
RFC 8936
Poll-Based Security Event Token (SET) Delivery Using
HTTP

Abstract
This specification defines how a series of Security Event Tokens (SETs) can be delivered to an
intended recipient using HTTP POST over TLS initiated as a poll by the recipient. The
specification also defines how delivery can be assured, subject to the SET Recipient's need for
assurance.

Stream: Internet Engineering Task Force (IETF)
RFC: 8936
Category: Standards Track
Published: November 2020
ISSN: 2070-1721
Authors: A. Backman, Ed.

Amazon
M. Jones, Ed.
Microsoft

M. Scurtescu
Coinbase

M. Ansari
Independent

A. Nadalin
Independent

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8936

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Backman, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8936
https://www.rfc-editor.org/info/rfc8936
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction and Overview

1.1. Notational Conventions

1.2. Definitions

2. SET Delivery

2.1. Polling Delivery using HTTP

2.2. Polling HTTP Request

2.3. Polling HTTP Response

2.4. Poll Request

2.4.1. Poll-Only Request

2.4.2. Acknowledge-Only Request

2.4.3. Poll with Acknowledgement

2.4.4. Poll with Acknowledgement and Errors

2.5. Poll Response

2.5.1. Poll Error Response

2.6. Error Response Handling

3. Authentication and Authorization

4. Security Considerations

4.1. Authentication Using Signed SETs

4.2. HTTP Considerations

4.3. Confidentiality of SETs

4.4. Access Token Considerations

4.4.1. Bearer Token Considerations

5. Privacy Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 2

Appendix A. Unencrypted Transport Considerations

Acknowledgments

Authors' Addresses

1. Introduction and Overview
This specification defines how a stream of Security Event Tokens (SETs) can be
transmitted to an intended SET Recipient using HTTP over TLS. The specification
defines a method to poll for SETs using HTTP POST. This is an alternative SET delivery method to
the one defined in .

Poll-based SET delivery is intended for scenarios where all of the following apply:

The recipient of the SET is capable of making outbound HTTP requests.
The transmitter is capable of hosting a TLS-enabled HTTP endpoint that is accessible to the
recipient.
The transmitter and recipient are willing to exchange data with one another.

In some scenarios, either push-based or poll-based delivery could be used, and in others, only
one of them would be applicable.

A mechanism for exchanging configuration metadata such as endpoint URLs, cryptographic keys,
and possible implementation constraints such as buffer size limitations between the transmitter
and recipient is out of scope for this specification. How SETs are defined and the process by
which security events are identified for SET Recipients are specified in .

[RFC8417]
[RFC7231]

[RFC8935]

•
•

•

[RFC8417]

1.1. Notational Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Throughout this document, all figures may contain spaces and extra line wrapping for
readability and due to space limitations.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.2. Definitions
This specification utilizes terminology defined in and .[RFC8417] [RFC8935]

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 3

2. SET Delivery
When a SET is available for a SET Recipient, the SET Transmitter queues the SET in a buffer so
that a SET Recipient can poll for SETs using HTTP POST.

In poll-based SET delivery using HTTP over TLS, zero or more SETs are delivered in a JSON
 document to a SET Recipient in response to an HTTP POST request to the SET

Transmitter. Then in a following request, the SET Recipient acknowledges received SETs and can
poll for more. All requests and responses are JSON documents and use a Content-Type of
application/json, as described in Section 2.2.

After successful (acknowledged) SET delivery, SET Transmitters are not required to retain or
record SETs for retransmission. Once a SET is acknowledged, the SET Recipient be
responsible for retention, if needed. Transmitters may also discard undelivered SETs under
deployment-specific conditions, such as if they have not been polled for over too long a period of
time or if an excessive amount of storage is needed to retain them.

Upon receiving a SET, the SET Recipient reads the SET and validates it in the manner described in
. The SET Recipient acknowledge receipt to the SET Transmitter, and

 do so in a timely fashion, as described in Section 2.4. The SET Recipient use
the event acknowledgement mechanism to report event errors other than those relating to the
parsing and validation of the SET.

[RFC8259]

SHALL

Section 2 of [RFC8935] MUST
SHOULD SHALL NOT

2.1. Polling Delivery using HTTP
This method allows a SET Recipient to use HTTP POST () to
acknowledge SETs and to check for and receive zero or more SETs. Requests be made at a
periodic interval (short polling) or requests wait, pending availability of new SETs using
long polling, per . Note that short polling will result in retrieving zero or
more SETs whereas long polling will typically result in retrieving one or more SETs unless a
timeout occurs.

The delivery of SETs in this method is facilitated by HTTP POST requests initiated by the SET
Recipient in which:

The SET Recipient makes a request for available SETs using an HTTP POST to a pre-arranged
endpoint provided by the SET Transmitter, or
after validating previously received SETs, the SET Recipient initiates another poll request
using HTTP POST that includes acknowledgement of previous SETs and requests the next
batch of SETs.

The purpose of the acknowledgement is to inform the SET Transmitter that delivery has
succeeded and redelivery is no longer required. Before acknowledgement, SET Recipients
validate the received SETs and retain them in a manner appropriate to the recipient's
requirements. The level and method of retention of SETs by SET Recipients is out of scope of this
specification.

Section 4.3.3 of [RFC7231]
MAY

MAY
Section 2 of [RFC6202]

•

•

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8935#section-2
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3
https://www.rfc-editor.org/rfc/rfc6202#section-2

2.2. Polling HTTP Request
When initiating a poll request, the SET Recipient constructs a JSON document that consists of
polling request parameters and SET acknowledgement parameters in the form of JSON objects.

When making a request, the HTTP Content-Type header field is set to application/json.

The following JSON object members are used in a polling request:

Request Processing Parameters
maxEvents

An integer value indicating the maximum number of unacknowledged SETs to
be returned. The SET Transmitter send more SETs than the specified
maximum. If more than the maximum number of SETs are available, the SET Transmitter
determines which to return first; the oldest SETs available be returned first, or
another selection algorithm be used, such as prioritizing SETs in some manner that
makes sense for the use case. A value of 0 be used by SET Recipients that would like to
perform an acknowledge-only request. This enables the Recipient to use separate HTTP
requests for acknowledgement and reception of SETs. If this parameter is omitted, no limit
is placed on the number of SETs to be returned.

returnImmediately
An JSON boolean value that indicates the SET Transmitter return an
immediate response even if no results are available (short polling). The default value is
false, which indicates the request is to be treated as an HTTP long poll, per

. The timeout for the request is part of the configuration between the
participants, which is out of scope of this specification.

SET Acknowledgment Parameters
ack

A JSON array of strings whose values are the jti values of successfully received
SETs that are being acknowledged. If there are no outstanding SETs to acknowledge, this
member is omitted or contains an empty array. Once a SET has been acknowledged, the
SET Transmitter is released from any obligation to retain the SET.

setErrs
A JSON object with one or more members whose keys are the jti values of invalid SETs
received. The values of these objects are themselves JSON objects that describe the errors
detected using the err and description values specified in Section 2.6. If there are no
outstanding SETs with errors to report, this member is omitted or contains an empty JSON
object.

OPTIONAL
SHOULD NOT

MAY
MAY

MAY

OPTIONAL SHOULD

Section 2 of
[RFC6202]

[RFC7519]

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc6202#section-2

2.3. Polling HTTP Response
In response to a poll request, the SET Transmitter checks for available SETs and responds with a
JSON document containing the following JSON object members:

sets
A JSON object containing zero or more SETs being returned. Each member name is the jti of
a SET to be delivered, and its value is a JSON string representing the corresponding SET. If
there are no outstanding SETs to be transmitted, the JSON object be empty. Note that
both SETs being transmitted for the first time and SETs that are being retransmitted after not
having been acknowledged are communicated here.

moreAvailable
A JSON boolean value that indicates if more unacknowledged SETs are available to be
returned. This member be omitted, with the meaning being the same as including it with
the boolean value false.

When making a response, the HTTP Content-Type header field is set to application/json.

SHALL

MAY

2.4. Poll Request
The SET Recipient performs an HTTP POST (see) to a pre-arranged
polling endpoint URI to check for SETs that are available. Because the SET Recipient has no prior
SETs to acknowledge, the ack and setErrs request parameters are omitted.

After a period of time configured in an out-of-band manner between the SET Transmitter and
Recipient, a SET Transmitter redeliver SETs it has previously delivered. The SET Recipient

 accept repeat SETs and acknowledge the SETs regardless of whether the Recipient
believes it has already acknowledged the SETs previously. A SET Transmitter limit the
number of times it attempts to deliver a SET.

If the SET Recipient has received SETs from the SET Transmitter, the SET Recipient parses and
validates that received SETs meet its own requirements and acknowledge receipt in a
timely fashion (e.g., seconds or minutes) so that the SET Transmitter can mark the SETs as
received. SET Recipients acknowledge receipt before taking any local actions based on
the SETs to avoid unnecessary delay in acknowledgement, where possible.

Poll requests have three variations:
Poll-Only

In this scenario, a SET Recipient asks for the next set of events where no previous SET
deliveries are acknowledged (such as in the initial poll request).

Acknowledge-Only
In this scenario, a SET Recipient sets the maxEvents value to 0 along with ack and setErrs
members indicating the SET Recipient is acknowledging previously received SETs and does
not want to receive any new SETs in response to the request.

Section 4.3.4 of [RFC7231]

MAY
SHOULD

MAY

SHOULD

SHOULD

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc7231#section-4.3.4

Combined Acknowledge and Poll
In this scenario, a SET Recipient is both acknowledging previously received SETs using the
ack and setErrs members and will wait for the next group of SETs in the SET
Transmitters response.

2.4.1. Poll-Only Request

In the case where no SETs were received in a previous poll (see Figure 7), the SET Recipient
simply polls without acknowledgement parameters (ack and setErrs).

The following is a non-normative example request made by a SET Recipient that has no
outstanding SETs to acknowledge and is polling for available SETs at the endpoint https://
notify.idp.example.com/Events:

A SET Recipient can poll using default parameter values by passing an empty JSON object.

The following is a non-normative example default poll request to the endpoint https://
notify.idp.example.com/Events:

Figure 1: Example Initial Poll Request

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Type: application/json

 {
 "returnImmediately": true
 }

Figure 2: Example Default Poll Request

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Type: application/json

 {}

2.4.2. Acknowledge-Only Request

In this variation, the SET Recipient acknowledges previously received SETs and indicates it does
not want to receive SETs in response by setting the maxEvents value to 0. This variation might be
used, for instance, when a SET Recipient needs to acknowledge received SETs independently
(e.g., on separate threads) from the process of receiving SETs.

If the poll needs to return immediately, then returnImmediately also be present with the
value true. If it is false, then a long poll will still occur until an event is ready to be returned,
even though no events will be returned.

MUST

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 7

The following is a non-normative example poll request with acknowledgement of SETs received
(for example, as shown in Figure 6):

Figure 3: Example Acknowledge-Only Request

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Type: application/json

 {
 "ack": [
 "4d3559ec67504aaba65d40b0363faad8",
 "3d0c3cf797584bd193bd0fb1bd4e7d30"
],
 "maxEvents": 0,
 "returnImmediately": true
 }

2.4.3. Poll with Acknowledgement

This variation allows a recipient thread to simultaneously acknowledge previously received SETs
and wait for the next group of SETs in a single request.

The following is a non-normative example poll with acknowledgement of the SETs received in
Figure 6:

In the above acknowledgement, the SET Recipient has acknowledged receipt of two SETs and has
indicated it wants to wait until the next SET is available.

Figure 4: Example Poll with Acknowledgement and No Errors

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Type: application/json

 {
 "ack": [
 "4d3559ec67504aaba65d40b0363faad8",
 "3d0c3cf797584bd193bd0fb1bd4e7d30"
],
 "returnImmediately": false
 }

2.4.4. Poll with Acknowledgement and Errors

In the case where errors were detected in previously delivered SETs, the SET Recipient use
the setErrs member to communicate the errors in the following poll request.

MAY

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 8

The following is a non-normative example of a response acknowledging one successfully
received SET and one SET with an error from the two SETs received in Figure 6:

Figure 5: Example Poll Acknowledgement with Error

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Language: en-US
 Content-Type: application/json

 {
 "ack": ["3d0c3cf797584bd193bd0fb1bd4e7d30"],
 "setErrs": {
 "4d3559ec67504aaba65d40b0363faad8": {
 "err": "authentication_failed",
 "description": "The SET could not be authenticated"
 }
 },
 "returnImmediately": true
 }

2.5. Poll Response
In response to a valid poll request, the service provider respond immediately if SETs are
available to be delivered. If no SETs are available at the time of the request, the SET Transmitter

 delay responding until a SET is available or the timeout interval has elapsed unless the
poll request parameter returnImmediately is present with the value true.

As described in Section 2.3, a JSON document is returned containing members including sets,
which contain zero or more SETs.

MAY

SHALL

SHALL

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 9

The following is a non-normative example response to the request shown in Section 2.4. This
example shows two SETs being returned:

In the above example, two SETs whose jti values are 4d3559ec67504aaba65d40b0363faad8 and
3d0c3cf797584bd193bd0fb1bd4e7d30 are delivered.

The following is a non-normative example response to the request shown in Section 2.4.1, which
indicates that no new SETs or unacknowledged SETs are available:

Figure 6: Example Poll Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "sets":
 {
 "4d3559ec67504aaba65d40b0363faad8":
 "eyJhbGciOiJub25lIn0.
 eyJqdGkiOiI0ZDM1NTllYzY3NTA0YWFiYTY1ZDQwYjAzNjNmYWFkOCIsImlhdC
 I6MTQ1ODQ5NjQwNCwiaXNzIjoiaHR0cHM6Ly9zY2ltLmV4YW1wbGUuY29tIiwi
 YXVkIjpbImh0dHBzOi8vc2NpbS5leGFtcGxlLmNvbS9GZWVkcy85OGQ1MjQ2MW
 ZhNWJiYzg3OTU5M2I3NzU0IiwiaHR0cHM6Ly9zY2ltLmV4YW1wbGUuY29tL0Zl
 ZWRzLzVkNzYwNDUxNmIxZDA4NjQxZDc2NzZlZTciXSwiZXZlbnRzIjp7InVybj
 ppZXRmOnBhcmFtczpzY2ltOmV2ZW50OmNyZWF0ZSI6eyJyZWYiOiJodHRwczov
 L3NjaW0uZXhhbXBsZS5jb20vVXNlcnMvNDRmNjE0MmRmOTZiZDZhYjYxZTc1Mj
 FkOSIsImF0dHJpYnV0ZXMiOlsiaWQiLCJuYW1lIiwidXNlck5hbWUiLCJwYXNz
 d29yZCIsImVtYWlscyJdfX19.",
 "3d0c3cf797584bd193bd0fb1bd4e7d30":
 "eyJhbGciOiJub25lIn0.
 eyJqdGkiOiIzZDBjM2NmNzk3NTg0YmQxOTNiZDBmYjFiZDRlN2QzMCIsImlhdC
 I6MTQ1ODQ5NjAyNSwiaXNzIjoiaHR0cHM6Ly9zY2ltLmV4YW1wbGUuY29tIiwi
 YXVkIjpbImh0dHBzOi8vamh1Yi5leGFtcGxlLmNvbS9GZWVkcy85OGQ1MjQ2MW
 ZhNWJiYzg3OTU5M2I3NzU0IiwiaHR0cHM6Ly9qaHViLmV4YW1wbGUuY29tL0Zl
 ZWRzLzVkNzYwNDUxNmIxZDA4NjQxZDc2NzZlZTciXSwic3ViIjoiaHR0cHM6Ly
 9zY2ltLmV4YW1wbGUuY29tL1VzZXJzLzQ0ZjYxNDJkZjk2YmQ2YWI2MWU3NTIx
 ZDkiLCJldmVudHMiOnsidXJuOmlldGY6cGFyYW1zOnNjaW06ZXZlbnQ6cGFzc3
 dvcmRSZXNldCI6eyJpZCI6IjQ0ZjYxNDJkZjk2YmQ2YWI2MWU3NTIxZDkifSwi
 aHR0cHM6Ly9leGFtcGxlLmNvbS9zY2ltL2V2ZW50L3Bhc3N3b3JkUmVzZXRFeH
 QiOnsicmVzZXRBdHRlbXB0cyI6NX19fQ."
 }
}

Figure 7: Example No SETs Poll Response

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "sets": {}
 }

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 10

Upon receiving the JSON document (e.g., as shown in Figure 6), the SET Recipient parses and
verifies the received SETs and notifies the SET Transmitter of successfully received SETs and
SETs with errors via the next poll request to the SET Transmitter, as described in Sections 2.4.3
and 2.4.4.

2.5.1. Poll Error Response

In the event of a general HTTP error condition in the context of processing a poll request, the
service provider responds with the applicable HTTP response status code, as defined in

.

Service providers respond to any invalid poll request with an HTTP response status code of
400 (Bad Request) even when a more specific code might apply, for example, if the service
provider deemed that a more specific code presented an information disclosure risk. When no
more specific code might apply, the service provider respond to an invalid poll request
with an HTTP status code of 400.

The response body for responses to invalid poll requests is left undefined, and its contents
 be ignored.

The following is a non-normative example of a response to an invalid poll request:

Section 6
of [RFC7231]

MAY

SHALL

SHOULD

Figure 8: Example Poll Error Response

 HTTP/1.1 400 Bad Request

err:

description:

2.6. Error Response Handling
If a SET is invalid, error codes from the IANA "Security Event Token Error Codes" registry
established by are used in error responses. As described in ,
an error response is a JSON object providing details about the error that includes the following
name/value pairs:

A value from the IANA "Security Event Token Error Codes" registry that identifies the error.

A human-readable string that provides additional diagnostic information.

When included as part of a batch of SETs, the above JSON is included as part of the setErrs
member, as defined in Sections 2.2 and 2.4.4.

When the SET Recipient includes one or more error responses in a request to the SET
Transmitter, it must also include in the request a Content-Language header field whose value
indicates the language of the error descriptions included in the request. The method of language
selection in the case when the SET Recipient can provide error messages in multiple languages is
out of scope for this specification.

[RFC8935] Section 2.3 of [RFC8935]

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc7231#section-6
https://www.rfc-editor.org/rfc/rfc8935#section-2.3

3. Authentication and Authorization
The SET delivery method described in this specification is based upon HTTP over TLS
and standard HTTP authentication and authorization schemes, as per . The TLS server
certificate be validated using DNS-ID and/or DNS-Based Authentication of
Named Entities (DANE) . As per , a SET delivery endpoint

 indicate supported HTTP authentication schemes via the WWW-Authenticate header field
when using HTTP authentication.

Authorization for the eligibility to provide actionable SETs can be determined by using the
identity of the SET Issuer, validating the identity of the SET Transmitter, or via other employed
authentication methods. Likewise, the SET Transmitter may choose to validate the identity of the
SET Recipient, perhaps using mutual TLS. Because SETs are not commands, SET Recipients are
free to ignore SETs that are not of interest after acknowledging their receipt.

[RFC2818]
[RFC7235]

MUST [RFC6125]
[RFC6698] Section 4.1 of [RFC7235]

SHALL

4. Security Considerations

4.1. Authentication Using Signed SETs
JWS signed SETs can be used (see and) to enable the SET
Recipient to validate that the SET Issuer is authorized to provide actionable SETs.

[RFC7515] Section 5 of [RFC8417]

4.2. HTTP Considerations
SET delivery depends on the use of the Hypertext Transfer Protocol and is thus subject to the
security considerations of HTTP () and its related specifications.Section 9 of [RFC7230]

4.3. Confidentiality of SETs
SETs may contain sensitive information, including Personally Identifiable Information (PII), or be
distributed through third parties. In such cases, SET Transmitters and SET Recipients
protect the confidentiality of the SET contents. In some use cases, using TLS to secure the
transmitted SETs will be sufficient. In other use cases, encrypting the SET as described in JSON
Web Encryption (JWE) will also be required. The Event delivery endpoint
support at least TLS version 1.2 and support the newest version of TLS that
meets its security requirements, which as of the time of this publication is TLS 1.3 . The
client perform a TLS/SSL server certificate check using DNS-ID and/or DANE

. How a SET Recipient determines the expected service identity to match the SET
Transmitter's server certificate against is out of scope for this document. The implementation
security considerations for TLS in "Recommendations for Secure Use of Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS)" be followed.

MUST

[RFC7516] MUST
[RFC5246] SHOULD

[RFC8446]
MUST [RFC6125]

[RFC6698]

[RFC7525] MUST

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc7235#section-4.1
https://www.rfc-editor.org/rfc/rfc8417#section-5
https://www.rfc-editor.org/rfc/rfc7230#section-9

4.4. Access Token Considerations
If HTTP Authentication is performed using OAuth access tokens , implementers
take into account the threats and countermeasures documented in .

[RFC6749] MUST
Section 8 of [RFC7521]

4.4.1. Bearer Token Considerations

Transmitting bearer tokens using TLS helps prevent their interception.

Bearer tokens have a limited lifetime that can be determined directly or indirectly (e.g.,
by checking with a validation service) by the service provider. By expiring tokens, clients are
forced to obtain a new token (which usually involves re-authentication) for continued authorized
access. For example, in OAuth 2.0, a client use an OAuth refresh token to obtain a new
bearer token after authenticating to an authorization server, per .

Implementations supporting OAuth bearer tokens need to factor in security considerations of
this authorization method . Since security is only as good as the weakest link,
implementers also need to consider authentication choices coupled with OAuth bearer tokens.
The security considerations of the default authentication method for OAuth bearer tokens, HTTP
Basic, are well documented in ; therefore, implementers are encouraged to prefer
stronger authentication methods.

[RFC6750]

SHOULD

MAY
Section 6 of [RFC6749]

[RFC7521]

[RFC7617]

5. Privacy Considerations
SET Transmitters should attempt to deliver SETs that are targeted to the specific business and
protocol needs of subscribers.

When sharing personally identifiable information or information that is otherwise considered
confidential to affected users, SET Transmitters and Recipients have the appropriate legal
agreements and user consent or terms of service in place. Furthermore, data that needs
confidentiality protection be encrypted, at least with TLS and sometimes also using JSON
Web Encryption (JWE) .

In some cases, subject identifiers themselves may be considered sensitive information, such that
their inclusion within a SET may be considered a violation of privacy. SET Issuers and SET
Transmitters should consider the ramifications of sharing a particular subject identifier with a
SET Recipient (e.g., whether doing so could enable correlation and/or de-anonymization of data)
and choose appropriate subject identifiers for their use cases.

MUST

MUST
[RFC7516]

6. IANA Considerations
This document has no IANA actions.

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc7521#section-8
https://www.rfc-editor.org/rfc/rfc6749#section-6

[RFC2119]

[RFC2818]

[RFC5246]

[RFC6125]

[RFC6698]

[RFC7231]

[RFC7515]

[RFC7516]

[RFC7519]

[RFC7521]

[RFC7525]

7. References

7.1. Normative References

, , ,
, , March 1997,
.

, , , , May 2000,
.

,
, , , August 2008,

.

,

,
, , March 2011,

.

,
, ,

, August 2012, .

,
, , , June 2014,

.

, , ,
, May 2015, .

, , ,
, May 2015, .

, , ,
, May 2015, .

,
, ,

, May 2015, .

,
,

, , , May 2015,
.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rescorla, E. "HTTP Over TLS" RFC 2818 DOI 10.17487/RFC2818
<https://www.rfc-editor.org/info/rfc2818>

Dierks, T. and E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

Saint-Andre, P. and J. Hodges "Representation and Verification of Domain-Based
Application Service Identity within Internet Public Key Infrastructure Using
X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)" RFC
6125 DOI 10.17487/RFC6125 <https://www.rfc-editor.org/info/
rfc6125>

Hoffman, P. and J. Schlyter "The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA" RFC 6698 DOI 10.17487/
RFC6698 <https://www.rfc-editor.org/info/rfc6698>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content" RFC 7231 DOI 10.17487/RFC7231 <https://
www.rfc-editor.org/info/rfc7231>

Jones, M., Bradley, J., and N. Sakimura "JSON Web Signature (JWS)" RFC 7515
DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. and J. Hildebrand "JSON Web Encryption (JWE)" RFC 7516 DOI
10.17487/RFC7516 <https://www.rfc-editor.org/info/rfc7516>

Jones, M., Bradley, J., and N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI
10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Campbell, B., Mortimore, C., Jones, M., and Y. Goland "Assertion Framework for
OAuth 2.0 Client Authentication and Authorization Grants" RFC 7521 DOI
10.17487/RFC7521 <https://www.rfc-editor.org/info/rfc7521>

Sheffer, Y., Holz, R., and P. Saint-Andre "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 7525 DOI 10.17487/RFC7525 <https://www.rfc-
editor.org/info/rfc7525>

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 14

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7521
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7525

[RFC8174]

[RFC8259]

[RFC8417]

[RFC8446]

[RFC8935]

[RFC6202]

[RFC6749]

[RFC6750]

[RFC7230]

[RFC7235]

[RFC7617]

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

, ,
, , July 2018,
.

, , ,
, August 2018, .

,
, ,

, November 2020, .

7.2. Informative References

,
,

, , April 2011,
.

, , ,
, October 2012, .

,
, , , October 2012,

.

,
, , , June 2014,

.

,
, , , June 2014,

.

, , ,
, September 2015, .

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Hunt, P., Ed., Jones, M., Denniss, W., and M. Ansari "Security Event Token (SET)"
RFC 8417 DOI 10.17487/RFC8417 <https://www.rfc-editor.org/info/
rfc8417>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Backman, A., Ed., Jones, M., Ed., Scurtescu, M., Ansari, M., and A. Nadalin "Push-
Based Security Event Token (SET) Delivery Using HTTP" RFC 8935 DOI 10.17487/
RFC8935 <https://www.rfc-editor.org/info/rfc8935>

Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins "Known Issues and Best
Practices for the Use of Long Polling and Streaming in Bidirectional HTTP" RFC
6202 DOI 10.17487/RFC6202 <https://www.rfc-editor.org/info/
rfc6202>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI
10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Jones, M. and D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token
Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-
editor.org/info/rfc6750>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" RFC 7230 DOI 10.17487/RFC7230
<https://www.rfc-editor.org/info/rfc7230>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Authentication" RFC 7235 DOI 10.17487/RFC7235 <https://www.rfc-
editor.org/info/rfc7235>

Reschke, J. "The 'Basic' HTTP Authentication Scheme" RFC 7617 DOI 10.17487/
RFC7617 <https://www.rfc-editor.org/info/rfc7617>

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 15

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8417
https://www.rfc-editor.org/info/rfc8417
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8935
https://www.rfc-editor.org/info/rfc6202
https://www.rfc-editor.org/info/rfc6202
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7617

Appendix A. Unencrypted Transport Considerations
Earlier versions of this specification made the use of TLS optional and described security and
privacy considerations resulting from use of unencrypted HTTP as the underlying transport.
When the working group decided to mandate usage of HTTP over TLS, it also decided to preserve
the description of these considerations in a non-normative manner.

The considerations for using unencrypted HTTP with this protocol are the same as those
described in , and are therefore not repeated here.Appendix A of [RFC8935]

Acknowledgments
The editors would like to thank the members of the SCIM Working Group, which began
discussions of provisioning events starting with draft-hunt-scim-notify-00 in 2015. We would like
to thank and the other authors of draft-ietf-secevent-delivery-02, upon which this
specification is based. We would like to thank the participants in the SecEvents Working Group
for their contributions to this specification.

Additionally, we would like to thank the following individuals for their reviews of this
specification: , , , , ,

, , , , , ,
, , and .

Phil Hunt

Roman Danyliw Martin Duke Benjamin Kaduk Erik Kline Murray Kucherawy
Warren Kumari Barry Leiba Mark Nottingham Alvaro Retana Yaron Sheffer Valery Smyslov
Robert Sparks Éric Vyncke Robert Wilton

Authors' Addresses
Annabelle Backman ()������
Amazon

 richanna@amazon.com Email:

Michael B. Jones ()������
Microsoft

 mbj@microsoft.com Email:
 https://self-issued.info/ URI:

Marius Scurtescu
Coinbase

 marius.scurtescu@coinbase.com Email:

Morteza Ansari
Independent

 morteza@sharppics.com Email:

Anthony Nadalin
Independent

 nadalin@prodigy.net Email:

RFC 8936 Poll-Based SET Delivery Using HTTP November 2020

Backman, et al. Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc8935#appendix-A
mailto:richanna@amazon.com
mailto:mbj@microsoft.com
https://self-issued.info/
mailto:marius.scurtescu@coinbase.com
mailto:morteza@sharppics.com
mailto:nadalin@prodigy.net

	RFC 8936
	Poll-Based Security Event Token (SET) Delivery Using HTTP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction and Overview
	1.1. Notational Conventions
	1.2. Definitions

	2. SET Delivery
	2.1. Polling Delivery using HTTP
	2.2. Polling HTTP Request
	2.3. Polling HTTP Response
	2.4. Poll Request
	2.4.1. Poll-Only Request
	2.4.2. Acknowledge-Only Request
	2.4.3. Poll with Acknowledgement
	2.4.4. Poll with Acknowledgement and Errors

	2.5. Poll Response
	2.5.1. Poll Error Response

	2.6. Error Response Handling

	3. Authentication and Authorization
	4. Security Considerations
	4.1. Authentication Using Signed SETs
	4.2. HTTP Considerations
	4.3. Confidentiality of SETs
	4.4. Access Token Considerations
	4.4.1. Bearer Token Considerations

	5. Privacy Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Unencrypted Transport Considerations
	Acknowledgments
	Authors' Addresses

 Poll-Based Security Event Token (SET) Delivery Using HTTP

 Amazon

 richanna@amazon.com

 Microsoft

 mbj@microsoft.com
 https://self-issued.info/

 Coinbase

 marius.scurtescu@coinbase.com

 Independent

 morteza@sharppics.com

 Independent

 nadalin@prodigy.net

 Security
 Security Events Working Group
 JSON Web Token
 JWT
 Security Event Token
 SET
 Delivery
 JavaScript Object Notation
 JSON

	This specification defines how a series of Security Event Tokens
 (SETs) can be delivered to an intended recipient
 using HTTP POST over TLS initiated as a poll by the recipient. The
 specification also defines how delivery can be assured, subject to
 the SET Recipient's need for assurance.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction and Overview

 . Notational Conventions

 . Definitions

 . SET Delivery

 . Polling Delivery using HTTP

 . Polling HTTP Request

 . Polling HTTP Response

 . Poll Request

 . Poll-Only Request

 . Acknowledge-Only Request

 . Poll with Acknowledgement

 . Poll with Acknowledgement and Errors

 . Poll Response

 . Poll Error Response

 . Error Response Handling

 . Authentication and Authorization

 . Security Considerations

 . Authentication Using Signed SETs

 . HTTP Considerations

 . Confidentiality of SETs

 . Access Token Considerations

 . Bearer Token Considerations

 . Privacy Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Unencrypted Transport Considerations

 Acknowledgments

 Authors' Addresses

 Introduction and Overview

 This specification defines how a stream of
	Security Event Tokens (SETs)
 can be transmitted to an intended
 SET Recipient using HTTP
 over TLS. The specification defines a method to poll for SETs
 using HTTP POST.
	This is an alternative SET delivery method to the one defined in
	 .

	Poll-based SET delivery is intended for scenarios where all of
	the following apply:

 The recipient of the SET is capable of making outbound HTTP requests.

	 The transmitter is capable of hosting a TLS-enabled HTTP endpoint that is accessible
	 to the recipient.
	

	 The transmitter and recipient are willing to exchange data with one another.
	

	In some scenarios, either push-based or poll-based delivery could be used,
	and in others, only one of them would be applicable.

	A mechanism for exchanging configuration metadata such as endpoint URLs,
	cryptographic keys,
	and possible implementation constraints such as buffer size limitations
	between the transmitter and recipient is
 out of scope for this specification. How SETs are defined and the process
 by which security events are identified for SET Recipients are specified in
	 .

 Notational Conventions

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as described in BCP 14
 when, and only when, they appear in all capitals,
 as shown here.

	 Throughout this document, all figures may contain spaces and extra
	 line wrapping for readability and due to space limitations.

 Definitions

 This specification utilizes terminology defined in
 and .

 SET Delivery

	When a SET is available for a SET Recipient, the SET Transmitter
	queues the SET in a buffer so that
	a SET Recipient can poll for SETs using HTTP POST.

	In poll-based SET delivery using HTTP over TLS, zero or more SETs are
 delivered in a JSON document
 to a SET Recipient in response to an HTTP POST request to the
 SET Transmitter. Then in a following request, the SET Recipient
 acknowledges received SETs and can poll for more. All requests and
 responses are JSON documents and use a
 Content-Type of
 application/json, as described in
 .

 After successful (acknowledged) SET delivery, SET
 Transmitters are not required to retain or record SETs for
 retransmission. Once a SET is acknowledged, the SET Recipient SHALL be
 responsible for retention, if needed.
 Transmitters may also discard undelivered SETs under deployment-specific conditions,
 such as if they have not been polled for over too long a period of time
 or if an excessive amount of storage is needed to retain them.

	Upon receiving a SET, the SET Recipient reads the SET and validates
	it in the manner described in .
	The SET Recipient MUST acknowledge receipt to the SET Transmitter,
	and SHOULD do so in a timely fashion, as described in .
	The SET Recipient SHALL NOT use the event acknowledgement mechanism
 to report event errors other than those relating to the parsing and
 validation of the SET.

 Polling Delivery using HTTP
 This method allows a SET Recipient to use HTTP POST
	() to acknowledge
	SETs and to check for and receive zero or more SETs. Requests
	 MAY be made at a periodic interval (short polling) or requests
	 MAY wait, pending availability of new SETs using long polling,
	per .
	Note that short polling will result in retrieving zero or more SETs
	whereas long polling will typically result in retrieving one or more SETs
	unless a timeout occurs.

 The delivery of SETs in this method is facilitated by HTTP
	POST requests initiated by the SET Recipient in which:

 The SET Recipient makes a request for available SETs
 using an HTTP POST to a pre-arranged endpoint provided by the SET
 Transmitter, or
 after validating previously received SETs, the SET Recipient
 initiates another poll request using HTTP POST that includes
 acknowledgement of previous SETs and requests the next batch
 of SETs.

 The purpose of the acknowledgement is to inform the
	SET Transmitter that delivery has succeeded and
	redelivery is no longer required.
	Before acknowledgement, SET Recipients validate the received SETs
	and retain them in a manner appropriate to the recipient's
	requirements. The level and method of retention of SETs
	by SET Recipients is out of scope of this specification.

 Polling HTTP Request
 When initiating a poll request, the SET Recipient constructs
	a JSON document that consists of polling request parameters
	and SET acknowledgement parameters in the form of JSON objects.

 When making a request, the HTTP Content-Type header field
	is set to application/json.
 The following JSON object members are used in a polling request:

 Request Processing Parameters

 maxEvents
 An OPTIONAL integer value
	 indicating the maximum number of unacknowledged SETs to be returned.
	 The SET Transmitter SHOULD NOT send more SETs than the specified maximum.
	 If more than the maximum number of SETs
	 are available, the SET Transmitter determines which to return first;
	 the oldest SETs available MAY be returned first,
	 or another selection algorithm MAY be used,
	 such as prioritizing SETs in some manner that makes sense for the use case.
	 A value of 0 MAY be used by
	 SET Recipients that would like to perform an acknowledge-only
	 request. This enables the Recipient to use separate HTTP requests
	 for acknowledgement and reception of SETs.
	 If this parameter is omitted, no limit is placed on
	 the number of SETs to be returned.
	
 returnImmediately
 An OPTIONAL JSON
	 boolean value that indicates the SET Transmitter SHOULD return
	 an immediate response even if no results are available
	 (short polling). The default value is false,
	 which indicates the request is to be treated as an HTTP long poll,
	 per . The timeout for the
	 request is part of the configuration between the participants, which is out of
	 scope of this specification.

 SET Acknowledgment Parameters

 ack

	 A JSON array of strings whose values are the jti values of successfully
	 received SETs that are being acknowledged. If there are no
	 outstanding SETs to acknowledge, this member is omitted or
	 contains an empty array. Once a SET has been acknowledged, the
	 SET Transmitter is released from any obligation to retain the
	 SET.
	
 setErrs

	 A JSON object with one or more members whose keys
	 are the jti values of
	 invalid SETs received.
	 The values of these objects are themselves JSON objects that
	 describe the errors detected using the
	 err and
	 description values
	 specified in .
	 If there are no outstanding SETs with errors to report, this member is omitted
	 or contains an empty JSON object.
	

 Polling HTTP Response
 In response to a poll request, the SET Transmitter checks for
	available SETs and responds with a JSON document containing
	the following JSON object members:

 sets
 A JSON object containing zero or more SETs being returned.
	 Each member name
	 is the jti of a SET to
	 be delivered, and its value is a JSON string representing the
	 corresponding SET. If there are no
	 outstanding SETs to be transmitted, the JSON object SHALL be
	 empty.
	 Note that both SETs being transmitted for the first time and
	 SETs that are being retransmitted after not having been acknowledged
	 are communicated here.
	
 moreAvailable
 A JSON boolean value that
	 indicates if more unacknowledged SETs are available to be returned.
	 This member MAY be omitted, with the meaning being the same as
	 including it with the boolean value false.
	

 When making a response, the HTTP Content-Type header field
	is set to application/json.

 Poll Request
 The SET Recipient performs an HTTP POST (see
) to a pre-arranged
	polling endpoint URI to check for SETs that are available.
	Because the SET Recipient has no prior SETs to
	acknowledge, the ack and
	 setErrs request parameters are omitted.

	 After a period of time configured in an out-of-band manner between the SET
	Transmitter and Recipient, a SET Transmitter MAY redeliver SETs
	it has previously delivered. The SET Recipient SHOULD accept
	repeat SETs and acknowledge the SETs regardless of whether the
	Recipient believes it has already acknowledged the SETs previously.
	A SET Transmitter MAY limit the number of times it attempts to
	deliver a SET.

 If the SET Recipient has received SETs from the
 SET Transmitter, the SET Recipient parses and validates that
 received SETs meet its own requirements and SHOULD acknowledge
 receipt in a timely fashion (e.g., seconds or minutes) so that the SET
 Transmitter can mark the SETs as received. SET Recipients SHOULD
 acknowledge receipt before taking any local actions based on
 the SETs to avoid unnecessary delay in acknowledgement, where
 possible.

 Poll requests have three variations:

 Poll-Only
 In this scenario, a SET Recipient
 asks for the next set of events where no previous SET deliveries
 are acknowledged (such as in the initial poll request).
 Acknowledge-Only
 In this scenario, a SET
 Recipient sets the maxEvents
 value to 0 along with
 ack and
 setErrs members indicating the
 SET Recipient is acknowledging previously received SETs and
 does not want to receive any new SETs in response to the
 request.
 Combined Acknowledge and Poll
 In this scenario, a SET Recipient is both acknowledging previously
 received SETs using the ack and setErrs members
 and will wait for the next group of SETs in the SET Transmitters
 response.

 Poll-Only Request
 In the case where no SETs were received in a previous poll (see
), the SET Recipient simply
	 polls without acknowledgement parameters (ack
	 and setErrs).

	 The following is a non-normative example request made by a SET Recipient
	 that has no outstanding SETs to acknowledge and is polling
	 for available SETs at the endpoint
	 https://notify.idp.example.com/Events:

 Example Initial Poll Request

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Type: application/json

 {
 "returnImmediately": true
 }

 A SET Recipient can poll using default parameter values by passing
	 an empty JSON object.
 The following is a non-normative example default poll request to the
	 endpoint https://notify.idp.example.com/Events:

 Example Default Poll Request

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Type: application/json

 {}

 Acknowledge-Only Request
 In this variation, the SET Recipient acknowledges previously
	 received SETs and indicates it does not want to receive SETs in
	 response by setting the maxEvents
	 value to 0.
	 This variation might be used, for instance, when a SET Recipient needs to
	 acknowledge received SETs independently (e.g., on separate threads)
	 from the process of receiving SETs.

	 If the poll needs to return immediately, then returnImmediately
 MUST also be present with the value true.
	 If it is false, then a long poll will still occur
	 until an event is ready to be returned, even though no events will be returned.

 The following is a non-normative example poll request with acknowledgement
	 of SETs received (for example, as shown in
):

 Example Acknowledge-Only Request

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Type: application/json

 {
 "ack": [
 "4d3559ec67504aaba65d40b0363faad8",
 "3d0c3cf797584bd193bd0fb1bd4e7d30"
],
 "maxEvents": 0,
 "returnImmediately": true
 }

 Poll with Acknowledgement
 This variation allows a recipient thread to simultaneously
	 acknowledge previously received SETs and wait for the next
	 group of SETs in a single request.
 The following is a non-normative example poll with acknowledgement
	 of the SETs received in :

 Example Poll with Acknowledgement and No Errors

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Type: application/json

 {
 "ack": [
 "4d3559ec67504aaba65d40b0363faad8",
 "3d0c3cf797584bd193bd0fb1bd4e7d30"
],
 "returnImmediately": false
 }

 In the above acknowledgement, the SET Recipient has acknowledged
	 receipt of two SETs and has indicated it wants to wait until
	 the next SET is available.

 Poll with Acknowledgement and Errors
 In the case where errors were detected in previously
	 delivered SETs, the SET Recipient MAY use the
	 setErrs member to communicate the errors
	 in the following poll request.

 The following is a non-normative example of a response
	 acknowledging one successfully received SET and one SET with an error
	 from the two SETs received in :

 Example Poll Acknowledgement with Error

 POST /Events HTTP/1.1
 Host: notify.idp.example.com
 Content-Language: en-US
 Content-Type: application/json

 {
 "ack": ["3d0c3cf797584bd193bd0fb1bd4e7d30"],
 "setErrs": {
 "4d3559ec67504aaba65d40b0363faad8": {
 "err": "authentication_failed",
 "description": "The SET could not be authenticated"
 }
 },
 "returnImmediately": true
 }

 Poll Response
 In response to a valid poll request, the service provider MAY
	respond immediately if SETs are available to be delivered.
	If no SETs are available at the time of the request, the
	SET Transmitter SHALL delay responding until a SET is
	available or the timeout interval has elapsed unless the poll request parameter
	 returnImmediately is present with the value true.

 As described in , a JSON document
	is returned containing members including
	 sets, which SHALL contain zero or more
	SETs.
 The following is a non-normative example response to
	 the request shown in . This example
	 shows two SETs being returned:

 Example Poll Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "sets":
 {
 "4d3559ec67504aaba65d40b0363faad8":
 "eyJhbGciOiJub25lIn0.
 eyJqdGkiOiI0ZDM1NTllYzY3NTA0YWFiYTY1ZDQwYjAzNjNmYWFkOCIsImlhdC
 I6MTQ1ODQ5NjQwNCwiaXNzIjoiaHR0cHM6Ly9zY2ltLmV4YW1wbGUuY29tIiwi
 YXVkIjpbImh0dHBzOi8vc2NpbS5leGFtcGxlLmNvbS9GZWVkcy85OGQ1MjQ2MW
 ZhNWJiYzg3OTU5M2I3NzU0IiwiaHR0cHM6Ly9zY2ltLmV4YW1wbGUuY29tL0Zl
 ZWRzLzVkNzYwNDUxNmIxZDA4NjQxZDc2NzZlZTciXSwiZXZlbnRzIjp7InVybj
 ppZXRmOnBhcmFtczpzY2ltOmV2ZW50OmNyZWF0ZSI6eyJyZWYiOiJodHRwczov
 L3NjaW0uZXhhbXBsZS5jb20vVXNlcnMvNDRmNjE0MmRmOTZiZDZhYjYxZTc1Mj
 FkOSIsImF0dHJpYnV0ZXMiOlsiaWQiLCJuYW1lIiwidXNlck5hbWUiLCJwYXNz
 d29yZCIsImVtYWlscyJdfX19.",
 "3d0c3cf797584bd193bd0fb1bd4e7d30":
 "eyJhbGciOiJub25lIn0.
 eyJqdGkiOiIzZDBjM2NmNzk3NTg0YmQxOTNiZDBmYjFiZDRlN2QzMCIsImlhdC
 I6MTQ1ODQ5NjAyNSwiaXNzIjoiaHR0cHM6Ly9zY2ltLmV4YW1wbGUuY29tIiwi
 YXVkIjpbImh0dHBzOi8vamh1Yi5leGFtcGxlLmNvbS9GZWVkcy85OGQ1MjQ2MW
 ZhNWJiYzg3OTU5M2I3NzU0IiwiaHR0cHM6Ly9qaHViLmV4YW1wbGUuY29tL0Zl
 ZWRzLzVkNzYwNDUxNmIxZDA4NjQxZDc2NzZlZTciXSwic3ViIjoiaHR0cHM6Ly
 9zY2ltLmV4YW1wbGUuY29tL1VzZXJzLzQ0ZjYxNDJkZjk2YmQ2YWI2MWU3NTIx
 ZDkiLCJldmVudHMiOnsidXJuOmlldGY6cGFyYW1zOnNjaW06ZXZlbnQ6cGFzc3
 dvcmRSZXNldCI6eyJpZCI6IjQ0ZjYxNDJkZjk2YmQ2YWI2MWU3NTIxZDkifSwi
 aHR0cHM6Ly9leGFtcGxlLmNvbS9zY2ltL2V2ZW50L3Bhc3N3b3JkUmVzZXRFeH
 QiOnsicmVzZXRBdHRlbXB0cyI6NX19fQ."
 }
}

 In the above example, two SETs whose jti values
	are 4d3559ec67504aaba65d40b0363faad8
	and 3d0c3cf797584bd193bd0fb1bd4e7d30
	are delivered.
 The following is a non-normative example response to
	 the request shown in , which indicates that no new
	 SETs or unacknowledged SETs are available:

 Example No SETs Poll Response

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "sets": {}
 }

 Upon receiving the JSON document (e.g., as shown in), the SET Recipient parses
 and verifies the received SETs and notifies the SET Transmitter of
 successfully received SETs and SETs with errors via the next poll
 request to the SET Transmitter, as described in Sections and .

 Poll Error Response
 In the event of a general HTTP error condition in the context of
 processing a poll request, the service provider responds with
 the applicable HTTP response status code, as defined in .
 Service providers MAY respond to any invalid poll request with an HTTP response
 status code of 400 (Bad Request) even when a more specific code might apply, for
 example, if the service provider deemed that a more specific code presented an
 information disclosure risk. When no more specific code might apply, the service
 provider SHALL respond to an invalid poll
	 request with an HTTP status code of 400.

	 The response body for responses to invalid poll requests is left undefined,
	 and its contents SHOULD be ignored.

 The following is a non-normative example of a response to an invalid poll request:

 Example Poll Error Response

 HTTP/1.1 400 Bad Request

 Error Response Handling

	 If a SET is invalid,
	 error codes from the IANA "Security Event Token Error Codes"
	 registry established by
	 are used in error responses.

	 As described in , an error response is a JSON
	 object providing details about the error that includes the following
	 name/value pairs:

 err:

	 A value from the
	 IANA "Security Event Token Error Codes" registry
	 that identifies the error.
	
 description:

	 A human-readable string that provides
	 additional diagnostic information.
	

	 When included as part of a batch of SETs, the above JSON is included
	 as part of the setErrs member, as
 defined in Sections and
	 .

 When the SET Recipient includes one or more error responses in a request to
 the SET Transmitter, it must also include in the request a
 Content-Language header field whose value indicates the
 language of the error descriptions included in the request. The method of
 language selection in the case when the SET Recipient can provide error messages
 in multiple languages is out of scope for this specification.

 Authentication and Authorization
 The SET delivery method described in this specification is
 based upon HTTP over TLS and standard
 HTTP authentication and authorization schemes, as per
 .
 The TLS server certificate MUST be validated using DNS-ID
 and/or DNS-Based Authentication of Named Entities (DANE) .
 As per , a SET
 delivery endpoint SHALL indicate supported HTTP authentication
 schemes via the WWW-Authenticate header field
 when using HTTP authentication.

	Authorization for the eligibility to provide actionable SETs can be determined by
	using the identity of the SET Issuer,
	validating the identity of the SET Transmitter,
	or via other employed authentication methods.
	Likewise, the SET Transmitter may choose to validate the identity of the SET Recipient,
	perhaps using mutual TLS.
	Because SETs are
 not commands, SET Recipients are free to ignore SETs that
 are not of interest after acknowledging their receipt.

 Security Considerations

 Authentication Using Signed SETs

	 JWS signed SETs can be
	 used (see and)
	 to enable the SET Recipient
	 to validate that the SET Issuer is authorized to provide actionable SETs.

 HTTP Considerations
 SET delivery depends on the use of the Hypertext Transfer Protocol and is thus
 subject to the security considerations of HTTP () and its related specifications.

 Confidentiality of SETs

	 SETs may contain sensitive information, including Personally
	 Identifiable Information (PII), or be distributed through third
	 parties. In such cases, SET Transmitters and SET Recipients
	 MUST protect the confidentiality of the SET contents.
	 In some use cases, using TLS to secure the transmitted SETs will be
	 sufficient. In other use cases, encrypting the SET as described in
	 JSON Web Encryption (JWE) will also be required.
	 The Event delivery endpoint MUST support at least TLS
	 version 1.2 and
	 SHOULD support the newest version of TLS that meets
	 its security requirements, which as of the time of this publication
	 is TLS 1.3 . The client
	 MUST perform a TLS/SSL server certificate check using
	 DNS-ID and/or DANE . How a SET Recipient determines
	 the expected service identity to match the SET Transmitter's server
	 certificate against is out of scope for this document. The
	 implementation security considerations for TLS in "Recommendations
	 for Secure Use of Transport Layer Security (TLS) and Datagram
	 Transport Layer Security (DTLS)" MUST be followed.

 Access Token Considerations

	 If HTTP Authentication is performed using OAuth access tokens ,
	 implementers MUST take into account the threats
 and countermeasures documented in .

 Bearer Token Considerations

	 Transmitting bearer tokens using TLS helps prevent their interception.

 Bearer tokens SHOULD have a limited lifetime that can be determined
	 directly or indirectly (e.g., by checking with a validation service)
	 by the service provider. By expiring tokens, clients are forced to
	 obtain a new token (which usually involves re-authentication) for
	 continued authorized access. For example, in OAuth 2.0, a client MAY use
	 an OAuth refresh token to obtain a new bearer token after authenticating
	 to an authorization server, per .
 Implementations supporting OAuth bearer tokens need to factor in
	 security considerations of this authorization method . Since security is only as good
	 as the weakest link, implementers also need to consider authentication
	 choices coupled with OAuth bearer tokens. The security considerations
	 of the default authentication method for OAuth bearer tokens, HTTP
	 Basic, are well documented in ; therefore, implementers
	 are encouraged to prefer stronger authentication methods.

 Privacy Considerations
 SET Transmitters should attempt to deliver SETs that are
 targeted to the specific business and
 protocol needs of subscribers.
 When sharing personally identifiable information or information
 that is otherwise considered confidential to affected users, SET
 Transmitters and Recipients MUST have the appropriate legal agreements
 and user consent or terms of service in place.
 Furthermore, data that needs confidentiality protection MUST be encrypted,
 at least with TLS
 and sometimes also using JSON Web Encryption (JWE) .

	In some cases, subject identifiers themselves may be considered sensitive
	information, such that their inclusion within a SET may be considered a violation
	of privacy. SET Issuers and SET Transmitters should consider the ramifications of sharing a
	particular subject identifier with a SET Recipient (e.g., whether doing so could
	enable correlation and/or de-anonymization of data) and choose appropriate
	subject identifiers for their use cases.

 IANA Considerations

	This document has no IANA actions.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 HTTP Over TLS

 This memo describes how to use Transport Layer Security (TLS) to secure Hypertext Transfer Protocol (HTTP) connections over the Internet. This memo provides information for the Internet community.

 The Transport Layer Security (TLS) Protocol Version 1.2

 This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)

 Many application technologies enable secure communication between two entities by means of Internet Public Key Infrastructure Using X.509 (PKIX) certificates in the context of Transport Layer Security (TLS). This document specifies procedures for representing and verifying the identity of application services in such interactions. [STANDARDS-TRACK]

 The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA

 Encrypted communication on the Internet often uses Transport Layer Security (TLS), which depends on third parties to certify the keys used. This document improves on that situation by enabling the administrators of domain names to specify the keys used in that domain's TLS servers. This requires matching improvements in TLS client software, but no change in TLS server software. [STANDARDS-TRACK]

 Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

 The Hypertext Transfer Protocol (HTTP) is a stateless \%application- level protocol for distributed, collaborative, hypertext information systems. This document defines the semantics of HTTP/1.1 messages, as expressed by request methods, request header fields, response status codes, and response header fields, along with the payload of messages (metadata and body content) and mechanisms for content negotiation.

 JSON Web Signature (JWS)

 JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and an IANA registry defined by that specification. Related encryption capabilities are described in the separate JSON Web Encryption (JWE) specification.

 JSON Web Encryption (JWE)

 JSON Web Encryption (JWE) represents encrypted content using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries defined by that specification. Related digital signature and Message Authentication Code (MAC) capabilities are described in the separate JSON Web Signature (JWS) specification.

 JSON Web Token (JWT)

 JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted.

 Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants

 This specification provides a framework for the use of assertions with OAuth 2.0 in the form of a new client authentication mechanism and a new authorization grant type. Mechanisms are specified for transporting assertions during interactions with a token endpoint; general processing rules are also specified.
 The intent of this specification is to provide a common framework for OAuth 2.0 to interwork with other identity systems using assertions and to provide alternative client authentication mechanisms.
 Note that this specification only defines abstract message flows and processing rules. In order to be implementable, companion specifications are necessary to provide the corresponding concrete instantiations.

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are widely used to protect data exchanged over application protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP. Over the last few years, several serious attacks on TLS have emerged, including attacks on its most commonly used cipher suites and their modes of operation. This document provides recommendations for improving the security of deployed services that use TLS and DTLS. The recommendations are applicable to the majority of use cases.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Security Event Token (SET)

 This specification defines the Security Event Token (SET) data structure. A SET describes statements of fact from the perspective of an issuer about a subject. These statements of fact represent an event that occurred directly to or about a security subject, for example, a statement about the issuance or revocation of a token on behalf of a subject. This specification is intended to enable representing security- and identity-related events. A SET is a JSON Web Token (JWT), which can be optionally signed and/or encrypted. SETs can be distributed via protocols such as HTTP.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Push-Based Security Event Token (SET) Delivery Using HTTP

 Informative References

 Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP

 On today's Internet, the Hypertext Transfer Protocol (HTTP) is often used (some would say abused) to enable asynchronous, "server- initiated" communication from a server to a client as well as communication from a client to a server. This document describes known issues and best practices related to such "bidirectional HTTP" applications, focusing on the two most common mechanisms: HTTP long polling and HTTP streaming. This document is not an Internet Standards Track specification; it is published for informational purposes.

 The OAuth 2.0 Authorization Framework

 The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf. This specification replaces and obsoletes the OAuth 1.0 protocol described in RFC 5849. [STANDARDS-TRACK]

 The OAuth 2.0 Authorization Framework: Bearer Token Usage

 This specification describes how to use bearer tokens in HTTP requests to access OAuth 2.0 protected resources. Any party in possession of a bearer token (a "bearer") can use it to get access to the associated resources (without demonstrating possession of a cryptographic key). To prevent misuse, bearer tokens need to be protected from disclosure in storage and in transport. [STANDARDS-TRACK]

 Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document provides an overview of HTTP architecture and its associated terminology, defines the "http" and "https" Uniform Resource Identifier (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements, and describes related security concerns for implementations.

 Hypertext Transfer Protocol (HTTP/1.1): Authentication

 The Hypertext Transfer Protocol (HTTP) is a stateless application- level protocol for distributed, collaborative, hypermedia information systems. This document defines the HTTP Authentication framework.

 The 'Basic' HTTP Authentication Scheme

 This document defines the "Basic" Hypertext Transfer Protocol (HTTP) authentication scheme, which transmits credentials as user-id/ password pairs, encoded using Base64.

 Unencrypted Transport Considerations

	Earlier versions of this specification made the use of TLS optional
	and described security and privacy considerations resulting from use
	of unencrypted HTTP as the underlying transport.
	When the working group decided to mandate usage of HTTP over TLS,
	it also decided to preserve the description of these considerations
	in a non-normative manner.

	The considerations for using unencrypted HTTP with this protocol
	are the same as those described in ,
	and are therefore not repeated here.

 Acknowledgments

	The editors would like to thank the members of the SCIM Working Group,
	which began discussions of provisioning events starting with
	draft-hunt-scim-notify-00 in 2015. We would like to thank and the other authors of
	draft-ietf-secevent-delivery-02, upon which this specification is
	based. We would like to thank the participants in the SecEvents
	Working Group for their contributions to this specification.

	Additionally, we would like to thank the following individuals for their reviews of this specification:
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	and
	 .

 Authors' Addresses

 Amazon

 richanna@amazon.com

 Microsoft

 mbj@microsoft.com
 https://self-issued.info/

 Coinbase

 marius.scurtescu@coinbase.com

 Independent

 morteza@sharppics.com

 Independent

 nadalin@prodigy.net

