

Elmer

Pre-processing utilities within ElmerSolver

ElmerTeam
CSC - IT Center for Science

Alternatives for increasing mesh resolution

- Use of higher order nodal elements
- Elmer supports 2nd to 4th order nodal elements
- Unfortunately not all preprocessing steps are equally well supported for higher order elements
- E.g. Netgen output supported only for linear elements
- Use of hierarhical p-element basis functions
- Support up to 10th degree polynomials
- In practice Element = p:2, or p:3
- Not supported in all Solvers
- Mesh multiplication
- Subdivision of elements by splitting

Note on bottle-necks in pre-processing

- After the solution pre-processing is typically the 2nd most time- and memory intensive task
- Mesh partitioning is typically less laborious than mesh generation
- In Elmer we haven't utilized parallel graph partitioning libraries (e.g. ParMetis)
- Serial mesh generation limited to around $\sim 10 \mathrm{M}$ elements
- Finalizing the mesh in parallel level within ElmerSolver may be used to eliminate this bottle-neck

Finalizing the mesh in parallel level

- First make a coarse mesh and partition it
- Bisection of existing elements in each direction
- 2^{\wedge} DIM^n -fold problem-size
- Known as "Mesh Multiplication"

- Simple inheritance of mesh grading
- Increase of element order (p-elements)
- p-hierarchy enables the use of p-multigrid
- Extrusion of 2D layer into 3D for special cases
- Example: Greenland Ice-sheet

Standard parallel workflow

- Both assembly and solution is done in parallel using MPI
- Assembly is trivially parallel
- This is the basic parallel workflow used for Elmer

Parallel workflow

- Large meshes may be finilized at the parallel level

Mesh multiplication, example

Mesh Levels = 2

Mesh grading nicely preserved

Mesh Multiplication, example

- Implemented in Elmer as internal strategy ~2005
- Mesh multiplication was applied to two meshes
- Mesh A: structured, 62500 hexahedrons
- Mesh B: unstructured, 65689 tetrahedrons
- The CPU time used is negligible

Mesh	\#splits	\#elems	\#procs	T_center (s)	T_graded (s)
A	2	4 M	12	0.469	0.769
	2	4 M	128	0.039	0.069
	3	32 M	128	0.310	0.549
B	2	4.20 M	12	0.369	
	2	4.20 M	128	0.019	
	3	33.63 M	128	0.201	

Limitations of mesh multiplication

- Standard mesh multiplication does not increase geometric accuracy
- Polygons retain their shape
- Mesh multiplication could be made to honor boundary shapes but this is not currently done
- Optimal mesh grading difficult to achieve
- The coarsest mesh level does not usually have sufficient information to implement fine level grading

Extrusion of partitioned meshes

- Implemented as an internal strategy in ElmerSolver
- Star from an initial 2D mesh and then extrude into 3D
- Implemented also for partitioned meshes
- Extruded lines belong to the same partition by construction!
- Deterministic, i.e. element and node numbering determined by the 2D mesh
- Complexity: $\mathrm{O}(\mathrm{N})$
- There are many problems of practical problems where the mesh extrusion of a initial 2D mesh provides a good solution
- One such field is glasiology where glaciers are thin, yet the 2D approach is not always sufficient in accurary

Internal extrusion example: Aalto Vase

3D internally extruded mesh

Design Alvar

 Aalto, 1936
2D mesh by Gmsh

Deforming meshes

- Meshes may be internally deformed
- MeshUpdate solver uses linear elasticity to deform the mesh
- RigidMeshMapper uses rigid deformations and their smooth transitions to deform the mesh
- Deforming meshes have number of uses
- Deforming structures in multiphysics simultion
- E.g. fluid-structure interaction
- Rotating \& sliding structures
- Geometry optimization
- Mesh topology remains unchanged

Conclusions on internal meshing features

- There are number of ways to increase the resolution of solution within ElmerSolver that eliminate meshing bottle-necks
- For complex cases these may still be unsatisfactory
- Internal mesh deformation may be used to solve complex problems without a need for remeshing
- Large deformations may be problematic and topological changes impossible

Elmer

Post-processing utilities within ElmerSolver

ElmerTeam
CSC - IT Center for Science

Postprocessing utilities in ElmerSolver $\underset{c s c}{L}$

- Apart from saving distributed data there is a larger number of capabilities within ElmerSolver to treat data within ElmerSolver
- Data reduction
© nD -> 1D, OD
- Data averaging and filtering over time (FilterTimeSeries)
- Derived fields (gradient, curl, divecgence,...)
- Creating fields of material properties
- This functionality is often achieved by use of atomic auxialiry solvers

Exporting 2D/3D data: ResultOutputSolve

- Apart from saving the results in .ep format it is possible to use other postprocessing tools
- ResultOutputSolve offers several formats
- vtk: Visualization tookit legacy format
- vtu: Visualization tookit XML format
- Gid: GiD software from CIMNE: http://gid.cimne.upc.es
- Gmsh: Gmsh software: http://www.geuz.org/gmsh
- Dx: OpenDx software
- Vtu is the recommended format!
- offers parallel data handling capabilities
- Has binary and single precision formats for saving disk space
- Suffix .vtu in Post File does this automatically

Exporting 2D/3D data: ResultOutputSolve

An example shows how to save data in unstructured XML VTK (.vtu) files to directory "results" in single precision binary format.

```
Solver n
    Exec Solver = after timestep
    Equation = "result output"
    Procedure = "ResultOutputSolve" "ResultOutputSolver"
    Output File Name = "case"
    Output Format = String "vtu"
    Binary Output = True
    Single Precision = True
End
```


Derived fields

- Many solvers have internal options for computing derived fields (fluxes, heating powers,...)
- Elmer offers several auxiliary solvers
- SaveMaterials: makes a material parameter into field variable
- Streamlines: computes the streamlines of 2D flow
- FluxComputation: given potential, computes the flux $q=-c \nabla \phi$
- VorticitySolver: computes the vorticity of flow, $w=\nabla \times \phi$
- PotentialSolver: given flux, compute the potential $-c \nabla \phi=q$
- Filtered Data: compute filtered data from time series (mean, fourier coefficients,...)
- Usually auxiliary data need to be computed only after the iterative solution is ready
- Exec Solver = after timestep
- Exec Solver $=$ after all
- Exec Solver = before saving

Derived nodal data

- By default Elmer operates on distributed fields but sometimes nodal values are of interest
- Multiphysics coupling may also be performed alternatively using nodal values for computing and setting loads
- Elmer computes the nodal loads from $A x-b$ where A, and b are saved before boundary conditions are applied
- Calculate Loads = True
- This is the most consistant way of obtaining boundary loads
- Note: the nodal data is really pointwise
- expressed in units $\mathrm{N}, \mathrm{C}, \mathrm{W}$ etc. (rather than $N / m^{\wedge} 2, C / m^{\wedge} 2, W / m^{\wedge} 2$ etc.)
- For comparison with distributed data divided by the ${ }^{\sim}$ size of the surface elements

Derived lower dimensional data

- Derived boundary data
- SaveLine: Computes fluxes on-the-fly
- Derived lumped (or OD) data
- SaveScalars: Computes a large number of different quantities on-the-fly
- FluidicForce: compute the fluidic force acting on a surface
- ElectricForce: compute the electrostatic froce using the Maxwell stress tensor
- Many solvers compute lumped quantities internally for later use (Capacitance, Lumped spring,...)

Saving 1D data: SaveLine

- Lines of interest may be defined on-the-fly
- Data can either be saved in uniform 1D grid, or where element faces and lines intersect
- Flux computation using integration points on the boundary - not the most accurate
- By default saves all existing field variables

Saving 1D data: SaveLine...

```
Solver n
    Equation = "SaveLine"
    Procedure = File "SaveData" "SaveLine"
    Filename = "g.dat"
    File Append = Logical True
    Polyline Coordinates (2,2) = Real 0.0 1.0 0.0 2.0
End
```

Boundary Condition m
Save Line $=$ Logical True
End

Saving OD data: SaveScalars

Operators on bodies

- Statistical operators
- Min, max, min abs, max abs, mean, variance, deviation
- Integral operators (quadratures on bodies)
- volume, int mean, int variance
- Diffusive energy, convective energy, potential energy

Operators on boundaries

- Statistical operators
- Boundary min, boundary max, boundary min abs, max abs, mean, boundary variance, boundary deviation, boundary sum
- Min, max, minabs, maxabs, mean
- Integral operators (quadratures on boundary)
- area
- Diffusive flux, convective flux

Other operators

- nonlinear change, steady state change, time, timestep size,...

Saving OD data: SaveScalars...

```
Solver n
    Exec Solver = after timestep
    Equation = String SaveScalars
    Procedure = File "SaveData" "SaveScalars"
    Filename = File "f.dat"
    Variable 1 = String Temperature
    Operator 1 = String max
    Variable 2 = String Temperature
    Operator 2 = String min
    Variable 3 = String Temperature
    Operator 3 = String mean
End
```

Boundary Condition m
Save Scalars = Logical True
End

Case: TwelveSolvers

Natural convection with ten auxialiary solvers

Case: Motivation

- The purpose of the example is to show the flexibility of the modular structure
- The users should not be afraid to add new atomistic solvers to perform specific tasks
- A case of 12 solvers is rather rare, yet not totally unrealitistic

Case: preliminaries

- Square with hot wall on right and cold wall on left
- Filled with viscous fluid
- Bouyancy modeled with Boussinesq approximation
- Temperature difference initiates a convection roll

HOT

Case: 12 solvers

1. HeatSolver
2. FlowSolver
3. FluxSolver: solve the heat flux
4. StreamSolver: solve the stream function
5. VorticitySolver: solve the vorticity field (curl of vector field)
6. DivergenceSolver: solve the divergence
7. ShearrateSolver: calculate the shearrate
8. IsosurfaceSolver: generate an isosurface at given value
9. ResultOutputSolver: write data
10. SaveGridData: save data on uniform grid
11. SaveLine: save data on given lines
12. SaveScalars: save various reductions

Case: Computational mesh

10000 bilinear elements

Case: Navier-Stokes, primary fields

Pressure

Velocity

Case: Heat equation, primary field

Case: Derived field, vorticity

Case: Derived field, Streamlines

Case: Derived field, diffusive flux

Case: Derived field, Shearrate

Example: nodal loads

- If equation is solved until convergence nodal loads should only occur at boundaries
- Element size $h=1 / 20$ ~weight for flux

Nodal heat loads

Example:

view in GiD

Example: view in Gmsh

Case: View in Paraview

C S C

III ParaView 3.8.1 64-bit

Pipeline Browser	$5 \times$
Object Inspector	$5 \times$

Properties	Display	Information
Fr Apply	Reset	$\$$ Delete

VCell/Point Array Status
V \circ temperature
V ○ temperature loads
\checkmark - pressure
V \circ stream
\checkmark - vorticity
V ○ divergence
V ○ shearrate velocity
V ○ velocity
V ○ temperature flux

Example: total flux

- Saved by SaveScalars
- Two ways of computing the total flux give different approximations
- When convergence is reached the agreement is good

Example: boundary flux

- Saved by SaveLine
- Three ways of computing the boundary flux give different approximations
- At the corner the nodal flux should be normalized using only $h / 2$

Fluxes at the boundary

Exercise

- Study the command file with 12 solvers
- Copy-paste an appropriate solver from there to some existing case of your own
- ResultOutputSolver for VTU output
- StreamSolver, VorticitySolver, FluxSolver,...
- Note: Make sure that the numbering of Solvers is consistant
- Solvers that involve finite element solution you need to activate by Active Solvers
- Run the modified case
- Visualize results in ElmerPost or Paraview

Conclusions

- It is good to think in advance what kind of data you need
- 3D volume and 2D surface data
- Derived fields
- 1D line data
- OD lumped data
- Internal strategies may allow better accuracy than doing the analysis with external postprocessing software
- Consistent use of basis functions to evaluate the data
- Often the same reduction operations may be done also at later stages but with significantly greater effort

