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Basic programming with Elmer

ElmerSolver is written in Fortan 90. It consists of 
approximately 300 000 lines of source code 
(including all 3rd party libraries).

The base FEM-code has a modular structure, in 
the sense that it is possible to build additional 
components without recompiling the whole FEM 
package.



  

Basic concepts

Typical cases in which programming is needed 
are the following:

- complicated boundary conditions or material 
parameters need to be evaluated pointwise

- new finite element methods need to be 
implemented for specific purposes



  

Basic concepts (example 1)
Suppose that we want to define boundary 
condition #1 on boundary part #5 as follows:

     Temperature(x,y, t) = t * sin(x) * cos(y) 

This can be accomplished by introducing the 
following boundary condition block in the Solver 
Input File:

Boundary condition 1
  Target bondaries(1) = 5
  Temperature = Variable Time
    Real Procedure ”MyDll” ”MyFunction”
End



  

Basic Conceps (example 1)

Here ”MyDll” is the name of a shared library 
(loaded once and for all when Solver starts), and 
”MyFunction” is a library function to execute. The 
function ”MyFunction” will be called automatically 
by ElmerSolver for each node. 

Let ”MyDll.f90” be the source file for ”MyDll”. The 
source should have the following structure:



  

Basic Concepts (example 1)

! File MyDll.f90

Function MyFunction( Model, n, time ) RESULT( temp )
  Use List
  TYPE(Model_t) :: Model      ! defined in Types.f90
  INTEGER :: n                ! node number
  REAL(KIND=dp) :: time       ! Variable Time in sif
  REAL(KIND=dp) :: temp       ! Temperature in sif

  !...compute temp ...

END FUNCTION MyFunction

  



  

Basic Conceps (example 1)

In order to compute sin(x) and cos(y), we will have 
to query coordinates from the Model structure:

REAL(KIND=dp) :: X, Y

X = Model % Nodes % x(n)
Y = Model % Nodes % y(n)

Time comes as an argument in the function call.
So, it remains to compute
temp = time * SIN(X) * COS(Y)

and we are done. Summing up, the full code is



  

Basic Concepts (example 1)

! File MyDll.f90

Function MyFunction( Model, n, time ) RESULT( temp )
  Use Lists
  TYPE(Model_t) :: Model      ! defined in Types.f90
  INTEGER :: n                ! node number
  REAL(KIND=dp) :: time       ! Variable Time in sif
  REAL(KIND=dp) :: temp       ! Temperature in sif
  Real :: X, Y
  X = Model % Nodes % x(n)
  Y = Model % Nodes % y(n)
  temp = time * SIN(X) * COS(Y)
END FUNCTION MyFunction



  

Basic Concepts (example 1)

It remains to compile the function for ElmerSolver:

Linux:

$ elmerf90 MyDll.f90 -o MyDll.so

Windows:

> elmerf90 MyDll.f90 -o MyDll.dll

The users of ElmerGUI may compile the function 
directly from menu (Run → Compiler...)



  

Basic Concepts
Local arrays (if needed) should be declared 
ALLOCATABLE, SAVEd, and ALLOCATEd once 
and for all:

LOGICAL :: FirstTime = .TRUE.
REAL(KIND=dp), ALLOCATABLE :: MyArray(:)
SAVE MyArray, FirstTime
...
IF( FirstTime ) THEN
   ALLOCATE( MyArray( 100 ) )
   FirstTime = .FALSE.
END IF

Otherwise, arrays will be allocated everytime the 
function is entered, and deallocated when out of 
scope (=penalty in speed, memory usage).



  

Basic Conceps (custom solver)

Another important case in which programming is 
needed is when the user wants to implement a 
custom Solver for his/her equation. In the Solver 
Input File the Solver block related a custom 
equation should be defined as follows:

Solver 1
  Variable = String MyVariable
  Variable DOFs = Integer 1
  Procedure = ”MyDll” ”MyRoutine”
  ...
End



  

Basic Concepts (custom solver)

All custom solvers have the following fixed calling 
convention:
SUBROUTINE MySolver( Model,Solver,dt,TransientSimulation )
  USE DefUtils
  TYPE(Model_t) :: Model
  TYPE(Solver_t) :: Solver
  REAL(KIND=dp) :: dt
  LOGICAL :: TransientSimulation
  ...
END SUBROUTINE MySolver



  

Basic Concepts (custom solver)

Again, all local arrays should be declared 
ALLOCATABLE, SAVEd, and ALLOCATEd once 
and for all. For example:
LOGICAL :: FirstTime = .TRUE.
REAL(KIND=dp), ALLOCATABLE :: Stiff(:,:), Force(:)
SAVE Stiff, Force
...
IF( FirstTime ) THEN
  ALLOCATE( Stiff(12, 12), Force( 12 ) )
  FirstTime = .FALSE.
END IF



  

Basic Concepts (custom solver)
The fundamental task of a custom solver is to 
form the global stiffness matrix related to a PDE. 
This is done by performing a loop over elements, 
computing the local stiffness matrices, and by 
assembling the global matrix:

INTEGER :: t
TYPE(Element_t), POINTER :: Element
...
DO t = 1, GetNOFActive()
  Element => GetActiveElement(t)
  ...
END END

The functions GetNofActive() and 
GetActiveElement() are defined in DefUtils.f90.



  

Basic Concepts (custom solver)

The type Element_t provides useful data for 
individual elements, for example:

Element % ElementIndex     ! index of the element
Element % BodyId           ! index of the domain
Element % NumberofNodes    ! number of nodes
Element % ElementCode      ! type of the element
Element % hK               ! size of the element
...

For more details, see fem/src/Types.f90



  

Basic Concepts (custom solver)
Next, the user usually wants to query the material 
parameters and loads for a given element. This 
can be done by calling the function GetReal() 
defined in DefUtils:

TYPE(ValueList_t), POINTER :: Material
LOGICAL :: Found
INTEGER :: N
REAL(KIND=dp), ALLOCATABLE :: MatValues(:)
…
  Material => GetMaterial( Element )
  N = GetElementNofNodes( Element )
  MatValues(1:N) = GetReal( Material, 'MyName', Found)

The above will query nodal values of MyName 
from the material block of the Solver Input File.



  

Basic Concepts (custom solver)

To be a little bit more rigorous, the user should 
perform some tests and error checks to avoid 
problems:

Material => GetMaterial( Element )
IF( ASSOCIATED( Material ) ) THEN
  N = GetElementNofNodes( Element )
  MatValues(1:N) = GetReal( Material, 'MyName', Found)
  IF( .NOT.Found ) THEN
     ! Handle the missing material param appropriately
  END IF 
END IF



  

Basic Concepts (custom solver)

Similarly, we could query the nodal values of a 
load from the Body Force block of the SIF for 
example as follows:

TYPE(ValueList_t), POINTER :: BodyForce
LOGICAL :: Found
INTEGER :: N
REAL(KIND=dp), ALLOCATABLE :: BFValues(:)
...
  BodyForce => GetBodyForce( Element )
  N = GetElementNofNodes( Element )
  BFValues(1:N) = GetReal( BodyForce, 'Fx', Found)



  

Basic Concepts (custom solver)
Once the parameters and loads are at hand, the 
next step is to integrate the local stiffness matrix. 
Usually, this is done in a separate subroutine 
contained by the solver subroutine:
SUBROUTINE MySolver(Model, Solver, dt, TransientSimulation)
  USE DefUtils
  …
  DO t = 1, GetNOFActive()
    Element => GetActiveElement(t)
    CALL LocalStiff( Stiff, Force, Element, n ) 
    CALL DefaultUpdateEquations( STIFF, FORCE )
  END DO

CONTAINS
  SUBROUTINE LocalStiffness( Stiff, Force, Element, n )
  ...
  END SUBROUTINE LocalStiffness
END SUBROUTINE MySolver



  

Basic Concepts (custom solver)
To be a little more specific, the subroutine for 
computing local entities has the following basic 
declarations:

SUBROUTINE LocalStiffness( Stiff, Force, Element, n )
  REAL(KIND=dp) :: Stiff(:,:), Force(:)
  TYPE(Element_t) :: Element
  INTEGER :: n
  REAL(KIND=dp) :: Basis(n), dBasisdx(n,3), DetJ
  LOGICAL :: Stat
  INTEGER :: t
  TYPE(GaussIntegrationPoints_t) :: IP
  TYPE(Nodes_t) :: Nodes
  SAVE Nodes
  ...
END SUBROUTINE LocalStiffness



  

Basic Concepts (custom solver)

The first thing to do, before anything else, is to 
query the node points for the Element under work, 
and reset the local matrix and vector:

CALL GetElementNodes( Nodes )
STIFF = 0.0d0
FORCE = 0.0d0

Node coordinates are needed to contruct the 
mapping from the reference element to the actual 
geometry.



  

Basic Concepts (custom solver)
In order to evaluate the local stiffness related to a 
PDE, we will first have to select a quadrature for 
numerically evaluating integrals:
IP = GaussPoints( Element )

The variable IP is of the type 
GaussIntergarionPoints_t :

IP % n      ! number of integration points
IP % U(t)   ! U-coordinate for point n
IP % V(t)   ! V-coordinate for point n
IP % W(t)   ! W-coordinate for point n
IP % S(t)   ! weight for point n



  

Basic Concepts (custom solver)

The integration loop is then the following:

DO t = 1, IP % n
   stat = ElementInfo( Element, Nodes, IP % U(t),
   IP % V(t), IP % W(t), detJ, Basis, dBasisdx )
   …
END DO

The function ElementInfo returns the basis 
functions and their gradients in the integration 
point.



  

Basic Concepts (custom solver)

Given the basis and their gradients, it remains to 
evaluate the inner products related to the PDE. 
For the Poisson equation, for example, we do:

STIFF(1:n, 1:n) = STIFF(1:n,1:n) + IP % s(t) * DetJ * &
            MATMUL( dBasisdx, TRANSPOSE( dBasisdx ) )

FORCE(1:n) = FORCE(1:n) + IP % s(t) * DetJ * 1.0 * Basis

In the above, we computed the load for f=1.



  

Basic Concepts (custom solver)
Let us finally tune the local subroutine by passing 
the nodal values of material parameters to it 
(similar adjustments needed for the nodal load):

CALL LocalStiff( Stiff, Force, Element, MatValues, n )

SUBROUTINE LocalStiffness(Stiff,Force,Element,MatValues, n)
  REAL(KIND=dp) :: MatValues(:)
  REAL(KIND=dp) :: MatValueAtIP
  …
  DO t = 1, IP % n
    Stat = ElementInfo(...)
    MatValueAtIP = SUM( Basis(1:n) * MatValues(1:n) )
    …
    STIFF(1:n, 1:n) = STIFF(1:n,1:n) + IP % s(t) * DetJ * &
    MatValueAtIP * MATMUL( dBasisdx,TRANSPOSE( dBasisdx ) )
    ...
  END DO



  

Basic Concepts (custom solver)

Once the loop over elements has finished, we 
have the global matrix and vector at hand. It 
remains to finalize the assembly and actually 
solve the problem, and we are done:

DO t = 1, GetNOFActive()
  Element => GetActiveElement(t)
  CALL LocalStiff( Stiff, Force, Element, MyValues, n ) 
  CALL DefaultUpdateEquations( STIFF, FORCE )
END END

CALL DefaultFinishAssembly()
CALL DefaultDirichletBCs()
Norm = DefaultSolve()



  

Basic Concepts (custom solver)

A full example of programming a custom solver is 
provided in the test case Poisson1D. The 
compilation command is:

Linux:

$ elmerf90 MySolver.f90 -o MySolver.so

Windows:

> elmerf90 MySolver.f90 -o MySolver.dll



  

Basic Concepts

The programming interfce of Elmer has been 
documented in the SolverManual. A good 
reference for basic features is also the test set in 
fem/tests. 

Most of the data structures are undocumented, 
but the source files Types.f90 and DefUtils.f90 
should be more or less self explalatory.
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