TEN Y
.F_ Ei&fzifbtﬁ {2- g- E:.Gg

GATEWAY ROUTING
Radia Perlman
Bolt Beranek and Newman Inc.
January 27, 1378
PRTN #2421

¥y PSFWN 299

P

GATEWAY ROUTING

This paper proposes an algorithm to improve gateway routing.
It is in two parts because the second part is an extension to the
first. The first part can be implemented without the second, and
is a scheme to route packets successfully around failed gateways.
The second is a scheme to improve overall flow, both by
distributing traffic more evenly throughout the catenet (the
collection of nets connected by gateways) and by providing
feedback to sources when they are producing traffic too quickly.

This paper is not a design specification -- there are some
details yet toc be worked out and some issues yet to be resolved.
This is written to convey our current thinking on the topic.

Another paper has been released by Virginia Strazisar on
gateway routing. It is a proposal to use Gallager's algorithm
and is a different approach to the problem. This scheme is
conceptually simpler. It does not attempt to achieve theoretical
optimal limits of overall catenet traffic throughput or overall
catenet traffic delay. Instead it achieves good results with
less overhead.

It is not necessary to have read Strazisar's paper in order

to understand this one.

ROUTING ARQOUND FAILZID CGATEWAYS
l.1 Introduction

This algorithm is designed for finding reasonable paths, not
optimal ones. It does not attempt to optimize either delay for a
single packet, or the average delay shroughout the catenet. It
is designed for simplicity, low cost in terms of the information
which must be exchanged between gateways, and workability in
cooperating with gateways that do not implement this algorithm.

The basic idea is that each gateway cooperating in this
scheme has a model of the connectivity of the catenet. As events
occur which change the connectivity of the catenet, these events
are reported and circulated throughout the catenet.

Each gateway uses this information to compute a distance
matrix of shortest distance paths between each pair of nodes.

Packets are routed on shortest length paths.

1.2 Terminology

catenet -- the collection of nets connected by gateways. For the
purpose of describing this algorithm, gateways will be considered

nodes in a graph, with networks considered to be links.

neighbors -- gateways on a common ne:work, i.e., gateways that
can potentially communicate without intermediate gateways. We
will refer to gateways as neighbors even if communication between

‘them is currently failing.

=

simple gateways -- gateways that do not implement this algorithm.

1.3 Connectivity Information

Connectivity information is passed in the form of link-state
packets, in which a gateway reports which of its neighbors it can
communicate with. (Gateways contain an assembled-in list of
neighbors, and a new gateway starting up gets in touch with its
neighbors so that they can add it to their list if it was not
already there.) A gateway can report this information
periodically but will definitely report it when the state of a
link between itself and one of its neighbors changes. When a
node A hears the packet generated by D about the state of the
links to D's neighbors, A reports the information to each of its
neighbors. In order to avoid transmitting duplicate information,
a sequence number will be transmitted with the connectivity
information. A node A remembers the .last sequence number
associated with D that it reported to its neighbors and will not
re-report connectivity information for node D until it receives
information with a higher sequence number.

Determining the status of a link is dependent on the
networks involved. One way is to send a neighbor a
self-addressed packet and see if it gets back. This works for
simple gateways, too.

When a gateway comes up, it will not know what the seguence
numbers are, either for information it must report or for

information from other sources. For this reason and because of

the possibility of lost packets, neichbors will exchange sequence
numbers packets, which contain the current sequence numbers for

all nodes.

1.4 Routing Decision

There must be some sort of associative nonnegative distance
function for routes through the caterst. A gateway G will route
a packet destined f. -de D to a noéz B such that d4(B,D) <
d(G,D). Requiring the distance function to decrease at each hop
assures no steady-state loops.

The simplest such distance function is the number of hops
(i.e. nets). A gateway will always choose the route with the
fewest number of hops. If there are -wo such routes, the gateway
can load split, sending half its packz=ts down each path.

It is important that all gateways use the same distance
measure for choosing routes or it will be possible for a
steady-state loop to form (A could send traffic for C through B
because this route has the fewest numaer of hops, and B could
send traffic for C through A because :hat path has the smallest
delay). 1In this algorithm, temporary loops are not serious,
because connectivity information is rzported to all nodes as soon
as received, so that deadlocks cannot occur. A packet might loop
a few times but the loop will eventually go away when the
connectivity information is received.

In the description of the algori=hm we will use-number of

hops as the distance function. The a_gjorithm generalizes to any

P

distance function, but we will use hop count in the initial

implementation.

1.5 Sequence Numbers, Clocks, etc.

If some global clock or monotonically increasing number were
kept between gateways, connectivity information could be stamped
with the clock instead of a sequence number. This has the
advantage that gateways would not have to store seguence numbers
for all gateways, and would eliminate the need for
seguence-numbers packets. However, it is undesirable to wait for
a global clock to be implemented before implementing improved
gateway routing.

Another possibility is having each gateway contain a
hardware clock that remains running even when the gateway
crashes, or even if the power fails. Such are available, but it
seems undesirable to require all gateways to have one.

Therefore we will implement sequence numbers. When
generating a link-state packet, a gateway simply increments the
number used on the previous packet, modulo 16 bits. When hearing
a link-state packet generated by gateway G, a gateway decides it
is recent if the sequence number is higher than the last seguence
number from G.

To keep neighbors up-to-date with each other,
sequence-numbers packets will be exchanged. These packets

contain the latest sequence numbers for each gateway. A neighbor

N, upon receiving a sequence-numbers packet from gateway G,
checks to see if G has sequence numbsrs at least as recent as N
has. For each node A for which N has a higher seguence number
than G, N will send the most recent link-state packet from A that
N knows about. Thus sequence-numbers packets serve as requests
for latest connectivity information.

There will be one seguence number, say 0, reserved to mean
"sequence number not known". This will enable a gateway starting
up to request complete information from a neighbor. When a
gateway is not heard from for a long time, gateways should "time
out" the old sequence number and flag the sequence number as old.
Then, when the gateway comes back up, any sequence number will be
accepted.

When a gateway G first comes up, it sends a sequence-numbers
packet to a neighbor A, with all saqusnce numbers @. If A has a
sequence number for G (because G was down for a sufficiently
short amount of time that A did not time out the sequence
number), G will use that sequence number. Otherwise G can use

any segquence number.

1.6 Gateway internal algorithm

Ignoring any simple gateways, each gateway has a table of
all gateways, in a matrix. Entry i,3j=0 means i=j; entry i,3=1
means 1 and j are neighbors and the link between them is up; and
entry 1,j=infinity means they are not neighbors or the 1ink

between them is currently down. (A link is down if either

neighbor thinks it is down.) To find out which neighbor teo send
a packet to for each gateway in the catenet, the gateway
"squares" the matrix at most log n times (base 2), where n is the
number of gateways. "Squaring" means performing matrix
multiplication of the matrix by itself using the operations plus
and min. If the connectivity matrix is represented as C and the
square of the connectivity matrix as €2, this operation can be

stated as:
C2(i,Jj) = min over k [C(i,k) + C(k,3)]

The matrix is squared repeatedly (by setting C = C2 and repeating
the above operation) until the matrix resulting from the squared
operation, C2, is the same as the previous matrix, C. The first
time the matrix is squared, the entries i,] are either infinity
or are path lengths for paths less than 2 hops in length.
Squaring again yields all paths of length 4 or less, etc. In the
final matrix, entry i,j is the length of the shortest path from i
to j. If i is a neighbor of j, the shortest path will be with k
equal to either i or j and with the entry i,j in the final matrix

equal to 1.

As a result of this operation, the gateway has a matrix of
distances between gateways. To decide to which neighbor to send
a packet destined for j, the gateway scans the matrix entries k,J
for each neighbor, k. It chooses the neighbor k with the
smallest value for entry k,j. If desired the gateway can

construct a table indicating to which neighbor to send a packet

—

for each destination in the catenet. The gateway can then simply
look up to which neighbor to send a packet instead of checking
each neighbor's entry in the distancs wm=trix. Note that this

table would have to be recomputed each time the matrix changes.

1.7 Noticing out-of-date information

If a sequence number is very different than expected, or if
a gateway G receives a packet from a neighbor M, which G thinks
is closer to the destination than G is, G can send N a
sequence-numbers packet, which will cause N to send any link
state packets G has missed, and which will cause N to send G a
sequence-numbers packet if N has missed any link-state packets.
Since the connectivity information for each node has its own
sequence number (or timestamp), each of the gateways can benefit
from this exchange (each might have rore up-to-date information

than the other on different pieces of information).

1.8 Format of Routing packets

There are two kinds of packets -- link-state packets and
sequence-numbers packets. The link-state packet tells the state
of links with all neighbors. The secuence-numbers packet
contains sequence numbers for zll gatewzys (from which can be
deduced how up-to-date the gateway's information is}.

Link-state packets get broadcast throughout the catenet.
Sequence-numbers packets are sent only to the neighbors of the

gateway generating the packet.

Link-state packets

These packets contain the state of all links f£rom the
reporting node, in the form:
node number (% of gateway reporting)
sequence number
neighbor number
link state
neighbor number
link state
etec.

Including all links has the advantage that gateways only
need to remember as many sequence numbers as there are other
gateways, not as many as there are links in the catenet.

When a gateway G hears a link-state packet from node A, G
ignores it if the packet's sequence number is not greater than

the last link-state packet it received from A. If the sequence

number is greater, G sends the packet to all of G's neighbors.

Sequence-numbers packets

The sequence-numbers packet contains sequence numbers for
all the nodes as understood by the sender. It is of the form:
node number (# of gateway reporting)
gateway #
seguence number
gateway #
sequence number
etc.

These packets are not passed around the catenet but can
merely be used by gateways to make sure they have not missed the
latest connectivity packets from each node. If a gateway sees

that a neighbor has an out-of-date sequence number for any node,

the gateway should send the latest link-state packet from that

