 🗹 ST	L - line len	gth	
	-1		5 🗹 ST	L/IGES/STE	P - close	edges
	-Ĩ		3 🗌 ST	L - surface	curvatur	e
	-	[3 🗌 ST	L - edge ar	ngle	
			5 🗌 ST	<mark>L - sur</mark> face	mesh cu	rv
	STL - R	ecalc mesh	size for sur Ic New H	face optim	ization	
	Apply			Do	ne	

ð X

Center

Visual Solve PDE Recent Geometry

Zoom All

Netgen 6.2-dev

NGSolve	- D:/MESwork/A_Elm	er seminar/Komora_m	odel/NETGEN/cavity	y_org.geo								
File Geom	netry Mesh View	Refinement Specia	I Help Solve					1		1		1
Quit	Generate Mesh	Stop					Visual	Solve PDE	Recent	Geometry •	Zoom All	Center
	🧳 Meshing	Options	-									
	<u>G</u> eneral <u>M</u> e	sh Size STL Charts O	ptimizer <u>D</u> ebug									
	Optimizatio	n settings Surface opt step: Volume opt step Element size wei Worst element n	s 5 ght 0.2 neasure 2									
	Bad elemen	ts 175	bad element crit	erion								
		Apply	Dor	ne								

₽×

Netgen 6.2-dev

A NGSolva D-/MESU elc/A Eles eminar/Komora model/NETGEN/c

Slow checks

Halt on success

Halt on Node:

Debugging visualization

₽×

Halt on Segment:

Show Active Meshing-Chart

Draw Meshing

Apply

Meshing Testmode

Halt on existing line

Halt on large quality class Halt on Face: 0

Debugging outout

Halt on no success

P2: 0

Done

Halt on Overlap

Go On

P1: 0

NGSolve	- D:/MESwork/A_Elmer s	eminar/Komora_mod	el/NETGEN/cavi	ty_org.ge	eo																																																																											
File Geom	netry Mesh View Re	efinement Special	Help Solve																																																																													
Quit	Generate Mesh S	top																																																																				1	/isu	lal		Sol	lve	PDE	E	Rec	ent	t
	Meshing Op General Mesh S Advanced optic	otions Size <u>S</u> TL Charts <u>O</u> ptir ons Use Local Meshsize Check Overlapping Check Chart Boundary ions	— mizer ⊉ebug ☑ Use Delaur ☑ Do Blockfi	nay Iling	×	×	×	×	×	<		:		<																																																																		

Netgen	6.2-dev

 \times

Mesh -> meshing options -> mesh granularity:

very coarse

moderate

very fine

NGSolve - D:/MESwork/A_Elmer seminar/Komora_model/NETGEN/cavity_org.geo

File Geometry Mesh View Refinement Special Help Solve

₹_×

File Geometry Mesh View	Reinement Special Help Solve									
	top				Visual	Solve PDE	Recent	Mesh 🔻	Zoom All	Center
Load Geometry <i><g></g></i>										
Save Geometry										
Recent Files	•									
Load Mesh <i> <m></m></i>										
Recent Meshes	•									
Save Mesh <s><m></m></s>										
Merge Mesh										
Import Mesh										
Export Mesh										
Export Filetype										
Save Salution	 Neutral Format 									
Save Solution	Surface Mesh Format			CH CH M						
Charles Dames	DIFFPACK Format			E C C C C C C C C C C C C C C C C C C C						
Show Demo	TecPlot Format									
Snapshot	Tochnog Format									
Video clip	 Abaqus Format 									
Save Options	Fluent Format			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						
Quit	Permas Format	l – – – – – – – – – – – – – – – – – – –		XXXXXXXXXX						
	FEAP Format	/ · · · · · · · · · · · · · · · · · · ·	CXXXIII A A A A A A A A A A A A A A A A A							
	Elmer Format									
	STL Format			\mathcal{R}						
	STL Extended Format									
	VRML Format			TS XXXX						
	Gmsh Format			XXXXXX						
	Gmsh2 Format			L K K K M						
	OpenFOAM 1.5+ Format									
	OpenFOAM 1.5+ Compressed			KXXXX						
	JCMwave Format		$M \times \times \times \times \times$	-XIXIX						
	TET Format		$M \times X \times X \to$							

Netgen 6.2-dev

No elmer file type -> convert with ElmerGrid:

ElmerGrid #in #out meshname – parameters

ElmerGrid 14 2 tensductor.gmsh2 -scale 0.001 0.001 0.001 -autoclean

from m to mm

For bodyID and Boundary Index numbering from 1

E ElmerGUI

Ready to set the .sif file

Electromagnetic field – described by Maxwell equations

- Faraday's law $\frac{1}{\mu}\nabla \times \vec{E} = i\omega \vec{H}$
 - Ampère's law

$$\nabla \times \vec{H} = -i\omega\varepsilon\vec{E} + \vec{I}$$

- \vec{E} electrical field
- \vec{H} magnetic field strength
- \vec{J} impressed current distribution

- Time-harmonic form enables introducing wave frequency given in $\omega = 2\pi f$
- In terms of EM waves Maxwell equations are transformed into <u>Helmholtz equations</u>

Model parameters

- Resonance frequency *f* = 2,5 GHz
- Material:
 - walls copper
 - interior of the chamber **air**
- Chamber's shape: cylindrical
- Waveguide's shape: cylindrical
- Construction: axisymmetric
- Wave type: **TE011**
 - **TE** EM field vector configuration
 - **m** = 0, **n** = 1, **p** = 1 modes
 - determines the form of Helmholtz equations and the shape of EM field distribution

Source: DOBROWOLSKI J.A. *Mikrofale.(Microwaves)* Warszawa, Wydawnictwa PW, 1991

- Chamber's size:
 - Diameter: 302 mm
 - Length: **480 mm**
- Waveguide's size:
 - Diameter: 160 mm
 - Length: 240 mm
- Length is an integer multiple of the wavelength
- Chamber's diameter is calculated from equation for resonance frequency dependent on chamber's dimension
- Waveguide's diameter chosen based on phase constant value (needs to be real value)

Specific Helmholtz equation

Basic parts of .sif file

Simulation

```
Simulation
Max Output Level = 9
Coordinate System = "Cartesian"
Simulation Type = Steady
Timestepping Method = BDF
Timestep Sizes = 1
Timestep Intervals = 10
Steady State Max Iterations = 1
Post File = case.vtu
Output Intervals(1) = 1
End
```

Equation

```
Equation 1
Name = "VectorHelmholtz_equation"
Active Solvers(3) = 1 2 3
Angular Frequency = Real $w
End
```

- Steady type solution for a steady state
- No time stepping solutions required
- Result file in .vtu format

Angular frequency given by $\omega = 2\pi f$

Specific for the problem

Universal

VectorHelmholtzSolver

• Parameters are calculated relative to the vector *E*

VectorHelmholtzCalcFields

```
Solver 2
Equation = "calcfields"
Procedure = "VectorHelmholtz" "VectorHelmholtzCalcFields"
Field Variable = String "E"
Calculate Elemental Fields = Logical True
Calculate Magnetic Field Strength = Logical True
Calculate Magnetic Flux Density = Logical True
Calculate Poynting vector = Logical True
Calculate Div of Poynting Vector = Logical True
Calculate Electric field = Logical True
Calculate Energy Functional = Logical True
...
End
```

 For "SaveGridData" solver only Electric field E and Magnetic Field Strength H vectors are saved in an external file

Boundary conditions

Inport

- Source of EM wave
- Described by the wave equation specific for the wave type

Walls

- Energy absorbing material copper
- Described by Leontovich impedance boundary condition

Inport

```
Boundary Condition 1
Target Boundaries(1) = 2
Name = "Inport"
Electric Robin Coefficient im = Real $ beta
Magnetic Boundary Load im 2 = Variable Coordinate 1, Coordinate 2
Real MATC "2*beta*sqrt(const/sqrt(tx(0)*tx(0)+tx(1)*tx(1)))
*cos(beta_gr*sqrt(tx(0)*tx(0)+tx(1)*tx(1))-0.785398)"
End
```

- EM wave source for TE011 type described by Robin boundary condition:
- Electric Robin Coefficient: $\alpha = i\beta$
- Magnetic Boundary Load:

$$g = i \cdot 2\beta \cdot \sqrt{\frac{2}{\pi \left(\frac{2 \cdot u'_{01}}{d_{wave}} \cdot \sqrt{x^2 + y^2}\right)}} \cos\left[\left(\frac{2 \cdot u'_{01}}{d_{wave}} \cdot \sqrt{x^2 + y^2}\right) - \frac{\pi}{4}\right]$$

Simplified Bessel function

Walls

```
Boundary Condition 2
Target Boundaries(4) = 1 3 4 5
Name = "Walls"
! Leontovich impedance boundary
Electric Robin Coefficient = Real $ -1
Electric Robin Coefficient im = Real $ 1
End
```

- Energy absorption described by Leontovich impedance boundary condition in form of Robin condition:
- Electric Robin Coefficient:

$$\alpha = (1 - i) \cdot \mu_0 \sqrt{\frac{\omega_{res} \cdot \sigma_{Cu}}{2\mu_{Cu}}} \leftarrow Walls material's parameters$$
Interior material's parameter

Code files

Code for the project available on GitHub:

- GEO file for geometry
- SIF file for ELMER FEM solver

https://github.com/DKopala/MicrowaveChamber

Data analysis and visualization

ParaView:

- open-source, multi-platform application
- qualitative and quantitative visualisation
- interactive data exploration in 3D
- batch processing
- high performance computation

The goal: find the areas of resonance of the standing waves in the chamber

M ParaView 5.6.0 64-bit đ X File Edit View Sources Filters Tools Catalyst Macros Help 🐯 🐯 🝈 🙇 🥳 🛃 💺 🥐 🚺 剩 🕨 🕨 🕅 🖾 Time: 10 ÷ 10 ÷ 0 B 🍰 🚔 🛱 👬 📷 🖲 Solid Color • [Surface Π. 📬 🖗 🧶 🎑 🎯 **O**® 0000 °()) Aller * Properties Pipeline Browser □ Layout #1 × + Information RenderView1 B B X X Properties P Apply Reset 🗱 Delete Search ... (use Esc to clear text) D 🗅 🖉 🔒 📤 Properties (D_plus_40.vtu) ⊙ ▲ Cell/Point Array Status 🗹 💋 Geometrylds 🗹 🦸 div poynting vector im e 🗹 🆸 div poynting vector re e 🗹 🦸 electric field im e 🗹 🦸 electric field re e 🗹 🦸 electric work im e 🗹 🦸 electric work re e 🗹 🦸 magnetic field strength im e 🗵 🦸 magnetic field strength re e 🗹 🦸 magnetic flux density im e 🗹 🦸 magnetic flux density re e = Display (UnstructuredGridRepresenta 🔯 🗈 S Representation Surface Coloring Solid Color - [2 = 2 = 2 🔒 Edit Scalar Coloring Map Scalars Interpolate Scalars Before Mapping Styling Opacity 0.36 Point Size 2 Line Width 1 Render Lines As Tubes Render Points As Spheres Lighting Interpolation Gouraud -X Z - 0.5 Specular 0 () Specular Color Specular Power •

electric field re Magnitude

The final goal: analyse the influence of chamber dimensions on standing waves resonance

weak resonance influence of the length change

strong resonance - standinng wave

Rectangular cavity "Microwave oven type"

3D view of rectangular cavity model

Electric field distribution, slices, rectangular cavity with waveguide of lenght 130.5mm

1.500e+03

Cilindrical cavities

0.000e+00

400mm

Electric field distribution, cavity of diameter 250mm

Electric field distribution, cavity of diameter 250mm

Electric field distribution, cavity of diameter 400mm

electric field re Magnitude

0.000e+00 400 800 1200 1.500e+03

electric field re Magnitude

Electric field distribution, cavity of diameter

Why do we do this?

Resonant cavities

Interior of the cavitity with sample holder

Prototype of microwave dryier

Prototype of microwave dryier and the final product

Summary:

Microwave module for ELMER FEM is radical innovation. It changed the world and the market of microwave modelling.

Microwave module for ELMER FEM **enabled small and medium companies** (like RADWAG) to participate in global market of high-tech products.

ELMER FEM is very flexible and easy to integrate in larger systems.It is perfect environment for scientific researchbut this is another story.

Thank you very much for your attention.