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Preface
The random access memory (RAM), read-only memory (ROM),
and interface hardware chips in your Commodore 128 are like
postal stations with hundreds of thousands of mailboxes, each
of which can hold a single character, or byte of information.
This book is a map of all of those memory locations, but it's
more than just a list of addresses. It's also a thorough discus-
sion of how the locations are used by the computer, and, more
importantly, how you can take advantage of this information
to write more powerful programs.

Why a mapping book? The 128's BASIC is the most
powerful version yet in a Commodore computer. It could be
argued that there's little need to get "under the hood" of the
128, since most of the functions that required lots of PEEKs
and POKEs and an intimate understanding of internal hard-
ware functioning in earlier models like the Commodore 64 can
now be handled by simple BASIC statements on the 128.
While it may be true that the 128's advanced BASIC makes
programming easier, complete control over all the computer's
features belongs only to those who understand the secrets of
how the system operates. The purpose of this book is to un-
lock those secrets. The information is valuable for both begin-
ning BASIC and advanced machine language programmers.

The standard features provided by the 128 are often plain
vanilla, giving only the barest hint of the full capabilities of
the computer. Would you like to set up a Dvorak keyboard
that will work with almost any program? See the discussion of
the keyboard table pointers in Chapter 2. How about an 80-
column X 50-line screen display on your RGB monitor? The
explanation of the VDC chip registers in Chapter 8 explains
the necessary steps. Do you want to learn how the computer
sends data over the serial bus? The process is described in
Chapter 9. In fact, you'll find here the answers to most of your
questions about the 128. And these answers are written in un-
derstandable, clear prose.

This book is the result of painstaking disassembly and de-
ciphering of the Commodore 128 ROMs—a task that required
gallons of midnight oil. Commodore's BASIC and operating



system are now nearly ten years old. The ROM routines have
many twists and turns where various Commodore program-
mers have made additions and enhancements along the way.
Although the 128 is internally quite different from the Com-
modore 64, there are similarities. As a result, several previous
COMPUTE! books for the 64 provided invaluable assistance in
attempts to understand some of the intricacies. I'm particularly
indebted to Sheldon Leemon for Mapping the Commodore 64,
and to Dan Heeb for his two volumes of Commodore 64 and
V1C-20 Tool Kit: BASIC and Kernal.

Every effort has been made to insure that the information
provided here is accurate, but in a project of this size and
scope it is inevitable that some errors will creep in. Please
send any corrections you may discover to the attention of the
Book Editor at COMPUTE! Publications in Greensboro. You
can also send electronic mail messages concerning this book to
CompuServe user ID 73317,1143 or to BIX (Byte Information
Exchange) user name ottis.

I'd like to salute my wife Gail for moral and logistical
support far above and beyond the call of duty. I'd also like to
thank the COMPUTE! staff for patience shown when this
project dragged on months longer than anticipated. Finally, I'd
like to dedicate this book to George and George, departing
and arriving as the work took shape.

VI



Introduction
This memory map is a guide to the way a Commodore 128 in
128 mode uses and manipulates its RAM and ROM. No at-
tempt is made here to provide detailed coverage of the 128's
64 mode. A Commodore 128 in 64 mode doesn't just emulate
a Commodore 64; for all practical purposes it is a 64, with
completely separate Kernal and BASIC ROM. The memory
map of the Commodore 64 mode (and its BASIC 2.0) is cov-
ered in complete detail in COMPUTERS Mapping the Commo-
dore 64. However, Appendix E discusses those 128 features
available in 64 mode, and provides a cross reference of impor-
tant memory locations for 64 and 128 modes—information
that will be useful in translating Commodore 64 machine lan-
guage routines for use in 128 mode.

Nor does this book make any attempt to map the way the
128's CP/M mode uses memory. CP/M is a large and com-
plex operating system, and a CP/M mode memory map would
easily fill another entire volume. Moreover, the major portion
of CP/M is loaded from disk instead of being permanently
stored in ROM. As a result, CP/M is subject to more frequent
modification; so far, in the short life of the 128, there have
been at least three major revisions. Detailed technical infor-
mation on Commodore 128 CP/M is available in the book
CP/M Plus User's Guide /Programmer's Guide/System Guide,
available directly from Commodore.

Because this book is intended as a reference for intermedi-
ate to advanced BASIC and machine language programmers,
no attempt is made to provide simple explanations of all the
concepts discussed. The discussions assume familiarity with
elementary computer concepts such as bits and bytes, and
with memory quantity units such as a page (256 bytes) or a K
(kilobyte, 1024 bytes). The book also assumes familiarity with
the binary and hexadecimal numbering systems, although dec-
imal equivalents are usually provided.

Hexadecimal numbers in the text are always preceded by
a dollar sign ($), the standard 8502 nomenclature for hex.
Decimal numbers appear without any prefix. When you see a
pair of numbers separated by a slash (/), the first number is
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decimal and the second is hexadecimal, unless otherwise indi-
cated. This book uses the machine language monitor's conven-
tion of preceding binary numbers with a percent (%) sign. For
example, %11 indicates the binary value equivalent to decimal
3, not decimal 11.

When you see numbers mentioned in this book, it should
be obvious from the context whether the number refers to an
address or a value. Where there could have been confusion, the
terms value and location or address specify what is meant. In
keeping with common practice, only two hexadecimal digits are
generally used when discussing addresses in the first page of
memory (zero page). That is, addresses 0-255 are usually writ-
ten as $00-$FF. Four hexadecimal digits are used for all other
addresses. For example, location 256 will be written as $0100,

By nature, the computer prefers to deal with whole num-
bers and doesn't handle fractions easily. Floating point is the
method used to manipulate whole and fractional decimal
numbers in 128 BASIC. Floating point also enables very large
numbers to be handled in only a few bytes. All mathematical
operations in BASIC are performed in floating point. (When
you specify integer variables in a mathematical operation, the
integer value is converted to floating point for the operation;
then the result is reconverted to integer format.) However, be-
cause floating point is a rather complex subject, it is not ex-
plained in detail in this book even though it is mentioned
extensively in Chapter 5. If you are interested in the inner
workings of floating point, refer to the excellent discussion of
the topic in COMPUTED VIC-20 and Commodore 64 Tool Kit:
BASIC, by Dan Heeb. Although not written specifically for the
128, all the information about floating point applies to BASIC
7.0 as well.

Several terms used freely in this book need clarification.
Most locations discussed in Chapters 2 and 3 are either point-
ers, vectors, or flags. Pointers and vectors refer to a pair of
memory locations that hold an address. Two-byte address val-
ues in pointers and vectors are stored in low-byte/high-byte
order. That is, the least significant byte of the address should
be stored in the first byte of the pointer or vector, and the
most significant byte of the address in the second pointer or
vector byte.

The difference between pointers and vectors is that a
pointer (as the name implies) points to an address from which
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data is to be retrieved or in which data is to be stored,
whereas a vector points to the address of a routine to be
executed.

A flag is a memory location in which individual bits are
used to signal particular conditions. A binary bit can have one
of two conditions, %0 or %1 (also referred to as clear and set,
respectively). The term comes from the analogy of flags, like
those on rural mailboxes, that can be either lowered or raised
(there's no half-mast in binary). An example is the active
screen flag, location 215/$D7. Bit 7 of the location is clear
(%0) when the 40-column display is active, or set (%1) when
the 80-column display is active. (You'll find that flag locations
often use bit 7 because that bit can be tested very easily in
machine language with the BMI and BPL instructions.)

Chapter 1 provides a brief introduction to the way the
128 arranges and manages its memory resources. That chapter
and Chapter 4 are the only chapters in the book intended to
be read from beginning to end. The remaining chapters de-
scribe the use or function of various areas of memory and
should be used as an encyclopedic reference. The chapters
generally cover memory in ascending address order, starting
with zero page in Chapter 2 and ending with the Kernal jump
table at the very top of memory in Chapter 9. Each entry in
Chapters 2-9 consists of the decimal and hexadecimal address
of the location or routine; a label, if one is commonly used; a
short statement of the function of the location or routine; and
a short description of how the location or routine is used.

IX



Memory
Organization
The memory arrangement of a Commodore 128 in 128 mode
is much different and more complex than that of any of its
Commodore predecessors. As a result, it's necessary to under-
stand how the 128 organizes and manages its memory resources
before beginning a detailed examination of how those re-
sources are used. Of the computer's three possible personal-
ities, 128 mode is the default. Unless you take some other
action—holding down the Commodore key, inserting a Com-
modore 64 cartridge, placing a CP/M boot disk in the drive—
the computer comes up in 128 mode when you turn it on. As
the native mode of the system, 128 mode makes the most
complete use of the available memory resources.

You might be interested to learn that, while 128 mode is
the default operating mode, the computer always starts out in
CP/M mode. When you first turn on power, the Z80 micro-
processor has control before the 8502 is allowed to take over.
There are only a few signs of this: two short routines are cop-
ied into bank 0 RAM. One, at 65488/$FFD0, is an 8502 ML
routine that surrenders control to the Z80; the other, at
65504/$FFEO, is a Z80 ML routine that surrenders control to
the 8502. There are no routines in any of the 128 mode ROMs
to perform this initialization. However, once the Z80 com-
pletes its initialization sequence, it turns the system over to
the 8502 and 128 mode, and does not go back to CP/M mode
unless a CP/M disk is booted.

128 Mode
The 128 mode configuration includes 128K of random access
memory (RAM) in two 64K blocks, a 28K BASIC interpreter in
read only memory (ROM), a 4K machine language monitor in
ROM, 4K of screen editor routines in ROM, 8K of Kernal op-
erating system routines in ROM, a 4K character pattern ROM,
and 4K of address space for hardware chip registers (with two
separate IK banks of color RAM). The design also provides for



up to 32K of additional ROM internally and up to 32K of
ROM on cartridge. The operating system can support two ad-
ditional 64K banks of RAM, although the 128's design makes
no provision for adding memory chips. In sum, that's 373K of
address space, as illustrated in Figure 1-1.

This entire 373K address space must be manipulated by
the 8502 microprocessor that is the brains of the 128, but an
8502 can directly access only 64K of memory at a time. So
how is 128 mode even possible?

Memory Management Unit
The key is the MMU (Memory Management Unit), a special
chip designed by Commodore's engineers to control the mem-
ory elements that are visible to the processor. The MMU is as-
sisted by a companion device, the PLA (Programmable Logic
Array). The PLA accepts a variety of system timing and con-
trol signals and combines them in various ways to create new
control signals, taking the place of many separate discrete
logic gates. Together, these chips assemble a 64K assortment
of RAM, ROM, and I/O chips for the microprocessor to
manipulate. The MMU is described in detail in Chapter 8, but
the central feature of its memory control system is the configu-
ration register. The value stored in this register, or in a related
preconfiguration register, determines what elements the pro-
cessor sees where. Only the 64K of memory elements defined
by the MMU is available to the processor at any given time.
Figure 1-2 illustrates the defined function of each bit in the
register.

Since the configuration register is a standard eight-bit lo-
cation, it can hold 256 different values (0-255/$00-$FF); thus,
there are theoretically 256 possible configurations of memory
resources in a Commodore 128. Fortunately, not all of the pos-
sibilities are equally useful, so you don't have to concern your-
self with learning them all. The designers of the 128 operating
system selected 16 of the most useful arrangements and de-
fined them as banks.

Banks are a central feature of the 128, Banks are not fixed
physical arrangements of RAM and ROM. Instead, the 128's
banks are illusions created by the MMU to allow the micro-
processor to manipulate much more memory than would oth-
erwise be possible. There's nothing particularly sacred about
the defined banks—you are free to create your own custom



configurations (see the discussion of the MMU in Chapter 8
for details)—but it is usually more convenient to work in one
of the predefined banks. Table 1-1 shows the bank configura-
tions defined by the 128's operating system.

Figure 1-2. MMU Configuration Register

Table 1-1. Standard Bank Configurations

Bank
0/$00
i/$oi

2/$02

3/$03

4/$04

5/$05

6/$ 06

7/$07

8/$08

9/$09

Configuration
Register
Setting
63/$3F

127/$7F

191/$BF

255/SFF

22/$16

86/$56

150/$96

214/$D6

42/$2A

106/$6A

Addresses
$0000-$FFFF
$0000-$03FF
$0400-$FFFF
$0000-$03FF
$0400-$FFFF
$0000-$03FF
$0400-$FFFF
$0000-$7FFF
$8000-$CFFF
$D000-$DFFF
$E000-$FFFF
$0000-$03FF
$0400-$7FFF
$8000-$CFFF
$D000-$DFFF
$E000-$FFFF
$0000-$03FF
$0400-$7FFF
$8000-$CFFF
$D00O-$DFFF
$EO00-$FFFF
$0000-$03FF
$0400-$7FFF
$8000-$CFFF
$D0O0-$DFFF
$E000-$FFFF
$0000-$7FFF
$8000-$CFFF
$D000-$DFFF
$E000-$FFFF
$0000~$03FF
$0400-$7FFF
$8000-$CFFF
$D000-$DFFF
$EO00-$FFFF

Contents
RAM from block 0
RAM from block 0
RAM from block 1
RAM from block 0
RAM from block 2
RAM from block 0
RAM from block 3
RAM from block 0
Internal function ROM
I/O block
Internal function ROM
RAM from block 0
RAM from block 1
Internal function ROM
I/O block
Internal function ROM
RAM from block 0
RAM from block 2
Internal function ROM
I/O block
Internal function ROM
RAM from block 0
RAM from block 3
Internal function ROM
I/O block
Internal function ROM
RAM from block 0
External function ROM
I/O block
External function ROM
RAM from block 0
RAM from block 1
External function ROM
I/O block
External function ROM



Configuration
Register

Bank Setting
10/$0A 170/$AA

Addresses
$0000-$03FF
$0400-$7FFF
$8000-$CFFF
$D0O0-$DFFF
$EO00-$FFFF

Contents
RAM from block 0
RAM from block 2
External function ROM
I/O block
External function ROM

11/$OB 234/$EA $0000-$03FF RAM from block 0
$0400-$7FFF RAM from block 3
$8000-$CFFF External function ROM
$D00O-$DFFF I/O block
$E000-$FFFF External function ROM

12/$0C 6/$06 $0000-$7FFF RAM from block 0
$8000-$BFFF Internal function ROM
$C00O-$CFFF System ROM (screen

editor)
$DO00~$DFFF I/O block
$E00O-$FFFF System ROM (Kernal)

13/$0D 10/$0A $0000-$7FFF RAM from block 0
$8000-$BFFF External function ROM
$CO00-$CFFF System ROM {screen

editor}
$D0O0-$DFFF I/O block
$EO00-$FFFF System ROM (Kernal)

14/$0E l/$01 $0000-$3FFF RAM from block 0
$4000-$CFFF System ROM (BASIC

7.0, ML monitor, screen
editor)

$D000-$DFFF Character ROM
$E0O0-$FFFF System ROM (Kernal)

15/$0F 0/$00 $0000-$3FFF RAM from block 0
$4000-$CFFF System ROM (BASIC

7.0, ML monitor, screen
editor)

$D00O-$DFFF I/O block
$E00O-$FFFF System ROM (Kernal)

Exceptions: In all banks, locations $0000 and $0001 are the 8502 processor's on-chip
I/O port direction and data registers, and locations $FFOO-$FF04 are MMU configura-
tion and load configuration registers.

This banking system would be too unwieldy to be usable
were it not for another capability of the MMU. Notice in the
table that the contents of addresses 2-1023/$0002-$03FF are
the same in all banks—RAM from block 0. (This particular
feature is controlled by the MMU's RAM configuration register
rather than by the configuration register.) The common area of
RAM is another key to the operation of the 128. Since the area
is visible to all banks, a collection of machine language sub-
routines is copied here from Kernal ROM when the system is
initialized. These common subroutines, along with the fact that
the MMU makes itself visible in every bank, allow routines in
one bank to retrieve, store, and compare data in any other bank;
to call subroutines in another bank; or to jump directly to
routines in other banks. See the INDFET, INDSTA, INDCMP,
JSRFAR, and JMPFAR entries in Chapter 2.

Actually, the operating system's banking scheme promises
more than the 128 is able to deliver at this time. Of the four
64K blocks of RAM in the general operating system specifica-
tion, only two (blocks 0 and 1) are present in the current ver-
sion of the 128. The operating system was designed to leave
open a gateway to future enhanced versions (perhaps a Com-
modore 256). The circuit board doesn't provide for the addi-
tion of RAM chips to populate blocks 2 and 3, nor does the
current version of the MMU actually support them (bit 7 of
the configuration register has no effect). Thus, banks 2, 3, 6, 7,
10, and 11 can be dismissed outright. If you try to access block
2 RAM (banks 2, 6, or 10), what you'll see is block 0 RAM, so
banks 0 and 2, 4 and 6, and 8 and 10 are identical. An at-
tempt to access block 3 will show block 1, so banks 1 and 3, 5
and 7, and 9 and 11 are also identical.

You should be aware that connecting one of the Commo-
dore memory expansion modules (the 1700 for 128K or the
1750 for 512K) won't fill in these missing blocks of RAM.
Memory in the expansion modules isn't connected directly to
the computer's address lines. Instead, it must be accessed indi-
rectly via the RAM Expansion Controller (REC) chip in the
module. See Chapter 8 for more information about the REC
and memory expansion modules. Memory in the expansion
modules is also arranged in banks, but you shouldn't confuse
these with the internal RAM blocks.

Banks 4, 5, and 12 are useful only if you have a function
ROM chip installed in the free socket on the circuit board. Banks



8, 9, and 13 are useful only if you have a 128 ROM cartridge
(called an external function ROM) plugged into the expansion
port. If you attempt to access one of these ROM areas with no
ROM chip installed, you'll get only random, unpredictable
data. Since both internal and external function ROMs for the
128 are relatively rare, you can ignore those banks as well,
unless you are writing a program specifically to put into ROM.

That leaves only four standard bank configurations which
are generally useful: 0, 1, 14, and 15. Figure 1-3 shows the
contents of these banks. All the memory areas mapped in this
book appear in one or more of these banks. The lower IK of
block 0 RAM is the heavily used common area of RAM which
appears in every block. It's covered in Chapter 2. The next 7K
of block 0 (1024-7167/$0400-$lBFF) is used as working stor-
age by a variety of Kernal and BASIC routines. This area, visi-
ble in banks 0, 14, and 15, is covered in Chapter 3. Other
RAM usage (banks 0 and 1} is discussed in Chapter 4. Chapter
5 covers BASIC ROM, visible in banks 14 and 15. Chapters 6
and 7 cover the machine language monitor and screen editor,
respectively—both also visible in banks 14 and 15. Chapter 8
covers two of the possibilities for addresses 53248-57343/
$D000-$DFFF: the I/O block (including VIC-II chip color
RAM) and character pattern ROM. Chapter 9 covers the
Kernal ROM seen in banks 14 and 15.

There is one memory selection function not controlled by
the MMU. The 128 has two separate IK banks of color RAM,
both seen at the same addresses, 55296-56319/$D800-$DBFF
in the I/O block. Bits 0 and 1 in the 8502 processor's on-chip
data I/O port (location l/$01) determine which block will be
seen by the processor and by the VIC chip. See the entry for
location l/$01 in Chapter 2 for more information.

10

Figure 1-3. Normal Bank Configurations
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Common Working
Storage Area
The 128's memory management hardware has the ability to
create common areas of memory—areas where the same
memory will be seen regardless of the bank configuration. The
system allows up to 16K at both the top and bottom of the
processor's address space to be made common. However, the
operating system uses only part of this capability, setting up a
IK common area at the bottom of memory, locations 0-1023/
$0000-$03FF. No matter what bank configuration you choose,
the same block 0 RAM will be seen at these locations. It is this
common area, and especially the common routines in page 2,
that makes the 128's bank-switching operating system possible.

Zero Page: BASIC and Kernal Working
Storage
0-255/$00-$FF
The first 256 memory locations—collectively known as zero
page—are special in any computer based on a 6502-family
microprocessor like the 128's 8502. The processor has several
special addressing modes which use this area. The zero-page
addressing modes not only require less memory (two bytes per
instruction instead of three); they also execute faster. As a re-
sult, system ROM routines make extensive use of these modes.
Nearly every address in this page of memory is used by one
or more system ROM routines. In fact, you'll notice in the en-
tries for this page that a number of locations have multiple
functions, and some have multiple entries.

One of the biggest challenges for machine language pro-
grammers is finding sufficient free space in zero page for their
programs. Only four locations in the entire page (251-254/
$FB-$FE) are completely unused by any system routine. Most
of the locations in the range 10-143/$OA-$8F are used only
by BASIC, not by the Kernal. Thus, many of those locations
are free for machine language programs that do not require
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BASIC. You should be aware that any value stored in zero
page will be wiped out during a reset. The RAMTAS routine
[$E093], part of the reset sequence, clears locations 2-255/
$02-$FF to zero. (You can prevent this by holding down the
RUN/STOP key during the reset which will cause the RAMTAS
step of the reset sequence to be skipped. In this case, the sys-
tem will be left in the machine language monitor after the re-
set rather than in BASIC.)

Unlike other Commodore computers, the 128 has the abil-
ity to make the 8502 see zero page anywhere in memory. The
MMU (memory management unit) chip has a feature which al-
lows the processor to exchange zero page with another page
so that references to zero page are directed to the alternate
page, and references to addresses in the alternate page are di-
rected to zero page. See the discussion of the MMU in Chapter
8 for details. The 128 does not normally make use of this fea-
ture; the default position for zero page is at the true zero-page
locations.

The first two addresses in this page have a special func-
tion. The 8502 processor has a built-in I/O port, and it sees
the registers for that port at locations 0-l/$00-$01. References
to those addresses always affect the port; the processor will
never see the first two bytes of RAM. These locations are not
affected by the page-swapping feature. Regardless of where
the remainder of zero page is currently seen, locations 0-1 are
used exclusively to control the internal port.

0 $00 D8502
Data direction register for processor's on-chip I/O port
Bits 0-6 in this location control the direction of data flow for
the seven I/O (input/output) lines on the 8502 microprocessor
chip, labeled P0-P6. Setting a bit to %0 makes the correspond-
ing line an input, and its state can be read at the correspond-
ing bit position in location $01. Setting a bit to %1 makes the
corresponding line an output, and its state will be controlled
by the setting of the corresponding bit position in location
$01. The value here is initialized to 47/$2F by the IOINIT
routine [$E109], part of both the reset and RUN/STOP-
RESTORE sequences. This sets lines 0-3 and 5 for output and
lines 4 and 6 for input. Since only seven lines are provided,
bit 7 is not used. That bit will retain whatever value is written
to it, but its setting has no effect.

16

$ 0 1

1 $01 R85O2
Data register for processor's on-chip I/O port
Each of the seven I/O lines on the 8502 microprocessor has a
corresponding bit in this location (bit 7 is unused). The direc-
tion of data flow on the lines is controlled by location $00. If
an I/O port line is set for input, the corresponding bit here
will reflect the state of the input line: %0 if the line is low (0
volts), or %1 if the line is high ( + 5 volts). While a line is set
for input, values written to the corresponding bit have no ef-
fect. If an I/O port line is set for output, its state will be con-
trolled by the corresponding bit in this location. Storing a %0
in the bit forces the output line to a low (0 volts) state, while
storing a %1 in the bit sets the line to a high ( + 5v state).

The I/O lines are connected as follows:

Bits 0-1: The lines connected to these bits control which of the
two IK blocks of color memory will be visible at 55296-56319/
$D800-$DBFF when the I/O block is selected. For this pur-
pose, the lines should always be configured as outputs. Unlike
in the Commodore 64, these bits have no effect on whether
RAM or ROM is selected at a given address. In the 128, mem-
ory management is the domain of the MMU chip. See Chapter
8 for more information.

Bit 0 controls which block the processor sees, while bit 1
controls which block the VIC chip sees. Setting either bit to
%0 selects block 0, while a setting of %1 selects block 1. The
setting of these bits is established during the screen-setup por-
tion of the screen IRQ routine [$C194], That routine sets both
bits to %1 for text mode (GRAPHIC 0), or for the text portion
of the split-screen modes (GRAPHIC 2 or GRAPHIC 4). For
the bitmapped modes (GRAPHIC 1 or GRAPHIC 3) or for the
bitmapped portion of the split-screen modes, bit 1 is set to
%0. Thus, the VIC sees different blocks of memory for the
modes, and drawing on the bitmapped screen will not disturb
colors on the text screen. To manipulate these bits in other
ways, the screen-setup portion of the IRQ routine must be dis-
abled. Refer to the discussion of the color memory area in
Chapter 8 for details on switching color blocks.

Bit 2: The line for this bit, known as the CHAREN line, deter-
mines whether the VIC chip will see character ROM in its cur-
rent video bank. For proper functioning, the line should be
configured as an output. While this bit is %0, the VIC chip
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will see character ROM beginning at an offset of 4096/$1000
from the start of the bank. The uppercase/graphics set will
appear to occupy locations with offsets of 4096-6143/
$1000-$17FF, and the lowercase/uppercase set will appear at
offsets of 6144-8191/$1800-$lFFF. The character sets will be
visible in all VIC video banks, not just banks 0 and 2 as was
the case in the Commodore 64. Only the VIC chip will see the
character ROM at these addresses; the processor will still see
the locations as RAM or system ROM, depending on the ad-
dress and bank configuration.

To disable this feature and allow the VIC chip to see
RAM at the character set image addresses, the CHAREN bit
must be set to % 1 . However, this cannot normally be done di-
rectly because this bit has a shadow at location 217/$D9. Dur-
ing the text mode-setup portion of the screen editor IRQ
routine [$C194], the value of bit 2 of the shadow location is
copied into this bit. Thus, to change this bit you should set bit
2 of the shadow location instead. If the screen-setup portion of
the IRQ routine is disabled (by storing the value 255/$FF in
location 216/$D8, for example), the setting of this bit can then
be changed directly. The IRQ routine always sets this bit to
%1 for bitmapped screen modes or for the bitmapped portion
of split-screen modes.

Bit 3: The line for this bit is connected to the CASS WRT (cas-
sette write) line of the cassette port. The setting of this bit de-
termines whether a signal is being written to the tape. For this
purpose, the line must be configured as an output. See Chap-
ter 9 for more information about the tape routines.

Bit 4: The line for this bit is connected to the CASS SENSE
(cassette button sense) line of the cassette port. If the port line
is configured as an input, this bit can be read to determine
whether any buttons are currently pressed on the Datassette.
When no buttons are pressed (or when no Datassette is con-
nected to the port), this bit will be % 1 . Pressing any button
will change this bit to %0. Unfortunately, the bit merely de-
tects whether buttons are pressed, and cannot indicate which
specific buttons. If you press FAST FORWARD when in-
structed to press PLAY, the 128 won't notice the difference.

Bit 5: The line for this bit controls the CASS MTR (cassette
motor) line of the cassette port. When this bit is % 1 , the
power supply to the cassette motor, provided via the CASS

18

$02

MTR line, is turned off. Setting this bit to %0 turns on the 9-
volt power supply to the motor. The setting of this bit is con-
trolled by a shadow location, the cassette motor interlock at
192/SCO.

Bit 6: The line for this bit is connected to the CAPS LOCK key
on the keyboard. The line should be configured as an input to
read the state of this key. The bit will return a %1 while the
key is in the up position (CAPS LOCK off), and a %0 when
the key is down (CAPS LOCK on). The status of this bit is
read by the SCNKEY routine [$C55D] during each system
IRQ, and bit 4 of location 211/$D3 will be assigned the oppo-
site setting of this bit.

Bit 7: There is no I/O port line connected to this bit, so the
value here is meaningless. The bit always returns a %0 when
read.

2 $02 BANK
Target bank for JMPFAR and JSRFAR
The value here determines the bank to which the JMPFAR
routine [S02E3] will jump. Because the JSRFAR routine
[$02CD] calls JMPFAR as a subroutine, the value here also de-
termines the destination bank for a JSRFAR. This location
should be loaded with the number (0-15) of the desired bank
before either JMPFAR or JSRFAR is used.

The BASIC SYS statement is implemented using JSRFAR.
In that case, the value here is set from the value in location
981/$03D5, which holds the parameter from the most recent
BANK statement (15/$0F by default). The BASIC routine that
searches for a token in the runtime stack [$4FAA] also uses lo-
cation 2/$02 for temporary storage.

When the monitor is entered at the break entry point
[$B003], this location is loaded with the bank number in
which the system was operating when the BRK opcode was
encountered. When the monitor is entered at the cold-start en-
try point [$B000], as by the BASIC MONITOR command, this
location is initialized to 15/$0F (for bank 15). The monitor R
command displays the value in this location as the first hexa-
decimal digit of the PC value. The register change (;) com-
mand can be used to alter the value stored here. The value
determines the bank for the monitor G (go to routine) and J
(jump to subroutine) commands, which use JMPFAR and
JSRFAR, respectively.
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3-4 $03-$04

3-4 $03-$04 PC
Target address for JMPFAR and JSRFAR
The values here determine the address to which the JMPFAR
routine [$02E3] will jump. Because the JSRFAR routine
[$02CD] calls JMPFAR as a subroutine, the value here also de-
termines the destination address for a JSRFAR. These locations
should be loaded with the desired address before either
JMPFAR or JSRFAR is used. Contrary to the normal order of
address bytes, the high byte of the target address should be
stored in location 3/$03 and the low byte in location 4/$04.

When the monitor is entered at the break entry point
[$3003], these locations are loaded with the program counter
contents stored on the stack when the BRK opcode was en-
countered. Because of the way the microprocessor handles
BRK, this value will be two bytes beyond the address of the
BRK ($00) opcode. When the monitor is entered at the cold-
start entry point [$B000], as by the BASIC MONITOR com-
mand, these locations are initialized to 45056/$B000 (the cold-
start entry address). The monitor R command displays the
value in these locations as the four rightmost hexadecimal dig-
its of the PC value. The register change {;) command can be
used to alter the value stored here. The value determines the
target address for the monitor G (go to routine) and J (jump to
subroutine) commands, which use JMPFAR and JSRFAR,
respectively.

5 $05 S-REG
Status register storage for JMPFAR and JSRFAR
The value in this location is transferred to the processor's sta-
tus register when a routine is called with JMPFAR [$02E3]. Be-
cause JSRFAR [$02CD] also uses JMPFAR, the value here will
also determine the initial status register value for a routine
called with JSRFAR. You can use this location to set up par-
ticular entry conditions for the target routine. For example,
certain system routines behave differently depending on
whether the carry bit, bit 0 of the status register, is clear (%0)
or set (%1) when the routine is called. You can specify the en-
try setting of the carry bit by setting bit 0 of this location. Fig-
ure 2-1 shows the function of the various status register bits. If
you don't need any special entry conditions, it's best to set
this location to 0/$00.
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The contents of the status register upon return from the
target routine are stored in this location before return from
JSRFAR, so you can read this location to determine the exit
status of the routine. This is useful because system routines
often use status register bits, particularly carry, to return infor-
mation about the success of the operation performed by the
routine.

Figure 2-1. 8502 Processor Status Register

The BASIC 7.0 version of the SYS statement allows you
to specify a status register value, which will be placed in this
location before the JSRFAR to the specified address. The
RREG statement can be used to read the value here. (The sta-
tus register value returned by RREG is actually the contents of
this location.)

When the monitor is entered at the break entry point
[$B003], this location is loaded with the status register contents
stored on the stack when the BRK opcode was encountered.
When the monitor is entered at the cold-start entry point
[$BO00], as by the BASIC MONITOR command, this location
is initialized to zero. The monitor R command displays the
value in this location under the heading SR. The register
change (;) command can be used to alter the value stored here.
The value determines the status register contents for the moni-
tor G (go to routine) and J (jump to subroutine) commands,
which use JMPFAR and JSRFAR, respectively.

21



6 $06

6 $06 A_REG
Accumulator storage for JMPFAR and JSRFAR
The value in this location is transferred to the processor's ac-
cumulator {A register) when a routine is called with JMPFAR
[$02E3J. Because JSRFAR [$02CD] also uses JMPFAR, the
value here will also determine the initial accumulator value for
a routine called with JSRFAR. You can use this location to set
up a particular entry value for the target routine. The contents
of the accumulator upon return from the target routine are
stored in this location before return from JSRFAR, so you can
read this location to determine the exit accumulator value. The
JSRFAR routine itself uses the accumulator after return from
the target routine, so you must look to this location for the ac-
cumulator value from the target routine.

The BASIC 7.0 version of the SYS statement allows you
to specify an accumulator value, which will be placed in this
location before the JSRFAR to the specified address. The
RREG statement can be used to read the value here. (The ac-
cumulator value returned by RREG is actually the contents of
this location.)

When the monitor is entered at the break entry point
[$B003], this location is loaded with the accumulator contents
stored on the stack by the IRQ/BRK handler [$FF17]. When
the monitor is entered at the cold-start entry point [$B000], as
by the BASIC MONITOR command, this location is initialized
to zero. The monitor R command displays the value in this lo-
cation under the heading AC. The register change {;) com-
mand can be used to alter the value stored here. The value
determines the accumulator contents for the monitor G (go to
routine) and J (jump to subroutine) commands, which use
JMPFAR and JSRFAR, respectively.

7 $07 X_REG
X register storage for JMPFAR and JSRFAR
The value in this location is transferred to the processor's X
register when a routine is called with JMPFAR [S02E3J. Be-
cause JSRFAR [$02CD] also uses JMPFAR, the value here will
also determine the initial X register value for a routine called
with JSRFAR, You can use this location to set up a particular
entry value for the target routine. The contents of the X regis-
ter upon return from the target routine are stored in this loca-
tion before return from JSRFAR, so you can read this location
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to determine the exit X register value. The JSRFAR routine it-
self uses the X register after return from the target routine, so
you must look to this location for the X register value from the
target routine.

The BASIC 7.0 version of the SYS statement allows you
to specify an X register value, which will be placed in this lo-
cation before the JSRFAR to the specified address. The RREG
statement can be used to read the value here. (The X register
value returned by RREG is actually the contents of this
location.)

When the monitor is entered at the break entry point
[$B003], this location is loaded with the X register contents
stored on the stack by the IRQ/BRK handler [$FF17]. When
the monitor is entered at the cold-start entry point [$B000], as
by the BASIC MONITOR command, this location is initialized
to zero. The monitor R command displays the value in this lo-
cation under the heading XR. The register change {;) command
can be used to alter the value stored here. The value deter-
mines the X register contents for the monitor G (go to routine)
and J (jump to subroutine) commands, which use JMPFAR and
JSRFAR, respectively.

8 $08 Y_REG
Y register storage for JMPFAR and JSRFAR
The value in this location is transferred to the processor's Y
register when a routine is called with JMPFAR [$02E3]. Be-
cause JSRFAR [$02CD] also uses JMPFAR, the value here will
also determine the initial Y register value for a routine called
with JSRFAR. You can use this location to set up a particular
entry value for the target routine. The contents of the Y regis-
ter upon return from the target routine are stored in this loca-
tion before return from JSRFAR, so you can read this location
to determine the exit Y register value.

The BASIC 7.0 version of the SYS statement allows you
to specify a Y register value, which will be placed in this loca-
tion before the JSRFAR to the specified address. The RREG
statement can be used to read the value here. (The Y register
value returned by RREG is actually the contents of this
location.)

When the monitor is entered at the break entry point
[$B003], this location is loaded with the Y register contents
stored on the stack by the IRQ/BRK handler [$FF17]. When
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the monitor is entered at the cold-start entry point [$B000], as
by the BASIC MONITOR command, this location is initialized
to zero. The monitor R command displays the value in this lo-
cation under the heading YR. The register change (;) command
can be used to alter the value stored here. The value deter-
mines the Y register contents for the monitor G (go to routine)
and J (jump to subroutine) commands, which use JMPFAR and
JSRFAR, respectively.

9 $09 STKPTR
Stack pointer storage for JSRFAR and monitor
This location is used in the JSRFAR routine [$02CD] to record
the value in the stack pointer upon return from the target rou-
tine. The value here doesn't affect the setting of the stack
pointer; it merely records the exit value.

When the monitor is entered via either the cold-start entry
point [$B000] or the break entry point [$B003], the current
stack pointer value is stored in this location. The monitor R
command displays the value in this location under the head-
ing SP. The register change (;) command can be used to alter
the value stored here. The value here is restored to the
microprocessor's stack pointer before the JMPFAR in the G (go
to routine) command routine. This location will hold the stack
pointer value after a J (jump to subroutine) command, since
that routine uses JSRFAR.

9 $09 CHARAC or INTEGR
Working storage for various routines
This location is used for several different purposes by a variety
of BASIC routines. It serves as temporary storage in the rou-
tine which interprets ASCII characters as numeric values
[$50A0]. It holds the value of the desired search character in
the routine which searches for a particular character in a
BASIC program line [$52A2], and in the routine that puts a
string into the string pool [$869A]. It holds the low byte of the
integer value generated in the BASIC INT routine [$8CFB]. It
is also used for temporary storage of intermediate values while
performing BASIC AND or OR operations [$4C86],
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10 $0A ENDCHR
Working storage for various routines
This location is used for several different purposes by a variety
of BASIC routines. It serves as a counter of the number of dig-
its in the ASCII representation of a number during the routine
which interprets the characters as a numeric value [$50A0]. It
holds the value of the character which terminates the search in
the routine which looks for a particular character in a BASIC
program line [$52A2], and in the one that puts a string into
the string pool [$869A]. It is also used for temporary storage of
intermediate values while performing BASIC AND or OR op-
erations [$4C86].

11 $0B TRMPOS
Current screen column for TAB and SPC calculations
The value in this location is used during the portion of the
BASIC PRINT routine [$5554] that handles the TAB and SPC
functions. In the computation of the target column for the TAB
or SPC, this location will hold the current cursor column
value.

12 $0C VERCK
BASIC LOAD/VERIFY flag
The same routine is used to perform both the load and verify
operations, so this flag indicates which is being performed, A
zero value here indicates a load operation, and a nonzero
value indicates verify. The value here is set during the
LOAD/VERIFY [$9129] and DLOAD/DVERIFY [$A1A4]
routines. Both operations use the Kernal LOAD routine
[$F265], which has its own load/verify flag at location
147/$93.

13 $OD COUNT
Working storage for various routines
This location is used for different purposes by several BASIC
routines. It holds the most recently found token during pro-
gram tokenization [$430A]. In the routine that adds or deletes
BASIC program lines [$4DE2], this location holds the length of
the current line. It is also used as a counter in the RREG rou-
tine [$50BD], and as a counter in the subroutines that find or
create array-variable elements.
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14 $0E DIMFLG
Array dimension flag
This location is used during the routines that create array vari-
ables to indicate whether the routines are being called to as
the result of a DIM statement. For a DIM statement, this loca-
tion will contain a nonzero value; otherwise it will be set to
0/$00. This flag is used in testing for the REDIM'D ARRAY
ERROR condition.

15 $OF VALTYP
Variable type flag
This location is used to indicate the type of variable currently
being evaluated. A value of 0/$00 indicates that the variable
is numeric. A nonzero value indicates that the variable is
string type. During the routine that finds or creates a variable
[$7AAF], this location is set to 0/$00 if the variable is numeric
type, or to 255/$FF if it is string type.

16 $10 INTFLG
Numeric variable type flag
If the variable currently being evaluated is numeric (see the
entry for location 15/$0F above), bit 7 of this location will be
used to indicate the numeric type. If that bit is %0, the vari-
able is standard (floating point) type. If the bit is %1 , the vari-
able is integer type. During the routine that finds or creates a
variable [$7AAF], this location will be set to 0/$00 for floating-
point variables or 128/$80 for integer variables.

17 $ 1 1 GARBFL
Working storage for various routines
This location is used for different purposes in several BASIC
routines. During string evaluation, it is used as a garbage-
collection flag. A zero value indicates that no garbage collec-
tion has been performed, while a nonzero value (1/S01)
indicates that garbage collection has taken place. The location
is also used as a quote mode flag during LIST; a value of
0/$00 indicates that quote mode is off, while a nonzero value
(l/$01) indicates that quote mode is in effect. In addition, this
location is used as temporary storage for the high byte of the
disk status variable during the evaluation of the reserved vari-
able DS.
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18 $12 SUBFLG
Integer/subscript prohibit flag
This location is used during the routine to find or create a
variable [$7AAF] to specify whether integer or subscripted (ar-
ray) variables are allowed. While the value here is zero, the
variable being evaluated can be of any type. The FOR and
DEF routines store the value 128/$80 here. For FOR, this pre-
vents the use of integer or array variables as loop indexes. For
DEF, this restricts the function definition to floating point vari-
ables and also prevents the parentheses in the function defini-
tion from being interpreted as indicating an array variable.
This location is reset to zero after each variable is evaluated,
and also during CLR [$51F8].

$13 INPFLG19
Input source flag
BASIC uses a common input handling routine [$56B2] for
READ, GET (including GETKEY and GET#), and INPUT (in-
cluding INPUT#). This location is used to indicate which oper-
ation is being performed. The value here will be 152/$98 for a
READ operation, 64/$40 for a GET, or 0/$00 for an INPUT.

20 $ 1 4 TANSGN
Comparison type flag
Tangent sign flag
The value in this location is used during the string and num-
ber comparison routine [$4CB6] to specify the type of compari-
son being performed, A value here of 1 indicates greater than
(>), 2 indicates equal ( —), and 4 indicates less than (<). The
values are cumulative, so a test for greater than or equal (> —)
would result in a value here of 3 (1 + 2). This location is also
used during the TAN function routine [$9459] to indicate the
sign of the resulting value.

21 $15 CHANNL
Logical file number for BASIC input and output
The value in this location specifies the logical file from which
BASIC will receive input and to which BASIC will direct out-
put. The default value is 0/$00, which indicates input from
the keyboard and output to the screen. (Logical file 0 is re-
served for the system's use; you cannot open logical file 0.)

27



22-23 $16-$17

Statements which get input or send output to other devices,
such as GET#, INPUT#, and PRINT*, will temporarily change
the value here to the channel number specified in the statement.

The CMD statement can also be used to change the value
here and direct all output to a specified logical file. However,
you can't depend on CMD (or POKEing a value here) to keep
all output flowing to the specified logical file. A number of
other BASIC statements reset the value here to 0/$00 each
time they are executed, restoring default input and output de-
vices. These statements include GET (and GET# and GETKEY),
INPUT#, and PRINT*.

22-23 $16-$ 17 LINNUM
Integer value of ASCII digit string
These are very busy locations, since the routine which reads
ASCII characters from program text and converts the result to
a two-byte line number value [$50A0] stores its results here.
Other routines which manipulate program lines, such as the
one which adds or deletes program lines, will use these loca-
tions to hold the line number. Any statement which reads a
line number, including GOTO, GOSUB, LIST, and so on, will
expect to find the target line number in these locations. The
TRAP destination line number is held here during the ERROR
routine [$4D3C], and the COLLISION target line number is
held here during the GONE routine [$4A9F].

Machine language programmers can store line number
values in these locations, then jump into a BASIC routine at a
point beyond the line number evaluation step. For example, a
machine language program can enter a BASIC program at any
line number by jumping into the GOTO routine with the tar-
get line number in these locations. The following section of
code performs the equivalent of GOTO 100:
LDA #$64 ;Place line number in $16-$17.
STA $16
LDA #$00
STA $17
LDA #$0F ;Bank number for BASIC ROM (15).
STA $02
LDA #$59 ;Enter GOTO routine at $59FB.
STA $03
LDA #$FB
STA $04
JMP $02E3 ;Use JMPFAR to call routine.
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24 $18 TEMPPT
Pointer into temporary string descriptor stack
The value in this location points to the next available slot in
the temporary string descriptor stack at 27-35/$lB-$23. This
location can have the following values:
Value Meaning
27/$lB no entries (stack empty)
3O/$1E one entry
33/$21 two entries
36/$24 three entries (stack full)

25-26 $19-$1A LASTPT
Pointer to most recent descriptor stack entry
These locations hold the address of the most recent entry in
the temporary string descriptor stack at 27-35/$lB-$23. Loca-
tion 25/$19 will hold the equivalent of the value in 24/$18
less three, and location 26/$lA will hold zero (it is assigned
this value during the BASIC cold-start sequence). For example,
when there are two entries on the stack, 24/$18 will hold $21,
while these two locations will hold $1E and $00, correspond-
ing to address $001E, the address of the second entry in the
stack.

27-35 $ lB-$23 TEMPST
Temporary string descriptor stack
The three 3-byte entries here hold descriptors (length plus a 2-
byte pointer to the starting address of the string in the string
pool) for strings being evaluated or assembled. For strings be-
ing assigned to variables, the descriptor value generated here
will be transferred to the variable table entry for that string,

36-37 $24-$25 INDEX
Multipurpose address pointer
These locations are used as an address pointer by several
BASIC routines, including the one at 927/$039F, which re-
trieves characters from bank 0 (BASIC program text), and the
one at 951/$03B7, which retrieves characters from bank 1
(BASIC string storage). Numerous BASIC routines call those
character retrieval routines, including the one which inserts or
deletes program lines [$4DE2] and the one which updates
variable tags while making space for a new variable. The

29



38-39 $26-$27

pointer is also used in the LIST routine to read characters from
the keyword table, and in the floating-point routines to copy
floating values to and from the variable storage area in bank
1. In addition, location 36/$24 is used for temporary storage
during formula evaluation, and location 37/$25 is used as a
pointer into the ROM keyword tables when tokenizing pro-
gram lines [$43E2] or listing (detokenizing) program lines
[$5123].

38-39 $26-$27 INDEX2
Multipurpose address pointer
These locations are used as an address pointer by the routine
at 960/$03C0 which fetches characters from BASIC program
text in bank 0. That routine is called by several other BASIC
routines, including the one which adds or deletes program
lines. These locations are also used by the ERROR routine
[$4D3C] as a pointer to the specified error message in the mes-
sage table in ROM.

40-44 $28-$2C RESHO
Temporary storage area for multiplication and division
This area is used to hold intermediate values during the
BASIC routines that perform floating-point multiplication and
division.

45-46 $2D-$2E TXTTAB
Start-of-BASIC-program pointer
The value in these locations points to the first address block 0
RAM used for BASIC program text. The value here is initial-
ized to 7169/S1C01 during the BASIC cold-start sequence. In
the Commodore 64, the value here was initialized to the value
in the Kernal MEMSTR pointer, the bottom of memory estab-
lished during the Kernal reset sequence. However, the 128 al-
ways initializes the same value here, without regard for the
value in MEMSTR (2565-2566/$0A05-$0A06).

The only Kernal routines that change the value here are
the ones that allocate or de-allocate a bitmapped graphics area
for the GRAPHIC statement. When a bitmapped graphics area
is allocated, BASIC program text is moved upward to start at
16385/$4001, above the bitmapped graphics area at 7168-16383/
$1COO-$3FFF. In this case, the values in these pointers will be
adjusted accordingly. The value here will be reset to
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7169/$1CO1 when the graphics area is de-allocated and the
BASIC program text is moved back down to its original
position.

During the NEW and RUN routines, the CHRGET pointer
(61-62/$3D-$3E) is initialized with a value one less than the
address in these locations. You can store new values in these
locations to change the starting position of BASIC program
text—for example, if you wish to reserve free memory space in
block 0 RAM below the program. However, two other steps are
required to properly initialize the system to use the new start-
ing position: You must also store the value 0/$00 in the loca-
tion immediately before the address specified here (BASIC
requires that program text be preceded by a zero byte), and
you must perform a NEW to reset other pointers to reflect the
new start-of-BASIC position.

During execution of BASIC'S SAVE and DSAVE routines,
the value here determines the starting address of the data to be
saved.

47-48 $2F-$3O VARTAB
Start-of-variables pointer
The value in these locations points to the first address in block
1 RAM used for scalar (nonarray) variable storage. The value
here is initialized to 1024/$0400 during the BASIC cold-start
sequence, and no other system routine changes that setting.
You can store new values in these locations to change the
starting position of the variable table—for example, if you
wish to reserve free memory space for data storage in block 1
RAM below the variables. However, to properly initialize the
system to use the the new starting position, you must perform
a CLR to reset other pointers to reflect the new start-of-variables
position. During the CLR routine [$51F8] {which is also per-
formed during NEW and BASIC cold start), the start-of-arrays
pointer (49-50/$31-$32) and the end-of-arrays pointer (51-51/
$33-$34) are also set to the value in these locations.

49-50 $31-$32 ARYTAB
Start-of-arrays pointer
The value in these locations points to the first address in block
1 RAM used for the storage of array variables, which is also
one location above the last address used for array variables.
The value here is initialized to the start-of-variables value in
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locations 47-48/$2F-$30 during the CLR routine [$51F8]
(which is also performed during NEW and BASIC cold start).

51 -52 $33-$34 STREND
Start-of-free-memory pointer
The value in these locations points to the lowest address in
block 1 RAM available for the storage of strings, which is also
one location above the last address used for array variables.
The value here is initialized to the start-of-variables value in
locations 47-48/$2F-$30 during the CLR routine [$51F8]
(which is also performed during NEW and BASIC cold start).
When the value here equals the value in location 49-50/
$31-$32, no arrays are being used. The function FRE(l) will
return the difference between the value here and the one in
locations 53-54/$35-$36, representing the remaining amount
of memory available for string storage. When the value in
53-54/$35-$36 (the FRETOP pointer) reaches the value here,
garbage collection is performed. If garbage collection cannot
remove enough unused strings to create free space between
the address here and the one pointed to by FRETOP, an OUT
OF MEMORY error occurs.

53-54 $35-$36 FRETOP
Bottom-of-string-space pointer
The value in these locations points to the lowest address in
block 1 RAM used for the string pool. All character strings
used in a BASIC program are stored in the area of block 1 be-
tween the address pointed to in 57-58/$39-$3A and the ad-
dress pointed to here—an area called the string pool. Each
active string here will have a descriptor in the variable array
table areas at the bottom of block 1, or in the temporary de-
scriptor stack at 27-35/$lB-$23. The pool may also contain
inactive strings that the program is no longer using. The value
here is initialized to the top-of-memory value in locations
57-58/$39-$3A during the CLR routine [$51F8] (which is also
performed as part of NEW and the BASIC cold-start sequence).

When the value here equals the value in location
57-58/$39-$3A, no strings have yet been used. Strings are
added from the top of memory downward. When the value
here reaches the value in 51-52/$33-$34, garbage collection is
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performed to remove inactive strings. If garbage collection
cannot remove enough unused strings to create free space be-
tween the address here and the one in 51-52/$33-$34, an
OUT OF MEMORY error occurs. The function FRE(l) will re-
turn the difference between the value here and the one in lo-
cations 51-52/$33-$34, the amount of free memory remaining
for string storage.

55-56 $37-$38 FRESPC
Temporary pointer into the string pool
These locations are used by the routines that add strings to the
string pool as a pointer to the currently referenced string, and
as a pointer to the current string during the garbage collection
routines.

57-58 $39-$3A MAX_MEM_1
Top-of-memory pointer
The value in these locations determines the highest address in
block 1 RAM available for the string pool. (Actually, the ad-
dress value here will be one location beyond the highest loca-
tion used for the string pool.) The string pool is filled down-
ward from the address specified here. The value in locations
53-54/$35-$36 specifies the address of the bottom of the
pool. When the value in those locations equals the value here,
the pool is empty. The BASIC cold-start routine initializes
these locations to 65280/$FFO0, one location beyond the high-
est contiguous address in block 1 RAM (MMU registers are
seen at 65280-65284/$FF0O-$FFO4 in all memory configura-
tions). You can reduce the value here to reserve memory at
the top of block 1 for other purposes such as data storage.
However, when you change the value here you should also
execute a CLR statement [$51F8] to reset the other string pool
pointers,

59-60 $3B-S3C CURLIN
Current BASIC line number
These locations hold the line number of the BASIC program
line currently being executed. After each program line is exe-
cuted, the routine which executes BASIC program lines
[$4AF3] will load these locations with the number of the next
line to be executed. The value here is used by various other
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BASIC routines that need to know which line is currently be-
ing executed, The value here is stored in locations 4608-4609/
$1200-$1201 by the routine that processes STOP or END
[$4BCA]. The value stored in those locations will be trans-
ferred back here by the CONT routine [$5A60]. The value
here will be stored in locations 4617-4618/$1209-$120A
when an error is processed by the ERROR routine [$4D3C].
The value in those locations will be transferred back here by
the RESUME routine [$5F62],

61-62 $3D-$3E TXTPTR
Pointer for main BASIC character retrieval routine
These locations serve as the pointer into BASIC text for the
CHRGET routine, BASIC'S primary character retrieval routine.
In earlier Commodore computers, the entire CHRGET routine
was in zero page. The 128's CHRGET is located higher in the
common area, beginning at address 896/$0380, and only the
pointer is kept in zero page. CHRGET is designed to retrieve
the next nonspace character of BASIC text, so the first step in
CHRGET is to increment the address here. The routine also
has an alternate entry point called CHRGOT at 902/$0386,
which retrieves the current character (the one at the address
here) without incrementing the pointer.

The NEW, RUN, and LOAD routines all call the subroutine
[$5254] which initializes this pointer to one byte before the
start-of-BASIC value in locations 45-46/$2D-$2E. Because the
CHRGET routine is so heavily used, many BASIC routines af-
fect the value here. For example, any of the routines which send
the program to another line, such as GOTO, GOSUB, THEN,
and so on, must replace the current value here with the ad-
dress of the target line. The value here is stored in locations
4610-4611/$1202-$1203 by the routine that processes STOP
or END [$4BCA]. The value stored in those locations will be
transferred back here by the CONT routine [$5A60]. The value
here will be stored in locations 4622-4623/$120E-$120F
when an error is processed by the ERROR routine [$4D3C],
The value in those locations may be transferred back here by
the RESUME routine [$5F62].

The value here is also used as a pointer for the alternate
character retrieval routine at 969/$03C9, which fetches the
current text character without CHRGET's test for character type.
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63-64 $3F-$40 FNDPNT
Working pointer for various routines
These locations are used as a working pointer into the runtime
stack at 2048-2559/$0800-$09FF by the routines that search
for tokens in the stack. The RENUMBER routine [$5AF8] uses
these locations as an end-of-program pointer. The PRINT
USING routine [$9520] uses the routine at 939/$03AB (which
uses these locations as a pointer) to retrieve characters from
the template pattern string in block 1 RAM.

65-66 $41-$42 DATLIN
Line number of current DATA statement
These locations hold the line number of the BASIC program
line containing the DATA statement from which DATA items
are currently being read. These locations are updated by the
subroutine that searches for the start of the next DATA state-
ment: [$57CA], called during execution of the READ state-
ment. The value here isn't used by any system routine, but it
can be very helpful when you're debugging a program con-
taining DATA statements. Whenever a program stops with an
ILLEGAL QUANTITY or TYPE MISMATCH error message in
a line containing a READ statement, it's very likely that the
error is actually in the DATA line rather than the line speci-
fied in the error statement (the one which contains READ).
You can find the line number from which the last, possibly er-
roneous, DATA item was read using PRINT PEEK(65) + 256
* PEEK(66).

67-68 $43-$44 DATPTR
Pointer to next DATA item
These locations are used as a pointer to the address at which
the search for the next available DATA item will begin. The
subroutine that searches for the next DATA item [$57CA],
called during execution of the READ statement, will update
the value here to point to the start of the next DATA item.
The RESTORE statement, when used without a line number
parameter, resets the value here to the starting address of
BASIC program text (from locations 45-46/$2D-$2E), That
RESTORE subroutine is also called as part of the CLR routine,
which in turn is called as part of RUN. Thus, the search for
DATA items normally begins at the first program line. The
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RESTORE statement can be used with a line number param-
eter to change the value here. In that case, the pointer value
will be reset to the starring address of the specified line. The
specified line need not contain a DATA statement. It merely
specifies the line from which the search for the next DATA
statement will begin.

69-70 $45-$46 INPPTR
Text pointer for input
The common input routine [$56B2], used in the execution of
the GET, GETKEY, GET#, INPUT, INPUT*, and READ state-
ments, uses these locations as a pointer to the characters to be
read as input. The value here will be transferred into the
CHRGET pointer at 61-62/$3D-$3E so that CHRGET can be
used to retrieve characters from the input. The GET, GETKEY,
and GET* statements will initialize the value here to
513/$0201, an input buffer location set to 0/$00 to cause the
input routine to read the next character. The INPUT and IN-
PUT* statements will initialize the value here to 511/$01FF, a
location immediately before the input buffer set to 44/$2C,
the code for the comma character. The actual input will be in
the input buffer beginning at 512/$0200. The READ statement
will initialize these locations with the starting address of the
next DATA item (from locations 67-68/$43-$44).

71-72 $47-$48 VARNAM
Current variable name
These locations are used during the routine to find or create a
variable [$7AAF] to hold the compressed (two-byte) form of
the specified variable name. This compressed form will then
be used as a search pattern to check whether a variable of the
same name and type currently exists. If not, the characters
here will be used as the name for the new variable.

73-74 $49-$4A VARPNT
Pointer to variable descriptor
These locations are used as a pointer to the first byte of the
descriptor for the variable—the address of the location just be-
yond the two-character name in the variable table entry for
the variable. The value here is set upon exit from the routines
to find [$7AAF] or create [$7B90] a variable. The FN (user-
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defined function) routine will load these locations with the ad-
dress of the descriptor for the dummy variable in the function
definition,

75-76 $4B-$4C FORPNT
Variable descriptor pointer and working storage
These locations are used during the routine that assigns vari-
able values (LET [$53C6]) as a pointer to the variable value or
string descriptor. For numeric variables, the address here will
be the location in block 1 RAM where the value will be
stored. For string variables, the address here will be the loca-
tion in block 1 RAM where the length and pointer into the
string pool for the string will be stored. The FOR statement
uses the value here to find the address of the value for the
loop index variable.

For the WAIT statement [$6C2D], location 75/$4B holds
the test byte pattern and location 76/$4C holds the mask byte
pattern. Location 75/$4B is also used as an index into the cur-
rent line during the routine to list BASIC program lines [$5123],

77-78 $4D-$4E VARTXT
Temporary storage for text pointer
These locations are used for temporary storage for the
CHRGET pointer value from 61-62/$3D-$3E during the com-
mon input routine [$56B2], which uses CHRGET to retrieve
characters from the input source location. Location 77/$4D is
also used during the numeric expression evaluation routine
[$77EF] as a flag to indicate when the end of the expression
has been reached.

79 $4F OPMASK
Relational operator flag
When the main expression evaluation routine [$77EF] finds a
relational operator (<, =, or >) in the current expression, it
stores a value here indicating which operator has been found.
For greater than (>) operations, the value here will be 1. For
equals ( = ), the value will be 2; for less than (<) it will be 4.
When the expression is evaluated, this value will be trans-
ferred to location 20/$14.
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80-81 $5O-$S1 DEFPNT
Defined function pointer and working pointer
These locations are used by the routine that retrieves bytes
from the variable table entry for a function definition (FN).
That routine [$42CE] uses these locations as a pointer for one
of the bank 1 character retrieval subroutines [$03AB]. These
locations are also used as a working pointer by one of the
routines that reads values during garbage collection. That rou-
tine [$42FB] also uses a bank 1 data retrieval subroutine [$03AB].
The routine that allocates the bitmapped graphics area [$9F4F]
uses these locations to hold the number of bytes that must be
moved upward to make room for the graphics area.

80-84 $50-$54 TEMPF3
Temporary storage for floating-point value
These locations are used to temporarily hold the floating-point
value of the exponent during the routine to handle the ex-
ponentiation (T) operator [$8FC1].

82-83 $52-$53 DSCPNT
Variable address storage and working pointer
The routine that creates space in the string poo] for a new string
variable uses these locations to temporarily store the address
of the variable table entry. These locations are also used as a
pointer by the routine that retrieves characters from the string
poo] for the LEFT$, RIGHT$/ and MID$ functions [$42D8].

$55 HELPER85
HELP flag
Bit 7 of this location is tested in the routine which lists BASIC
program lines [$5123] to determine whether the line is being
displayed by LIST or by HELP. When the bit is % 1 , the sub-
routine at 22956/$59AC will be called to highlight the portion
of the line where the most recent error occurred. The HELP
statement routine [$5986] sets bit 7 to %1 before it calls the
line-listing routine, and clears it to %0 afterwards.

86-88 $56-858 JMPER
BASIC function execution vector
This vector is used to execute the routines that handle BASIC
functions. Location S6/$56 is initialized during the BASIC
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cold-start sequence with the value 76/$4C, the 8502 JMP
opcode. The function dispatch routine [$4BF7] loads 87-88/
$57-$58 with the address of the routine that performs the de-
sired function operation. A JSR $0056 instruction then exe-
cutes the function-handling routine.

89-93 $59-$5D TEMPF1
Floating-point work area
These locations are used as a temporary floating-point work
area during the series evaluation routine [$9086] for the LOG,
SIN, COS, TAN, and ATN functions. Location 89/$59 is also
used for temporary storage during the routine [$9D7C] which
subtracts the contents of one pair of bitmapped graphics stor-
age locations from the contents of another pair of locations.

90-91 $5A-$5B ARRYPNT
Multipurpose working pointer
These locations are used as a pointer to the destination of text
being moved in the routine to add new BASIC program lines
to memory [$4DE2] and as a pointer into array space when
making room for a new variable [$7B90]. They are also used to
hold the line link value during RENUMBER [$5AF8].

92-93 $5C-$5D HIGHTR
Multipurpose address pointer
These locations serve as a pointer for the routine that reads
the source text being moved in the routine to add new BASIC
program lines. This routine [$42DD] uses one of the common
bank 0 character retrieval routines [$039F]. The locations serve
as a pointer in the routine to read source bytes when creating
space for new variables. This routine [$42E2] uses one of the
common bank 1 character retrieval routines [$03AB]. The loca-
tions are used during the RENUMBER routine [$5AF8] to hold
the number of the line currently being renumbered.

93-95 $5D-$5F STR1
String length and pointer for MID$
When MID$ is used as a statement [$5901] (to add characters
to a string), these locations hold the descriptor of the original
string. Location 93/$5D holds the length, and locations
94-95/$5E-$5F hold the address and are used as a pointer.
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94-98 $5E-$62 TEMPF2
Temporary storage for floating-point value
These locations are used to store an intermediate value from
floating-point accumulator #1 (FAC1) during the series evalua-
tion routine [$909C] for the EXP function.

94-95 $5E-$5F
Working pointer for garbage collection
These locations are used as a pointer to the tag bytes for the
current string during the routine that performs string pool gar-
bage collection [$92EA].

95 $5F DECCNT
Decimal point position
This location is used during the routine [$8E42] that creates a
character string representing the value in floating-point accu-
mulator #1 (FAC1) to hold the position within the string for
the decimal point. The location is also used as a loop counter
in the routine [$7E3E] to calculate the amount of memory
needed for an array.

96-98 $60-$62 STR2
Substring length and pointer for MID$
When MID$ is used as a statement [$5901] (to add characters
to a string), these locations hold the descriptor of the substring
to be added. Location 96/$60 holds the length, and locations
97-98/$61-$62 hold the address and are used as a pointer.

96-104 $60-$68 T0-T2
Monitor zero-page pointers and working storage
These locations are used by many routines in the monitor. The
monitor routine [$B7CE] that determines the numeric value of
a parameter in the input buffer leaves the value in locations
96-98/$60-$62 (in low- to high-byte order), so any numeric
value in a monitor command is at least initially held there. For
monitor commands that accept two or more address param-
eters, the first address is transferred into locations 102-104/
$66-$68, and the value there is then used as a working
pointer to the byte to be read or written. (The monitor's indi-
rect fetch [$B11A], indirect store [$B12A], and indirect compare
[$B13D] routines use 102-103/$66-$67 for the address pointer
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and 104/S68 for the bank value.) The starting address is sub-
tracted from the ending address, and the result is transferred
to 99-101/$63-$65. The value in those locations is then used
as a count of bytes to be affected by the operation. The
compare/transfer routine [$B231], which accepts three address
parameters, uses 102-104/$66-$68 as the pointer to the
source address for the compare or transfer and 96-98/$60-$62
as the pointer to the destination address.

Some monitor routines also make alternate use of some of
these locations. The memory display routine [$B152] uses
96-98/$60-$62 as a count of lines to be displayed. During as-
sembly [$B406], 99/$63 holds the length of the current in-
struction, and location 100/$64 holds the addressing mode
type. Locations 99-100/$63-$64 are used to unpack mnemon-
ics during disassembly [$B6A1], and 99/$63 serves as a
counter during directory display [$BB03].

97-98 $61-$62 LOWTR
Multipurpose address pointer
A wide variety of BASIC routines use these locations as a
pointer. They serve as the pointer for a heavily used routine
[$42EC] to read characters from BASIC program text. (That
routine uses one of the common bank 0 character retrieval
subroutines [$039F].) The routine is called by the routine
which adds or deletes program lines [$4DE2], the one which
searches for a line number [$5064] (in which case the starting
address of the line is returned in these locations), LIST
[$50E2], and DELETE [$5E87]. These locations also serve as
the pointer for a routine [$4300] to read values from the vari-
able table. (That routine uses one of the common bank 1 char-
acter retrieval subroutines [$03AB].) The routine is called by
the routine [$7AAF] which searches the variable table to check
whether a variable with a specified name already exists, and
the one [$7CAB] which performs a similar search for array
names. If an existing name is found, the address of the table
entry for the variable or array will be returned in these
locations.

99-103 $63-$67 FAC1
Floating-point accumulator 1
These locations are the primary work area for all routines
which use floating-point math, which includes all of BASIC'S
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mathematical functions. Any numerical value used in a BASIC
program will be converted to a floating-point value here for
further processing. The result of any BASIC operation which
performs a numerical calculation will be held in these locations.

Floating-point notation is rather complicated. This method
of representing numbers has three components: the mantissa,
the base, and the exponent. You may be familiar with BASIC'S
scientific notation. For example, the value 73,500 will be rep-
resented as 7.35E4, BASIC'S shorthand for 7.35 X 104. In this
format, the 7.35 is the mantissa, the 10 is the base, and the 4
is the exponent. In BASIC'S internal floating-point format, the
base value is 2; location 99/$63 holds the exponent, and loca-
tions 100-103/$64-$67 hold the mantissa. The exponent is
held in excess-128 format, meaning that 129 has been added
to the exponent value. (This is a little trick to avoid having to
deal with negative exponents.) To get the true exponent value,
subtract 129. Only the lower 31 bits of the four-byte mantissa
value are used, and the mantissa is normalized—adjusted so
that its value is always effectively in the range 1-1.9999.
Thus, the formula for converting the FAC1 contents into a
decimal value is:

value = (1 + (mantissa / (2 T 31))) * 2 t (exponent - 129)

The routine which converts the contents of FAC1 into a
two-byte integer value will leave the results of the conversion
in locations 102-103/$66-$67. Some routines which don't use
floating-point math use these locations for other purposes. Lo-
cations 102-103/$66-$67 are used as a pointer by the routine
[$42E7] that reads values from the variable table. That routine
uses one of the common bank 1 character retrieval subroutines
[$03AB].

$68 FACSGN104
Sign of FAC1
Bit 7 of this location is used to indicate the sign of the value in
FAC1. The value here will be 0/$00 for positive values in
FAC1 and 255/$FF for negative values. As long as the floating-
point value is held in the accumulator, this location will be
used to indicate its sign. When the floating-point value is
stored in a variable, the setting of this bit will be copied to the
highest bit of the mantissa. Likewise, when a value is copied
from a variable into the accumulator, the setting of bit 7 of the
most significant byte of the mantissa is copied here.
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1OS $69 SGNFLG
Sign flag during conversion
Count of terms in series evaluation
This location is used as a flag during the routine [$8D22] that
calculates the floating-point value equivalent of a string of
digit characters to indicate whether the string being converted
has a leading negative sign. During the series evaluation rou-
tine [$909C], this location holds the number of terms in the
series.

106-110 $6A-$6E FAC2
Floating-point accumulator 2
These locations are the second floating-point accumulator area,
used in those operations that require a second floating-point
value. Location 106/$6A is the exponent and locations 107-110/
$6B-$6E are the mantissa. All operations that involve both ac-
cumulators will transfer the results to FAC1.

$6F ARGSGN111
Sign of FAC2
Bit 7 of this location indicates the sign of FAC2, just as loca-
tion 104/$68 does for FAC1.

1 1 2 $ 7 0 ARISGN
Sign comparison flag
The routines that load values into FAC1 [$8A89] and FAC2
[$8AB4] perform an exclusive-OR of the values in locations
104/S68 and 111/$6F—the signs of the values in the respec-
tive floating-point accumulators. Thus, this location will hold
0/$00 if both signs are positive or both are negative, or 255/
$FF if the signs are different.

112-113 $70-$71 STRNG1
Multipurpose address pointer
These locations are used as an address pointer by the routine
[$42F1] which loads characters from strings in BASIC program
text for transfer into the string pool. (That routine uses a com-
mon bank 0 character retrieval subroutine [$039F].) The loca-
tions are also used as a pointer by the routine [$42F6] that
reads characters from the first string in a concatenation opera-
tion. (That routine uses a common bank 1 character retrieval
subroutine [$03AB].)

43



113 $71

113 $71 FACOV
Rounding flag for FAC1
When a pair of floating-point mantissas are adjusted for a
math operation, any extra bits that must be shifted out of the
smaller mantissa are held here and used to round the final re-
sult to extend the accuracy of the operation.

114-115 $72-$73 STRNG2
Multipurpose address pointer and working storage
In the series evaluation routine, these locations are used as a
pointer to the constant values used in the series evaluation. In
the VAL routine [$804A], these locations are used as a pointer
into the character string to be translated into a floating-point
value. These locations are used as working storage in the
routines that calculate the amount of memory required for an
array. In the DEC routine [$8072], these locations are used as
a work area for converting the hexadecimal string characters
into a two-byte integer value.

116-117 $74-$75 AUTINC
Step value for autoincretnent
These locations hold the step value for automatically incre-
menting the line number if autoincrement mode is active.
After each BASIC program line is entered while this mode is
active, the value here will be added to the previous line num-
ber and the resulting new line number will be printed on the
screen. Autoincrement mode will be active whenever these lo-
cations contain a nonzero value. These locations are reset to
0/$00 during the BASIC cold-start sequence, and during the
RUN subroutine [$5A81] that resets flags. The value here can
be set using the AUTO statement.

118 $76 MVDFLG
Graphics area flag
The value here indicates whether the bitmapped graphics
color and screen area has been allocated at 7168-16383/
$1COO-$3FFF, in which case the start of the BASIC program
area will have been moved to 16384/$4000. A value of 0/$00
here indicates that no graphics area is allocated, while a non-
zero value indicates that the area has been allocated and the
BASIC program area has been moved. This location is initial-
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ized to 0/$00 (no graphics area) during the BASIC cold-start
sequence. When the graphics area is allocated, this location is
decremented (to 255/$FF). The only BASIC statement that re-
sets this location is GRAPHIC CLR-—the value here isn't af-
fected by NEW or CLR—so once a graphics area is allocated it
will remain allocated until the computer is reset or a GRAPHIC
CLR statement is executed.

119 $77 Z_P_TEMP_1
General-purpose working storage
This location is used for temporary storage by a variety of
BASIC routines.

120 $78 HULP
String offset pointer
This location is used during the routine [$5901] that handles
MID$ as a statement to hold the offset from the start of the
string to the substring being replaced. It's also used during the
PLAY string-processing subroutine [$6DE1] to hold the offset
to the next character waiting to be processed in the string.

121 $ 7 9 SYNTMP
Multipurpose temporary storage
This location is used for temporary storage by a number of
different BASIC routines.

1 2 2 $7 A MTXTPTR
Index into input buffer for monitor
The monitor uses this location to store the position of the
next character to be read from the input buffer (512-672/
$0200-$02A0).

122-124 $7A-$7C DSDESC
Descriptor for disk error string DS$
These locations are used as the descriptor for the disk status
string provided by the reserved variable DS$. Location
122/$7A will hold the length of the string, and locations
123-124/$ 7B-$7C will hold the address of the string. The
length value is initialized to 0/$00, effectively emptying the
string, during the CLR routine [$51F8], which is also part of
NEW and RUN, The routine to generate the error string
[$A778] will set the values here whenever the DS or DS$ vari-
ables are used.
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125-126 $7D-$7E TOS
BASIC runtime stack pointer
These locations are used as the pointer into the BASIC
runtime stack at 2048-2559/$0800-$09FF. This stack area is
used to hold information for FOR, GOSUB, and DO state-
ments (see Chapter 3 for details). The value here is the ad-
dress of the next free location in the stack, which is filled from
top to bottom—from 2559/$09FF down to 2048/$0800.
Unlike the processor's stack with its automatic pointer, the
pointer into this stack must be updated explicitly. The pointer
value is reset to 2559/S09FF during the CLR routine [$51F8],
which is also part of NEW and RUN. Each time an entry is
placed on the stack, the pointer value here is decremented by
the number of bytes in the stack entry. Whenever an entry is
retrieved from the stack, the value is incremented by the num-
ber of bytes to be removed.

$7F RUNMOD127
RUN mode flag
This location is used to indicate the current operating mode of
the computer. When the value here is 0/$00, BASIC is in im-
mediate mode. No program is executing; BASIC is waiting for
a command or a program line to be entered. When bit 6 is set
to %1 (flag value of 64/$40), a program is being loaded for
execution (the RUN "filename" statement has been used).
When bit 7 is set to %1 (flag value 128/$80), a BASIC pro-
gram is being executed. The value here is reset to 0/$00 dur-
ing the step of the main BASIC loop that displays the READY
prompt. The RUN subroutine [$5A81] to set flag values will
set this location to 128/$80, unless the option to load and run
a disk file has been used. In that case, the flag will be set to
64/$40 while the file is loading, then to 128/$80 when it be-
gins running.

128 $80 POINT
Decimal point position
This location is used during the PRINT USING routine [$9] to
hold the number of digits to be printed before the decimal
point.
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128-129 $80-$81 PARST
Parameter flags for DOS support commands
The various disk command routines set these locations before
calling the routine [$A32F] that processes parameters for disk
commands. The values here indicate which parameters are
valid for the command being processed. When a bit is % 1 , the
parameter string for the command can include the correspond-
ing element:
Location Bit Parameter element
128/$80 0 source filename

1 destination filename (following TO)
2 logical file number (#)
3 device number (U)
4 source drive number (D)
5 destination drive number (D following TO)
6 file type parameters (L or W)
7 save-with-replace indicator (@)

129/$81 0 bank number <B)
1 starting address (P)
2 ending address (P following TO)

130 $82 OLDSTK
Storage for processor stack pointer
This location is used to store the current processor stack
pointer value before a BASIC program line is executed
[$4AF3]. If an error occurs while the line is being executed, the
value here will be restored to the stack pointer during the
error-handling routine [$4D3C],

131 $83 COLSEL
Color source for current graphics command
The first parameter in graphics commands such as DRAW,
CIRCLE, BOX, and so on, is the color source number. That
value is held here after the parameter is evaluated. For the
standard bitmapped (GRAPHIC 1) screen, valid values are 0
(background) and 1 (foreground). For multicolor bitmapped
(GRAPHIC 3) screens, values of 2 and 3 are also valid to se-
lect the additional multicolor sources. If the parameter is omit-
ted, the value here will default to 1 (foreground).
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132 $84 MULTICOLOR_1
Color source 2 storage
This location holds the current color number for color source
2. The value here doesn't have any immediate effect on the
screen display, but whenever the COLOR statement routine
[$69E2] is executed, the lower four bits of the value here will
be copied into the lower four bits of the multicolor video ma-
trix fill byte at 995/$03E3. That value will be used to fill the
video matrix area when the multicolor bitmapped (GRAPHIC
3) screen is cleared. Thus, the value here eventually deter-
mines the color of multicolor bitmapped pixels represented by
%10 bit pairs. This is the bit pattern that will be produced for
lines drawn when color source 2 is specified. During the
BASIC cold-start sequence, this location is initialized to 1
(white). The value here can be changed using the statement
COLOR 2,n, where n is a standard BASIC color number
(1-16). Remember that the color change is effective only after
the multicolor bitmapped screen is cleared.

133 $85 MULTIC0L0R-2
Color source 3 storage
This location holds the current color number for color source
3. The value here doesn't have any immediate effect on the
screen display, but whenever the bitmapped screen is cleared,
block 0 of color memory (55296-56319/$D800-$DBFF) is
filled with the value here. Thus, the value here eventually de-
termines the color of multicolor bitmapped pixels represented
by %11 bit pairs. This is the bit pattern drawn for lines when
color source 3 is specified. During the BASIC cold-start se-
quence, this location is initialized to 2 (red). The value here
can be changed using the statement COLOR 3,Ji, where n is a
standard BASIC color number (1-16). Remember that the color
change is effective only after the multicolor bitmapped screen
is cleared.

134 $ 8 6 FOREGROUND
Current foreground color (source 1) storage
This location holds the current color number for color source
1. The value here doesn't have any immediate effect on the
screen display, but whenever the COLOR statement routine
[$69E2] is executed, the lower four bits of the value here will
be copied into the upper four bits of both the standard video
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matrix fill byte at 994/$03E2 and the multicolor video matrix
fill byte at 995/$03E3. One of these values, depending on the
display mode, will be used to fill the video matrix area when
the bitmapped screen is cleared. Thus, the value here eventu-
ally determines the color of standard bitmapped pixels repre-
sented by %1 bits or of multicolor bitmapped pixels represented
by %10 bit pairs. During the BASIC cold-start sequence, this
location is initialized to 13/$0D (light green). The value here
can be changed using the statement COLOR \,n, where n is a
standard BASIC color number (1-16). Remember that the color
change is effective only after the screen is cleared.

135-136 $87-$88 SCALE_X
Horizontal scaling factor
These locations hold the horizontal scaling factor for BASIC
graphics routines. If scaling is in effect (indicated when the
scaling flag at 4458/$116A holds a nonzero value), the speci-
fied horizontal (x) coordinates for all graphics routine param-
eters will be adjusted according to the value here to get the
true bitmap coordinates. The value here can be changed using
the SCALE statement. If the first parameter in the statement is
1 (scaling on), the factor here is calculated from the second pa-
rameter according to the following formula:
scaling factor = (65535 * 320)/scaling parameter
If the parameter is omitted, a default value of 20480/$5000
(for a bitmapped screen) or 10240/S2800 (for a multicolor bit-
mapped screen) is supplied. This allows a scaled screen of
1024 horizontal positions (x coordinates 0-1023).

137-138 $89-$8A SCALE-Y
Vertical scaling factor
These locations hold the vertical scaling factor for BASIC
graphics routines. If scaling is in effect (indicated when the
scaling flag at 4458/$116A holds a nonzero value), the speci-
fied vertical {y) coordinates for all graphics routine parameters
will be adjusted according to the value here to get the true bit-
map coordinates. The value here can be changed using the
SCALE statement. If the first parameter in the statement is 1
(scaling on), the factor here is calculated from the third param-
eter according to the following formula:
scaling factor = (65535 * 200)/scaling parameter
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If the parameter is omitted, a default value of 12800/13 200 is
supplied. This allows a scaled screen of 1024 vertical positions
(y coordinates 0-1023).

$8B STOPNB139
PAINT mode flag
Bit 7 of this location is used during the PAINT statement rou-
tine [$61A8] to specify whether the fill stops at pixels where
the source color is encountered (indicated when the bit is %0)
or whether all nonbackground pixels will be filled (indicated
when this bit is %1). This location is normally set according to
the fourth parameter of the PAINT statement, to 0/$00 if the
parameter is 0 or omitted, or to 128/$80 if the parameter is 1.

140-141 $8C-$8D GRAPNT
Address pointer for graphics routines
These locations are used as an address pointer by several
BASIC graphics routines. The value here points to the address
within the bitmap where a character pattern will be copied
during CHAR [$67D7]. The locations serve as a pointer to the
area being filled during the SCNCLR [$6A79]. In the general
pixel-drawing routine, these locations point to the bitmap ad-
dress where the pixel will be drawn.

142-143 $8E-$8F VTEMP
Temporary storage for graphics routines
These locations are used for temporary storage by a variety of
BASIC graphics routines.

144 $90 STATUS
Status flag for tape and serial bus operations
This location records the status of the most recent tape or se-
rial bus operation. In general, when the operation has been
successful the value here is 0/$00, while a nonzero value indi-
cates that an error has occurred or that the end of the file has
been reached. The value here is reset to zero at the beginning
of any load or save, or whenever a file is opened to tape or a
serial device. Various error conditions are indicated by setting
particular bits to % 1 . The bits are used as follows:
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Bit
0
1
2

Bit value
l/$01
2/S02
4/$04

8/$08

16/$10

32/$20
64/$40

128/$80

Serial bus
timeout during write
timeout during read

mismatch during
verify

Tape

short block
(leader read where data expected)
long block
(data read where leader expected)
unrecoverable read error
{or mismatch during verify)
checksum mismatch for block
end-of-file marker read
end-of-tape marker read

EOI (end of file)
device not present

In BASIC, the reserved variable ST returns the value here
when the current I/O device is tape (1) or serial (4 or larger).
For RS-232 operations, the status is instead recorded in loca-
tion 2580/S0A14.

145 $ 9 1 STKEY
Scan value of STOP key column
This location holds the current status of the keyboard column
containing the RUN/STOP key. The Kernal UDTIM routine
[$F5F8], which is part of the system jiffy IRQ sequence, in-
cludes a section which reads the current column of the key-
board matrix. (See Figure 7-1 in Chapter 7 for a diagram of
the keyboard matrix.) The current state of that column is
stored in this location (unless the key connected to row 7 of
the column has been pressed at the same time as some key in
columns 1 or 6, which contain the SHIFT keys). The proper
functioning of this routine depends on the fact that the
SCNKEY routine [$C55D], normally performed earlier in the
IRQ sequence, leaves the system set to scan column 7, the one
containing the RUN/STOP key (in row 7). When the Kernal
STOP routine [$F66E] is called to determine whether the
RUN/STOP key is currently pressed, it checks this location
rather than actually reading the keyboard.

This location can also be used to read any of the other
keys in column 7. The value here will be 255/$FF when no
key in that column is pressed. Pressing a key sets a cor-
responding bit here to %0. The values here when the respec-
tive keys are pressed are as follows:

Key

*-
CONTROL
2

Bit
0
1
2
3

Value
254/$FE
253/$FD
251/$FB
247/$F7

Key
space
Commodore
Q
RUN/STOP

Bit
4
5
6
7

Value
239/$EF
223/$DF
191/$BF
127/$7F
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146 $92 SVXT
Tape-timing baseline adjustment factor
This location is used during routines which read from tape to
hold a value representing the difference between the actual
time required to read a bit from tape and the standard rime.
This value is used to adjust other timing constants to compen-
sate for minor variations in tape motor speeds.

1 4 7 $ 9 3 VERCK
Kernal load/verify flag
Monitor operation flag
The same Kernal routine is used to perform both load and ver-
ify operations. This location is used during the routines which
read data from tape and disk to specify which operation has
been called for. The value in the accumulator upon entry to
the Kernal LOAD routine [$F265] will be stored here.

The monitor compare/transfer routine [$B231] uses this
location as an operation flag. A value of zero here indicates
that a compare operation is being performed, while a value of
128/$80 indicates a transfer operation. The monitor byte-pattern
search routine [$B2CE] stores the number of characters in the
search buffer here. The monitor load/save/verify setup rou-
tine stores the character code of the current command (L, S, or
V) here.

148 $94 C3P0
Serial deferred character flag
This location is used to indicate whether a character is waiting
in the one-byte character buffer at 149/$95. Bit 7 of this loca-
tion will be %0 if no character is waiting, or %1 if the buffer
contains a byte awaiting transmission.

149 $95 BSOUR
Serial character buffer
This location is used as a buffer for bytes sent over the serial
bus. The operating system maintains this buffer so that the
last byte of a file can be sent with the EOI handshake to iden-
tify it as the final byte. Location 148/$94 is used to indicate
whether the current value here represents a character awaiting
transmission. It's very important to close serial bus files
opened for writing; otherwise, the final byte with the end-of-
file handshake won't be sent.
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150 $96 SYNO
Cassette block synchronization count
This location is used during routines which read from tape to
indicate when the system has read leader bytes and is waiting
for the end of the leader segment.

151 $97 XSAV
Temporary register storage
This location is used for temporary storage of the Y register
value during the Kernal GETIN subroutine for RS-232, and for
temporary storage of the X register value during the Kernal
BASIN routine for tape.

152 $98 LDTND
Number of files currently open
This location records the number of active files—the number
of files which have been opened but not yet closed. This value
also serves as an index to the next available entry in the logi-
cal file number, device number, and secondary address tables
at 866-895/$0362-$037F. The value here is reset to 0/$00 (no
files open) when zero page is cleared during the reset se-
quence. The Kernal CLALL routine [$F222] will also reset this
location to 0/$00. The value here is incremented each time a
logical file is opened, and decremented each time one is
closed. An attempt to open an additional file when this loca-
tion contains 10/$0A, indicating that the maximum 10 files
are already open, will result in a TOO MANY FILES error.

153 $99 DFLTN
Current input device
The value here specifies the current input device number for
the Kernal GETIN and BASIN routines, When a logical file is
selected for input by the CHKIN routine, the device number
value for the file is read from that file's entry in the device
number table at 876-885/$036C-$0376 and stored here. The
CLRCH routine will reset the value here to 3/$03, to make
the keyboard the default input device.

154 $9A DFLTO
Current output device
The value here specifies the current output device number for
the Kernal BSOUT routine. When a logical file is selected for
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output by the CKOUT routine, the device number value for
the file is read from that file's entry in the device number ta-
ble at 876-885/$036C-$0376 and stored here. The CLRCH
routine will reset the value here to 0/$00, to make the screen
the default output device.

155 $9B PRTY
Tape character parity
This location is used during routines which read from tape to
calculate the parity of the byte currently being read. Bytes
stored on tape have an extra parity bit added to make an odd
total number of %1 bits in the combined character (eight data
bits plus parity). This location is used to make sure that an
odd total number of bits is read back for each character.

156 $9C DPSW
Tape dipole received flag
This location is used when a byte is being read from tape to
indicate whether all bits of the byte have been received (indi-
cated by a nonzero value), or whether bits are still being read
(indicated by a value of 0/$00).

157 $9D MSGFLG
Kernal message control flag
This location controls whether Kernal messages will be dis-
played. The Kernal routines have two types of messages: con-
trol messages (PRESS PLAY ON TAPE, SEARCHING FOR,
and so on) and error messages (I/O ERROR # followed by a
number). This location controls which types of messages, if
any, will be displayed. When the value here is set to 0/$00,
no Kernal messages are displayed. Setting bit 6 to %1 enables
error messages, while setting bit 7 to %1 enables control mes-
sages. The value here can be set using the Kernal SETMSG
routine [$F75C]. The BASIC routine MAIN [$4DB7], which is
responsible for the READY prompt, sets this flag to 128/$80
(control messages only), since BASIC provides its own error
messages. When the RUN routine is executed to run a pro-
gram, the value here is reset to 0/$00 (no messages). The
monitor changes the setting to 192/$C0 (all messages).
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158 $9E PTR1
Tape pass 1 error-log pointer
The Commodore tape system records two copies of each block
of data written to tape. If errors are detected while the first
copy is being read, the address where the erroneous byte is lo-
cated is stored in the tape error-log area at the bottom of page
1, This location is used as an offset to the next available two-
byte address slot in the error log. The value here is reset to
0/$00 at the beginning of the operation. An unrecoverable er-
ror occurs if the value here exceeds 60/$3C, indicating that
more than 31 errors have been logged.

This location is also used to hold the offset into the speci-
fied filename during the routine which checks to determine
whether a particular tape header has been found, and for tem-
porary storage of the type identifier byte when header blocks
are being written to tape.

159 $9F PTR2
Tape pass 2 error-log pointer
This location is used during the routine which reads the sec-
ond copy of each tape data block to indicate the offset to the
next slot in the tape error log. That slot will contain the ad-
dress of the next byte that needs correcting in the second pass.
This location is also used to hold the offset into the filename
in the tape header when the routine is checking whether a
particular tape header has been found.

The monitor assemble routine [$B406] also uses this
location to store the position of the next character to be pro-
cessed from the instruction address buffer (2720-2729/
$OAA0-$0AA9).

160-162 $A0-$A2 TIME
Software jiffy clock
These three bytes comprise the jiffy clock, a counter main-
tained by the operating system. Location 160/$A0 is the high
byte, 161/$A1 the middle byte, and 162/$A2 the low byte.
The UDTIM routine [$F5F8], called during each system jiffy
IRQ interrupt sequence, will increment this counter 60 times
per second. (UDTIM checks and compensates for PAL video
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systems, so these locations are incremented 60 times per sec-
ond regardless of whether interrupts occur at the North Amer-
ican rate of 60 times per second or the European rate of 50
times per second.) Thus, location 162/$A2 will be incre-
mented every 1/60 second; location 161/$A1 every 1/60 *
256 = 4.27 seconds; and location 160/$A0 every 4.27 * 256
= 1092 seconds, or every 18.2 minutes. All three locations
(along with the rest of zero page) are reset to 0/$00 during
the reset sequence. The UDTIM routine will also reset the lo-
cations to 0/$00 if the value here reaches $4F1AO1, cor-
responding to 24 hours after the start of the count. The Kernal
RDTIM routine [$F65E] can be used to read these locations,
and the SETTIM routine [$F665] can be used to change the
value here. From BASIC, the reserved variables TI and TI$ can
be used to read the values here (TI$ converts the value to
hours:minutes:seconds format). TI$ can also be used to change
the value here.

Although this timer is easy to use, especially from BASIC
with TI and TI$, it's not particularly accurate for timekeeping
applications. These locations depend on the system IRQ inter-
rupt, which is affected by a number of operations. For ex-
ample, the system interrupt is turned off during loads and
saves to tape or disk, effectively stopping the clock. The more
tape or disk operations you perform, the more inaccurate your
clock time becomes. If you need more reliable timekeeping, re-
fer to the discussion of the CIA chips' time-of-day clocks in
Chapter 8.

1 6 3 $ A 3 P C N T R / R 2 D 2
Tape: Count of bits to be read or written
Serial: EOI flag
When characters are being read from or written to tape, this
location is used as a countdown for the number of bits re-
maining to be received or sent.

When characters are being sent over the serial bus, this
location is used to indicate when an EOI (end or identify) hand-
shake should be performed to mark the end of the file. The
EOI sequence is added when bit 7 of this location is set to % 1 .

164 $A4 FIRT/BSOUR1
Tape: Half-cycle indicator
Serial: Byte received
When bits are being read from or written to tape, this location
is used to indicate which half-cycle for the bit is currently be-
ing received or sent.

When characters are being received over the serial bus,
this location is used to assemble received bits into complete
bytes.

165 $A5 CNTDN/COUNT
Tape: Leader synchronization countdown
Serial: Count of bits to send / burst mode byte count
During the routines which write blocks of data to tape, this lo-
cation is used to provide the countdown characters that come
at the end of each leader segment. The value here is initialized
to 9; it will then be repeatedly written to tape and decremented
until the value reaches zero.

When characters are being sent over the serial bus, this
location is used as a countdown of bits to be sent. The value
here is initialized to 8 for each byte and decremented each
time a bit is sent. When bytes are being read from the serial
bus, this location is used to indicate whether an EOI hand-
shake has been detected. The value is initialized to 0/$00,
then incremented after the first EOI is received. During high-
speed burst mode loads, this location is used as a count of the
number of bytes read from the current disk sector.

166 $A6 BUFPT
Pointer into cassette buffer
This location is used during the tape BASIN routine to hold
the offset to the next character to be read from the cassette
buffer. This location is incremented after each character is read
from the buffer. When the value here reaches 192/$C0, all
characters have been read from the buffer, so another block of
data will be read into the buffer (if another is available) and
the value here will be reset to 0/$00. During the tape BSOUT
routine, this location holds the offset of the next available po-
sition in the cassette buffer. This location is incremented each
time a character is added to the buffer. The buffer is consid-
ered filled when the value here reaches 192/$C0, at which the
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block of data will be written to tape and the value here will be
reset to 0/$00.

167 $A7 SHCNL/INBIT
Tape: Leader dipole count / block indicator
RS-232: Current bit received

During the routines which write to tape, this location is used
as one counter in a timing loop to specify the number of lead-
er dipoles to be written. When reading from tape, this location
is used to indicate which block is being read.

When characters are being received over the RS-232 inter-
face, this location holds the most recently received bit.

168 $A8 RER/BITCI
Tape: Half-cycle indicator for writing / error flag for reading
RS-232: Count of bits remaining to be received
When bits are being written to tape, this location is used to
indicate which half-cycle of the dipole for the bit is currently
being written. When characters are being received from tape,
this location is used as a flag to indicate an error in the re-
ceived byte.

When characters are being received over the RS-232 inter-
face, this location is used as a countdown for the number of
bits to be received for the current character. The value here
will be initialized from 2581/S0A15 for each character.

1 6 9 $ A 9 REZ/RINONE
Tape: Word marker flag / half-cycle flag
RS-232: Start bit received flag

When characters are being written to tape, this location is used
to indicate whether a word marker dipole has yet been written
for the current character. When characters are being read from
tape, this location is used to indicate whether the next half-
cycle should be a long or short one.

When characters are being received over the RS-232 inter-
face, this location is used to indicate whether a start bit has
been received yet, A nonzero value here indicates that the sys-
tem is still waiting for a start bit, while a value of 0/$00
means that a start bit has been received.

170 $AA RDFLG/RIDATA
Tape; Read phase flag
RS-232: Assembly byte for received bits
During the routines which read from tape, this location indi-
cates the current stage of the operation. When the value here
is 0/$00, the reading routine is waiting for the synchroniza-
tion countdown characters to be read. Nonzero values less
than 64/$40 indicate that block countdown characters are be-
ing read. A value of 64/$40 indicates that the first copy of the
data block has been read, while a value of 128/$80 indicates
that all characters from the first block have been read and the
routine is waiting for the second copy.

When characters are being received over the RS-232 inter-
face, the bits received are shifted into this location until a full
byte has been assembled.

171 $AB SHCNH/RIPRTY
Tape: Leader dipole counter / checksum work byte
RS-232: Received byte parity
During the routines which write to tape, this location is used
as one counter in a timing loop to specify the number of lead-
er dipoles to be written. During the routines which read from
tape, this location is used for computing the checksum for the
block being read.

When characters are being received over the RS-232 inter-
face, this location is used to indicate whether an odd or even
number of %1 bits have been received, to determine the parity
of the received bit.

172-173 $AC-$AD SAL-SAH
Kernal working address pointer
These locations are used as a pointer to the address of the cur-
rent byte to be written to tape or saved to disk, or the address
where the byte read from tape or from a disk boot sector is to
be stored. The Kernal has several routines to service this pointer,
including one [$ED51] to load this pointer with the operation
starting address in 193-194/$C1-$C2, one [$EEC1] to incre-
ment the address here, and one [$EEB7] to compare the ad-
dress here against the operation ending address at 174-175/
$AE-$AR There is also a routine [$F7CC] to retrieve the char-
acter at the pointer address from the bank specified in 198/$C6,
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and one [$F7BC] to store the current accumulator contents at
the pointer address in the bank specified in 198/$C6.

172-175 $AC-$AF
Work area for disk booting
The Kernal BOOT-CALL routine [$F890] uses locations
172-173/$AC-$AD to hold the address at which the contents
of additional boot sectors are to be stored. Location 174/$AE
holds the bank number for the additional data. Location 175/
$AF holds the number of disk sectors to be loaded during the
boot process.

174-175 $ AE-$ AF EAL-E AH
Kernal address pointer
This location is used during the routines which read from or
write to tape, or in saving to disk, to hold the ending address
for the operation. For loading from disk, this location is used
as a working pointer to the address where data is stored. After
all bytes have been loaded, the locations will hold the ending
address. (Actually, in all cases the pointer will hold the ad-
dress of the location immediately following the last one in-
volved in the operation.) The Kernal SAVF routine [$F53E]
initializes these locations with the contents of the X and Y reg-
isters when the routine is called. The Kernal provides a routine
[$F7C9] to retrieve the character at the pointer address from
the bank specified in 198/$C6, and one [$F7BF] to store the
current accumulator contents at the pointer address in the
bank specified in 198/$C6.

176 $BO CMPO
Tape adjustable baseline compensation factor
This location is used during tape routines to indicate whether
the current baseline time (the time allotted for a particular
type of dipole) needs to be slightly increased or decreased.
This allows the computer to compensate for slight variations
in tape speed.

177 $B1 TEMP
Working storage for compensation factor computation
This location is used as a work byte for computing the base-
line compensation factor at 176/$B0.
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178-179 $B2-$B3 TAPE1
pointer to cassette buffer
These locations hold the starting address of the 192-byte cas-
sette buffer. The value here is initialized to 2816/$0B0O by the
Kernal RAMTAS routine, part of the reset sequence. No
Kernal routine changes this default setting. The routines that
read and write data to tape test these locations to insure that
the address is greater than 512/$0200.

180 $B4 SNSW1/BITTS
Tape: leader/data flag
RS-232: Count of bits transmitted
During routines which read from tape, this location is used to
indicate whether the routine is currently waiting for the start
of a data block (indicated by a value of 0/$00 here) or reading
data from a block (indicated by a nonzero value here).

When bytes are being sent over the RS-232 interface, this
location holds the count of bits sent for the current character.

181 $B5 DIFF/NXTBIT
Tape: Leader completed flag
RS-232: Next bit to send
During routines which read from tape, this location is used to
indicate when the end of a leader segment has been reached.
The value here is set to 0/$00 when the word marker at the
end of a leader is read.

When bytes are being sent over the RS-232 interface, bit 2
of this location is used to hold the setting of the next bit to be
sent.

182 $B6 PDP/RODATA
Tape: Error flag / end of block flag
RS-232: Character being sent
When an error is detected while a character is being read from
tape, this location is set to a nonzero value to indicate that the
character has not been read successfully. During routines
which write to tape, this location is used as a flag to indicate
when end-of-block processing should be performed.

When bytes are being sent over the RS-232 interface, this
location holds the character being sent. Bits are pulled off one
at a time from right to left.
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183 $B7 FNLEN
Length of current filename
This location holds the length of the filename for the current
I/O operation. The value here can be set using the Kernal
SETNAM routine [$F731]. The starting address for the file-
name is held in locations 187-188/$BB-$BC, and the bank
number where the filename is found is held in location
199/$C7.

LA184 $B8
Logical file number
This location holds the logical file number for the current I/O
operation. The value here can be set using the Kernal SETLFS
routine [$F738]. When a file is opened, the value here will be
transferred into the logical file number table at 866-875/
$0362-$036B.

SA185 $B9
Current secondary address
This location holds the secondary address for the current I/O
operation. The value here can be set using the Kernal SETLFS
routine [$F738]. When a file is opened, the value here will be
transferred into the secondary address table at 886-895/
$0376-$037F.

FA186 $BA
Current device number
This location holds the device number for the current I/O op-
eration. The value here can be set using the Kernal SETLFS
routine [$F738], When a file is opened, the value here will be
transferred into the device number table at 876-885/
$036C-$0375.

187-188 $BB-$BC FNADR
Pointer to start of filename
These locations hold the starting address of the filename for
the current I/O operation. The value here can be set using the
Kernal SETNAM [$F731]. Location 183/$B7 holds the length
of the filename, and location 199/$C7 holds the bank number
in which the filename is located.
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189 $BD OCHAR/ROPRTY
Tape: Byte read from tape / byte to be written to tape
RS-232: Parity calculation working storage
Serial: Current byte during burst mode load
For tape operations, this location holds the byte most recently
read, or the byte currently being written.

When bytes are being sent over the RS-232 interface, this
location is used to indicate whether an even or odd number of
%1 bits have been sent in the current character. This infor-
mation is used to determine the value of the parity bit if one is
to be sent.

During high-speed burst mode loads from disk, this loca-
tion holds the byte most recently received from the drive.

190 $BE FSBLK
Block count
This location is used during routines which read from or write
to tape to specify which of the two images of the current block
is currently being read or written.

191 $BF MYCH/DRIVE
Tape: Assembly area for byte being read
Disk: Default drive number for booting
When characters are being read from tape, the bits read are as-
sembled in this area until a complete byte is formed; then the
value is transferred to location 189/$BD for evaluation or
storage.

During the BOOT_CALL routine [$F890], this location is
used to hold the character code for the specified drive number.
The contents of the accumulator when the routine is called
will be stored here.

1 9 2 $CO CAS1
Tape motor interlock
This location is used to control bit 5 of the processor I/O port
at location l/$01. The system jiffy IRQ sequence includes a
subroutine [$EED0] which tests bit 4 of the processor port to
determine whether any Datassette buttons are pressed. If no
buttons are pressed, this location is set to 0/$00 and bit 5 of
the port is set to %1 to turn off power to the cassette motor.
When a button is pressed, this location is checked. If it con-
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tains a 0/$00, the port bit is set to turn off the power. Thus,
the cassette motor can't be powered when no button is
pressed or while this location contains 0/$00. When this loca-
tion is set to any nonzero value, the setting of the port bit is
not affected by the IRQ subroutine, so—as long as a button is
pressed—the motor can be turned on and off, changing the
setting of the port bit.

193-194 $C1-$C2 STA
Kernal address pointer
These locations are used by the Kernal SAVE routine [$F542]
to hold the starting address of the area of memory to be saved
to disk or tape, The value is loaded from the zero-page pointer
specified in the accumulator upon entry to the routine.

These locations are also used by the Kemal BOOT_CALL
routine. Location 193/$C1 holds the track number and loca-
tion 194/$C2 holds the sector number for the block currently
being read from disk.

195-196 $C3-$C4 TMP2/MEMUSS
Kernal address pointer
The contents of the X and Y registers upon entry to the Kemal
LOAD routine [$F265] are stored here. If the secondary ad-
dress that preceded the LOAD was 0/SOO, a relocating load
was specified, so this address is used as the starting address
for the loaded data.

These locations are also used as a working pointer in the
routine [$E1FO] to initialize the soft reset vector,

197 $C5 DATA
Bit read from tape / checksum of block written to tape
During routines which read from tape, this location is used to
indicate the value of the bit most recently read. During
routines which write to tape, this location is used for working
storage of the checksum being calculated for the block.

198 $C6 BA
Bank where data for save, load, or verify is found
This location holds the bank number from which data will be
saved by the Kernal SAVE routine or to which data will be
loaded or verified by the Kernal LOAD routine. The value

here doesn't affect the current system configuration; it only
specifies the bank for load, save, or verify operation data. The
Kernal SETBANK routine [$F73F] can be used to set the value
here.

199 $C7 FNBANK
Bank where filename for open, save, load, or verify is found
This location holds the bank number in which the filename for
the current I/O operation is found. The value here can be set
using the Kernal SETBANK routine [$F73F].

200-201 $C8-$C9 RIBUF
Pointer to RS-232 input buffer
The value in these locations determines the starting address of
the 256-byte RS-232 input buffer—the area where characters
are stored as they are received via the RS-232 interface. The
value here is initialized to 3072/S0C00 by the RAMTAS rou-
tine [$E093], part of the reset sequence. This places the input
buffer at its default position, and no system routine changes
this setting.

202-203 $CA-$CB ROBUF
Pointer to RS-232 output buffer
The value in these locations determines the starting address of
the 256-byte RS-232 output buffer—the area where characters
are stored while they await transmission via the RS-232 inter-
face. The value here is initialized to 3328/S0D00 by the
RAMTAS routine [$E093], part of the reset sequence. This
places the output buffer at its default position, and no system
routine changes this setting.

204-205 $CC-$CD KEYTAB
Pointer to current keyboard decode table
The value in these locations determines the starting address of
the 89-byte area of memory which will be used to decode the
current keyboard matrix code in location 212/$D4. The
SCNKEY routine [$C55D], part of the normal IRQ sequence,
checks on the shift-key status (in location 211/$D3) and se-
lects the proper value from the list of keyboard table pointers
at $83u-841/$033E-$0349.
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206-207 $CE-$CF

206-207 $CE-$CF IMPARM
Pointer for Kernal PRIMM routine
These locations are used as a working pointer to the character
to be printed during the Kernal PRIMM routine [$FA17].

208 SD0 NDX
Number of characters in the keyboard buffer
This location holds the number of characters awaiting process-
ing in the keyboard buffer at 842/$034A. The value here is
initialized to zero by the CINT routine, part of the RESET se-
quence. This location is also reset to zero by the STOP routine
if the STOP key is pressed. It is incremented during the
SCNKEY routine [$C55D] whenever a character is added to
the buffer, and decremented whenever a key is removed (by
the Kernal BASIN or GETIN routines). The value here is not
allowed to exceed the maximum keyboard buffer length speci-
fied in location 2592/$0A20.

209 $D1 KYNDX
Number of characters pending from programmable key string
This location holds the number of characters remaining to be
read from the string for the most recently pressed programma-
ble key. The value here is initialized to zero by the CINT rou-
tine, part of the RESET sequence. When the press of a
programmable key is detected during the SCNKEY routine
[$C6CA], the length of the string for that key is stored here.
The value is then decremented as each character is read from
the string (by GETIN or BASIN).

210 SD2 KEYIDX
Pointer into the programmable key definition area
This location holds the offset to the next character to be read
from the programmable key definition string area at 4106-4351/
$100A-$10FF. When the press of a programmable key is de-
tected during the SCNKEY routine [$C6CA], the offset to the
definition string for that key is stored here. The value here is
incremented as each character is read from the string.

5D4 212

211 $D3 SHFLAG
Shift key status flag
This location is set during the SCNKEY routine [$C55D] to in-
dicate which of the shift keys—SHIFT, Commodore, CTRL,
ALT, or CAPS LOCK—are currently being pressed. Each key
has a corresponding bit which is set to %1 when the key is
pressed:
Key
SHIFT
Commodore
CONTROL
ALT
CAPS LOCK

Bit Bit value
0 l/$01
1 2/$02
2 4/$04
3 8/$08
4 16/$10

The values are cumulative; if both SHIFT and CONTROL are
pressed simultaneously, the value here will be 5 (4 + 1).
Based on the value here, the SCNKEY routine chooses a key-
board table pointer value to be stored in 204-205/$CC-$CD.

Bit 7 of this location is also used as a flag to indicate
when the extra characters read using the VIC chip lines are
being scanned.

212 $D4 SFDX
Current key pressed
This location is used during the SCNKEY routine [$C55D],
part of the system jiffy IRQ sequence, to hold a value indicat-
ing which key was pressed. Each key has a unique keyscan
matrix code here, but the code values are different from either
character codes or screen codes. Refer to Appendix C for a list
of keyscan codes. The key's keyscan code (0-87) serves as an
offset into the keyboard decoding table pointed to by locations
204-205/$CC-$CD to select the character code to be added to
the keyboard buffer at 872/$034A. A scan code of 88 indicates
that no key was pressed.

It's possible to read this location as an alternative to using
the BASIC GET or GETKEY statements or the machine lan-
guage GETIN routine when you want to check for the press of
a particular key. For example, the two following statements
produce the same result, a delay until the X key is pressed:
100 IF PEEK(212)<>23 THEN 100
100 GET K$:IF K$o"X" THEN 100
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213 $D5 $D8 216

Certain keyscan codes will not normally be recorded here.
The codes for the left and right SHIFT keys, the CONTROL
key, the Commodore key, and the ALT key—codes 15, 52, 58,
61, and 80, respectively—-are normally intercepted during the
SCNKEY routine and used to generate the value at 211/SD3.
The CAPS LOCK, 40/80 DISPLAY, and RESTORE keys are
not part of the keyscan matrix, and the SHIFT LOCK key is
just a switch that has the effect of holding down the left
SHIFT key.

$D5 LSTX213
Last key pressed
At the end of the SCNKEY routine [$C55D], the value in
212/$D4 is transferred here. This value is then used during
the next pass through SCNKEY to determine if the same key
is still being pressed. If so, no additional character code will be
added to the keyboard buffer unless key repeating is enabled.

$D6 CRSW214
Input source flag
This location is used during the screen editor BASIN routine
[SC29B] to indicate whether the line of input is to come from
the keyboard or from the screen. The default value of 0/S00
selects input from the keyboard, while a nonzero value selects
input from the screen. The Kernal BASIN routine [$EF06] will
set this location to 3/$03 before calling the screen editor rou-
tine when screen input is requested. Bit 7 of this location is
used as an end-of-input flag; however, this is not handled
properly for input from the screen. See the entry for the screen
editor routine in Chapter 7 for details.

$D7 MODE215
Active screen flag
Bit 7 of this flag determines which text screen is considered
the active display. While the bit is %1 , the 80-column display
is selected. While the bit is %0, the 40-column display is ac-
tive. Note that the inactive screen isn't actually turned off; it
retains whatever display it had when the other screen was se-
lected. However, only the active screen has a "live" cursor,
and all printing is directed there. During the reset and
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RUN/STOP-RESTORE sequences, the screen editor initializa-
tion routine [$C07B] sets this flag according to the position of
the 40/80 DISPLAY key.

While it is often useful to check this flag to determine
which display is active, it shouldn't be changed to switch ac-
tive displays. Instead, use the escape sequence (ESC X) or the
Kernal SWAPPER routine [$FF5F]. There's more to changing
active displays than just toggling the flag bit—the active and
inactive screen editor variable tables, line link bitmaps, and
tab stop bitmaps must also be exchanged.

2 1 6 $ D 8 GRAPHM
Mode flag for 40-column screen
This location is used during the screen IRQ routine [$C194] to
determine which display mode is selected for the 40-column
(VIC) screen. The value here has no effect on the 80-column
(VDC) screen. When this location contains 0/$00, text mode is
selected. Bits 5-7 control the graphics mode configurations:
Bit Bit value Mode selected
5 32/$20 bitmapped
6 64/$40 split bitmapped/text
7 128/$80 multicolor

More than one of these can be selected at one time. The stan-
dard graphics modes place the following values here:
Mode Value
GRAPHIC 0 0/$00
GRAPHIC 1 32/$20
GRAPHIC 2 96/$60
GRAPHIC 3 160/JAO
GRAPHIC 4 224/$E0

While the standard screen editor interrupt routine is in
use, the value here determines how the screen mode will be
set up. As a result, you cannot directly change the bitmapped
or multicolor mode control bits of the VIC chip, since those
bits will be set according to the value here. You can turn off
the screen-setup portion of the screen editor IRQ routine by
storing the value 255/$FF here. This gives you direct control
over the VIC chip register settings, but disables BASIC'S ability
to change display modes.
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217 $D9

217 $D9 CHAREN
CHAREN bit shadow
Bit 2 of this location serves as a shadow for the CHAREN bit
bit 2 of the processor I/O port at location l/$01. The value of
the bit in this location is copied to the port bit during each
pass through the text screen-setup portion of the screen editor
IRQ routine [$C194]. Thus, the setting of the port bit cannot
be changed directly while the standard interrupt routine is in
use. Instead, you must set the bit here to the desired value
and let the interrupt routine set the port bit accordingly.

The setting of the CHAREN bit determines whether the
VIC chip sees the ROM character sets at offsets of 4096/$1000
and 6144/$1800 in the current video bank. When the bit is
%0, the standard ROM character set is visible to the VIC.
When the bit is set to % 1 , the VIC instead sees the true con-
tents of memory in the video bank.

218-223 $DA-$DF SEDSAL
Screen editor zero-page work area
Assorted screen editor routines use these locations for various
functions. Location 218/SDA is used as temporary storage by
the routines that calculate bit positions in the line link map
[$CB9F] or tab stop table [$C961, $C96C]. During a number of
routines, location 222/$DE is used as temporary storage for
the current cursor column, and 223/$DF is used as storage for
the current cursor row.

For the PFKEY routine [$CCA2], location 218/$DA holds
the length of the current key definition string. Location
219/$DB holds the total length of all programmable key defi-
nitions. Location 220/$DC holds the current key number
(0-9). Location 221/$DD holds the index to the next key defi-
nition beyond the current one. Location 222/$DE holds the
MMU setting for the bank where the definition string is found.
223/$DF is used as temporary storage for the index in the X
register.

For the INIT80 routine [$CE0C], locations 218-219/
$DA-$DB are used as a pointer to the character ROM at
53248/$D000. The screen-scrolling routine [$C40D] uses loca-
tions 218-219/SDA-DB as a pointer to the start of screen
memory for the current line. Locations 220-221/$DC-$DD
are used as pointers to the start of attribute memory for the
current screen line.
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$E2-$E3 226-227

Screen Editor Variable Table
Locations 224-249/$E0-$F9 comprise the screen editor vari-
able table for the active display. All locations in the table are
initialized during the CINT screen editor initialization routine
[$C07B]. An equivalent table for whichever display is currently
inactive is maintained at 2624-2649/$0A40-$0A59, Whenever
the SWAPPER routine [$CD2Ej is called to switch active
screen displays, the contents of this table are exchanged with
the values from the inactive screen table. Thus, the table
settings here are retained even when the screen is not active.

224-225 $EO-$E1 PNT
Pointer to first screen memory location for current line
Whenever the cursor is moved onto a new line, the screen
memory address corresponding to the leftmost column of that
line is calculated and stored in these locations. These locations
can then be used as a pointer to screen memory locations for
the current line. The value 236/$EC serves as an offset to the
current cursor column. The low byte of the address comes
from the value in the table at 49203/$C033 corresponding to
the current row (multiplied by 2 if the 80-column display is
active). The high byte comes from the value in the table at
49228/$C04C corresponding to the current row, adjusted for
the starting screen memory page value in 2619/$0A3B in the
case of the 40-column (VIC) display, or for the starting screen
memory page value in 2606/$0A2E in the case of the 80-col-
umn (VDC) display. Since the tables have only 25 valid en-
tries, the screen editor cannot support an output window with
more than 25 rows.

226-227 $E2-$E3 USER
Pointer to first attribute memory location for current line
Whenever the cursor is moved onto a new line, the color
memory address corresponding to the leftmost column of that
line is calculated and stored in these locations. These locations
can then be used as a pointer to attribute memory locations
for the current line. The value 236/$EC serves as an offset to
the current cursor column. The low byte of the address comes
from the value in the table at 49203/$C033 corresponding to
the current row (multiplied by 2 if the 80-column display is
active). The high byte comes from the value in the table at
49228/$C04C corresponding to the current row, adjusted for a

71



228 $E4 $EA 234

starting page of 216/$D8 in the case of the 40-column (VIC)
display, or for the starting color memory page value in
2607/$0A2F in the case of the 80-column (VDC) display.
Since the tables have only 25 valid entries, the screen editor
cannot support an output window with more than 25 rows.

228 $E4 SCBOT
Bottom margin of current window
The value in this location determines which screen row will be
the bottom margin of the current output window. This value
should be greater than or equal to the value in location
229/SE5. This location is reset to the maximum column num-
ber from location 237/$ED when the window is reset to full
screen size, as when the CINT screen editor initialization rou-
tine is executed. This location can be assigned a specific row
number using the screen editor WINDOW routine [$CA1B],
which has a screen editor jump table entry at 49197/$C02D.
From BASIC, the WINDOW statement can be used to change
the value here. The ESC T sequence will cause the row num-
ber for the current cursor position to be stored here.

229 $E5 SCTOP
Top margin of current window
The value in this location determines which screen row will be
the top row of the current output window. This value must be
less than or equal to the value in location 228/$E4. The value
here is reset to 0/$00, the top row of the screen, when the
window is reset to full screen size, as when the CINT screen
editor initialization routine is executed. This location can be
assigned a specific row number using the screen editor WIN-
DOW routine [$CA1B], which has a screen editor jump table
entry at 49197/$CO2D. From BASIC, the WINDOW statement
can be used to change the value here. The ESC T sequence
will cause the row number for the current cursor position to
be stored here.

230 $E6 SCLF
Left margin of current window
The value in this location determines which screen column
will be the left margin of the current output window. This
value must be less than or equal to the value in location
231/SE7. The value here is reset to 0/$00, the left edge of the
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screen, when the window is reset to full screen size, as when
the CINT screen editor initialization routine is executed. This
location can be assigned a specific column number using the
screen editor WINDOW routine [$CA1B], which has a screen
editor jump table entry at 49197/$C02D. From BASIC, the
WINDOW statement can be used to change the value here.
The ESC T sequence will cause the column number for the
current cursor position to be stored here.

231 $E7 SCRT
Right margin of current window
The vaiue in this location determines which screen column
will be the right margin of the current output window. This
value should be greater than or equal to the value in location
230/$E6. This location is reset to maximum column number
from location 238/$EE when the window is reset to full screen
size, as when the CINT screen editor initialization routine is
executed. This location can be assigned a specific column
number using the screen editor WINDOW routine [$CA1B],
which has a screen editor jump table entry at 49197/$C02D.
From BASIC, the WINDOW statement can be used to change
the value here. The ESC B sequence will cause the column
number for the current cursor position to be stored here.

232 $E8 LSXP
Cursor row for start of input
This location determines the starting row for the logical line of
input characters to be read by the BASIN routine [$C29B]. Lo-
cation 235/$EB will hold the row for the end of the input line.

233 $E9 LSTP
Cursor column for start of input
This location determines the starting column for the logical
line of input characters to be read by the BASIN routine
[$C29B]. Location 2608/$0A30 will hold the column for the
end of the input line.

234 $EA INDX
Column of last nonspace character on logical line
The screen editor includes a routine [$CBC3] to find the posi-
tion of the last nonspace character in the current logical line.
That routine stores the column number of the character posi-
tion here.
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235 $EB SEE 238

235
Cursor row

$EB TBLX

This location holds the cursor's horizontal position on the
screen. When the cursor is moved onto a new line, the value
here is used as an offset into the screen memory line base
starting address tables during the calculation of the starting
address for the current screen memory line (224-225/
$EO-$E1) and the starting address for the current color mem-
ory line (226-227/$E2-$E3). When the output window is
cieared or the cursor is moved to the home position, the value
here will be reset to the value in location 229/$E5, the top
margin of the window. The value here is incremented when-
ever the cursor wraps around from the right margin of the
window back to the left—or whenever a RETURN character
(code 13/$0D), SHIFT-RETURN (code 141/$8D), or cursor-
down (code 17/ $11) is printed—unless the increment would
cause the value here to exceed the bottom margin value in
228/$E4. The action taken in that case depends on whether
the scrolling flag (248/$F8) is set to allow new lines to be
scrolled onto the screen. If so, the value here remains un-
changed and a new line is opened at the bottom of the win-
dow. If scrolling is not allowed, the value here is reset to the
value in 229/$E5 to wrap the cursor to the top of the window.

The PLOT routine [$CC6A] can be used to set or read the
value here, but the vertical coordinate used by PLOT is rela-
tive to the current top margin. That is, the vertical offset
placed here when PLOT is used will be the vertical coordinate
specified in the PLOT call plus the current top margin value in
235/$E5, and the coordinate value returned by PLOT will be
the value here less the current top margin value in 229/$E5.

236 $EC PNTR
Position of cursor within current physical line
This location holds the cursor's horizontal position on the
screen. The value here is used as an offset from the starting
address of the current screen memory line (224-225/$E0-$El)
to determine the screen memory position of the current char-
acter, and as an offset from the starting address of the current
color memory line (226-227/$E2-$E3) to determine the color
memory position of the current character.

When the output window is cleared or when the cursor is
moved to the home position, the value here will be reset to
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the value in location 230/SE6, the left margin of the output
window. Each time a character is printed to the window, the
value here is incremented, unless the increment would cause
the value here to exceed the value in location 231/$E7, In that
case, the value here is reset to the left margin value in 230/
$E6. The value here is also reset to the left margin value when-
ever a RETURN character (code 13/SOD) or SHIFT-RETURN
(code 141/$8D) is printed.

The PLOT routine [$CC6A] can be used to set or read the
value here, but the coordinates supplied to PLOT are relative
to the current left margin. That is, the horizontal offset placed
here when PLOT is used will be the horizontal coordinate
specified in the PLOT call plus the current left margin value in
230/$E6, and the coordinate value returned by PLOT will be
the value here less the current left margin value in 230/SE6.

237 $ED LINES
Maximum number of rows allowed in output window
The value here determines the maximum bottom row for the
output window. The current bottom row number is specified
in location 228/$E4. When the window is reset to full screen
size by printing two {HOME} characters (code 19/$13) in se-
quence (or by directly calling the screen editor window reset
routine [$CA24]), location 228/$E4 will be reset to the value
here. This location is set to 24/$18 during the CINT screen
editor initialization routine, which establishes the default max-
imum of 25 horizontal rows of characters in the output win-
dow (remember that row numbering begins at zero). No
system routine changes this setting, but you can reduce the
value here to restrict the maximum height of the output win-
dow. However, you should not increase the value above the
default setting, since the screen editor printing routines will
not properly support a window more than 25 lines tall.

238 $EE COLUMNS
Maximum number of columns allowed per row
The value here determines the maximum right margin column
for the output window. The current right margin column num-
ber is specified in location 231/$E7. When the window is reset
to full screen size by printing two {HOME} characters (code
19/$13) in sequence (or by directly calling the screen editor
window reset routine [$CA24]), location 231/$E7 will be reset
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239 $EF $F1 241

to the value here. During the CINT screen editor initialization
routine, this location is set to 39/$27 if the 40-column (VIC)
display is the default, or to 79/$4F if the 80-column (VDC)
display is the default. This establishes the default widths of
the respective displays (remember that column numbering be-
gins at zero). No system routines change these settings, but
you can reduce the value here to restrict the maximum width
of the output window. However, you should not increase the
value above the default settings, since the screen editor print-
ing routines will not properly support windows wider than the
respective defaults.

$EF DATAX239
Character to print
This location is used during the screen editor printing routines
to hold the character code (not the screen code) for the charac-
ter to be printed.

240 $F0 LSTCHR
Last character printed
This location is used during the screen editor printing routines
to hold the character code for the previous character printed.
After each character is printed, the code for that character is
transferred here from location 239/$EF. The value is used to
detect when certain key sequences have been printed, such as
the escape (ESC) sequences and the HOME HOME sequence
to reset the output window margins. One shortcut to printing
an escape sequence is to set this location to 27/$lB (the code
for the ESC character), then call the screen BSOUT routine
[$C00C] with the accumulator holding the second character of
the escape sequence.

241 $F1 COLOR
Attribute of current character
The value in this location determines the color (and attribute
for the VDC display) that will be used for the next character
printed to the output window. When the screen code for the
character is placed in screen memory, the value here will be
placed in the corresponding position in color memory. When
the 40-column (VIC) screen is the active display, only the
lower four bits of this location are meaningful. Those bits will
hold the VIC color code (0-15) for the character position, See
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the discussion of the VIC chip in Chapter 8 for details. For the
80-column (VDC) display, the lower four bits also hold the
color value, but the relationship of values to colors is different
from that for the VIC chip. Refer to the discussion of the VDC
in Chapter 8 for more information.

When the VDC display is active, the upper four bits of
this location hold the attribute value for the next character to
be printed. Refer to the discussion of the VDC chip in Chapter
8 for more information on attributes. Bit 4 determines whether
the character will flash. Printing character code 15/$0F will set
bit 4 to % 1 , which specifies a flashing character. Printing char-
acter code 143/$8F resets bit 4 to %0, which turns off the
flashing attribute. Bit 5 determines whether the character will
be underlined. Printing character code 2/$02 will set bit 5 to
% 1 , which specifies an underlined character. Printing charac-
ter code 130/$82 resets bit 5 to %0, which turns off the un-
derlining attribute. Bit 6 could be used to determine whether
the character is reversed. Setting the bit to %1 specifies a re-
versed image of the character pattern, and resetting the bit to
%0 specifies a normal character. However, the 128's screen
editor does not make use of this feature. Instead, each stan-
dard character set contains both normal and reversed character
patterns and reversed characters are obtained by selecting the
reversed character pattern. Bit 7 determines which of the two
character sets will be used. When the bit is %0, the first
(uppercase/graphics) set is selected, while setting the bit to
%1 selects the second (lowercase/graphics) set. Thus, the
VDC allows both character sets to be used on the same dis-
play. When the VDC display is active, printing character code
14/$0E sets this bit to %1 , and printing character code
142/$8E resets the bit to %0. If character set switching with
the SHIFT-Commodore key combination is allowed, then that
combination will toggle the value of this bit.

The CINT screen editor initialization routine will set this
location to 13/$0D if the VIC screen is the default display, or
to 7/$07 if the VDC screen is the default. This selects light
green characters for the VIC display or light cyan characters
with no special attributes for the VDC display. The color value
in the lower four bits can be changed by printing any of the
16 color change characters. Refer to Appendix C for a list of
character code values.

77



242 $F2 $F6 246

242 $F2 TCOLOR
Temporary storage for attribute byte
This location is used to temporarily preserve the value from
241/$F1 during screen editor routines that insert or delete
characters or scroll screen lines.

243 $F3 RVS
Reverse mode flag
The value in this location determines whether reverse mode is
active. Reverse mode is active whenever this location contains
a nonzero value. In this case, bit 7 will be set to %1 in each
screen code placed in screen memory by the BSOUT screen
printing routine. This effectively converts screen codes
0-127/$00-$7F to codes 128-255/$80-$FF. In the default
character sets, character patterns in the upper half of each set
are the reverse image of corresponding patterns in the lower
half. The value here is initialized to 0/$00 (reverse mode off)
by the CINT screen editor initialization routine. This location
is set to 128/S80 when the reverse-on character (code 18/$12)
is printed, and reset to 0/$00 when the reverse-off character
(code 146/$92) is printed. The value here is also reset to zero
each time a carriage return character (code 13/$0D) or shifted
return (code 141/$8D) is printed to end the line. This location
can also be reset to zero to disable reverse mode with either
the ESC O or ESC ESC sequences.

$F4 9TSW244
Quote mode flag
This value in this location determines whether quote mode is
active. Quote mode will be in effect whenever this location
contains a nonzero value. In this case, cursor movement keys,
CONTROL key combinations, Commodore-number key (color
change) combinations, and the insert key (SHIFT-INST/DEL)
are deferred—they appear as reverse characters within the cur-
rent screen line instead of having any direct effect on the
screen display. The value here is initialized to 0/$00 (quote
mode off) by the CINT screen editor initialization routine. The
value here is exclusive-ORed with l/$01 each time a quote
character (code 34/$22) is printed. Thus, quote mode will nor-
mally be on after an odd number of quotes (1, 3, and so on)
and off after an even number of quotes (2, 4, and so on). This
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location is reset to zero each time a carriage return character
(code 13/$0D) or shifted return (code 141/$8D) is printed to
end the logical line. This location can also be reset to zero to dis-
able insert mode with either the ESC O or ESC ESC sequences.

2 4 5 $ F 5 INSRT
Number of pending inserts
This location holds the number of character positions which
have been inserted in the current logical line. This is signifi-
cant because insert mode is normally active for inserted char-
acter positions. Insert mode is similar to quote mode—cursor
movement and color change characters are deferred—except
that the insert key is not deferred in insert mode and the de-
lete key (INST/DEL) is deferred. Insert mode is active when-
ever this location contains a nonzero value. The value here is
incremented each time a blank character position is inserted in
the current line, and decremented each time a character is
typed in one of the inserted positions. This location is initial-
ized to 0/$00 (insert mode off) by the CINT screen editor ini-
tialization routine. It is also reset to zero each time a carriage
return character (code 13/$0D) or shifted return (code
141/$8D) is printed to end the line. This location can also be
reset to zero to disable insert mode with either the ESC O or
ESC ESC sequences.

2 4 6 $ F 6 INSFLG
Autoinsert mode flag
Bit 7 of this location determines whether the autoinsert feature
is active. When the bit is %1 , autoinsert mode is active, and a
space is inserted following each character printed to the
screen. If the bit is %0, autoinsert mode is disabled. In this
case, the cursor simply moves to the next character position
after each character is printed. This location is initialized to
0/$00 (autoinsert mode off) during the CINT screen editor ini-
tialization routine. It is also reset to zero by the BASIC sub-
routine that sets flag values when a RUN statement is
executed [$5A81]. This location is set to 255/SFF (which sets
bit 7 to %1) when the ESC A sequence is printed. It can be re-
set to 0/$00 with the ESC C sequence.
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247 $F7 LOCKS
Case switching / scroll pause control flag
Bit 7 of this location determines whether the SHIFT-Commo-
dore key combination can be used to switch character sets. If
this bit is %0, the SCNKEY routine [$C55D] will switch char-
acter sets whenever the SHIFT-Commodore combination is de-
tected. Setting this bit to %1 disables character set switching
with SHIFT-Commodore. However, you can still change char-
acter sets by printing character 14/$0E for the lowercase/
uppercase set, or character 142/$8E for the uppercase/
graphics set. There is no provision for preventing character set
switching using the character codes. This location is initialized
to 0/$00 (switching enabled) by the CINT screen editor initial-
ization routine. The bit can be set to %1 by printing character
code 11/$OB, and reset to %0 by printing character code
12/$0C. (Note that this is a change from earlier Commodore
models, where character 8/$08 disabled switching and charac-
ter 9/$09 reenabled switching.)

Bit 6 of this location controls whether the NO SCROLL
key or CONTROL-S key combination can be used to pause
output to the screen. If this bit is %0, NO SCROLL or CON-
TROL-S will pause printing to the screen until another key is
pressed. Setting this bit to %1 prevents pausing, so that nei-
ther NO SCROLL or CONTROL-S will have any effect on
screen output. (The Commodore key can still be used to slow
down printing.) This location is initialized to 0/$00 (pause en-
abled), and no system routine changes the setting of this bit.
Since the screen editor doesn't provide any character code or
escape sequence for disabling the pause feature, you must
change the value here directly if you wish to make use of the
pause disable feature.

248 $P8 SCROLL
Scroll/link control flag
Bit 7 of this location is tested during the screen editor cursor
movement routines to determine whether a new line will be
scrolled onto the output window after printing on the current
bottom line. If the bit is %0, a new blank line will be opened
at the bottom of the screen (and the top line will be scrolled
off the screen) after printing on the bottom line. Setting the bit
to %1 prevents scrolling; after printing on the bottom line, the
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cursor will wrap around to the top screen line. This bit can be
set to %1 with the ESC M sequence, and reset to %0 with ESC
L.

Bit 6 of this location controls whether physical screen
lines can be linked together to form logical lines. For example,
BASIC allows logical lines up to 160 characters long. If this bit
is %0, linking is allowed. The line link bitmap at 862-865/
$035E-$0361 will indicate which physical lines are part of
longer logical lines. Setting this bit to %1 disables line linking,
in which case no logical line can be more than one physical
line long. This location is initialized to 0/$00 (linking enabled)
during the CINT screen editor initialization routine, and no
system routine changes the setting of this bit. Since the screen
editor doesn't provide a character code or escape sequence for
changing this bit, you must change the value here directly if
you wish to make use of the linking disable feature.

$F9 BEEPER249
Bell enable flag
Bit 7 of this location controls whether or not a tone is pro-
duced when character code 7, the {BELL} character, is printed.
If the bit is %0, then a tone is produced. Setting the bit to %1
prevents the tone. The location is tested during the screen
BSOUT subroutine that handles character 7 [$C98E], The loca-
tion is initialized to 0/$00 (bell enabled) during the CINT
screen editor initialization routine. The flag bit can be set to
%1 using the ESC H sequence, and reset to %0 with ESC G.

250 $FA Unused
This location is unused in the sense that it is not intentionally
altered by any 128 Kernal or BASIC routine. However, a bug
in the screen editor CINT [$C07Bj and SWAPPER [$CD2E]
routines causes this location to be overwritten whenever those
routines are executed. Because those routines are called during
the RUN/STOP-RESTORE sequence, any value you place in
this location will be overwritten any time you press
RUN/ STOP-RESTORE, as well as whenever you switch
screens. Thus, if you use this location in your programs it
should be only as temporary working storage, not for impor-
tant values you might want preserved in the cases mentioned
above.
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251-254 $FB-$FE Unused
These locations are unused by any 128 ROM routines, and are
thus available for use in your BASIC and machine language
programs. This area is not affected by RUN/STOP-RESTORE,
but remember that all zero-page locations, including these, are
cleared to zero during a reset (unless the RUN/STOP key is
held down during the reset; see the reset routine [$E000] for
details).

255 $FF
This location is used as part of the assembly area for character
strings representing the digits of numeric values. Refer to the
next section for details.

Page 1: System Stack
256-511/$0100-$01FF
This page is the system stack, the area where the 8502
microprocessor stores information such as the return addresses
for interrupts and subroutine calls. Some microprocessors
allow longer stacks or allow the stack to be located at various
places in memory, but 6502-family microprocessors like the
128's 8502 have only one 256-byte stack, and it's always page
1. Unlike other Commodore computers, however, the 128 has
the ability to make the 8502 see page 1 anywhere in memory.
The MMU chip has a feature which allows the processor to
exchange page 1 with another page, so that all references to
page 1 (including the processor's stack manipulations) are di-
rected to the alternate page, and references to addresses in the
alternate page are directed to page 1. See the discussion of the
MMU in Chapter 8 for details. The 128 does not normally
make use of this feature; page 1 is normally seen at the true
page 1 locations here.

The storage of data in the stack is controlled by a register
in the microprocessor called the stack pointer, which serves as
an index to the next available address in the stack. The stack
is filled from top to bottom—from location 511/$01FF down-
ward to 256/$100. When no data is in the stack, the stack
pointer contains 255/$FF, indicating that 511/$01FF is the
first available location. (The pointer is a one-byte index, to
which the microprocessor automatically adds 256/$0100 to get

82

$00FF-$010A 255-266

the actual address in page 1.) When a byte of data is pushed
(added) onto the stack, the stack pointer register is automati-
cally decremented to point to the next available address. When
a byte is pulled (removed) from the stack, the register is auto-
matically incremented. The value is not actually deleted, but
incrementing the stack pointer will cause the next byte pushed
onto the stack to overwrite the old value. The RESET routine
[$EO00] begins by resetting the stack pointer to 255/$FF, effec-
tively emptying the stack.

In addition to the stack's use for processor address infor-
mation, BASIC uses it to hold intermediate values during ex-
pression evaluation. In earlier Commodore computers, the
system stack was also used to hold information for BASIC
statements such as GOSUB and FOR that loop back to another
line. Since every FOR statement requires 18 bytes of stack
space, and every GOSUB or DO requires 5 bytes, only a lim-
ited amount of nesting would be possible before all system
stack space was exhausted. BASIC 7.0 maintains a separate
stack at 2048-2559/$0800-$09FF for FOR, GOSUB, and DO.
This allows BASIC 7.0 to use more deeply nested FOR-NEXT
and DO-LOOP loops and more levels of subroutines—and
hence more complex programs. See Chapter 3 for details of
the BASIC stack.

The 8502 normally uses all of page 1 as stack space, but
BASIC manipulates the stack pointer to allow the 128 to use
portions of this area in other ways. The BASIC cold-start rou-
tine [$4023] resets the stack pointer to 251/$FB, so locations
508-511/$01FC-$01FF are not used by BASIC. The CLR rou-
tine [$51F8], also part of NEW and RUN, resets the stack
pointer to 250/$FA. BASIC limits the stack to 201 bytes, halt-
ing with an error if all BASIC stack space is exhausted. The
portions of this page used for purposes other than the stack
behave like any other part of RAM.

255-266 $00FF-$010A
Assembly area for numeric value strings
The routine [S8E42] which generates a character string repre-
senting the floating-point value in FAC1 uses this area to as-
semble the characters for the digits of the value. The first
character of the string will be either a space (for a positive
value in FAC1) or a minus sign (for a negative value). When
numeric values are being printed, the string is assembled start-
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ing at 256/$0100. However, when the string of characters for
a line number is assembled, it starts at 255/$00FF. Because
the routine to add the characters here to the string pool as-
sumes that the string starts at 256/$0100, this will cause the
leading space to be omitted for line number values.

256-268 $0100-$010C
Assembly area for disk boot command
The Kernal BOOT_CALL routine [$F890] uses this area to as-
semble the block read command string to be sent to the drive.
The default command string i s U l : 1 3 0 0 1 00 (held in reverse
order) to read the contents of sector 0 of track 1, the first boot
sector. If more boot sectors follow, the track and sector param-
eters will be updated to form the commands to read the addi-
tional sectors.

256-317 $O1OO-$O13D
Tape error log
The Kernal routine which stores blocks of data on tape writes
two identical copies of the data. That way, if errors are de-
tected when the first copy is read back in, it may be possible
to correct that error from the second block. Whenever the rou-
tine to load a block of data from tape [$EAEB] detects an error
in a byte read from the first copy of the block, it stores the ad-
dress of the erroneous byte in this area. Location 158/$9E
serves as an index to the next available address slot. This area
is sufficient to hold 31 error addresses, so a load error occurs
on the first pass only if more than 31 errors are recorded.
When the second copy of the block is read, any address for
which an error was recorded on the first pass will be loaded
with the corresponding byte from the second copy (unless an
error was also detected for that same address in the second
copy; in that case, a load error occurs).

272-290 $0110-$0122
DOS command work area
The routine [$A3C3] to assemble command strings for the var-
ious BASIC DOS support commands such as HEADER, COPY,
and SCRATCH uses this area to hold information about the
type of command string to assemble.

$ 0 2 0 0 - $ 0 2 A 0 512-672

291-310 $0123-$136
PRINT USING work area
The PRINT USING routine [$9520] uses this area to hold
information about the way the output string is to be
formatted.

294 $0126
Command type indicator for PLAY processing
This location is used during the PLAY statement routine
[$6DE1] to hold a value indicating which PLAY command (V,
O, T, X, or U) is currently being processed.

311-507 $0137-$01FB
Stack space used by BASIC
This is the portion of the stack used while BASIC is active.
The BASIC cold-start routine initializes the stack pointer to
251/$FB, but any subsequent NEW will reinitialize it to
250/$FA. Thus, locations 508-511/$01FC-$01FF (and, after
the first NEW, also 5O7/$1FB) are unused and available for
your own programming. BASIC requires that at least 44 bytes
be available in the stack at the start of any expression evalua-
tion. The stack pointer is tested during the main expression
evaluation routine [$77EF]; if it is less than 99/$63, a FOR-
MULA TOO COMPLEX error occurs. (This is a change from
Commodore 64 BASIC, where the same situation would result
in an OUT OF MEMORY error.)

Input Buffer

BUF512-672 $0200-$O2AO
BASIC and monitor input buffer
This 161-byte area is used to hold input for both BASIC and
the monitor. The BASIC input routine [$4F93] allows logical
program lines up to 160 characters long to be entered. A byte
with the value 0/$00 is added following the last character of
the input. If the line starts with a line number, the line here is
tokenized and transferred to the BASIC program text area. An
immediate mode line (one with no line number) is tokenized
and then executed from the buffer. This buffer is also used to
hold input characters for the GET, GET#, GETKEY, INPUT,
and INPUT* statements, which is why those statements are
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not allowed in immediate mode. The monitor main loop
[$B08B] accepts command strings up to 159 characters long,
and also adds a zero byte following the last character of input
to mark the end of the command.

673 $O2A1 Unused
The BASIC and monitor input routines restrict the length of an
input line to 160 characters plus a zero byte to mark the end
of input in the buffer, for a maximum of 161 bytes. Thus, this
location will never be used for input, and is available for other
uses.

Common Indirect Routines
The routines at 674-763/$02A2-$02FB are copied here from
Kernal ROM at 63488-63577/$F800-$F859 by the routine at
57549/$E0CD, part of the reset sequence. The routines are
placed here in page 2 because this is part of the IK block of
memory that is visible in all banks. These routines are the key
to the operation of the 128—they make the memory banking
system possible by allowing a routine in one bank configura-
tion to access data or call routines in another configuration.
For example, these routines allow BASIC ROM routines to use
different blocks of RAM for program text and variables, and to
see program text in areas of RAM that lie at the same ad-
dresses as BASIC ROM itself. These routines are so integral to
the successful operation of the 128 that the system will proba-
bly crash almost immediately if the routines are accidentally
changed or overwritten.

674-686 $02A2-$02AE FETCH
Retrieves a value from any bank
This routine loads the accumulator value with the contents of
a specified location in any bank. To use this routine, you must
set up a two-byte pointer in zero page to hold the address of
the target location, then store the one-byte address of the
zero-page pointer in location 682/$02AA. You can use the Y
register to specify an offset from the pointer address for the
target location. (If no offset is desired, be sure that the Y regis-
ter contains 0/$00.) The X register should contain the MMU
configuration register setting value which will establish a
memory configuration in which the target location is visible.
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The routine reads and stashes the current MMU configu-
ration register setting, then uses the value in the X register
upon entry as the new configuration register setting. Next, the
contents of the location specified by the address in the pointer
plus the offset in the Y register are loaded into the accumu-
lator. The MMU configuration register is restored to its original
value before exiting.

This routine is normally called via its related Kernal rou-
tine at 63440/$F7D0, which has a jump table entry at 65396/
$FF74. When calling via the Kernal routine, the accumulator
should contain the zero-page pointer address; the Kernal rou-
tine stores the accumulator value upon entry in 682/$02AA,
performing that setup step for you. The X register should con-
tain a bank number (0-15) rather than an MMU configuration
register setting value, since the Kernal routine also performs
the chore of converting the bank number into a configuration
register value,

687-701 $02AF-$02BD STASH
Stores a value in any bank
This routine stores the contents of the accumulator at a speci-
fied location in any bank. Before calling this routine, you must
set up a two-byte pointer in zero page to hold the address of
the target location, then store the one-byte address of the
2ero-page pointer in location 697/$02B9. You can use the Y
register to specify an offset from the pointer address for the
target address. (If no offset is desired, be sure that the Y regis-
ter contains 0/$00.) The X register should contain the MMU
configuration register setting value which will establish a
memory configuration in which the target location is visible.

The routine reads and stashes the current MMU configu-
ration register setting, then uses the value in the X register
upon entry as the new configuration register setting. Next, the
contents of the accumulator upon entry are stored in the loca-
tion specified by the address in the pointer plus the offset in
the Y register. The MMU configuration register is restored to
its original value before exiting.

This routine is normally called via its related Kernal rou-
tine at 63450/$F7DA, which has a jump table entry at
65399/$FF77. When calling via the Kernal routine, the X reg-
ister should instead contain a bank number (0-15), since the
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Kernal routine performs the chore of converting the bank
number into an MMU configuration register setting value.

702-716 $02BE-$02CC CMPARE
Compares accumulator contents against a value from any bank
This routine compares the accumulator value against the con-
tents of a specified location in any bank. Before calling this
routine, you must set up a two-byte pointer in zero page to
hold the address of the target location, then store the one-byte
address of the zero-page pointer in location 712/$02C8. You
can use the Y register to specify an offset from the pointer ad-
dress for the target address, (If no offset is desired, be sure
that the Y register contains 0/$00.) The X register should con-
tain the MMU configuration register setting value which will
establish a memory configuration in which the target location
is visible.

This routine reads and stashes the current MMU configu-
ration register setting, then uses the value in the X register
upon entry as the new configuration register setting. Next, the
value in the accumulator upon entry is compared against the
contents of the location specified by the address in the pointer
plus the offset in the Y register. The MMU configuration regis-
ter is restored to its original value before exiting. The status
register value will reflect the result of the comparison.

This routine is normally called via its related Kernal rou-
tine at 63459/$F7E3, which has a jump table entry at 65402/
$FF7A. When calling via the Kernal routine, the X register
should instead contain a bank number (0-15), since that rou-
tine performs the chore of converting the bank number into an
MMU configuration register setting value.

717-738 $02CD-$02E2 JSRFAR
Calls a subroutine in any bank
(This routine has a Kernal jump table entry at 65390/$FF6E.)
The routine here will jump to a subroutine at any address in
any standard bank configuration. Upon completion of the tar-
get routine, control is returned to the routine which called
JSRFAR, just like a JSR. However, this routine leaves the sys-
tem in the bank 15 configuration, so a routine that uses
JSRFAR must be located in an area of memory visible in the
bank 15 configuration for JSRFAR to properly return to the
calling routine.
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Before calling the routine you must load location 2/$02
with the bank number (0-15) of the target routine and loca-
tions 3-4/$03-$04 with the address of the target routine. In
contrast to the usual low-byte/high-byte format, location
3/$03 should be loaded with the high byte of the address and
location 4/$04 with the low byte. Location 5/$05 should be
loaded with the value you want in the status register when the
target routine is called (use 0/$00 if you don't want any status
register bits set). Optionally, you can also load locations
6-8/$06-$08 with any values you wish the accumulator, X
register, and Y register, respectively, to have when the target
routine is called.

The routine calls JMPFAR to call the subroutine addressed
in locations 3-4 in the bank specified in location 2 and with
the status register value specified in location 5 and processor
register values from locations 6-8. Upon return from the target
routine, the exit values of the accumulator, X register, and Y
register are stored in location 6-8/$06-$08, respectively. The
value of the status register upon exit from the target routine is
stored in location 5/$05, and the exit value of the processor
stack pointer is recorded in location 9/$09. Finally, the routine
switches the system to the bank 15 configuration before re-
turning to the calling routine.

739-763 $02E3-$02FB JMPFAR
Jumps to a routine in any bank
(This routine has a Kernal jump table entry at 65393/SFF71.)
The routine here will jump to a routine at any address in any
standard bank configuration. Before calling the routine you
must load location 2/$02 with the bank number (0-15) of the
target routine and locations 3-4/$03-$04 with the address of
the target routine. In contrast to the usual low-byte/high-byte
format, location 3/$03 should be loaded with the high byte of
the address and location 4/$04 with the low byte. Location
5/$05 should be loaded with the value you want in the status
register when the target routine is called (use 0/$00 if you
don't want any status register bits set). Optionally, you can
also load locations 6-8/$06-$08 with any values you wish the
accumulator, X register, and Y register, respectively, to have
when the target routine is called. The routine pushes the ad-
dress and status register values onto the stack, converts the
bank number value to a configuration register value, stores
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that value in the MMU configuration register, loads the pro-
cessor registers from locations 6-8, and executes an RTI in-
struction, which causes the processor to retrieve status register
and address values from the stack and resume processing at
the specified address.

Indirect Vectors
The next 66 locations are indirect vectors for a variety of
BASIC, Kernal, and screen editor routines. An indirect vector
is a pair of locations that hold an address for an indirect jump
instruction, such as JMP ($0300). The target address of the
JMP will be determined by the value in the specified indirect
vector. Having ROM routines jump through indirect vectors
greatly increases the flexibility of the computer. Even though it
isn't possible to change a routine in ROM, it's possible to add
to or modify a routine that has an indirect vector by redirect-
ing the vector to a RAM-based routine.

764-765 $02FC-$02FD ESC_FN_VEC
Indirect vector in extended function execution routine
The indirect jump through this vector is taken in the extended
function handling subroutine when a two-byte extended func-
tion token is found for which the second byte is greater than
the largest standard extended function token (10/$0A). When
the jump is taken, the accumulator will hold the out-of-range
token value and the status register carry bit will be set. If carry
is not clear upon return from the jump, a SYNTAX error mes-
sage will be generated. The vector normally holds 19576/
$4C78, the address of the instruction following the call to this
vector. This doesn't change the carry setting, so out-of-range
extended function tokens normally result in an error message.
If you add new functions to BASIC, you'll need to change this
vector to point to the routine which executes your new func-
tion. See Chapter 5 for an example.

766-767 $02FE-$02FF BNKVEC
Reserved indirect vector
These two locations are not used by system ROM routines.
Commodore literature indicates that they are reserved for use
as an indirect vector for function ROM routines.
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BASIC Indirect Vectors
The next nine vectors, 768-785/$0300-$0311, are used in
BASIC statement processing routines. The default values for
these vectors are copied from a table at 16999-17016/
$4267-$4278 in BASIC ROM by the BASIC vector initializa-
tion routine [$4251], part of the cold-start sequence. Thus,
unlike the Kernal indirect vectors, the BASIC vectors are not
affected by the RUN/STOP-RESTORE sequence. Any changes
you make to the vectors will remain in effect until the next
cold start of BASIC, as during a reset.

768-769 $ 0 3 0 0 - 9 0 3 0 1 IERROR
Indirect vector for BASIC error handling routine
In BASIC ROM, the jump through this vector is taken at the
beginning of the error handling routine (ERROR [$4D3C]). At
the point the jump is taken, the X register will contain the cur-
rent BASIC error number (0-41, or 128 to print READY) and
the accumulator will hold the last character read from program
text. The default target address of the vector is 19775/$4D3F,
which simply reenters the error handling routine at the point
immediately following the jump. You can redirect this vector
to change the way BASIC handles errors.

In addition to modifying error handling, you can also use
this vector to provide an alternate method of adding com-
mands to BASIC.

770-771 $0302-$0303 IMAIN
Indirect vector in main BASIC loop
The jump through this indirect vector is taken in the main
BASIC direct mode routine [$4DB7] at the point immediately
after the READY prompt has been printed and the mode flag
(127/$7F) has been set for immediate mode. The vector nor-
mally holds 19910/$4DC6, the address of the instruction im-
mediately following the indirect jump. You can redirect this
vector to a routine of your own if you wish to change the be-
havior of BASIC'S immediate mode.

772-773 $0304-$0305 ICRNCH
Indirect vector in BASIC tokenization routine
The jump through this indirect vector is taken at the begin-
ning of the CRUNCH routine [$430A], which is responsible
for converting lines of input text into tokenized program lines.
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The vector normally holds 17165/S430D, the address of the
instruction immediately following the indirect jump. You can
redirect this vector to a routine of your own if you wish to
change the way program lines are tokenized.

774-775 $0306-$0307 IQPLOP
Indirect vector in BASIC detokenization routine
The jump through this indirect vector is taken in the QPLOP
routine [$5123] at the point where the accumulator contains
the next character to be listed from the program line. The vec-
tor normally holds 20817/S5151, the address of the instruc-
tion immediately following the indirect jump. You can redirect
this vector to a routine of your own if you wish to change the
way program lines are listed.

776-777 $0308-$0309 IGONE
Indirect vector in BASIC execution routine
The jump through this indirect vector is taken at the begin-
ning of the GONE routine [S4F92], the routine to execute a
program line. The vector normally holds 19106/$4AA2, the
address of the instruction immediately following the indirect
jump. You can redirect this vector to a routine of your own if
you wish to change the way program lines are executed.

778-779 $030A-$030B IEVAL
Indirect vector in BASIC evaluation routine
The jump through this indirect vector is taken at the begin-
ning of the EVAL routine, which determines the value of the
next variable, string, or number in the program. The vector
normally holds 30938/$78DA, the address of the instruction
immediately following the indirect jump. You can redirect this
vector to a routine of your own if you wish to change the way
values are evaluated.

780-781 $030C-$030D ICRNCH2
Indirect vector for tokenizing additional keywords
The jump through this vector is taken in the tokenization rou-
tine at the point where the first character of the keyword has
been read into the accumulator and the carry bit has been set.
If carry is still set upon return from this jump, the tokenization
process will proceed normally. The vector normally holds
17185/$4321, the address of the instruction immediately fol-
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lowing the jump. Thus, the jump normally has no effect. If
you want to add extended tokens to BASIC, you should redi-
rect this vector to your routine to tokenize the new keywords.
The routine should compare the text pointed to by 61-62/
$3D-$3E with the target keyword. If a match is found, your
routine should return with the second byte of the two-byte ex-
tended token in the accumulator. The X register should be set
to indicate whether the keyword is a statement or a function.
X should be set to 0/$00 for a function, in which case the first
byte will be 206/$CE, or to 255/$FF for a statement, in which
case the first byte will be 254/$FE. The Y register should con-
tain the length of the filename. Finally, you should make sure
that the carry bit is clear upon exit so that your new token will
be properly processed.

782-783 $030E-$030F IQPLOP2
Indirect vector for detokenizing additional keywords
The jump through this indirect vector is taken in the routine
that lists BASIC program lines at the point where two-byte ex-
tended statement or function tokens have been found which
are greater than the largest standard tokens. When the jump is
taken, the accumulator will hold the second byte of the of-
fending token and the X register will hold 0/$00 if the first
byte was 206/$CE, indicating an extended function token, or
255/$FF if the first byte was 254/$FE, indicating an extended
statement token. The status register carry bit will also be set. If
that bit is still set upon return from this indirect jump, the
character will simply be printed. However, if carry is cleared,
the extended keyword will be listed. The vector normally
holds 20941/S51CD, the address of the instruction immedi-
ately following the indirect jump, so carry will normally re-
main set. If you add new extended keywords to BASIC, you
should change this vector to point to the routine to support
listing the keywords.

784-785 $0310-$0311 IGONE2
Indirect vector in extended statement execution subroutine
The jump through this indirect vector is taken in the statement
execution routine at the point where a two-byte extended
statement token has been found with a value greater than one
of the standard extended statement tokens (second byte
greater than 38/$26). When the jump is taken, the accumu-
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lator will hold the second byte of the extended token and the
carry bit will be set. If the carry bit is not clear upon return, a
SYNTAX error will be generated. The vector normally holds
19369/$4BA9, the address of the instruction immediately fol-
lowing the indirect jump. Thus, the out-of-range token will
normally cause an error. If you add new extended-token state-
ments to BASIC, you should change this vector to point to the
address of the routine which executes the new statement. See
Chapter 5 for an example.

786-787 $0312-$0313 Unused
These two locations are not used for any system vector, and
are thus available for your programming. For example, you
could use these locations to set up an indirect vector in one of
your own programs, or to store the original value when
changing one of the other vectors.

Kernal Indirect Vectors
The next 16 vectors, 788-819/$0314-$0333, are initialized
from a table at 57459-57490/$E073-$E092 in Kemal ROM by
the RESTOR routine [$E056]. The RESTOR routine is called
during both the reset and RUN/STOP-RESTORE sequences,
so either of those will reinitialize the vectors. The values in
this vector table can be read or modified using the Kernal
VECTOR routine [$E05BJ.

788-789 $0314-$03l5 IIR9
Indirect vector to IRQ interrupt handling routine
When an IRQ interrupt occurs or a BRK instruction is exe-
cuted, a jump is automatically taken through the processor
IRQ vector at 65534/$FFFE to the handling routine at 65303/
$FF17. That routine stores the accumulator, X and Y register,
and bank configuration values on the stack, then checks
whether the routine was called as the result of an IRQ or a
BRK. If an IRQ was responsible, a jump is taken through this
indirect vector. The vector normally holds 64101/$FA65, the
address of the standard system IRQ routine. You can redirect
this vector to a routine of your own to add custom steps to the
IRQ process. However, your target routine must be visible in
bank 15, since that is how memory will be configured when

the jump through this vector is taken. If your routine does not
jump to the standard IRQ handler, it must exit by jumping to
the common IRQ exit routine at 65331/$FF33.

790-791 $0316-$0317 IBRK
Indirect vector to BRK instruction handling
When an IRQ interrupt occurs or a BRK instruction is exe-
cuted, a jump is automatically taken through the processor
IRQ vector at 65534/$FFFE to the handling routine at 65303/
$FF17. That routine stores the accumulator, X and Y register,
and bank configuration values on the stack, then checks
whether the routine was called as the result of an IRQ or a
BRK. If the execution of a BRK was responsible, a jump is
taken through this indirect vector. The vector normally holds
45059/$B003, the address of the BRK entry into the machine
language monitor. You can redirect this vector to a routine of
your own if you want some other handling of BRK
instructions.

792-793 $0318-$0319 INMI
Indirect vector to NMI interrupt handling routine
When an NMI interrupt occurs, a jump is automatically taken
through the processor NMI vector at 65530/$FFFA to the NMI
handling routine at 65285/$FF05. That routine stores the ac-
cumulator, X and Y register, and bank configuration values on
the stack, then configures the system for bank 15 and takes a
jump through this indirect vector. The vector normally holds
64064/$FA40, the address of the standard system NMI service
routine. You can redirect this vector to a routine of your own
to add custom steps to the NMI process. However, your rou-
tine must be in an area of memory visible in bank 15, since
that is how memory will be configured when the jump is
taken. If your routine does not jump to the standard NMI han-
dler, it must exit by jumping to the common IRQ exit routine
at65331/$FF33.

794-795 $031A-$031B IOPEN
Indirect vector to Kernal OPEN routine
This vector is the normal link between the Kernal jump table
entry at 65472/$FFC0 and the OPEN routine at 61373/
$EFBD, You can redirect this vector to a routine of your own if
you wish to modify the behavior of OPEN.
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796-797 $031C-$031D ICLOSE
Indirect vector to Kernal CLOSE routine
This vector is the normal link between the Kernal jump table
entry at 65475/$FFC3 and the CLOSE routine at 61832/
$F188. You can redirect this vector to a routine of your own if
you wish to modify the behavior of CLOSE. When the jump is
taken, the accumulator should hold the number of the logical
file to be closed.

798-799 $031E-$O3IF ICHKIN
Indirect vector to Kernal CHKIN routine
This vector is the normal link between the Kernal jump table
entry at 65478/$FFC6 and the CHKIN routine at 61702/
$F106. You can redirect this vector to a routine of your own if
you wish to modify the behavior of CHKIN. When the jump is
taken, the X register should hold the number of the logical file
selected as the input source.

800-801 $0320-$0321 ICKOUT
Indirect vector to Kernal CKOUT routine
This vector is the normal link between the Kernal jump table
entry at 65481/$FFC9 and the CKOUT routine at 61772/
$F14C. You can redirect this vector to a routine of your own if
you wish to modify the behavior of CKOUT. When the jump
is taken, the X register should hold the number of the logical
file selected as the output source.

802-803 S 0 3 2 2 - S 0 3 2 3 ICLRCH
Indirect vector to Kernal CLRCH routine
This vector is the normal link between the Kernal jump table
entry at 65484/$FFCC and the CLRCH routine at 61990/
$F226. You can redirect this vector to a routine of your own if
you wish to modify the behavior of CLRCH.

804-805 S0324-$0325 IBASIN
Indirect vector to Kernal BASIN routine
This vector is the normal link between the Kernal jump table
entry at 65487/$FFCE and the BASIN routine at 61190/
$EF06. You can redirect this vector to a routine of your own if
you wish to modify the behavior of BASIN. The routines
which call BASIN expect it to return a character in the
accumulator.
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806-807 $0326-$0327 IBSOUT
Indirect vector to Kernal BSOUT routine
This vector is the normal link between the Kernal jump table
entry at 65490/$FFD2 and the BSOUT routine at 61305/
$EF79. You can redirect this vector to a routine of your own if
you wish to modify the behavior of BSOUT. When this rou-
tine is called, the value to be output should be in the
accumulator.

808-809 $0328-^0329 ISTOP
Indirect vector to Kernal STOP routine
This vector is the normal link between the Kernal jump table
entry at 655O5/$FFE1 and the STOP routine at 63086/$F66E.
You can redirect this vector to a routine of your own if you
wish to modify the behavior of STOP. The routines which call
STOP expect it to return with the status register Z bit set if the
RUN/STOP key was pressed, or clear otherwise.

810-811 $ 0 3 2 A - $ 0 3 2 B IGETIN
Indirect vector to Kernal GETIN routine
This vector is the normal link between the Kernal jump table
entry at 65508/$FFE4 and the GETIN routine at 61163/
$EEEB. You can redirect this vector to a routine of your own if
you wish to modify the behavior of GETIN. The routines
which call GETIN expect it to return a character code in the
accumulator.

812-813 $032C-$032D ICLALL
Indirect vector to Kernal CLALL routine
This vector is the normal link between the Kernal jump table
entry at 65511/$FFE7 and the CLALL routine 61986/$F222.
You can redirect this vector to a routine of your own if you
wish to modify the behavior of CLALL,

814-815 $032E-$032F IEXMON
Indirect vector in monitor command execution routine
This indirect vector appears in the machine language monitor's
main loop [$B08B] at the point where the first nonspace char-
acter has been read from the input buffer and is ready to be
interpreted as a command. The vector normally holds the ad-
dress 45062/$B006, which in turn is a vector back to 45234/
$B0B2, the address immediately following the indirect jump.
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However you can redirect this vector to a routine of your own
if you wish to add commands to the machine language moni-
tor. The following example adds two new monitor com-
mands—P, which behaves like D (disassemble) but routes
output to the printer, and Q, which closes the file to the
printer:

;Redirect vector to new handling routine0D00
0D02
0D05
OD07
ODOA
ODOB
ODOD
ODOF
0D11
0D14
0D17
0D1A
GD1C
0D1E
0D2O
0D21
0D23
0D26
0D28
0D2B
0D2E
0D30
D033

LDA
STA
LDA
STA
RTS
CMP
BNE
LDA
JSR
JSR
JMP
CMP
BNE
LDA
TAX
LDY
JSR
LDA
JSR
JSR
LDA
JSR
LDA

#$0B
$032E
#$0D
$032F

#$51
$OD1A
#$04
$FFC3
$FFCC
$B08B
#$50
$0D3S
#$04

#00
$FFBA
#$00
$FFBD
$FFCO
#$04
$FFC9
#$44

;Is character code for Q?

;If so, close logical file 4

;Restore normal I/O channels (CLRCH)
;Retum to monitor main loop
;Is character code for P?

;H so, OPEN 4,4,0

0D35 JMP $B006

;Set logical file 4 for output

;Change monitor command to D
(disassemble)
;Return to monitor command processing
loop

816-817 $0330-$0331 ILOAD
Indirect vector in Kernal LOAD routine
This indirect vector appears in the Kernal LOAD routine
[$F265] at the point after the starting address (in X and Y
when the routine is entered) has been stored in 195-196/
$C3-$C4. The accumulator should still contain a value indicat-
ing whether the operation is a load or a verify (0/$00 for load,
nonzero for verify). The vector normally holds 62060/$F26C,
the address immediately following the indirect jump. You can
redirect this vector to a routine of your own if you wish to
modify the behavior of LOAD.
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818-819 $0332-$0333 ISAVE
Indirect vector in Kernal SAVE routine
This indirect vector appears in the Kernal SAVE routine
[$F53E] at the point after the ending address has been stored
in 174-175/$AE-$AF and the starting address has been stored
in 193-194/$C1-$C2. The vector normally holds 62798/
$F54E, the address immediately following the indirect jump.
You can redirect this vector to a routine of your own if you
wish to modify the behavior of SAVE.

Screen Editor Indirect Vectors
The next five vectors, 820-829/$0334-$033D, are copied from
a table at $C065-$C06E in screen editor ROM by the CINT
routine [$C07B] during the reset sequence. CINT is also part of
RUN/STOP-RESTORE, but a flag in the routine is normally
used to skip the vector initialization step in this case. As a re-
sult, vector addresses aren't usually changed by RUN/STOP-
RESTORE.

820-821 $0334-$0335 CTLVEC
Indirect vector in screen BSOUT handling
The jump through this indirect vector is taken as the first step
in the screen BSOUT subroutine [$C7B6] which processes
character code values less than 32/$20. At the time the jump
is taken, the accumulator holds the current character code. The
vector normally holds 51129/$C7B9, the address immediately
following the indirect jump. You can change this vector to
point to a routine of your own if you wish to change the
printing behavior of character codes in the range 0-31/
$00-$lF. All codes in this range perform cursor movements,
color changes, or other control functions rather than printing
characters. If you wish to add new control functions, codes 0,
1, 3, 4, 6, 16, 21-23, 25, and 26 are currently unused.

822-823 $0336-$0337 SHFVEC
Indirect vector in screen BSOUT handling
The jump through this indirect vector is taken as the first step
in the screen BSOUT subroutine [$C802] which processes
character code values greater than 127/$7F. At the time the
jump is taken, the accumulator holds the current character
code. The vector normally holds 51205/$C805, the address

99



824-825 $0338-$0339

immediately following the indirect jump. You can change this
vector to point to a routine of your own if you wish to change
the printing behavior of character codes in the range
128-255/$80-$FF. Codes 128-159/$81-$9F perform cursor
movements, color changes, or other control functions rather
than printing characters. If you wish to add new control func-
tions, codes 128, 131, and 132 are currently unused.

824-825 $0338-$0339 ESCVEC
Indirect vector in ESC sequence handling routine
The jump through this indirect vector is taken as the first step
in the screen BSOUT subroutine [$C9BE] which processes ESC
(escape) key sequences. At the time the jump is taken, a test
will have determined that the previous character was ESC
(code 27/$lB). The accumulator holds the current character
code, the one which followed ESC. The vector normally holds
51649/$C9C1, the address immediately following the indirect
jump. You can redirect this vector to add your own ESC se-
quences. The following example adds ESC T, which moves the
position of the bitmap/text division of a screen line up one
row each time the sequence is used:

1400 LDA #$0B ;Redlrect vector to handling routine
1402 STA $0338
1405 LDA #$14
1407 STA $0339
140A RTS
140B CMP #$5E ;Is character t?
140D BEQ $1412
140F JMP $C9C1 ;If not, jump to normal processing

routine
1412 LDA $D8 ;Is a split screen in use?
1414 AND #$40
1416 BEQ $140F ;If not, use normal processing routine
1418 LDA $0A34 ;Is the split already at the top row of the

screen?
141B CMP #$3A
141D BCC $140F ;If so, ignore this sequence
141F SBC #$08 ;Move the split position up one row (8

scan lines)
1421 STA $0A34
1424 RTS
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826-827 $033A-$033B KEYVEC
Indirect vector in keyboard scanning routine
The jump through this indirect vector is taken during the
SCNKEY routine [$C55D] at the point following completion of
the keyscan and the evaluation of the shift key status. At the
point the jump is taken, the accumulator (along with location
212/$D4) will contain the current keyboard matrix code, and
location 211/$D3 will reflect the current shift key status. The
vector normally holds the address 5O657/$C5E1, the point in
the keyscan routine immediately following the indirect jump,
but you can redirect the vector if you wish to change the be-
havior of the keyscan routine.

828-829 $033C-$033D KEYCHK
Indirect vector in keyboard scanning routine
The jump through this indirect vector is taken during the
SCNKEY routine [$C55D] after the character code for the
keypress has been read from the decoding table and immedi-
ately before the test for a programmable key. At the point the
jump is taken, the accumulator will contain the character code
corresponding to the current keypress and the X register will
contain the current shift key status (from 211/$D3). The vec-
tor normally holds 50861/$C6AD, the point in the keyscan
routine immediately following the indirect jump, but you can
redirect this pointer to modify the behavior of the keyscan.

One use of this vector is to disable programmable keys.
While the definition strings are handy, sometimes—particu-
larly when you are adapting programs from the Commodore
64—you might like for them to instead generate their standard
character codes. One way to achieve this is to change this
pointer so that the test for programmable keys is bypassed:

POKE 828,183
This changes the low byte of the pointer so that the target ad-
dress becomes 50871/$C6B7, the point in the routine immedi-
ately beyond the test for programmable keys.

Screen Editor Tables
Locations 830-865/$033E-$0361 are the domain of the screen
editor.
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830-841 $033E-$0349 $034A-$0353 842-851

830-841 $033E-$0349 DECODE
Keyboard table pointers
These six 2-byte pointers hold the starting addresses of the 89-
byte tables used to translate the matrix code for the current
keypress into a character code:
Pointer Shift pattern
830-831/$033E-$033F Unshifted

SHIFT
Commodore
CONTROL
ALT

832-833/$0340-$0341
834-835/$0342-$0343
836-837/$0344-$0345
838-839/$0346-$0347

840-841/$0348-$0349

Default table address
64128/$FA80
64217/$FAD9
64306/SFB32
64395/$FB8B
64128/$FA80 (same as
unshifted)
64484/$FBE4CAPS LOCK

The status of the five shift keys, recorded in 211/$D3, is used
to select one of the table addresses from this area. If no shift
key is pressed, the unshifted table is used. If one shift key is
pressed, the appropriate decoding table is selected. If more
than one shift key is pressed simultaneously, the table is se-
lected as follows: CONTROL has the highest priority; when it
is pressed in combination with any other shift keys, the CON-
TROL table is used. The SHIFT and Commodore keys are next
in priority; however, when they are pressed simultaneously,
no decoding table is selected (although the combination may
cause character set switching). ALT and CAPS LOCK have the
lowest priority. They are effective in selecting the decoding ta-
ble only if no other shift keys are being pressed. If pressed
simultaneously, both are ignored and the unshifted table is
used. Once a table is selected, its address is loaded into
204-205/$CC-$CD, and the current matrix code in 212/$D4
is used as an offset to the specific character code to be re-
trieved from the table.

The default decoding table addresses are copied here from
a table at 49263/$C06F in screen editor ROM by the CINT
screen editor initialization routine [$C07B] during the reset se-
quence. CINT is also part of the RUN/STOP-RESTORE se-
quence, but it includes a flag that normally prevents the
vectors from being reinitialized in that case. To redefine the
128 keyboard, you need only set up a new decoding table in
RAM and change one of the address values here to point to
the new table. For example, if you've used the CAPS LOCK
key, you've probably discovered that it doesn't appear to af-
fect the Q key. Actually, the problem is that whoever prepared

the CAPS LOCK decoding table used the wrong value for the
Q key entry. The following shows how to fix the CAPS-Q bug
by setting up a new copy of the decoding table for that shift
pattern:
100 REM ** COPY CAPS LOCK TABLE TO RAM
110 FOR 1=0 TO 88:POKE 6912 + I,PEEK(64484 + I):NEXT
120 REM ** CHANGE INCORRECT CHARACTER CODE FOR Q
130 POKE 6912 + 62,209
140 REM ** REDIRECT POINTER TO NEW TABLE
150 POKE 840,0:POKE 841,27

A custom table should consist of 89 values in matrix code
order. Refer to Tables 9-1-9-5 for a listing of the default ta-
bles. The final value in the table should be 255/$FF, and you
should be sure to include the shift key codes in the proper lo-
cations. The following program sets up a Dvorak-style
keyboard:

100 FOR 1=0 TO 88:READ K:POKE 691.2 + 1 ,K:NEXT
110 POKE 830,0:POKE S31,27:END
120 DATA 20 , 1 3 , 2 9 , 136 , 1 3 3 , 134 , 135 , 1 7 , 5 1 , 44
130 DATA 6 5 , 5 2 , 5 9 , 7 9 , 4 6 , I , 5 3 , 8 0 , 6 9 , 54
140 DATA 74 , 8 5 , 8 9 , 8 1 , 5 5 , 70 , 7 3 , 56 , 8 8 , 68
150 DATA 7 1 , 7 5 , 5 7 , 6 7 , 7 2 , 4 8 , 7 7 , 84 , 8 2 , 66
160 DATA 4 3 , 76 , 7 8 , 4 5 , 8 6 , 8 3 , 4 7 , 8 7 , 9 2 , 42
170 DATA 5 9 , 19 , 1 , 6 1 , 94 , 9 0 , 4 9 , 9 5 , 4 , 50
180 DATA 32 , 2, 3 9 , 3, 132, 5 6 , 5 3 , 9, 50 , 52
190 DATA 55 , 4 9 , 2 7 , 4 3 , 4 5 , 10 , 1 3 , 54 , 5 7 , 51
200 DATA 8, 4 8 , 4 6 , 145 , 1 7 , 1 5 7 , 2 9 , 2 5 5 , 255

842-851 $034A-$0353 KEYBUF
Keyboard buffer
This ten-byte area is the keyboard buffer. When the SCNKEY
routine [$C55D] detects a valid keypress, it generates a cor-
responding character code. The character code is then stored
in this buffer to await processing. (The Kernal GETIN and BA-
SIN routines are normally used to retrieve characters from this
buffer.) Location 208/$D0 holds the number of characters cur-
rently waiting in the buffer. The maximum number of charac-
ters that can be held in the buffer is determined by the value
in location 2592/$0A20. If the value there is greater than 10,
the keyboard buffer will overwrite the following memory
areas such as the tab stop bitmap. When the value in 208/$DO
equals the value in 2592/$0A20, the buffer is full; any further
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842-851 $034A-$0353 $035E-$0361 862-865

keypresses will be ignored until one or more characters are re-
moved from the buffer.

This key buffering system allows for a powerful program-
ming technique known as the dynamic keyboard. By storing
character code values in the buffer and storing the number of
characters in 208/$D0, a program can appear to type on the
keyboard. For example, the following lines add a default an-
swer to the INPUT prompt:
200 POKE 842,89: POKE 208,1: REM PLACE Y IN BUFFER
210 INPUT'ARE YOU SURE";A$
When the INPUT statement begins to look for characters, it
will find the Y already in the buffer.

An even more powerful use of the dynamic keyboard
technique is to allow a program to execute a series of com-
mands after it ends. When a program is finished executing,
BASIC looks to the keyboard buffer for the characters of the
next command. Thus, any characters placed in the buffer
while a program is running will effectively be typed if the pro-
gram ends. Since the buffer can hold only ten characters, the
common practice is to print commands at carefully planned
places on the screen, then fill the buffer with cursor move-
ment and RETURN characters to execute the commands. The
following program illustrates this technique. It creates DATA
statements for one of the sprite patterns. You can adapt the
program for your own needs by changing the values in line
10. AD is the starting address of the data, NI is the number of
DATA items to be generated, and LN is the line number of
the first DATA statement to be generated. The program prints
a DATA line and a GOTO statement on the screen, then
places {HOME} {RETURN} {RETURN} in the buffer and ends.
The buffered characters are executed, entering the DATA line
and restarting the program.

10 AD=3584:NI=64:LN=100!l=0
20 IF I=>NI THEN END
30 PRINT"[CLR}";LN;"DATA";:LN=LN+I0:J=0
40 PRINT P E E K ( A D + I ) ; : I = I + 1 : I P I=>NI THEN 60
50 J = J + 1 ; I F J<8 THEN PRINT"{LEFT},";:GOTO 40
60 PRINT:PRINT"GOTO 20"
70 POKE 842,I9:POKE 843,13:POKE 844,.13:POKE 2 0 3 , 3 : E

ND
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852-861 $0354-$035D TABMAP
Tab stop bitmap
These ten bytes provide an 80-bit map of the display's hori-
zontal character positions. Each horizontal position in the cur-
rently active display has a corresponding bit in the map. For
the VIC chip's 40-column display, only the first five bytes (40
bits) are used. When a bit is set to % 1 , a tab stop is estab-
lished at the corresponding screen column. Printing the TAB
character, code 9/$09, or pressing the TAB key will move the
cursor rightward to the next tab stop (or the right window
margin if no tab stops are set between the current cursor posi-
tion and the right margin).

During the CINT screen editor initialization sequence, all
locations in the map are set to 128/$80, which establishes a
tab stop every eighth column. Printing character code 24/$18
(or pressing SHIFT-TAB) toggles the map bit corresponding to
the current cursor column, setting a tab stop if the bit was pre-
viously %0 or clearing the tab stop if the bit was previously
% 1 . The ESC Z sequence can be used to clear all tab stops (all
locations in the map will be filled with 0/$00), and the ESC Y
sequence can be used to restore default tab stops (all locations
in the map will be filled with 128/S80).

When the active display is switched, screen editor SWAP-
PER routine [$CD2E] exchanges the contents of this area with
the contents of locations 2656-2665/$0A60-$0A69, the stor-
age area for the inactive display tab stop bitmap. Thus, tab
stop settings are preserved while the screen is inactive,

862-865 $035E-$0361 LNKMAP
Line link bitmap
These four bytes are used to provide a 25-bit map of the 25
rows of the active screen display (bits 0-6 of location
865/$361 are unused). Each row of the currently active dis-
play has a corresponding bit in the map. When a bit is set to
% 1 , the corresponding row is linked to the row above as part
of a logical line. Bits set to %0 indicate unlinked lines (or rows
that are the first physical line of a logical line). These locations
are cleared to 0/$00, unlinking all lines, whenever the output
window is cleared or reset to full screen size, or whenever the
screen editor WINDOW routine is used to change the size of
the output window. A screen line is normally linked to the
one above when the cursor moves onto the line by wrapping
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from the right margin of the line above. Line linking can be
disabled by setting the flag bit in location 248/$F8.

When the active display is switched, the screen editor
SWAPPER routine [$CD2E] exchanges the contents of this
area with the contents of locations 2666-2669/$0A6A-$0A6D,
the storage area for the inactive display line link bitmap. Thus,
the line link status is preserved when the screen is inactive.

Kernal File Tables
The following three ten-byte tables hold information on any
currently open logical files. The three tables are parallel; the
entry for a particular file will appear at the same position in
all three tables. Location 152/$98 serves as an index to the
next available entry in the tables. The fact that there are only
ten bytes per table means that no more than ten logical files
may be opened simultaneously.

866-875 $0362-$036B LATBL
Logical file number table for currently open files
When a logical file is opened, the OPEN routine [$EFBD] ex-
amines the contents of this table. A FILE OPEN error occurs if
an existing file already uses the specified logical file number,
and a TOO MANY FILES error occurs if ten files are already
open. Otherwise, the logical file number for the file is stored
in the next available entry in this table. When the Kernal
CHKIN [$F106] or CKOUT [$F14C] routines are used to select
a logical file for input or output, this table is searched for the
specified logical file number. A FILE NOT OPEN error occurs
if the file number is not found in the table. Otherwise, the cor-
responding device number and secondary address will be read
from the respective tables. When a file is closed, the Kernal
CLOSE routine [$F188] removes the file's entry from this table.

The Kernal includes a routine [LKUPLA, $F79D] to search
for a particular file number in this table.

876-885 $036C-$0375 DNTBL
Device number table for currently open files
When a logical file is opened, the OPEN routine [$EFBD]
stores the device number for the file in the next available en-
try in this table. When the Kernal CHKIN [$F106] or CKOUT
[$F14C] routines are used to select a logical file for input or
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output, the device number for the selected file will be read
from this table. When a file is closed, the Kernal CLOSE rou-
tine [$F188] removes the file's entry from this table.

886-895 $0376-$037F SATBL
Secondary address table for currently open files
When a logical file is opened, the OPEN routine [$EFBD] will
OR the specified secondary address for the file with the value
96/$60, then store the result in the next available entry in this
table. When the Kernal CHKIN [$F106] or CKOUT [$F14C]
routines are used to select a logical file for input or output, the
secondary address for the selected file will be read from this
table. When a file is closed, the Kernal CLOSE routine [$F188]
removes the file's entry from this table.

The Kernal includes a routine [LKUPSA, $F786] to search
for a particular secondary address in this table.

BASIC Working Storage
The remainder of page 3, locations 896-1023/$0380-$03FF, is
used to hold BASIC character retrieval subroutines and to
store values for a variety of BASIC routines. The subroutines
in locations 896-980/$0380-$03D4 are copied here from loca-
tions 17017-17101/$4279-$42CD in BASIC ROM during the
BASIC cold-start sequence. The routines are not reinitialized
by RUN/STOP-RESTORE.

896-926 $0380-$039E CHRGET
Main BASIC character retrieval routine
This is BASIC'S primary routine for reading program text for
interpretation and execution. The routine is designed to re-
trieve the next nonspace character from a BASIC line (in bank
0), and to return information about the type of character re-
trieved. The routine begins by incrementing the current ad-
dress in the text pointer at locations 61-62/$3D-$3E. The
system is set for the bank 0 configuration, the value at the lo-
cation specified in the pointer is loaded into the accumulator,
and the system is reset for the bank 14 configuration. The rou-
tine then performs a series of tests that will set the processor
status register to reflect the type of character that was read. If
a space character (code 32/$20) is read, the routine loops back
to read another character (which is why spacing is not usually
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significant in BASIC program lines). If the character is one of
the numbers 0-9, the carry bit will be clear (carry will be set if
the character is not a digit). If the character was a colon (:),
BASIC'S end-of-statement marker, or a zero byte, BASIC'S
end-of-line marker, the status register Z bit will be set; other-
wise, the Z bit will be clear.

This routine has an alternate entry point at 902/$386,
called CHRGOT, which retrieves and tests the current charac-
ter, the one at the address currently in 61-62/$3D-$3E, with-
out updating the pointer.

Since this routine is in RAM, it can be modified to change
the way BASIC program text is read. Refer to Chapter 5 for
details on how you can use this technique to add new com-
mands to BASIC.

927-938 $039F-$03AA INDSUB_RAMO
Alternate routine for reading characters from program text
This routine retrieves a character from program text (bank 0).
The value in the accumulator upon entry specifies the address
of the zero-page pointer containing the base address, and the
value in the Y register specifies the offset from this base ad-
dress to the character to be read. The character will be in the
accumulator upon return from the routine and the system will
be left in the bank 14 configuration. BASIC ROM includes a
collection of character retrieval subroutines (17102-17159/
$42CE-$4307) that make use of this routine.

939-950 $03AB-$03B6 INDSUB_RAM1
Alternate routine for reading characters from variable storage
This routine retrieves a character from the variable storage
area (bank 1). The value in the accumulator upon entry speci-
fies the address of the zero-page pointer containing the base
address, and the value in the Y register specifies the offset
from this base address to the character to be read. The charac-
ter will be in the accumulator upon return from the routine
and the system will be left in the alternate bank 14 configura-
tion that includes block 1 RAM. BASIC ROM includes a col-
lection of character retrieval subroutines (17102-17159/
$42CE-$4307) that make use of this routine.
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951-959 $03B7-$03BF INDIN1_RAM1
Alternate routine to retrieve a character from variable storage
This routine retrieves a character from the variable storage
area (bank 1) using locations 36-37/$24-$25 as a pointer and
the contents of the Y register as an offset from the address in
the pointer. The character will be in the accumulator upon re-
turn from the routine and the system will be left in the alter-
nate bank 14 configuration that includes block 1 RAM.

960-968 $03C0-$03C8 INDIN2
Alternate routine to retrieve a character from program text
This routine retrieves a character from program text (bank 0)
using locations 38-39/$26-$27 as a pointer and the contents
of the Y register as an offset from the address in the pointer.
The character will be in the accumulator upon return from the
routine and the system will be left in the bank 14
configuration.

969-977 $03C9-$03Dl INDTXT
Alternate routine to retrieve current program text character
This routine retrieves the current program text character using
61-62/$3D-$3E as a pointer. The character will be in the ac-
cumulator upon return from the routine and the system will
be left in the bank 14 configuration. The routine is similar to
the CHRGOT entry into GHRGET, but without the tests for
character type.

978-980 $03D2-$03D4 ZERO
Null descriptor
If the routine [$7AAF] which searches for a variable name in
the variable table fails to find the name when called by EVAL
[$7978] or POINTER [$82FA], the address of this area is re-
turned as the variable descriptor address. This prevents vari-
able table entries from being created if a variable name is first
used in an expression argument or in the POINTER function.
For example, if you use B$ = A$ or AD = POINTER(A$) when
no variable A$ exists, no entry for A$ will be created. These
three locations are all filled with the value 0/$00, copied here
from ROM along with the preceding subroutines.
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981 $03D5 CURRENT-BANK
Bank number for BASIC operations
The value in this location specifies the bank number used dur-
ing BASIC routines which directly access memory. The value
here doesn't affect the current system configuration—only the
configuration that will be established for certain operations.
The value here specifies the bank to which data will stored
when the POKE statement is used, or from which data will be
read when the PEEK statement is used. The value here deter-
mines the bank configuration in which the target address for a
SYS statement will be seen. It also determines the bank for the
address used in the WAIT statement. The value here deter-
mines the default bank for the BOOT, BLOAD, and BSAVE
statements. It also determines the system bank affected by the
STASH, FETCH, and SWAP statements.

The value here is initialized to 15/$0F during the BASIC
cold-start sequence, so bank 15 is the default. The BANK
statement can be used to change the value here.

982-985 $03D6-$03D9 TMPDES
Pointers for INSTR evaluation
These locations are used as working pointers for the INSTR
statement routine [$99C1]. Locations 982-983/$03D6-$03D7
hold the address of the first string parameter and locations
984-985/$03D8-$03D9 hold the address of the second string.

$03DA FIN_BANK986
String block flag
This location is used during the routine [$8D22] to convert
character strings into floating-point values to indicate whether
the string being converted resides in BASIC program text
(block 0 RAM) or in the string pool {block 1 RAM).

987-990 $03DB-$03DE SAVSIZ
Temporary storage for SHAPE data
These locations are used during the SSHAPE routine [$642B]
to hold coordinates of the area being saved, and during the
SPRSAV routine [$76EC] to hold the descriptor of the first pa-
rameter value.
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991 $03DF BITS
Floating-point overflow byte
This location is used for working storage while aligning float-
ing-point values for mathematical operations, or for converting
floating-point values into integers. The value here is initialized
to O/$0O during the BASIC cold-start sequence, and will be re-
set to that value during CLR or warm start.

992-993 $03E0-$03El SPRTMP
Temporary pointer storage
These locations are used during the SPRSAV routine [$76EC]
to temporarily preserve the current value in the CHRGET
pointer (61-62/$3D-$3E).

9 9 4 $O3E2 FG_BG
Standard bitmap color fill value
This location holds the color memory fill pattern for standard
bitmapped mode. When the SCNCLR routine [$6A79] is used
to clear the standard bitmapped (GRAPHIC 1 or GRAPHIC 2)
display, all locations in the video matrix area will be filled
with the value here. (The SCNCLR routine is also used when
the clear parameter is specified in a GRAPHIC statement.) In
standard bitmapped mode, the video matrix area holds fore-
ground and background color information, so the value here
determines the default foreground and background colors for
all screen positions after the screen is cleared.

Whenever the BASIC graphics routines are used to draw
anything on the standard bitmapped display, the value in this
location will determine the color of the line drawn. If color
source 0 was specified for the line, the value in the lower four
bits here will be stored in the lower four bits of the video ma-
trix locations corresponding to the line's location in the bit-
map. If color source 1 is specified, the value in the upper four
bits here will be stored in the upper four bits of the video matrix
locations corresponding to the line's location in the bitmap.

The value in this location is updated whenever the
COLOR statement [$69E2] is executed. The high four bits here
are set to the value in the lower four bits of the foreground
color in location 134/$86. The lower four bits here are set to
the value in the lower four bits of the VIC background color
register at 53281/$D021. These locations are initialized during
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the BASIC cold-start sequence to the default foreground and
background colors, so this location will initially hold 219/$DB,
for a light green foreground and dark gray background. The
value here is not affected by RUN/STOP-RESTORE.

995 $03E3 FG-JMC1
Multicolor bitmap color fill value
This location holds the color memory fill pattern for multicolor
bitmapped mode. When the SCNCLR routine [$6A79] is used
to clear the multicolor bitmapped (GRAPHIC 3 or GRAPHIC
4) display, all locations in the video matrix area will be filled
with the value here. (The SCNCLR routine is also used when
the clear parameter is specified in a GRAPHIC statement.) In
multicolor bitmapped mode, the video matrix area holds color
information for pixels with %01 and %10 bit patterns, so the
value here determines the default colors for those pixel pat-
terns in all screen positions after the screen is cleared.

For the BASIC graphics routines that draw on the multi-
color bitmapped display, the value in this location will deter-
mine the color of any lines drawn using color sources 1 or 2.
If color source 1 was specified for the line, the value in the
upper four bits here will be stored in the upper four bits of the
video matrix locations corresponding to the line's location in
the bitmap. If color source 2 was specified, the value in the
lower four bits here will be stored in the lower four bits of the
video matrix locations corresponding to the line's location in
the bitmap.

The value in these locations can be changed with the
COLOR statement [$69E2]. The high four bits here are set to
the value in the lower four bits of the foreground color in lo-
cation 134/$86. The lower four bits here are set to the multi-
color 1 value in the lower four bits of location 132/$84. The
location is initialized during the BASIC cold-start sequence to
the default multicolor pixel colors for %01 and %10 patterns,
so this location will initially hold 2O9/$D1, for light green
%01 pixels and white %1O pixels. The value here is not af-
fected by RUN/STOP-RESTORE.

996-1007 $03E4-$03EF Unused
The locations in this range are not used by any system ROM
routine, and are thus available for your own programming.

112

$03FD-$03FF 1021-1023

1008-1020 $03F0-$03FC DMA
DMA_CALL execution routine
This area holds the RAM-resident portion of the Kernal
DMA_CALL routine [$F7A5]. The routine is copied here from
Kernal ROM during the reset sequence. It is designed to initi-
ate a DMA (direct memory access) command to the REC
(RAM expansion controller) chip in an installed memory ex-
pansion module. The routine loads the current memory con-
figuration register contents, then stores the contents of the Y
register in the REC command register address (57089/$DF01)
and stores the contents of the accumulator in the MMU mem-
ory configuration register (65280/$FF00). If the REC is config-
ured in its default state, storing the value in the MMU register
should trigger the specified REC operation. See Chapter 8 for
more information about the REC chip. Upon completion of the
operation, the original memory configuration register setting
will be restored.

1021-1023 $03FD-$03FF Unused
The locations in this range are not used by any system ROM
routine, and are thus available for your own programming.
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Storage

VIC Default Screen Memory
1024-2047/$0400-$07FF
This IK area is the default location for the VIC chip's screen
memory in character (GRAPHIC 0) mode. It's not used by
the system for any other purpose. Screen memory can be relo-
cated to any other IK block in RAM by changing the appro-
priate bits in the registers at 53272/$D018 and 56576/$DD00.
For example, screen memory for the system bitmapped modes
(GRAPHIC 1 or GRAPHIC 3) is located at 7168-7423/
$1COO-$1CFR However, the screen editor CINT routine
[$C07B] and Kernal IOINIT routine [$E109], both included in
the reset and RUN/STOP-RESTORE sequences, will reset the
registers to have screen memory at this default area. Conve-
niently, this is the same area used for default screen memory
in the Commodore 64.

When used for screen memory, the first 1000 locations of
this area (1024-2023/$0400-$07E7) correspond to the 1000
character positions of the VIC chip's 40-column X 25-row
screen display. The value in each screen memory location de-
termines what will be displayed in the corresponding position
on the screen. The screen memory values, called screen codes,
are used as indexes into character pattern memory. Any char-
acter pattern can be displayed at any screen location by stor-
ing the appropriate screen code in the appropriate screen
memory location. Appendix C lists the standard character pat-
tern for each screen code. Clearing the screen fills these 1000
memory locations with 32/$20, the screen code for the space
character.

While this area is used as screen memory, the highest
eight locations (addresses 2040-2047/$07F8-$07FF) are used
to hold definition pointers for the eight sprites supported by
the VIC chip. The pattern definition for a sprite requires 64
bytes, so there is room within a 16K VIC video bank for 16384
/ 64, or 256 sprite definitions. These pointer locations each
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hold a value between 0-255/$00-$FF indicating which 64-
byte area within the current video bank will be used to hold
the pattern definition for the corresponding sprites. Changing
the shape of a sprite is as simple as changing the correspond-
ing sprite pointer to select a new pattern definition. To find
the address specified by the pointer value, multiply the value
by 64/$40 and add the base address for the video bank. The
default pointer values, established by the BASIC cold start ini-
tialization subroutine [$4045], are as follows:

Location Sprite Default pointer value
2040/S07F8 0 56/$38
2041/$07F9 1 57/$39
2042/$07FA 2 58/$3A
2043/$07FB 3 59/$3B
2044/S07FC 4 60/$3C
2045/S07FD 5 61/$3D
2046/$07FE 6 62/$3E
2047/$07FF 7 63/$3F

The default values point to the eight sprite definition
areas at 3584-4095/$0E00-$OFFF. While BASIC initializes
each pointer to a different definition area, this is not manda-
tory. For example, if you want all eight sprites to have the
same shape you can just design one sprite pattern and store
the pointer to that pattern in all eight locations. BASIC doesn't
have any statement specifically for changing pointers, so you'll
have to use POKE to change the values here. Because the de-
fault definition area only has room for eight sprites, you'll
have to use some other area of free memory if you want to
use more than eight sprite shapes. All sprite pattern defini-
tions must lie within the current 16K video bank. For the de-
fault video bank (0-16383/$0000-$3FFF in block 0 RAM), the
free space at 4864-7167/$1300-$lBFF can be used.

Remember that the sprite pointers are dependent on the
current screen memory block, and aren't an absolute feature of
these locations. The sprite pointers always appear at an offset
of 1016-1023/$03F8-$03FF bytes beyond the specified starting
address of screen memory. For example, when one of the bit-
mapped modes is selected, screen memory (in that case used for
color information and usually referred to as the video matrix)
moves to 7168-8191/$1COO-$1FFF, so the sprite pointers for
the default bitmapped screen are instead located at 8184-8191/
$1FF8-$1FFR Thus, in split-screen displays (GRAPHIC 2 or
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GRAPHIC 4) it is possible for the same sprite to have different
shapes in the text and bitmapped portions of the display. The
SCNCLR routine (also called when you add an extra ,1 to the
GRAPHIC statement) copies the text screen sprite pointer val-
ues from locations 2040-2047/$07F8-$07FF to the bitmapped
screen sprite pointers at 8184-8191/$1FF8-$1FFF, but there's
no ROM routine to perform a copy in the opposite direction—
from bitmapped screen sprite pointers to text screen sprite
pointers—so your text screen pointers should be preserved
even if you change the pointers for sprites displayed on the
bitmapped screen.

The remaining 16 locations in this area, addresses
2024-2039/$07E8-$07F7, are unused by any system routine.
They are not affected by clearing the screen or changing sprite
pointers, or by reset or RUN/STOP-RE STORE. Thus, they are
available for your own programming uses.

BASIC Runtime Stack
2048-2559/$0800-$09FF
This 512-byte area is used by BASIC for its runtime stack.
When you use the machine language JSR instruction to call a
subroutine, there must be some way to record the address to
return to upon completion of the subroutine. As explained in
the entry for locations 256-511/$D1OO-$O1FF, the return ad-
dress is placed in a special area of memory called the proces-
sor stack. BASIC'S GOSUB statement and looping statements
like FOR and DO also need some place to store the address to
return to upon completion of the subroutine or loop. In earlier
versions of Commodore BASIC, this information was also kept
in the processor stack. However, only 256 bytes of storage
space are available in the processor stack, and BASIC allows
only a portion of that to be used while it is in control. This
limits the level to which loops and subroutines can be nested.
For example, each FOR-NEXT loop requires 18 bytes of stack
space, so the Commodore 64's BASIC 2.0 allows loops to be
nested only nine levels deep. Because the more complex mem-
ory banking routines in the 128 require more machine lan-
guage subroutine calls, the 128's BASIC 7.0 would allow even
fewer levels of nesting if it used this same system. However,
BASIC 7.0 instead stores the information for GOSUB, FOR,
and DO in this totally separate runtime stack area.
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Because this storage area does not have to be shared with
processor return addresses, as is the case with the processor
stack, the entire 512-byte space is available. Thus, you can
have up to 28 nested FOR-NEXT loops (each requires an 18-
byte entry on the stack), or up to 102 nested DO loops or
GOSUB subroutines (each of which requires a 5-byte entry), or
any combination thereof.

Using this runtime stack requires slightly more software
overhead than using the processor stack. The 8502 processor
has an internal stack pointer register that indicates the position
of the next available position in the processor stack, and it also
has PHA and PLA instructions specifically for adding and re-
moving instructions from this stack. None of this is handled
automatically for the BASIC runtime stack; instead, the routines
which use the stack must explicitly update locations 125-126/
$7D-$7E, the runtime stack pointer. The GOSUB [$59CF],
FOR [$5DF9], and DO [$5FE0] statement routines add entries
to the stack, and the RETURN [$5262], NEXT [$57F4], and
LOOP [$608A] statement routines can remove entries from the
stack. The COLLISION statement [$7164] also causes the
equivalent of a GOSUB entry to be placed on the stack when
a collision of the specified type occurs.

This area is not used by the system for any purpose other
than the BASIC stack, so this entire area is available for use by
machine language programs that don't require BASIC.

Kernal and Screen Editor Working
Storage
2560-2687/$0A00-$0A7F
2560-2561 $OA00-$0AOl SYSTEM-VECTOR
BASIC restart vector
This pair of locations contains the address of the routine that
will be used to restart BASIC. The RAMTAS routine [$E093],
part of the reset sequence, puts the value 163 84/$4 000 here—
the address of the BASIC cold start routine. Unless the Com-
modore or RUN/STOP keys are held down, the RESET rou-
tine [$EO0O] ends with a JMP ($0A00) to cold start BASIC.
One of the final steps in the BASIC cold start routine is to
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change the value here to 16387/$4003—the address of the
BASIC warm start routine.

The RUN/STOP-RESTORE sequence in the NMI han-
dling routine [$FA40] ends with a JMP ($0A00). Because of the
cold start's routine initialization, this will normally cause a
warm start of BASIC. However, you can make RUN/STOP-
RESTORE cause a jump to another routine by changing the
value in these locations to point to the address of the new
routine. The only restriction is that the target routine must be
visible in the bank 15 configuration, since that is how memory
is arranged when the JMP is executed.

The monitor X command routine [$B0E3] also performs a
JMP ($0A00), so the value in these locations determines the
address of the routine which will be executed when you use
that command to exit the built-in machine language monitor.

2562 $ 0 A 0 2 DEJAVU
Memory initialization status flag
This location is used to indicate whether the RAMTAS routine
has been performed. If the RESET routine [$E000] detects that
the RUN/STOP key is being held down, indicating that the
reset sequence should end by entering the monitor rather than
BASIC, then the value here will be tested. If this location con-
tains the value 165/$A5, the RAMTAS routine will be omitted
from this reset sequence. The routine will hold a random
value when the computer is first turned on, but the first call of
the RAMTAS routine [$E093] will initialize this location to
165/$A5. Thus, once RAMTAS has been performed at least
once, the test of this flag location can be used to prevent its
being performed again when entering the monitor after a re-
set. This allows you to preserve the contents of zero page,
normally cleared by RAMTAS during the reset.

$0A03 PALNTS2563
PAL/NTSC flag
The IOINIT routine [SE109], part of the RESET sequence,
checks the number of scan lines produced by the VIC chip to
determine whether the 128 is using a NTSC (North American)
or PAL (European/British) video system. This location is set to
reflect the result of that test: to 0/$00 for NTSC systems or
255/$FF for PAL systems. Later routines that initialize the
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video chips and timers can then adjust the default settings ac-
cordingly. This eliminates the need for different versions of
the Kernal ROM for different countries.

2564 $0A04 INIT_STATUS
System initialization status flag
This location is initialized to 0/$00 near the beginning of the
Kernal RESET routine [$EOOOj. Bits are then set to %1 by later
routines to indicate that certain initialization steps have been
performed.
Bit 0: This bit is set to %1 during the BASIC cold start routine
[$4023] to indicate that the cold start has been performed. The
IRQ handling routine [$FA65] checks this bit and calls the
BASIC IRQ routine [$A84D] only if the bit is % 1 . The BASIC
IRQ routine, which handles sprite movement sprite collision
detection, and sound generation, copies the contents of a num-
ber of shadow locations into VIC and SID hardware registers.
One way to turn off this interrupt routine and gain direct ac-
cess to the hardware registers is to set this bit to %0.

Bits 1-5: Unused.
Bit 6: This bit is tested during the screen editor initialization
(CINT) routine [$C07B] to determine whether the keyboard ta-
ble pointers and function key definitions need to be initialized.
If the bit is %0, the default pointer values and key definitions
will be copied from ROM into the proper areas of RAM; then
this bit will be set to % 1 . While this bit is % 1 , the pointer and
function key initialization portion of the routine will be skipped.
CINT is part of both the reset and RUN/STOP-RESTORE se-
quences, but the pointers and key definitions are normally ini-
tialized only during the reset sequence, which resets this bit to
%0 before calling CINT. Custom keyboard table pointers and
function key definitions are usually preserved during RUN/
STOP-RESTORE, which does not affect this bit.
Bit 7: This bit is tested during the IOINIT routine [$E109] to
determine whether the 80-column (VDC) character set needs
to be initialized. If the bit is %0, the INIT80 routine [$CE0C]
will be called to copy the standard character patterns from
ROM into the VDC chip's private RAM; then this bit will be
set to % 1 . While this bit is % 1 , the character initialization por-
tion of the routine will be skipped. IOINT is part of both the
reset and RUN/STOP-RESTORE sequences, but the character
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patterns are normally initialized only during the reset se-
quence, which resets this bit to %0 before calling IOINT. Cus-
tom 80-column characters are usually preserved during RUN/
STOP-RESTORE, which does not affect this bit.

2565-2566 SO A05-S0A06 MEMSTR
Kernal MEMBOT pointer
This pair of locations holds the default value of the lowest
memory address available in block 0 RAM. The value here can
be read or changed using the Kernal MEMBOT routine
[$F772], which has a Kernal jump table entry at 65436/$FF9C.
The RAMTAS routine, part of the RESET sequence, calls
MEMBOT to initialize these locations to 7168/$1COO. How-
ever, the value here is not used by any other system routine,
so changing this value will not affect system operation in any
way. This is a change from the Commodore 64, where the
value in the MEMSTR pointer is used to establish the lowest
address available of BASIC. In the 128, the start-of-BASIC
pointer is always initialized to 7169/$1CO1, regardless of the
value here.

2567-2568 $0AO7-$0A08 MEMSIZ
Kernal MEMTOP pointer
This pair of locations holds the default value of the highest
memory address available in block 0 RAM. The value here can
be read or changed using the Kernal MEMTOP routine
[$F763], which has a Kernal jump table entry at 65433/$FF99.
The RAMTAS routine, part of the RESET sequence, calls
MEMTOP to initialize these locations to 65280/$FF00. How-
ever, the value here is not used by any other system routine,
so changing this value will not affect the system operation in
any way. This is a change from the Commodore 64, where the
value in the MEMSIZ pointer is used to establish the highest
address available for BASIC variable storage. In the 128, the
top-of-BASlC pointers are always initialized to 65280/$FF0O/

regardless of the value here.

2569-2570 $OA09-$OAOA IRQTMP
Temporary storage for IIRQ vector during tape operations
These locations are used for temporary storage of the address
value in the IIRQ vector at 788-789/$0314-$0315 during tape
operations. The tape routines stash the current IIRQ address
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here, then substitute the address of the IRQ service routine to
handle the tape operation. Upon completion of the operation,
the original address stored here will be restored to the IIRQ
vector.

Location 2570/$0A0A is also used as a flag to indicate
whether or not a tape IRQ routine is active. That location is
initialized to 0/$00 by the IOINIT routine, part of the RESET
sequence, and will also be reset to that value upon completion
of the tape operation. Thus, a nonzero value in the flag loca-
tion indicates that a tape interrupt routine is active.

2571 $0AOB CASTON
CIA #1 control register A log
This location is used to record the status of CIA #1 control
register A (56334/$DC0E) during tape operations.

2572 $0A0C
CIA #1 interrupt control register log
This location is used to record the status of the CIA #1 inter-
rupt control register (56333/$DC0D) during tape operations.

2573 $0A0D
CIA #1 timer A status log
The CIA #1 control register A log value from 25 71 /$0AOB is
stored here during certain tape operations to preserve the
timer A status.

$0A0E TIMOUT2574
IEEE timeout flag
When the VIC-20 was introduced, its Kemal included a jump
table entry (SETTMO, at 65442/$FFA2) to support a proposed
IEEE bus interface. The IEEE bus is the parallel data bus used
by Commodore's original PET/CBM models for communica-
tions with peripheral devices. The interface was never intro-
duced, but the Kernals of all subsequent Commodore models
have slavishly included the SETTMO jump table entry. In the
128, the SETTMO routine [$F75F] does nothing more than
store the accumulator contents in this location. This location is
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not used by any other 128 routine, and is provided strictly to
maintain Kernal jump table compatibility with previous Com-
modore models.

2575 $0A0F ENABL
RS-232 activity flag
This location is used during the RS-232 routines to record the
value in the CIA #2 interrupt control register (56589/$DD0D).
CIA #2 interrupt requests generate the NMI interrupts that
drive RS-232 transmission and reception. While the CIA #2
interrupts for RS-232 are disabled, this location will be set to
0/$00. When bits are set in the CIA #2 interrupt control regis-
ter to enable RS-232 operations, the corresponding bits are
also set in this location. If any of the following bits is set to
% 1 , the corresponding interrupt is enabled:
Bit Interrupt source RS-232 activity
0 Timer A bits being transmitted
1 Timer B bits being received
4 FLAG line waiting for start bit to be received
This location is initialized to 0/$00 during the IOINIT routine
[$E109], part of the reset and RUN/STOP-RE STORE
sequences.

2576 $0A10 M51CTR
RS-232 control register
This location controls some of the operating characteristics of
the RS-232 interface. When a file is opened to device 2, the
first character of the filename is copied here. Although RS-232
communications in the 128 are managed by software, the bits
of this location are defined to simulate the control register of a
6551 UART chip, a hardware device for controlling serial com-
munications. The bits are used as follows:
Bits 0-3: These bits determine the baud rate for both transmis-
sion and reception—the rate (in bits per second) at which bits
will be sent or received. Valid settings are as follows:
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3
0
0
0
0
0
0
0
0
1
1
1

Bits
2
0
0
0
0
1
1
1
1
0
0
0

1
0
0
1
1
0
0
1
1
0
0
1

0
0
1
0
1
0
1
0
1
0
1
0

Bit
Value
0/$0
1/*1
2/$2
3/$3
4/$4
5/$5
6/$6
7/%7
8/$8
9/$9

10/$A

Baud rate

user defined
50
75
110
134.
150
300
600

1200
1800
2400

baud
baud
baud

5 baud
baud
baud
baud
baud
baud
baud

When the user-defined rate is selected, the baud rate is deter-
mined by the value in locations 2578-2579/$0A12-$0A13.
The remaining possible bit patterns, %1011-%lll l / result in
invalid baud rates.
Bit 4: Unused.
Bits 5-6: These bits determine the number of data bits in each
character sent or received (sometimes referred to as the word
size). The total character length will also include a start bit,
possibly a parity bit, and one or more stop bits.
Bits Bit Number of
6 5 value data bits
0 0 0/$00 8 data bits
0 1 32/$20 7 data bits
1 0 64/$40 6 data bits
1 1 96/S60 5 data bits
Bit 7: This bit determines the number of stop bits in each
character. Stop bits are %1 bits added to the end of the char-
acter. They represent the minimum amount of time the com-
munications line will remain at the low (%1 bit) level before
the next start bit can be sent or received.

Bit 7 Bit value
0 0/$00
1 128/S80

Number of stop bits
1 stop bit
2 stop bits

M51CDR2577 $OA11
RS-232 command register
This location controls some of the operating characteristics of
the RS-232 interface. When a file is opened to device 2, the
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second character of the filename, if any, is copied here. Al-
though RS-232 communications in the 128 are managed by
software, the bits of this location are defined to simulate the
command register of a 6551 UART chip, a hardware device for
controlling serial communications. The bits are used as follows:
Bit 0: This bit controls the handshaking mode for RS-232
transmission and reception. The RS-232 interface consists of
three primary signal lines—transmitted data, received data,
and ground—plus a number of supplementary control lines—
data set ready (DSR), data terminal ready (DTR), ready to send
(RTS), and clear to send (CTS). The control lines are called
handshaking lines because they allow the sending and receiv-
ing units to exchange signals (handshakes) indicating whether
data is being successfully transmitted and received. The 128's
RS-232 software interface can operate in two different modes:
3-line, where none of the handshaking lines are used, and x-
line, where all of the handshaking lines are used. These bits
control the interface mode as follows:

Bit 0 Interface mode
0 3-line interface {no handshaking)
1 x-line interface {full handshaking)

For 3-line mode, the output handshaking lines (DTR and RTS)
will be held at a constant high ( + 5 volts) level. The input
handshaking lines {DSR and CTS) will be ignored.
Bits 1-3: Unused.
Bit 4: For unknown reasons, Commodore literature continues
to indicate that this bit controls the duplex mode of the RS-
232 interface. The bit is supposed to select full duplex when
set to %0 or half duplex when set to % 1 . However, this bit is
not checked by any RS-232 routine, and its setting has no ef-
fect on the operation of the interface.

Duplex is often confused with local echo. A full-duplex
interface can simultaneously send and receive data, while a
half-duplex interface can send data and receive data, but not
both at the same time. The 128's RS-232 interface always op-
erates in full-duplex mode. In casual usage, however, duplex is
often used to describe whether or not the system echoes back
the characters it receives. In remote echo mode {incorrectly re-
ferred to as full duplex), the system displays only characters
received from the remote unit (the one being called). The as-
sumption is that the remote unit will send back an "echo" of
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each character it receives from the system. In local echo mode
(incorrectly called half duplex), the system displays the charac-
ters it sends as well as the ones it receives. The assumption in
this case is that the remote unit will not echo the characters it
receives.

Bits 5-7: This bit controls the parity generated for transmitted
characters and the parity tested for in received characters. Par-
ity is a simple method of detecting some errors in data trans-
mission. A parity bit can be added between the data and stop
bits in the character. The value of the parity bit is selected to
make the total number of %1 bits in the character (not count-
ing stop bits) either even or odd. The receiving unit can then
count the number of %1 bits in the received character to de-
termine if bits have been garbled in transmission. Parity
checking did not work properly in the original versions of the
Commodore 64 Kernal ROM, but that problem has been cor-
rected in the 128's Kernal (and in the version of 64 Kernal
ROM for the 128's 64 mode). Possible parity selections are as
follows:

Bits Parity selection
7 6 5
x x 0 parity not used
0 0 1 odd parity
O i l even parity
10 1 mark parity
1 1 1 space parity

If bit 5 is %0, no parity bit will be generated in transmit-
ted characters and the system will expect incoming characters
to have no parity bit. This selection is common when a word
size of eight data bits per character is used. Odd parity means
that a parity bit will be generated for each transmitted charac-
ter such that the character will have an odd total number of
%1 bits (not counting the stop bits). When even parity is se-
lected, the parity bit will be set to make the total number of
%1 bits in the character even. For either even or odd parity,
the number of %1 bits in each character received will be
counted and compared against the parity selection. If the num-
ber does not match the specified parity type, the error will be
indicated by setting bit 0 of the status register location (2580/
$0A14) to % 1 . Mark and space parity are alternate forms of no
parity. When mark parity is selected, the parity bit for each
transmitted character will always be set to %1 , and the parity
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bit for each received character will be ignored. When space
parity is selected, the transmitted parity bit will always be %0
and the received parity bit will be ignored.

2578-2579 $0A12-$0A13 M51AJB
RS-232 baud-rate factor
The value in these locations determines the baud-rate timing
factor. When a file is opened to device 2, the third and fourth
characters of the filename are copied here (if the filename has
that many characters). However, the filename characters are
meaningful only if a user-defined baud rate has been speci-
fied—if bits 0-3 of the first character of the filename (copied
into 2576/$0A10) are %0000. In that case, the value in these
locations specifies the baud rate according to the following
formula:
baud rate = clock frequency/(2 * (rate factor + 100))

For the standard baud-rate settings, the Kernal RS-232 OPEN
routine copies the proper rate factor into these locations from
tables in Kernal ROM (59472-59491/$E850-$E863 for NTSC
systems or 59492-59511/$E864-$E877 for PAL systems). The
two separate tables are required because the different video
systems use different clock frequencies.

There's rarely a need to specify a custom baud rate, since
the standard settings encompass all standard rates that the 128
can support. (The 128 cannot handle RS-232 communications
faster than 2400 baud, so don't try to specify a faster rate.)
However, should you ever want to do so, the formula for the
rate factor is as follows:
rate factor = {(clock frequency / desired baud rate)/ 2) — 100

The clock-frequency value is 1022730 for NTSC (North Amer-
ican) systems or 985250 for PAL (European) systems. The low
byte of the resulting factor should be stored in 2578/$0A12
and the high byte in 2579/$0A13.

2580 $0A14 RSSTAT
RS-232 status register
Although RS-232 communications in the 128 are managed by
software, the bits of this location are defined to simulate the
status register of a 6551 UART chip, a hardware device for
controlling serial communications.
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It is possible to read the value here directly, but this loca-
tion can also be read using the Kernal READSS routine
[$F744] if the current device number in location 186/$BA is 2
(for RS-232). The READSS routine also has a Kernal jump ta-
ble entry at 65463/$FFB7. From BASIC, the reserved variable
ST will reflect the value in this location as long as the current
device number is 2. This location is initialized to 0/$00 each
time the Kernal OPEN routine is called to open a file to device
2, the RS-232 interface. The value here is also reset to zero
after each call to the READSS routine when device 2 is active,
including each reference to the ST variable in a BASIC program.

Bit 0: This bit is the parity-error indicator. It is used only
when either even or odd parity is selected, and is relevant
only to received characters. The bit is set to %1 whenever a
character is received for which the calculated total of %1 bits
received for the character does not match the specified parity
selection.

Bit 1: This bit is the framing-error indicator. The bit is set to
%1 when a framing error occurs—when no stop bits are found
following the specified number of data and parity bits.

Bit 2: This bit is the receiver buffer-overflow indicator. It will
be set to %1 when a character is received after the RS-232 in-
put buffer at 3072/$0C00 is already full.

Bit 3: This bit is the receiver buffer-empty indicator. It will be
set to %1 whenever there are no characters waiting to be read
from the input buffer. This bit should be tested before each at-
tempt to read characters from the RS-232 interface.

Bit 4: This bit is the CTS-missing error indicator. It is used
only when x-line handshaking is selected. The bit will be set
to %1 if the CTS (clear to send) input line drops to a low (0
volts) state while data is being transmitted. When x-line
handshaking is used, the external device connected to the in-
terface is expected to hold the CTS line at a high ( + 5 volts)
state. If the line goes low, it is taken as an indication that the
external device is not ready to receive data, so transmission is
suspended until CTS goes high.

Bit 5: Unused. This bit should always be %0 when read.

Bit 6: This bit is the DSR-missing error indicator. It is used
only when x-line handshaking is selected. The bit will be set
to %1 if the DSR (data set ready) signal input line drops to a
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low (0 volts) state during either transmission or reception of
characters. When x-line handshaking is used, the external de-
vice connected to the interface is expected to hold the DSR
line high ( + 5 volts). If the line goes low, it is taken as an indi-
cation that nothing is connected to the interface.

Bit 7: This bit is the break indicator. A break occurs when,
during reception of characters, a byte is received consisting of
all %0 bits not followed by stop bits (which are always %1).
In other words, a break occurs if the received data signal line
is held at the %0 bit ( + 5 volt) level for longer than the time
required to receive a character.

S0A15 BITNUM2581
RS-232 bit count
This location will hold the number of bits prior to the parity
and stop bits for each character received or transmitted. The
location is initialized during the RS-232 OPEN routine [$F040]
to the number of data bits (specified in bits 5-6 of 2576/
$0A10) plus 1. For transmission, the value here is copied into
location 180/$B4, the countdown of bits to send. For recep-
tion, the value here is copied into location 168/$A8, the
countdown of bits remaining to be received.

2582-2583 $0A16-$0A17 BAUDOF
RS-232 baud-rate timing constant
Commodore's insistence on providing an exact software emu-
lation of the 6551 UART chip leads to some odd software gy-
rations. The baud-rate timing factor specified in locations
2578-2579/$0A12-$0A13 must be converted back into an ab-
solute timing value. The Kernal OPEN routine for RS-232 per-
forms the following calculation:
timing constant = (rate factor * 2) — 200
Given the formula for rate factor, this is equivalent to:
timing constant = clock frequency / baud rate

This yields the number of system clock cycles required to send
or receive each bit at the specified baud rate. The resulting
value is stored in these locations. When transmission or recep-
tion is initiated, the value here is copied into one of the CIA
#2 timers. This determines the time between the NMI inter-
rupts that drive the transmission or reception of bits.
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2584 S0A18 RIDBE
Index to first character in RS-232 input buffer
This location holds the offset from the start of the RS-232 in-
put buffer to the position where the next character received
will be stored. The input buffer normally begins at location
3072/$0C00. The value here is incremented before each re-
ceived character is added to the buffer, unless incrementing
would make the value here equal to the value in location
2585/$0A19. In that case, a buffer overflow has occurred
{more characters have been received than the buffer can hold),
so bit 2 of the status location (2580/S0A14) is set to % 1 .

2585 $0A19 RIDBS
Index to last character in RS-232 input buffer
This location holds the offset from the start of the RS-232 in-
put buffer to the position of the next character waiting to be
removed from the buffer. The buffer normally begins at 3072/
$0C00. The value here is incremented after each character is
retrieved from the buffer. When the value here equals the
value in location 2584/$0A18, all characters have been re-
moved and the buffer is empty. In this case, bit 3 of the status
location (2580/$0A14) will be set to % 1 .

2586 S0A1A RODBS
Index to first character in RS-232 output buffer
This location holds the offset from the start of the RS-232 out-
put buffer to the position of the next character awaiting trans-
mission. The output buffer normally begins at 3328/$0D00.
The value here is incremented after each character is removed
from the buffer for transmission. When the value here equals
the value in location 2587/$0AlB, all characters awaiting
transmission have been sent and the buffer is empty.

2587 $OA1B RODBE
Index to last character in RS-232 output buffer
This location holds the offset from the start of the RS-232 out-
put buffer to the position where the next character will be
added to await transmission. The output buffer normally be-
gins at 3328/S0D00. The value here is incremented before
each character is added to the buffer, unless the incrementing
would make the value here equal the value in 2586/$0AlA.
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In that case, the buffer is already full, and some characters
must be transmitted before any more can be added to the buffer.

2588 $OA1C SERIAL
Fast serial mode flag
This location is used to indicate whether the currently speci-
fied serial bus device, such as the 1571 disk drive, is capable
of fast serial communications. The location is initialized to
0/$00, the value for standard (slow) communications, during
the IOINIT routine [$E109]. The routines that handle the serial
bus TALK and LISTEN commands attempt a fast serial hand-
shake. If the external device responds properly, bits 6 and 7 of
this location will be set to % 1 . Bit 7 indicates that the external
device is capable of fast transmission and reception of individ-
ual bytes. The bit is reset to %0 during the Kernal routines
that handle the serial bus UNTALK and UNLISTEN routines.
Bit 6 indicates that the system is capable of high-speed burst
mode loading.

2589-2591 $OA1D-$OA1F TIMER
Software jiffy timer
The three-byte value in these locations is decremented 60
times per second by the Kernal UDTIM routine [$F5F8], part
of the IRQ sequence. Thus, these locations function in a man-
ner opposite that of the jiffy clock at 160-l62/$A0-$A2,
which is incremented 60 times per second by UDTIM. The or-
der of bytes here is the opposite of the order of bytes in the
jiffy clock: $OA1D is the low byte and $OA1F is the high byte.

Since the countdown for this timer is handled automati-
cally during the IRQ, it is useful for many timing applications.
The way to use this timer is to load the locations with the
value in jiffies (1/60-second intervals) for the desired delay
period, then test for a value of $FF in location 2591/$OA1F.
That location will contain $FF after the three-byte value rolls
over from $000000 to $FFFFFF at the end of the countdown.
The highest allowable initial value when using this scheme is
$FF0000, which corresponds to 16,711,680 jiffies—a little over
three days.

There is one caution in using this location from BASIC.
The SLEEP statement routine [$6BD7] uses this timer for its
delay countdown, so any use of the SLEEP statement will
overwrite any values you may have stored in these locations.
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2592 $0A20 XMAX
Maximum number of keys in the keyboard buffer
The value in these locations determines the maximum number
of characters that can be held in the keyboard buffer pending
processing. The value is initialized to 10/$OA—the full length
of the standard keyboard buffer at 842-851/$034A-$0353—
by the CINT screen editor initialization routine [$C07B], part
of the reset sequence. During the SCNKEY routine [$C55D],
the value here is compared against the value in location
208/$D0, the count of characters currently in the buffer, to
determine if there is room in the buffer to record another
keypress.

You can reduce the value here to decrease the number of
unprocessed keypresses that can accumulate in the buffer.
However, you should not increase the value above 10, as this
will cause overflow from the buffer to overwrite the tab stop
table at 852-861/$0354-$035D.

$OA21 PAUSE2593
Scroll pause flag
This location is used to pause printing. During the screen
BSOUT routine [$C72D], the value here is tested. If it is non-
zero, the routine will wait indefinitely for the location to be
reset to zero. The value is initialized to 0/$00 by the CINT
routine [$C07B]. To implement the pause feature, the SCNKEY
routine [$C55D], part of the system IRQ sequence, sets this lo-
cation to 13/$0D when either the NO SCROLL or CONTROL-S
keys are pressed, and resets the location to 0/$00 when the
next key is pressed.

$OA22 RPTFLG2594
Key repeat flag
The value here determines which keys, if any, will repeat if
held down. If bit 7 of this location is %1 (value 128/S80), all
keys repeat. If bit 6 is %1 (value 64/$40), no keys repeat.
Otherwise, only the cursor, space, and INST/DEL keys repeat.
This location is initialized to 128/S80—all keys repeat—by
the screen editor CINT routine [$C07B], This is different from
the Commodore 64, where the default value is 0/$00—only
cursor, space, and INST/DEL repeating.
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2595 $0A23 KOUNT
Countdown between key repeats
This location is used as a counter to establish the delay be-
tween repeats when a key is held down. Once repeating has
begun, indicated by a value of 0/S00 in location 2596/$0A24,
the value here will be decremented on each pass through the
SCNKEY routine [$C55D] as long as the same key is held
down. Each time the count reaches zero, the key is repeated
and this location is reinitialized to 4/$04. This results in a
key-repeat rate of 15 times per second. The starting value of 4
for this countdown is loaded from ROM in the SCNKEY rou-
tine, and thus cannot be changed, so the delay period between
repeats is not programmable.

2596 $0A24 DELAY
Countdown until key repeating begins
This location is used as a counter to establish the delay before
repeating begins when a key is held down. (Location 2594/
$0A22 controls which keys, if any, will repeat if held down.)
If the scan code of the current key is the same as the scan
code detected on the last pass through the SCNKEY routine
[$C55D], the value here will be decremented. When the count
reaches zero, repeating can begin at the rate determined by lo-
cation 2595/$0A23. When the key is released, this location is
reinitialized to 16/$10. This results in a delay before repeating
of about 1/4 second. The starting value of 16 is loaded from
ROM in the SCNKEY routine, and thus cannot be changed, so
the delay before repeating begins is not programmable.

2597 $0A25
Delay between case-switching repeats
This location is used to provide a delay between character case
switches when the SHIFT-Commodore key combination is
held down. This location isn't a countdown. Rather, it is ini-
tialized to 128/$80; then the value is shifted one bit to the
right on each pass through the SCNKEY routine until it be-
comes zero. This provides a delay of about 1/8 second.
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2598 $0A26 BLNON
Cursor blink flag
Bit 6 of this location controls whether the cursor on the 40-
column (VIC) screen will blink. When the bit is %0, the cursor
blinks at a rate determined by location 26O0/S0A28. When the
bit is % 1 , the cursor will be a solid, unblinking block. This lo-
cation is initialized to 0/$00 during the CINT screen editor
initialization routine [$C07B], so the default cursor will be
blinking. The bit can be set to %1 using the ESC E key se-
quence, and cleared to %0 using ESC F.

Bit 7 of this location indicates the blink phase of the
cursor on the 40-column (VIC) screen. When the bit is %0, the
character at the cursor position is in its original state. When
the bit is % 1 , the character is reversed to provide the cursor
blink effect.

2599 $0A27 BLNSW
Cursor enable flag
This location controls whether a cursor will be present on the
40-column (VIC) screen. The cursor will be enabled when the
value here is zero and disabled when this location contains any
nonzero value. This location can be used to enable the cursor
when it is normally turned off. For example, the following
statement provides a cursor at the prompt (GET and GETKEY
don't normally provide a cursor):

300 POKE 2599,0: PRINT"PRESS A KEY: ";: GETKEY K$

2600 $0A28 BLNCT
Cursor blink countdown
This location determines the delay between cursor blinks for
the 40-column (VIC) screen. Bit 6 of location 2598/$0A26
must be %0 to enable cursor blinking. The value here is
decremented on each pass through the screen editor IRQ rou-
tine. Whenever the value reaches zero, the blink phase of the
cursor changes and bit 7 of the screen code at the cursor posi-
tion is toggled. This reverses the character at thai position.
The value here is reinitialized to 20/$ 14 whenever it counts
down to zero. It takes two countdowns to complete a cursor
blink (one while the character is in its normal state and one
while it is reversed), so 40 passes of the screen editor IRQ rou-
tine are required for each cursor blink. As a result, the cursor-
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blink rate for the VIC screen is about every 2/3 second. The
initialization value is read from ROM, so the 40-column blink
rate is not programmable.

2601 $0A29 GDBLN
Character under cursor
This location is used to hold the original (unblinked) screen
code for the character at the current 40-column screen cursor
position. If the cursor is moved from the current position with-
out printing a new character, this value will be restored to the
position when the cursor is moved.

2602 $0A2A GDCOL
Color under cursor
This location is used to hold the original color of the character
at the current 40-column screen cursor position. If the cursor is
moved from the current position without printing a new char-
acter, this value will be restored to corresponding color mem-
ory location for the position when the cursor is moved.

$0A2B CURMOD2603
VDC cursor mode
This location is a shadow for VDC internal register 10/SOA.
See the entry for that register in Chapter 8 for details. The
value here is copied into the register every time the screen
editor routines are used to print a character to the 80-column
screen.

2604 $0A2C VM1
VIC text screen and character base
This location is a shadow for the VIC chip screen and character
base address register (53272/$D018) for the text (GRAPHIC 0)
screen, or for the text portion of a split display. The value here
is copied into the VIC register during the text screen-setup
portion of the screen editor IRQ routine [$C194]. Refer to the
discussion of the register in Chapter 8 for details. During the
screen editor initialization [$C07B], this location is set to
20/$14. That value places screen memory at 1024/$0400 and
character memory at 4096/$1000. If the SHIFT-Commodore
combination is detected during the SCNKEY routine [$C55D],
bit 1 of this location is toggled. This switches the character set
base address between 4096/S1000 and 6144/$1800.
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2605 $0A2D VM2
VIC bitmap and video matrix base
This location is a shadow for the VIC chip bitmap and video-
matrix base address register (53272/$D018) for the bitmapped
(GRAPHIC 1 or GRAPHIC 3) screen, or for the bitmapped
portion of a split display. The value here is copied into the
VIC register during the bitmapped screen-setup portion of the
screen editor IRQ routine [$C194]. Refer to the discussion of
the register in Chapter 8 for details. During the screen editor
initialization routine [$C07B], this location is set to 120/$78.
This value places the default video-matrix area at 7168/$1COO
and the bitmap at 8192/$2000.

2606 $0A2E VM3
Starting page for VDC screen memory
The value in this location is used during the screen editor
routines to determine the starting page within VDC RAM for
80-column screen memory. During the screen editor initializa-
tion routine [$C07B], this location is set to 0/$00, which
places screen memory at address 0/$0000 in VDC RAM.

The value here determines where the screen editor thinks
VDC screen memory begins, but not the actual starring ad-
dress of the screen. (This location is not a shadow for a VDC
register.) The actual screen starting address is determined by
the value in VDC internal registers 12-13/$0C-$0D. If you
change the register value, you should also change the value in
this location, and vice versa.

2607 $0A2F VM4
Starting page for VDC attribute memory
The value in this location is used during the screen editor
routines to determine the starting page within VDC RAM for
80-column attribute memory. During the screen editor initial-
ization routine [$C07B], this location is set to 8/$08, which
places attribute memory at address 2048/S0800 in VDC RAM.

The value here determines where the screen editor thinks
VDC attribute memory begins, but not the actual starting ad-
dress of attributes. (This location is not a shadow for a VDC
register.) The actual attribute starting address is determined by
the value in VDC internal registers 20-21/$14-$15. If you
change the register value, you should also change the value in
this location, and vice versa.

138

$0A34 2612

2608 $0A30 LINTMP
Ending row for screen input
This location is used by the routines which accept lines of in-
put from the screen or keyboard to hold the number of the
screen row on which the displayed line of characters ends.
This value is tested to determine when the end of the input
has been reached. For input from the screen, the BASIN rou-
tine [$C29B] fails to set this location, so the row number for
the end of the input line must be set explicitly by storing the
proper value (0-24) in this location.

2609-2610 $0A31-$0A32 SAV80
Temporary storage for 80-column memory manipulation
These locations are used to store the current row and column
number values during the routines that clear or scroll lines on
the 80-column screen. Location 2609/$0A31 holds the row
number and 2610/$0A32 holds the column number.

2 6 1 1 $ 0 A 3 3 CURCOL
Attribute of current cursor position
This location is used to hold the original attribute of the char-
acter at the current 80-column screen cursor position. If the
cursor is moved from the current position without printing a
new character, this value will be restored to corresponding
attribute memory location for the position when the cursor is
moved.

2612 $0A34 SPLIT
Scan line for screen split
This location holds the scan line for the raster interrupt which
will set up the lower (text) portion of a split bitmapped/text
screen. When a split screen is selected (when bit 6 of location
216/SD8 is set to %1), the value here will be copied into the
VIC raster compare register (53266/$D012) during the bit-
mapped screen-setup portion of the screen IRQ routine [$C194].
This will cause a raster interrupt at the specified scan line,
which will execute the text screen-setup portion of the interrupt
routine to establish the text portion of the split screen. To find
the scan-line value corresponding to a character row number,
use the following formula:
scan line = (row number * 8) + 48
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The default value for this location, set during the screen editor
initialization routine [SC07B], is 208/$D0, which places the
default split at screen row 20. The value here can be changed
in BASIC by specifying a split parameter with the GRAPHIC
statement.

2613 $OA35 FNADRX
Temporary storage for X register
This location is used to preserve the contents of the X register
during the Kernal routine that reads a character from a file-
name [$F7AE].

2614 $0A36 PALCNT
Jiffy clock compensation flag
In systems using the PAL video format, this location is used as
a counter during the Kernal UDTIM routine [$F5F8], It is in-
cremented each time UDTIM is called to update the jiffy clock
locations (160-162/$A0-$A2). When the count has reached 5,
the UDTIM routine is repeated and the counter is reset to
zero. This triggers an extra update of the jiffy clock every fifth
IRQ in PAL systems, so that ten extra jiffy clock "ticks" occur
for each 50 IRQs. This means that the jiffy clock still incre-
ments 60 times per second on PAL-video 128s where the IRQ
rate is only 50 per second. For systems using the NTSC for-
mat, this portion of the UDTIM routine is skipped, so the loca-
tion will always hold its initial value of zero.

2615 $0A37 SPEED
Temporary storage for clock rate register
This location is used to hold the value in the VIC system clock
rate register (53296/SD030) during tape and serial bus opera-
tions. The current register value is stored here at the beginning
of the operation and the register is reset for slow (1-MHz)
mode for the duration of the operation; then the value here is
restored to the register once the operation is completed.

2616 $0 A38 SPRITES
Temporary storage for sprite enable register
This location is used to hold the value in the VIC sprite enable
register (53269/$D015) during tape and serial bus operations.
The current register value is stored here at the beginning of
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the operation and the register is reset to 0/$00 to disable all
sprites for the duration of the operation. The VIC chip requires
extra timing cycles while sprites are active, so they are dis-
abled to avoid disrupting the precise timing required for tape
and serial operations. Once the operations are complete, the
value here is restored to the VIC register.

2617 $0A39 BLANKING
Temporary storage for VIC control register
This location is used to hold the value in the VIC control reg-
ister at 53265/$D011 during tape operations. The register
value is stored here at the beginning of the tape operation,
before bit 4 of the register is set to %0 to blank the screen
during the operation. Upon completion of the tape operation,
the value here is restored to the register.

2618 $0A3A HOLD_OFF
Custom mode flag
Normally, the system clock is set for the slow (1-MHz) rate
and sprites are disabled during tape and disk operations to in-
sure proper timing. However, this location can be used to
allow the VIC clock and sprite registers to retain their current
settings during such operations. When bit 7 of this location is
set to % 1 , the registers are left unchanged. This location is ini-
tialized to 0/$00 by the IOINIT routine [$E109], part of the re-
set sequence. That setting is not changed by any ROM routine,
so this feature is not used by the system.

2619 $0 A3B LDTB 1_SA
Starting page for 40-column screen memory
The value in this location is used during the screen editor
routines to determine the starting page for 40-column (VIC)
screen memory. During the screen editor initialization routine
[$C07B], this location is set to the value in location 49228/
$C04C, which is currently 4/$04. This specifies screen mem-
ory at address 1024/$0400.

The value here determines where the screen editor thinks
VIC screen memory begins, but not the actual starting address
of the screen. (This location is not a shadow for a VIC regis-
ter.) The actual screen starting address is determined by the
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value in bits 4-7 of the VIC register at 53272/SD018. If you
change the register value, you should also change the value in
this location, and vice versa.

2620-2621 $0A3C-$0A3D CLR_EA
Working pointer into 80-column memory
These locations are used to hold an address in VDC memory
during the routine that clears a line of text on the 80-column
screen [$C4C0] and the one that copies a line up or down for
scrolling [$C53C],

2622-2623 $0A3E-$0A3F Unused
These locations are unused by any system ROM routine, and
are thus available for your own programming.

2624-2650 $0A40-$0A5A
Screen editor variable storage for the inactive screen
The screen editor variables for whichever screen (40- or 80-
column) is currently inactive are stored here. When the screens
are switched, the screen editor SWAPPER routine [$CD2E] ex-
changes the contents of this area with the values for the active
screen at 224-250/$E0-$FA. Thus, the active and inactive
screens are totally independent, and all window size settings
for the inactive screen will be preserved until the screen be-
comes active again.

Location 2650/$0A5A should not be included in this
range. Only locations 224-249/$E0-$F9 actually hold screen
editor variables. However, the SWAPPER routine incorrectly
copies 27 values instead of the proper 26, so the contents of
location 2650/$0A5A and location 250/$FA will be exchanged
whenever the active screen is switched. Both locations are nor-
mally unused.

2651-2655 $0A5B-$0A5F Unused
None of the locations in this range is used by any system rou-
tine, so all are available for your own programming,

2656-2665 $0A60-$0A69
Storage for inactive tab-stop bitmap
The tab-stop bitmap for whichever screen (40- or 80-column)
is currently inactive is stored here. When the screens are
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switched, the screen editor SWAPPER routine [$CD2E] ex-
changes the contents of this area with the tab-stop bitmap for
the active screen at 852-861/$0354-$035D.

2666-2669 $0A6A-$0A6D
Storage for inactive line-link bitmap
The line-link bitmap for whichever screen (40- or 80-column)
is currently inactive is stored here. When the screens are
switched, the screen editor SWAPPER routine [$CD2E] ex-
changes the contents of this area with the line-link bitmap for
the active screen at 862-865/$035E-$0361.

2670-2687 $0A6E-$0A7F Unused
None of the locations in this 18-byte area is used by any system
ROM routine, so they are available for your own programming.

Monitor Working Storage Area
2688-2751/$0A80-$0ABF

2688-2703 $0A80-$0A8F FNBUFF
Filename buffer for load, save, or verify
The load/save/verify setup routine stores the filename associ-
ated with a monitor L, S, or V command here (up to 16
characters).

2688-2719 $0A80-$0A9F HBUFF
Search pattern buffer
The monitor H (hunt for byte pattern) routine [$B2CE] fills
this buffer with the byte pattern being searched for (up to 32
characters). Characters in the specified memory range are then
compared against the buffer contents to search for a matching
pattern in memory. If the address range for the search in-
cludes this buffer, an artificial match will be found—the buffer
contents will always match themselves.

2720-2727 $0AA0-$0AA7 XFORM
Working storage for base conversion
The hex-to-decimal conversion routine [$BA07] uses these lo-
cations for working storage during the conversion, leaving the
results in 2720-2723/$0AA0-$0AA3 in BCD (binary coded
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decimal) format. The base conversion routine [$BA47] puts the
value to be converted into 2720-2723/$0AA0-$0AA3 for
manipulation. The routine to print octal, binary, or decimal
values uses 2720-2723/$0AA0-$0AA3 to hold the value to be
displayed.

2720-2729 $0AA0-$0AA9 ASMBUF
Instruction assembly buffer
The assemble routine [$B406] packs the three-character mne-
monic in the instruction being assembled into two bytes and
stores them in 2720-2721/$0AA0-$0AAl. If characters follow
the mnemonic, they are copied into 2722-2729/$0AA2-$0AA9.
If a numeric parameter is found, a dummy value consisting of
a $ character followed by either two or four zeros (depending
on whether the value is greater than 255) is substituted. This
character pattern is then evaluated to determine the addressing
mode for the instruction.

2730 $0AAA FORMAT
Instruction format flag
The routine to calculate the mnemonic and addressing mode
for an opcode [$B659] uses this location to hold a flag value
indicating the addressing mode in use, which determines the
format in which the instruction must be displayed or entered.

$0AAB LENGTH2731
Instruction length
The routine to calculate the mnemonic and addressing mode
for an opcode [$B659] uses this location to hold the number of
bytes which should follow the opcode in the instruction (0-2).

2732-2734 $0AAC-$0AAE MSAL
Three-character mnemonic pattern
The assemble routine [$B406] stores the first three-character
group from the input line in these locations for evaluation as
an ML mnemonic.

2735 $0AAF SXREG
Temporary storage tor X register
The subroutine to determine the proper opcode for a mne-
monic [$B57C], the routine to print hexadecimal byte values,
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and the routine to test the next buffer character [$B8E7] all
stash the X register contents here upon entry, and restore the
value to the X register upon exit. The routine to decrement the
pointer address or line count stored in 96-98/$60-$62 uses
this location to hold the amount by which the stored value is
to be decremented.

2736 $0AB0 Unused
This location is not used by any 128 ROM routine, and is thus
available for your own programming.

$ 0 A B l OPCODE2737
Calculated opcode
The assemble routine [$B406] uses this location to hold the
opcode calculated for the instruction being assembled.

2738 S0AB2 XSAVE
Temporary storage for X register
The monitor indirect fetch [$B11A], indirect store [$B12A], and
indirect compare [$B13D] routines stash the value in the X reg-
ister here upon entry, then restore the value to the X register
upon exit.

2739 $0AB3 DIRECTION
Transfer direction flag
The monitor compare/transfer routine [$B231] uses this loca-
tion in execution of the T (transfer) command to indicate the
direction in which bytes are to be transferred. For downward
moves (source address greater than destination address), the
flag will be set to zero; for upward moves (destination address
greater than source address), the flag will be set to 128/S80.

$0AB4 COUNT2740
Digit counter
The routine to convert input parameters into numeric values
[$B7CE] uses this location to hold a count of the hexadecimal
digits in the converted value. The routine to print values in oc-
tal, binary, or decimal [$BA47] uses this location as a counter
of digits printed in the value being displayed.
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2741 $0AB5 NUMBER
Temporary storage for parameter conversion
The routine to convert input parameters into numeric values
[$B7CE] uses this location to hold the numeric value of the in-
put digit currently being evaluated.

2742 $0AB6 SHIFT
Number of bits per digit for base
The routine to convert input parameters into numeric values
[$B7CE] and the routine to print values in octal, binary, or
decimal [$BA47] use this location to hold the number of bits to
be interpreted per digit for the value being converted or
displayed.

2743-2745 $0AB7-$0AB9 TEMPS
Monitor temporary storage
The routine to convert input parameters into numeric values
[$B7CE] uses these locations as working storage when evaluat-
ing decimal digits. Monitor routines which accept two or more
address parameters store the second (ending) address here. For
upward transfers, the compare/transfer routine [$B231] moves
the value here to the working pointer at 102-104/$66-$68.

2746-2751 $OABA-$OABF Unused
These locations are not used by any 128 ROM routines, and
are thus available for your own programming.

Kernal Working Storage
2752-2815/$OAC0-$OAFF

2752 $OACO CURBNK
Counter for function ROM testing
Both the Kernal routine which checks for the presence of ROM
in the internal and external (cartridge) ROM address slots
[$E26B] and the Kernal PHOENIX routine [$F867] which ini-
tializes function ROMs use this location as a countdown for
the number of slots remaining to be tested. The location is set
to 3, then decremented each time a slot is checked or initial-
ized. The routines end when the value here rolls over from
0/$00 to 255/$FF after the fourth slot is tested or initialized.
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Thus, this location will normally contain 255/$FF upon com-
pletion of either routine.

2753-2756 $0ACl-$0AC4 PAT
Table of identifiers for function ROMs
The Kernal routine which tests for the presence of function
ROMs [$E26B] initializes these locations to 0/$00 before
checking any of the four possible ROM address slots. A ROM
is considered present in the slot if the character codes for the
letters CBM are found at an offset of seven bytes from the
starting address of the slot. If this test pattern is found, the
function ROM ID byte is copied from an offset of six bytes be-
yond the starting address of the slot into the corresponding lo-
cation in this table:
Location ROM slot address
2753/$0ACl 32768/$8000 internal
2754/$0AC2 49152/$C0O0 internal
2755/$0AC3 32768/S8000 external
2756/$0AC4 49152/$C0O0 external

If the identifier byte is l/$01, the cartridge is autostarting
and the test routine immediately calls the cold-start vector for
that ROM. Otherwise, the Kernal PHOENIX routine [$F867],
part of the BASIC cold-start sequence, will call the cold-start
vector for any ROM slots with nonzero entries in this table.

2757 $0AC5 DK_FLAG
This location is mentioned in Commodore literature as "reserved
for foreign screen editors/' but its exact use is unclear. It is un-
used by any routine in the U.S. version of the system ROMs.

2758-2815 $0AC6-$0AFF Unused
This 58-byte area is described in Commodore literature as "re-
served for system use." However, no routines in the current
version of the system ROMs make use of any of these loca-
tions. Still, unless you are desperate for free locations outside
the BASIC area, it's probably best to avoid using these loca-
tions to insure compatibility with future versions of the ROM.
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Cassette Buffer and Disk Boot Buffer
2816-3071/$0B00-$0BFF
The first 192 bytes of this area (2818-3007/$0B00-$0BBF) are
used for the cassette buffer. When you're reading from tape,
file headers are loaded into this area until one is found with
the specified filename. When you're writing to tape, this area
is used to assemble the tape header for the file. When the
buffer contains a tape header, the locations are used as follows:
Location Function
2816/$0BO0 Header type identifier
2817-2818/$0B01-$0BO2 Starting address for file

Ending address for file
Filename

2819-2820/$OB03-$OB04
2821-3007/$OB05-$OBBF
A header type identifier of 1 indicates a relocatable program
file; 3 indicates a nonrelocatable program file; 4, a data file;
and 5, an end-of-tape marker. A type identifier value of 2
means that the block contains data rather than a header. Al-
though the filename can be up to 187 bytes long, such names
are unusual. When a header is read into the buffer, only the
first 16 characters of the filename will be displayed following
the FOUND message. When a header is being assembled, all
unused filename bytes will be set to 32/$20, the value for the
space character.

The cassette buffer is used to hold blocks of data when
data files are read from or written to tape. When a data file is
being written, after the header is written to tape, the first byte
here is set to 2, the identifier for a data block; then the re-
maining 191 bytes are filled with the data to be written to the
file. Only when the buffer is completely full is the block of
data actually added to the file. This is why it is important to
properly close any file opened for writing. If the file is not
closed, the last block of data will not be written to tape. When
a file is opened for reading, after the proper header is identi-
fied, the first block of data is read into the buffer. Subsequent
bytes will be read from the buffer—not directly from tape—
until all 191 data bytes have been read from the buffer; then
the next block will be read into the buffer. See Chapter 9 for
more information on tape data storage.

In the 128, this area has a second function: the boot sector
buffer. If the BOOT_CALL routine [$F890] finds a disk in the
specified drive when it is called, the contents of sector 0 of
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track 1 of the disk are read into this area. The first three bytes
of the buffer are then examined. If those locations (the first
three bytes from the sector) contain the character codes for the
letters CBM, then the routine assumes that a boot disk has
been found and proceeds with the boot process. Refer to the
entry in Chapter 9 for details. It would be possible to simulate
a boot by filling the buffer with the proper values, then jump-
ing into the BOOT_CALL routine at address 63737/$F8F9.

The B0OT_CALL routine is normally executed during
each reset as part of the BASIC cold-start sequence. It can also
be called from the Kernal jump table entry at 65363/$FF53,
and can be initiated from BASIC via the BOOT statement.

Actually, the cassette buffer is not located absolutely at
this area. The base address of the cassette buffer is determined
by the value in locations 178-179/$B2-$B3. Those locations
are initialized to 2816/$0BO0 during the RAMTAS routine
[$E093], part of the reset sequence. No system ROM routines
change that setting, but another free 192-byte area could be
used, with two restrictions: the buffer must start at an address
greater than 511/S1FF, and the buffer must be visible in the
bank 15 memory configuration. The disk-booting routines, on
the other hand, do use the absolute address of this area. This
area will always be used as the boot sector buffer, regardless
of the value in the cassette buffer pointer.

If tape data storage is not being used, this 256-byte area is
available for other uses, such as to hold short machine lan-
guage routines. The cassette buffer has been a popular area for
ML since the days of the first Commodore PET/CBM comput-
ers. However, the contents of this area will be overwritten
whenever the system attempts to boot a disk, including the
time during any reset when the drive is turned on and con-
tains a disk. You should choose another area if you want your
machine language to survive intact following a reset.

RS-232 Input Buffer
3072-3327/$0C00-$0CFF
The routines that receive characters via the RS-232 interface
are executed during NMI interrupts. Any characters received
are held in this area until they can be read, usually by using
the Kernal GETIN routine. This is a circular buffer with no
fixed beginning or end. Location 2585/S0A19 holds the offset
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from the starting address of the buffer to the next character
waiting to be read (called the head of the buffer). Location
2584/$0A18 holds the offset to the next free position in the
buffer (called the tail of the buffer). The buffer is considered
empty when the two offset addresses are equal, and full when
the buffer tail offset is one less than the head offset. Bits 2 and
3 of the RS-232 status byte at 2580/$0A14 indicate, respec-
tively, when the buffer is full or empty.

Actually, the buffer is not located absolutely at this area.
The starting address of the RS-232 input buffer is determined
by the value in locations 200-201/$C8-$C9. The pointer loca-
tions are initialized to 3072/S0C00 by the RAMTAS routine
[$E093], part of the reset sequence. No other system routine
changes the address in that pointer, so the buffer will be lo-
cated here unless you explicitly move it. However, the buffer
can be moved to another free area of memory simply by
changing the address in the pointer. (The area selected must
be visible in the bank 15 configuration.)

If RS-232 communications are not used, this buffer area,
along with the one at 3328-3583/$0D00-$0DFF, is available
for other purposes such as machine language routines or addi-
tional sprite definitions.

RS-232 Output Buffer
3328-3583/$0D00-$0DFF
The routines that transmit characters via the RS-232 interface
are executed during NMI interrupts. Characters are stored in
this area, usually by the BSOUT routine, while awaiting trans-
mission. This is a circular buffer with no fixed beginning or
end. Location 2586/S0A1A holds the offset from the starting
address of the buffer to the next character waiting to be sent
(called the head of the buffer). Location 2587/S0A1B holds
the offset to the next free position in the buffer (called the tail
of the buffer). The buffer is considered empty when the two
offset addresses are equal, and full when the buffer tail offset
is one less than the head offset.

Actually, the buffer is not located absolutely at this area.
The starting address of the RS-232 output buffer is determined
by the value in locations 202-203/$CA-$CB. The pointer lo-
cations are initialized to 3328/$0D00 by the RAMTAS routine
[$E093], part of the reset sequence. No other system routine
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changes the address in the pointer, so the buffer will be lo-
cated here unless you explicitly move it. However, the buffer
can be moved to another free area of memory simply by
changing the address in the pointer. (The area selected must
be visible in the bank 15 configuration.)

If RS-232 communications are not used, this buffer area,
along with the one at 3072-3327/$0CO0-$0CFF, is available
for other purposes such as machine language routines or addi-
tional sprite definitions.

Sprite Pattern Storage Area
3584-4095/$0E00-$0FFF
This area is reserved by the system to hold sprite pattern defi-
nitions. Each sprite pattern requires 64 bytes and must start at
an address which is an exact multiple of 64/$40. Other free
locations within the current video bank which meet these cri-
teria can also be used for sprite pattern storage, but BASIC
sprite routines such as SPRSAV and SPRDEF assume that
sprite patterns reside in this area. The sprite pointers for the
default screen memory position (2040-2047/$07T8-$07FF) are
initialized during the BASIC cold-start sequence as follows:

Pattern area Pointer value Default sprite
3584-3647/$0E00-$0E3F 56/$38 0
3648-371l/$0E40-$0E7F 57/$39 1
3712-3775/$OE80-$0EBF 58/S3A 2
3776~3839/$0ECO-$0EFF 59/$3B 3
3840-3903/$OFOO-$OF3F 60/$3C 4
3904-3967/$0F40-$0F7F 61/$3D 5
3968-4O31/$0F80-$0FBF 62/$3E 6
4032-4095/$0FCO-$0FFF 63/$3F 7

No system ROM routines change these settings. If your pro-
gram doesn't require sprites, this area can be used for other
purposes such as to hold machine language routines.

Programmable Key Definition String Area
4096-4351/$1000-$10FF
This 256-byte area is used to hold the strings for the ten pro-
grammable keys supported by the 128's screen editor routines:
F1-F8, SHIFT-RUN/STOP, and HELP. Each of the first 10
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Key
Fl
F2
F3
F4
F5
F6
F7
F8
SHIFT-RUN/STOP
HELP

bytes of the area (4096-4105/$1000-$1009) holds the length
of one of the definition strings:
Location
4096/$1000
4097/$1001
4098/$1002
4099/$1003
4100/$1004
4101/$1005
4102/$1006
4103/$1007
4104/$1008
4105/$1009

The remaining 246 bytes (4106-435l/$100A-$lOFF) are
available for definition strings. There is no particular limit on
the length of an individual definition string, except that the
combined length of all the definition strings cannot exceed 246
bytes. The definition strings correspond to keys in the order
shown above. The offset to the first character in a particular
string is found by adding the lengths of all preceding defini-
tions. No special characters are used to separate the strings. It
is possible for a key to have no associated definition string, in
which case the length location for the key should be set to
0/$00. The default definitions for the keys are as follows:

Key Default definition
Fl GRAPHIC
F2 DLOAD"
F3 DIRECTORY {RETURN}
F4 SCNCLR {RETURN}
F5 DSAVE"
F6 RUN {RETURN}
F7 LIST {RETURN}
F8 MONITOR{RETURN}
SHIFT-RUN/STOP DL"*{RETURN}RUN{RETURN}
HELP HELP{RETURN}
These definitions, along with the corresponding length values,
are copied from locations 52904-52980/$CEA8-$CEF4 in
screen editor ROM during the Kernal CINT routine [$C07B]. In
BASIC, the KEY statement can be used to change definitions.
From machine language, the Kernal PFKEY routine [$FF65] (or
screen editor KEYSET routine [$C021]) can be used. Pro-
grammable keys are handled by a subroutine [$C6CA] within
the screen editor keyscan routine.

$1133-$1134 4403-4404
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BASIC Working Storage
4352-4607/$1100-$1IFF

4352-4400 $1100-$1130 DOSSTR
DOS command assembly area
The BASIC statements that issue DOS commands—for ex-
ample, HEADER, COPY, CATALOG, and SCRATCH—use
this area to assemble the command string to be sent to the
disk drive.

4401-4402 $1131-$1132 XPOS
Bitmapped-screen pixel-cursor horizontal position
These locations hold the horizontal (x) coordinate of the cur-
rent position of the pixel cursor on the bitmapped screen. The
range of values here depends on the scale factor currently in
use. If scaling is not used, the value can be found in the range
0-319. In any case, a value of zero specifies the left edge of
the screen. The value here is set to 0/$00 whenever the bit-
mapped screen is cleared, either by the SCNCLR routine or by
adding the clear parameter to a GRAPHIC statement. After
execution of any BASIC graphic statement, this location will
hold the value of the final horizontal pixel position affected by
the operation. The value here can be set explicitly using the
LOCATE statement, which stores the specified horizontal posi-
tion in this location. If the DRAWTO form of the DRAW state-
ment is used, the line will begin at the horizontal position
specified here.

4403-4404 $1133-$1134 YPOS
Bitmapped-screen pixel-cursor vertical position
These locations hold the vertical (y) coordinate of the current
position of the pixel cursor on the bitmapped screen. The
range of values here depends on the scale factor currently in
use. If scaling is not used, the value can be found in the range
0-199. In any case, a value of zero specifies the top edge of
the screen. The value here is set to 0/$00 whenever the bit-
mapped screen is cleared, either by the SCNCLR routine or by
adding the clear parameter to a GRAPHIC statement. After
execution of any BASIC graphic statement, this location will
hold the value of the final vertical pixel position affected by
the operation. The value here can be set explicitly using the
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LOCATE statement, which stores the specified vertical posi-
tion in this location. If the DRAWTO form of the DRAW state-
ment is used, the line will begin at the vertical position
specified here.

4405-4406 $1135-$1136 XDEST
Final horizontal pixel position for graphics operations
These locations hold the calculated ending horizontal pixel-
cursor position for BASIC graphics operations. The operation is
complete when the value in locations 4401-4402/$1131-$1132
equals the value here.

4407-4408 $1137-$1138 YDEST
Final vertical pixel position for graphics operations
These locations hold the calculated ending vertical pixel-cursor
position for BASIC graphics operations. The operation is com-
plete when the value in locations 4403-4404/$1133-$1134
equals the value here.

4409-4455 $1139-$1167
Working storage for assorted graphics routines
BASIC graphics routines such as BOX, CIRCLE, DRAW, and
PAINT use various locations in this range to perform the cal-
culations necessary to plot the points for the figure being
drawn. The MOVSPR routine also uses some of these loca-
tions for sprite position calculations in those cases where the
sprite is moved relative to the pixel cursor.

4456 $ 1168 CHRPAG
Starting page for character pattern definitions
This location is used during the CHAR routine [$67D7] in the
calculations to determine where character shapes are to be
placed on the bitmapped screen. The value here is the starting
page of character memory. This location will hold the value
from either 4588/$llEC or 4587/$llEB.

4457 $1169 BITCNT
Bit counter for shape retrieval
This location is used during the GSHAPE routine [$658D] as a
counter for the bits to be read from each byte of the storage
string.

4458 $ 116A SCALEM
Scaling flag
This location indicates whether the scaling feature is to be
used when graphics are drawn on the bitmapped screen.
While this location contains 0/$00, scaling will not be used.
When the location contains any nonzero value, the horizontal
and vertical coordinates for all graphics routines will be scaled
according to the values in locations 135-136/$87-$88 and
137-138/$89-$8A. This location is initialized to 0/SOO (scal-
ing off) during the BASIC cold-start sequence, and also when-
ever the clear-screen parameter is included in a GRAPHIC
statement. The routine to execute the SCALE statement
[$6960] will store the first parameter following SCALE (0 or 1)
here.

4459 $116B WIDTH
Line width for bitmapped graphics routines
The value here determines whether the lines drawn by BASIC
bitmapped graphics routines are to be standard width (indi-
cated when this location contains 0/$00) or double width (in-
dicated when this location contains any nonzero value). The
value here is initialized to 0/$00 (normal width) during the
BASIC cold-start sequence. The routine to execute the WIDTH
statement [$71B6] will store the width parameter minus 1 in
this location.

$116C FILFLG4460
BOX fill flag
This location is used during the BOX routine [$62B7] to specify
whether the shape is to be open or filled. If the value here is
0/$00 the shape will be open; otherwise, it will be filled. This
location is initialized to 0/$00 (open shapes) during the
BASIC cold-start sequence. When a BOX statement is exe-
cuted, the seventh parameter (paint) following the statement
will be copied here. If that parameter is omitted, it will default
to 0/$00.

S116D BITMSK4461
Bit mask value
This location is used as a mask value to select individual bits
during the DRAW and SPRDEF routines.
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4462 $116E NUMCNT
Temporary storage for assorted routines
This location is used for temporary working storage during the
CHAR, MOVSPR, and SPRDEF routines.

$116F TRCFLG4463
Trace mode flag
This location is used to indicate whether BASIC is in trace
mode. When a program is executed in trace mode, the line
number of each program line is printed as it is executed. Trace
mode is off when bit 7 of this location is %0, and on when bit
7 is % 1 . This location is initialized to 0/$00 (trace off) during
the BASIC cold-start sequence. It is also reset to 0/$00 during
the NEW routine. The value here can be changed using the
TRON and TROFF statements. TRON sets this location to
255/$FF, and TROFF resets it to 0/$00.

4464-4467 $1170-$1173 RENUM_TMPS
Working storage for RENUMBER
These locations are used for working storage during BASIC'S
RENUMBER routine [$5AF8], Locations 4464-4465/$1170-$1171
hold the line number at which renumbering is to begin, and
4466-4467/$1172-$1173 hold the increment by which subse-
quent lines are to be renumbered.

4468 $1174 T3
Loop counter for reading directory entries
This location is used during the CATALOG/DIRECTORY rou-
tine [$A07E] as a counter in the loop to discard extraneous
characters before the block count.

4469-4470 $1175-$1176 T4
Block count for directory entry
These locations are used during the CATALOG/DIRECTORY
routine [$A07E] to hold the block count for each file entry
read from the drive.

4 4 7 1 $ 1 1 7 7 VTEMP3
Working storage for graphics parameter scaling
This location is used for working storage during the routine
that scales graphics parameters [$9DAE] when the SCALE op-
tion is in effect.
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4472 $1178 VTEMP4
Working storage for graphics parameter evaluation
This location is used during the routine that evaluates param-
eters for graphics routines [$9E6D] to hold the offset to the pa-
rameter being evaluated.

4473 $1179 VTEMP5
Working storage for graphics parameter evaluation
This location is used during the routine that evaluates param-
eters for graphics routines [$9E6D] to hold a value indicating
the parameter type.

4474-4475 $117A-$117B ADRAY1
Pointer to floating point-to-integer conversion routine
These locations point to the routine that converts the floating-
point value in FAC1 (99-103/$63-$67) into a two-byte integer
value in the accumulator (low byte) and Y register (high byte).
The BASIC cold-start sequence initializes the value here to
33951/$849F/ the address of that routine in the current ver-
sion of BASIC ROM.

This pointer is especially useful in conjunction with the
USR function. See the entry in Chapter 5 for details. To per-
form this conversion, it's best to use the indirect JMP ($117A)
instead of the absolute JMP $849F. That way, your program
will still work if the ROM is revised in future versions.

4476-4477 $117C-$117D ADRAY2
Pointer to integer-to-floating point conversion routine
These locations point to the routine that converts a two-byte
integer value in the accumulator (low byte) and Y register (high
byte) to a floating-point value in FAC1 (99-103/$63-$67).
The BASIC cold-start sequence initializes the value here to
31036/$793C, the address of that routine in the current ver-
sion of BASIC ROM.

This pointer is especially useful in conjunction with the
USR function. See the entry in Chapter 5 for details. To per-
form this conversion, it's best to use the indirect JMP ($117F)
rather than the absolute JMP $793C. That way, your program
will still work if the ROM is revised in future versions.
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4478-4565 $117E-$11D5

4478-4565 $ 117E-$ 1 IDS SPRITE-DATA
Sprite movement control data
The MOVSPR statement has an option to set sprites in motion
at a given angle and speed. These locations hold data concern-
ing sprite motion. For moving sprites, the values here will be
used to generate position values that will be copied to the
shadow registers at 4566-4582/$llD6-$llE6. The locations
are used as follows:

Sprite 0
4478/$117E
4479/$117F
4480/S1180

Speed
Speed countdown
Direction
Horizontal increment (low) 4481/$1181

(high) 4482/$1182
(low) 4483/$1183
(high) 4484/S1184
(low) 4485/$1185
(high) 4486/$1186
(low) 4487/$1187

Vertical increment

Horizontal position

Vertical position

Speed
Speed countdown
Direction

Horizontal increment

Vertical increment

Horizontal position

Vertical position

(high) 4488/$1188

Sprite 4
4522/$! 1AA
4523/$ 11AB
4524/$ 11 AC

(low) 4525/$ 11 AD
(high) 4526/$llAE
(low) 4527/$llAF
(high) 4528/S11B0
(low) 4529/$llBl
(high) 453O/$11B2
(low) 4531/S11B3
(high) 4532/S11B4

Sprite 1
4489/J1189
4490/I118A
4491/$118B
4492/$118C
4493/$118D
4494/$118E
4495/$118F
4496/$1190
4497/S1191
4498/$1192
4499/S1193

Sprite 5
4533/$llB5
4534/S11B6
4535/$]1B7
4536/$11B8
4537/$11B9
4538/$ 11BA
4539/S11BB
4540/$11BC
4541/$11BD
4542/$llBE
4543/$llBF

Sprite 2
4500/$1194
4501/$1195
4502/$1196
4503/$1197
4504/$1198
4505/$1199
4506/$119A
4507/S119B
4508/$119C
4509/$119D
4510/$119E

Sprite 6
4544/$llC0
4545/$llO
4546/$11C2
4547/S11C3
4548/$llC4
4549/$llC5
455O/$11C6
4551/$11C7
4552/$HC8
4553/$llC9
4554/$llCA

Sprite 3
4511/$119F
4512/$11AO
4513/$11A1
4514/$11AZ
4515/$11A3
4516/S11A4
4517/S11A5
4518/$11A6
4519/$11A7
4520/$11 A3
4521/$11A9

Sprite 7
4555/$llCB
4556/$llCC
4557/S11CD
4558/$llCE
4559/$llCF
4560/$11 DO
4561/$I1D1
4562/$IlD2
4563/$llD3
4564/$llD4
4565/$ 11D5

In addition to using the MOVSPR routine, the values here
can be set directly to set a sprite in motion. (The correspond-
ing sprite must be enabled before the motion values have any
effect.) The speed value (0-15) determines how many times
per IRQ interrupt the horizontal and vertical increment values
will be applied to the horizontal and vertical position values.
If the speed value is 0/$00, the corresponding sprite will not
be moved. The speed value is copied to the countdown value
during each interrupt. The direction value can have one of the
following values:
Direction value Sprite motion

0 x increasing, y decreasing
1 x increasing, y increasing
2 x decreasing, y increasing
3 x decreasing, y decreasing
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$11D6-$11E6 4566-4582

All locations in this range are initialized to 0/$00 during
the BASIC cold-start sequence. The warm-start sequence per-
forms the less dramatic initialization step of resetting all the
speed locations to 0/$00, which stops all sprite motion.

4566-4582 $11D6-$11E6 VIC-SAVE
Shadows for VIC sprite position registers
The contents of these locations are copied into the VIC chip
sprite position registers (53248-53264/$D000-$D010) during
each pass through the BASIC IRQ routine [$A84D]. As long as
the BASIC IRQ routine is active, the VIC registers cannot be
changed directly. Instead, you should store the desired register
value in the corresponding shadow location. All locations in
this range are initialized to 0/$00 during the BASIC cold-start
sequence. The values here can be set using the MOVSPR
statement. The MOVSPR routine [$6CC6] sets the value here
directly when a static sprite position is specified. When a mov-
ing sprite is specified, the movement information is stored in
the table at 4478-4565/$117E-$llD5 and the values here are
updated during each pass through the BASIC IRQ routine
[$A84D]. The locations are used as follows:
Location Register Function
4566/$llD6 53248/$D0O0 Sprite 0 horizontal position
4567/$llD7 53249/$D001 Sprite 0 vertical position
4568/$llD8 53250/$D002 Sprite 1 horizontal position
4569/$llD9 53251/$D003 Sprite 1 vertical position
4570/$1 IDA 53252/$D004 Sprite 2 horizontal position
4571/S11DB 53253/$D005 Sprite 2 vertical position
4572/$llDC 53254/$D006 Sprite 3 horizontal position
4573/$llDD 53255/$D007 Sprite 3 vertical position
4574/$llDE 53256/$D008 Sprite 4 horizontal position
4575/$llDF 53257/$D009 Sprite 4 vertical position
4576/$llE0 53258/$D00A Sprite 5 horizontal position
4577/$llEl 53259/$D00B Sprite 5 vertical position
4578/$llE2 53260/$D00C Sprite 6 horizontal position
4579/$llE3 53261/$D0OD Sprite 6 vertical position
458O/$11E4 53262/$D00E Sprite 7 horizontal position
4581/$11E5 53263/$D00F Sprite 7 vertical position
4582/S11E6 53264/$D010 Most significant bits of horizontal

position
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4583-4584 $11E7-$11E8

4583-4584 $11E7-$11E8
Shadows for VIC sprite-collision registers
During any pass through the BASIC IRQ routine [$A84D]
where either or both of the sprite-collision latch flags {bits 1-2
of 53273/$D019) are found to be set to % 1 , the contents of
the corresponding VIC chip sprite-collision register will be re-
corded in these locations. For sprite-foreground collisions (in-
dicated when bit 1 of the flag is set), any bits in the register at
53279/$D01F which are set to %1 will also be set to %1 in lo-
cation 4584/$llE8. Likewise, for sprite-sprite collisions (indi-
cated when bit 2 of the flag is set), the %1 bits in the register
at 53278/$D01E will be recorded in location 4583/$llE7.
Thus, these locations will accumulate collision readings until
they are cleared, rather than simply holding the most recent
collision values. The routine for the BASIC function BUMP
[$837C] returns values based on the contents of these loca-
tions, rather than on the actual register contents. BUMP(l) re-
turns the sprite-sprite collision value in 4583/$llE7, and
BUMP(2) returns the sprite-foreground collision value in
4584/$llE8. Either location will be reset to 0/$00 after being
read by BUMP. Both locations are also initialized to 0/$00
during the BASIC cold-start sequence.

4585-4586 $1lE9-$11EA
Shadow for VIC light pen registers
During any pass through the BASIC IRQ routine [$A84D]
where the light pen latch flag (bit 3 of 53273/$D019) is found
to be set to %1 , the contents of the VIC chip light pen regis-
ters at 53267-53268/$D013-$D014 will be copied into these
locations. The routine for the BASIC function PEN [$82AE] re-
turns values based on the contents of these locations, rather
than on the actual register contents. PEN(O) returns the value
in 4585/S11E9, multiplied by 2. PEN(l) returns the value in
4586/S11EA. Either location will be reset to 0/$00 after being
read by PEN. Both of these locations are also initialized to
0/$00 during the BASIC cold-start sequence.

4587 $11EB UPPER-LOWER
Starting page for alternate character set during CHAR
The value here determines the starting page in system mem-
ory for the alternate set of characters used during the CHAR
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$11EC 4588

statement for bitmapped screens (see location 4588/$llEC for
more information). CHAR will always begin using the charac-
ter set pointed to in location 4588/$llEC. To switch to the al-
ternate character set, the CHAR string must include character
code 14/$0E. Character code 142/$8E switches back to the
default set. This location is initialized to 216/$D8 during
BASIC cold start. That value selects the ROM lowercase/
uppercase set at 55296/$D800 as the alternate character pat-
tern source. If you use a custom character set, you can change
the value here to have CHAR use your new characters. How-
ever, the new character set must be visible in the bank 14
memory configuration, since that is how the system will be
configured when character pattern data is read.

4588 $11EC UPPER-GRAPHIC
Starting page for default character set during CHAR
The value here determines the starting page in system mem-
ory for the default set of characters used during the CHAR
statement. The value here doesn't affect any statement other
than CHAR, and is used only when character shapes are being
placed on a bitmapped screen. (When CHAR is used to place
characters on the text screen, the screen editor printing routines
are used instead.) For bitmapped screens, CHAR will always
begin using the character set pointed to here, regardless of the
character set in use on the text screen. To switch to the alter-
nate character set (starting page in 4587/$llEB), the CHAR
string must include character code 14/$0E. Character code
142/$8E switches back to the character set pointed to here.
Thus, it is possible to mix the two character sets in a single
CHAR statement. This location is initialized to 208/$D0 dur-
ing BASIC cold start. That value makes the ROM uppercase/
graphics set at 53248/$D000 the default character pattern
source. If you use a custom character set, you can change the
value here to have CHAR use your new characters. However,
the new character set must be visible in the bank 14 memory
configuration, since that is how the system will be configured
when character pattern data is read.
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4589 $11ED $1208 4616

4589 SUED DOSSA
Channel number for BASIC relative file operations
The channel number (secondary address) for BASIC relative
file operations is stored in this location.

4590-4607 $11EE-$11FF Unused
None of these locations is used by any system ROM routine.

BASIC General-Purpose Working Storage
4608-4863/$1200-$12FF

4608-4609 $1200-$1201 OLDLIN
Line number where program stopped
Whenever a BASIC program stops because of an END or
STOP statement, or because the end of the program has been
reached, or because the RUN/STOP key has been pressed,
then the STOP/END routine [S4BCB] will be executed. That
routine stores the line number where the program stopped in
this pair of locations (in low-byte/high-byte format). The
CONT routine [$5A60] uses the value here to determine where
to restart the program. These locations are also used for tem-
porary storage during the RENUMBER routine [$5AF8].

4610-4611 $1202-61203 OLDTXT
Pointer to the start of current line
Each time a BASIC program line is executed, the address of
the first character of program text in the line is stored in these
locations. The high byte (4611/$1203) is also used as a flag to
indicate whether the program can continue after being halted.
The CONT routine [$5A60] will give a CAN'T CONTINUE er-
ror message if the flag byte is 0/$00. The flag location is ini-
tialized to 0/$00 during the CLR routine [$51F8]—you can't
CONTinue a program before it is run. If the program halts with-
out errors, the flag location will hold the high byte of the ad-
dress of the line where the program stopped, which will always
be nonzero, so the program can be CONTinued. However, if
the program stopped because of an error, or if any lines are
changed after the program has stopped, then the flag location
will be reset to zero and the program cannot be CONTinued.

4612-4615 $1204-$1207 PUCHRS
Character definitions for PRINT USING
The values in these locations determine which characters will
be used for the redefinable characters in the PRINT USING
format. The default values are copied from locations $5250-
$5253 in BASIC ROM during the CLR routine, so the default
definitions will be restored each time a program is run. In
BASIC, the definitions here can be changed using the PUDEF
statement.

4612/$1204: This location holds the filler character for the pat-
tern, the one which will be used to fill unused positions in the
format. The default value is 32/$20, the space character.
4613/$1205: This location holds the comma character for the
pattern. The character with the code specified here will be
substituted wherever a comma appears in the PRINT USING
format. The default value is 44/$2C, the comma character.
4614/$1206: This location holds the decimal point character for
the pattern. The character with the code specified here will be
substituted wherever a decimal point (period) appears in the
PRINT USING format. The default value is 46/$2E, the period
(.) character.
4615/$1207: This location holds the monetary symbol charac-
ter for the pattern. The character with the code specified here
will be substituted wherever a dollar sign ($) appears in the
PRINT USING format. The default value is 36/$24, the dollar
sign character.

4616 $1208 ERRNUM
Number of most recent error
Whenever a BASIC error occurs, the ERROR routine [$4D3C]
stores the error number here. The reserved variable ER always
reflects the value in this location. Refer to the entry for the er-
ror message table in Chapter 5 [$484B] for a complete list of
error numbers. Once an error number is stored here, the value
is retained until another error occurs or until the location is
reinitialized. This location is initialized to 255/$FF during CLR
[$51F8] (also executed as part of NEW and RUN). This setting
results in a value of —1 in the reserved variable ER, so when
ER contains that value no error has yet occurred.
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4617-4618 $1209-$120A $1212-$1213 4626-4627

4617-4618 $1209-$120A ERRLIN
Line number where most recent error occurred
Whenever a BASIC error occurs, the ERROR routine [$4D3C]
checks the run mode flag (127/$7F) to see if the error oc-
curred in a program line or an immediate mode line. If the er-
ror was in a program line, the current line number is copied
here from locations 59-60/$3B-$3C. The reserved variable EL
always reflects the value in these locations. Once a line num-
ber is stored here, it will be retained until another error occurs
or until the locations are reinitialized. These locations are ini-
tialized to 65535/$FFFF during CLR [$51F8] (also executed as
part of NEW and RUN). Thus, when the reserved variable EL
contains 65535 no error has yet occurred.

4619-4620 $120B-$120C TRAPNO
Target line number for TRAP statement
When error trapping is enabled with the TRAP statement, the
target line number to which the program will be directed
when an error occurs is stored here (in standard low-
byte/high-byte order). Location 4620/$120C is also used as a
flag to determine whether trapping is enabled. The flag loca-
tion is initialized to 255/$FF during CLR (which is also part of
NEW and RUN), Since the high bytes of all valid line num-
bers are less than 255/$FF, trapping is considered disabled as
long as the flag location contains that value. When trapping is
enabled, the ERROR routine [$4D3C] will transfer control to
the line number indicated here whenever a BASIC error occurs.

4621 $120D TMPTRP
Temporary storage for high byte of TRAP line number
When an error is trapped to a specified line, the ERROR rou-
tine [$4D3C] copies the high byte of the target line number
from 4620/$120C into this location, then stores the value
255/$FF in 4620/$120C. This disables the trapping of errors
during the error-handling routine, which would otherwise put
the program into an infinite loop. The value here is copied
back into 4620/S120C during execution of the RESUME state-
ment [$5F62].

4622-4623 $120E-$120F ERRTXT
Pointer to start of statement where last error occurred
Whenever an error occurs, the ERROR routine [$4D3C] copies
the value in 4610-4611/$1202-$1203 into these locations.
The HELP subroutine that highlights the portion of the line
where the error occurred uses the value here to determine
where to begin the highlighting. The RESUME routine [$5F62]
uses the value here to determine where to resume execution.

4624-4625 $1210-$1211 TEXT_TOP
End-of-program pointer
These locations contain the address of the location immedi-
ately following the end of BASIC program text. The NEW
statement [$51D6] initializes the value here to two bytes be-
yond the address in the start-of-program pointer (45-46/
$2D-$2E). The value here is updated to reflect the new ending
address whenever a line is added or deleted from the program.
An OUT OF MEMORY error occurs if the value here ever ex-
ceeds the value in 4626-4627/$1212-$1213. Following a
LOAD or DLOAD, these locations are set to one byte beyond
the last location to which data was loaded. For a SAVE or
DSAVE, the value here determines the last address from
which data will be saved.

4626-4627 $1212-$1213 MAX_MEM_0
Top-of-BASIC pointer
The value in this pair of locations determines the top of free
memory in block 0 RAM. The address will be one location be-
yond the highest one available for BASIC program text. An
OUT OF MEMORY error will occur when the value in loca-
tions 4624-4625/$1210-$1211 exceeds the value here. The
BASIC cold-start initialization subroutine [$4045] writes the
value 65280/$FF00 here, so that all block 0 RAM below the
MMU registers is available for program text. You can reserve
an area at the top of program memory by reducing the value
in these locations. Unlike some of the other pointers, you need
only store the new value here; no subsequent NEW or CLR is
required.
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4628-4629 $1214-$1215 $1223-$1228 4643-4648

4628-4629 $1214-$1215 TMPTXT
Temporary text pointer storage for DO
This pair of locations is used to temporarily hold the CHRGET
text pointer value (from 61-62/$3D-$3E) during execution of
the DO statement [$5FE0].

4630-4631 $1216-$1217 TMPLIN
Temporary line number storage for DO
This pair of locations is used to temporarily hold the current
line number value (from 59-60/$3B-$3C) during execution of
the DO statement [$5FE0].

4632-4634 $1218-$121A USRPOK
USR function jump vector
The BASIC function USR calls a machine language routine,
like SYS, but it also allows a numeric value to be passed to
and from the ML routine. The routine in BASIC ROM that ex-
ecutes USR ends with a JMP $1218. Location 4632/$1218
contains 76/$4C, the machine language JMP instruction. Loca-
tions 4633-4634/$1219-$121A should contain the address of
the target machine language routine (in the usual Iow-
byte/high-byte format). You must explicitly load these loca-
tions with the address of the target routine before you use
USR. This location is initialized to 32040/$7D28 during
BASIC cold start. This is the address of the routine that issues
the ILLEGAL QUANTITY ERROR message, which is what
you'll get if you use USR without changing locations
4633-4634/$1219-$121A. Refer to Chapter 5 for more infor-
mation on passing values to and from the called routine.

4635-4639 $121B-$121F RNDX
Random number seed value
This five-byte area holds the seed value for BASIC'S random-
number-generator routine [$8434]. When a positive argument
is supplied, the RND routine generates the next random num-
ber by performing calculations and manipulations with the
value here. The generated values aren't really random—any
given seed value here will always produce the same result.
However, the process is sufficiently complicated that the re-
sults aren't easily predictable. Whenever any random number
is generated, the resulting value is stored here for possible use

as the seed for the next random number. Location 4635/$121B
is initialized to 0/$00 during the BASIC cold-start routine.
That is a change from previous Commodore models, where all
five bytes of the seed value were initialized. The zero byte has
the effect of making the initial seed value 0, so the first ran-
dom number value generated after the computer is turned on
or after a reset will always be 1.07870447E-03.

4640 $1220 CIRCLE_SEGMENT
Degrees between segments for CIRCLE routine
This location is used during the BASIC CIRCLE statement rou-
tine [$668E] to hold the number of degrees to turn for each
segment of the circle. The value here is set from the ninth pa-
rameter in the CIRCLE statement, and defaults to 2 if that pa-
rameter is omitted.

4641 $1221 DEJAVU1
Although Commodore literature states that this location holds
a value relating to the reset status, no reference to this location
occurs in any ROM routine.

4642 $1222 TEMPO-RATE
Tempo setting for PLAY statement
The value here determines the tempo for notes played by the
BASIC PLAY statement. The value here is subtracted from the
sound duration value for each voice (in locations 4643-4648/
$1223-$1228) during each pass through the BASIC IRQ rou-
tine. The larger the value here, the faster the duration de-
creases and the faster each note plays. The value here is
initialized to 16/$10 during the SID initialization routine
[$4112], part of both the BASIC cold start and warm start se-
quences. In BASIC, the TEMPO statement can be used to
change the value here.

4643-4648 $1223-$1228 VOICES
Durations for currently active notes
These locations hold the durations of the current PLAY state-
ment notes for each of the SID chip voices:
Voice 0: 4643-4644/$1223-$1224
Voice 1: 4645-4646/$1225-$1226
Voice 2: 4647-4648/$1227-$1228
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4649-4650 $1229-$122A

Bit 7 of each of the high bytes (4644/$1224, 4646/$1226, and
4648/$1228) is used to indicate whether a note is currently
being played by that voice. The voice is active when that bit is
%0. The duration value for each active voice is decremented
by the tempo value specified in location 4642/$1222 during
each pass through the BASIC IRQ routine [$A84D]. When a
duration is decremented below $0000, the high byte will roil
over to $FF, which will set bit 7 to %1 , marking the end of the
note. At this point, the gate bit for the voice will be turned off,
stopping sound output for that voice. Large tempo values
cause the value here to decrease more rapidly, increasing the
speed at which notes are played, while small tempo values in-
crease the note time.

The high bytes for all three voices are set to 255/$FF by
the SID initialization routine [$4112], part of both the BASIC
cold start and warm start sequences. This makes all voices ini-
tially inactive. When the PLAY statement plays a note, the du-
ration for that note will be copied from 4649-4650/$ 1229-$122A
into the slot for the voice specified for that note.

4649-4650 $1229-$122A NTIME
Duration of current note
When the PLAY statement prepares a note, the duration for
the note is first calculated in this location, then transferred to
the proper slot in 4643-4648/$1223-$1228. The value here is
set to 288/$0120, the value for a quarter note, by the SID ini-
tialization routine [$4112], part of both the BASIC cold start
and warm start sequences.

4651 $122B OCTAVE
Octave for current note
The value in this location determines the octave for the cur-
rent notes played by the PLAY statement. This value will af-
fect the calculation of the frequency for the notes. The value
here is set to 4/$04, the octave containing middle C, by the
SID initialization routine [$4112], part of both the BASIC cold
start and warm start sequences. The octave value here remains
in effect until changed by an O parameter in the PLAY string.
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$123O-$1232 4656-4658

4652 $122C SHARP
Sharp/flat flag
The value in this location holds a value that indicates whether
the current note will be either sharp or flat. The location nor-
mally holds 0/$00 for natural notes. When a # character is
found in the PLAY string, this location will be set to l/$01 to
indicate that the next note should be sharp. When a $ charac-
ter is found in the string, this location will be set to 255/$FF
to indicate that the next note should be flat.

4653-4654 $122D-$122E PITCH
Frequency for current note
When the PLAY statement prepares a note, the frequency for
the note is calculated in these locations before being trans-
ferred into the SID chip registers for the specified voice. The
frequency is calculated by loading a base frequency for the
specified note from the table at 28665-28688/$6FF9-$7010,
adjusted for the octave specified in 4651/$122B. If the flag at
4652/$122C indicates that the note is to be sharp or flat, the
frequency is adjusted accordingly.

4655 $122F VOICE
Voice number for current note
The value in this location specifies which voice will be used to
play the next note. The value here is set to 0/$00 by the SID
initialization routine [$4112], part of both the BASIC cold start
and warm start sequences. This selects voice 0 as the default
voice. The value here will remain in effect until changed by a
V parameter in the PLAY string. The parameter value will be
reduced by 1 to convert the BASIC voice number (1-3) to a
VIC voice number (0-2).

4656-4658 S1230-S1232 WAVE
Waveforms for current notes
The values in these locations determine which waveforms will
be used for each of the three voices:
Voice 0: 4656/$1230
Voice 1: 4657/$1231
Voice 2: 4658/$1232
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4659 $1233 $123F-$1270 4671-4720

These locations hold the waveform value for the instrument
specified for the voice. All three voices are initialized to the
default value for instrument 0. This selects a default pulse
waveform for all three voices. The value here remains in effect
until changed by a T parameter in the PLAY string. The T pa-
rameter causes the value for the current voice to be changed to
the waveform value for the specified instrument from the table
at 4671-4720/$123F-$1270.

$1233 DNOTE4659
Dotted-note flag
The value in this location determines whether the next note
will be normal or "dotted." Dotted notes play IV2 times as
long as a standard note. This location normally holds 0/S00,
but will be set to 35/$23 if a period (.) is found in the play
string. In this case, the duration of the next note will be in-
creased by 50 percent.

4660-4663 $1234-$1237 FILTSAV
Temporary storage for filter parameters
The filter parameters are copied here from 4721-4722/
$1271-$1272 at the beginning of the FILTER statement rou-
tine [$7046], The filter parameter manipulations are then per-
formed on these locations, and the results are copied back to
the working storage area.

$1238 FLTFLG4664
Filter type index
This location is used as a mask value to select individual filter
control bits when evaluating the FILTER statement parameters.

4665 $1239 NIBBLE
Temporary storage
This location is used as working storage by the FILTER and
ENVELOPE routines.

4666 $123A TONNUM
Current instrument number
This location will hold the instrument number specified in the
most recent ENVELOPE statement.

4667-4669 $123B-$123D TONVAL
Envelope parameters for current instrument
The current parameters for the specified instrument are read
from the instrument table into these locations at the beginning
of the ENVELOPE routine [$7OC1]:
Attack/decay: 4667/$123B
Sustain/release: 4668/$123C
Waveform: 4669/$123D
If the ENVELOPE statement specifies new values for any of
these parameters, the new values replace the original values
here. The values here are then copied back into the table en-
tries for the specified instrument number.

4670 $123E PARCNT
Index into instrument table for current instrument
This value is used during the ENVELOPE routine [$7OC1] to
hold the index to the current set of instrument parameters.

4671-4720 $123F-$1270
Instrument parameter tables
This area is used to hold the envelope parameters for the ten
defined instruments supported by the PLAY statement [$6DE1]:
Instrument Attack/ Sustain/ Waveform Pulse width

Decay Release low byte high byte
0 4671/S123F 4681/S1249 4691/S1253 4701/$125D 4711/S1267
1 4672/$1240 4682/$124A 4692/$1254 4702/$125E 4712/S1268
2 4673/$1241 4683/$124B 4693/S1255 4703/$125F 4713/$1269

4674/$1242 46S4/S124C 4694/$1256 4704/S1260 4714/$126A
4 4675/$1243 4685/$124D 4695/$1257 4705/J1261 4715/S126B
5 4676/$1244 4686/$124E 4696/$1258 4706/S1262 4716/$126C
6 4677/S1245 4b87/$124F 4697/S1259 4707/S1263 4717/$126D
7 4678/S1246 4688/51250 469S/$1Z5A 4708/$1264 4718/S126E
8 4679/$1247 4689/$125I 4699/S125B 4709/$1265 4719/S126F
9 4680/S1248 4690/$1252 4700/S125C 4710/$1266 4720/S1270

All three voices are initially assigned the envelope parameters
for instrument 0. These settings remain in effect until changed
with a T parameter in the PLAY string.

The values for any table entry can be changed using the
ENVELOPE statement. Default instrument table values are
copied into this area from a table in ROM at 28689-28728/
$7011-$7038 during the SID initialization routine [$4112], part
of both the BASIC cold start and warm start sequences. The
default values are as follows:
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4721-4722 $1271-$1272

Envelope

0 (piano)
1 (accordion)
2 (calliope)
3 (drum)
4 (flute)
5 (guitar)
6 (harpsichord)
7 (organ)
8 (trumpet)
9 (xylophone)

Attack/
Decay
9/$09

192/$C0
0/$00
5/$05

148/$94
9/$09
9/$09
9/$09

137/$89
9/$09

Sustain/
Release

0/$00
192/$C0
240/$F0

80/$50
64/$40
33/S21
0/$00

144/$90
65/$41
0/$00

Waveform

65/$41 (pulse)
33/$21 (sawtooth)
17/$ 11 (triangle)

129/S81 (noise)
17/$11 (triangle)
33/$21 (sawtooth)
65/$41 (pulse)
65/$41 (pulse)
65/$41 (pulse)
17/$11 (triangle)

Pulsewidth

1791/$06FF
0/$0000

255/SOOFF
0/$0000

255/$00FF
0/$D000

767/$02FF
2048/$0800
767/$02FF
0/$0000

Note that the pulsewidth values here are different from those
specified in Commodore literature. The official values assume
that all pulsewidth low bytes will be 0/$00. However, these
bytes are not explicitly initialized, so they will hold their pre-
vious values after a reset. On power on, alternating pulse-
width low-byte locations will hold 255/$FF instead of 0/$00.

4721-4722 $1271-$1272 FILTERS
Current filter cutoff frequency
These locations hold the current cutoff frequency register set-
ting, an 11-bit value divided among the two locations with
bits 0-2 of the value in location 4721/$1271 and bits 3-10 of
the value in location 4722/$1272. The value is copied to the
SID cutoff frequency registers (54293-54294/$D415-$D416)
when the XI parameter is included in the PLAY string.

4723 $1273
Current filter control and resonance setting
Bits 0-3 of this location determine which voices will be filtered
and bits 4-7 control the filter resonance setting. The resonance
setting can be changed using the FILTER statement. When an
XI parameter is included in the PLAY string, the filter control
bit in this location corresponding to the current voice will be
set to %1 and the value here will be copied into the SID regis-
ter at 54295/SD417 to enable filtering of that voice. When an
X0 parameter is included, the corresponding voice bit will be
set to %0 and the value will again be copied to the SID regis-
ter to turn off filtering for that voice.
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$1276-$1278 4726-4728

4724 $1274
Current filter type selection
Bits 4-6 of this location determine the type of filtering cur-
rently enabled. The setting of those bits can be changed using
the FILTER statement. Because the SID register that controls
filter type also controls volume, bits 0-3 of this location reflect
the current volume setting as well. When an XI parameter is
included in a PLAY string, the value here is copied into the
SID register at 54296/$D418 to enable the specified filter type.
This location is set to 15/$0F, the value for all filters off and
maximum volume, during the SID initialization routine [$4112],
part of both the BASIC cold start and warm start sequences.

4725 $1275
Current SID chip volume setting
Bits 0-3 of this location reflect the current volume setting for
the SID chip. The value here can be changed either with the
VOL statement or with the U parameter in a PLAY string. Be-
cause the SID register which controls volume also controls fil-
ter type selection, bits 4-6 of this location will reflect filter
type as well. The value here is set to 15/$0F, the value for
maximum volume, during the SID initialization routine [$4112],
part of both the BASIC cold start and warm start sequences.

4726-4728 $1276-$1278 INT_TRIP_FLAG
Collision flags
The VIC internal interrupt register (53273/$D019) is read dur-
ing each pass through the BASIC IRQ routine [$A84D] to de-
termine if a sprite collision has occurred or if a new light pen
value has been latched. Because that register is automatically
cleared after a read, the system uses these locations to record
which conditions were detected:
Location Collision type
4726/$1276 Sprite-sprite collision
4727/S1277 Sprite-foreground collision
4728/S1278 Light pen latch
If a collision has occurred, the corresponding flag location will
be set to 255/$FF, but only if the collision type has been en-
abled by setting to %1 the appropriate bit in location 4735/
$127F. All three of these locations are set to 0/$00 during the
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4729-4734 $1279-$127E $1282-$12A2 4738-4770

SID initialization routine [$4112], part of both the BASIC cold
start and warm start sequences. A location set to 255/SFF will
be reset to 0/$00 after COLLISION processing in the GONE
routine [$4A9F].

4729-4734 $1279-$127E INT_ADR
Target line numbers for COLLISION
If the trapping of sprite collisions or light pen latches is en-
abled, a BASIC subroutine will be called (effectively a GOSUB)
whenever one of the selected events occurs. These locations
are used to hold the number (in low-byte/high-byte integer
format) of the starting BASIC program line of the subroutine
to be called. (The subroutine should end with a RETURN
statement.) The values here can be set with the COLLISION
statement.

Low byte
4729/$1279
473O/$127A
4731/$127B

High byte
4732/$127C
4733/$127D
4734/S127E

Collision type
sprite-sprite
sprite-foreground
light pen

INTVAL4735 $127F
Collision enable flag
Bits 0-2 of this location indicate the collision types for which
trapping is currently enabled:
Bit Collision type
0 sprite-sprite
1 sprite-foreground
2 light pen

Trapping is enabled if the bit is set to % 1 . Enabling trapping
will allow the corresponding collision type to be recorded in
the flags at 4726-4728/$1276-$1278. Bits 3-7 of this location
are unused. The value here is reset to 0/$00 during the BASIC
cold-start sequence. This disables all COLLISION branching.

4736 $1280 COLTYP
Collision type index
The value here is used during the COLLISION routine [$7164]
to hold an index into the line number table at 4729-4734/
$1279-$127E.

4737 $1281 SOUND-VOICE
Voice for current SOUND statement
The value in this location specifies which group of entries in
the following table should be loaded with the current SOUND
parameters. The value here is set to the value of the first pa-
rameter in the SOUND statement, minus 1 to convert the
BASIC voice number (1-3) into a SID voice number (0-2).

4738-4770 $1282-$12A2
Table of SOUND statement settings
These locations hold the current SOUND parameters for the
three SID chip voices:
Parameter Voice 0 Voice 1 Voice 2
Duration (low) 4738/$1282 4739/$1283 4740/$1284

(high) 4741/$1285 4742/$2286 4743/$1287
Frequency (low) 4744/S1288 4745/$1289 4746/$128A

(high) 4747/5128B 4748/$128C 4749/$128D
Minimum frequency (low) 4750/$128E 4751/$128F 4752/$1290

(high) 4753/$1291 4754/$I292 4755/$1293
Step direction 4756/$1294 4757/$1295 4758/$1296
Step size (low) 4759/51297 4760/51298 4761/$1299

(high) 4762/$129A 4763/$129B 4764/$129C
Current frequency (low) 4765/$129D 4766/$129E 4767/$129F

(high) 4768/$12A0 4769/$12Al 4770/$12A2

Bit 7 of each of the duration high-byte values (locations
4741-4743/$1285-$1287) is used to indicate whether any
SOUND statement is active for the corresponding voice. If the
bit is %0, the voice is assumed to have an active sound, and
the current frequency value for the voice will be copied into
the SID chip frequency registers during each pass through the
BASIC IRQ routine [$A84D]. See Chapter 5 for a discussion of
the other SOUND effects, such as frequency sweeps. Also dur-
ing each pass through the interrupt routine, the duration value
for each active voice will be decremented. When the value is
decremented below $0000, the high byte will roll over to
255/$FF, setting bit 7 to % 1 , which marks the end of the
sound. At this point the gate bit for the voice will be set to %0
to turn off the sound.

Each of the duration high-byte locations will be set to
255/$FF during the SID initialization routine, part of both the
BASIC cold start and warm start sequences. This will turn off
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4771-4776 $12A3-$12A8

SOUND output for all three voices. The values in these loca-
tions are updated when the contents of 4771-4776/$ 12A3-$12A8
are copied to the entries for the specified voice during execution
of the SOUND statement [$71EC].

4771-4776 $12A3-$12A8
Parameters for most recent SOUND statement
These locations are used to assemble the parameters for the
current SOUND statement. The SOUND statement must in-
clude voice number, frequency, and duration parameters. The
remaining parameters are optional; if they are omitted, default
values are supplied. The base frequency value is initialized to
the specified starting frequency. The locations and default val-
ues are as follows:

Parameter Locations Default value
Duration 4771-4772/$12A3-$12A4
Frequency 4773-4774/$12A5-$12A6
Minimum frequency 4775-4776/$ 12A7-S12A8 0/$0000
Step direction 4777/$12A9 0/$00 (sweep up)
Step size 4778-4779/$ 12AA-S12AB 0/$0000 (no sweep)
Base frequency 4780-4781/$12AC-$12AD
Pulsewidth 4782-4783/$12AE-$12AF 2048/S0800
Waveform 4784/$12B0 2/$02 (pulse)

After all the parameters for a SOUND statement have
been evaluated and assembled here, the values are transferred
to the entries in the table at 4738-4770/$1282-$12A2 for the
specified voice. The base frequency value is used as the begin-
ning current frequency value.

4785 $12B1 POT_TEMP_1
Temporary storage for POT and PEN routines
This location is used as temporary storage during the routines
to perform the BASIC functions POT [$824D1 and PEN
[$82AE].

4786 $ 12B2 POT_TEMP_2
Temporary storage for POT routine
During execution of the POT function routine [$824D], the
potentiometer reading from the SID chip register is stored here
temporarily while the paddle buttons are being read.
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$12F6-$12F9 4854-4857

4787-4790 $12B3-$12B6 WINDOW_TEMPS
Temporary parameter storage for WINDOW statement
When the WINDOW statement [$72CC] is executed, the pa-
rameter values associated with the statement are stored in
these locations before the screen editor WINDOW routine
[$C02D] is called to actually set the new window margins.
Location Parameter
4787/$12B3 left column
4788/$12B4 top row
4789/$12B5 right column
4790/$12B6 bottom row

4791-4806 $12B7-$12C6
Filename buffer for DOS support commands
The routine which handles the BASIC 7.0 DOS support com-
mands such as SCRATCH and RENAME copies the filename
portion of the command here temporarily while the remainder
of the command is being processed. Once the command is set
up, the filename here is copied into the DOS command buffer
at 4352-4399/$1100-$112F.

4791-4853 $12B7-$12F5 SAVRAM
Sprite pattern storage
These locations are used during the SPRDEF statement routine
[$7372] to hold the original sprite pattern while a sprite is be-
ing defined. If the STOP key is pressed to cancel the current
modifications, the pattern definition here will be restored to
the definition area for the sprite. The first 63 of these locations
are also used during the SPRSAV routine [$76EC] to hold the
sprite pattern to be transferred to a string variable.

4854-4857 $12F6-$12F9
Sprite pattern suffix
During the SPRSAV routine [$76EC], these locations are ini-
tialized with the pattern $17 $00 $14 $00. When a sprite pat-
tern is saved in a string variable, these bytes are appended to
the sprite pattern in 4791-4853/$12B7-$12F5 before the data
is transferred to the string pool. Two bytes are needed as the
tag for the variable, but exactly what this four-byte pattern is
intended to achieve is unclear.
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4858 $12FA

4858 $12FA DEFMOD
Sprite mode indicator for SPRDEF
This location is used during the SPRDEF statement routine
[$7372] to hold a value indicating the mode of the sprite cur-
rently being defined. A value here of 0/$00 indicates a stan-
dard sprite, while a value of 128/$80 indicates a multicolor
sprite.

4859 $ 12FB LINCNT
Sprite pattern line count for SPRDEF
This location is used during the SPRDEF statement routine
[$7372] to hold the number of the vertical line (0-20) within
the sprite pattern which is currently being defined.

4860 $12FC SPRITE_NUMBER
Sprite number for SPRDEF
This location is used during the SPRDEF statement routine
[$7372] to hold the number (0-7) of the sprite currently being
defined.

4861 $ 12FD IR9_WRAP_FLAG
BASIC IRQ activity flag
This location is tested at the beginning of the BASIC IRQ ser-
vice routine [$A84D]. If it contains any nonzero value, the
routine exits immediately. The location is initialized to 0/$00
during the SID initialization routine [$4112]. The BASIC IRQ
routine increments this location (to l/$01) when it begins, so
the test prevents the routine from being restarted if another in-
terrupt occurs before the current pass is completed. The IRQ
routine resets the value here to 0/$00 before exiting.

The BASIC portion of the IRQ sequence is responsible for
moving sprites, detecting sprite collisions, and handling the
BASIC sound statements. The routine maintains a number of
shadow locations which are copied into VIC and SID chip
hardware registers during each interrupt. Sometimes you may
want to turn off these shadow locations to have direct access
to the hardware registers. One way to do that is to store some
nonzero value in this location. While turning off the BASIC
IRQ routine will give you direct access to the hardware regis-
ters, you should keep in mind that it will also effectively dis-
able the BASIC statements MOVSPR, COLLISION, SOUND
and PLAY.
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$13OO-$1BFF 4864-7167

4862-4863 $12FE-$12FF Unused
These locations are not used by any 128 ROM routine.

Application Program Area
4864-7167/$1300-$lBFF
None of the 2304 (2V4-K) locations in this area are used by
any system ROM routines. Thus, this area is free for your own
programming uses—machine language routines, alternate
screens, and so on. Because this is the largest block of free
RAM protected from BASIC, the area is becoming extremely
popular with machine language programmers, much like the
area at 49152/$C000 in the Commodore 64. As a result, you'll
probably encounter instances where two programs you want
to use simultaneously will be incompatible because they reside
at overlapping addresses within this range.

One thing this area cannot normally be used for is to hold
additional sprite patterns or custom character patterns. While the
standard ROM-based character sets are enabled, the VIC chip
will see character ROM at addresses 4096-8191/$1000-$lFFF.
As a result, this RAM is not visible to the VIC chip and cannot
be used for sprite or character information. Sprite or character
patterns can be stored here if the ROM-based characters are
disabled; refer to the entry for location l/$01 in Chapter 2 for
details.
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RAM Usage
The Commodore 128, as its name implies, has 128K of pri-
mary RAM in two 64K blocks. Memory configurations are dis-
cussed in detail in Chapter 1, but in general the 128 sees RAM
from block 0 in even-numbered banks (0, 4, 8, 14) and RAM
from block 1 in odd-numbered banks (1, 5, 9). A notable ex-
ception is bank 15, where RAM from block 0 is seen. Another
significant exception is that in every bank the system normally
sees RAM from block 0 in locations 2-1023/$0002-$03FF.
(Remember that locations 0-l/$00-$01 are used for the pro-
cessor's on-chip I/O port and are never seen as RAM.) This
means that the lowest IK of RAM in block 1 normally remains
invisible and unused. As explained in Chapters 2 and 3, the
common IK block and locations 1024-7167/$0400-$lBFF in
block 0 have special uses. Also, remember that MMU registers,
rather than RAM or ROM, are seen at addresses 65280-65284/
$FF00-$FF04 in every bank configuration.

Two pointers in page 10/$0A indicate the range of loca-
tions in block 0 considered free RAM. Locations 2565-2566/
$0A05-$0A06 point to the lowest free address, and locations
2567-2568/$0A06-$0A07 point to one byte beyond the high-
est free address. These pointers are initialized during the
RAMTAS subroutine [$E093], part of the reset sequence, to
7168/S1C00 and 65280/$FF00, respectively. The pointer val-
ues can also be changed with the Kemal MEMTOP [SFF99]
and MEMBOT [$FF9C] routines. However—unlike earlier
Commodore computers—these pointers have no effect on the
range of addresses used by BASIC and are not read by any
other Kernal or BASIC routine.

BASIC RAM Usage
For BASIC programming, the areas of RAM normally available
for storage of programs and variables are locations 7168-65279/
$1COO-$FEFF in block 0 and 1024-65279/$0400-$FEFF in
block 1. This is a total of 122,368 bytes of available RAM
space (illustrated in Figure 4-1). This explains why part of the
message you see when you turn on or reset the computer says
122365 BYTES FREE. (The missing three bytes are to account
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for the zero byte required by BASIC before the first program
line and the two zero bytes used to mark the end of the
program.)

Actually, it's a bit misleading to claim that many free
bytes, since you can't write a BASIC program 120,000 bytes
long. For BASIC, the free RAM is divided into two distinct
segments: the 58,112 bytes in block 0 for BASIC program text
and the 64,256 bytes in block 1 for variables and strings. (By
comparison, the Commodore 64 offers 38,911 bytes for pro-
gram text and variables combined.)

As noted in Figure 4-1, there is one additional factor
which affects the amount of memory available for program
text. When you use a GRAPHIC statement to set up a high-
resolution screen, an additional 9K is reserved in block 0: IK
at 7168-8191/$1COO-$1FFF for color information and 8K at
8192-16383/$2000-$3FFF for the high-resolution-screen bit-
map. In this case, the amount of RAM available for BASIC
program text is reduced to 48,896 bytes (locations 16384-65279/
$4000-$FEFF in block 0). If a program is already in memory
when the GRAPHIC statement is executed, the program is
moved upward in memory (the starting address will be
changed from 7169/$1CO1 to 16385/$4001) and relinked to
work at the new addresses. Once a high-resolution memory
area is established, it remains allocated until a GRAPHIC CLR
statement is executed, at which time the program text is moved
down to start at 7169/$1CO1 again.

Pointers in zero page and page 18/$ 12 are used to specify
the length of program text and variables. BASIC program text
is assumed to begin at the address in block 0 specified in loca-
tions 45-46/$2D-$2E. That pointer is initialized to 7169/
$1CO1 during the BASIC cold start routine [$4023]. Unlike the
Commodore 64, which sets its start-of-BASIC pointer accord-
ing to the value in the system's start-of-free-memory pointer,
the 128 sets the address value without regard for the value in
2565-2566/$0A05-$0A06. Locations 4626-4627/$1212-$1213
point to one byte beyond the highest available address in
block 0. That pointer is initialized during BASIC cold start to
65280/$FF00, again without regard to the Kernal memory
pointer value in 2567-2568/$0A07-$0A08. The actual ending
address of the program text currently in memory is specified
by the value in 4624-4625/$1210-$1211. That pointer is ini-
tialized during the BASIC CLR routine [$51F8] to two bytes
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Figure 4-1. BASIC RAM Usage
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beyond the starting address in 45-46/$2D-$2E. An OUT
OF MEMORY error occurs if the address in 4624-4625/
$1210-$1211 reaches the value in 4626-4627/ $1212-$1213.
The ending address pointer is set after a BASIC LOAD [$912C],
and the BASIC SAVE routine [$9112] uses the values in the
starting and ending address pointers as the starting and end-
ing address for the block of memory to be saved.

The address in the pointer at locations 47-48/$2F-$30
marks the start of scalar (nonarray) variables in bank I. The
pointer is initialized to 1024/$0400 during the BASIC cold
start routine. A pointer at 49-50/$31-$32 marks the end of
scalar variables and the beginning of arrays; another pointer at
51-52/$33-$34 marks the end of arrays and the beginning of
free memory in block 1. Both of these pointers are reset to the
value in 47-48/$2F-$30 during the BASIC CLR routine. The
pointer at 57-58/$39-$3A holds an address which is one byte
beyond the highest address of free memory in block 1. It is
initialized during BASIC cold start to point to 65280/$FF00.
The free memory in block 1 is used to hold strings of all
types—constants, variables, and arrays. The string pool starts
at the top of free memory and is filled downward toward the
bottom of free memory indicated in 51-52/$33-$34. The
pointer at 53-54/$35-$36 marks the current address of the
bottom of the string pool. That pointer is reset to the value in
57-58/$39-$3A by the BASIC CLR routine. An OUT OF
MEMORY error occurs when the value in 53-54/$35-$36
reaches the value in 51-52/$33-$34.

Reserving RAM
There are occasions when you will want to divert an area of
RAM from its normal usage. For example, you may need to set
aside space for a machine language routine, an alternate
screen display, or a data buffer. For machine language (ML)
programming, you can use any area of RAM if you are willing
to learn the intricacies of the 128's banking scheme. Other-
wise, it's best to restrict your programming to certain known
areas. For a machine language routine to be used in conjunc-
tion with a BASIC program, you'll need to select an area
which BASIC doesn't normally use, or to take away some
memory that otherwise would be used for program text or
variable storage. As noted in Chapter 3, locations 4864-7167/
$13OO-$1BFF are currently unused (even though they are
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called "reserved" in Commodore literature). This 2304-byte
area is the largest unused area of protected RAM in the 128,
and it is becoming extremely popular with 128 ML program-
mers—much like the $C000 block in the Commodore 64. You
can expect to see many ML programs using this area.

Other, shorter blocks are also available if certain BASIC
features are not used. If tape is not used, the 256 bytes at
2816-3071/$0B00-$0BFF are available. However, unlike other
free blocks, this page may be overwritten during a reset be-
cause disk boot sectors are read into this area. Thus, the time-
honored Commodore tradition of using the cassette buffer for
short ML routines is less suitable in the 128. (It's annoying to
have to reload your routine after each reset.) If your program
doesn't use RS-232 communications, the two RS-232 buffers at
3072-3583/$0C00-$0DFF provide a 512-byte workspace. This
is probably the best area for short ML routines that you wish
to use in conjunction with BASIC. (Unlike the cassette buffer,
this area survives reset intact.) If your program does not use
sprites, the 512-byte sprite definition area at 3584-4095/
$0E00-$0FFF is also available. Of course, if your program uses
neither tape nor RS-232 nor sprites, you can use the full 1280
bytes at 2816-4095/$0B00-$0FFF or any subsection thereof.

To use a large ML program in conjunction with BASIC,
there is an easy way to reserve over UK of protected RAM.
However, this technique works only if neither the BASIC nor
the ML program requires high-resolution graphics. The trick is
to use the BASIC GRAPHIC statement to set aside a high-
resolution screen area at 7168-16383/$lC00-$3FFF. As men-
tioned above, this area remains allocated until a GRAPHIC
CLR statement is executed. Simply begin your BASIC program
with a line like GRAPHIC 1:GRAPHIC 0 (or GRAPHIC
1:GRAPHIC 5 if you want to use the 80-column display).
Then BLOAD the machine language program into the reserved
area. In addition to the 9K screen area, you can also use the
contiguous unused area just below, at 4864-7167/$1300-$lBFF.
If you want to use a machine language program in conjunction
with BASIC and high-resolution graphics, you'll have to resort
to bank-switching techniques if the program is too large to fit
in the unused area at 4864/$1300.

It's possible to reserve space above or below either the
BASIC or variable/string areas. To reserve space below the
BASIC program text, increase the value in the start-of-BASIC
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pointer at 45-46/$2D-$2E by the number of bytes you want
to reserve. (To reserve an even number of 256-byte pages, you
need only change the value in 46/$2E.) Two other steps are
also necessary: BASIC requires a zero byte below the first lo-
cation in its program text space, and a NEW operation is re-
quired to reset other important memory pointers. For example,
to reserve three pages (768 bytes) below the normal start of
BASIC, you would use a statement like this:
POKE 46,31:POKE 31*256,0:NEW

After this statement is executed, the area at 7168-7935/
$1COO-$1EFF is protected from BASIC until the next time the
BASIC cold start routine is performed (normally during the
next reset sequence). The pointer value is unaffected by
RUN/STOP-RESTORE. This technique is less useful when a
high-resolution screen area is allocated. In that case, the start
of BASIC is moved to 16384/$4000. The technique for reserv-
ing space at the start of BASIC still works, but the reserved
memory will lie above 16383/$3FFF, which is the highest ad-
dress seen as RAM in bank 15—the bank in which Kernal
ROM is visible and to which BASIC defaults. Thus, a routine
above that boundary will be invisible unless you tinker with
the MMU configuration register.

Space can be reserved at the top of the BASIC program
area by reducing the value in the pointer at 4626-4627/
$1212—$1213 by the desired number of bytes. (Again, if you
wish to reserve an even number of 256-byte pages, you can
simply reduce the value in 4627/$l213.) No additional steps
are required other than changing the pointer value. This tech-
nique was often used in the Commodore 64 to reserve space
for machine language routines; its usefulness is more limited
in the 128 because of the 16384/$4000 boundary of RAM visi-
ble in bank 15, which was mentioned above. To easily use the
reserved area for an ML routine in conjunction with BASIC,
the top of memory must be lowered sufficiently to make at
least a portion of the reserved area appear below the bound-
ary of RAM visible in bank 15; this dramatically reduces the
amount of memory available for program text. It's not even
possible when a high-resolution screen area is allocated. The
technique can, however, be useful for setting aside an area in
block 0 for a buffer, a reserved area of memory for data
storage.
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You can also reserve space in block 1, either above or be-
low the variable/string area. To reserve space below variables,
add a value corresponding to the number of bytes to be re-
served to the address in the pointer at 47-48/$2F-$30, (As
with the other pointers, you can simply increase the value in
48/$30 if you are reserving an even number of 256-byte
pages.) This step must be followed by a BASIC CLR statement
to reset other variable pointers, so it should be performed
early in the program (CLR erases all variable values). The fol-
lowing line reserves an additional IK at the bottom of variable
space, locations 1024-2047/$0400-$07FF in block 1:
100 POKE 48,8:CLR
Once established, the reserved area will remain intact until the
next time the BASIC cold start routine is executed, normally
at the next reset. The setting is unaffected by RUN/STOP-
RESTORE.

Since this reserved RAM is in block 1, it can't be used for
ML routines as easily as the RAM from block 0. There is no
standard bank configuration that makes BASIC and Kernal
ROM visible in conjunction with block 1 RAM. Of course, it is
possible to access Kernal or BASIC routines indirectly by using
the JSRFAR or JMPFAR routine. One use for a reserved area in
block 1 would be for an alternate 40-column screen. See the
entry for the MMU RAM configuration register (54535/$D506)
information on using block 1 for VIC-II screen memory.

To reserve space above strings, subtract a value cor-
responding to the number of bytes to be reserved from the ad-
dress in the pointer at 57-58/$39-$3A. (As with the other
pointers, you can simply increase the value in 58/$3A if you
are reserving an even number of 256-byte pages.) This step
must also be followed by a BASIC CLR statement to reset
other string pointers, so it should be performed early in the
program (CLR erases all variable values). The following line
reserves 31K at the top of string space, locations
32768-65279/$8000-$FEFF in block 1:
100 POKE 58,128:CLR

Once established, the reserved area will remain intact until the
next time the BASIC cold start routine is executed—normally
at the next reset. The setting is unaffected by RUN/STOP-
RESTORE. As mentioned above, this area can't be easily used
for machine language routines since it is in block 1. One ap-
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propriate use for a reserved area here would be for a data
buffer—to hold downloaded text in a telecommunications pro-
gram, for example.

Using ML Without BASIC
You have several options when using ML programs alone,
without BASIC. The simplest, if your program is less than 9K
(9216 bytes) long, is to leave the system in its default bank 15
configuration and use the visible area of block 0 RAM at
7168-16383/$lC00-$3FFF. (If you need a few more bytes,
you can stretch the start of the program down to the bottom
of the reserved area at 4864/$1300.) With this setup, you have
full access to the I/O chip registers and all the routines in
BASIC and Kernal ROM.

If you need more space, but still want access to Kernal
routines, you can change the settings of bits 1-3 of the MMU
configuration register to switch out BASIC ROM. In this case,
you'll have access to over 43K of contiguous RAM, locations
4864-49151/$1300-$BFFF. If you want to use a high-resolution
screen in conjunction with your ML routine, it's easiest to set
up the screen in its normal location (7168-16383/$1COO-$3FFF).
This means that—if your program is too long to fit below the
screen areas—you'll need to switch out BASIC to have some
RAM visible with Kernal ROM. (You could still use the Kernal
JSRFAR routine to access BASIC routines—if you wanted to
use some of the graphics drawing routines, for example.)

Although it is possible to set up a custom MMU configu-
ration that makes block 1 RAM visible with either BASIC or
Kernal ROM (or both), there's rarely a need for such gyrations.
It's usually easiest to locate your executable machine language
in block 0 and use block 1 for data storage.

Several obscure techniques are available to squeeze a few
more bytes out of the 128. For example, you can gain access to
the lowest IK of block 1 RAM, which is normally covered by
the common area from block 0, by changing the value in the
MMU RAM configuration register (54534/$D506). See the dis-
cussion of the MMU in Chapter 8 for details.

Page 255/$FF
The highest page of memory, locations 65280-65535/
$FFO0-$FFFF, in each RAM block is normally unused by
BASIC and contains a few bytes of free RAM as well as some
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important routines and vectors. The MMU configuration and
load configuration registers always appear in the lower five
bytes of this area, locations 65280-65284/$FF00-$FF04. They
should never be disturbed unless you know the effect of the
values you are storing there (see Chapter 8 for more infor-
mation on the MMU). You should also exercise care when
changing the contents of locations 65285-65348/$FF05-$FF44
in either RAM block, as these areas contain copies of the inter-
rupt and reset handling routines. (These areas are initialized
by the Kernal RESET routine [$E000].) If an interrupt or reset
occurs while the system is configured for a bank where Kernal
ROM is not visible—bank 0 or 1, for example—a crash will
occur if the area in the visible RAM block does not contain a
routine to redirect the reset or interrupt to a proper handling
routine. See the entries for these addresses in Chapter 9,
"Kernal ROM," for more information.

Free space in this page includes the 181 bytes at locations
65349-65529/$FF45-$FFF9 in block 0 and the 176 bytes at
65349-65524/$FF45-$FFF4 in block 1. However, locations
65488-65519/$FFD0-$FFEF in block 0 will be overwritten
whenever the computer is reset. As mentioned in Chapter 1,
the Z80 microprocessor has control briefly after a reset or
when the computer is first powered on. The initialization steps
performed by the Z80 include copying two routines into block
0 RAM. One, at 65488-65503/$FFD0-$FFDF, is an 8502 ma-
chine language routine to surrender control to the Z80; the
other, at 65504-65519/$FFE0-$FFEF, is a Z80 machine lan-
guage routine to surrender control to the 8502. These routines
have no use in 128 mode—they can be used only in CP/M
mode—but they are recopied to block 0 during each reset.
{Actually, there is one situation where disturbing these routines
can cause a problem. If you overwrite the routine at 65488/
$FFD0 and then attempt to start CP/M with a BASIC BOOT
command, the system will crash. The machine language in the
CP/M boot sector expects that routine to be intact.)

Locations 65525-65529/$KFF5-$FFF9 in block 1 have a
special use. The first three bytes, locations 65525-65527/
$FFF5-$FFF7, are an initialization signature; after the Kernal
RESET routine [$E000] has been performed at least once, these
locations will contain the character codes for the letters CBM.
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As long as the signature locations contain these codes, the ini-
tialization test subroutine will take an indirect jump to the ad-
dress specified in locations 65528-65529/$FFF8-$FFF9, called
the system vector or soft reset vector. This vector normally
points to 57892/$E224 in Kernal ROM, a routine that does
nothing more than reinitialize the signature and vector. You
can change the vector to point to a routine of your own to add
additional steps to the reset sequence or to initiate an entirely
new reset sequence. One restriction applies: The routine you
specify in the vector must be visible in the bank 15 configura-
tion since that is how the system is set up when the jump
through the vector is taken.

When tapping into the RESET routine, you need to be
aware of what has happened before the vector jump is taken
and what hasn't happened yet. Before entering the subroutine
that takes the jump through the vector, the RESET routine
[$E000] resets the stack pointer to the top of the stack, config-
ures the system for bank 15, resets the other MMU registers to
their default values, and recopies the common routines to
65285-65348/$FF05-$FF44, 674-763/$02A2-$02FB, and
1008-1020/$03F0-$03FC. However, the initialization routines
IOINIT, RAMTAS, RESTOR, and CINT are normally called
after the return from the jump. This means that you can't use
the vector diversion to change default indirect vector settings
or to alter screen parameters if your routine ends with RTS to
return to the normal reset sequence. It also means that when
you use the vector to substitute your own reset sequence, you
may need to call one or more of these subroutines to complete
system initialization. At least the IOINIT routine [$E109] or
some equivalent initialization routine is necessary, since the
reset signal generated by pressing the RESET button also re-
sets the VIC and VDC (8563) video chips, clearing all chip
registers to zero. IOINIT initializes the video chip registers to
their standard settings.

One interesting use of this vector is to make a machine
language program unstoppable by anything short of turning
off the computer. To accomplish this, change the vector to
point to the initialization routine of the program to be made
unstoppable. That initialization step should include calls to at

192

least the IOINIT and CINT routines, and it should also disable
RUN/STOP-RESTORE by redirecting the NMI vector. Here is
a short example:

ocoo0C02
0C04
OC06
0C08
OCOA
OCOD
OCOF
0C11
0C13
0C16
0C18
0C1A
0C1B
0C1E
0C20
0C23
0C25
OC28
0C2B
0C2E
0C30
0C33
0C35
0C38
0C39

LDA
STA
LDA
STA
LDA
STA
LDA
LDX
LDY
JSR
LDA
LDX
INY
JSR
LDA
STA
LDA
STA
JSR
JSR
LDX
LDA
BEQ
JSR
INX
BNE

#$F8
$C3
#$FF
$C4
#$C3
$02B9
#$28
#$01
#$00
$FF77
#$0C
#$01

$FF77
#$33
$0318
#$FF
$0319
$FF84
$cooo
#$00
$0C40,X
$0C2E
$FFD2

$0C30
;Text for message
>0C40
>0C48
>0C50

49 20
42 45
45 44

43 41
20 53

;Use Kernal INDSTA routine to
change system reset vector

; in bank 1 to point to the
; routine at $0C28

;Change the INMI indirect vector
; to point to the interrupt return
; routine (disables RUN/STOP-
; RESTORE)
;Kernal IOINIT routine
;Kernal CINT routine
;Loop to print message repeatedly
; text at $0C40

4E 27 54 20
54 4F 50 50

21 0D0DO0
Use J F0C00 {from the monitor) or BANK 15:SYS 3072

(from BASIC) to set the new pointer values and start the rou-
tine. Once started, it cannot be stopped with either reset or
RUN/STOP-RESTORE. Obviously, you should make sure
that your ML program is fully debugged—and be sure that
you have a backup copy, just in case it isn't—before you use
this technique to make the program unstoppable.

The highest six addresses in each RAM block, locations
65530-65535/$FFFA-$FFFF, contain copies of the processor
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reset and interrupt vectors. This area is initialized during the
reset sequence, and, like the handling routines to which these
vectors point, these vector addresses should be changed with
care. The system will crash if a RAM vector does not contain
the address of a valid handling routine when an interrupt or
reset occurs while that block is visible. See the entries for
these addresses in Chapter 9 for more information on the pro-
cessor vectors.
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BASIC ROM

The Commodore 128's BASIC 7.0 occupies the 28K of ROM
between 16384-45055/$4000-$AFFF. That represents signifi-
cant growth from the BASIC 2.0 of the Commodore 64, which
filled only about 9K. The expansion is the result of the addi-
tion of a variety of graphics, sound, and sprite statements, as
well as enhanced commands for disk operations. Because
BASIC is so large, it's not practical to provide a detailed de-
scription of every routine—that would fill another book. In-
stead, the entry points to most of BASIC'S important routines
are listed, with short explanations of what the target routines do.

Adding to BASIC
Even with all the added features of BASIC 7.0, you may find
it lacking and wish to modify BASIC to add new commands.
One common way to do this in the Commodore 64 is to copy
BASIC ROM into RAM, then modify and use the RAM-based
version. This scheme can't be used on the 128, even though it
does have RAM under BASIC ROM like the 64. While it's pos-
sible to copy BASIC into ROM, there's no easy way to keep a
RAM-based version of BASIC executing in RAM. The bank-
switching routines in 128 BASIC ROM keep the system con-
figured for banks 14 or 15, where BASIC ROM is visible,
while BASIC routines are being executed.

The formal method of adding new statements or functions
is to tap into the indirect vectors at 780-785/$030C-$0311
and 764-765/$02FC-$02FD. This allows you to add new
statements or functions that use the two-byte extended tokens.
Currently, extended statement tokens 39-255/$27-$FF and
extended function tokens ll-255/$0B-$FF are unused and
thus available for your additional keywords.

Three separate steps are required to add a new keyword.
You must provide for it to be tokenized, detokenized (listed),
and executed. The indirect vector at 780-781/$030C-$030D
lets you patch into the CRUNCH routine to tokenize your new
extended token keywords. The vector at 782-783/
$030E-$030F lets you patch into the IQPLOP routine to
detokenize these new keywords when a line containing a new
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keyword is listed. The other two vectors allow you to patch
into the statement and function execution routines to provide
for the handling of the new keywords (784-785/$0310-$0311
for statements and 764-765/$02FC-$02FD for functions). The
following example shows the addition of a statement and a
function. The statement, STORE, can be used to store values
in the VDC chip internal registers (see Chapter 8 for details of
the VDC chip). The format of the statement is STORE register,
value. The register parameter is the VDC register number
(0-36) and the value parameter is the value (0-255) to be
stored in that register. The function, RAD, converts an angle
value from degrees to radians, the system used in BASIC func-
tions. The format for the function is KAD(angle), where angle
is the angle value in degrees. Since this is a function, it must
be used on the right side of an operation, as in A = RAD(45).

;Redirect ICRNCH2 vector to $1629 to
; tokenize new keywords

;Redirect IQPLOP2 vector to $165A to
; list new keywords

;Redirect IGONE2 vector to $167B to
; handle new statement

;Redirect ESC_FN vector to $16A2 to
; handle new (unction

;Tokenize new keywords
.Stash current character
;Search for keyword in table at $1650

;If no match found, try other table
;Convert index (with bit 7 set) to token (39/$27)
;Set flag for extended statement token

.Search for keyword in table at $1656

;Exit if no match found
.Convert index (with bit 7 set) to token (11/$OB)
;Set flag for extended function token

1600
1602
1605
1607
160A
160C
160F
1611
1614
1616
1619
161C
161E
1620
1623
1625
1628

1629
162B
162D
162F
1632
1634
1636
1638
163A
163C
163E
1641
1643
1645

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS

STA
LDY
LDA
JSR
BCC
ADC
LDX
BEQ
LDY
LDA
JSR
BCC
ADC
LDX

#$29
$030C
#$16
$030D
#$5A
S030E
#$16
$030F
#$7B
$0310
#$16
$0311
#$A2
$02FC
#$16
$02FD

$02
#$50
#$16
543E2
$163A
#$A6
#$00
$1647
#$56
#$16
$43E2
$164A
#$8A
#$FF
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1647 CLC
1648 BCC $164D ;Exit with carry clear if keyword found
164A SEC
164B LDA $02 ;Restore text character
164D JMP $4321 .Return to ICRNCH routine
>1650 53 54 4F 52 C5 00 ;STORE
>1656 52 41 C4 00 ;RAD

;List (detokenize) new keywords
165A CPX #$00 ;Was this statement or token?
165C BNE S166C
165E CMP #$28 ;Was statement token less than 40?
1660 BCS $1678
1662 LDY #$50 ;Use table entry at $1650 to list
1664 LDA #$16
1666 STY $24
1668 STA $25
166A BCC $1678
166C CMP #$0C ;Was function token less than 12?
166E BCS $1678
1670 LDY #$56 ;Use table entry at $1656 to list
1672 LDA #$16
1674 STY $24
1676 STA $25
1678 JMP S51CD ;Return to IQPLOP routine

; Handle execution of statement
167B CMP #$28 ;Was statement token less than 40?
167D BCS $1685
167F LDA #$16 ;Put address of execution routine - 1 on stack
1681 PHA ; (execution routine is at $1866)
1682 LDA #$87
1684 PHA
1685 JMP $4BA9

; STORE routine
1688 JSR $8803 ;Evaluate register number and value parameters
168B TXA ;Move value lo accumulator
168C LDY $17 ;High byte of register number should be zero
168E BNE $169D
1690 LDX $16 ;Low byte (in X) should be less than 37
1692 CPX #$25
1694 BCS $169D
1696 STY $FF00 ;Set for bank 15 so VDC chip is visible
1699 JSR $CDCC;Use screen editor routine
169C RTS
169D LDX #$0E ;Illegal quantity error if incorrect value supplied
169F JMP ($0300)

;RAD routine
16A2 CMP #$0C ;Was token less than 12?
16A4 BCS $16B4
16A6 JSR $7956 ;Check that parameter ended with a closing

parenthesis
16A9 LDA #$B5 ;Load value from $16B5 into FAC2
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16AB
16AD
16B0
16B3
16B4
>16B5

LDY
JSR
JSR
CLC
RTS
7B OE

#$16
SAF5D
$AF21 ^Multiply by argument in FAC1

FA 35 12 ;Floating point value for TT/180

An alternate method of adding new statements to BASIC
involves creating intentional errors. To use this scheme, your
new keyword must consist of an existing keyword preceded
by a letter (or another keyword)—LLIST or COPYCHAR, for
example. A syntax error will occur when the new keyword is
encountered, but you can use the IERROR indirect vector
(768-769/$0300-$0301) to trap the error and process the key-
word. The advantage of this technique is that you don't have
to worry about tokenizing or detokenizing the new keyword.
The following example program illustrates the technique. It
supports a new statement, VPOKE, which performs like the
STORE statement in the example above. Use VPOKE register,
value to store a value in a VDC chip register. After a SYS 4864
to patch in this routine, VPOKE can be used in either program
or immediate mode, just like any other keyword.

;Redirect IERROR vector to $130B

;Was this a SYNTAX error?

;If §o, did it occur at a POKE token?

;Calculate pointer to character
; immediately before the POKE token
; (If the keyword uses a two-byte
; extended token, you must back up
; two positions instead of one.)

;Retrieve character before token
;Was it a V?
;If so, branch to handle VPOKE
;Process all other errors normally
;Move CHRGET pointer beyond token
.Evaluate parameters following VPOKE
;Move value parameter to accumulator
;Check that register parameter is
; less than 37

1300
1302
1305
1307
130A
130B
130D
130F
1311
1313
1315
1317
1319
131B
131D
131F
1322
1324
1326
1329
132C
132F
1330
1322

LDA
STA
LDA
STA
RTS
CPX
BNE
CMP
BNE
LDA
SBC
STA
LDA
SBC
STA
JSR
CMP
BEQ
JMP
JSR
JSR
TXA
LDY
BNE

#$0B
$0300
#$13
$0301

#$0B
$1326
#$97
$1326
$3D
#$01
$26
$3E
#$00
$27
$03C0
#$56
$1329
$4D3F
$0380
$8803

$17
$133A
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$4006 16390

1334
1336
1338
133A
133C
133E
1341
1344

LDX
CPX
BCC
LDX
BNE
STY
JSR
JMP

$16
#$25
$133E
#$0E
$1326
$FFO0

(target register number in X)

;If register number is too large,
; exit with ILLEGAL QUANTITY error
;Configure for bank 15 (Y contains $00)

$CDCC;Use screen editor register setup routine
$AF90 ;Continue processing program text

The BASIC Jump Table
One new feature of BASIC 7.0 that will be very valuable to
machine language programmers is the jump table at
44800-44967/$AFOO-$AEA7. Many of the most useful BASIC
routines now have static entry points like those the Kernal
jump table provides for Kernal routines. Wherever possible,
you should use the jump table entry into the routine to main-
tain compatibility in the event that BASIC ROM is revised.

BASIC Entry Vectors
16384 $4000 JHARD-RESET
BASIC cold-start entry point; jumps to 16419/$4023, the ad-
dress of the routine which performs a complete initialization
of BASIC. This is the normal entry point following a system
reset.

16387 $4003 JSOFT_RESET
BASIC warm-start entry point; jumps to 16393/$4009, the ad-
dress of the routine which reinitializes BASIC and Kernal vec-
tors and screen editor vectors and variables. This is the normal
entry point during a RUN/STOP-RE STORE NMI interrupt.

16390 $4006 JBASIC-IR9
BASIC IRQ entry point; jumps to 43085/$A84D, the address
of the routine which handles the BASIC portion of the system
IRQ interrupt sequence. The target routine supports sprite
movement, sprite collision detection, light pen reading, and
the BASIC music statements. This is the normal entry point
during the system IRQ service routine.
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16393 $4009 $43B0 17328

16393 $4009 SOFT-RESET
Performs a warm start of BASIC
This routine is the normal final step of the RUN/STOP-
RESTORE sequence. It resets the SID registers and sound loca-
tions, and calls the routine at 16781/$418D to stop sprite
movement. However, it does not reinitialize the BASIC vectors
or pointers.

16416 $4020 Unused
Three unused bytes filled with the value 255/$FR

HARD_RESET16419 $4023
Performs a cold start of BASIC
This routine is the normal final step of the reset sequence. It
performs a complete initialization of BASIC, including reset-
ting all vectors, pointers, and working storage locations to
their default values. This routine also includes a call to the
Kernal PHOENIX routine [$FF56], which will start any func-
tion ROMs that may be present, or boot a disk if one is in the
drive,

16453 $4045
Initializes BASIC painters and constants
This is the main initalization routine of the cold-start se-
quence. It is responsible for setting all RAM working storage
locations for BASIC to their default values.

16658 $4112
Initializes SID registers and sound routine locations
This routine sets all SID chip registers to 0/$00 and initializes
all locations associated with the SOUND and PLAY
statements.

16762 $417A
Initializes MMU preconfiguration registers

16781 $ 4 1 8 D
Initializes sprite speed and direction table
This routine copies a 0/$00 into the speed control byte for
each entry in the sprite movement table at 4478/$117E, effec-
tively halting all sprite motion.

16795 $419B
Displays the power-on message
This routine displays the text from the following area of ROM,
Note that the free memory figure is part of the ROM message,
and may not reflect the actual amount of memory available to
BASIC.

16827 $4IBB
Text for power-on message
{CLR}

COMMODORE BASIC V7.0 122365 BYTES FREE
(O1985 COMMODORE ELECTRONICS, LTD.

(O1977 MICROSOFT CORP.
ALL RIGHTS RESERVED

16977 $4251
Initializes BASIC indirect vectors
This routine copies the BASIC indirect vectors from the fol-
lowing table to locations 768-785/$0300-$0311, and initial-
izes the vector at 764-765/$02FC-$02FD.

16999 $4267
Table of default vector values
This area contains the default addresses copied into the page 3
indirect vectors by the routine at 16977/$4251.

17017 $4279
Text for character retrieval routines
This area contains the code for CHRGET and the other page 3
character retrieval subroutines. The routines are copied into
RAM.

17102 $42CE
Assorted character retrieval subroutines

17162 $430 A CRUNCH
Tokenizes keywords in lines of BASIC program text

17328 S43B0
Handles extended tokens
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17356 $43CC

17356 $43CC
Deletes a character in the input buffer

17378 $43E2
Searches keyword tables for match

17431 $4417
BASIC keyword tables
The following table holds the BASIC 7.0 keywords in token
number order. Bit 7 of the last character of each keyword will
be set to %1 to indicate the end of the keyword.

$4609 17929

Token
128/S80
129/S81
130/$82
131/$83
132/$84
133/$85
134/$86
135/$87
136/$88
137/S89
138/$8A
139/S8B
140/S8C
141/$8D
142/$8E
143/$8F
144/$90
145/$91
146/$92
147/$93
148/$94
149/$95
150/$96
151/$97
152/$98
153/$99
154/$9A
155/$9B
156/S9C
157/$9D
158/S9E
159/S9F

Keyword
END
FOR
NEXT
DATA
INPUT#
INPUT
DIM
READ
LET
GOTO
RUN
IF
RESTORE
GOSUB
RETURN
REM
STOP
ON
WAIT
LOAD
SAVE
VERIFY
DEF
POKE
PRINT#
PRINT
CONT
LIST
CLR
CMD
SYS
OPEN

Token
160/$A0
161/$A1
162/$A2
163/$ A3
164/$A4
165/$A5
166/$A6
167/SA7
168/SA8
169/SA9
170/$AA
171/$AB
172/$ AC
173/$AD
174/JAE
175/$AF
176/$B0
177/SB1
178/$B2
179/$B3
180/$B4
181/$B5
182/$B6
183/$B7
184/$B8
185/SB9
186/$8A
187/$BB
188/SBC
189/$BD
190/$BE
191/$BF

Keyword
CLOSE
GET
NEW
TAB(
TO
FN
SPC(
THEN
NOT
STEP
+
-
*
/
t
AND
OR
>
—
<
SGN
INT
ABS
USR
FRE
POS
SQR
RND
LOG
EXP
COS
SIN

Token Keyword
192/$C0 TAN
193/$C1 ATN
194/$C2 PEEK
195/$C3 LEN
196/$C4 STR$
197/$C5 VAL
198/$C6 ASC
199/$C7 CHR$
200/$C8 LEFT$
201/$C9 RIGHT$
202/$CA MID$
203/$CB GO
204/$CC RGR
205/$CD RCLK
206/$CE function token extender
207/$CF JOY
208/$D0 RDOT
2O9/$D1 DEC
210/SD2 HEX$
211/$D3 ERR$
212/$D4 INSTR
213/$D5 ELSE
214/$D6 RESUME
215/$D7 TRAP
216/$D8 TRON
217/$D9 TROFF
218/$DA SOUND
219/$DB VOL
220/SDC AUTO
221/$DD PUDEF
222/SDE GRAPHIC
223/$DF PAINT

Token
224/$E0
225/$E1
226/$E2
227/$E3
228/$E4
229/$E5
230/$E6
231/$E7
232/$E8
233/$E9
234/$EA
235/$EB
236/$EC
237/$ED
238/$EE
239/$EF
240/$F0
241/$F1
242/$F2
243/$F3
244/$F4
245/$F5
246/$F6
247/$F7
248/$F8
249/$F9
250/$FA
251/$FB
252/$FC
253/$FD
254/$FE

Keyword
CHAR
BOX
CIRCLE
GSHAPE
SSHAPE
DRAW
LOCATE
COLOR
SCNCLR
SCALE
HELP
DO
LOOP
EXIT
DIRECTORY
DSAVE
DLOAD
HEADER
SCRATCH
COLLECT
COPY
RENAME
BACKUP
DELETE
RENUMBER
KEY
MONITOR
USING
UNTIL
WHILE
statement token extender
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17929 $4609
Table of extended token statements
BASIC 7,0 has too many keywords to have a one-byte token
for each. Additional statements use a two-byte token where
the first byte is always 254/$FE. This table holds the extended
token statement keywords in order of the second byte of the
token, like the standard keywords, bit 7 of the last character
of each keyword will be set to % 1 .
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18121 $46C9

Token
2/$02
3/$O3
4/$04
5/$05
6/$06
7/$07
8/$08
9/$09
10/SOA
11/$OB
12/$0C
13/$0D
14/$0E
15/SOF
16/$10
17/S11
18/$12
19/$13
20/$14

Keyword
BANK
FILTER
PLAY
TEMPO
MOVSPR
SPRITE
SPRCOLOR
RREG
ENVELOPE
SLEEP
CATALOG
DOPEN
APPEND
DCLOSE
BSAVE
BLOAD
RECORD
CON CAT
DVERIFY

Token
21/$15
22/$16
23/$17
24/$18
25/$19
26/$lA
27/S1B
28/$lC
29/$lD
3O/$1E
31/$1F
32/$20
33/$21
34/$22
35/$23
36/$24
37/$25
38/$26

Keyword
DCLEAR
SPRSAV
COLLISION
BEGIN
BEND
WINDOW
BOOT
WIDTH
SPRDEF
QUIT
STASH
(no keyword for this token)
FETCH
{no keyword for this token)
SWAP
OFF
FAST
SLOW

18121 $46C9
Table of extended token functions
BASIC 7.0 has too many keywords to have a one-byte token
for each. Additional functions use a two-byte token where the
first byte is always 206/$CE. This table holds the extended
token function keywords in order of the second byte of the
token. Like the standard keywords, bit 7 of the last character
of each entry is set to % 1 .
Token Keyword
2/$02 POT
3/$03 BUMP
4/$04 PEN
5/$05 RSPPOS
6/$06 RSPRITE
7/$07 RSPCOLOR
8/$08 XOR
9/$09 RWINDOW
10/$0A POINTER

18172 $46FC
Table of statement dispatch addresses
This area holds the address of the routines to execute tokens
128-162/$80-$A2. Because of the way statement execution is
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$4828 18472

handled, the values here are actually one less than the address
of the target routine. See Appendix F for a list of keyword exe-
cution addresses.

18242 $4742
Table of statement dispatch addresses
This area holds the address of the routines to execute tokens
213-250/$D5-$FA. Because of the way statement execution is
handled, the values here are actually one less than the address
of the target routine. See Appendix F for a list of keyword exe-
cution addresses.

18172 $46FC
Table of statement dispatch addresses
This area holds the address of the routines to execute ex-
tended statement tokens 2-38/$02-$26. Because of the way
statement execution is handled, the values here are actually
one less than the address of the target routine. See Appendix
F for a list of keyword execution addresses.

18317 $478D
Table of function dispatch addresses
This area holds the address of the routines to execute tokens
180-211/$B4-$D3. See Appendix F for a list of keyword exe-
cution addresses.

18454 $4816
Table of function dispatch addresses
This area holds the address of the routines to execute ex-
tended function tokens 2-10/$02-$0A. See Appendix F for a
list of keyword execution addresses.

18472 $4828
Table of operator priorities and dispatch addresses
Each mathematical operator such as + ,—,*, and / has a
three-byte entry in this table. The first byte is the priority of
the operator for expression evaluation and the next two are
the address of the routine to perform the specified operation.
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18502 $4846

18502 $4846
Prints unimplemented command message
BASIC 7.0 contains two unused keywords, QUIT and OFF.
Either of those will use this routine to print the UNIMPLE-
MENTED COMMAND error message.

18507 $484B
Table of BASIC error messages
This area holds text for the BASIC error messages in error
number order. Bit 7 in the last character of each message will
be set to %1 to mark the end of the message.

Error number
1/S01
2/$02
3/$03
4/$04
5/$05
6/$06
7/$07
8/$08
9/$09
10/$0A
11/$OB
12/$0C
13/$0D
14/$0E
15/$0F
16/flO
17/S11
18/$12
19/$13
20/$14
21/$15
22/$16
23/$17
24/$18
25/$19
26/$lA
27/$lB
28/$lC
29/$lD
30/$ IE
31/$1F

Error message
TOO MANY FILES
FILE OPEN
RLE NOT OPEN
FILE NOT FOUND
DEVICE NOT PRESENT
NOT INPUT RLE
NOT OUTPUT FILE
MISSING FILE NAME
ILLEGAL DEVICE NUMBER
NEXT WITHOUT FOR
SYNTAX
RETURN WITHOUT GOSUB
OUT OF DATA
ILLEGAL QUANTITY
OVERFLOW
OUT OF MEMORY
UNDEF'D STATEMENT
BAD SUBSCRIPT
REDIM'D ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT
TYPE MISMATCH
STRING TOO LONG
FILE DATA
FORMULA TOO COMPLEX
CANT CONTINUE
UNDEF'D FUNCTION
VERIFY
LOAD
BREAK
CANT RESUME

$4C83 19587

Error number
32/$20
33/$21
34/$22
35/$23
36/$24
37/$25
38/$26
39/$27
40/$28
41/$29

Error message
LOOP NOT FOUND
LOOP WITHOUT DO
DIRECT MODE ONLY
NO GRAPHICS AREA
BAD DISK
BEND NOT FOUND
LINE NUMBER TOO LARGE
UNRESOLVED REFERENCE
UNIMPLEMENTED COMMAND
FILE READ

19074 S4A82
Sets pointer to error message
Sets locations 38-39/$26-$27 to point to the error number
specified in the accmulator upon entry.

19103 $4A9F GONE
Main BASIC statement execution routine
This routine handles COLLISION processing, then falls
through into the next routine to execute the current BASIC
statement.

19190 $4AF6
Executes the next BASIC statement

NEWSTT

19381 $4BB5
Tests for RUN/STOP keypress
This routine tests whether the RUN/STOP key is being
pressed. If so, a branch will be taken into the following
routine.

19403 $4BCB STOP/END
Handles the STOP and END statements

19447 $4BF7
Handles the execution of function keywords

19587 S4C83
Displays the SYNTAX ERROR message
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19590 $4C86 $528F 21135

19590 $4C86
Handles the OR logical operator

19593 $4C89
Handles the AND logical operator

19638 $4CB6
Handles relational operators (<, =, >)

19754 $4D2A
Prints the READY prompt

OR

AND

READY19767 $4D37
Enters MAIN with a READY prompt
This routine is the normal path back to immediate mode after
a program or previous immediate mode line has been exe-
cuted. It prints the READY prompt and falls through into the
MAIN routine.

19770 $4D3A
Displays an OUT OF MEMORY error message

19772 $4D3C ERROR
Handles BASIC errors

19836 $4D7C
Prints a specified error message

19895 $4DB7 MAIN
Handles immediate mode and program line entry

19938 $4DE2
Adds or deletes BASIC program lines

20303 $4F4F LNKPRG
Relinks BASIC program lines

20371 $4F93
Reads a line of input into the buffer

20394 $4FAA
Searches for a particular token in the runtime stack
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20478 $4FFE
Decrements the runtime stack pointer

20503 $5017
Checks foT available string space
This routine tests whether there is sufficient space in the string
pool before a string is added. If no space is available, garbage
collection is attempted.

20569 $5059
Increments runtime stack pointer

20580 $5064 FNDLIN
Searches program text for a specified line number

20640 $50AO LINGET
Creates integer value from a character string
This routine converts a string of characters at the current
text pointer address into a two-byte integer value in locations
22-23/$16-$17.

20706 $50E2 LIST
Handles the LIST statement

20771 $5123
Lists a single BASIC program line

20950 $51D6 NEW
Handles the NEW statement

20984 S51F8 CLR
Handles the CLR statement

21076 $5254
Resets the CHRGET text pointer
This routine resets the CHRGET text pointer, locations 61-62/
$3D-$3E, to the beginning of the BASIC text area.

21090 $5262
Handles the RETURN statement

RETURN

21135 $528F BEND/DATA
Handles the BEND and DATA statements

211



21149 $529D $5A3D 23101

21149 $529D
Handles the REM statement

21189 $52C5
Handles the IF statement

21280 $5320
Skips a BEGIN-BEND block

21393 $5391
Handles the ELSE statement

21411 $53A3
Handles the ON statement

REM

IF

ELSE

ON

21446 $53C6 LET
Handles variable value assignments
This routine evaluates the expression on the right of a rela-
tional operator and assigns the resulting value to the variable
on the left.

21818 $553A PRINT*
Handles the PRINT* statement

21824 $5540 CMD
Handles the CMD statement

21844 $5554 PRINT
Handles the PRINT statement

22034 $5612 GET
Handles the GET statement (also GET# and GETKEY)

22088 $5648
Handles the INPUT* statement

22114 $5662
Handles the INPUT statement

22185 $56A9
Handles the READ statement

INPUT*

INPUT

READ

22474 $57CA
Moves the CHRGET text pointer to the next DATA statement
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22516 $57F4
Handles the NEXT statement

22648 $5878
Handles the DIM statement

22661 $5885
Handles the SYS statement

NEXT

DIM

SYS

22708 $58B4 TRON/TROFF
Handles the TRON and TROFF statements

22717 S58BD
Handles the RREC statement

RREG

22785 $5901 MID$
Handles MID$ when used as a statement

22901 $5975
Handles the AUTO statement

22918 $5986
Handles the HELP statement

AUTO

HELP

22956 $59AC
Highlights the portion of a listed line containing an error

22991 $59CF
Handles the GOSUB statement

23003 $59DB
Handles the GOTO statement

GOSUB

GOTO

23069 $5A1D
Places RETURN parameters in the runtime stack

GO23101 $5A3D
Handles the GO statement
Begins by testing whether the GO token is followed by the
token for TO, indicating that GOTO was entered as GO TO.
The acceptance of GO TO as a synonym for GOTO is unique
to Commodore.
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23136 S5A60

23136 $SA60 CONT
Handles the CONT statement

23169 $5A31
Sets flags for running a program

23195 S5A9B RUN
Handles the RUN statement

23242 $5ACA RESTORE
Handles the RESTORE statement

23280 S5AF0
Table of tokens for RENUMBER

23288 S5AF8 RENUMBER
Handles the RENUMBER statement

24057 $5DF9 FOR
Handles the FOR statement

24199 $5E87 DELETE
Handles the DELETE statement

24372 $5F34 PUDEF
Handles the PUDEF statement

24397 $5F4D TRAP
Handles the TRAP statement

24418 $5F62 RESUME
Handles the RESUME statement

24544 $5FE0 DO
Handles the DO statement

24633 $6039 EXIT
Handles the EXIT statement

24714 $608A LOOP
Handles the LOOP statement

24801 $6OE1
Assigns a definition string to a programmable key
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$6A4C 27212

24842 $610 A
Handles the KEY statement

24989 $619D
Table of characters for KEY

25000 $61A8
Handles the PAINT statement

25271 $62B7
Handles the BOX statement

25643 $642B
Handles the SSHAPE statement

25997 $658D
Handles the GSHAPE statement

26254 $668E
Handles the CIRCLE statement

KEY

PAINT

BOX

SSHAPE

GSHAPE

CIRCLE

26448 $6750 CIRSUB
Bitmapped graphics circle-drawing subroutine

26519 $6797
Handles the DRAW statement

26583 $67D7
Handles the CHAR statement

26965 $6955
Handles the LOCATE statement

26976 $6960
Handles the SCALE statement

27096 $69DS
Table of scaling factors

27106 $69E2
Handles the COLOR statement

DRAW

CHAR

LOCATE

SCALE

COLOR

27212 $6A4C
Table for translating VIC color values to VDC color values
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27228 $6A5C

27228 S6A5C
Calculates color fill values

27257 $6A79 SCNCLR
Handles the SCNCLR statement

27482 $6B5A GRAPHIC
Handles the GRAPHIC statement

27593 $6BC9 BANK
Handles the BANK statement

27607 $6BD7 SLEEP
Handles the SLEEP statement

27693 $6C2D WAIT
Handles the WAIT statement

27727 $6C4F SPRITE
Handles the SPRITE statement

27846 $6CC6 MOVSPR
Handles the MOVSPR statement

28129 $6DE1 PLAY
Handles the PLAY statement
This routine has many suboutines to handle parsing and exe-
cution of the strings of music data. PLAY is actually a mini-
language within BASIC.

28631 $6FD7 TEMPO
Handles the TEMPO statement

28644 S6FE4
Data tables for PLAY string processing

28689 $7011
Default values for ENVELOPE instrument tables

28742 $7046
Handles the FILTER statement

28865 $7OC1
Handles the ENVELOPE statement
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FILTER

ENVELOPE

$77D7

29028 $7164 COLLISION
Handles the COLLISION statement
This routine sets up the conditions for COLLISION checking.
The actual testing for collisions occurs during the BASIC IRQ
routine [$A84D].

29072 $7190 SPRCOLOR
Handles the SPRCOLOR statement

29110 $71B6
Handles the WIDTH statement

29125 $71C5
Handles the VOL statement

29164 $71EC
Handles the SOUND statement

29388 $72CC
Handles the WINDOW statement

WIDTH

VOL

SOUND

WINDOW

BOOT29493 $7335
Handles the BOOT statement
If a filename is provided, the routine does the equivalent of
BLOAD followed by SYS, rather than actually attempting to
boot a disk.

SPRDEF29554 $7372
Handles the SPRDEF statement

^ P ^ V 6 3 1 1 7 a : ! t a t e m e n t ; j t ' s a b ^ - i n machine lan-guage sprite-design utility program.

30444 $76EC
Handles the SFRSAV statement

30643 $77B3
Handles the FAST statement

30660 $77C4
Handles the SLOW statement

SPRSAV

FAST

SLOW

30679 $77D7
Evaluates an expression with a test for type mismatch
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30703 $77EF $837C 33660

30703 $77EF
Evaluates an expression

FRMEVL 32842
Handles the

30935 $78D7 EVAL
Evaluates a single term of a numeric expression

31084 $796C
Displays a SYNTAX ERROR message

31096 $7978
Evaluates a variable value
This routine is also responsible for processing all the BASIC
reserved variables: TI, TI$, ST, DS, DS$, ER, and EL.

31407 $7AAF
Finds or creates a variable
This routine searches the variable table in bank 1 for a speci-
fied variable, and creates the variable if it does not already
exist.

31632 $7B90
Creates an entry in the variable table for a new scalar variable

31846 $7C66
Moves arrays upward in bank 1 to make room for a new scalar
variable

31915 $7CAB
Finds or creates an array variable

32386-32767 $7E82-$7FFF
This unused area of BASIC ROM is filled with the value
255/$FE

32768 $8000
Handles the FRE function

FRE

32800 $8020
Prints designers' message
When you use the statement SYS 32800,123,45,6, you'll get a
rather political message from the designers of the 128.
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32886
Handles the

32965
Handles the

32997
Handles the

33014
Handles the

33090
Handles the

33154
Handles the

33179
Handles the

33283
Handles the

33357
Handles the

33454
Handles the

33530
Handles the

33566
Handles the

33633
Handles the

33660
Handles the

$804A
VAL function

$8076
DEC function

$80C5
PEEK function

$80E5
POKE statement

$80F6
ERR$ function

$8142
HEX$ function

$8182
RGR function

$819B
RCLR function

$8203
JOY function

$ 8 2 4 D
POT function

$82AE
PEN function

$82FA
POINTER function

$83 IE
RSPRITE function

$8361
RSPCOLOR function

$837C
BUMP function

VAL

DEC

PEEK

POKE

ERR$

HEX$

RGR

RCLR

JOY

POT

PEN

POINTER

RSPRITE

RSPCOLOR

BUMP
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33687 $8397 $880F 34831

33687 $8397
Handles the RSPFOS function

33761 $83E1
Handles the XOR function

33799 $8407
Handles the RWINDOW function

33844 $8434
Handles the RND function

RSPPOS

XOR

RWINDOW

RND

33936 $8490
Table of floating-point constants for RND calculation

34000 $84D0 POS
Handles the POS function

34009 $84D9
Checks that BASIC is in run mode

34032 $84F0
Checks that BASIC is in immediate mode

34042 $84FA
Handles the DEF statement

DEF

34107 S853B FN
Handles user-defined functions using FN

34222 $85AE
Handles the STR$ function

34239 $85BF
Handles the CHR$ function

34262 $85D6
Handles the LEFT$ function

34314 $860A
Handles the RIGHTS function

34332 $861C
Handles the MID$ function
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STR$

CHR$

LEFT$

RIGHT$

MIDS

34408 $8668
Handles the LEN function

34423 $8677
Handles the ASC function

LEN

ASC

34437 $8685
Displays the ILLEGAL QUANTITY error message

34440 $8688
Creates space for a string in the string pool

34458 $869A
Stores a string in the string pool

34573 $870D
Performs string concatenation

34683 $877B
Evaluates a string parameter
This routine returns with locations 36-37/$24-25 set to point
to the string and the Y register holding the length of the
string.

34801 $87F1
Evaluates a numeric expression
This routine evaluates a numeric parameter and checks that it
is in the range 0-255/$00-$FF. If the parameter is valid, it
will be returned in the X register.

34819 $8803
Evaluates parameters for POKE or WAIT
This routine retrieves a pair of parameters: The first, a value in
the range 0-65535/$0000-$FFFF, will be returned in locations
22-23/$16-$17, and the second, a value in the range 0-255/
$OO-$FF, will be returned in the X register.

34831 S880F
Checks that the next character is a comma

.
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34837 $8815

34837 $8815
Evaluates a numeric parameter
This routine retrieves a numeric parameter, checking that it is
in the range 0-65535/$0000-$FFFF. If the value is valid, it
will be returned in locations 22-23/$16-$17.

34862 SS82E
Subtracts value in memory from FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
subtracts the value in FAC2 from the one in FAC1, leaving the
results in FAC1.

34865 $8831
Subtracts FAC1 from FAC2
Subtracts the value in FAC2 from the one in FAC1, leaving
the results in FAC1.

34885 $8845
Adds value in memory to FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
adds the value in FAC2 to the one in FAC1, leaving the re-
sults in FAC1.

34888 $8848
Adds FAC1 to FAC2
Adds the value in FAC2 to the one in FAC1, leaving the re-
sults in FAC1.

34993
Normalizes FAC1

S 8 8 B 1

35110 $8926
Forms twos complement of FAC1

35165 $895D
Displays OVERFLOW error message

35170 $8962
Performs byte alignment of FAC1
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$8B49 35657

35274 S89CA
Handles the LOG function

LOG

35342
Adds 0.5 to FAC1

$8A0E

35364 $8A24
Multiplies value in memory by FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
multiplies the value in FAC2 by the one in FAC1, leaving the
results in FAC1.

35367 $8A27
Multiplies value in memory by FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
multiplies the value in FAC2 by the one in FAC1, leaving the
results in FAC1.

35465 $8A89
Loads FAC2 with value from the current bank
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte).

35508 $8AB4
Loads FAC2 with value from bank 1
Loads FAC2 with the five-byte floating-point value in bank 1
pointed to by the accumulator and Y register (low byte/high
byte),

35607 $8B17
Multiplies FAC1 by 10

35640 $8B38
Divides FAC1 by 10

35657 $8B49
Divides value in memory by FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
divides the value in FAC2 by the one in FAC1, leaving the re-
sults in FAC1. 223



35660 S8B4C

35660 $8B4C
Divides FAC2 by FAC1
Divides the value in FAC2 by the one in FAC1, leaving the re-
sults in FAC1.

35796 $8BD4
Loads FAC1 from memory
Loads FAC1 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte).

35840 $8C00
Copies FAC1 value into memory
Stores the value in FAC1 in five bytes pointed to by the X and
Y registers (low byte/high byte).

35880 $8C28
Copies FAC2 into FAC1

35896 $8C38
Copies FAC1 into FAC2

35911
Rounds FAC1

$8C47

35927 $8C57
Determines the sign of the value in FAC1

35941 $8C65 SGN
Handles the SGN function

35972 $8C84 ABS
Handles the ABS function

35975 $8C87
Compares FAC1 against FAC2

36039 $8CC7
Converts FAC1 to a four-byte integer

36091 $8CFB INT
Handles the INT function
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$9086 36998

36120 $8D18
Fills FAC1 with the value in the accumulator

36130 $8D22
Generates floating-point value representing character string
This routine reads a character string from BASIC program text
and generates the equivalent floating-point value in FAC1.

36390 $8E26
Prints IN and a line number

36398 $8E2E
Prints a line number
This routine generates a string based on the value in
59-60/$3B-$3C, then prints the results,

36418 $8E42
Generates a character string representing the value in FAC1
This routine generates a string of characters in the work area
at 256/$0100 representing the value in FACL

36791 $8PB7 SQR
Handles the SQR function
This routine calculates the square root of the value in FAC1,
taking advantage of the fact that SQR(X) = X t 0.5.

36801 $8FC1
Handles the exponentiation (T) operator
This routine raises the value in FAC1 to the power specified in
FAC2. This routine takes advantage of the fact that At B =
EXP(LOG(A) * B).

36869 $9005
Table of floating-point constants for EXP evaluation

36915 $9033
Handles the EXP function

36998 $9086
Performs series evaluation

EXP
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37080 S90D8 $9520 38176

37080 $90D8
Calls the Kernal OPEN routine

37087 $90DF
Calls the Kernal BSOUT routine

37093 S90E5
Calls the Kernal BASIN routine

37117 $90FD
Calls the Kernal CHKIN routine

37129 $9109
Calls the Kernal GETIN routine

37138 $9112
Handles the SAVE statement

37161 $9129
Handles the VERIFY statement

37164 $912C
Handles the LOAD statement

37261 $918D
Handles the OPEN statement

37274 $919A
Handles the CLOSE statement

SAVE

VERIFY

LOAD

OPEN

CLOSE

37294 $91AE
Evaluates parameters for SAVE, LOAD, and VERIFY

37366 $91F6
Evaluates parameters for OPEN and CLOSE

37433 9243
Clears DS$ after disk operations

37457 $9251
BASIC calls to Kernal routines
The subroutines in this area are BASIC'S formal calls to Kernal
routines:
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37457/$9251 READSS
37463/$9257 SETLFS
37469/$925D SETNAM
37475/$9263 BASIN
37481/$9269 BSOUT
37487/$926F CLRCH
37493/$9275 CLOSE
37499/$927B CLALL
37505/$9281 PRIMM
37511/19287 SETBANK
37517/$928D PLOT
37523/$9293 STOP

37529 $9299
Creates space in the string pool for a temporary string

37610 $92EA GARBA2
Performs garbage collection on string pool

37897 $9409
Handles the COS function

COS

This routine takes advantage of the fact that COS(X) = SIN (X
+ Ti/2).

37904 $9410
Handles the SIN function

37977 $9459
Handles the TAN function

SIN

TAN

This routine takes advantage of the fact that TAN(X) = SIN(X)
/ COS(X).

38021 $9485
Table of constants for trig function evaluation

38067 $94B3
Handles the ATN function

ATN

38115 $94E3
Table of constants for trig function evaluation

38176 $9520 PRINT USING
Handles the PRINT USING statement
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39361 $99C1

39361 $99C1
Handles the INSTR function

39692 $9B0C
Handles the RDOT function

INSTR

RDOT

39728 $9B30 DRAWLN
Bitmapped graphics line-drawing routine

39931 $9BFB
Bitmapped point-plotting routine

40010 $9C4A
Scales graphics parameters

40366 $9DAE
Applies scaling factor to a specified parameter

40557 $9E6D
Evaluates graphics parameters

40712 $9F08
Handles relative graphics parameters

40783 $9F4F
Allocates the bitmapped graphics area

40903 $9FC7
Adjusts BASIC program pointers for graphics area allocation or
de-allocation

40994 $A022
De-allocates the bitmapped graphics area

41076 SA074
Confirms that the graphics area has been allocated

41086 $A07E CATALOG/DIRECTORY
Handles the CATALOG and DIRECTORY statements

41245 SA11D
Handles the DOPEN statement

DOPEN
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$A346 41798

41268 $A134 APPEND
Handles the APPEND statement

41303 SA157
Finds an available secondary address

41327 $A16F DCLOSE
Handles the DCLOSE statement

41347 SA183
Closes all open files for a specified device

41356 $A18C DSAVE
Handles the DSAVE statement

41380 $A1A4 DVERIFY
Handles the DVERIFY statement

41383 $A1A7 DLOAD
Handles the DLOAD statement

41416 $A1C8 BSAVE
Handles the BSAVE statement

41496 $A218 BLOAD
Handles the BLOAD statement

41575 $A267 HEADER
Handles the HEADER statement

41633 $A2A1 SCRATCH
Handles the SCRATCH statement

41687 $A2D7 RECORD
Handles the RECORD statement

41762 $A322 DCLEAR
Handles the DCLEAR statement

41775 $A32F COLLECT
Handles the COLLECT statement

41798 $A346 COPY
Handles the COPY statement
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41826 SA362

41826 $A362 CONCAT
Handles the CONCAT statement

41838 $A36E RENAME
Handles the RENAME statement

41852 $A37C BACKUP
Handles the BACKUP statement

41923 $A3C3
Evaluates parameters for disk commands

42535 SA627
Table of disk command templates

42599 SA667
Sets up disk command buffer

42872 $A778
Reads disk status string (DSS)

42977 $A7E1
Provides ARE YOU SURE query

43021 SA80D
Clears disk status string

43077 $A845
Switches to bank 15 configuration

43085 $A84D
BASIC IRQ service routine
This routine supports the MOVSPR sprite movement state-
ment, the COLLISION statement, and the PEN function. It is
also responsible for updating the duration timers for the
SOUND and PLAY statements,

43504 $A9F0
Common exit point from BASIC IRQ routine

43551 $AA1F
Handles the STASH statement

STASH
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43556 SAA24
Handles the FETCH statement

43561 SAA29
Handles the SWAP statement

FETCH

SWAP

43630-44642 $AA6E-SAE62 Unused
All locations in this unused area of ROM are filled with the
value 255/lFF.

44643-44799 $AE63-$AEFF
This area contains a heavily encoded message from the de-
signers of the 128.

BASIC Jump Table
The Commodore 128's BASIC 7.0 includes a feature not found
in previous versions: a jump table. Like the Kernal and screen
editor jump tables, the BASIC table provides stable entry
points to a number of important BASIC routines. If you want
to call a BASIC routine from within one of your own machine
language programs, you should use the jump table entry if
one is provided. If you call a BASIC ROM routine directly,
your program will not work if the address of the routine is
changed in a future version. Presumably, Commodore will up-
date the jump table if BASIC ROM is ever revised, so that
jump table calls will remain valid.

In the discussions below, FAC1 refers to floating-point ac-
cumulator #1, locations 99-103/$63-$67, and FAC2 refers to
floating-point accumulator #2, locations 106-110/$6A-$6E.

44800 $AF00 JAYINT
Entry point for the AYINT routine, currently at 33972/$84B4.
This routine converts the contents of FAC1 into a two-byte
signed integer value in locations 102-103/$66-$67 (high byte
in 102/$66, low byte in 103/$67). The routine tests the origi-
nal value and generates an ILLEGAL QUANTITY error mes-
sage if it is not in the range -32768-32767.

44803 $AF03 JGIVAYF
Entry point for the GIVAYF routine, currently at 31036/
$793C. This routine converts the two-byte signed integer
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value in the Y register and accumulator (low byte in Y, high
byte in the accumulator) into a floating-point value in FAC1.

44806 $AF06 JFOUT
Entry point for the FOUT routine, currently at 36418/$8E42.
This routine creates a string of characters representing the
floating-point value in FAC1. The string starts at location
253/$0100 and is terminated with a zero byte. The first char-
acter of the string is a space (code 32/$20) if the value was
positive, or a minus sign ( —) if the value was negative.

44809 $AF09 JVAL_1
Entry point for the VAL_1 routine, currently at 32850/$8052.
This routine reads a string of characters from bank 1 and gen-
erates the equivalent floating-point value in FAC1. Locations
36-37/$24-$25 point to the the starting address of the string
and the accumulator holds the length of the string. This rou-
tine will leave the system in BASIC'S alternate bank 14 con-
figuration in which block 1 RAM is visible, so it shouldn't be
called by a routine in bank 0.

44812 $ AFOC JGETADR
Entry point for the GETADR routine, currently at 34837/
$8815. This routine converts the current value in FAC1 into a
two-byte unsigned integer in locations 22-23/$16-$17 (low
byte in 22/$ 16, high byte in 23/$17). The integer value will
also be in the Y register (low byte) and accumulator (high
byte) upon return. Before performing the conversion, the rou-
tine checks that the value FAC1 is in the range 0-65535, and
generates an ILLEGAL QUANTITY error message if it is not.

44815 $AF0F JFLOATC
Entry point for the FLOATC routine, currently at 35957/
$8C75. This routine converts the two-byte unsigned integer in
locations 100-101/$64-$65 (low byte in 101/$65, high byte
in 100/$64) into a floating-point value in FAC1. For this rou-
tine to function properly, you must also load the X register
with the value 144/$90 and make sure the status register
carry bit is set.

$AF21 44833

44818 $AF12 JFSUB
Entry point for the FSUB routine, currently at 34862/S882E.
This routine subtracts the floating-point value in FAC1 from
the five-byte floating-point value from the address in bank 1
specified in the accumulator (low byte) and Y register (high
byte). (The bank 1 value will be loaded into FAC2.) The result
will be left in FAC1.

44821 $AF15 JFSUBT
Entry point for the FSUBT routine, currently at 34865/$8831.
This routine subtracts the value in FAC1 from the value in
FAC2. The result will be left in FAC1.

44824 $AF18 JFADD
Entry point for the FADD routine, currently at 34885/S8845.
This routine adds the floating-point value in FAC1 to the five-
byte floating-point value from the address in bank 1 specified
in the accumulator {low byte) and Y register (high byte). (The
bank 1 value will be loaded into FAC2.) The result will be left
in FAC1.

44827 $AF1B JFADDT
Entry point for the FADDT routine, currently at 34888/$8848.
This routine adds the value in FAC1 to the value in FAC2.
The result will be left in FAC1,

44830 $AF1E JFMULT
Entry point for the FMULT routine, currently at 35364/$8A24.
This routine multiplies the floating-point value in FAC1 by the
five-byte floating-point value from the address in bank 1 spec-
ified in the accumulator (low byte) and Y register (high byte),
(The bank 1 value will be loaded into FAC2.) The result will
be left in FAC1.

44833 $AF21 JFMULTT
Entry point for the FMULTT routine, currently at 35367/
$8A27. This routine multiplies the value in FAC1 by the value
in FAC2. The result will be left in FAC1.
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44836 $AF24 FDIV
Entry point for the FDIV routine, currently at 35657/$8B49.
This routine divides the five-byte floating-point value from the
address in bank 1 specified in the accumulator (low byte) and
Y register (high byte) by the floating-point value in FAC1.
(The bank 1 value will be loaded into FAC2.) The result will
be left in FAC1.

44839 $AF27 JFDIVT
Entry point for the FDIVT routine, currently at 35660/$8B4C.
This routine divides the value in FAC2 by the value in FAC1.
The result will be left in FAC1.

44842 $AF2A JLOG
Entry point for the LOG routine, currently at 35274/$89CA.
This routine calculates the natural logarithm of the value cur-
rently in FAC1, the log to the base e. The result will be left in
FAC1.

44845 $AF2D JINT
Entry point for the INT routine, currently at 36091/$8CFB.
This routine calculates the whole number portion of the cur-
rent value of FAC1, removing any fractional portion. The frac-
tional portion is simply truncated; no rounding is performed.
The result is a floating-point value in FAC1, not an integer
value.

44848 $AF30 J S Q R
Entry point for the SQR routine, currently at 36791/S8FB7.
This routine calculates the square root of the current value in
FAC1. The result will be left in FAC1.

44851 $AF33 J N E G O P
Entry point for the NEGOP routine, currently at 36858/
$8FFA. This routine switches the sign of the current value in
FAC1, making the value negative if it was positive, or positive
if it was negative.

44854 $AF36 JFPWR
Entry point for the FPWR routine, currently at 36798/$8FBE.
This routine raises the value in FAC2 to the power specified in
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the five-byte floating-point value from bank 1 beginning at the
address specified in the accumulator and Y register (low byte
in the accumulator, high byte in the Y register). The exponent
value will be loaded into FAC1. The result of the operation
will be left in FAC1.

44857 $AF39 JFPWRT
Entry point for the FPWRT routine, currently at 368O1/$8FC1.
This routine raises the value in FAC2 to the power specified in
FAC1, effectively FAC2 t FAC1. The result of the operation
will be left in FAC1.

44860 $AF3C JEXP
Entry point for the EXP routine, currently at 36915/$9033.
This routine calculates the natural exponential of the value in
FAC1, effectively e T FAC1, where e = 2.71828. This is the in-
verse of the LOG operation. The result will be left in FAC1.

$AF3F JCOS44863
Entry point for the COS routine, currently at 37897/$9409.
This routine calculates the cosine of the current value in
FAC1, which will be interpreted as an angle in radians. The
result will be left in FAC1.

$AF42 JSIN44866
Entry point for the SIN routine, currently at 37904/$9410.
This routine calculates the sine of the current value in FAC1,
which will be interpreted as an angle in radians. The result
will be left in FAC1.

44869 $AF45 JTAN
Entry point for the TAN routine, currently at 37977/$9459.
This routine calculates the tangent of the current value in
FAC1, which will be interpreted as an angle in radians. The
result will be left in FAC1.

44872 $AF48 JATN
Entry point for the ATN routine, currently at 38067/$94B3.
This routine calculates the inverse tangent (arctangent) of the
current value in FAC1. The result, which can be interpreted as
an angle in radians, will be left in FAC1.
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4487S $AF4B JROUND
Entry point for the ROUND routine, currently at 35911/
$8C47. This routine will round the least significant bit of
FAC1 according to the value in the FAC1 rounding byte, loca-
tion 113/S71.

44878 $AF4E JABS
Entry point for the ABS routine, currently at 35972/$8C84.
This routine will calculate the absolute value of the current
value in FAC1, making the value positive regardless of its pre-
vious sign.

44881 SAF51 JSIGN
Entry point for the SIGN routine, currently at 35927/$8C57.
This routine sets the accumulator (and processor status regis-
ter) according to the current value in FAC1. If the value is
zero, the accumulator will hold 0/$00 upon return (and the
status register Z bit will be set). If the FAC1 value is positive,
the accumulator will hold l/$01 (and the status register Z and
N bits will both be clear). If the FAC1 value is negative, the
accumulator will hold 255/$FF (and the status register N bit
will be set).

44884 $AF54 JFCOMP
Entry point for the FCOMP routine, currently at 35975/
$8C87, This routine compares the floating-point value in
FAC1 against the five-byte floating-point value from the ad-
dress in bank 1 specified in the accumulator (low byte) and Y
register (high byte). The accumulator (and processor status
register) will be set according to the result of the comparison.
If the two values are equal, the accumulator will hold 0/$00
upon return (and the status register Z bit will be set). If the
FAC1 value is greater than the value in bank 1, the accumu-
lator will hold l/$01 (and the status register Z and N bits will
both be clear). If the FAC1 value is less than the value in bank
1, the accumulator will hold 255/$FF (and the status register
N bit will be set).

44887 $AF57 JRND-0
Entry point for the RND_0 routine, currently at 33857/$8437.
This routine generates a pseudorandom floating-point value
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according to the setting of the status register N and Z bits
upon entry. The resulting value will be left in FAC1. If the N
bit is set upon entry, the value in FAC1 will be used as the
seed, producing a predictable result. If the Z bit is set, the
value in the CIA. #1 time-of-day clock is used as a seed. Other-
wise, the previous random number in locations 4635-4639/
$121B-$121F is used as a seed for the next value.

44890 $AF5A JCONUPK
Entry point for the CONUPK routine, currently at 35508/
$8AB4. This routine loads FAC2 with the five-byte value at
the address in bank 1 pointed to by the accumulator and Y
register (low byte/high byte).

44893 $AF5D JROMUPK
Entry point for the ROMUPK routine, currently at 35465/
$8A89. This routine loads FAC2 with the five-byte value at
the address in the current bank pointed to by the accumulator
and Y register (low byte/high byte).

44896 $AF60 JMOVFRM
Entry point for the MOVFRM routine, currently at 31365/
$7A85. This routine loads FAC2 with the five-byte value at
the address pointed to by locations 36-37/$24-$25.

44899 $AF63 JMOVFM
Entry point for the MOVFM routine, currently at 35796/
$8BD4. This routine loads FAC1 with the five-byte value at
the address in the current bank pointed to by the accumulator
and Y register (low byte/high byte).

44902 $AF66 JMOVMF
Entry point for the MOVMF routine, currently at 35840/
$8C00. This routine copies the contents of FAC1 into a five-
byte area beginning at the address in the current bank pointed
to by the X and Y registers (low byte/high byte).

44905 $AF69 JMOVFA
Entry point for the MOVFA routine, currently at 35880/
$8C28. This routine copies the contents of FAC2 into FAC1.
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44908 $AF6C JMOVAF
Entry point for the MOVAF routine, currently at 35896/
$8C38. This routine copies the contents of FAC1 into FAC2.

4 4 9 1 1 $ A F 6 F JOPTAB
This table entry is not a jump vector. Location 44911/$AF6F
does contain a JMP instruction, but the target address is not a
valid routine. Instead, locations 44912-44913/$AF70-$AF71
provide a fixed reference to the address of the BASIC operator
table. This table, currently at 18472/$4828, holds the priorities
and dispatch addresses for the mathematical operators such as
+ , - , * , and / .

44914 JDRAWLN$AF72
Entry point for the DRAWLN routine, currently at 39728/
$9B30. This is the basic bitmapped graphics line-drawing
routine.

44917 $AF75 JGPLOT
Entry point for the GPLOT routine, currently at 39931/$9BFB.
This routine plots a point on the bitmapped screen using the
currently specified color source.

44920 $AF78 JCIRSUB
Entry point for the CIRSUB routine, currently at 26448/$6750.
This is the basic bitmapped graphics circle-drawing
subroutine.

44923 $AF7B JRUN
Entry point for the RUN routine, currently at 23195/$5A9B.

44926 $AF7E JRUNC
Entry point for the RUNC routine, currently at 20979/S51F3.
RUNC is actually an alternate entry point into NEW to reset
the text pointer to the start of program text and perform CLR.

44929 $AF81 JCLR
Entry point for the CLR routine, currently at 20984/$51F8.
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44932 $AF84 JNEW
Entry point for the NEW routine, currently at 20950/S51D6.

44935 $AF87 JLNKPRG
Entry point for the LNKPRG routine, currently at 20303/
$4F4F. This program updates the line links for all lines in the
current program.

44938 $AF8A JCRUNCH
Entry point for the CRUNCH routine, currently at 17162/
$430A. This routine is the one responsible for converting lines
of text into tokenized BASIC statements.

44941 $ AF8D JFNDLN
Entry point for the FNDLN routine, currently at 20580/$5064.
This routine searches through program text for the line num-
ber specified in locations 22-23/S16-17. Upon exit, the carry
bit will be clear if no match was found, or set if the specified
line was located.

44944 SAF90 JNEWSTT
Entry point for the NEWSTT routine, currently at 19190/
$4AF6. This routine prepares for the execution of the next
BASIC statement.

44947 $AF93 JEVAL
Entry point for the EVAL routine, currently at 30935/$78D7.
This routine evaluates a single numeric term or variable into a
value in FAC1.

44950 $AF96 JFRMEVL
Entry point for the FRMEVL routine, currently at 30703/
$77EF. This routine evaluates a numeric expression, leaving
the results in FAC1.

44953 $AF99 JRUN_A_PROGRAM
Entry point for the RUN routine, currently at 23206/$5AA6.
This routine performs the portion of the RUN routine nor-
mally executed for running a program after it has been loaded
from disk. The extra steps in this case include relinking the
program before it is run,
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44956 $AF9C JSETEXC
Entry point for the SETEXC routine, currently at 23169/
$5A81, This routine sets BASIC flags to indicate that a pro-
gram is running.

44959 $AF9F JLINGET
Entry point for the LINGET routine, currently at 20640/
$50A0. This routine reads a string of characters and generates
a two-byte integer number in locations 22-23/$16-$17, The
value must be less than 64000 or a SYNTAX ERROR will
occur.

44962 $AFA2 JGARBA2
Entry point for the GARBA2 routine, currently at 37610/
$92EA. This routine performs a garbage collection, removing
inactive strings from the string pool to increase the amount of
available string space.

44965 $AFA5 JEXECUTE_A_LINE
Entry point for the MAIN routine, currently at 19917/S4DCD.
This routine is BASIC'S primary immediate mode loop.

44968-45055 $AFA8-$AFFF Unused
All locations in this unused area of ROM are filled with the
value 255/$FF.
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Machine Language
Monitor ROM

The duplicate use of the word monitor in computer terminology
may be confusing at first. The term can refer to either hard-
ware, a dedicated video screen used to display information
from the computer, or software, a program used to examine
and modify the contents of memory. Once you understand the
difference, the meaning of monitor is usually obvious from the
context. This chapter describes the 128's built-in software moni-
tor, which resides in the 4K block of ROM from 45056-49151/
$B000-$BFFF. In addition to examining and changing memory,
this monitor allows you to assemble, disassemble, and execute
ML routines; examine and change microprocessor register con-
tents; and copy, compare, save, load, and verify blocks of
memory.

Like the 128's BASIC, its machine language monitor has a
long heritage from previous Commodore models. All of the
original CBM models (except for very early PETs) included a
rudimentary monitor in ROM which allowed users to examine
and modify memory and registers, execute ML programs, and
load and save data, but had no provision for assembling or
disassembling machine language.

The VIC-20 and Commodore 64 had no monitor in built-
in ROM, but sophisticated monitors for both were available on
cartridge. A number of public-domain RAM-resident monitors
were also available, most notably Superman and Micromon. Fi-
nally, the Plus/4 and 16 once again included a monitor pro-
gram in ROM, a version called Tedmon.

The 128's monitor shares many characteristics with all of
its predecessors, but it includes a number of enhancements as
well. One of the most notable is that it allows the entry of
numbers in decimal, octal, or binary in addition to hexadeci-
mal. Whenever the monitor expects a number, you can use a
decimal value if it's prefixed with a + character, or a binary
number if it's prefixed with a % character (in the rare case
when you might want to use an octal—base 8—number, pre-
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fix it with an ampersand, &). If no prefix is used, then hexa-
decimal is assumed. (Hex can also be explicitly specified by
using a $ character as a prefix.)

Moving Between BASIC and the Monitor
In general, the monitor is aloof from the rest of the 128 ROM
routines. Unlike BASIC—which in a number of places by-
passes the Kernal jump table and calls Kemal routines di-
rectly—the monitor calls all the Kernal routines it uses
through their formal jump table entries. Neither BASIC nor
the Kernal calls any monitor routines other than through jump
table entries. The monitor does not make use of any BASIC
ROM routines or data tables and for the most part does not in-
terfere with memory locations used by BASIC. Thus, you may
pass freely back and forth between the monitor and BASIC
without fear of upsetting the BASIC program currently in
memory. This greatly enhances the monitor's function as a de-
bugging tool.

One notable—and highly unfortunate—exception to this
independence from BASIC is that the monitor uses addresses
in the range 96-104/$60-$68 as working pointers in most op-
erations. This area includes the addresses used by BASIC for
its floating-point accumulator 1 (FAC1), where the results of
mathematical operations are stored. As a result, it is impossi-
ble to use the 128's monitor to directly examine or change the
contents of FAC1. This severely limits the usefulness of the
monitor for experimenting with BASIC floating-point routines.

One other overlap between BASIC and the monitor is that
the two share the same input buffer area for accepting and
processing commands (512-673/$0200-$02Al). Thus, it is not
possible to use the monitor to examine the BASIC input buffer
contents or to manipulate data in the input buffer, since the
buffer will be at least partially overwritten by the monitor
command to display or change the memory area.

Memory Management
Another particularly attractive feature of the 128's monitor is
the ease with which it interfaces with the computer's memory
management system. Addresses in monitor commands are
specified as five-digit hexadecimal values, where the first digit
refers to the bank and the remaining four specify the address
within the bank. Monitor commands that accept a range of ad-
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dresses can span banks—T ED000 EDFFF 1C000, for example.
Thus, the monitor can effectively see the 16 separate banks as
a single 1024K (16 * 64K) block of memory. One exception is
the F (fill memory) command, which cannot cross bank bound-
aries, because doing so would overwrite the vital contents of
locations $00 and $01.

The fact that the monitor can see the 128's memory as a
continuous block has an important consequence for the H
(hunt for byte pattern) command. Remember that the banks
are not really 16 separate blocks of memory, but rather 16 dif-
ferent arrangements of the available RAM and ROM. The low-
est IK of memory (including the input buffer at 512/$0200) is
common to all banks, and at least the lower 4K of block 0
RAM {including the buffer at 2688/$0A80, where the search
pattern is stored) appears in all even-numbered banks and in
banks 13/$D and 15/$F.

Thus, if you search any bank from beginning to end (for
example, H 10000 1FFFF 'C-128), you'll always find at least
one match for your search pattern—in the input buffer at
$0200, where the search command is stored. If you search any
even-numbered bank from beginning to end, you'll find at
least two matches for your search pattern—once in the input
buffer at $0200 and again in the search buffer at $0A80. And
if you search all banks from beginning to end (for example, H
00000 FFFFF 'COMPUTE!), then you'll always find at least 26
matches because of all the times the memory areas used by
the input buffer and search buffer appear in the different
banks. It's important to choose your address range carefully
when searching for a byte pattern.

A final note on banks and the monitor: If no bank is ex-
plicitly specified, bank 0 is assumed. This is different from
BASIC, which retains the setting specified in a previous BANK
statement, starting with a default of bank 15. So when using
the monitor, you must always explicitly specify the bank if
you wish to use any bank other than bank 0, It is particularly
important to remember this when using the G and J com-
mands, lest you send the processor off to some uncharted re-
gion of memory.

For the programmer wishing to make use of ROM
routines, those in the monitor are generally less useful than
those in the BASIC, screen editor, and Kernal portions of the
ROM. The monitor JMPs rather than JSRs to the routines used

245



45056 $B000 $B08B 45195

to perform monitor commands, so most major routines end by
jumping directly back to the monitor's main loop rather than
with an RTS opcode. You probably wouldn't want to incorpo-
rate calls to such routines in your own programs because the
routines never return from the monitor. However, the main
command execution routines use a number of subroutines that
do end with RTS opcodes, and you may find some of these
useful, particularly the routines to convert and print byte val-
ues as decimal numbers (at 47623/$BA07 and 47687/SBA47)
or as hexadecimal numbers (at 47250/$B892). An example is
provided at the end of the chapter.

Monitor Jump Table
Like the BASIC screen editor, and Kernal jump tables, each
three-byte entry in the following table consists of a JMP
opcode followed by the address of an important routine.

45056 $B000 JMONINIT
Monitor cold-start entry point; jumps to 45089/$B021, which
enters the monitor with default microprocessor register values.
This is the entry point when the RUN/STOP key is held
down during power-on/reset, or when the MONITOR com-
mand is executed in BASIC.

45059 $B003 JMONBRK
Monitor break entry point; jumps to 45065/$B009, which en-
ters the monitor with the current program counter, bank, and
microprocessor A, X, and Y register values preserved. The
monitor is normally called via this entry point whenever a
BRK opcode is executed because the Kernal RESTOR routine
[$E056], part of the RESET sequence, initializes the CBINV
vector at 790-791/$0316-$0317 to point here. CBINV deter-
mines where control is passed after a BRK.

45062 $B006 JIMONRTN
Reentry point from the IMON indirect vector. Like the BASIC
and Kernal indirect vectors, the monitor's command execution
routine has an indirect vector, IMON (814-815/$032E-$032F),
which is initialized by the Kernal RESTOR routine [$E056] to
point here. From this point, control is transferred back to
45234/$B0B2 in the main loop, the address immediately fol-
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lowing the IMON jump. See IMON for information on how
the indirect vector can be used to wedge in additional monitor
commands.

45065 $B009 MONBRK
Monitor entry routine when BRK instruction encountered.
Prints BREAK and a {BELL} character, then retrieves and
stores the bank number, program counter, and microprocessor
register values that were placed on the stack by the IRQ/BRK
handling routine [$FF17], then branches into the following
routine to fall through to the register display and main loop.

45089 $B021 MONINIT
Cold-start routine for monitor.
Switches to bank 15, loads all register storage locations with
zeros, sets the program counter storage to $B000 and bank
storage to 15, and prints MONITOR. Next (at $B046) the stack
pointer is stored and Kernal error messages are enabled. The
routine then falls through to display the stored register values
and enter the main loop.

45136 $B050 SHOWREG
Handles R (register display) command.
Prints a heading for the register display, then displays the con-
tents of the storage locations (2-9/$02-$09) that represent the
program counter (prefixed with the current bank number); status;
and A, X, Y, and stack pointer register values. The storage lo-
cations are filled upon entry to the monitor and can be changed
with the register change (;) command. To simplify the process
of changing register values, this routine adds a semicolon before
the displayed values so that you can change the stored values
by typing over the displayed values and pressing RETURN.
The routine ends by falling through into the main loop.

45195 $B08B MONMAIN
Main command execution loop for the monitor.
Clears a line for input, then gets a command line into the in-
put buffer (512-672/$0200-$02AO). The routine accepts char-
acters until RETURN is pressed. Characters are then retrieved
from the buffer until one is found that is not a space. This
character is assumed to be a monitor command (all monitor
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commands consist of a single character). With this character in
the accumulator, the routine jumps through the IMON indirect
vector at 814-815/$032E-$032F. Normally, this vector points
to the jump table entry at $B006, which immediately returns
to the address following the indirect jump. However, this vec-
tor can be changed to allow additional commands to be added
to the monitor. See the discussion at IMON for more details.

The routine then compares the command character in the
accumulator against characters from the command table at
45286/$B0E6. If no match is found, an error is assumed, and
(at $B0BC) the error signal (a question mark) is printed follow-
ing the command. The routine then loops back to process an-
other command. If a match is found among the first 15 char-
acters in the command table, then the command is executed
by pushing an address from the table at 45308/$B0FC onto
the stack, then jumping to read the parameter following the
command. The RTS at the end of the parameter decoding rou-
tine [$B7A7] will cause control to be passed to the command
execution address stored on the stack. If the matching charac-
ter is among characters 16-19 in the table ($-%), then a jump
is taken to the base conversion routine [$B9B1]. If the match-
ing character is among characters 20-22 in the table (L-V),
then a jump is taken to the routine that prepares for load,
save, or verify [$B337].

45283 SB0E3 EXITMON
Handles X {exit to BASIC) command.
Leaves the monitor and returns to BASIC by jumping indi-
rectly through BASIC'S restart vector at 2560-2561/
$0A00-$0A01.

45286 $B0E6 COMTBL
Table of monitor commands.
Each of the 22 commands consists of a single character:
A C D F G H J M R T X @ . > ; $ + & % L S V

45308 $B0FC EXECTBL
Table of execution addresses for the monitor commands.
Each two-byte entry in the table consists of the address minus
1 of the routine to perform the corresponding command. The
entries are one less than the actual address because of the way
the RTS opcode behaves: When RTS pulls a return address
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from the stack, it adds 1 to the address value before placing
the value in the 8502's program counter. The actual execution
addresses for each of the commands handled by this table are
as follows:
A
C
D
F
G
H
J
M
R
T
X
@

>

{Assemble instruction)
(Compare memory blocks)
{Disassemble instruction)
{Fill memory)
(Go to routine)
(Hunt for byte)
(Jump to subroutine)
(Memory display)
(Register display)
(Transfer memorv)
(eXit to BASIC)
(send disk command)
(same as A)
(change memory)
(change register)

45338 SB11A

SB406
SB231
$B599
SB3DB
$B1D6
$B2CE
$B1DF
$B152
$B050
$B234
$B0E3
$BA90
$B406
$B1AB
$B193

MINDFET

J

INDFET call for the monitor.
Calls the Kernal INDFET routine [$FF74] to retrieve a charac-
ter into the accumulator from the bank specified in 104/$68 at
the address pointed to in 102-103/$66-$67, and with the off-
set specified by the contents of the Y register. The use of
$66-$68 as working addresses makes it impossible to use the
monitor to examine the contents of floating-point accumulator
1 (FAC1), since the value in FAC1 will be changed by the
monitor M command (which uses this routine).

45354 $B12A MINDSTA
INDSTA call for the monitor-
Calls the Kernal INDSTA routine [$FF77] to store the value in
the accumulator into the bank specified in 104/$68 at the ad-
dress pointed to in 102-103/$66-$67, and with the offset
specified in the Y register. The use of $66-$68 as working ad-
dresses makes it impossible to use the monitor to load values
directly into floating-point accumulator 1 (FAC1), since the
value in FAC1 will be changed by the > (memory change)
command (which uses this routine).
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45373 $B13D MINDCMP
INDCMP call for the monitor.
Calls the Kernal INDCMP routine [$FF7A] to compare the
value in the accumulator against the value at the address
pointed to in 102-103/$66-$67, with the offset specified in
the Y register, from the bank specified in 104/$68. The only
monitor routine that uses indirect comparison is the
compare/transfer routine [$B321], and that routine calls
INDCMP directly, using instead 96-97/$60-$61 as the ad-
dress pointer and 98/$62 for the bank value.

45394 $B152 SHOWMEM
Handles M (memory display) command.
Displays the contents of a specified area of memory as hexa-
decimal values and ASCII characters. The routine functions by
repeatedly calling the subroutine display lines of byte and
character values [$B1E8].

The format depends on the screen mode: 8 bytes per line
in 40-column mode or 16 bytes per line in 80-column mode.
No parameters are required, but either one or two parameters
can be specified. If no parameters are specified, the display be-
gins at whatever address is currently in 102-103/$66-$67
from the bank specified in 104/$68. Before other operations
are performed, the value in those locations is not predictable.
After another M command, these locations will hold an ad-
dress one line (8 or 16 bytes) higher than the previous ending
address. Twelve lines of data will be displayed, representing
either 96 bytes (40-column mode) or 192 bytes (80-column
mode). If one address is specified, 12 lines are displayed start-
ing at the specified address. If two addresses are specified, all
bytes between the addresses are displayed; the NO SCROLL
key may be used to pause the screen and the STOP key will
halt the process. The routine always displays full lines, so a
few bytes beyond the specified ending address may also be
shown. It is possible to wrap from bank to bank; the next ad-
dress after $FFFF in one bank is $0000 in the next higher
bank. Thus, the M command treats the 16 banks like a con-
tinuous block of memory. However, the address will not wrap
from $FFFFF to $00000. The routine ends by jumping back to
the main loop
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45460 SB194 CHNGREG
Handles ; (change register) command.
Allows you to change the contents of the bank, program
counter, and register storage locations (2-9/$02-$09). Since
the values in the storage locations are reloaded into the cor-
responding registers by the G and J commands, this allows
you to change values that the various microprocessor registers
will hold when ML routines are executed from the monitor.
The register contents are usually changed by editing the val-
ues displayed by the R {register display) command [$B050].
Since that routine automatically provides the semicolon (;) in
front of the values, you may not even have realized that this
is a separate command. You are free to use the ; command in-
dependently of the register display, but it is somewhat less
convenient.

The routine expects to read the values in order, so you
must supply values for all registers with storage locations
lower than the one you wish to change. This isn't a problem if
you're editing the register display, but if you're using the ;
(semicolon) command independently, you must supply values
for all registers that are normally displayed to the left of the
value you wish to change. For example, even if you want to
change only the Y register value, you must still also supply
address, status register, accumulator, and X register values (in
order) before the Y register value.

45483 6B1AB CHNGMEM
Handles > (change memory) command.
Allows you to change the contents of one or more memory lo-
cations—to a maximum of either 8 or 16 locations, depending
on whether the 40- or 80-column screen is in use. Memory
contents are usually changed by editing the lines of byte val-
ues displayed by the M (memory display) command [$B152].
Since that routine automatically provides the > in front of the
address and values, you may not even have realized that this
is a separate command. You are free to use the > command
independently of the memory display; in fact, it's more
convenient when you need to change only one or two bytes.

If no parameters are found following the > command,
then a line of byte values is displayed beginning at the ad-
dress in 102-103/$66-$67 from the bank in 104/$68. If no
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monitor commands involving ranges of addresses—for ex-
ample, M, T, or C—have yet been performed, the value in
these locations is unpredictable. Following the M command,
the locations will hold an address one line (8 or 16 bytes, de-
pending on the display width) higher than the address of the
last line displayed.

Only hexadecimal byte value parameters can be inter-
preted; you cannot change memory by changing the ASCII
characters displayed at the end of each line. The routine to
display a line of memory [$B1E8] is called to redisplay the
changed locations. A full line (8 or 16 bytes) is always
redisplayed, even if you have changed only one or two bytes.
The routine ends by jumping back to the main loop [$B08B].

45526 SB1D6 GOTOLOC
Handles C (go to routine) command.
Loads the bank and program counter storage locations (2-4/
$02-$04) with the specified values if a target address is sup-
plied. The stack pointer is restored to the value it had upon
entry to the monitor (stored in 9/$09). This negates the effects
of any stack operations the monitor routines may have per-
formed. Finally, the Kernal JMPFAR routine [$FF71] is called
to transfer control to the address specified in 3-4/$03-$04,
and in the bank specified in 2/$02, with the microprocessor
registers loaded from 5-8/$05-$08.

There's normally no returning from a JMPFAR. If you
want to get back to the monitor after executing an ML routine
using G, then the routine at the target address must end with
a BRK ($00) opcode. Execution of the BRK will return you to
the monitor via the break entry point [$B003],

If you use G to go to a routine that ends with an RTS,
you'll be returned to BASIC at the end of the routine. If you'd
prefer to be returned to the monitor when a program termi-
nates with RTS, use J instead of G.

45535 $B1DF JMPSUB
Handles J (jump to subroutine) command.
Loads the bank and program counter storage locations (2-4/
$02-$04) with the specified values if a target address is sup-
plied. The Kernal JSRFAR routine [$FF6E] is called to transfer
control to the address specified in 3-4/$03-$04, and in the
bank specified in 2/$02, with the microprocessor registers
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loaded from 5-8/$05-$08. Upon return from the JSRFAR, the
routine jumps back to the main loop [$B08B].

To get back to the monitor cleanly after using J, you'll
need to be sure that the routine at the target address ends
with an RTS opcode. Execution of a BRK opcode will also
cause a return to the monitor (via the break entry point
[$B003]), but in that case the JSRFAR return address will be
left on the stack.

45544 $B1E8 SHOWLIN
Displays a line of memory as hex bytes and ASCII characters.
Clears a screen line, then prints a > character to facilitate use
of the memory change command [$B1AB], Next, the bank and
address of the first location in the current display line (in
102-104/$66-$68) are printed. A loop reads bytes from mem-
ory and prints two-digit hexadecimal numbers representing
the byte values. The loop repeats for either 8 or 16 bytes, de-
pending on the screen width (determined by checking the
value in 215/$D7). After this, the routine prints a colon (so
that the following ASCII characters will not be counted as part
of the input for the memory change command) and an {RVS}
character (so that the following ASCII characters will be dis-
played in reverse video). Finally, a second loop is used to read
the same 8 or 16 bytes again, but this time to display the
equivalent ASCII character for the byte value. To prevent
cursor or color control characters from being printed and up-
setting the screen display, the character code for the period (.)
is substituted if the byte value to be displayed is less than
32/$20 or between 128-159/$80-$9F.

45617 SB231 CMPXFR
Compares or transfers blocks of memory.
Begins by loading an operation flag (147/$93) with a value
that indicates which function is being performed: 0/$00 if the
routine is entered at $B231 for C (compare) or 128/$80 if en-
tered at $B234 for T (transfer). The transfer operation might
more properly be called a copy, because the contents of the
source block of memory are not changed unless the blocks
overlap. A direction flag (2739/$0AB3) is also used during
transfers to indicate whether bytes are being copied downward
in memory (flag value 0/$00) or upward (flag value 128/$80).
The direction of a transfer is significant—downward moves
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must work from the starting address toward the ending ad-
dress, while upward moves must work from end to start. Oth-
erwise, if the source and destination ranges overlap, a single
value would be rippled through the destination range.

The routine loads bytes from the source address range
and, if a transfer operation is indicated, stores the value in the
corresponding destination address using the Kernal INDSTA
routine [$FF77]. Next, it compares the byte in the source range
against the byte in the destination range using the Kernal
INDCMP routine [$FF7A]. This performs the compare opera-
tion (the bytes should always be equal for a transfer opera-
tion). If the bytes do not match, the address of the mismatch is
printed. Then the source and destination addresses are either
incremented (for a compare or downward transfer) or decre-
mented (for an upward transfer). This loop is repeated until all
bytes in the range have been compared or transferred; then
the routine jumps back to the main loop [$B08B], However,
the loop also includes a call to the Kernal STOP routine
[$FFE1], so the RUN/STOP key can be used to halt the com-
pare or transfer.

45774 $B2CE SEARCH
Searches memory for byte pattern.
Evaluates the address parameters and calculates the number of
bytes to search, then fills the buffer at $0A80 with the search
pattern. If the first nonspace character following the ending
address parameter is the apostrophe ('), then the following
characters are copied directly from the input buffer into the
search buffer, so the search will be for the actual ASCII char-
acters. If the apostrophe is not found, the characters following
the ending address are converted into byte values before being
placed in the buffer.

Once the search buffer is prepared, a byte is loaded from
memory and compared against the first byte in the search
buffer. If the two bytes match, the next byte in memory is
compared to the next byte in the buffer, and so on, until either
a mismatch occurs or the end of the search buffer is reached
(which indicates that the pattern has been matched). In the
case of a match, the starting address of the match is printed,
followed by two spaces. The testing process normally repeats
until all bytes in the specified address range have been
checked, but the loop includes a call to the Kemal STOP rou-

254

tine [$FFE1], so the RUN/STOP key can be used to be used to
terminate the search. The routine ends by jumping back to the
main loop [$B08B],

Be sure to see the warning in the introduction to this
chapter about using the H command for searching wide ad-
dress ranges.

45879 $B337 MONLSV
Prepares for load, save, or verify.
Begins by setting default values for the device number, sec-
ondary address, bank, filename length, and filename address.
Setting these values directly (rather than using Kernal routines
like SETLFS, SETNAM, and SETBANK) is an exception to the
monitor's otherwise strict use of Kernal jump table calls. If no
characters follow the command, then a branch to 45995/$B3AB
allows the L and V commands to be used alone to load or ver-
ify using "nameless" tape files.

If anything follows the command, it is assumed to be a
filename and must start with a quotation mark character ("),
or else an error will be signaled. Characters following the
opening quotation mark are copied into the monitor buffer at
2688/$0A80 until a closing quotation mark is found. An error
is signaled if no closing quotation mark is found or if more
than 16 characters are used in the filename. If no other param-
eters are found following the closing quotation mark, a branch
to 45995/$B3AB attempts to load or verify a tape file with the
specified name.

If a parameter value follows the closing quotation mark,
the low byte of the value is copied into the device number lo-
cation (186/$BA). The next parameter value is assumed to be
a starting address, A load or verify is attempted if the param-
eter is absent. The final parameter, if any, is assumed to be the
ending address. If it's missing, a branch to 46O33/$B3D1 at-
tempts a relocating load or verify. If it is present, the com-
mand is checked, and an error is signaled if it is not S (an
ending address cannot be specified for a load or verify).

45983 $B39F MONSAVE
Handles save for monitor.
Changes the secondary address setting to zero to specify a re-
locatable file if the device is the tape drive. The Kernal SAVE
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routine [$FFD8] is used to write the data to the specified de-
vice. The routine ends by jumping back to the main loop
[SB08B].

45995 $B3AB MONLOAD
Handles load and verify.
Checks that the command is either V or L, and signals an er-
ror if not. For V, the character code for V (86/$56) is left in
the accumulator; for L, a zero is placed in the accumulator.
The Kernal LOAD routine [$FFD5] is then called, which will
perform a load if the accumulator holds zero (for L) or a verify
if the accumulator holds a nonzero value {for V). The routine
tests for a verify error; if one occurs, the message ERROR is
printed to signal that the data in memory does not match the
file on disk or tape. The routine ends by jumping back to the
main loop [$B08B],

46033 6B3D1
Prepares for relocating load or verify.
Loads the specified ending address value and changes the sec-
ondary address (185/$B9) from 1 to 0, indicating a relocating
load is to be attempted. The routine then branches to attempt
load or verify [$B3AB],

46043 $B3DB FILLMEM
Fills memory with specified byte value.
Evaluates the starting and ending addresses, and calculates the
number of bytes to fill. If the starting and ending banks are
not the same, an error is signaled to prevent the fill operation
from crossing bank boundaries and overwriting the important
values in locations $00 and $01. If the address range is valid,
the fill byte value is read, and a loop begins to store fill byte
in all memory locations in the specified range. The loop nor-
mally repeats until the specified number of bytes have been
filled, but it includes a call to the Kernal STOP routine
[$FFE1], so the RUN/STOP key can be used to halt the fill.
The routine ends by jumping back to the main loop [$B08B].

When filling, you must be careful not to overwrite page 0
or page 2, both in the area of memory common to all banks.
Page 0 contains the pointer to the byte to fill (102-104/$66-
$68), and page 2 contains the INDSTA routine used to store

256

$B406 46086

bytes in the specified addresses. Overwriting either of these
areas will likely result in a system lockup.

46086 $B406 ASSMBLE
Handles A (assemble) command or its equivalent (.).
Checks for values following the A or period (.) and signals an
error if none is found. The period is accepted as a synonym
for A to simplify the assembly process by allowing you to edit
the lines displayed by the D (disassemble) command. Since
the D command automatically provides the period before each
line, you may not have realized that it is treated as a separate
command, but you can substitute it freely for A.

If only an address is found following the command, the
routine simply returns to the main loop [$B08B], Next, the
routine searches for the first group of three nonspace charac-
ters. Any values on the input line with fewer than three char-
acters are ignored;this explains why the two-digit hexadecimal
byte values displayed in front of the three-character mnemonic
by the disassemble routine are ignored when the instruction is
edited. It also explains why changes to the two-digit byte val-
ues are ignored by this routine. The three-character pattern is
then packed into a two-byte value. This packing scheme is a
holdover from the RAM-resident monitors of earlier Commo-
dore computers. It's really unnecessary in the 128, which has
room to spare in this block of memory, but Commodore's pro-
grammers probably found it easier to reuse the existing code.
All 8502 ML mnemonics consist of combinations of the alpha-
betic characters A-Z. Since there are only 26 different valid
characters, any single character can be represented by a five-
bit value (which can hold 0-31), and three five-bit values can
fit nicely into two eight-bit bytes.

As an example of how this packing works, suppose the
pattern found is LDA—corresponding to hex bytes $4C $44
$41. First, the value 63/$3F is subtracted from each byte,
yielding $0D $05 $02. The binary equivalents are %00001101
%00000101 %00000010. The rightmost five bits of each value
are shifted rightward into two bytes. The resulting packed
mnemonic in these locations is %01101001 %0l000100, or
$69 $44.

Next, the routine infers an addressing mode from the pa-
rameter following the three-character pattern. The packed pat-
tern is compared against those in the table at 46881/$B721.
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(The packing scheme does make the testing for valid mne-
monics slightly faster, since only two bytes need to be com-
pared instead of three.) An error is signaled if no match is
found; otherwise, the position of the matching mnemonic in
the table is used along with the addressing mode to calculate
the proper opcode for the specified instruction. The opcode
and its associated parameter (if any) are then stored in mem-
ory, and the routine at 46556/$B5DC is called to disassemble
the line just assembled. This provides the hex values of the
ML bytes. Finally, the routine loads the input buffer with an A
and the next address value so that these will be found when
the routine ends by jumping back to the main loop [$B08B],
This greatly simplifies the assembly of further instructions.

46489 8B599 DISASSM
Handles D (disassemble) command.
Calculates the number of bytes to disassemble, then calls
46548/$B5D4 as many times as necessary to disassemble that
many bytes. If no parameter is specified, 20 bytes are dis-
assembled beginning at the address in 102-104/$66-$68. (Ac-
tually, up to 22 bytes may be disassembled, depending on
how many are necessary for the last full instruction.) If no pre-
vious commands have been executed, the address value is un-
predictable. After an earlier D command, the value will be the
next address beyond the last one previously disassembled. If
only a starting address is provided, 20 bytes are disassembled
beginning at the specified address. If both starting and ending
address parameters are provided, all instructions between
those addresses will be disassembled. However, the disassem-
bly loop includes a call to the Kernal STOP routine [$FFE1], so
the RUN/STOP key can be used to halt the disassembly. You
may also use the NO SCROLL key to pause the disassembly.
The routine ends by jumping back to the main loop [$B08B],

46548 $B5D4 DISASM1
Disassembles a single instruction.
Prints a period (to simplify editing of instructions), then the
bank and address of the opcode byte to be disassembled. A
call to 46681/SB659 calculates the addressing mode and offset
into the packed mnemonic table for this opcode. The hex
value of the opcode and up to two associated data bytes are
then printed. They're padded with spaces to align the mne-
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monies column. A call to 46753/SB6A1 unpacks and prints
the mnemonic. The associated parameter value is then printed,
along with such characters as #, (, and ), to identify the ad-
dressing mode for the instruction. For relative branching in-
structions, the target address of the branch is printed instead
of the relative offset value.

46681 $B659 CALCMN
Calculates mnemonic and addressing mode.
Manipulates the specified opcode (in the accumulator upon
entry) to provide the offset into the table for the correspond-
ing packed mnemonic, an addressing mode identifier value,
and a count of associated data bytes (0-2).

46753 $B6A1 PRNTMN
Prints mnemonic for opcode.
Unpacks and prints a mnemonic from the table at 46881/$B721.
Upon entry, the accumulator holds the offset into the table for
the mnemonic to be printed. As an example of how the un-
packing works, the first table entry is $1C $D8. The binary
equivalent is %0001110011011000. Divided into three five-bit
groups (and ignoring the rightmost bit), that's %00011 %10011
%01100, or $03 $13 $0C. Adding $3F to each yields $42 $52
$4B, corresponding to the character codes for the letters BRK.
You would expect this to be the first table entry, since the BRK
instruction has the lowest possible opcode ($00).

46787 $B6C3 OPCDTBL
Opcode decoding table.
The values in this table are used by the mnemonic and mode
calculation routine [$B659] to determine the packed mnemonic
table offset for the specified opcode value.

46855 6B707 INDCTBL
Table of addressing mode indicators.
Each 8502 mnemonic may have several possible addressing
modes, each with a different opcode. The values from this ta-
ble are used to indicate the mode which should be associated
with a mnemonic to represent the current opcode.
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46869 $B715 MODETBL
Table of mode identification characters.
The characters in this table are used by the assemble routine
[$B406] to determine the addressing mode being used, and by
the disassembly routine [$B5D4] to disassemble an instruction
to add the proper characters to indicate the mode being used.

46881 $B721 MNEMTBL
Table of mnemonics in packed form.
Each three-character mnemonic is packed into two bytes (see
the assemble routine [$B406] for details). The table is in two
halves: entries at 46881-46944/$B721-$B760 are the first byte
for the corresponding packed mnemonic, and entries at 46945-
47102/$B761-$B7A0 are the second byte.

47013 $B7A5 GETPARM
Evaluates a parameter in the input buffer.
Interprets the next numeric parameter in the input buffer
(using the parameter conversion routine [$B7CE]), then sets
the status register accordingly: carry clear if a parameter has
been found and the following character is a space, comma, or
the end of the input line, or carry set if no parameter has been
found. Upon exit, the accumulator holds the number of digits
in the parameter.

47054 $B7CE CVTPARAM
Transforms numeric parameter into byte value.
Reads a parameter value from the input buffer and converts it
into a three-byte value in 96-98/$60-$63 (in low-byte to
high-byte order). The parameter can be in any one of four dif-
ferent numeric bases: hexadecimal, decimal, octal, or binary.
Hex is assumed unless another base is specifically indicated by
a prefix character: $ for hexadecimal, + for decimal, & for oc-
tal, and % for binary. Upon exit, location 2740/$0AB4 will
hold a count of digits in the parameter (zero if no parameter
was found). The status register's carry bit will be set if the
parameter value is too large to be interpreted (greater than
1048575/$FFFFF), and clear otherwise.
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47242 $B88A BASETBL
Table of bases and bits-per-digit.
This table is used by the parameter transformation routine
[$B7CE] to determine how many bits to read for each digit of a
number in the corresponding base.

4 7 2 5 0 $B892 PRNTHEX
Prints a hexadecimal value.
Prints a five-digit hexadecimal value followed by a space. The
first digit comes from the low nybble of 104/168, the next two
from 103/$67, and the final two from 102/S66. When entered
at 47263/SB89F, the routine prints a four-digit hexadecimal
value representing the value in the accumulator (low byte) and
X register (high byte). When entered at 47269/$B8A5, a two-
digit hex value representing the value in the accumulator is
printed. When entered at 47272/$B8A8, only a space is printed.

47277 $B8AD
Moves cursor to start of current line.
Uses the Kernal PRIMM routine [$FF7D] to print a carriage re-
turn, CHR$(13), followed by a cursor up, CHR$(145).

47284 8B8B4
Moves cursor to start of next line.
Uses the Kernal BSOUT routine [$FFD2] to print a carriage re-
turn, CHR$(13).

47289 $B8B9 CLRLIN
Clears a screen line.
Uses the Kernal PRIMM [$FF7D] routine to print a carriage re-
turn, CHR$(13), followed by ESC Q (to clear a screen line)
and a space.

47298 $B8C2 PRNTBYT
Prints two ASCII characters for a byte value.
Calls the byte conversion routine [$B8D2] to generate two
ASCII characters representing the hex digits for the byte in the
accumulator, then uses the Kernal BSOUT routine [$FFD2] to
print these characters.
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47314 8B8D2 CVTBYT
Converts a byte value into two ASCII characters.
Generates two ASCII characters representing the hexadecimal
digits for the byte value in the accumulator upon entry. The
characters are returned in the accumulator (high nybble) and X
register (low nybble).

47335 $B8E7 TESTCHR
Tests next character in the input buffer.
Tests the character in the input buffer at the previous pointer
position (or, if entered at 47337/$B8E9, at the current pointer
position). If the character is a colon, question mark, or the zero
byte marking the end of input, the carry bit will be set upon
exit to indicate that the end of the input line has been
reached. Otherwise, carry will be clear to indicate that charac-
ters remain to be read.

47361 $B901 MOVEVAL
Transfers address and bank values to working pointer.
Loads the working address pointer (102-103/$66-$67) with
the parameter value calculated by the routine to transform in-
put characters into byte values [$B7CE] in 96-97/$60-$61.
The calculated bank value in 98/$62 is loaded into the bank
pointer at 104/$68,

47374 $B90E CALCCNT
Calculates number of bytes and banks to display or move.
Calculates the number of bytes and banks in an address range
by subtracting the starting address value in 102-103/$66-$67
from the ending address value in 96-97/$60-$61. The result
of the subtraction is left in 96-97/$60-$61. The number of
whole banks in the range is found by subtracting the starting
bank, in 104/$68, from the ending bank, in 98/$62, with the
result left in 98/$62.

47394 8B922
Decrements pointer/counter
Decrements the contents of 96-98/$60-$62 by 1 if entered at
47394/$B922, or by the value in the accumulator if entered at
47396/SB924. This is the line count for the display routine,
the byte count for the disassemble routine, or the target ad-
dress pointer for compare/transfer routine.
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47420 $B93C DECCNT
Decrements byte count.
Decrements the count of bytes for the current operation
(99-100/$63-$64). If the value there rolls over from $0000 to
$KFFF, the count of banks (101/$65) is also decremented.
Upon exit, carry bit in the status register will be clear if the
countdown is complete; otherwise, the carry bit will be set.

47440 $B950 INCPTR
Increments address pointer.
Increments the address pointer (102-103/$66-$67) by 1 if en-
tered at 47440/$B950, or by the value in the accumulator if
entered at 47442/$B952. If the incrementing causes the ad-
dress value to roll over from $FFFF to $0000, the bank pointer
(104/$68) is also incremented.

47456 8B960 DECPTR
Decrements address pointer.
Decrements the address pointer (102-103/$66-$67). If the
decrementing causes the address value to roll over from $0000
to $FFFF, the bank pointer (104/$68) is also decremented.

47476 SB974 CHNGADD
Changes bank and address.
If the parameter evaluation routine [$B7A7] finds an address
parameter for the command (indicated by a clear carry status
bit), the address is loaded into the program counter storage lo-
cations, 3-4/$03-$04, and the bank value is loaded into the
bank storage location, 2/$02. If no address parameter is pro-
vided, the values in the storage locations remain unchanged.

47491 $B983 PREPPTR
Prepares pointers for dual-address operations.
Sets up the required pointers for those commands that require
both starting and ending address parameters (C, F, H, and T).
The starting address is loaded into 102-103/$66-$67, with the
starting bank in 104/$68. The ending address is loaded into
2743-2744/$0AB7-$0AB8, with the ending bank in 2745/
$0AB9. The number of bytes and banks affected, the differ-
ence between the starting and ending addresses, is calculated
and stored in 99-101/$63-$65. If either address is missing or
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47537 8B9B1

if the ending address is less than the starting address, the
carry status bit will be set upon exit to signal the error.

47537 $B9B1 NUMXVRT
Performs number base conversion.
Evaluates the parameter following the base symbol, then
prints the value of the number in four different number bases:
hexadecimal, decimal, octal, and binary. The routine can con-
vert values in the range 0-1,048,575. For the hex value, a dol-
lar sign is printed followed by four hex digits (five if the value
is greater than 65535/$FFFF). For decimal, octal, and binary,
this routine provides the leading character (+ for decimal, &
for octal, and % for binary), then uses the subroutine at
47687/$BA47 to display the values. The routine ends by
jumping back to the main loop "

47623 SBA07 HEXDEC
Converts a hexadecimal value to decimal.
Converts the three-byte hexadecimal value in 96-98/$60-$62
into a decimal value in BCD (binary coded decimal) format in
2720-2723/$0AA0-$0AA3. For example, converting the value
258/$102, stored in 96-98/$60-$62 as $02 $01 $00, will result
in $00 $00 $02 $58 being left in 2720-2723/ $0AA0-$0AA3.
This routine takes advantage of the 8502's rarely used decimal
mode. To prevent the complications that would likely be
caused by interrupts occurring while the processor is set for
decimal mode, interrupts are disabled until the 8502 is reset to
its normal (binary) mode.

47687 $BA47 PNTOBD
Prints octal, binary, or decimal values.
Prints the octal or binary equivalent of a three-byte value. En-
ter with 96-98/$60-$62 holding the three-byte value, the ac-
cumulator holding the maximum number of digits allowed
(8/$08 for octal, 24/$18 for binary), and the Y register hold-
ing the number of bits to interpret per printed digit minus 1
(2/$02 for octal, 0/$00 for binary). To print a decimal value,
enter at 47709/$BA5D with the decimal value in 2720-2723/
$OAA0-$OAA3 in BCD format (see the routine 47623/$BA07),
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$BB72-$BFFF 47986-49151

and with 8/$08 (maximum number of digits) in the accumu-
lator and 3/$03 (number of bits-per-digit minus 1) in the Y
register.

47760 8BA90 DISKCMD
Handles @ (disk) commands.
Checks whether a parameter was found following the com-
mand. If so, the low byte of the value specifies the device
number for the disk command. If no parameter is specified, a
device number of 8—the most common number for disk
drives—is used. If the first nonspace character following the
device number is a dollar sign, then the routine branches to
47875/$BB03 to display a disk directory. Any other characters
following the device number parameter are sent over the serial
device as a command to the specified device. The routine ends
by jumping back to the main loop [$B08B],

Because the first item following the @ is always inter-
preted as a device number, you must specify some device
number value (@8 10 is a valid command, but @I0 isn't be-
cause the 10 will be interpreted as an invalid device number).
However, an alternate syntax is possible. The parameter eval-
uation routine [$B7A7] exits when it encounters a comma, so a
comma can be used alone to specify a null parameter. Thus, a
command of the form @,I0 is acceptable—the default device
number (8) will be used.

47875 $BB03 SHOWDIR
Displays disk directory.
If the first nonspace character in the command string following
the @ command is a dollar sign, this routine is branched to
because a disk directory requires more elaborate screen for-
matting than the simple disk status messages otherwise re-
turned by the @ command. This routine is a good model for a
directory display using machine language. (You can't use this
routine directly because it ends with a branch that returns to
the monitor main loop [$B08B].)

47986-49151 $BB7 2 -$BFFF Unused
The final 1166 bytes in the monitor ROM block are unused and
contain 255/SFF (except the last two bytes, which are $00 $3A).
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Programming Example
The following program, which prints a countdown in both
decimal and hexadecimal, illustrates how several of the moni-
tor routines can be incorporated into your own ML programs.
Use the command J $F0B00 to execute the routine:
0B00
0B02
0B04
0B06
0808
0B0A
0B0C
OBOF
0B12
0B15
0B17
0B19
0B1B
0B1E
0B21
0B24
0B27
0B2A
0B2C

LDA
STA
LDA
STA
LDA
STA
JSR
JSR
JSR
LDA
LDX
LDY
JSR
JSR
JSR
JSR
JSR
BCS
RTS

#$10 ;Load $60-$62 wi th the
$60 ; ini t ial count
#$27
$61 ; $002710 (10,000 decimal)
#$00 ; in th is example
$62
$B8B4 ;Clear a l ine for the display
$B8AD ;Move print posi t ion to clear l ine
$BA07 ;Convert byte value to decimal
#$00 ;Set up for decimal p r in t ing
#$08
#$03
$BA5D ;Print decimal value
$B8A8 ;Print a space
$B901 ;Transfer value to working storage
$B892 ;Print hexadecimal value
$B922 ;Decrement count va lue
$0B0F ;Loop unt i l value reaches zero
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Screen Editor ROM
If the 128 is your first computer, or if you have upgraded to
the 128 from an earlier Commodore model, then you may not
appreciate the power and versatility of the 128's full-screen
editor. The editor is so well integrated into the system that
you may take it for granted. However, if you've ever worked
with an Apple, Radio Shack, TI-99, or other computer with
limited editing features, you'll appreciate the ability to move
the cursor to any position on the screen, insert and delete
characters, and reenter entire lines just by pressing RETURN
anywhere on the line. (Imagine the frustration of having to re-
type an entire line of input just because a single character was
mistyped.) And, with the addition of ESC key sequences, the
128's screen editor is even more powerful and versatile than
the earlier Commodore editors from which it is descended.

In earlier Commodore models, the screen editing routines
were an integral part of the Kernal ROM, but in the 128 the
routines have been separated and moved to their own block of
ROM, occupying locations 49152-53247/$C000-$CFFF. The
routines in this block handle keyboard input and all aspects of
text screen output for both the 40- and 80-column displays.
Special features such as bitmapped graphics and sprites are
handled in BASIC ROM, but editor routines set up the bit-
mapped and multicolor bitmapped screens.

The 40- and 80-column text displays constitute the main
output device for the 128, and thereby its primary mechanism
for communicating with the user. For the fundamentals of
how each display is generated, refer to the description of the
respective 40- and 80-column video chips in Chapter 8. Note
that both video sources remain on at all times, so it's possible
to connect both a composite and an RGBI or monochrome
monitor and have simultaneous 40- and 80-column displays.
At any given time, however, one of the screens will be consid-
ered active and the other inactive, That is, the cursor will
"live" on only one of the displays, and all printing will be di-
rected to that screen. The active screen is considered device 3,
the default output device for the system.
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Windows
One of the most significant new features of the 128's screen
output is that it's window-oriented. That is, printing and
cursor movement are confined to the boundaries of a win-
dow—a defined area of the screen—rather than to the abso-
lute height and width of the screen. The window can be, and
most often is, the full size of the screen, but it can be as small
as a single character. Once you change the window bound-
aries, you must think in terms of windows rather than screens.
For example, you should think of the SHIFT-CLR/HOME key
as "clear window" rather than "clear screen." Only the cur-
rently defined window area will be cleared when that key
combination is pressed. You can also limit printing to certain
areas of the screen by modifying the window margins. The
128's windowing capabilities are no match for those of more
advanced computers like the Macintosh and Amiga, but they
do offer exceptional control over display formatting.

In order to understand how characters in the window are
manipulated, you must first understand the distinction between
physical lines and logical lines. A physical line is just one hor-
izontal row of the window—the characters between the left
and right margins. However, when you print characters on the
screen and the printing overflows from one row into the next,
the editor will consider the physical lines to be linked together
into a single logical line. Lines will continue to be linked until
either the RETURN or SHIFT-RETURN characters are encoun-
tered. A logical line can be as short as a single physical line or
as long as the entire window, depending on how many char-
acters are printed before the RETURN or SHIFT-RETURN. (By
contrast, the Commodore 64 allows logical lines to span a
maximum of two physical lines.) Some screen editor routines
operate on physical lines, others on logical lines. The entries
in this chapter indicate when an operation affects an entire
logical line.

Line Links
The system for linking lines on the 128 is considerably differ-
ent from that of earlier Commodore models. For example, the
Commodore 64 maintains a table at 217-242/$D9-$F2 which
contains the high bytes of the first address on each screen line,
with the high bit of each address byte used to indicate whether
the line is linked. The 128 has no such table; instead, it con-
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tains a four-byte line link bitmap at 862-865/ $035E-$0361.
Each screen line has a corresponding bit in the map. A bit set
to %1 indicates that the corresponding line is linked to the
one above. See the entries for location 862/$035E and for the
routines at 52084-52144/$CB74-$CBB0 for more information.

The 128 also implements a tab feature using a similar bit-
mapping scheme. The ten bytes at 852-861/$0354-$035D
provide a bit corresponding to each screen column, A bit in
the map set to %1 corresponds to a tab stop. See the entry for
location 852/$0354 and for the routines at 51535-51597/
$C94F-$C98D for more information.

The other major function of the screen editor is to handle
input from the keyboard. Although you tend to think of the
keyboard as an integral part of the computer, the system sees
it as just another peripheral, device 0. The keyboard is the de-
fault input device for the 128. It is normally scanned during
the jiffy IRQ sequence. See the entry for the SCNKEY routine
[$C55D] for details. The system's two major Kernal input
routines, GETIN [$EEEB] and BASIN [$EF06], both call screen
editor routines to retrieve input from the keyboard.

An enhanced feature of the 128's keyboard is programma-
ble keys. Definition strings can be assigned to the eight func-
tion keys, F1-F8, and to the SHIFT-RUN/STOP combination
and the HELP key. The definitions can be of variable lengths,
with the restriction that the combined lengths of all ten defini-
tions cannot exceed 246 characters.

The screen editor has another feature that makes redefin-
ing the keyboard much easier than on previous Commodore
models. The tables for decoding keyscan codes into character
codes are still in ROM, but the pointers to the tables are now
maintained in RAM. Thus, redefining the keyboard is as sim-
ple as redirecting the pointer to a new decoding table set up in
RAM. See the entry for locations 830-841/$033E-$0349 for
details.

Screen Editor Jump Table
Most major screen editor routines can, and should, be entered
through their respective entries in the following jump table.
Each three-byte table entry consists of a JMP opcode followed
by the address of the target routine.

271



49152

49152

$cooo

$cooo JCINT
Entry point for the routine at 49275/$C07B/ which establishes
the default characteristics for both the 40- and 80-column dis-
plays. This entry is part of both the reset and RUN/STOP-
RESTORE sequences. No preliminary setup is required, but
the behavior of the routine is affected by the setting of the ini-
tialization status flag (2564/$0A04). The keyboard decoding
table pointers and screen editor indirect vectors are initialized
only when bit 6 of the flag is %0. If you wish to preserve de-
coding table pointers or indirect vectors while resetting other
screen editor characteristics, set this bit to %1 before you call
the routine.

49155 $C003 JDISPLY
Entry point for the routine at 52276/SCC34, which deposits a
screen code and attribute value at the current cursor position.
Call this entry with the accumulator holding the screen code
(not the character code) for the desired character and the X
register holding the attribute value for the character.

49158 SC006 JKEYIN
Entry point for the routine at 49716/SC234, which retrieves a
single character from the keyboard. (In official Commodore lit-
erature, this routine has the rather nondescriptive name LP2.)
This entry is used by the Kernal GETIN routine [SEEEB] when
the keyboard is the input device. (The keyboard, device 0, is
the 128's default input device.) Upon return, the accumulator
will contain the retrieved character. Be sure to see the warning
in the KEYIN entry about calling this routine directly.

49161 C009 JGETSCRN
Entry point for the routine at 49819/$C29B, which retrieves a
character from a line of keyboard or screen input. (In official
Commodore literature, this routine has the rather nondescrip-
tive name LOOP5.) This entry is used by the Kernal BASIN
routine [$EF06] when input is requested from the keyboard
(device 0) or the screen (device 3). The input source is deter-
mined by the value in the flag at 214/SD6. When the flag has
a nonzero value, the character at the current cursor position is
read and returned in the accumulator. When the end of the
line of input is reached, the routine returns the code for the

3C00F 49167

RETURN character, the value 13/$0D. If the flag is zero, the
routine accepts characters from the keyboard and displays
them on the screen until RETURN is pressed. It then returns
the first character of the input in the accumulator and sets the
source flag to a nonzero value so that subsequent calls retrieve
characters from the input line displayed on the screen. In
either case, the source flag should be set only before the first
call to this routine for any given line of input.

For keyboard input, the starting and ending columns and
the row for the input line are set automatically. For screen in-
put, the character is read from the row specified in 235/$EB at
the column specified in 236/$EC. These locations normally
hold the current cursor position and are advanced one position
to the right after each call to this routine. However, the loca-
tions can also be reset to any row and column you desire. The
screen input line ends on the row specified in 2608/$0A30 at
the column specified in 234/$EA. Neither of these locations is
set automatically, so you must specify the ending position
before calling for input from the screen. The X and Y register
contents will be preserved during this routine.

49164 JPRINT$C00C
Entry point for the routine at 50989/$C72D, which prints a
character at the current cursor position using the current
attribute (in 241/$F1). This routine is used by the Kernal
BSOUT routine [$EF79] when the screen is specified as the
output device. (The screen, device 3, is the 128's default out-
put device.) Call the entry with the accumulator containing the
character code (not the screen code) for the character to be dis-
played. The accumulator and X and Y register contents are
preserved during this routine.

49167 $C00F JSCRORG
Entry point for the routine at 52315/$CC5B, which returns
information about the current window size. This entry is the
target of the Kernal jump table entry JSCRORG [$FFED], Upon
return, the X register will hold the number of columns (minus
1) in the current window, and the Y register will hold the
number of rows (minus 1). The accumulator will hold the
maximum column number for the active screen (39 for the 40-
column display or 79 for the 80-column display).
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49170 $C012

49170 $C012 JSCNKEY
Entry point for the routine at 50525/$C55D, which scans the
keyboard matrix for a keypress. This entry is the target of the
Kernal jump table entry JSCNKEY [$FF9F]. If a key is found to
be pressed, its corresponding character code will be placed in
the keyboard buffer for retrieval by the GETIN or BASIN
routines, unless the key is a shift key or programmable key.
Both of those get special handling (see the SCNKEY routine
for details).

49173 $C015 JREPEAT
Entry point for the routine at 50769/$C651, actually an alter-
native entry into the SCNKEY routine. At this point, the rou-
tine expects location 212/$D4 to contain the keyscan matrix
code for the current key, 211/SD3 to hold the status of the
shift keys, and 204-205/$CC-$CD to point to the keyboard
decoding table selected according to the shift key status. This
table entry is most useful when intercepting the KEYVEC indi-
rect vector (see the entry at 82 6/$ 033A for details).

49176 $C018 JPLOT
Entry point for the routine at 52330/$CC6A, which reads or
sets the cursor position. This entry is the target of the Kernal
jump table entry JPLOT [$FFF0], If called with the carry bit
clear, the cursor is moved to the row specified in the X register
and the column specified in the Y register (the row and col-
umn settings are relative to the current home position of the
window). The carry bit will be set upon return if the specified
position is outside the current window boundaries. If called
with the carry set, the routine returns with the row number of
the current cursor position in the X register and the column
number in the Y register (again, the numbers will be relative
to the current home position of the window).

49179 $C01B JCRSR80
Entry point for the routine at 52567/$CD57, which moves the
cursor on the 80-column display to the row and column speci-
fied in 235/$EB and 236/$EC, respectively. The 40-column
display's cursor is maintained by software, so it follows these
pointers automatically, but the position of the 80-column
cursor must be set explicitly.
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49182 $C01E JESCAPE
Direct entry point into the escape sequence handling routine
[$C9BE], Normal entry into the handler begins with an indi-
rect jump through the ESCVEC vector (824-825/$0338-$0339).
That vector normally points to this table entry, which in turn
jumps back into the handling routine at the point immediately
following the indirect jump.

49185 $C021 JKEYSET
Entry point for the routine at 52386/$CCA2, which redefines
a programmable key. This entry is the target of the Kernal
jump table entry JPFKEY [$FF65]. Call this entry with the X
register containing the key number (1-10), the Y register con-
taining the length of the definition string, and the accumulator
holding the address of a two-byte zero-page pointer to the
string. The zero-page byte immediately following the pointer
should contain the number of the memory bank in which the
string resides.

49188 $C024 JSCNIR9
Entry point for the routine at 49556/SC194, which handles
the screen editor portion of the IRQ handling sequence. This
includes setting up the screen display mode, scanning the key-
board, and managing the cursor for 40-column display.

49191 $C027 JIN1T80
Entry point for the routine at 52748/SCE0C, which initializes
the character patterns for the 80-column display. This entry is
the target of the Kernal jump table entry JINIT80 [$FF62]. The
routine copies the contents of the 40-column display's charac-
ter ROM ($D000-$DFFF in bank 14) into the character defini-
tion area of the 8563 chip's private block of RAM.

49194 $C02A JSWAPPER
Entry point for the routine at 52526/$CD2E, which switches
active screen displays. This entry is the target of the Kernal
jump table entry JSWAPPER [$FF5Fj. The routine exchanges
the screen variable tables, tab stop tables, and line link tables,
and toggles the active screen flag (215/$D7). This will redirect
printing to whichever screen was previously inactive.
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49197 8C02D

49197 SC02D JWINDOW
Entry point for the routine at 51739/$CA1B, which sets the
position of a corner of the output window. To set the top row
and left column of the window, call this entry with the carry
bit clear, the accumulator holding the row number, and the X
register holding the column number. To set the bottom row
and right column of the window, call this entry with the carry
bit set, the accumulator holding the row number, and the X
register holding the column number.

49200 SC030 Unused
Three unused bytes filled with the value 255/$FR

4 9 2 0 3 8C033 SADDRTBL
Table of screen line starting addresses.
Locations 49203-49227/$C033-$C04B hold the low bytes of
the address in 40-column screen memory for the column 0 po-
sition in each of the 25 screen lines. Locations 49228-49252/
$C04C-$C064 hold the high bytes for the line addresses for
the default 40-column screen position (at 1024/S0400). These
table values are used in conjunction with the screen base ad-
dresses, 2619/$0A3B for the 40-column screen or $2606/$0A2E
for the 80-column screen, to calculate the actual starting ad-
dress for each line of screen and attribute memory.

49253 $C065 SCNVCTRS
Table of default screen editor indirect vectors.
The five two-byte values here are copied to the screen editor
indirect vector table at 820-829/$0334-$033D when the system
is reset. In each case, the default indirect vector merely returns
control to the location immediately following the indirect jump,

49263 8C06F KEYPTRS
Table of default keyboard decoding table pointers.
The six two-byte values here, the addresses of the ROM key-
board decoding tables, are copied to the keyboard decode
pointer table at 830-841/$033E-$0349 when the system is
reset
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49275 $C07B CINT
Initializes screen editor constants, variables, tables, and vectors.
(This routine has a screen editor jump table entry at 49152/$CO00
and a Kernal jump table entty at 65409/SFF81.)
Sets the default values for all working storage memory loca-
tions used by screen editor routines. This routine is part of
both the reset and RUN/STOP-RESTORE sequences. The CIA
chip register (56576/$DD00) that controls VIC-II chip memory
banking is set to have the VIC-II see memory from its bank 0,
corresponding to addresses 0-16383/$0000-$3FFF in block 0
of system RAM (VIC-II banks are different from MMU banks;
see Chapter 8 for more details). Bit 1 of the processor I/O reg-
ister (l/$01) is set to %1 to make block 1 of color memory
(the block for 40-column text screen color) visible at
55296/$D800. The Kernal CLRCH routine [$FFCC] is called to
reset normal I/O sources: input from the keyboard and output
to the screen. The SID chip volume register (54296/$D418) is
set to zero to silence any sound output (a step not present in
the Commodore 64's CINT routine). Screen editor RAM vari-
ables and constants are initialized as follows:

Meaning
Keyboard buffer empty
No function key pending
Input from the keyboard
40-column display set for text mode
CHAREN shadow cleared
Maximum of 10 keys in buffer
Printing pause flag cleared
All keys repeat if held down
Delay between repeats initialized
Delay before repeats initialized
40-column cursor will blink
Cursor blink switch initialized
Cursor blink countdown initialized
80-column cursor set for blinking block
40-column text screen and character base
initialized (screen at 1024/$0400, character
set seen at 4096/$1000)
40-column bitmap and matrix base initial-
ized {matrix at 7168/$1COO, bitmap at
8192/$2000)
Base page for screen memory in 8563
RAM (screen at 0/$0000)

Location
208/$D0
2O9/$D1
214/$D6
216/$D8
217/SD9
2592/$0A20
2593/$0A21
2594/$0A22
2595/$0A23
2596/$0A24
2598/$0A26
2599/$0A27
2600/$OA28
2603/$0A2B
2604/$0A2C

2605/$0A2D

2606/$OA2E

Value
0
0
0
0
0
10/SOA
0
128/$80
4/$04
10/$0A
0
10/$0A
10/$0A
96/$60
20/$14

120/$78

0
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4 9 2 7 5 $C07B

2607/$0A2F 8/$08 Base page for attribute memory in 8563
RAM (attributes begin at 2048/$0800)

2612/$0A34 208/$DO Default raster line for split screen (text por-
tion starts at line 20)

2619/$0A3B 4/$04 Base page for 40-column screen memory
(value read from 49228/$C04C)

Also during this setup, the active screen flag (215/$D7) is
set for 40-column mode, and bit 7 of the MMU mode configu-
ration register (54533/$D505) is set to %1 to enable reading of
the 40/80 DISPLAY key. While the 40-column display is ac-
tive, default tab stops are set and default screen editor vari-
ables are copied from the table at 52852/$CE74 into 224-249/
$E0-$F9. At the same time, default variables for the 80-col-
umn display are copied from the table at 52878/$CE8E into
2624-2649/$0A40-$0A59. However, there is a bug in this
portion of the routine: The copy loop uses an index of 26/$lA
instead of the proper value 25/$19, so the byte following the
40-column table is also copied to 250/$FA, and the byte fol-
lowing the 80-column table is also copied to 2650/$0A5A.
The screen editor indirect vectors (820-829/$0334-$033D) are
initialized from the table at 49253/$C065.

Next, bit 6 of the initialization status flag (2564/$0A04) is
checked. If the bit is set to % 1 , the following steps to load
keyboard table pointers and key definition strings are skipped.
If the bit is clear, the keyboard decoding table pointers
(830-841/$033E-$0349) are initialized from the table at
4926/$C06F, and the default programmable key definitions
are copied to the definition area at 4096/$1000 from the table
at 52904/$CEA8. After the values are copied, bit 6 of the flag
is set to %1 to indicate that these steps have been performed.
The flag is cleared before this routine is called by the reset
routine [$EOO0], so these steps will always be performed dur-
ing a reset. However, the RUN/STOP-RESTORE sequence
[$FA53] does not affect the flag, so any changes to pro-
grammable key definitions or keyboard decoding table point-
ers will remain intact after RUN/STOP-RESTORE.

Default tab stops are then established for the 80-column
screen, and the 80-column window is reset to full screen size
and cleared. The 40-column window is also reset to full screen
size and cleared. Finally, the position of the 40/80 DISPLAY
key is read (by checking bit 7 of 54533/$D505), and the se-
lected display will become the active screen upon exit.

278

SC15E 49502

49474 SC142 CLEAR
Clears the current window and homes the cursor.
Also handles clear screen character, CHR$(147).
Sets the cursor to the home position and clears rows until the
bottom of the window is reached, then falls through into the
following routines to return the cursor to the home position
and set pointers.

49488 $C15O HOME
Moves the cursor to the home position of the current window.
Sets the cursor row (235/$EB) and starting row for input
(232/$E8) to the top row of the current window (229/$E5),
and the cursor column (236/SEC) and starting column for in-
put (233/$E9) to the left margin of the current window
(230/$E6), then falls through into the next routine to set
pointers to that line.

49500 $C15C SETLINE
Sets starting address pointers for the current line.
Loads the line number where the cursor currently resides
(235/$EB) into the X register, then falls through into the next
routine to set pointers to that line.

49502 $C15E SETADDR
Sets starting address pointers for a specified line.
Calculates the screen memory address corresponding to the
leftmost column of the screen line specified in the X register
and places the address in the pointer at 224-225/$EO-$E1.
The low byte of the address comes from the table at 49203/
$C033 (multiplied by 2 if the 80-column display is active). The
high byte is calculated by taking a value from the table at
49228/$C04C, masking off all but the lowest two bits (and
multiplying the result by 2 if the 80-column screen is active),
then ORing the result with the starring page value for the ac-
tive screen—2619/$0A3B for the 40-column display or
2606/$0A2E for the 80-column display.

Next {at 49532/$C17C), the attribute memory address
corresponding to the leftmost column of the specified screen
line is calculated and placed in the pointer at 226-227/
$E2-$E3. The low byte of the address is taken directly from
the low byte of the screen memory pointer (224/$E0). For the
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40-column screen, the high byte is calculated by masking off
all but the lowest two bits of the screen memory pointer high
byte (225/$El), then ORing the result with the value 216/$D8
(40-column color memory always starts at $D80O). For the 80-
column screen, the high byte is calculated by masking off all
but the lowest three bits of the screen memory pointer high
byte (225/$El), then ORing the result with the attribute mem-
ory starting page value (2607/$0A2F).

49556 $C194 SCNIRQ
Performs screen and keyboard portion of IRQ functions.
(This routine has a jump table entry at 49188/$C024.)

Begins by checking whether the current IRQ is the result of a
raster interrupt (see Appendix A for a discussion of interrupts).
If it's not, then this can't be a normal jiffy IRQ, so the routine
skips the screen setup steps and just scans the keyboard and
blinks the cursor before exiting. If it is a raster interrupt, the
routine checks whether the screen mode flag (216/$D8) con-
tains the value 255/$FF. If so, the routine again skips ahead to
scan the keyboard, blink the cursor, and exit. The 128 itself
never puts that value into the flag, but you can use this fea-
ture when you set up your own custom screen mode or raster
interrupt (see the entry for location 216/$D8 for details).

The routine then checks whether the raster is currently on
scan line 256 or higher. If so, the interrupt occurred while the
raster was beyond the visible portion of the screen. This off-
screen raster interrupt is the normal jiffy IRQ source for the
128—quite a different technique from the CIA timer-driven
jiffy IRQ for the Commodore 64. (The interrupt is actually
triggered at line 255, but the raster will have moved to the
next scan line by the time its position is checked here.) For an
offscreen interrupt, the VIC-II chip registers will be set accord-
ing to the screen mode flag value, using the step at 49631/
$C1DF for mode 0 (a full text screen) or the one at 49587/
$C1B3 for a bitmapped or split-screen mode.

If the interrupt occurred above scan line 255, bit 6 of the
screen mode flag is tested. If that bit is set to % 1 , a split
screen mode is in use, so a branch is taken to 49631/$C1DF
to set VIC-II registers for the text portion of the display.
Otherwise, the registers are merely reset for whichever mode
is currently in use, which produces no obvious effect.

At 49587/$ClB3, the bitmapped or multicolor bitmapped
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screen is established. If a split screen is in use, the scan line
value for the split, stored in 2612/$0A34, is loaded into the
VIC-II's raster compare register (53266/SD012). The processor
I/O register (l/$01) is set to make block 0 of color memory—
the block for multicolor source 3—visible at 55296/SD800,
and the VIC memory control register (53272/$D018) is loaded
with the bitmap base address, stored in 2605/$0A2D. Bit 5 of
VIC control register 1 (53265/$D011) is set to %1 to enable
the bitmapped display. If the mode flag indicates that multi-
color bitmapped mode was selected, bit 4 of VIC control regis-
ter 2 (53270/SD016) is also set to %1 to enable that feature.

At 49631/$C1DF, the 40-column text screen (or the text
area of a split screen) is established. The VIC-II's raster com-
pare register (53266/$D012) is loaded with 255/$FF to trigger
the offscreen raster interrupt. The processor I/O register
(l/$01) is set to make block 1 of color memory—the block for
40-column text color—visible at 55296/$D800, and the VIC
memory control register (53272/$D018) is loaded with the
screen and character memory base value, stored in $2604/
$0A2C. The VIC control register bits for bitmapped and multi-
color are cleared to disable those display modes. Finally, a
short delay loop is executed if the text portion of a split screen
is being established. This is to insure that the switch from bit-
mapped to text modes occurs while the raster is off the right
edge of the visible screen area, which prevents the flicker that
would occur if the change occurred in the middle of scanning
a line.

If the IRQ source is a raster interrupt which occurred on
the visible screen (to set up the text portion of a split screen),
the routine exits at this point with the status register carry bit
clear. In all other cases, the routines to scan the keyboard for a
keypress [$C55D] and handle 40-column cursor blinking
[$C6E7] are called, and the carry bit will be set upon exit.

49716 3C234 KEYIN
Performs GETIN from keyboard.
(This routine has a jump table entry at 49158/$C006.)
Checks 2O9/$D1 to see whether any characters remain to be
read from the definition string for the most recently pressed
programmable key. If so, a character is read from the defini-
tion area, with the value in 210/$D2 used as an offset from
the start of the definition area (4106/$100A). The count of re-
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maining characters is decremented and the offset into the defi-
nition area is incremented; then the routine exits with the
character in the accumulator, the status register carry bit clear,
and IRQ interrupts reenabled.

If no programmable key string characters are pending, the
character at location 842/$034A, the first character in the key-
board buffer, is returned in the accumulator. Any remaining
characters in the buffer are shifted one position to the left to
remove the retrieved character from the buffer; then the count
of characters in the buffer (208/$D0) is decremented. Upon
exit, the status register carry bit will be clear and IRQ inter-
rupts will be reenabled.

Unlike other major screen editor routines with jump table
entries, you should avoid calling this one directly. To retrieve
keypresses, call the Kernal GETIN routine via its jump table
entry (65508/$FFE4) with the current input device (153/$99)
set to zero to indicate keyboard input. The Kernal GETIN rou-
tine [$EEEB] verifies that a character is waiting to be read from
either a programmable key string or the keyboard buffer
before it calls this routine. If you call this routine with no
characters available (with 208/$D0 and 2O9/$D1 both con-
taining zero), you'll cause serious problems. The contents of
all page 3 locations above the keyboard buffer (and part of 40-
column screen memory in page 4) will be garbled. This area
includes the vital indirect fetch and store routines; you'll have
to reset the computer to recover.

49752 8C258 KEYLIN
Accepts a line of keyboard input and returns the first character.
(The normal entry point for this routine is 49755/$C25B.)
Turns on the cursor, then waits until a character is available in
the keyboard buffer or from a programmable key definition
string. The routine above is called to retrieve the character,
and unless it's a RETURN character, code 13/$0D, the routine
loops to display the character on the screen at the current
cursor position (using the PRINT routine [$C72D]), move the
cursor to the next position, and wait for another character to
become available. When RETURN is encountered, the routine
falls out of this loop and stores the RETURN code in the input
source flag (214/$D6) so that subsequent calls to the keyboard
BASIN routine will retrieve characters from the line of input
that has been displayed on the screen. The routine then sets
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pointers to the input screen line and jumps to 49852/$C2BC
in the following routine to exit with the accumulator holding
the first character of the input—unless no other characters
were typed before RETURN, in which case the routine
branches to 49829/$C2A5 in the following routine to exit with
the RETURN character code in the accumulator.

49819 8C29B GETSCRN
Performs BASIN from screen or keyboard.
(This routine has a jump table entry at 49161/$C009.)
Stashes the contents of the X and Y registers on the stack for
later restoration, then checks the input source flag (214/$D6).
If the flag value is zero, indicating input from the keyboard,
the preceding routine is used to accept a line of input from the
keyboard. If the flag is nonzero, but with bit 7 clear (%0), the
routine branches ahead to 49852/$C2BC to retrieve a charac-
ter from a screen line. If bit 7 is set (%1), the end of the input
line has been reached, so (at 49829/$C2A5) the input source
flag is reset to zero and a RETURN character is printed unless
output is to a device other than the screen. The routine then
exits with the RETURN character code, 13/$0D, in the accu-
mulator (the X and Y registers will be restored to their original

values).
At 49852/$C2BC, the screen code at the current cursor

position is retrieved and converted into the corresponding
character code (disassemble $C2C2-$C2D8 to see the conver-
sion process). The routine then checks whether the end of in-
put has been reached. If so, bit 7 of the input flag is set to %1
to indicate that all characters have been read from the current
input line.

The cursor is then moved right to the next character posi-
tion in the line. If the calculated character code is 222/$DE,
the pi (K) character, it's replaced with 255/$FF, an alternative
value (and BASIC token) for that character. Before exiting, the
original X and Y register values placed on the stack at the start
of the routine are restored, and retrieved character code is
loaded into the accumulator. The status register carry bit will
be clear upon exit.

Although there are no bugs in this routine, its calling
Kernal routine (BASIN [$EF06]) will not correctly retrieve a
line of input from the screen (keyboard input functions prop-
erly). The screen input setup portion of BASIN has two major
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flaws: It does not set the ending row for input (2608/$0A30),
and it resets the input source flag (214/$D6) before each char-
acter is retrieved (so that the setting of bit 7 is lost). Together,
these bugs make it impossible to determine when the end of
the input is reached. The following is an example of the
proper technique for retrieving a line of input from the screen:

LDA $EB ;Set ending row for input
STA $0A30 ; (same as starting row)
LDA $E7 ;Set ending column for input
STA $EA ; (to right window margin)
LDA #$03 ;Set screen as input source
STA $D6 ; (any nonzero value will do)
LDX #$00 ;Initialize storage offset

LOOP JSR $C009 ;Read character from the screen
CMP #$0D ;Is it RETURN?
BEQ EXIT ;Exit if so
STA $0C00,X ;Stash character from screen
INX increment the offset
BNE LOOP ;Loop for another character

EXIT RTS

49919 $C2FF QUOTECK
Handles quote mode flag.
Checks whether character value in the accumulator is 34/$22,
the quote (") character. If so, bit 1 of the quote mode flag
(244/$F4) is toggled, turning quote mode on if it was previ-
ously off or off if it was previously on. The character value
will still be in the accumulator upon exit.

49932 $C30C PRNTEXIT
Provides common exit for screen BSOUT subroutines.
Stores the current character code (239/SEF) as the previous
character code (240/SFO). The subroutine to move the cursor
on the 80-column screen [$CD57] is called to actually move
the cursor if that display is active. This is necessary because
the 80-column screen's cursor is controlled by hardware (not
by software, like the 40-column screen's cursor), so it doesn't
automatically move when its corresponding row and column
pointers are updated. The pending insert count (245/$F5) is
checked. If it's nonzero, the quote mode flag is cleared. As a
result, you won't go into quote mode if you type the quote
character for a pending insert unless the quote is typed for the
last insert. Before exiting, the routine reloads the accumulator
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and X and Y registers with the values stored on the stack
when the BSOUT routine was entered [$C72D], so all register
values are preserved during BSOUT. The status register carry
bit will be clear upon exit.

Because the address of this routine is pushed onto the
stack at the start of the screen BSOUT routine [$C72D], all
screen printing subroutines will return to the calling routine
via this routine.

49952 $C320 SETCHAR
Handles character printing for screen BSOUT.
Handles all character display functions for the screen BSOUT
routine [$C72D], including quote, reverse, and autoinsert
modes. The routine has several entry points, depending on the
desired effect. For any of these entry points, the code to be
printed should be in the accumulator upon entry:

49952/$C320: Entry point for printing character codes
160-254/$A0-$FE. Prior to entry, bit 7 of the code will have
been cleared to %0. This step forces bit 6 to %1 , so character
codes 160-191/$A0-$BF become screen codes 96-127/
$60-$7F, and character codes 192-254/$C0-$FE become
screen codes 64-126/$40-$7F.

49954/$C322: Entry point for printing character codes
3 2-12 7/$ 20-$ 7F. Prior to entry, the character code will have
been converted to a screen code by the screen BSOUT control
routine [$C72D]. This step checks whether reverse mode is ac-
tive (indicated by a nonzero value in 243/$F3). If that mode is
not active, the next step is skipped.

49958/$C326: Entry point for printing characters in reverse
video; also used for character codes less than 32 and for codes
128-159 when those characters are printed in quote mode or
at a pending insert. For codes 1-31/$O1-$1F, the character
code is used unchanged, so those characters are represented
by the reverse images of screen codes 1-31/$O1-$1F. For char-
acters 128-159/$80-$9F, bit 7 will have been cleared to %0,
and bit 6 set to %1 prior to entry, so those characters are rep-
resented by the reverse images of screen codes 64-95/$40-$5F.

If autoinsert mode is active (indicated by bit 7 of 246/$F6
set to %1), a space is inserted at the current cursor position
before the character is printed. (The count of inserts pending is
also cleared; you can't have inserts pending in autoinsert
mode.) The subroutine at 52271/$CC2F is used to place the
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character on the screen at the current cursor position using the
current attribute value from 241/$F1; then the routine falls
through into the following one to move the cursor to the next
position.

4 9 9 8 2 $C33E UDCRSR
Updates the cursor position.
Compares the current cursor column (in the Y register upon
entry) against the right window margin (231/$E7). If the
cursor is at the right edge of the window, the routine checks
whether the cursor is also already on the bottom line of the
window. If so, the scrolling enable flag (248/SF8) is checked.
The cursor will not be moved if scrolling is not allowed when
the cursor reaches the lower right corner of the window. Oth-
erwise, the cursor is moved right one position. If the cursor
moves beyond the right window margin, a new blank line is
inserted and linked to the one above, and the cursor is moved
to the left margin of this new line. However, linking can be
disallowed by setting bit 6 of 248/$F8 to %1 . In this case, the
cursor will simply wrap around to the left margin without in-
serting a new line. This link-disable feature is not directly sup-
ported on the 128—there's no character or ESC sequence to
disable linking—so you must set or clear the bit directly. See
the entry for location 248/$F8 for details.

50019 8C363 NEXTLIN
Moves the cursor down one line.
Moves the cursor down to the next row in the window. If the
cursor is already on the bottom row of the window, the scroll-
ing enable flag (248/$F8) is tested. If scrolling is allowed, the
window contents are scrolled upward by one row, and the
bottom row (where the cursor now resides) is cleared. If scroll-
ing is disabled, the cursor is wrapped to the top row of the
window.

50044 $C37C OPENLIN
Inserts a new line linked to the one above.
Copies all lines in the window below the one on which the
cursor currently resides down one row (the bottom line will be
lost). The line on which the cursor resides is then cleared and
linked to the one above.

50086 $C3A6 SCROLL
Scrolls the window up one line.
Copies all lines in the window up one row. The top line will
be lost and the bottom line will be cleared. If the new top line
was originally linked to the line scrolled off the window, it
will be unlinked.

50140 $C3DC SCRLUP
Copies lines up one row and clears bottom line.
Copies all lines in the window below the one specified in the
X register up one row. The specified line will be overwritten,
and the bottom line will be cleared and unlinked. The line
link bits for each line are also copied to the new positions so
that the links will be maintained intact.

This routine also checks column 7 of the keyboard matrix
(see the entry at 50525/$C55D) to test the Commodore key. If
that key is found to be pressed, a delay loop is executed. Since
this is the subroutine used to open new lines at the bottom of
the window while printing, this feature allows the Commo-
dore key to slow screen scrolling. There is no simple way to
defeat this feature.

$C40D MOVLINE50189
Copies a line.
Copies characters from the line specified in the X register to
the one pointed to in 224-225/$E0-$El, and copies the attri-
butes for the line to the attribute line pointed to in 226-227/
$E2-$E3. The copying begins at the column specified in the Y
register and extends to the left window margin. The copy is
performed on whichever display, 40- or 80-column, is cur-
rently active. The X register will still contain the source line
number upon exit.

50341
Clears a line.

$C4A5 CLRLINE

Writes a space character with the current attribute (from
241/SF1) at every character position between the left and right
window margins of the line specified in the X register. The op-
eration is performed on whichever display, 40- or 80-column,
is currently active. The link bit for the line is also cleared, un-
linking the line. Upon exit, the X register will still contain the
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line number and the Y register will hold the column number
of the right window margin.

50492 $C53C
Fills or copies a block of 8563 RAM.
Uses the hardware fill/copy feature of the 8563 chip to fill or
copy a block of the 8563's private 16K of RAM. The block
starts at the address currently in 8563 registers 18-19/$12-$13
and ends at the address in 2620-262 l/$0A3C-$0A3D. The op-
eration is determined by the state of bit 7 of 8563 register
24/$18. If the bit is %0, the block is filled with the value in
8563 register 31/$1F. If the bit is % 1 , the contents of locations
starting at the address in registers 32-33/$20-$21 are copied
to the block.

50525 $C55D SCNKEY
Scans keyboard matrix for keypress.
(This routine has a screen editor jump table entry at 49170/SC012
and a Kernal jump table entry at 65439/$FF9F.)
Begins by checking bit 6 of location l/$01 to determine the
position of the CAPS LOCK key. If that key is down, the shift
key flag (211/$D3) will be set to 16/$10 (bit 4 set to %1);
otherwise, it will be cleared to zero. Next, the keyscan code
(212/$D4) is initialized to 88/$58, the value for no key
pressed. The keyboard matrix is checked to see whether any
keys are pressed. If not, the routine jumps to 50839/$C697 in
the next routine to set 88 as the matrix code value. If a key
has been pressed, the routine loads the keyboard decode table
pointer (204-205/$CC-$CD) from 830-831/$033E-$033F,
which holds the address of the default table, and begins the
process of determining which key is being pressed.

The keyboard is arranged electrically as a matrix of 11
columns and eight rows (Figure 7-1). To scan for a keypress,
the CIA or VIC port bit for one of the 11 columns is set to %0,
while the bits for all other columns are held at % 1 . While the
column bit is %0, the CIA port for the eight rows (56321/
$DC01) is read, and, one by one, the bits corresponding to the
rows are tested. The count of scanned keys is incremented
after each row bit is tested, so each key in the matrix has a
keyscan code corresponding to the number of keys scanned
when that key's position is tested. The codes range from 0, for
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the key at row 0 of column 0 (INST/DEL), to 87, for the key
at row 7 of column 10 (NO SCROLL).

Several keys on the 128 keyboard are not included in the
keyscan matrix. The CAPS LOCK key (read at bit 6 of location
l/$01) is tested at the start of this routine. The 40/80 DIS-
PLAY key (read at bit 7 of location 54533/$D505) is tested
during the screen initialization routine [$C07B]. The SHIFT
LOCK key is a switch that has the effect of holding down the
left SHIFT key. The RESTORE key isn't read at all; it's con-
nected to circuitry which generates an NMI interrupt signal to
the processor when the key is pressed (see the NMI handling
routine [$FA40]).

If the key at the intersection of the row and the column
being tested is pressed, the row bit will be %0; otherwise, it
will be % 1 . If a key is found to be pressed, the character code
for the key is read from the default decode table. Unless the
character code read from the table is 8, 4, 2, or 1, the keyscan
code (not the character code) for the key is stored in 212/$D4,
and the routine goes on to scan the next position. However, if
the character code has one of these values, that value is ORed
with the shift key flag to set a bit in the flag value.

Note that it's the keyboard decode table, not the physical
keyboard layout, that determines which keys are treated as
shift keys. In the default ROM keyboard decode table at
64128/$FA80, the ALT key (keyscan code 80) decodes as
character code 8, the CONTROL key position (keyscan code
58) holds character code 4, the Commodore logo key position
(keyscan code 61) holds character code 2, and the left and
right SHIFT key positions (keyscan codes 15 and 52, respec-
tively) both hold character code 1. Thus, pressing either SHIFT
key normally sets bit 0 of 211/$D3 to % 1 , and the Commo-
dore, CONTROL, and ALT keys set bits 1, 2, and 3, respec-
tively. (You can change this by modifying the default
keyboard table. See the entry at 830-831/$033E-$033F for
more information.) Since the matrix code isn't stored when
these shift keys are processed, 212/$D4 will never contain 15,
52, 58, 61, or 80 while the standard decode table is being
used. So the SHIFT, ALT, Commodore, and CONTROL keys
can't normally be detected by checking 212/&D4. Their states
must be determined from 211/$D3.
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All eight rows in each of the 11 columns are scanned,
whether keypresses are detected or not. Since there's only one
location (212/$D4) for storing the matrix code, only the key
with the highest code value will be recorded if more than one
key is detected during the scan. However, because of the way
the keyboard is wired, a false value may be returned if three
or more keys are held down simultaneously. For example, if
you hold down the J, K, and L keys simultaneously, the matrix
code returned will be 45, the code for the colon (:) key. The
special shift keys are an exception: 211/$D3 will show the
state of all five (SHIFT, Commodore, CONTROL, ALT, and
CAPS LOCK) on every keyscan.

Once the keyscan is complete, the matrix code of the
keypress is loaded into the accumulator. At this point, the rou-
tine takes an indirect jump through the KEYVEC indirect vec-
tor (826-827/$033A-$033B). Normally, this vector points to
5O657/$C5E1—the address immediately following the indirect
jump. However, if you wish to manipulate the keyscan in any
way, you can redirect the vector to your own routine in RAM.
See the KEYVEC entry for details.

Next, the routine checks whether the matrix code was
87/$57, the code for the NO SCROLL key. If so, the routine
checks bit 6 of the flag at 247/$F7 to determine if pausing is
allowed. If the bit is set, printing cannot be paused. This
enable/disable feature isn't directly supported—there's no
character or ESC sequence to set or clear bit 6 of the flag loca-
tion—so yOU must change the location directly (see the entry
for location 247/$F7 for details). If pausing is allowed, the
pause flag (2593/S0A21) is toggled; so pressing NO SCROLL
will alternately halt and resume printing to the screen.

NO SCROLL is a misnomer. The key doesn't stop scroll-
ing; it halts printing. PAUSE would have been a better name
for this key. The pause feature is implemented in the screen
BSOUT routine [$C72D].

The shift key flag (211/$D3) is tested to determine
whether the Commodore and SHIFT keys are both pressed. If
so, bit 7 of the case switching flag (247/$F7) is tested to deter-
mine whether this combination is allowed to switch character
sets If so, the character set in use is switched, either by tog-
gling bit 7 of the attribute flag (241/$F1) if the 80-column dis~
play is active, or by toggling bit 1 of the character set base
address (2604/$0A2C) if the 40-column display is active.
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If the shift key flag indicates that the CONTROL key is
pressed, the routine checks whether the current matrix code is
13/$0D, indicating that CONTROL and the S key have been
pressed simultaneously. The CONTROL-S combination pro-
vides a printing pause similar to NO SCROLL. Bit 6 of the flag
at 247/$F7 is checked before the pause flag value is set so
pausing with CONTROL-S can be disabled as well. If pausing
is allowed, the pause flag (2593/$0A21) is loaded with the S
key's matrix code value, 13/$0D.

A keyboard decoding table is then selected from the table
of addresses at 830-841/$033E-$0349, based on the value in
the shift key flag (211/$D3). The table address is loaded into
the pointer at 204-205/$CC-$CD before falling through into
the next routine. Since only one table can be used, the follow-
ing order of precedence applies if more than one shift key has
been pressed: CONTROL has the highest priority; when it is
pressed, the CONTROL decoding table is selected regardless
of which other shift keys are pressed. For example, ALT-
SHIFT-CONTROL-W is the same as CONTROL-W. CAPS
LOCK and ALT are effective only if pressed when no other
shift keys are pressed. For example, ALT-SHIFT-S is the same
as SHIFT-S. If ALT is pressed while CAPS LOCK is down,
both are ignored and the unshifted table is used. Likewise, if
the SHIFT and Commodore keys are pressed simultaneously
while case switching is disabled, both are ignored and the
unshifted table is selected.

50769 SC651 REPEAT
Decodes key matrix value into character value and handles key
repeating.
(This routine has a jump table entry at 49173/$C015.)
Uses the keyscan matrix code in 212/$D4 as an offset into the
keyboard decode table pointed to by 204-205/$CC-$CD to
find the character code for the current keypress. The current
matrix code is then tested against the previous matrix code. If
they are not the same, the countdown before repeating begins
(2596/$0A24) is reset to 16/$10 and the following test for re-
peating keys is skipped.

If the current code is the same as the previous one, it
means that the key is being held down. In this case, the repeat
enable flag (2594/$0A22) is tested to see whether any key re-
peats are allowed. If bit 7 of the flag is set to % 1 , all keys re-
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peat (the default setting for the 128). If bit 6 is set to % 1 , no
keys repeat, so the routine exits. If bits 6 and 7 of the repeat
enable flag are both %0, only the cursor, space, and INST/DEL
keys repeat, so the routine exits if the character is not one of
these.

To keep repeats from happening too fast, a countdown lo-
cation (2596/$0A24) is decremented once per call to this rou-
tine. The countdown, initialized to 16, must reach zero before
repeating begins, so a key must be held down long enough for
16 IRQ keyscans to pass before repeat processing begins. After
the initial delay expires, a second countdown (2595/$0A23),
initialized to 4 between each repeat, must also expire before
the keypress is counted a second time. Thus, the delay before
repeating begins is (16 + 4)/60 = 1/3 second, and the delay
between subsequent repeats is 4/60 = 1/15 second. These
values are fixed in the ROM routine and can't be changed as
long as the standard keyscan is used. For repeating keypresses,
the character code is added to the keyboard buffer only if the
buffer is currently empty—a feature that prevents repeats from
filling up the buffer.

At 50839/$C697, a special countdown flag (2597/$0A25)
used to debounce NO SCROLL, CONTROL-S, and SH1FT-
Commodore keypresses is decremented. Then the current ma-
trix code (212/$D4) is stored as the previous matrix code
(213/$D5). If the value read from the keyboard decoding table
is 255/$FF, the routine exits at this point, since that value sig-
nals that there was not a valid character code for the key.
Otherwise, the pause flag (2593/$0A21) is cleared to zero, so
printing will resume upon completion of this IRQ if it was pre-
viously halted.

The character code is then loaded into the accumulator,
and the value in the shift key flag (211/SD3) is loaded into
the X register. Then the routine takes an indirect jump through
the KEYCHK indirect vector (828-829/$033C-$033D). Nor-
mally, this vector points to 50861/$C6AD, the address imme-
diately following the indirect jump. However, if you wish to
manipulate the character code in any way, you can redirect
the vector to your own routine in RAM. See the KEYCHK en-
try for details.

Next, the routine checks whether one of the programma-
ble keys has been pressed by comparing the character code in
the accumulator values from the table at 50909/$C6DD. If a
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match is found, the count of pending programmable key string
characters (2O9/$D1) is loaded with the length of the cor-
responding definition string from the table at 4096-4105/
$1000-$ 1009, and the offset into the definition area at
4106/$ 100A for the string is calculated and stored in
210/$D2. (A simple way to defeat this feature and make the
function keys simply generate character codes as they do in
the Commodore 64 is to change the KEYCHJC vector to point
to 50871/$C6B7 so that this portion of the routine is skipped,)

If the character isn't one of the programmable keys, the
number of characters currently in the keyboard buffer (208/
$D0) is compared against the maximum number the buffer can
hold (2592/$0A20). If the buffer is full, the current keypress is
ignored. Otherwise, the character code is stored in the next
available position in the buffer at 842-851/$034A-$0353.
From there, it can be retrieved by the Kernal GETIN and BA-
SIN routines.

Before exiting, the value 127/$7F is stored in the CIA I/O
port register for keyboard columns. This value (%01111111)
sets the line for column 7 of the matrix low, while all other
lines are high, so that the keys in that column can be detected
by reading the row register (56321/$DC01). This feature is
provided to allow testing for the RUN/STOP and Commodore
keys, but other keys on that row can also be detected outside
the normal keyscan. See the routine at 63037/$F63D and the
entry for location 145/$91 for more information.

50909 $C6DD PFKCHRS
Table of programmable key character values.
This table is used to identify programmable keys and to deter-
mine the offset into the definition length table at 4096/$1000
for the length of the corresponding string.
Offset Character Code Key

0 133/$85 Fl
1 137/$89 F2
2 134/$86 F3
3 138/S8A F4
4 135/$87 F5
5 139/$8B F6
6 136/$88 F7
7 140/$8C F8

131/$83 SHIFT-KUN/STOP
9 132/$84 HELP
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50919 6C6E7 CRSR40
Handles cursor blinking for 40-column screen.
Begins by checking the active screen flag (215/$D7), exiting
immediately if the 80-column display is active. The routine
also exits if the cursor blink switch (2599/$0A27) holds a non-
zero value. Then, the cursor blink countdown value (2600/
$0A28) is decremented. The countdown is necessary because
the cursor can't be blinked during every interrupt—that would
result in blinking too fast to see. If the cursor countdown
doesn't reach zero, the routine exits. If the count does reach
zero, the cursor flag (2598/$0A26) is tested. If that flag indi-
cates that the solid cursor is selected and the cursor is re-
versed, the routine exits (the solid cursor just stays reversed).
Otherwise, it's time to switch the cursor's phase.

The first step in switching phases is to reset the count-
down to its starting value—20/$14. That value will result in
the cursor changing phase every 20/60 second. Because it
takes two phase changes (on-to-off and off-to-on) to blink the
cursor, the cursor blinks every 40/60, or 2/3, second. Since
this value is part of this ROM routine, it's not possible to
change the cursor blink rate while using the standard screen
IRQ routine.

If the cursor is currently in its reversed phase, the position
is restored to its original color and screen code. If the cursor is
in its normal phase, the screen code and color for the position
are stashed (in 2601/$0A29 and 2602/$0A2A, respectively).
Then the high bit of the screen code is toggled, and the re-
versed screen code is written back to the current cursor posi-
tion using the current cursor color (in 241/$F1). Finally, the
cursor phase bit (bit 6) in the cursor flag (2598/$0A26) is
toggled.

This routine is part of the normal IRQ sequence. There is
no corresponding routine to blink the cursor on the 80-column
screen because the 8563 80-column chip handles that opera-
tion automatically.

50989 8C72D PRINT
Handles BSOUT to the screen.
(This routine has a jump table entry at 49164/$C00C.)
Begins by storing the current character code (in the accumu-
lator upon entry) in 239/$EF. The current accumulator and X
and Y register values are then stashed on the stack for restora-
tion upon exit.



50989 8C72D 3C78C 51084

The next portion of the routine implements the pause
printing feature. If the pause flag (2593/$0A21) contains a
nonzero value, the routine immediately loops to check the flag
again. It remains in the flag testing loop until the flag value is
reset to zero. If you're wondering how the routine ever breaks
out of this loop, remember that normal processing is sus-
pended during interrupts. The flag value is set during the IRQ-
driven SCNKEY routine. This means that if you ever call
BSOUT while interrupts are disabled, you must be sure that
the pause flag contains a zero. Otherwise, the flag value will
never change, and the routine will be stuck in the loop until
you reset the computer. It also means that, as long as the nor-
mal IRQ is enabled, NO SCROLL and CONTROL-S can be
used to pause screen printing in any program that calls
BSOUT—even in your own machine language programs. Re-
member, however, that since the pause loop is implemented
only in this routine, NO SCROLL and CONTROL-S can halt
printing to the screen only.

Next, the input source flag (214/$D6) is reset to zero,
making the keyboard the input source. The value 49931/
$C30B is pushed onto the stack. This will cause the RTS at the
end of the printing subroutine—or at the end of the special
handling subroutine in the case of screen and color control
characters—to jump to 49932/$C30C, the common exit rou-
tine for all screen BSOUT subroutines.

If the code to be printed is 13/$0D (RETURN) or 141/
$8D (SHIFT-RETURN), a branch is taken to 51055/$C76F to
handle these special cases. Otherwise, 240/$F0 is checked to
see whether the last character printed is the ESC (escape)
character, 27/$lB. If so, the code is the second character of an
ESC sequence, so a jump is taken to the ESC sequence han-
dler at 51646/$C9BE. Character codes greater than 127/$7F
are sent to a special handling routine at 51202/SC802, and
codes less than 32/$20 are sent to 51126/$C7B6.

Remaining characters, those with codes in the range
32-127/$20-$7F, are converted to screen codes as follows: If
the code is less than 96/$60, bit 6 is cleared. Character codes
32-63/$20-$3F are unchanged, becoming screen codes 32-63/
$20-$3F, while character codes 64-95/$40-$5F become screen
codes 0-31/$00-$1R If the code is 96 or greater, only bit 5 is
cleared, so character codes 96-127/$60-$7F become screen
codes 64-95/$40-$5F. Next, the subroutine at 49919/$C2FF
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is called to handle the quote (") character. Then the routine
jumps to 49954/$C322 to display the calculated screen code at
the current cursor position using the current attribute (241/$F1).

Remember that the address pushed onto the stack causes
the final printing or character handling subroutine called by
this routine to return to 49932/$C30C. That routine restores
the accumulator and X and Y registers from the stack, so they
contain the same values upon exit that they did upon entry.

51055 8C76F RTRN
Handles RETURN and SHIFT-RETURN characters, CHR$<13> and
CHR$(141).
Finds the position of the last nonspace character in the logical
line; then clears the link bit for the physical line just below
that position, making the line following the current logical line
the start of a new logical line. The cursor position is set to the
left margin of that line, and the screen line pointers are up-
dated to reflect the new cursor position. The routine then falls
through into the following one.

51069 $C77D MODESOFF
Cancels quote and reverse modes and clears pending inserts
(ESC-O and ESC-ESC).
Bits 4 and 5 of the current attribute value (241/$F1) are cleared,
canceling flashing or underlined modes for subsequent charac-
ters on the 80-column display. The pending insert (245/$F5),
reverse mode (243/$F3), and quote mode (244/$F4) flags are
all reset to zero, canceling any pending inserts and turning off
reverse and quote modes.

5 1 0 8 4 $C78C
Tables of screen control codes and dispatch addresses.
Locations 51084-51097/$C78C-$C799 comprise a table of all
the character codes less than 32 which have a special function
(except for RETURN and ESC, codes 13 and 27, which are de-
tected in the main screen BSOUT routine [$C72D]). The sub-
routine to handle codes less than 32 [$C7B6] compares the
current character against these values. If a match is found, the
corresponding dispatch address from the table at 51098-51125/
$C79A-$C7B5 is placed on the stack to be called by the next
RTS. Because of the way the RTS opcode behaves, adding 1 to
the address placed on the stack, the address table values are 1
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51126 SC7B6 $C802 51202

Offset
0
1
2
3
4
5
6
7
8
9
10
11
12
13

Character
Code
2/$02
7/$07
9/$09
10/$0A
11/$OB
12/$0C
14/$0E
15/$0F
17/$11
18/$12
I9/$13
20/$14
24/$18
29/$lD

Handling
Routine
51399/$C8C7
51598/$C9BE
51535/$C94F
51633/$C9B1
51366/$C8A6
51372/$C8AC
51328/$C880
51413/IC8D5
51290/$C85A
51394/$C8C2
51379/$C8B3
51483/$C91B
51553/$C961
51284/$C854

less than the actual address of the target routine. The table
shows the characters handled and the actual addresses of the
handling routines:

Handling
Description
Turns on underline mode
Generates bell tone
Moves cursor to next tab stop
Performs linefeed
Disables case switching
Enables case switching
Switches to lowercase set
Turns on flashing mode
Moves cursor down one line
Turns on reverse mode
Moves cursor to home position
Deletes a character
Sets or clears a tab stop
Moves cursor right one column

51126 6C7B6
Interprets character codes less than 32.
Jumps indirectly through the CTLVEC vector (820-821/
$0334-$0335), which is initialized on system reset to point to
51129/10769, the location immediately following the indirect
jump. However, the vector can be redirected to your own rou-
tine in RAM, allowing you to modify the effects of printing
any of the characters with codes less than 32. See the entry at
CTLVEC for details.

If the value in the accumulator is the ESC character,
27/$lB, the routine exits without performing any other check-
ing. Otherwise, the routine checks whether an insert is pend-
ing. If so, the routine branches to handle the character just as
it would if quote mode were active. If no inserts are pending,
the code is compared with the delete character value 20/$14,
If the code matches, the routine branches past the following
test for quote mode. Because delete character handling is sand-
wiched between the test for pending inserts and the test for
quote mode, it's possible to type deferred deletes when inserts
are pending, but not during quote mode. Delete is the only
character singled out for this treatment: All other control char-
acters (except RETURN and ESC) are deferred when printed
while quote mode is active.
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If quote mode is active, the routine clears the character
storage location (239/$EF) and branches to 49958/SC326 in
the character printing routine to display the character code
(0-31) as a screen code in reverse mode. If quote mode is not
active, the accumulator contents are compared against the 14
control character codes in the table at 51084/$C78C. If a
match is found, the dispatch routine [$C7F6] is used to execute
the corresponding subroutine. Otherwise, the routine falls
through into the next routine to check whether the character is
a color change code.

51162 $C7DA COLORSET
Handles color change characters.
Compares the character code in the accumulator with the table
of color character codes at 52812/$CE4C. If no match is
found, the routine exits. If the accumulator value matches a ta-
ble entry, the X register will contain the table offset for the
match, a value in the range 0-15. For the 40-column display,
this value is placed in the current attribute flag value
(241/SF1). For the 80-column display, the offset value is used
as an index into the table at 52828/$CE5C to retrieve the cor-
responding 8563 color code. That value is then placed in the
lower four bits of the attribute flag.

51190 8C7F6
Calls control code execution routines.
Uses the control code index, in the X register upon entry, as
an offset into the dispatch table at 51098/$C79A. The cor-
responding subroutine address is retrieved from the table and
pushed onto the stack, so the RTS at the end of this routine
will transfer control to the subroutine.

51202 SC802
Interprets character codes greater than 127.
Jumps indirectly through the SHFVEC vector (822-823/
$0336-$0337), which is initialized on system reset to point to
51205/$C805, the location immediately following the indirect
jump. However, the vector can be redirected to your own rou-
tine in RAM, allowing you to modify the effects of printing
any of the characters with codes greater than 127. See the en-
try at SHFVEC for details.

Next, the high bit of the character code (in the accumu-
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lator upon entry) is masked off, and the resulting value is
compared against 32. If the value is less, indicating that the
original character code was in the range 128-159, a branch is
taken to the following routine to handle those characters. Oth-
erwise, the routine tests whether the result was 127, indicating
that the original code was 255, the pi (rc) character. If not, the
routine jumps to 49952/$C320 in the character printing rou-
tine to display the character corresponding to the specified
code. However, if the code was pi, it's changed to 94/$5E, the
screen code for the pi character, before jumping to the printing
routine.

51220 $C814
Handles character codes 128-159.
Checks whether quote mode is in effect and, if so, sets bit 6 of
the character value in the accumulator (converting the ad-
justed character code value 0-31 into a screen code value in
the range 64-95), then jumps to 49958/$C326 in the character
printing routine to display the control code as a reverse character.

If quote mode is not in effect, the code tests against the
value 20/$14 to determine if it was originally the insert char-
acter— CHR$(148). If so, the routine jumps to 51427/$C8E3 to
handle the insert. Otherwise, the count of pending inserts is
checked. If inserts are pending, the character is treated as if
quote mode were in effect—it's converted to a screen code and
printed in reverse video. Performing this test after checking for
the insert character allows multiple insertions to be made.

If no insert is pending, the accumulator value is compared
against a series of character values, branching or jumping to
the appropriate handling routine if a match is found. The table
shows the address of the routine to which control is trans-
ferred if a match is found. (The table shows the original char-
acter code value before the high bit is masked off; the value
actually tested for in this routine will be 128 less):
Character Handling
Code Routine Description
145/$9l 51303/$C867 Moves cursor up one line
157/$9D 51317/$C875 Moves cursor left one position
142/$8E 51346/$C892 Switches to uppercase/graphics set
146/$92 51391/$C8BF Turns off reverse mode
130/$82 51406/$C8CE Turns off underlining
143/$8F 51420/$C8DC Turns off flashing characters
147/$93 49474/$C142 Clears the window
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If the code is not among this group, bit 7 of the accumulator is
reset to %1 to restore the character to its original value. Then
the routine branches to 51162/SC7DA to test whether this is a
color change character.

51284 $C854
Handles cursor right character, CHR$(29).
Calls the subroutine to move the cursor one position to the
right [$CBED], then tests whether the cursor is wrapped to the
left margin of a new line. If so, a branch is taken to the rou-
tine which determines whether the cursor has moved down
onto a new logical line.

5 1 2 9 0 $C85A
Handles cursor down character, CHR$(17).
Calls the subroutine to move the cursor down one row
[$C363]. Upon return, the routine falls through into the next
routine to see whether the cursor has moved onto a new logi-
cal line.

51293 $C85D
Checks whether cursor moved onto a new logical line.
Checks whether the link bit for the current physical line is set
to % 1 , indicating that the cursor is still on the same logical
line. If not, bit 7 of 232/SE8 is set to %1 to indicate that the
input begins on the first line in a logical chain,

51303 $C867
Handles cursor up character, CHR$(145).
Exits without moving if the cursor is already on the top line of
the window. Otherwise, the previous routine is used to deter-
mine if the cursor has moved onto a new logical line. Then
the row (235/$EB) is decremented, and screen line pointers
are updated to reflect the change.

51317 $C875
Handles cursor left character, CHR$(157).
Calls the subroutine to move the cursor one position to the
left [$CC00]. Upon return, the routine exits with the status
register carry bit set if the cursor is already at the upper left
corner of the window (the cursor will not be moved in this
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case). Otherwise, the routine exits immediately with carry
clear, unless the move wrapped the cursor to the right margin
of the line above. In that case, a test of whether the cursor
moved onto a new logical line must be performed, and the
cursor row value (235/$EB) and screen line pointers must be
updated.

51328 $C880
Handles switch-to-lowercase character, CHR$(14).
Sets bit 1 of the character base address shadow register (2604/
$0A2C) to %1 if the 40-column screen is active. This value
will be copied into the VIC-II chip register at 53272/$D018
during the next IRQ interrupt (see the screen IRQ routine
[$C194]). If the bit has previously been cleared, this has the ef-
fect of adding 2048/$0800 to the character base address.
When the default register value is being used (standard ROM-
based characters), this selects the lowercase/uppercase charac-
ter set at 55296/$D800. Everything currently displayed on the
40-column text screen will be affected. If the 80-column screen
is active, the routine instead sets bit 7 of the current attribute
Hag <241/$F1) to % 1 . This bit, which has no effect on 40-
column printing, determines which character set will be used
for any characters subsequently printed on the 80-column dis-
play using this attribute value. Characters already on the
screen are not affected, so it's possible to mix character sets on
the 80-column display.

51346 $C892
Handles switch-to-uppercase character, CHR$(142).
Clears bit 1 of the character base address shadow register
(2604/$0A2C) to %0 if the 40-column screen is active. This
value will be copied into the VIC-II register at 53272/$D018
during the next IRQ interrupt (see the screen IRQ routine
[$C194]). If the bit has been previously set to %1 , this has the
effect of subtracting 2048/$0800 from the character base ad-
dress. When the default register value is being used (standard
ROM-based characters), this selects the uppercase/graphics
character set at 53248/SD000. Everything currently displayed
on the 40-column text screen will be affected. If the 80-column
display is active, the routine instead clears bit 7 of the attribute

$C8B3 51379

flag (241/$F1) to %0. This bit, which has no effect on 40-
column printing, determines which character set will be used
for any characters subsequently printed on the 80-column
screen using this attribute value. Characters already on the
screen are not affected, so it's possible to mix character sets on
the 80-column display.

51366 $C8A6
Handles case switching disable character, CHR$(11).
Sets bit 7 of the case switching flag (247/$F7) to %1 , This flag
is checked during the keyscan routine [$C55D] to determine
whether the character set should be changed when the SHIFT
and Commodore keys are held down simultaneously. If bit 7
of the flag is % 1 , case switching is not allowed. Note that this
disables case switching only via the SHIFT-Commodore key
combination. There is no provision for preventing case switch-
ing by printing characters 14 or 142.

51372 $C8AC
Handles case switching enable character, CHR$(12).
Clears bit 7 of the case switching flag (247/$F7) to %0. This
allows case switching via the SHIFT-Commodore key
combination.

51379 $C8B3
Handles cursor home character, CHR$(19).
Checks the previous character code value (stored in 240/$F0).
If that character is also 19/$13, the window is reset to full
screen size before moving the cursor home. The routine at
49488/$C150 is called to set the cursor to the home position.

The special effect of HOME-HOME, resetting the window
to full screen size, is a feature you must keep in mind if your
programs use resized screen windows. If a program uses the
BSOUT routine to display characters in the window, you
should avoid printing the {HOME} character twice in a row. If
the program accepts user input and displays it on the screen,
you must guard against the chance of having your window
boundaries reset. See the entry for the CTLVEC indirect vector
(820-821/$334-$335) for information on disabling this
feature.
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51391 $C8BF
Handles reverse off character, CHR$(146).
Loads the accumulator with 0/$00, then uses a BIT opcode to
fall through into the following routine and store the value in
the reverse video flag (243/$F3).

51394 $C8C2
Handles reverse on character, CHR$(18),
Stores the value 128/$80 in the reverse video flag (243/$F3).
As long as this flag contains a nonzero value, all characters
printed to the screen using the BSOUT printing subroutine
[$C320] will be displayed in reverse video.

51399 $C8C7
Handles underline on character, CHR$(2).
Sets bit 5 of the current attribute (241/$F1) to % 1 . This affects
only the 80-column screen; the upper four bits of the value are
meaningless for the 40-column screen. Any characters subse-
quently printed on the 80-column screen with this attribute
will appear underlined.

51406 $C8CE
Handles underline off character, CHR$(130).
Clears bit 5 of the current attribute (241/$F1) to %0. This af-
fects subsequent printing only. Any underlined characters al-
ready on the screen will remain underlined.

51413 8C8D5
Handles flash on character, CHR$(15).
Sets bit 4 of the current attribute (241/$F1) to % 1 . This affects
only the 80-column screen; the upper four bits of the value are
meaningless for the 40-column screen. Any characters subse-
quently printed on the 80-column screen with this attribute
will flash at the same rate as cursor blinking.

51420 SC8DC
Handles flash off character, CHR$(143).
Clears bit 4 of the current attribute (241/$F1) to %0. This af-
fects subsequent printing only. Any flashing characters already
on the screen will continue to flash.
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51427 $C8E3
Handles insert character, CHR$(148).
Stashes the current cursor position. The routine then moves to
the last nonspace character in the logical line and copies all
characters between there and the original cursor position one
position to the right. It then places a space character at the
original cursor position. The pending insert flag is incre-
mented, then tested to see if it rolled over from 255/$FF to
0/$00. If so, the flag is reset to 255/$FF; so that value is the
maximum number of pending inserts allowed. The cursor is
restored to its original position upon exit.

When autoinsert mode is active, the screen printing sub-
routine [$C320] calls this routine before each character is
printed to insert a space in which to print the character.

51483 $C91B
Handles delete character, CHRSUO).
Moves the cursor one position to the left, then checks to see
whether the move wrapped the cursor to the right margin of a
new logical line. If so, the routine exits, since no characters
need be moved in this case. Next (at 51491/$C923), the rou-
tine enters a recursive loop with the routine at 51517/$C93D
to copy all characters to the end of the logical line one posi-
tion to the left, overwriting the character to the left of the orig-
inal cursor position,

51506 $C932 RSTRPOS
Restores the cursor row and column positions.
Loads the cursor column position (236/SEC) from temporary
storage in 222/$DE and the current cursor row (235/$EB)
from 223/$DF, then jumps to the routine at 49500/$C15C to
set pointers to the new cursor position. The corresponding
routine to stash the cursor row and column values is at
52254/$CClE.

51517 $C93D DELCHAR
Deletes a character in a logical line.
Copies the character and attribute to the right of the current
cursor position into the current position, then moves the cursor
right and jumps back to the subroutine at 51491/$C923, which
calls this routine recursively until the end of the logical line is
reached.
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51535 $C94F
Handles tab character, CHR$(9).
Checks whether the tab stop bit for the position to the right of
the current cursor column is set to %1 , or whether the posi-
tion is beyond the right window margin. If neither, the routine
continues checking columns to the right until either a tab stop
is found or the right margin is reached. The cursor position is
then reset to the column where the tab stop is found, or to the
right margin if none is found. Thus, it's impossible to tab past
the right edge of the window.

51553 $C961
Handles clear/set tab stop character, CHR$(24).
Toggles the bit in the tab stop bitmap (852-861 /$0354-$035D)
corresponding to the current cursor position. If the bit is %0, it
will be set to %1 , setting a tab stop at the current position. If
the bit is % 1 , it will be cleared to %0, clearing the tab stop
previously set at the position.

51564 8C96C TESTTAB
Tests tab stop bit for current cursor position.
Calculates the byte offset and bit mask into the tab stop bit-
map (851-861/$0354-$035D) for the cursor column specified
in the Y register, then checks the corresponding bit position in
the bitmap. If the bit is set to %1 , indicating that a tab stop is
set at the specified cursor column, the status register Z bit will
be clear upon exit. If the bitmap bit is %0, the Z status bit will
be set. In either case, the Y register will still contain the speci-
fied column value upon exit.

5 1 5 8 4 $C980
Clears all tab stops (ESC Z).
Loads the accumulator with the value 0/$00, then uses a BIT
instruction to fall through into the next routine and write
the value to all ten bytes of the tab stop bitmap (852-861/
$0354-$035D). This eliminates any set bits in the bitmap, thus
clearing all tab stops.
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51587 $C983
Sets default tab stops (ESC Y).
Loads the accumulator with the value 128/$80, then uses a
loop to write the value to all ten bytes of the tab stop bitmap
(852-861/$0354-$035D). Since a bit set to %1 indicates a tab
stop, filling the bitmap with this value (%10000000) has the
effect of setting a tab stop every eighth character position.

51598 $C98E
Handles bell character, CHR$(7).
Checks the bell disable flag (249/$F9) and exits immediately if
bit 7 is set to % 1 . If the tone is enabled, SID chip registers are
set to produce a sawtooth waveform tone of approximately
750 hertz, using a moderately low volume setting (5). The du-
ration of the tone is controlled by judicious selection of the
ADSR envelope values. The sound is never turned off, but it
quickly decays to an inaudible level.

5 1 6 3 3 $C9B1
Handles linefeed character, CHR$(10).
Finds the position of the last character in the current logical
line and moves the cursor to the row below that character po-
sition at the same column it previously occupied. If the logical
line extends onto the last physical line in the window, a new
blank line will be scrolled onto the bottom of the window, and
the cursor will be moved onto the blank line (or, if scrolling is
disabled, the cursor will wrap to the top line of the window).
Remember that linefeed moves the cursor to the next logical
line, not the next physical line (that's what cursor down does).

51646 $C9BE ESCAPE
Handles ESC sequences.
Jumps indirectly through the ESCVEC vector (824-825/
$0338-$0339), which is initialized to point to the JESCAPE
jump table entry [$C01E]. This in turn returns control to
51649/$C9C1, the address immediately following the indirect
jump. Thus, the jump normally has no effect; however, the
vector can be redirected to point to your own routine in RAM,
allowing you to add your own ESC sequences or to modify
the action's existing sequences. See the entry at ESCVEC for
more information.
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Next, the routine checks whether the character code (in
the accumulator upon entry) is also ESC. If so, the current
character is shifted right one bit. This changes the character
from 27/$lB to 13/$0D, the RETURN character, so that dual
ESCs are not read repeatedly. The routine then jumps to the
routine to cancel quote mode. This is an undocumented fea-
ture of the ESC sequences: ESC ESC is a handy shortcut for
ESC O.

If the character is not ESC, bit 7 is masked off. This
means that shifted letters are treated the same as unshifted
ones. ESC SHIFT-A has the same effect as ESC A, for ex-
ample. (Remember, however, that only the alphabetic letter
keys have this relationship. ESC SHIFT-@ is not the same as
ESC @.)

Next, 64/$40 is subtracted from the character values. This
will translate the character codes for @ and A-Z into an index
in the range 0-26. If the result is outside this range, there is
no standard ESC sequence for the specified character, so the
routine exits without taking further action. If the character is
within the valid range, the address of the subroutine to per-
form the corresponding sequence is loaded from the table at
51678/$C9DE. It is pushed onto the stack so that the subrou-
tine will be called when the RTS opcode at the end of this
routine is executed.

51678 $C9DE ESCTBL
Table of ESC key dispatch addresses.
Each two-byte entry in this table consists of the address minus
1 of the subroutine to perform the corresponding ESC key se-
quence. The routine to handle ESC sequences [$C9BE] pushes
a table entry on the stack so that the RTS at the routine causes
a jump to the subroutine. Each entry is one less than the ac-
tual address because of the way RTS behaves: When RTS
pulls an address from the stack, the address value is incre-
mented before being placed in the 8502's program counter.
The actual execution addresses for each of the subroutines are
as follows:
ESC @ 51871/$CA9F
ESC A 51949/$CAED
ESC B 51734/$CA16
ESC C 51946/$CAEA
ESC D 51794/$CA52

Clears to end of screen
Enters autoinsert mode
Sets bottom right corner of window
Cancels autoinsert mode
Deletes an entire logical line

$CA1B

ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC

E
F
G
H
I
I
K
L
M
N
0
P
Q
R
S
T
U
V

w
X
Y

z

51979/$CB0B
52001/$CB21
52023/$CB37
52026/$CB3A
51773/$CA3D
52145/$CBB1
52050/$CB52
51938/ICAE2
51941/$CAE5
52040/$CB48
51069/$C77D
51851/$CA8B
51830/$CA76
52031/$CB3F
51954/$CAF2
51732/$CA14
51966/SCAFE
51900/$CABC
51914/$CACA
52524/$CD2C
51587/$C983
51584/$C980

51739

Sets nonblinking cursor mode
Sets blinking cursor mode
Enables bell tone for CHR$(7)
Disables bell tone for CHR$(7)
Inserts a blank screen line
Moves cursor to start of logical line
Moves cursor to end of logical line
Enables screen scrolling
Disables screen scrolling
Sets normal 80-column screen
Cancels quote mode
Erases to start of logical line
Erases to end of logical line
Reverses 80-column screen
Sets block cursor (80-column)
Sets top left corner of window
Sets underline cursor (80-column)
Scrolls screen up one line
Scrolls screen down one line
Switches active displays
Sets default tab stops
Clears all tab stops

51732 $CA14 SETTOP
Defines the upper left corner of the window (ESC T>.
Clears the carry bit, then uses a BIT opcode to fall through
into the following routine to load the current cursor position
and set the window boundary.

51734 $CA16 SETBTM
Defines the lower right corner of the window (ESC B).
Sets the carry bit, loads current cursor position, then falls
through into the following routine to set the window
boundary.

51739 $CA1B WINDOW
Sets window boundaries.
(This routine has a jump table entry at 49197/$C02D.)
Establishes a window boundary according to the values in the
accumulator and X register and the setting of the status regis-
ter carry bit. If entered with carry clear, the accumulator value
defines the new top row of the window, and the X register
value defines the new left margin. If entered with carry set,
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the accumulator value defines the new bottom row, and the X
register value defines the new right margin. The newly de-
fined window is not cleared, but the routine does fall through
to the portion of the following routine that clears the line link
bitmap, so all lines in the window will initially be unlinked.

When using this routine, remember that row and column
numbering begins with zero (column 0 of row 0 is the upper
left corner of the screen). Thus, SYS 51739,9,19,0,0 would set
the upper left corner at the twentieth column over on the
tenth line down. The routine does not check the validity of
your entries; you are responsible for making sure that the
lower right corner values are at least equal to the upper left
corner values. If you set a lower right corner that is above or
to the left of the upper left corner, the screen display will be
garbled.

51748 $CA24 FULLW
Resets the window to full screen size.
Sets the bottom right corner of the window to the maximum
row and column settings, held in 237/$ED and 238/SEE, re-
spectively; then sets row 0, column 0 as the upper left corner.
Finally, the routine clears all bytes in the line link bitmap, ef-
fectively unlinking all screen lines.

51773 $CA3D
Inserts a blank line (ESC I).
Copies all lines in the window starring at the row on which
the cursor currently resides one row lower (the bottom row
will be lost); then clears the row where the cursor resides and
moves the cursor to the left margin of the cleared line. The
link bit for the line below the new one (the line that originally
occupied the new line's position) is tested. If the link bit is set
to % 1 , the new line has been inserted within an existing logi-
cal line, so the link bit for the new line will also be set to add
it to the logical chain. If the new line is not linked to a previ-
ous line, bit 7 of the input starting line value (232/$E8) is set
to %1 to indicate that the cursor is at the start of a logical line.

51794 $CA52
Deletes the current logical line (ESC D).
Determines which row is the first of the current logical line,
then scrolls all lines in the window beginning with the first
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t
row of the next logical line upward to overwrite the current
line (blank lines will be added at the bottom of the window).
The cursor is then moved to the left margin of the original top
row of the deleted logical line. Bit 7 of the input starting line
value (232/SE8) is set to % 1 , indicating that the cursor is at
the start of a logical line.

51830 $CA76
Erases to the end of the current logical line (ESC Q).
Clears to the end of the current row, then checks whether the
next row is linked to the current one. If so, that line is cleared
as well. This continues until the last row of the logical chain is
reached. The cursor is restored to its original position upon
exit.

51851 $CA8B
Erases to the start of the current logical line (ESC P).
Prints a space at the current cursor position, then checks
whether the cursor is at the left margin of the first row in a
logical chain. If not, the cursor is moved left and another
space is printed, repeating until the start of the logical line is
reached. The cursor is then restored to its original position.

51871 $CA9F
Erases to the end of the window (ESC @).
Clears to the right margin of the current row, then moves
down to the next row and clears the remainder of the window
one logical line at a time until the bottom of the window is
reached. The cursor is then restored to its original position.

51900 $CABC
Scrolls the display up one line (ESC V).
Copies all lines in the window up one row (the top row will
be lost) and clears the bottom row. The cursor is then restored
to its original position,

51914 $CACA
Scrolls the display down one line (ESC W).
Copies all lines in the window down one row (the bottom row
will be lost) and clears the top row. The cursor is then restored
to its original position.
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51938 $CAE2
Enables screen scrolling (ESC L).
Loads the accumulator with 0/$00, then uses a BIT opcode to
fall through into the following routine and store this value in
the scrolling enable flag (248/$F8).

51941 $CAE5
Disables screen scrolling (ESC M).
Stores the value 128/$80 in the scrolling enable flag (248/
$F8), setting bit 7 to % 1 . As long as bit 7 of that flag is set,
the printing routines will not scroll new lines onto the win-
dow, and the cursor will wrap at window margins.

5 1 9 4 6 $CAEA
Cancels autoinsert mode (ESC C).
Loads the accumulator with 0/S00, then uses a BIT opcode to
fall through into the following routine and store this value in
the autoinsert enable flag (246/SF6).

51949 SCAED
Enables autoinsert mode (ESC A),
Stores the value 128/$80 in the autoinsert enable flag (246/
$F6). As long as that flag contains a nonzero value, the print-
ing routines will insert a space before each character is
printed.

51954 $CAF2
Changes 80-column cursor to solid block (ESC S).
Checks the active screen flag, exiting immediately if the 80-
column display is not active. If it's active, the routine clears
bits 0-4 of the 80-column cursor flag (2603/$0A2B) to %00000,
then copies the flag value to the 8563 chip cursor register
(RIO). This causes the cursor to begin on raster line 0 of the
screen line, making the cursor block the same height as the
character patterns.

51966 $CAFE
Changes 80-column cursor to underline (ESC U).
Checks the active screen flag, exiting immediately if the 80-
column display is not active. If it's active, the routine sets bits
0-4 of the 80-column cursor flag (2603/$0A2B) to %00111,

$CB3F 52031

then copies the flag value to the 8563 chip cursor register
(RIO). This causes the cursor to begin on raster line 7 of the
screen line, the scan line below the character patterns.

5 1 9 7 9 $CB0B
Disables cursor blinking (ESC E).
Begins by checking which display is currently active. If the 80-
column display is active, bits 5 and 6 of the 80-column cursor
flag (2603/$0A2B) are cleared to %0. Then the flag value is
copied to the 8563 chip cursor register (RIO). This halts the
blinking of the cursor on the 80-column screen. If the 40-
column display is active, bit 6 of the 40-column cursor flag
(2598/$0A26) is set to %1 to disable cursor blinking.

52001 $CB21
Enables cursor blinking (ESC F).
Begins by checking which display is currently active. If the 80-
column display is active, bits 5 and 6 of the 80-column cursor
flag (2603/$0A2B) are set to % 1 . Then the flag value is copied
to the 8563 chip cursor register (RIO). This causes the cursor
on the 80-column screen to blink. If the 40-column display is
active, bit 6 of the 40-column cursor flag (2598/$0A26) is
cleared to %0 to enable cursor blinking.

52023 $CB37
Enables tone for bell character (ESC G).
Loads the accumulator with 0/$00, then uses a BIT opcode to
fall through into the following routine and store this value in
the bell disable flag (249/$F9).

52026 8CB3A
Disables tone for bell character (ESC H).
Stores the value 128/$80 in the bell disable flag (249/$F9),
setting bit 7 to % 1 . As long as bit 7 of that flag is set to % 1 ,
no tone will be sounded when character code 7 is printed.

52031 $CB3F
Switches 80-column screen to reverse mode (ESC R).
Sets bit 6 in 8563 register 24 (R24) to % 1 . This sets the 80-
column screen to reverse mode: Characters appear in the back-
ground color specified in the lower four bits of R26, and the
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screen background for each character position takes the color
specified in the corresponding attribute memory position.

52040 $CB48
Switches 80-column screen to normal mode (ESC N).
Clears bit 6 in 8563 register 24 (R24) to %0. This sets the 80-
column screen to normal mode: Characters appear with the
attribute specified in the corresponding attribute memory posi-
tion, and the screen background takes the background color
specified in the lower four bits of R26.

52050 $CB52
Moves the cursor past the last character on the current logical
line (ESC K).
Finds the position of the last nonspace character in a logical
line, then sets the cursor pointers to the column to the right of
that position. If the existing logical line completely fills its last
physical line, a new blank line will be inserted (scrolling all
lines below the current one down one line), and the cursor
will move to the left margin of the new line. However, if the
logical line in question completely fills the last physical line in
the window, all lines in the window will instead be scrolled
up one line to open a new blank line at the bottom, unless
scrolling is disabled. In this case, the cursor will simply be
moved to the bottom right corner of the window.

52056 $CB58 READCHR
Reads character and attribute at current cursor position.
Stores the attribute at the current cursor position in 242/$F2
and returns the screen code at the current cursor position in
the accumulator.

52084 $CB74 TESTLINK
Tests whether a line is linked.
Checks the bit in the line link bitmap (862-865/$035E-$0361)
corresponding to the line specified in the X register. If the line
is linked to the one above, the carry bit will be set upon exit;
if not, it will be clear. The line number is preserved in the X
register upon exit.

$CBC3 5 2 1 6 3

52097 SCB81 SETLINK
Links or unlinks the current screen line.
Loads the X register with the current row number (235/$EB),
then enters one of the two following routines depending on
the status of the carry bit. If carry is set, a branch is taken to
52115/SCB93 to link the current screen line to the one above.
If carry is clear, this routine falls through to the next one to
unlink the current line.

52101 $CB85 UNLINK
Unlinks a screen line.
Clears the bit in the line link bitmap corresponding to the line
specified in the X register. The line number is preserved in the
X register upon exit,

52115 $CB93 LINK
Links a screen line.
Sets the bit in the line link bitmap corresponding to the line
specified in the X register. The line number is preserved in the
X register upon exit.

52127 $CB9F FINDLINK
Calculates offsets into the line link bitmap.
Calculates the position of the bit in the line link bitmap cor-
responding to the line specified in the X register upon entry,
returning the byte offset into the line link bitmap in the X reg-
ister and the mask for the corresponding link bit within that
byte in the accumulator.

52145 $CBB1
Moves the cursor to the start of logical line (ESC J).
Sets all cursor position pointers to the left margin in the first
row of the current logical line.

52163 $CBC3 FINDEND
Finds the position of the last character in a line.
Calculates the position of the last nonspace character in the
current logical line and returns the column value of that posi-
tion in 234/$EA and the row value in 235/$EB.
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52205 8CBED FORWARD
Moves the cursor one position to the right.
Checks whether the move would place the cursor beyond the
right margin of the window. If not, the new position value is
set in 236/$EC. If the cursor is already at the right window
margin, the subroutine at 50019/$C363 is called to move the
cursor to the left margin of the next line, scrolling the window
if the cursor is on the bottom line (or wrapping the cursor to
the top of the window if scrolling is not allowed). Upon exit,
the carry bit will be set if the move caused the screen to scroll
(or the cursor to wrap). The accumulator contents are pre-
served unchanged during this routine; the cursor column will
be in the Y register upon exit.

52224 $CC00 RETREAT
Moves the cursor one position to the left.
Checks whether the move would place the cursor beyond the
left margin of the window. If not the new position value is set
in 236/$EC, and the carry bit is cleared. If the cursor is al-
ready at the left window margin, the routine checks whether
the cursor is on the top row of the window. If so—if the
cursor is currently in the home position of the window—the
routine exits with the carry bit set and without moving the
cursor. Otherwise, the cursor position is set to the right margin
of the screen line above the current one. In this case, the Z bit
in the status register will be set upon exit. The accumulator
contents are preserved unchanged during this routine; the
cursor column will be in the Y register upon exit.

52254 $CC1E SAVEPOS
Stores the cursor position for later restoration.
Stashes the current cursor column value in temporary storage
at 222/SDE and the current cursor row value at 223/$DF. The
corresponding routine to retrieve these values and restore the
cursor to the saved position is at 51506/$C932.

$CC27 SPACE52263
Prints a space.
Loads the X register with the current character color from the
attribute flag (241/$F1), masking out bits 4-6, and loads the
accumulator with 32, the screen code for a space. BIT opcodes
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then allow the routine to fall through to 52276/$CC34 to dis-
play the space.

52271 $CC2F DISPLY1
Displays a character using the current attribute.
Loads the X register with the current character color from the
attribute flag (241/SF1), then uses a BIT opcode to allow the
routine to fall through to 52276/$CC34 to display the screen
code in the accumulator.

52274 $CC32 DISPLY2
Displays a character using the previous attribute.
Loads the X register with the current character color from the
previous attribute flag (242/$F2), then falls through to display
the screen code in the accumulator.

52276 $CC34 DISPLY
Displays a character at the current cursor position.
{This routine has a jump table entry at 49155/$C003.)
Places a character on the screen by putting the screen code
value (in the accumulator) into the screen memory location
corresponding to the current cursor position. The attribute
value (in the X register) is then stored into the attribute mem-
ory location corresponding to the current cursor position.
(Note that the accumulator should contain a screen code, not a
character code.) The screen memory address is determined by
using the current cursor column (236/$EC) as an offset from
the first screen memory position for the screen line
(224-225/$E0-$El), and the attribute memory address is de-
termined by using the current column value as an offset from
the first attribute memory position for the screen line
(226-227/$E2-$E3). For the 40-column screen, the screen
code and attribute values are stored directly into the memory
locations. For the 80-column screen, the values must be stored
in the 8563 chip's private 16K of RAM indirectly, via the 8563
registers.

52315 $CC5B SCRORG
Returns height and width of current screen window.
(This routine has a screen editor jump table entry at 49167/$C00F
and a Kernal jump table entry at 65517/$FFED.)
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Calculates the screen height by subtracting the top margin
(229/$E5) from the bottom margin (228/$E4); this value is re-
turned in the Y register. The screen width is calculated by-
subtracting the left margin (230/$E6) from the right margin
(231/$E7); this value is returned in the X register. The accu-
mulator is loaded with the maximum column number for the
screen in use (238/$EE)—39/$27 for the 40-column screen or
79/$4F for the 80-column screen.

Note that the height and width values calculated by this
routine will be one less that the actual number of rows and
columns in the window. For example, with the 40-column
screen set for a full-size window (40 columns X 25 rows), this
routine will return X and Y register values of 39 and 24, re-
spectively. To return the proper values, the routine should
have added 1 to the subtraction results. By comparison, this
routine in Commodore 64 ROM, where is it called SCREEN,
returns the values 40 and 25 for the standard screen (also 40
columns X 25 rows).

52330 $CC6A PLOT
Reads or sets the current cursor position.
(This routine has a screen editOT jump table entry at 49176/$C018
and a Kernal jump table entry at 6552O/$FFF0.)
Returns the row and column numbers corresponding to the
current cursor position or establishes new row and column
values, depending on the status of the carry bit upon entry. To
set the cursor position, enter the routine with the desired row
number (0-24) in the X register, the desired column number
(0-39 for the 40-column screen or 0-79 for the 80-column
screen) in the Y register, and the carry bit clear. To read the
cursor position, enter the routine with the carry bit set; the
current row number will be in the X register upon return, and
the current column number will be in the Y register (and also
in the accumulator).

It's important to remember that coordinate numbering be-
gins with 0, not 1. Thus, setting the cursor position with X and
Y containing 5 and 3, respectively, will place the cursor on the
sixth row down at the fourth column across. When reading co-
ordinates, remember that the cursor will actually be one posi-
tion beyond the last character printed. The coordinates you set
or read are relative to the home position and left margin of the
current window, not the absolute home position and left edge
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of the screen display. This makes no difference as long as the
window is set for full screen size, but it is significant when
you are using a reduced-size window. For example, if the
cursor is on the eighth row down from the top of the screen
and the tenth column across from the left edge of the screen,
the row and column values returned by this routine will be 7
and 9, respectively, if the window is full screen size. However,
if the top left corner of the window is moved to the sixth col-
umn of the sixth row, the row and column values returned for
the same cursor position will be 1 and 3, respectively.

When setting the cursor position, the routine first checks
whether the specified position would be beyond either the
right or bottom margin of the window. If the position would
be outside the window, the routine exits with the carry bit set
and without changing the current cursor position. Thus, you
can check the carry bit after calling this routine to determine
whether the cursor was successfully moved (indicated by a
clear carry bit).

This routine has an idiosyncrasy that will trip you up if
you're not careful. Keep in mind that the value in the X regis-
ter contains the vertical (row) position, and the value in the Y
register contains the horizontal (column) position. This is op-
posite from the way you normally think of x and y coordinates
in geometry: x is usually horizontal and y vertical. Some other
routines, such as SCRORG [$CC5B], use X to hold the hori-
zontal value and Y for the vertical value, so don't get
confused.

52386 $CCA2 KEYSET
Defines a programmable function key.
(This routine has a screen editor jump table entry at 49185/$CO21
and a Kemal jump table entry at 65381/$FF65.)
Replaces the existing definition string for one of the ten pro-
grammable keys, F1-F8, SHIFT-RUN/STOP, and HELP, with
a new string. The routine first converts the key number (1-10),
in the X register upon entry, to a key index (0-9), which is
stored in 220/SDC. The length of the definition string should
be in the Y register upon entry, and the address of the zero-
page pointer to the definition string should be in the accumu-
lator upon entry. The number of the memory bank where the
definition string resides is read from the zero-page location im-
mediately following the two-byte pointer to the string. If the
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length of the new definition string is the same as the length of
the existing definition string for the specified key, no special
handling is required; the new definition string is simply copied
over the old one. If the new definition is shorter, all the defi-
nitions above the existing one are moved down. If the new
definition is longer, all characters must be moved upward.
Before anything is actually moved, the routine checks to make
sure that adding the extra characters will not exceed the 246
bytes available for string definitions (4106-4351/$100A-$10FF).
If the new definition will not fit, the routine exits with the sta-
tus register carry bit set and without changing the existing def-
inition string.

To add a new definition string, the length of the string is
placed in the proper position in the string length table in bank
0 (4096-4105/$1000-$1009). Then characters are loaded from
the new string in whatever bank it is located in by using the
INDFET routine [$02A2]. They are stored at the proper posi-
tion in the definition string table (4106-4351/$100A-$10FF).
The status register carry bit is cleared before exit to indicate
that the new definition string has been successfully added to
the table.

52512 8CD20
Calculates the offset to the start of key definition string.
Adds the length table entries for all key definition strings with
an index lower than the one specified in the X register upon
entry. (X should contain a key index, 0-9, not a key number,
1—10.) The total will be in the accumulator upon exit, and carry
will be set. Because there are no separator characters between
definition strings in the table, the only way to determine the
starting position of a particular string is to add the lengths of
all the preceding strings. This implies that an incorrect length
value in the string length table (4096-4105/$1000-$1009) will
result in incorrect strings being returned for all keys with a
higher index. Thus, you should use caution when changing
string length tables directly.

$CD57 52567
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52524 $CD2C
Changes screen displays (ESC X).
Stores the current character code in 240/$F0, then falls
through into the next routine to switch active displays.

52526 $CD2E SWAPPER
Switches active screen displays.
(This routine has a screen editor jump table entry at 49194/SC02A
and a Kernal jump table entry at 65375/SFF5R)
Swaps the active and inactive screen variables by exchanging
the contents of 224-250/$E0-$FA with the contents of
2624-2650/$0A40-$0A5A. (This duplicates the bug in the ini-
tialization routine [$C07B] which copies 27 values, when only
26 are actually valid.) The routine then swaps the active and
inactive tab stop and line link bitmaps by exchanging the
contents of 852-865/$0354-$0361 with the contents of
2656-2669/$0A60-$0A6D. Finally, bit 7 of the active screen
flag (215/$D7) is toggled, switching the active and inactive
screen displays.

Note that this doesn't physically turn either video chip on
or off. Both video sources remain on at all times. The active
display is merely the one to which all printing is currently
directed.

52567 $CD57 CRSR80
Sets cursor position on 80-cohimn screen.
(This routine has a jump table entry at 49179/$C01B.)
Checks active screen flag and exits immediately if the 40-
column screen is active. The screen memory address for the
cursor position is calculated by adding the current cursor col-
umn (236/$EC) to the starting address for the screen line
(224-225/$E0-$El), This address is then written to the 8563
chip's cursor position registers (R14-R15) using the routine at
52684/$CDCC

This routine is normally called by the BSOUT exit routine
[$C30E] after a character has been printed. The routine is nec-
essary because the 80-column cursor is managed in hardware,
not software. So, unlike the 40-column display's cursor, it
doesn't move automatically when cursor row and column
pointers are changed.
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52591
Turns cursor on.

$CD6F $CDD8 52696

$CD6F CRSRON

Begins by checking the active screen flag. If the 40-column
display is active, the routine merely clears the cursor enable
flag (2599/$0A27) and exits. For the 80-column display, the
attribute of the current cursor position is read and stored in
2611/$0A33. The upper four bits (containing the printing style
information) are stored in 219/$DB. Then this style infor-
mation is combined with the current cursor color (the lower
four bits of 241/$F1) to determine the new attribute for the
cursor position. Finally, the cursor is enabled by writing the
current cursor style (stored in 2603/$0A2B) to the 8563 chip's
cursor control register (RIO).

52639
Turns cursor off.

$CD9F CRSROFF

Begins by checking the active screen flag. If the 80-column
display is active, this routine sets the update location registers
(R18-R19) to the address of the attribute for the current cursor
position, then restores the cursor position to its original
attribute (stored in 2611/S0A33), Finally, the cursor is dis-
abled by writing the value 32/$20 to the 8563 chip's cursor
control register (RIO). For the 40-column display, the cursor is
disabled by clearing the cursor enable flag (2599/$0A27).
Then the blink phase flag (2598/$0A26) is checked to see
whether the character under the cursor is in the normal or re-
versed portion of the blink sequence. If the character is in its
normal state, no further action is necessary. However, if the
character is reversed, the blink phase flag is reset and the
cursor position is restored to its original character and color
(stored in 2601/S0A29 and 2602/$0A2A, respectively).

52682 $CDCA WRITE80
Writes a byte value to 80-column chip memory.
Stores the value in the accumulator into a location in the 8563
chip's private 16K of RAM. The target memory address is
specified by the current contents of the 8563's update location
registers (R18-R19). The contents of the X register will be
changed, but the contents of the accumulator and Y register
are unaffected. The address in R18-R19 is automatically incre-
mented after a byte is written, so it is not necessary to update
those registers before every byte when writing to a series of
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sequential addresses. The routine works by loading X with
31/$1F, the number of the 8563's data read /wr i te register.
Then it falls through into the following routine to store the ac-
cumulator contents in that register. Writing to register 31
causes the value written to be stored in the 80-column RAM
location addressed in registers 18-19.

The following example shows how to use this routine to
copy the contents of the first 256 bytes of 40-column screen
memory (locations 1024-1279/$0400-$04FF) to 80-column
screen memory:

0B00 LDX #$12 ; Load registers 18 and 19
0B02 LDA #$00 ; with low and high bytes of
OB04 JSR $CDCC ; 80-column screen starting
0B07 INX ; address ($0000).
0B08 JSR $CDCC
0B0B LDY #$00 ; Initialize loop offset.
0B0D LDA $0400,Y ; Read byte from 40-column screen,
0B10 JSR $CDCA ; Store in 80-column RAM.
0B13 INY
0B14 BNE $0B0D ; Loop for 256 bytes.
0B16 RTS

52684 $CDCC WRITEREG
Writes to an 80-column chip register.
Stores the accumulator contents in the 8563 register specified
in the X register (see Chapter 8 for a description of the 8563's
registers). The accumulator and X register contents will not be
changed, and the Y register is unaffected. No error checking is
performed; when you use this routine you are responsible for
making sure that X contains a valid register number (0-36/
$00-$24). This routine illustrates the proper procedure for
writing to an 8563 register: The desired register number is
stored in 54784/$D600. Then the routine waits until bit 7 of
that location is set to %1 , after which the new register value is
stored in location 54785/$D601.

52696 $CDD8 READ80
Reads a byte value from 80-column chip memory.
Reads the contents of a location in the 8563 chip's private 16K
of RAM. The target memory address is specified by the current
contents of the 8563's update location registers (R18-R19).
The location's contents will be in the accumulator upon exit
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52698 SCDDA

from this routine. The contents of the X register will be
changed, but the Y register is unaffected. The address in
R18-R19 is automatically incremented after a byte is read, so
it is not necessary to update those registers before every byte
when reading a series of sequential addresses. The routine
works by loading X with 31/$IF, the number of the 8563's
data read/write register. Then it falls through into the follow-
ing routine to load the accumulator with the contents of that
register. Reading from register 31 returns the contents of the
80-column RAM location addressed in registers 18-19.

The following example shows how to use this routine to
copy the contents of the first 256 bytes of 80-column screen
memory to 40-column screen memory locations 1024-1279/
$0400-$04FF:

Load registers 18 and 19
with low and high bytes of
80-column screen starting
address ($0000).

Initialize loop offset.
Read a byte from 80-column RAM.
Store in 40-column screen memory.

Loop for 256 bytes.
la

52698 $CDDA READREG
Reads from an 80-column chip register.
Reads the current contents of the 8563 register specified in the
X register. The register value will be in the accumulator upon
exit from this routine. See Chapter 8 for a description of the
8563's registers. The X register contents will not be changed,
and the Y register is unaffected. No error checking is per-
formed; when you use this routine you are responsible for
making sure that X contains a valid register number (0-36/
$00-$24). This routine illustrates the proper procedure for
reading an 8563 register: The desired register number is stored
in 54784/SD600. Then the routine waits until bit 7 of that lo-
cation is set to % 1 , after which the register value can be read
from location 54785/$D601.
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0B00
0B02
0B04
0B07
0B08
0B0B
0B0D
0B1O
0B13
0B14
0B16

LDX
LDA
JSR
INX
JSR
LDY
JSR
STA
INY
BNE
RTS

#$12
#$00
$CDCC

$CDCC
#$00
$CDD8
$0400,Y

$0B0D

ecEoc 52748

52710 $CDE6 SCNPOS
Sets the current address in 80-column screen memory.
Loads the 8563 update location registers (R18-R19) with the
address of the screen memory location that corresponds to the
current cursor position. Upon entry, the Y register should con-
tain the offset to the current column. To calculate the memory
address, this offset is added to the address of the first screen
memory location for the current screen line (224-225/
$E0-$El). The registers are loaded by using the subroutine at
52684/$CDCC. Once the address is loaded into R18-R19, the
next value placed in the read/write register (R31) will be
stored in the specified screen memory location.

52729 $CDF9 ATTRPOS
Sets the current address in 80-column attribute memory.
Loads the 8563 update location registers (R18-R19) with the
address of the attribute memory location that corresponds to
the current cursor position. Upon entry, the Y register should
contain the offset to the current column. To calculate the
memory address, this offset is added to the address of the first
attribute memory location for the current screen line
(226-227/$E2-$E3), The registers are loaded by using the
routine at 52684/$CDCC. Once the address is loaded into
R18-R19, the next value placed in the read/write register
(R31) will be stored in the attribute memory location.

52748 SCEOC INIT80
Initializes character definitions for 80-column screen.
(This routine has a screen editor jump table entry at 49191/SC027
and a Kernal jump table entry at 65378/$FF62.)
Copies the contents of the character generator ROM (at
53248-57343/$D000-$DFFF in bank 14) to the character defi-
nition area at 8l92-16383/$2000-$3FFF in the 80-column
video chip's private block of RAM (which is not part of the
8502 microprocessor's address space). This is necessary be-
cause the 8563 chip has no character ROM of its own. Because
the 8563 uses 16-byte character definitions, each 8-byre char-
acter definition from ROM is padded with eight zeros when
copied to 8563 RAM. See Chapter 8 for information on how
the 80-column characters can be redefined.

In the 128's ROM, this routine is called only by the
Kernal IOIN1T routine [$E109], which is part of both the reset
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52812
$CE4C

and RUN/STOP-RESTORE sequences. However, the call is
preceded by a test of the initialization status flag (2564/$0A04).
If bit 7 of that flag is set to % 1 , the step to download 80-
column character definitions is skipped. The reset routine
[$E000] clears the status flag before calling this routine, so
character definitions are initialized when the 128 is reset (in-
cluding when it is first turned on). Then it sets bit 7 afterward
to indicate that this step has been performed. The RUN/
STOP-RESTORE sequence [$FA53] does not affect the initial-
ization status flag, so the character definitions will not usually
be recopied when IOINIT is called during that sequence. Thus,
if you redefine (or, worse, accidentally garble) the character
definitions in the 8563's RAM, RUN/STOP-RESTORE won't
return them to normal as it does for the 40-column screen.
You can restore the normal 80-column character shapes by
pressing the RESET button or, less dramatically, by calling this
routine (with SYS 52748, for example). You can clear bit 7 of
2564/$0A04 to %0 and call IOINIT.

52812 $CE4C COLORTBL
Table of color character translation values.
There is no direct mathematical relationship between the char-
acter codes which change printing colors and the actual VIC-II
chip color numbers for the selected hues, so this table is used
to translate the character codes into values for VIC-II chip
color settings. For example, the character code which, when
printed, changes character color to dark blue is 31/$ IF. This
value is found at an offset of 6 into the table, and 6 is the
VIC-II's color number for dark blue.

Table Entry
(character code)

144/$90
5/$05

28/$1C
159/$9F
156/$9C
3O/$1E
31/$1F

158/$9E
129/$81
149/$95
150/$96
151/197
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Table Offset
(color number)

0/$00
l/$01
2/$02
3/$03
4/$04
5/$05
6/$06
7/$07
8/$08
9/$09

10/$OA
ll/$0B

Color
black
white
red
cyan
purple
green
blue
yellow
orange
brown
light red
dark gray

SCE5C

Table Entry
(character code)

152/$98
153/$99
154/$9A
155/$9B

52828
Table of 8563 color

Table Offset
(color number)

12/$0C
13/$0D
14/$0E
15/$0F

$CE5C
code translation

52828

Color
medium gray
light green
light blue
light gray

COLOR80
values.

The character codes which change printing colors are initially
translated into color numbers for the 40-column (VIC-II) chip.
The 8563 80-column video chip can produce most of the
same colors as the 40-column chip, but its color memory and
color registers require different color numbers. This table is
used to translate VIC-II color values into 8563 color values.
For example, storing 6 in the VIC-II chip register at
53281/SD021 changes the 40-column background to dark
blue, but storing 6 in the 8563's background register (the
lower nybble of R26) will result in a dark cyan 80-column
background. The proper 80-column chip color number can be
found by using the VIC-II color number as an offset into this
table. For example, the 80-column color value for dark blue, 2,
is found at an offset of 6 from 52828/$CE5C,

Offset
(VIC-II

color number)
0/$00
l/$01
2/$02
3/$03
4/$04
5/$05
6/$06
7/$ 07
8/$08
9/$09

10/$0A
ll/$0B
12/$0C
13/$0D
14/$0E
15/$0F

8563 Chip
(color number)

0/$00
15/$0F
8/$08
7/$07

ll/$0B
4/$04
2/$02

13/$0D
10/$0A
12/$0C
9/$09
6/$06
1/S01
5/$05
3/$03

14/$0E

Color
black
white
dark red
light cyan
light purple
dark green
dark blue
light yellow
dark purple
dark yellow
light red
dark cyan
dark gray (light black)
light green
light blue
light gray (dark white)
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52844 $CE6C

As an example of how you would use this table to trans-
late color numbers, suppose you had a 40-column color num-
ber in the accumulator and needed to know the equivalent 80-
column color number. All that's needed is
TAX
LDA $CE5C,X

52844 $CE6C
Table of bit mask values.

MASKTBL

Each of the eight bytes in this table has only one bit set to
% 1 . The mask values are used to decode bitmapped tables
such as the ones for tab stops and line links. The binary
equivalents of the table bytes, in order, are as follows:
%10000000
%01000000
%00100000
%00010000
%00001000
%00000100
%0 0000010
%00000001

52852 $CE74 VARTBL
Tables of default screen editor variables.
Locations 52852-52877/$CE74-$CE8D hold the default
screen editor variable settings for the 40-column screen. Loca-
tions 52878-52903/$CE8E-$CEA7 hold the default settings
for the 80-column screen. The screen editor initialization rou-
tine [$C07B] copies the values for the default screen—deter-
mined by the position of the keyboard 40/80 DISPLAY key—
into the active screen variable table at 224-249/$E0-$F9, and
the values for the other screen into the inactive screen table at
2624-2649/$0A40-$0A59. Thus, the values in these tables de-
termine the variable settings after power-on, reset, or
RUN/STOP-RESTORE.

Actually, due to a bug in the initialization routine, one
byte too many is copied when the tables are transferred to
RAM. Thus, the byte following the active screen default value
table will be copied to 250/SFA, and the byte following the
inactive screen default table will be copied to 2650/$0A5A.
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$CEF5-$CFFF 52981-53247

52904 $CEA8 KEYDEFS
Table of standard function key definitions.
The first ten bytes here hold the lengths of the following ten
key definition strings. The screen editor initialization routine
[SC07B] copies these lengths and strings to the definition area
at 4096/$1000. The text for the standard definitions is as
follows:
Key
Fl
F2
F3
F4
F5
F6
F7
F8
SHIFT-RUN/STOP
HELP

Definition
GRAPHIC
DLOAD"
DIRECTORY {RETURN}
SCNCLRjRETURN}
DSAVE"
RUN {RETURN}
LIST{RETURN}
MONITOR {RETURN}
DL"*{RETURN}RUN{RETURN}
HELP {RETURN}

If you ever need to restore the standard key definitions, you
can recopy the contents of this table into the definition area.
In BASIC, the required program line would have this form:
BANK 15: FOR 1=0 TO 76: POKE 4096+I,PEEK(52904+I): NEXT I

52981-53247 $CEF5-$CFFF Unused
All locations in this unused area of ROM are filled with the
value 255/$FF, except for the final two, which are $00 $C3.
Ideally, the keyboard decoding tables would have been placed
here following the screen editor routines so that the screen
editor package could be fully self-contained in this block of
ROM. However, there's not sufficient room here for the five
89-byte keyboard tables, so they were placed at the end of
Kernal ROM (64128-64572/$FA80-$FC3C).
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I/O Chip Registers,
Color RAM, and
Character ROM

Bits 0 and 4-5 of the MMU configuration register (65280/
$FF00) determine what is visible in the area between addresses
53248-57343/$DO00-$DFFF of the 128's memory space. If bit
0 of the configuration register is %0, the collection of hard-
ware registers and 40-column color RAM known as the I/O
block is visible, regardless of the setting of bits 4 and 5 of the
register. The I/O block includes the following elements:
53248-53296/$D00O-$D030 VIC (40-column) video chip registers
54272-54300/$D400-$D41C SID sound chip registers
54528-54539/$D500-$D50B MMU chip registers
54784-54785/$D600-$D601 VDC {80-cohimn) video chip registers
55296-56319/$D800-$DBFF Color RAM for VIC chip
56320-56335/$DC00-$DC0F CIA chip registers (CIA #1)
56576-56591/$DD00-$DD0F CIA chip registers (CIA #2)
57088-57098/$DF0O-$DFOA REC expansion controller chip regis-

ters (if memory-expansion module
connected)

If bit 0 of the configuration register is set to %1 , the set-
ting of bits 4 and 5 will determine what is visible in this area.
(Actually, these bits control what is seen in the entire area
from 49152-65535/$C000-$FFFF.) The four possible selec-
tions for 53248-57343/$D000-$DFFF are as follows:

Bits
5
0
0
1
1

4
0
1
0
1

Block contents

Character ROM
Internal function
External function
RAM

ROM
ROM

Character ROM contains the bit patterns to define the shape
of the letters, numbers, and symbols for the video displays.
When RAM is selected, the RAM block from which the mem-
ory is seen is determined by the setting of bits 6 and 7 of the
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configuration register. The I/O block is visible in all standard
bank configurations except banks 0-3, which are all RAM, and
bank 14, where character ROM is seen.

A bit of 128 hardware trivia: Since the MMU configura-
tion register setting in bits 4-5 for character ROM is also the
one which selects screen editor ROM at 49152-53247/
$C000-$CFFF and Kemal ROM at 57344-65535/$E000-$FFFF,
you might expect that character patterns are stored between
the screen editor and Kernal routines in the 16K ROM chip
designated U35. However, this is not the case. Character pat-
terns are stored in a separate 4K ROM chip, designated U18.
So what's between 53248-57343/$D000-$DFFF in the ROM
chip containing the screen editor and Kernal? That's where the
ROM routines for CP/M mode are stored. The memory-shuf-
fling capabilities of the MMU and PLA allow this area of ROM
to appear at addresses 0-4095/$0000-$0FFF when CP/M
mode is selected. Because this section of ROM is always invisi-
ble to 128 mode, it is not covered further in this book.

VIC (Video Interface Controller) Chip
53248-53296/$D000-$D030
The chip whose registers appear in this area of the I/O block
is referred to in Commodore literature as the VIC, even
though it is not exactly the same as the chip with that des-
ignation in the Commodore 64. However, the chip does pro-
vide the same 40-column video display features as its
Commodore 64 predecessor. The differences are in the chip's
less familiar, but equally vital function of providing all the
basic riming signals required by the system. The 128's version
of the VIC chip also supports the scanning of the additional 24
keys on the 128's keyboard. For these new features, the 128
version of the VIC has two more registers than its Commodore
64 counterpart (49 instead of 47). There are actually two dif-
ferent versions of the 128 VIC chip, depending on the video
system required in the country where the computer is sold.
For NTSC (North American) video, the version is officially
designated the 8564 chip, while the PAL (European) model is
designated the 8566. All the registers described below operate
the same on both chips; only the video signal format is different.
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Video Fundamentals
The output signals from the VIC chip tell the video device
(monitor or television) how to draw the screen display. To un-
derstand the operation of the VIC chip, you need to under-
stand a few of the fundamentals of video displays. The display
is drawn on the monitor or television picture tube by a "gun"
that shoots a beam of electrons at the screen. Where the beam
strikes the face of the screen, a spot on the screen's phospho-
rescent coating glows briefly. The electron gun doesn't just
spray electrons at random; the beam is moved in a precisely
controlled pattern. Beginning in the upper left corner of the
screen, the beam is scanned (moved) horizontally across to the
right edge of the screen, drawing a very thin line of dots. It is
then blanked while it is moved back to the left edge, but just
below the top line. The beam is then scanned horizontally
across the screen again, and the process is repeated until the
stack of thin lines fills the screen display.

Actually, for a color display there are three separate
beams working in conjunction to draw each line—one each
for the colors red, green, and blue. Each dot in the thin screen
line consists of red, green, and blue points. When the relative
intensities of the red, green, and blue points are varied, the
dot can take on a variety of hues. The VIC chip can produce
16 different colors. Whenever a memory location or VIC regis-
ter calls for a color value, the color is specified by a value in
the range 0-15. Table 8-1 lists the standard designations for
the VIC chip colors.

Table 8-1. Standard VIC Color Values

Value
0/$00
l/$01
2/$02
3/$03
4/$04
5/$05
6/$06
7/$07

Color
black
white
red
cyan
purple
green
blue
yellow

Value
8/$08
9/$09
10/$OA
ll/$0B
12/$0C
13/$0D
14/$0E
15/$0F

Color
orange
brown
light red
dark gray
medium gray
light green
light blue
light gray

The stack of horizontal video lines is called the raster
(from the Latin word for rake—the pattern of evenly spaced
parallel lines is similar to that produced by pulling a rake
through soil). The individual lines are called raster scan lines.
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The number of lines required for a full screen depends on the
video system in use. The North American (NTSC) version of
the VIC chip draws a raster of 264 scan lines, while the Euro-
pean (PAL) version draws 313. Since the screen phosphor
glows only briefly when struck by the raster beam, the screen
must be constantly redrawn. The rate of redrawing also de-
pends on the video system: 60 times per second for NTSC sys-
tems or 50 times per second for PAL systems. Not all of these
raster lines are used for the active video display. Most televi-
sions and monitors overscan. That is, some raster lines at the
top, bottom, or both are actually drawn off the screen. The
VIC compensates by restricting the active portion of the dis-
play, the area where characters and graphics can be displayed,
to 200 lines in the middle of the raster for both NTSC and
PAL systems. (This can be reduced to 192 lines. For details,
see the entry for 53265/$D011.) The inactive lines form the
top and bottom portions of the border, a solid-color frame
around the active screen.

The horizontal dots that make up each scan line are called
pixels (short for picture elements). The number of pixels in a
scan line depends on the screen mode, and is limited by the
speed at which the VIC chip can read data from memory. In
the standard two-color modes, where a single bit determines
the pixel color, the VIC chip draws 320 active pixels per scan
line. In the four-color (multicolor) modes, two bits are required
to specify the color of each pixel. Since the VIC must read
twice as much data per pixel, only half as many pixels can be
drawn in the time allotted for a single scan line. As a result,
the multicolor modes have only 160 active pixels per scan line.
The display is still the same size; the pixels are twice as wide.
{The screen width can also be reduced to 304 standard pixels
or 152 multicolor pixels. For details, see the entry for 53270/
$D016.) Just as the VIC draws extra lines above and below the
active ones, it also draws extra pixels to the left and right of
the active ones. The inactive pixels form the sides of the solid-
color border.

The VIC chip supports two major classes of display
modes—character and bitmapped. These are also referred to
as low resolution and high resolution, but that's somewhat
misleading, since both provide the same active screen areas—
320 pixels X 200 lines for standard modes or 160 pixels X 200
lines for multicolor modes. The difference between the classes
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is in the degree of control over individual pixels. The bitmapped
(high-resolution) modes allow you to determine the color of
each pixel individually, while the character (low-resolution)
modes only allow control of groups of pixels. The tradeoff is
that the character display modes use much less memory.

Video Banks
Before you read a discussion of the display modes, it's impor-
tant to understand how the VIC chip sees memory. The VIC
uses the same RAM as the 8502 microprocessor, but it views
the memory very differently. The VIC chip has only 14 ad-
dress lines compared to the processor's 16. This means that
the VIC can, at any given time, address only 16K (16384
bytes) out of the 64K of RAM in a block. The 16K area seen
by the VIC chip is referred to as a video bank, not to be con-
fused with one of the processor's bank configurations—there
is no relationship. All of the information for the VIC screen
display must be visible within the same video bank. There are
four possible video banks per 64K block, or a total of eight
possible video banks in the two RAM blocks in the 128. Bits
0-1 of the CIA #2 register at 56576/$DD00 select one of the
four banks, and bit 6 of the MMU register at 54534/$D506 se-
lects which 64K-RAM block the video bank will be seen in.
Refer to the entries for those locations later in this chapter for
more details. The base (starting) addresses for the banks are as
follows:

Bank Base address
0 0/$0000
1 16384/S4000
2 32768/$8000
3 49152/$C000

Character Display Modes
The VIC provides three character display modes: standard,
multicolor, and extended background color. The standard
character display mode is the default system for the VIC—the
one which is active when no other mode is selected. The other
two modes are not directly supported by the 128 operating
system (there's no GRAPHIC statement to select these modes),
so you must enable them by directly setting the appropriate
bits in VIC registers. As a result, those modes are a bit more
difficult to use effectively.
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For a standard (GRAPHIC 0) character display, the 320-
pixel X 200-line active screen area is divided into 1000 8-pixel
X 8-line character positions, arranged as 25 rows with 40
character positions per row. The contents of the character po-
sitions are determined by values stored in a 1000-byte area of
screen memory (sometimes referred to as the video matrix).
Each location in screen memory corresponds to a single char-
acter position on the screen. The value in a screen memory lo-
cation selects one of 256 standard character-pattern definitions
to be drawn in the corresponding character position. The
screen memory values are referred to as screen codes, and
they are not the same as character codes. See Appendix C for
a list of screen codes and corresponding character patterns.
The location of screen memory within the current video bank
is controlled by bits 4-7 of the VIC register at 53272/$D018.
See the entry for that register for details.

The pattern definitions come from another area of mem-
ory known as character memory. As mentioned above, each
character position consists of eight scan lines with eight pixels
per line—a total of 64 pixels per position. In standard charac-
ter mode, a pixel can be one of two colors, so only one bit
(which can be either %0 or %1) is required per pixel. Thus, a
character-pattern definition requires 64 bits, or eight bytes.
The pixels represented by %0 bits in the pattern definition are
drawn in what is referred to as the background color, which is
common to all screen positions. The pixels represented by %1
bits are drawn in what is referred to as the foreground color,
which can be independently selected for each character posi-
tion. The location of character-pattern memory within the cur-
rent video bank is controlled by bits 1-3 of the VIC register at
53272/SD018. See the entry for that register for more details.
Standard character definitions for the 128 come from the char-
acter ROM. This ROM is located beginning at address 53248/
$D000 in the system's address space, but can be made visible
in any video bank. See the section on character ROM later in
this chapter for more information.

The background color for %0 bits in all character posi-
tions is determined by the value in the VIC register at
53281/$D02I. The foreground color for the %1 bits in each
character position is determined by values in another 1000-
byte area of memory known as color memory. As in screen
memory, each location in color memory corresponds to a char-

acter position on the screen. Unlike the case of screen and
character memory, however, the location of VIC color memory
is fixed and does not have to be within the current video bank.
It always appears to the processor at locations 55296-56319/
$D800-$DBFF in the 1/0 block. Refer to the section on color
memory later in this chapter for details.

The procedure for displaying the character A in blue at
the upper left corner of the screen would be something like
this: The VIC looks to the first location of screen memory to
determine which character pattern to display in that position.
The screen code for A is 1, so this value is used as an index to
the eight-byte pattern definition in character memory. The VIC
then looks to the first location of color memory and proceeds
to draw pixels in the color specified there (6 for blue) for all
%1 bits in the pattern. For all %0 bits, pixels are drawn in the
color specified in the background color register. Figure 8-1
illustrates the process.

Figure 8-1. Standard Character Display Mode
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Custom Characters
You are not limited just to the character patterns provided in
the ROM. It is relatively simple to design your own characters.
However, using custom characters is an all-or-nothing affair.
Once you switch off the standard ROM-based character set,
you must provide definitions for every character you wish to
use. You must begin by selecting the area of RAM where you
will place the new character set. See the entry for the register
at 53272/$D018 for details. If you only want to use a few cus-
tom characters while retaining the majority of the standard
character set, the next step is to copy the standard character
patterns from ROM to the selected RAM area. If you do this,
you'll only have to provide custom pattern information for
those characters you wish to redefine.

To calculate the proper byte values for a custom character
definition, use an 8 X 8 grid as shown in Figure 8-2. Fill in
the grid squares for those pixels you wish to have displayed in
the foreground color. Unless you are designing patterns that
will connect with adjacent patterns (such as the line segments
in the standard character set), it is customary to leave at least
one row and one column of the pattern blank to provide some
horizontal and vertical separation between characters. The
ROM patterns for the standard letters and numbers don't fill
in any pixels in the leftmost column, and only lowercase char-
acters with descenders (g, j, p, q, and y) use the bottom row.

To calculate the binary bit pattern for each row of the pat-
tern, use a %0 for each blank (background) pixel and a %1 for
each filled (foreground) pixel. Next, convert the binary bit pat-
tern to a number (use the machine language monitor's number-
conversion feature if you're not handy with binary). The final
step is to store the resulting eight values in the character
memory locations for the pattern you are changing. The sim-
ple formula for finding the starting address in character mem-
ory of the pattern for any character is:

pattern address = character base address + (8 * screen code)
The character base address is the starting address of character
memory (see the entry for 53272/$D018). For example, to re-
place the British pound symbol (£, screen code 28/$lC) with
the pattern shown in Figure 8-2, you could use statements like
the following:

340

600 FOR 1 = 0 TO 7
610 READ A
620 POKE 8192 + (8 * 28) + I,A
630 NEXT
640 DATA 24,60,102,96,102,60,24,0
This example assumes that character memory has previously
been relocated to address 8192/$2000.

Figure 8-2. Custom Character Design Grid

% D0011000 =

% 00111100 =

% 01100110 =

% 01100000 =

"A011001IO =

% 00111100 =

% 00011000 =

% 00000000 =

24/$18

60/$3C

102/$66

96/$60

102/S66

60/S3C

24/S1B

0/$00

Multicolor Character Mode
Multicolor character mode is similar in operation to standard
character mode. The difference is that each multicolor charac-
ter position consists of 4 pixels X 8 lines (instead of 8 X 8).
The number of positions remains the same (25 rows X 40 col-
umns) and the positions are the same size, but now each pixel
is twice as wide (there are only 160 pixels per raster line).
However, each pixel can be one of four colors instead of just
one of two colors. Screen memory still holds pointers to pat-
tern definitions in character memory, but the pattern infor-
mation is interpreted differently. It now takes two bits per
pixel to select the color instead of just one, but since there are
only half as many pixels per pattern, the number of bits re-
quired for each definition remains the same (2 bits per pixel *
4 pixels * 8 lines = 64 bits).

To select multicolor character mode, you must set bit 4 of
the VIC register at location 53270/$D016. However, there's a
problem here because the screen editor IRQ routine always re-
sets this bit to %0 when setting up the text screen (see the sec-
tion below on the screen editor IRQ routine). To prevent this,
you must turn off the screen-setup portion of the IRQ by stor-
ing the value 255/$FF in location 216/SD8. Setting the VIC
register bit makes it possible to enable multicolor character
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mode for any or all screen positions, but it doesn't actually
switch any screen positions to multicolor mode. Multicolor
mode must be enabled individually for each character position
on the screen. The controlling factor is bit 3 of the color mem-
ory location for each character position. When that bit is %0
in a color memory position, the corresponding character posi-
tion on the screen remains in standard character mode, so it is
possible to intermix standard and multicolor character modes
on the same screen display. However, only bits 0-2 of the
color memory location are now available to hold color values,
so the foreground color for standard mode positions in a mul-
ticolor display is limited to the first eight values in Table 8-1—
black-yellow, values 1-7. To select multicolor character mode
for a screen position, you must set bit 3 of the corresponding
color memory location to % 1 . That is, you must store a value
of 8 or greater in the location.

When a multicolor character is drawn, all pixels in the
pattern represented by %00 bit pairs will be drawn in the
background color specified in the VIC register at 53281/
$D021. All pixels represented by %01 bit pairs will be drawn
in the color specified by the value in the register at 53282/
$D022, and all pixels for %10 bit pairs will be drawn in the
color specified in the register at 53283/$D023. All of these
registers can take any of the 16 standard colors listed in Table
8-1, but since the registers are common to all positions, the
color for pixels with %00, %01, and %10 patterns will be the
same for all characters. However, the color for pixels with
%11 bit patterns can be specified individually for each screen
position in the corresponding color memory location. Since bit
3 of the color memory location is used to specify multicolor
mode, only bits 0-2 are available to hold color values. As a re-
sult, only the first eight colors are available. But since bit 3
must be set to % 1 , the values you store in color memory to
achieve these colors are different from the standard values. For
multicolor character mode, the values to store in color memory
to select the available colors for %11 bits are as follows:
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Desired %11 bit color
black
white
red
cyan
purple
green
blue
yellow

Value to store in color memory
8/$08
9/$09

10/$0A
ll/$0B
12/$0C
13/$0D
14/$0E
15/$0F

Because the standard character sets were not designed to
be displayed in multicolor character mode, any text printed to
the screen in this mode will be at best barely legible. As a re-
sult, multicolor mode is practical only when you are using cus-
tom characters designed specifically for this mode. The rules
for designing custom characters for multicolor mode are the
same as for the standard character mode, except that you de-
sign the characters in a 4 X 8 grid, as shown in Figure 8-3.

Figure 8-3. Multicolor Character Design Grid

= %00 Dl 01 00 = 20/S14

= %00 10 10 00 = 40/$28

- %01 10 10 01 = 105/$69

= <ftl0 11 11 10 = 190/SBE

- 1410 11 11 10 = 190/SBE

= %01 10 10 01 = 105/$69

« %00 10 10 00 = 40/$28

= %00 01 01 00 = 20/$14
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Each grid position can hold one of four two-bit values
representing the four color choices:
%00 Background color 0 (common to all characters)
%01 Background color 1 (common to all characters)
%10 Background color 2 (common to all characters)
%11 Foreground color {independently selectable for all characters,

but only eight colors are available)

Once the design is completed, the byte values for the charac-
ter-pattern definition are calculated just as for standard charac-
ter mode.

Extended Background Color Mode
The third character mode, extended background color mode, is
selected by setting bit 6 of the VIC register at 53265/$D011 to
% 1 . It also uses the same fundamental elements as standard
character mode: screen memory, character memory, and color
memory. As in standard character mode, the extended back-
ground color mode screen is divided into a 25-row X 40-column
grid of 8-pixel X 8-line character positions. As in standard
character mode, each position has a corresponding screen
memory location that holds a value indicating which pattern
from character memory is to be drawn in the position. And, as
in standard character mode, each character position on the
screen takes its foreground color (the color for pixels repre-
sented by % 1 bits in the character pattern) from the value in a
corresponding color memory location. The difference is that
extended background color mode allows you to select from
among four different background colors for the pixels repre-
sented by %0 bits in the character patterns.

The background color for each position is specified by bits
6-7 of the screen code for the position. These bits select which
of the four background color registers will specify the back-
ground color for the position:
Bits Background color source
7 6
0 0 background color register 0 (53281/$D021)
0 1 background color register 1 (53282/$D022)
1 0 background color register 2 (53283/SD023)
1 1 background color register 3 (53284/$D024)

Since the highest two bits of each screen memory location
are used to specify background color, only bits 0-5 are avail-
able to hold screen code data. Thus, there are only 64 different
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unique screen code values (0-63), so only the first 64 eight-bit
pattern definitions in character memory are used in this mode.
For example, screen memory values of l/$01, 65/$41, 129/$81,
and 193/$C1 all produce the same character (screen code 1,
the letter A in the standard character set), but each provides a
different background color for that character.

Bitmapped Display Modes
The VIC provides for two bitmapped modes: standard and
multicolor. In these modes, the state of each pixel in the
screen display can be controlled independently. The standard
bitmapped mode allows you to select one of two colors for
each pixel, while the multicolor mode allows you to chose
from among four colors. Both modes are supported by the op-
erating system: standard bitmapped mode as GRAPHIC 1 (or,
with a text window, as GRAPHIC 2) and multicolor bit-
mapped mode as GRAPHIC 3 (or, with a text window, as
GRAPHIC 4).

Standard bitmapped mode is selected when bit 5 of the
VIC register at 53271/$D017 is set to %1 (but see the section
below on the screen editor IRQ for information about the
shadow for this bit). This mode provides for 320 horizontal
pixels per line, each of which can be one of two colors. A sin-
gle bit is required to specify the color of each pixel, so 320 *
200, or 64,000 bits, are required to "map" the entire display
area. At 8 bits per byte, 8000 bytes are required for the bit-
map. This is half of the available space in the 16K video bank.
The starting address of the bitmap is specified in bit 3 of the
register at 53272/$D018.

The VIC's scheme for mapping the screen is simple for
the chip (it's a variation of character mode), but it's rather
complicated for the programmer. As you would expect, the
first eight pixels on the screen, starting in the upper left corner
of the first vertical line, are controlled by the eight bits of the
first byte of the bitmap. However, the next eight pixels are
controlled by the bits of the ninth byte. The bits of the second
through eighth bytes in the bitmap control the leftmost eight
pixels of the second through eighth vertical lines. This scheme
is repeated across the screen. Figure 8-4 illustrates the offsets
from the bitmap starting address for the bytes which control
the pixels in the upper left corner of the screen.
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Figure 8-4. Byte Offsets for Bitmapped Screen
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This obviously isn't very convenient. Most programmers
prefer to use a more familiar ^-coordinate system, as shown
in Figure 8-5. In this system, the horizontal (x) pixel position
will be in the range 0-319 and the vertical {y) position will be
in the range 0-199. In x,y format, the upper left corner of the
screen is position 0,0 and the lower right corner is position
319,199. This is also the format used to specify screen posi-
tions in BASIC statements such as BOX, CIRCLE, and DRAW,
To determine the byte offset (0-7999) within the bitmap and
the bit (0-7) within that byte which corresponds to a particu-
lar ^-coordinate pair, use the following formulae:
byte offset = 40 * (y AND 248) + (x AND 504) + (y AND 7)
bit = 7 - (x AND 7)
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where x will have a value in the range 0-319 and y will have
a value in the range 0-199.

Each bit in the bitmap can be either %0 or %1 , so each
corresponding pixel on the screen can be one of two colors. By
convention, the color specified by a %0 bit is referred to as the
background color and the color specified by a %1 bit is re-
ferred to as the foreground color. The values for both colors
come from the video matrix, the area used as screen memory
in the character display modes. (Color memory and the back-
ground color registers are not used in standard bitmapped
mode.) The low nybble (bits 0-3) of a video matrix location
holds the background color value and the high nybble (bits
4-7) holds the foreground color value. Either foreground or
background can take any of the 16 colors listed in Table 8-1.
However, since there are only 1000 video matrix positions, the
foreground and background color cannot be specified individ-
ually for each of the 64,000 pixels on the screen. All 64 pixels
within an 8-pixel X 8-line area will share foreground and
background colors. The common areas are arranged in the
same fashion as screen memory: 25 rows X 40 coiumns.^ To
determine the video matrix location that holds the color infor-
mation for a particular x,y coordinate, use the following
formula:
color byte = 40 * INT(y / 8) + INT(x / 8) + screen base address

Multicolor Bitmapped Mode
Multicolor bitmapped mode is similar to bitmapped mode, but
the number of possible colors per common color area is in-
creased to four. To select among four different colors, two bits
are required for each pixel. Since twice as many bits are re-
quired to specify the color of each horizontal pixel, only half
as many pixels can be displayed per line; horizontal resolution
is reduced to 160 pixels per line. The display will still be the
same size, but each pixel will now be twice as wide. To deter-
mine the byte offset (0-7999) within the bitmap and the bit
pair (0-3) within that byte which correspond to a particular
^-coordinate pair, use the following formulae:
byte offset = 40 * (y AND 248) + 2 * (x AND 252) + (y AND 7)
bit pair = 3 - (x AND 3)
where x will have a value in the range 0-159 and y will have
a value in the range 0-199.
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Of the four color sources in multicolor mode, one is com-
mon to all pixels on the screen and the other three can be se-
lected independently for each common color area. Common
color areas correspond in size {4 pixels X 8 lines) and layout
(40 X 25) to multicolor character positions. All pixels repre-
sented by %00 bit patterns in the bitmap will take the color
specified in the VIC background color register at 53281/
$D021. As in standard bitmapped mode, the video matrix
(screen memory) area holds color information. In this case, the
lower nybble (bits 0-3) of each video matrix location specifies
the color for all %10 bit patterns within the corresponding
common color area, while the upper nybble (bits 4-7) specifies
the color for alt %01 bit patterns in the common color area.
The color for any %11 bit patterns in each common color area
is determined by the value in the corresponding color memory
location (55296-56295/$D800-$DBE7). Any of these color
sources can take any of the 16 color values listed in Table 8-1.

Sprites
Sprites, which Commodore officially calls movable object
blocks (MOBs), are a special feature of the VIC. As their offi-
cial name implies, sprites are images that can be easily moved
about on the screen. Sprites are completely independent of the
background display, and can be made to appear either in front
of or behind screen foreground objects. They can move with
equal ease over character and bitmapped screens. The manipu-
lation of sprites consumes a substantial portion of the VIC
chip's internal hardware. You'll notice in the discussion of VIC
registers that 34 of the chip's 49 registers are used for some
sort of sprite manipulation. This section uses the standard VIC
number designations, 0-7, for the eight sprites. BASIC, on the
other hand, uses sprite numbers 1-8. Add 1 to the VIC sprite
number to get the corresponding BASIC sprite number, or
subtract 1 to convert the BASIC sprite number to a VIC sprite
number.

Sprites have the same two basic modes as screen displays:
standard and multicolor. Standard sprites are 24 pixels wide X
21 scan lines tall, and can have only one color. Multicolor
sprites are 12 pixels wide X 21 scan lines tall, and can have
three colors. However, multicolor sprites are the same size as
standard sprites because the multicolor pixels are twice as
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wide. Sprites can also be doubled in size horizontally or verti-
cally (see the registers at 53271/$D017 and 53277/$D01D).

The rules for defining sprite bit patterns are the same as
for custom characters in the corresponding screen modes. Each
standard sprite pixel is represented by one bit in a pattern bit-
map, while each multicolor sprite pixel requires two bits.
Thus, three bytes are required to define each scan line of the
pattern, and each sprite pattern definition requires 3 * 21, or
63 bytes. The rules for calculating byte values are the same as
for custom character patterns. Figure 8-5 shows a sprite design
grid.

Figure 8-5. Sprite Design Grid

For standard sprites, all pixels represented by %0 bits in
the definition pattern will be transparent. That is, whatever is
on the screen behind the sprite will show through. Pixels rep-
resented by %1 bits take the color specified in the color regis-
ter for that sprite (53287-53294/$D027-$D02E), so each sprite
can take a different sprite foreground color. For multicolor
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sprites, pixels represented by %00 bit patterns are transparent.
Pixels represented by %01 and %11 patterns take the colors
specified in the sprite multicolor registers (53285/$D025 and
53286/$D026, respectively). These colors are common to all
eight sprites. Multicolor pixels represented by %10 bit patterns
take the color specified in the sprite foreground color registers.

The 63 data bytes for the sprite pattern can't be placed
just anywhere in memory. The definitions must be located
within the current VIC video bank, and must begin at an ad-
dress which is an exact multiple of 64. A 16K VIC video bank
has room for 16384 / 64, or 256 sprite patterns. The pattern
for each of the eight sprites is determined by the value in a
corresponding sprite pointer. The sprite pointers don't occupy
any fixed locations. Rather, they are found at the highest eight
locations of the current screen memory (video matrix) area, at
offsets of 1016-1023 bytes from the start of the area. The
pointer value (0-255) selects one of the 256 sprite pattern
areas. The relationship between pointer values and definition
pattern area starting addresses is as follows:
pointer value = pattern starting address / 64
or:
pattern starting address = pointer value * 64

The 128 reserves locations 3584-4095/$0E00-$OFFF in
block 0 RAM to hold sprite pattern data. This 512-byte area
provides room for eight patterns, one for each of the eight
sprites. The sprite pointers are initialized to point to patterns
in this area as follows:

Sprite Pointer value Pattern address

0 56/$38 3584-3647/$0E00-$0E3F
1 57/$39 3648-371l/$0E40-$0E7F
2 58/$3A 3712-3775/$0E80-$0EBF
3 59/$3B 3776-3839/$0ECO-$0EFF
4 60/$3C 384O-3903/$0F0O-$0F3F
5 61/$3D 3904-3967/$0F40-$0F7F
6 62/$3E 3968-403l/$0F80-$0FBF
7 63/$3F 4032-4095/$0FC0-$0FFF

Even after a sprite is assigned a pattern, it will not appear
on the screen until it is enabled and moved into the visible
area of the screen display. Sprites are enabled by setting the
appropriate bits in the register at 53269/$D0l5. The position
of each sprite on the screen is specified by values in the regis-
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ters at 53248-53264/$D000-$D010. Refer to the discussion of
those registers for details.

When two sprites positions' overlap, one will appear in
front of the other. The one that appears in front is said to
have higher priority. The priority of the sprites in relation to
each other is fixed. Sprite 0 has the highest priority, and will
appear in front of any other sprites it may overlap. Sprite 1
has the next highest priority; it can appear in front of any
sprite except sprite 0. The priority decreases with increasing
sprite number, down to sprite 7, which appears behind any
other sprite it may overlap. The priority of sprites in relation-
ship to screen foreground objects is programmable; sprites can
appear to pass either in front of or behind screen foreground
pixels. See the discussion of the register at 53275/$D01B for
details.

When two sprites overlap, or when a sprite overlaps
screen foreground pixels, a collision is said to occur. The VIC
records these collisions automatically, and can generate inter-
rupts as a result. See the discussion of the registers at
53278-53279/$D01E-$D01F.

Screen IRQ Routines
The 128 introduces a feature that may be unfamiliar to those
with previous Commodore experience: shadow registers. A
shadow register is a RAM memory location that is copied into
a hardware register at regular intervals. Shadow registers are a
feature of the system's software, not its hardware. The system
IRQ interrupt sequence, the collection of routines executed ev-
ery 1/60 second (1/50 second in PAL systems), includes two
separate sections which affect the VIC chip. The screen editor
IRQ routine [$C194] controls the screen mode and raster inter-
rupt, and the BASIC IRQ routine [$A84D] controls sprite
movement, detects sprite collisions, and reads the light pen.
Because these routines maintain shadows of some VIC regis-
ters, the registers cannot be changed directly while the normal
interrupt sequence is active. If you try to store a new value in
a register that has a shadow, the interrupt will replace your
value with the shadow register contents at the next system
IRQ interrupt—within 1/60 second. The discussion of the VIC
registers below notes which registers have shadows and ex-
plains how to go about changing such registers. Refer to the
appropriate ROM routine entry for more information on the
interrupt routines.
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53248 $D000

VIC Registers
Table 8-2 is a summary of the VIC chip's registers. A detailed
description of each register follows.

Table 8-2. VIC Chip Registers

Address Function
53248/ID000 Sprite 0 horizontal position register
53249/$D001 Sprite 0 vertical position register
53250/$D002 Sprite 1 horizontal position register
53251/$D003 Sprite 1 vertical position register
53252/$D004 Sprite 2 horizontal position register
53253/$D005 Sprite 2 vertical position register
53254/$D006 Sprite 3 horizontal position register
53255/$D007 Sprite 3 vertical position register
53256/$D008 Sprite 4 horizontal position register
53257/$D009 Sprite 4 vertical position register
53258/$D00A Sprite 5 horizontal position register
53259/$D00B Sprite 5 vertical position register
53260/$D00C Sprite 6 horizontal position register
53261/$D00D Sprite 6 vertical position register
53262/$D00E Sprite 7 horizontal position register
53263/$D00F Sprite 7 vertical position register
53264/SD010 Sprites 0-7 horizontal position (most significant bits)
53265/$D011 Control/vertical fine scrolling register
53266/$D012 Raster scan-line register
53267/$D013 Light pen horizontal position
53268/SD014 Light pen vertical position
53269/$D015 Sprite enable register
53270/$D016 Control/horizontal fine scrolling register
53271/$D017 Sprite vertical expansion register
53272/$D018 Memory control register
53273/$D019 Interrupt flag register
53 2 74/$ DO 1A Interrupt mask register
53275/$D01B Sprite-to-foreground priority register
53276/$D01C Sprite multicolor mode register
53277/$D0ID Sprite horizontal expansion register
53278/$D01E Sprite-sprite collision register
53279/$D01F Sprite-foreground collision register
53280/$D020 Border color register
53281/$D021 Background color (source 0) register
53282/$D022 Background color (source 1) register
53283/$D023 Background color (source 2) register
53284/$D024 Background color (source 3) register
53285/SD025 Sprite multicolor (source 0) register
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SD010 53264

Address Function
53286/$D026 Sprite multicolor (source 1) register
53287/$D027 Sprite 0 color register
53288/$D028 Sprite 1 color register
53289/$D029 Sprite 2 color register
53290/ID02A Sprite 3 color register
53291/$D02B Sprite 4 color register
53292/$D02C Sprite 5 color register
33293/$D02D Sprite 6 color register
53294/$D02E Sprite 7 color register
53295/$D02F Extended keyboard scan register
53296/$D030 Processor clock rate control register

53248 $D000 SPOX
53249 $DOO1 SPOY
53250 $D002 SP1X
53251 $D003 SP1Y
53252 $D004 SP2X
53253 $DOO5 SP2Y
53254 $D006 SP3X
53255 $D007 SP3Y
53256 $D008 SP4X
53257 $D009 SP4Y
53258 $D00A SP5X
53259 $D00B SP5Y
53260 $D00C SP6X
53261 $D00D SP6Y
53262 $D00E SP7X
53263 $D00F SP7Y
53264 $D01O MSIGX
Sprite horizontal and vertical position registers
The position of each sprite is controlled by a pair of these reg-
isters plus a bit in the register at 53264/$D010. The extra bit
is required because the horizontal position value can exceed
255. The extra bit is effectively the ninth (most significant) bit
of the horizontal position register. The relationship of registers
to sprites is as follows:
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53264

Sprite Horizontal Bit in
register $D010

0 53248/$DO00 0
1 53250/$D002 1
2 53252/$D004 2
3 53254/$D006 3
4 53256/$D008 4
5 53258/$DO0A 5
6 53260/$DOOC 6
7 53262/SDOOE 7

$DO1O

Vertical
register
53249/$D001
53251/$D003
53253/$D005
53255/$D007
53257/$D009
53259/$D00B
53261/$D00D
53263/SD00F

The values in these registers specify a sprite's position on
the screen. (Actually, the values set the position of the upper
left corner of the 24 X 21-pixel sprite pattern.) The coordinate
system used is slightly different from the one used for bit-
mapped graphics, as illustrated in Figure 8-6. Note that the
sprite coordinate system remains the same regardless of the
current screen mode (character or bitmapped) or sprite mode
(standard or multicolor).

Figure 8-6. Sprite Position Values

The horizontal position range includes both the active
screen area and the inactive left and right borders, in units
that equal standard screen pixel widths. The vertical position
range also includes the top and bottom borders in addition to
the active screen area. Note that the horizontal position can be
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greater than 255, which is the largest value that can be stored
in a horizontal position register. To move a sprite to horizontal
position 256, you must set the horizontal position register to
0/$00 and set the most significant horizontal bit for that sprite
(in the register at 53264/$D010) to % 1 . The most significant
bit must remain set for all positions greater than 255. Because
of the extra programming required to move the sprite to this
right portion of the screen, the vertical column at horizontal
position 256 is frequently referred to as the seam.

The values in these registers cannot be changed directly
while the normal BASIC IRQ routine [$A84D] is in use. That
routine copies the contents of the shadow sprite position loca-
tions (4566-4582/$llD6-$llE6) into these registers during
each system IRQ interrupt. (See the discussion of the BASIC
IRQ routine in Chapter 5 for more details.) There are two
ways to deal with this. The simplest solution is to store the
desired sprite position values in the proper shadow location
(see the entry for the shadow locations in Chapter 3). If you
wish to use the true registers, you can prevent the execution of
the BASIC portion of the IRQ interrupt. This will disable most
BASIC sprite and sound commands, but that shouldn't be a
problem for machine language programmers. To prevent exe-
cution of the BASIC IRQ routine, you can either set bit 0 of
the initialization status flag at 2564/$0A04 to %0 (which tells
the Kernal that BASIC is not initialized), or you can store any
nonzero value in the BASIC IRQ status flag at 4861/S12FD.

53265 SD011 SCROLY
Vertical smooth scrolling and control register
Bits 0-2: These bits control the VlC's vertical fine scrolling
feature. The value here specifies how many scan lines down-
ward the display should be shifted. The available three bits
allow the screen to be scrolled up to seven scan lines. The
IOINIT routine [$E109] initializes these bits to %011 = 3, so
the default display will be scrolled down three scan lines from
its highest possible position.

The display scrolls without wrapping; blank scan lines are
moved in from the top and scan lines on the bottom move off
the visible screen. Pixels in scan lines scrolled off the bottom
of the display are not erased. They become visible again if the
display is scrolled back upward by reducing the value in these
bits. The 24-row feature is useful with scrolling because it cre-
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53265 $D011 I $D012 53266

ates hidden scan lines at the top and bottom of the screen that
can be scrolled onto the visible area.
Bit 3: This bit determines the vertical height of the active por-
tion of the screen display. Setting this bit to %1 selects a 25-
row (200 scan-line) active screen. The bit is initialized to this
setting during the IOINIT routine [$E109], and neither the op-
erating system nor BASIC changes this value. Setting this bit
to %0 reduces the height of the active portion of the display
to 24 rows (192 scan lines) by blanking the top four and bot-
tom four scan lines of the display. The pixels in the blanked
columns aren't erased; they'll still be intact when the screen is
switched back to 25 rows. The 24-row feature is useful in con-
junction with the vertical scrolling feature described in bits 0-2.

Bit 4: This bit enables or disables the VIC screen display.
While the bit is % 1 , the VIC provides its normal screen out-
put. The bit is initialized to this setting during the IOINIT rou-
tine [$E109]. When the bit is set to %0, the VIC suspends the
active portion of the display and provides a solid screen in the
border color specified in the register at 53280/$D020. The
screen is not erased, just blanked. Any text or graphics will
still be intact if the screen is again enabled. With the display
blanked, the VIC doesn't have to steal timing cycles from the
processor as it normally does. As a result, the 128 actually
runs about 7 percent faster with the VIC display off.

There are several uses for this blanking feature. For ex-
ample, you could blank the display while drawing a complex
bitmapped graphics screen, then dramatically unveil the com-
pleted picture by reenabling the display. Since the VIC cannot
provide a proper display at the 2-MHz clock rate, the VIC dis-
play is normally blanked when the system is switched to fast
mode. One step in the BASIC statement FAST involves setting
this bit to %0. The SLOW statement returns it to % 1 . This bit
is also set to %0 to blank the screen during tape operations,
and restored to %1 upon completion of the operations.
Bit 5: This bit selects whether the VDC will generate a charac-
ter mode display or a bitmapped mode display. (See the intro-
duction to this section for a discussion of the display modes.)
Setting this bit to %0 selects character mode, while setting it
to %1 selects bitmapped mode.

This bit cannot be directly modified while the normal sys-
tem interrupt sequence is active because a step in the screen
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editor IRQ routine [$C194] sets this bit according to the screen
mode flag (location 216/$D8). To change the setting of this
bit, you can either store the appropriate value in the flag loca-
tion, or you can disable the screen-setup portion of the IRQ
routine and change this bit directly. To use the flag location,
set bit 5 of location 216/$D8 to the desired setting (%0 or %1)
for the register bit. To turn off the screen-setup portion of the
interrupt routine, store the value 255/SFF in location 216/$D8.

Bit 6: This bit controls extended background color mode,
which offers a choice of four different background colors for
each character position. For details about this mode, refer to
the introduction for this section. Extended background color
mode is enabled when this bit is set to % 1 . The mode works
only in conjunction with character mode. You should not se-
lect extended background color mode while bit 5 is set to %1
to select bitmapped mode.
Bit 7: This bit is effectively the ninth bit of the raster register
at 53266/$D011. Refer to the discussion of that register for
details. The extra bit is necessary because a full screen con-
tains more than 256 scan lines.

53266 $D012 RASTER
Raster compare register
This register has two different functions, depending on
whether it is being read from or written to. As explained in
the introduction for this section, the video screen display con-
sists of a stack of thin horizontal lines of dots called a raster.
When the register is read, the value returned is the number of
the raster scan line currently being drawn. The range of scan-
line numbers depends on the video system in use. For NTSC
(North American) systems, values can be in the range 0-262,
while PAL (European) systems have a maximum count of over
300. In either case, the active portion of the screen consists of
scan lines 50-249.

The maximum scan-line number in either system is larger
than can be held in a single eight-bit register, so bit 7 of the
register at 53265/$D011 is used to hold the ninth bit of the
value. When bit 7 of 53265/$D011 is % 1 , you should add
256/ $100 to the value in this register to get the true scan-line
number. For scan line 262, for example, bit 7 of 53265/$D011
will be %1 and the value in this register will be 6/$06. Be-
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cause the value in this register changes so rapidly (over 15,000
times per second), it can't be read usefully from BASIC. By the
time you PEEKed the value into a variable, the raster scan line
would have moved far beyond the line recorded in the vari-
able value.

When you write to this register or to bit 7 of 53265/
$D011, the value written is stored in an internal nine-bit raster
compare latch register. Whenever the current scan-line count
equals the value in this register, bit 0 of the interrupt register
at 53273/$D019 will be set to % 1 . If bit 0 of the interrupt
mask register at 53274/$D01A was previously set to %1 , this
will also trigger an external interrupt request to the processor.
The value you store in this register represents the scan line at
which you wish the interrupt to occur. For scan-line values
less than 256, you must also set bit 7 of 53265/$D011 to %0.
For scan-line values of 256 or greater, you must set bit 7 of
53265/$D011 to %1 and store the line number minus 256 in
this register. To calculate the top scan line corresponding to
any row of character positions, use the following formula:
scan line = (row * 8) + 50
where the row value is in the range 0-24.

Raster interrupts can be used to program a variety of spe-
cial video effects, including split screens like those in the
GRAPHIC 2 and GRAPHIC 4 modes. The 128 also uses a ras-
ter interrupt off the visible screen (at scan line 255) to drive
the system IRQ sequence. Because of this, you cannot write a
new value directly to this register while the the normal system
interrupt sequence is in use. The screen-setup portion of the
screen editor IRQ routine [$C194] will write the value 255/$FF
to this register on every pass, except when setting up the bit-
mapped portion of a split bitmapped/text screen. In that case,
the value in location 2612/$0A34 will be copied into the reg-
ister. In either case, bit 7 of the register at 53265/$D011 will
be set to %0. To use a raster interrupt for your own purposes,
you must write a new interrupt routine. Refer to Appendix A
for more information.

53267 $D013 LPENX
53268 SD014 LPENY
Light pen horizontal and vertical positions
Whenever the VIC's LP input line is brought to a low (0 volts)
state, the raster beam's horizontal dot position and vertical
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scan line are latched into these registers. The register at
53267/SD013 will hold the horizontal position value, and the
one at 53268/$D014 will hold the vertical position value. To
signal that a new value has been latched, bits 7 and 3 of the
interrupt register at 53273/SD019 will be set to % 1 . These
registers are read-only; writing to them has no effect. The reg-
isters are not cleared when read; the latched values will be re-
tained until the LP line is again brought low.

The range of scan-line values in the register at 53268/
$D014 is the same as the range of sprite vertical positions
shown in Figure 8-6. For example, the top scan line of the ac-
tive screen area is 50, In that figure, you'll note that the range
of horizontal positions extends to 343, which is greater than
can be represented in a single eight-bit register. To compen-
sate, the range of horizontal values in the register at 53267/
$D013 is the equivalent of one-half the range of horizontal
values shown in Figure 8-6. For example, the horizontal-position
value for the center of the screen is 184, so the corresponding
light pen position will be about 92.

The LP line is connected to pin 6 of control port 1 (con-
trol port 2 does not support a light pen). A light pen has at its
tip an electronic device known as a phototransistor, which is
connected so as to cause a low pulse whenever the video
beam moves past the pen. These registers can be tricked into
reading false values. Pin 6 of control port 1 is also used for
light pen input for the VDC chip, so a light pen signal gener-
ated on the 80-column screen will latch meaningless values in
these registers. In lieu of a light pen, several other events can
cause a pulse on the LP line. That control port pin is also used
for the joystick fire button, so pressing the button of a joystick
plugged into port 1 will also latch values in these registers. Be-
cause of this joystick button function, the port line is also con-
nected to the line from row 4 of the keyboard matrix. This has
two consequences. First, pressing any of the following keys
with no light pen connected will latch meaningless values: Fl,
Z, C, B, M, period, right SHIFT, space, the 2 and ENTER keys
on the numeric keypad, and the ^ key in the cursor group.
More significantly, while a light pen is connected, all of these
keys will be "dead," and cannot be typed.
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53269 $D015 SPENA
Sprite enable register

This register controls which sprites are enabled. Only enabled
sprites can be visible, and only enabled sprites can be in-
volved in collisions. Setting a bit in this register to %1 enables
the corresponding sprite. However, an enabled sprite won't be
visible unless it is also positioned within the visible screen
area, has a pattern definition that includes some nonzero bits,
and is set to a color different from the screen background
color. Setting a bit in this register to %0 turns off the cor-
responding sprite, but does not change the setting of any other
parameters. When reenabled, the sprite will still have the
same position, color, and pattern (unless those were changed
while the sprite was turned off). The sprites are controlled as
follows:

Bit Bit value Sprite controlled
0 l/$01 ' 0
1 2/$02 1
2 4/$04 2
3 8/$08 3
4 16/S10 4
5 32/$20 5
6 64/$40 6
7 128/$80 7

This register is initialized to 0/$00 (all sprites disabled) by
the IOINIT routine [$E109], part of the reset and RUN/
STOP-RESTORE sequences. Sprites are normally disabled
during tape and serial bus operations to prevent timing prob-
lems. In this case, the contents of the register are stored in lo-
cation 2616/$0A38 for the duration of the operation, then
restored to the register when the operation is completed. You
can prevent this and keep sprites enabled by setting bit 7 of
the custom mode flag (2618/$0A3A) to % 1 .

53270 $D016 SCROLX
Horizontal smooth scrolling and control register

Bits 0-2: These bits control the VIC's horizontal smooth scroll-
ing feature. The value here specifies the number of pixels the
display is to be shifted to the right. The available three bits
allow the screen to be shifted as many as seven pixels. The
display scrolls without wrapping; blank pixels are moved in
from the left and pixels on the right move off the visible
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screen. Pixels scrolled off the right are not erased, just hidden.
They will become visible again if the display is scrolled back
to the left by reducing the value in these bits. The 38-column
feature is useful with scrolling because it creates a hidden left
column that can hold pixels to be scrolled onto the visible area.

Bit 3: This bit determines the horizontal width of the screen.
Setting this bit to %1 selects a 40-column (320-pixel) screen.
The bit is initialized to this setting during the IOINIT routine
[$E109], and neither the operating system nor BASIC ever
change this value. Changing this bit to %0 reduces the width
of the active portion of the display to 38 columns (304 pixels)
by blanking the leftmost and rightmost columns. (Actually, 7
pixels on the left and 9 on the right are blanked.) The contents
of the blanked columns aren't erased; they'll still be intact
when the screen is switched back to 40 columns. The 38-column
feature is useful in conjunction with the horizontal scrolling
feature in bits 0-2. Scrolling the 38-column screen the maxi-
mum 7 pixels to the right will make the contents of the previ-
ously hidden leftmost column visible.

Bit 4: This bit controls multicolor mode for both the character
and bitmapped screens. While this bit is %0, foreground pixels
will be limited to one color (although the color can be differ-
ent for every character position). Setting this bit to %1 enables
multicolor mode, which allows a choice of three different col-
ors for each foreground pixel. However, selecting multicolor
mode also cuts horizontal resolution for the screen in half. Se-
lecting multicolor mode for the screen has no effect on any
sprites that might be displayed on that screen. Sprite multi-
color mode is controlled by the register at 53276/$D01C.

This bit cannot be directly modified while the normal sys-
tem interrupt sequence is active because a step in the screen
editor IRQ routine [$C194] sets this bit according to the screen
mode flag (location 216/$D8). To change the setting of this bit
for bitmapped mode, you can either store the appropriate
value in the flag location, or you can disable the screen-setup
portion of the IRQ routine and change this bit directly. To use
the flag location, set bit 7 of location 216/$D8 to the desired
setting (%0 or %1) for the register bit. To turn off the screen-
setup portion of the interrupt routine, store the value 255/$FF
in location 216/SD8. To select multicolor character mode, you
must use the option to disable the screen setup, since the text
mode-setup subroutine always sets this bit to %0.
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Bit 5: This bit is referred to in Commodore literature as the re-
set bit, but its intended usage is unclear. The value here has
no apparent affect on any VIC operations.

Bits 6-7: These bits are unused. Writing to them has no effect,
and they always return %1 when read.

53271 $D017 YXPAND
Sprite vertical expansion register
Each bit in this register controls the vertical expansion feature
for one of the eight sprites. The relationship of sprites to regis-
ter bits is the same as for the sprite enable register (53269/
$D015). Setting a bit here to %1 will double the vertical
height of the corresponding sprite. Each sprite can be ex-
panded independently, with regard for the background screen
on which the sprite is displayed. The resolution of the sprite is
not increased—it will still be 21 pixels tall—but the height of
the pixels will be doubled. Vertical expansion can be selected
in conjunction with horizontal expansion to double the size of
a sprite. (Horizontal expansion is controlled by the register at
53277/SD01D.) The default value in this register, established
by the IOINIT routine [$E109], is 0/$00, so no sprites are ini-
tially expanded.

53272 $D018 VMCSB
Screen and character base address register
The value in this register determines the location within the
current 16K VIC video bank of the two movable components
of video memory: the screen memory/video matrix and char-
acter memory/bitmap areas. (There is no provision for moving
color memory; that area always appears at 55296-56319/
$D800-$DBFF.) The contents of this register cannot be changed
directly while the normal system IRQ interrupt sequence is in
use. The screen editor IRQ routine [$C194] copies the contents
of a shadow location into this register during each interrupt.
The shadow location depends on the screen mode in use. For
text mode, or for the text portion of a split screen, the contents
of location 2604/$0A2C will be copied here. For bitmapped
modes, the value in location 2605/S0A2D will be copied into
the register. You have two choices for changing the value in
this register. You can either store the desired value in the ap-
propriate shadow location, or you can turn off the screen-
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setup portion of the screen editor IRQ routine to gain direct
access to the register. To disable the screen-setup step, store
the value 255/$FF in location 216/$D8.

Bit 0: This bit is unused. Writing to it has no effect, and it
always returns %1 when read. Thus, the value read from this
register will always be odd.

Bits 1-3: The value in these bits determines the location of char-
acter memory (for character mode) or of the bitmap (for bit-
mapped modes). For character mode, a complete 256-character
set requires 2048 (2K) bytes, and the character set must start
on an even 2K memory address boundary. Possible selections
are as follows:

Bits Offset for
3 2 1 character set
0 0 0 0/$00
0 0 1 2048/$0800
0 1 0 4096/$1000
0 1 1 6144/$1800
1 0 0 8192/$2000
1 0 1 10240/$2800
1 1 0 12288/$3000
1 1 1 14336/S3800

These bits do not determine the absolute address of the char-
acter set, but rather the offset from the starting address of the
current video bank. For example, video bank 2 begins at ad-
dress 32768/$8000, so a bit setting of %100 in that case
would place the character set at 32768 + 8192 = 40960/$A000.
However, the default video bank (bank 0) begins at location
0/$0000, so in that case the offset is equal to the actual address.

The 128 normally provides a pair of character sets and al-
lows you to switch between them by pressing the SHIFT -
Commodore key combination. If you are setting up a single
custom character set, you should disable this character
set-switching feature by setting bit 7 of location 247/$F7 to
% 1. If you wish to retain the character set-switching feature,
you must provide two character sets, one at an "even" posi-
tion (one for which bit 1 of this register is %0), and the other
at the next higher ("odd") position.

The CINT screen editor initialization routine [$C07B] sets
bits 1-3 to %010 in location 2604/$0A2C, the shadow for this
register in text mode. This places the default character memory
at an offset of 4096/$1000 from the starting address of the
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video bank (and implies that the alternate character set will be
located at an offset of 6144/$1800), This may seem strange,
since there is certainly no character pattern data stored in
RAM at addresses 4096-8191/$1000-$lFFF/ and since the
128's memory map shows that the character ROM is actually
located at addresses 53248-57343/$D000-$DFFF. However,
the 128 has the capability to make the VIC chip see character
ROM at addresses 4096-6143/$1000-$17FF (for the uppercase/
graphics set) and addresses 6144-8191/$1800-$lFFF (for the
lowercase/uppercase set) in any video bank. (Note that this is
a change from the Commodore 64, which could only see char-
acter ROM in video banks 0 and 2.) Only the VIC will see the
character ROM at those addresses. To the processor, those lo-
cations will still be RAM.

This feature is controlled by bit 2 of the 8502's built-in
I/O port, at location l/$01. When bit 2 of the register at
l/$01 is %0, the VIC chip will see character ROM in the char-
acter memory areas beginning at addresses 4096/$1000 and
6144/$1800. No other character memory slots are affected.
When the I/O port bit is set to % 1 , the VIC will instead see
the true contents of RAM at those addresses rather than im-
ages of the character ROM. Like other screen control locations,
the I/O port bit has a shadow location. Bit 2 of location
217/SD9 is copied into bit 2 of location l/$01 during each
pass through the text screen-setup portion of the screen editor
IRQ routine. To switch out character ROM, you must set bit 2
of the shadow location to %1 (store the value 4/$04 in loca-
tion 217/$D9). Alternatively, you can disable the screen-setup
portion of the screen editor IRQ routine by storing the value
255/$FF in location 216/$D8; then you change bit 2 of loca-
tion l/$01 directly.

Finding free space for a custom character set can be a chal-
lenge. If you are using machine language exclusively, any of
the character set slots above address 4864/$1300 can be used,
but none of the address slots are completely free in the stan-
dard configuration with BASIC. If you disable character ROM,
there is free memory at 6144-7167/$ 18OO-$1BFF for half a char-
acter set (128 character patterns). If your program doesn't use
a bitmapped screen, you can allocate a bitmap area and then
use the reserved space for custom character sets. For example,
if your BASIC program includes the statements GRAPHIC
1:GRAPHIC 0, the area from 7168-16383/ $1COO-$3FFF will
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be protected from BASIC, and any character memory slot in
that area can be used to hold the new character set.

Since the bitmap for a high-resolution display requires
8000 bytes of memory and must begin at an even 8K memory
address boundary, there are only two possible positions for
the bitmap within the 16K video bank. When you are specify-
ing the location of the bitmap, only the setting of bit 3 is sig-
nificant. When that bit is %0, the bitmap will begin at an
offset of 0/$0000 from the start of the video bank. When bit 3
is %1 , the bitmap begins at an offset of 8192/$2000 from the
start of the video bank. The CINT screen editor initialization
routine [$C07B] sets bits 1-3 to %100 in location 2605/$0A2D,
the shadow for this register in bitmapped mode, so the default
location of the bitmap is 8192/$2000 bytes beyond the start of
the video bank (address 8192/$2000 for the default video bank).

Bits 4-7: These bits determine the location of the video matrix
area, which is used as screen memory in character mode and
to hold color information in bitmapped mode. The video ma-
trix requires 1000 bytes of memory and must start on an even
IK address boundary. Possible selections are as follows:

Bits Offset for
7 6 5 4 video matrix
0 0 0 0 0/$0000
0 0 0 1 1024/$0400
0 0 10 2048/$0800
0 0 11 3072/$OC00
0 10 0 4096/$1000
0 10 1 5120/$1400
0 1 1 0 6144/$1800
0 1 1 1 7168/$1COO
10 0 0 8192/$2000

0 0 1 9216/$2400
0 1 0 10240/$2800
0 1 1 11264/$2C00
1 0 0 12288/$3000
1 0 1 13312/$3400
1 1 0 14336/S3800
1 1 1 15360/$3CO0

These bits do not determine the absolute address of the video
matrix, but rather the offset from the starting address of the
current video bank. For example, video bank 3 begins at ad-
dress 49152/$C000, so a bit setting of %0010 in that case
would place the character set at 49152 + 2048 = 51200/
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$C800. However, the default video bank (bank 0) begins at lo-
cation 0/$0000, so in that case the offset is equal to the actual
address.

The C1NT screen editor initialization routine [$C07B] sets
bits 4-7 to %0001 in location 2604/$0A2C, the shadow for
this register in text mode. This places the default character
memory at an offset of 1024/$0400 from the starting address
of the video bank. You can't change this register directly while
the normal system interrupt sequence is active. To move the
video matrix for the text screen, you can either change the
value in location 2604/$0A2C, or you can turn off the screen-
setup portion of the interrupt sequence by storing the value
255/$FF in location 216/$D8. After that, you can change the
register directly. Even if you change the value in this register,
all printed characters will continue to go to the former screen
memory range until you change the value in location 2619/
$0A3B to reflect the new starting page for screen memory.

Because the bitmap for a high-resolution display requires
half of the memory available in a 16K video bank, only half of
the possible addresses are really useful. When setting up a bit-
mapped display, you should select a video matrix area in the
portion of the video bank not occupied by the bitmap. The
CINT screen editor initialization routine [$C07B] sets bits 4-7
to %0111 in location 2605/$0A2D, the shadow for this regis-
ter in bitmapped mode, so the default location of the video
matrix in that mode is 7168/$1COO bytes from the start of the
video bank (address 7168/$1COO for the default video bank).
Thus, the bitmapped mode video matrix will not disturb char-
acter mode screen memory.

To move the video matrix for the bitmapped screen, you
can either change the value in location 2605/$0A2D, or you
can turn off the screen-setup portion of the interrupt sequence
by storing the value 255/$FF in location 216/SD8. After that,
you can change the register directly.

$D019 VICIRQ53273
Interrupt register
This register is read-only; writing to this location has no effect.
Bits 0-3 indicate the status of the four interrupt sources for the
VIC chip. These bits will always reflect the status of their cor-
responding events, regardless of whether or not register
53274/$D01A has been set to trigger an external interrupt re-
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quest for the event. Once a bit here is set to %1 , it will retain
that value until the register is read, at which time all func-
tional bits are reset to %0.
Bit 0: This bit will be set to %1 whenever the raster scan-line
count equals the value in the raster compare register 53266/
$D012 (plus bit 7 of 53265/$D011).
Bit 1: This bit will be set to %1 whenever a nontransparent
portion of a sprite overlaps any screen foreground pixels. (Re-
member, however, that for multicolor character or multicolor
bitmapped screens, no collision can be detected between
sprites and foreground pixels represented by %01 bit patterns.)
The register at 53279/$D01F records which sprites are in-
volved in collisions with foreground data.

Bit 2: This bit will be set to %1 whenever two or more sprites
overlap. Collisions can only be detected between the fore-
ground portion of the sprites, those pixels represented by non-
zero bit patterns. No collision is detected when the over-
lapping portions of the sprites are transparent (when the pixels
are represented by %0 or %00 bit patterns). The register at lo-
cation 53278/$D01E records which sprites are involved in col-
lisions with other sprites.

Bit 3: This bit will be set to %1 whenever a new value is
latched into the light pen registers at 53267-53268/
$D013-$D014.
Bits 4-6: The bits are not used, and always return %1 when
read.
Bit 7: Whenever any internal interrupt source sets one of the
other bits in this register to % 1 , this bit will also be set to %1
to indicate that an internal interrupt has been recorded. Thus,
you need to test only this bit to determine whether an internal
interrupt has occurred. Note that this register is automatically
cleared after it is read, so you'll need to save the register value
before testing this bit if you want to be able to subsequently
read any of the other bits.

53274 $D01A IRQMSK
Interrupt enable register
Certain events such as sprite-sprite collisions always generate
internal VIC interrupts, recorded in the register at 53273/
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$D019. The VIC chip has the capability to generate an exter-
nal interrupt request to the processor as a result of any of
these conditions. In the 128, the VIC's interrupt request output
line is connected to the processor's IRQ line, so internal VIC
events can trigger processor IRQ interrupts. See Appendix A
for more information on IRQ interrupts.

Bit 0: Setting this bit to %1 enables an external interrupt re-
quest when the raster count match is recorded in the flag at
bit 0 of the register at 53273/$D019. Because raster interrupts
are the normal source of the system jiffy interrupt that drives
keyboard scanning and other important housekeeping fea-
tures, this bit is initialized to %1 by the Kernal IOINIT routine
[$E109]. Changing this bit to %0 will completely disable the
system interrupt.

Bit 1: Setting this bit to %1 enables an external interrupt re-
quest when a sprite-foreground collision is recorded in the flag
at bit 1 of the register at 53273/$D019, as when a sprite
passes over a character on the text screen.

Bit 2: Setting this bit to %1 enables an external interrupt re-
quest when a sprite-sprite collision is recorded in the flag at
bit 2 of the register at 53273/$D019.

Bit 3: Setting this bit to %1 enables an external interrupt re-
quest when a new value is recorded in the flag at bit 3 of the
register at 53273/$D019. It is risky to use this interrupt
source, because a number of events other than the light pen
can trigger the latching of values into these registers. See the
entry for the light pen registers for details.

Bits 4-7: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value seen
when this register is read will always be at least 240/$F0. To
mask off these unused bits and see the valid interrupt settings,
use AND 15 in BASIC or AND #$0F in machine language.

53275 8D01B SPBGPR
Sprite-to-foreground priority register
Each bit in this register controls the sprite-to-foreground prior-
ity for one of the eight sprites. The relationship of sprites to
bits is the same as for the sprite enable register (53269/
$D015). While a bit here is %0, the corresponding sprite will
have higher priority than the screen foreground, and will thus
appear to pass in front of anything displayed in the fore-
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ground color on the text or bitmapped screens. When a bit
here is set to % 1 , the corresponding sprite will have lower pri-
ority than the screen foreground, and will thus appear to pass
behind anything displayed in the foreground color. For multi-
color character or multicolor bitmapped screen modes, the
low-priority sprite will appear to pass behind screen pixels
represented by %10 and %11 bit patterns, but will still pass in
front of pixels represented by %01 bit patterns. (The sprite al-
ways appears in front of pixels with the %00 background bit
pattern.) The default value for this register, established by the
IOINIT routine [$E109], is 0/$00, so all sprites initially have
higher priority than the screen foreground.

5 3 2 7 6 8D01C SPMC
Sprite multicolor mode register
Each bit in this register controls the multicolor feature for one
of the eight sprites. The relationship of sprites to register bits
is the same as for the sprite enable register (53269/$D015).
Setting a bit here to %1 selects multicolor mode for the cor-
responding sprite. Multicolor mode can be selected indepen-
dently for each sprite, and standard and multicolor sprites can
be mixed freely on the same screen. Multicolor sprites are not
restricted to multicolor screen modes; they can be used freely
in standard screen modes as well. The default value for this
register, established during the IOINIT routine [$E109], is
0/$00, so no sprites are initially in multicolor mode.

Selecting multicolor mode for a sprite reduces the number
of horizontal pixels for the sprite from 24 to 12. However, the
sprite remains the same size; the multicolor sprite pixels are
twice as wide. Two bits of the pattern definition are required
for each pixel. All pixels represented by %00 are transparent;
whatever is behind the sprite will show through. Pixels with
%01 and %11 bit patterns take their color values from the reg-
isters at 53285/$D025 and 53286/$D026, respectively, which
are common to all multicolor sprites. Pixels with %10 bit pat-
terns take the color specified in the color register for the par-
ticular sprite (53287-53294/$D027-$D02E).

53277 $D01D XXPAND
Sprite horizontal expansion register
Each bit in this register controls the horizontal expansion fea-
ture for one of the eight sprites. The relationship of sprites to
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register bits is the same as for the sprite enable register
(53269/$D015). Setting a bit here to %1 will double the hori-
zontal width of the corresponding sprite. Each sprite can be
expanded independently, without regard for the background
screen on which the sprite is displayed. The resolution of the
sprite is not increased (it will still be 24 pixels wide) but the
width of the pixels will be doubled. Horizontal expansion can
be selected in conjunction with vertical expansion to double
the size of a sprite. (Vertical expansion is controlled by the
register at 53271/$D017.) The default value in this register,
established by the IOINIT routine [$E109], is 0/$00, so no
sprites are initially expanded.

53278 8D01E SPSPCL
Sprite-to-sprite collision register
This register records collisions between two or more sprites.
This register is read-only; storing values here has no effect. A
collision occurs whenever any nontransparent portions of the
sprites overlap. Transparent pixels (pixels with bit patterns of
%0 or %00) are not involved in collisions. When sprites col-
lide, the bits in this register corresponding to those sprites are
set to %1 (the correspondence between sprites and bits is the
same as for the sprite enable register). Since a minimum of
two sprites are involved in any sprite-sprite collision, at least
two bits will be set. The register is automatically cleared to
0/$00 after each time it is read, so you'll need to store the
value you read if you wish to perform multiple tests. Bit 2 of
the interrupt register at 53273/$D019 will also be set to %1
whenever any sprite-sprite collision occurs.

This register indicates only that sprites have collided. It
does not necessarily tell you which sprites are involved in a
particular collision. If only two bits are set, then those sprites
obviously must have hit each other. However, if you find that
three or more bits are set, you must read the horizontal and
vertical position registers for the involved sprites and deter-
mine which sprites are in contact with each other. Remember
that the sprite position registers return the position of the up-
per left corner of the sprite, which may not be the point of the
sprite that is colliding with the foreground.

One thing to beware of when reading this register is that
after a sprite overlaps a foreground object, the register will
continue to record collisions until the sprite is moved away
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from the object. Also, sprite-sprite collisions can occur even
when the sprites are located completely outside the visible
screen area.

53279 $D01F SPFGCL
Sprite-foreground collision register
This register records collisions between sprites and the screen
foreground. This register is read-only; storing values here has
no effect. A collision occurs whenever any pixel in a sprite
represented by a nonzero bit pattern overlaps any foreground
pixel on the screen, as when a sprite passes over a character
on the text screen. Background or transparent pixels are not
involved in collisions. For the purposes of collision detection,
multicolor screen pixels represented by %01 bit patterns are
not considered foreground, and no collision will be detected
when a sprite pixel overlaps a multicolor screen %01 pixel.
When a sprite collides with a foreground pixel, the bit in this
register corresponding to that sprite is set to %1 (the cor-
respondence between sprites and bits is the same as for the
sprite enable register). The register is automatically cleared to
0/$00 after each time it is read, so you'll need to store the
value you read if you wish to perform multiple tests. Bit 1 of
the interrupt register at 53273/$D019 will also be set to %1
whenever any sprite-foreground collision occurs.

This register indicates only that a sprite has collided with
some portion of the screen foreground. It does not tell you ex-
actly what the sprite is overlapping. To determine that, you
must determine which sprite or sprites are involved in colli-
sions, then read the horizontal and vertical position registers
for the involved sprites and determine what screen-foreground
object is located in that vicinity. Remember that the sprite po-
sition registers return the position of the upper left corner of
the sprite, which may not be the point of the sprite that is col-
liding with the foreground.

One thing to beware of when reading this register is that
after a sprite overlaps a foreground object, the register will
continue to record collisions until the sprite is moved away
from the object.

53280 $D020 EXTCOL
Border color register
The value in this register determines the color of the screen
border, the area of the screen surrounding the active portion
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of the display. When the screen is blanked by setting bit 4 of
the register at 53265/$D011 to %0, the entire display area will
be filled with the color specified here. Since the VIC can pro-
duce only 16 different colors, only four bits are required to
hold all possible color values. Thus, only bits 0-3 of this loca-
tion hold meaningful values. Bits 4-7 are unused; writing to
those bits has no effect, and the bits always return % 1 when
read. Thus, the value in this register will always be at least
240/$F0. To mask off these bits and read the true color value
you should use AND 15 in BASIC or AND #$0F in machine
language. See Table 8-1 for a list of standard VIC color values.
The default setting for this register, established by the IOINIT
routine [$E1O9], is 13/$0D (light green). From BASIC, the
value here can be changed using the statement COLOR 4,rc
(where n is the desired BASIC color number; BASIC color
numbers are equal to VIC color values plus one).

53281 $DO21 BGCOLO
Background color register 0
In standard character mode, the value here determines the
color of all pixels in a screen position which are represented
by %0 bits in the character pattern. This background color is
common to all screen positions. Clearing the screen fills all po-
sitions with the screen code for the space character, which has
a pattern that is all %0 bits. Thus, a cleared screen will be filled
with the color specified here. The color of pixels with %1 bits in
the character pattern (the foreground color) is determined by
the value in the color memory location for the position.

This register is also used in both of the other character
modes. In multicolor character mode, the value here deter-
mines the color of all pixels in all screen positions represented
by %00 bit pairs in the character pattern. In extended back-
ground color mode, the value here determines the background
color in any screen positions for which bits 6-7 of the screen
code in the corresponding screen memory location are %00.
This register is unused in standard bitmapped mode, but for
multicolor bitmapped mode the value here determines the
color for all pixels represented in the bitmap by %00 bit pairs.

Since the VIC can produce only 16 different colors, only
four bits are required to hold all possible color values. Thus,
only bits 0-3 of this location hold meaningful values. Bits 4-7
are unused; writing to those bits has no effect, and the bits al-
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ways return %1 when read. Thus, the value in this register
will always be at least 240/$F0. To mask off these bits and
read the true color value you should use AND 15 in BASIC or
AND #$0F in machine language. See Table 8-1 for a list of
standard VIC color values. This register is initialized to
ll /$0B (dark gray) by the IOINIT routine [$E109], part of
both the reset and RUN/STOP-RESTORE sequences. From
BASIC, the value here can be changed using the statement
COLOR 0,n (where n is the desired BASIC color number;
BASIC color numbers are equal to VIC color values plus one.)

53282 $D022 BGCOL1
53283 $D023 BGCOL2
53284 $D024 BGCOL3
Background color registers 1-3
These three registers are used only when multicolor character
mode or extended background color mode is enabled. For
multicolor character mode, the value in 53282/SD022 deter-
mines the color of any pixels in a screen position represented
by %01 bit pairs in the character pattern, and the value in
53283/SD023 determines the color of all pixels with %10
pairs. Since there is only one set of registers for all screen po-
sitions, the colors of pixels with %01 and %10 bit pairs will be
common to all characters on the screen. The color of pixels
with %00 bit pairs is determined by the value in
53281/SD021, and the color of pixels with %11 bit pairs is se-
lected individually for each character position by the value in
the corresponding color memory location (55296-56319/
$D800-$DBFF). The register at 53284/$D024 is unused in mul-
ticolor character mode,

For extended background color mode, these registers de-
termine the background color for the character position for the
character, depending on the setting of bits 6-7 of the screen
code in the screen memory location for the position. The se-
lections are as follows:
Bits
7 6
0 0
0 1
1 0
1 1

Background color source register

53281/SD021
53282/$D022
53283/$D023
53284/$D024
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Since the VIC can produce only 16 different colors, only
four bits are required to hold all possible color values. Thus,
only bits 0-3 of these locations hold meaningful values. Bits
4-7 in any of these locations are unused. Writing to those bits
has no effect, and the bits always return % 1 when read. Thus,
the value in any of these locations will always be at least
240/$F0. To mask off these bits and read the true color value
you should use AND 15 in BASIC or AND #$0F in machine
language. See Table 8-1 for a list of standard VIC color values.
These registers are initialized during the IOINIT routine
[$E019], part of the reset and RUN/STOP-RE STORE se-
quences. The default values are 1 (white) for 53282/$D022, 2
(red) for 53283/$D023, and 3 (cyan) for 53284/$D024. There
is no BASIC statement specifically for changing the settings of
these registers.

53285 $D025 SPMCO
53286 $D026 SPMC1
Sprite multicolor registers
The values in these registers determine two of the colors for
multicolor sprites. (A sprite can be switched to multicolor
mode by setting the appropriate bit in the register at 53276/
$D01C.) The value in the register at 53285/$D025 determines
the color for all pixels in the sprite represented by %01 bit
pairs in the pattern. The value in 53286/$D026 determines the
color for all pixels represented by %11 bit pairs. Since there
are only these two registers for all eight sprites, the colors of
pixels with %01 and %11 bit pairs will be common to all
sprites. The color of pixels represented by %10 bit pairs can be
selected individually for each sprite using the registers at
53287-53294/$D027-$D02E. Pixels with %00 bit pairs in the
pattern will be transparent.

Since the VIC can produce only 16 different colors, only
four bits are required to hold all possible color values. Thus,
only bits 0-3 of these locations hold meaningful values. Bits
4-7 in any of these locations are unused. Writing to those bits
has no effect, and the bits always return %1 when read. Thus,
the value in any of these locations will always be at least
240/$F0. To mask off these bits and read the true color value
you should use AND 15 in BASIC or AND #$0F in machine
language. See Table 8-1 for a list of standard VIC color values.
The default settings of these registers, established by the
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IOINIT routine [$E109], are 1 (white) for 53285/$D025 and 2
(red) for 53286/$D026. From BASIC, these settings can be
changed using the SPRCOLOR statement.

53287
53288
53289
53290
53291
53292
53293
53294

SD027
SD028
SD029
$D02A
8D02B
$D02C
$D02D
$D02E

SPOCOL
SP1COL
SP2COL
SP3COL
SP4COL
SP5COL
SP6COL
SP7COL

Sprite color registers
Each of these registers holds color information for one of the
eight sprites. For standard sprites, the value here determines
the color of all %1 bits in the sprite pattern (%0 bit positions
will be transparent). For multicolor sprites, the value here de-
termines the color of all %10 bit groups in the pattern.

Since the VIC can produce only 16 different colors, only
four bits are required to hold all possible color values. Thus,
only bits 0-3 of these locations hold meaningful values. Bits
4-7 in any of these locations are unused. Writing to those bits
has no effect, and the bits always return %1 when read. Thus,
the value in any of these locations will always be at least
240/$F0. To mask off these bits and read the true color value
you should use AND 15 in BASIC or AND #$0F in machine
language. See Table 8-1 for a list of standard VIC color values.
The following table shows the default colors for each sprite,
established by the IOINIT routine [$E109], part of both the re-
set and RUN/STOP-RESTORE sequences.

Register
53287/$D027
53288/$D028
53289/$D029
53290/$D02A
53291/$D02B
53292/$D02C
53293/$D02D
53294/$D02E

Sprite
0
1
2
3
4
5
6
7

Default color
0 (black)
1 (white)
2 (red)
3 (cyan)
4 (pmple)
5 (green)
6 (blue)
7 (yellow)
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53295 $D02F XSCAN
Extended keyboard scan-line control register
Bits 0-2: Each of these bits controls the state of one of the
three output lines from the VIC chip, K0-K2. Setting a register
bit to %0 causes the corresponding output line to go to a low
(0 volts) state, while setting a register bit to %1 causes the
output line to go to a high ( + 5 volts) state. Reading these bits
returns the current state of the corresponding output lines. In
the 128, the three output lines are used to scan the three key-
board columns containing the 24 keys in the numeric keypad
and top row of control keys. See Figure 7-1 and the discussion
of the keyboard scanning routine [$C55D] in Chapter 7 for
more information.

Unless you are writing a custom keyboard scanning rou-
tine, there's rarely a need to tinker with this register. The out-
put lines are connected only to the keyboard, and are not
available externally.

Bits 3-7: These bits are unused. Writing to them has no effect,
and they always return %1 when read. Thus, the value in this
location will always be at least 248/$F8. To mask off these ir-
relevant bits, use AND 7 in BASIC or AND #$07 in machine
language.

53296 $D030 CLKRATE
Processor clock rate control register
Bit 0: This bit controls the processor clock speed. (Remember,
the VIC chip is the source of most of the system's timing sig-
nals.) When the bit is set to %0, the processor operates at its
normal 1-MHz rate. To be precise, the clock frequency is
1.02273 MHz for NTSC (North American) systems and 0.98525
MHz for PAL (European) systems. Setting this bit to %1 dou-
bles the clock rate, providing what is commonly referred to as
2-megahertz (MHz) mode. This is also known as fast mode,
the old standard speed being disparagingly referred to as slow
mode. During the reset and RUN/STOP-RESTORE sequences,
the IOINIT routine [$E109] sets this bit to %0 for slow mode.

Fast mode does have a few limitations. While the 8502
microprocessor and the VDC 80-column video chip have no
problems operating at the higher clock rate, most of the other
I/O chips cannot keep up at this speed. The VIC chip itself
cannot maintain its video display at this speed—the 40-column
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screen becomes a colorful pattern of rapidly flashing squares.
It is common practice to set bit 4 of the VIC register at 53265/
$D011 to %0 to blank the 40-column screen display while op-
erating in 2-MHz mode. For example, the BASIC routine for
the FAST statement [$77B3] includes this step. The VDC pro-
vides an alternative to the VIC for fast mode, but other I/O
chips have no substitutes. In these cases, the system employs
an elaborate technique known as clock stretching, where the
clock period is extended to create an effective 1-MHz rate for
the portion of the clock cycle when the I/O chip is being
accessed.

Because some serial bus and tape communications
routines depend on software loops for timing functions, the
system is usually switched to the slower clock frequency when
serial bus or tape operations are being performed. The con-
tents of this register are stored in location 2615/$0A37 during
the operation, and restored to the register when the operation
is completed. You can prevent this by setting bit 7 of the cus-
tom mode flag (location 2618/$0A3A) to % 1 . In this case, the
clock rate will not be changed during tape and serial
operations.

Bit 1: This bit is described in Commodore literature as a test
bit. The IOINIT routine [$E019] sets the bit to %0, and no
other 128 ROM routine changes that setting. Some program-
mers have discovered that setting this bit to %1 will blank the
40-column screen display, and have even used this as an alter-
native to clearing bit 4 of location 53265/$D011 when switch-
ing the processor to fast mode. While this does appear to work
without side effects, such undocumented "features" are best
avoided.
Bits 2-7: These bits are unused. Writing to them has no effect,
and they always return %1 when read. Thus, the value in this
register will always be at least 252/$FC. To mask off these
bits, use AND 3 in BASIC or AND #$03 in machine language.

53297-53311 $D031-$D03F Unused
These unused register addresses always return the value
255/$FF when read. Writing to these locations has no effect.
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53312-54271 $D040-$D3FF
VIC chip register images
Due to incomplete address decoding, images of the VIC chip
registers repeat every 64 bytes through the remainder of this
page of memory. That is, storing a value in any location in
this range which has an address that is an exact multiple of 64
greater than one of the base register locations has the same ef-
fect as storing that same value at the base register location. For
example, storing a value at 53312/$D040 or 54208/$D3C0
has the same effect as storing a value in 53248/$DOOO. How-
ever, it's better programming practice to use the officially des-
ignated register addresses.

SID (Sound Interface Device) Chip Registers
S4272-54300/$D400-$D41C
The SID (Sound Interface Device) chip, officially designated
the 6581, was a remarkable breakthrough when it was first
introduced in the Commodore 64. It remains the most sophis-
ticated piece of standard audio hardware in any currently
available home computer. The SID incorporates most of the
features of a complete sound synthesizer in a single chip, and
it has been a key to the Commodore 64's success as a music
machine.

Some sound fundamentals: Most sounds we hear are
transmitted in the form of pressure waves through the air. The
sounds humans usually consider pleasant have regularly re-
peating patterns. To duplicate (synthesize) these sounds, an
electronic device such as the SID chip generates patterns of
electrical signals that are passed through an amplifier to a
speaker, which translates the signals into corresponding sound
waves. The most rudimentary characteristic of a sound wave is
its frequency, the measure of how many times per second the
bask sound pattern repeats. In music, frequency is expressed
as pitch. The higher the frequency of a sound wave, the
higher its pitch. Frequency is measured in units of cycles per
second, called hertz (Hz). The generally accepted range of fre-
quencies audible to humans is 20 Hz to 20,000 Hz. Any com-
puter that provides for sound output will allow you to control
the frequency of the sound. For those computers like the IBM
and Apple that have only rudimentary sound capabilities, fre-
quency is the only component you can control.
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In the common musical scale, every note is assigned a
particular frequency (see Appendix D). But you don't have to
know much about music to know that a C note played on a
guitar sounds different from one played on a piano or flute or
organ. Obviously, there is more to sound than just frequency.
The next important characteristic is waveform. The sound
wave for a "pure" tone will have a sinusoidal waveform, as
shown in Figure 8-7. However, a sine waveform is relatively
difficult to synthesize digitally, so it is fortunate that pure
tones are relatively rare.

Figure 8-7. Sinusoidal Waveform

Most sounds, including the sounds of almost all musical
instruments, contain harmonics in addition to the fundamental
frequency. Harmonics are components of complex sound
waveforms which are exact multiples of the fundamental fre-
quency. For example, the first harmonic of a 120-hertz wave
will have a frequency of 120 Hz (the fundamental frequency).
The second harmonic will have a frequency of 240 Hz, and
the third harmonic will have a frequency of 360 Hz. Any
wave shape can be expressed in terms of a fundamental sine
wave and additional harmonics. The SID can generate three
different wave shapes: the triangle, which corresponds to a
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Figure 8-8. SID Waveforms
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fundamental frequency plus odd harmonics in diminishing
proportions; the sawtooth waveform, which corresponds to a
fundamental frequency plus both odd and even harmonics in
diminishing proportions; and the pulse waveform, which has a
varying mix of harmonics depending on the width of the
pulse. Figure 8-8 illustrates these waveforms. The triangle
waveform corresponds to mellow sounds like those of the xy-
lophone. The sawtooth waveform corresponds to the slightly
harsher sound of instruments like the guitar or accordion. Be-
cause the harmonic content of the pulse waveform is variable,
it can be used for a variety of sounds ranging from piano to
trumpet.

Note that Figure 8-8 includes a fourth waveform not pre-
viously mentioned. In addition to the "orderly" waveforms,
the SID can also produce a waveform that varies constantly
with no discernible frequency. Such a pattern (or lack of pat-
tern) is characteristic of the class of sounds we call noise. De-
pending on how fast the wave changes levels, it can range
from a low buzz to a high hiss like radio station static.

The final component of sound that can be controlled by
the SID is the envelope. If you visualize the sound waveforms
as shown in Figure 8-8, the volume of the sound corresponds
to the height of the waveform, technically called the ampli-
tude of the wave. While some instruments like the organ can
start a note playing at a constant amplitude (volume) and turn
it off almost immediately, most instruments take a certain
amount of time to bring a note to full amplitude, and in some
instruments a note will linger for a brief period after it has
been played. This rise and fall of amplitude is called the enve-
lope of the waveform, and is usually described in terms of at-
tack, decay, sustain, and release (ADSR), as illustrated in
Figure 8-9, Each class of instrument has a characteristic ADSR
envelope.

The attack is the time required for the note to rise from si-
lence to maximum volume after it is begun—for example, after
a string is picked or bowed or struck. Decay is the time re-
quired for the note to drop from maximum volume to its sus-
tain level, where it remains until it begins to die away to
silence again (the release phase). Not every sound will exhibit
every phase of the ADSR envelope. For example, the envelope
for instruments like the guitar or piano which have plucked or
struck strings will have almost no attack time; the envelope for
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Figure 8-9. ADSR Envelope

instruments like the flute, where the player must start a col-
umn of air vibrating, have a significant attack time. The dis-
cussion of the ENVELOPE statement in the System Guide that
came with your 128 shows the relative ADSR parameters of a
variety of instrument types. If you are confused about the rela-
tionship between frequency, waveform, and envelope, Figure
8-10 should help clear up some of the confusion.

Table 8-3 lists the available registers of the SID chip. A
detailed description of each follows. The SID's 29 registers fall
into two distinct classes. The first 25 are write-only; reading
from them returns zeros or meaningless values. The final 4 are
read-only; writing to them has no effect. All 128 SID registers
appear in the same locations and have the same functions as
the Commodore 64's SID chip. Thus, any Commodore 64
sound routine should also work in Commodore 128 mode. In
addition to being loaded directly, some of these registers can
also be loaded indirectly from shadow registers as part of the
BASIC IRQ service routine.
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Figure 8-10. Sound Characteristics:
Frequency, Waveform, and Envelope
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Table 8-3. SID Chip Reg i s t e r s

54272/$D400 Frequency register for voice 1 {low byte)
54273/$D401 Frequency register for voice 1 (high byte)
54274/$D402 Pulsewidth for voice 1 (low byte)
54275/$D403 Pulsewidth for voice 1 {high byte)
54276/$D404 Control register for voice 1
54277/$D405 Attack/decay register for voice 1
54278/$D406 Sustain/release register for voice 1
54279/SD407 Frequency register for voice 2 (low byte)
54280/$D408 Frequency register for voice 2 (high byte)
54281/$D409 Pulsewidth for voice 2 {low byte)
54282/$D40A Pulsewidth for voice 2 {high byte)
54283/$D40B Control register for voice 2
54284/$D40C Attack/decay register for voice 2
54285/$D40D Sustain/release register for voice 2
54286/$D40E Frequency register for voice 3 (low byte)
54287/$D40F Frequency register for voice 3 (high byte)
54288/$D410 Pulsewidth for voice 3 {low byte)
54289/$D411 Pulsewidth for voice 3 (high byte)
54290/$D412 Control register for voice 3
54291/$D413 Attack/decay register for voice 3
54292/$D414 Sustain/release register for voice 3
54293/SD415 Filter cutoff frequency {low byte)
54294/$D416 Filter cutoff frequency (high byte)
54295/$D417 Resonance/filter control register
54296/$D418 Volume/filter mode register
54297/$D419 Potentiometer (paddle) x position
54298/$D41A Potentiometer (paddle) y position
54299/$D41B Voice 3 oscillator output
54300/$D4lC Voice 3 envelope generator output

54272 $D400 FRELO1
54273 $D401 FREHI1
Frequency control registers
The value in this pair of registers determines the frequency of
the sound generated for voice 1. The higher the frequency, the
higher the pitch of the sound. For triangle, sawtooth, and
pulse waveforms, the relationship between the value in these
registers and the voice 1 sound frequency in hertz (cycles per
second) is:
frequency = register value * clock rate / 16777216

The first register (54272/$D400) holds the low byte of the
value and the second (54273/$D401) holds the high byte. The
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clock rate depends on which video system the 128 uses. For
NTSC (North American) systems, the clock value is 1022730
Hz, while for PAL (European) systems it is 985250 Hz. Thus,
you can use the following expressions to calculate the fre-
quency produced by any given register setting:
frequency = register value * 0.06096 (for NTSC systems)
frequency = register value * 0.05873 (for PAL systems)

Since the register pair can hold values from 0-65535/
$0000-$FFFF, the range of possible output frequencies for an
NTSC system is 0-3995 Hz. A register value of zero corre-
sponds to no frequency, hence no sound. The upper limit of
human hearing is about 20,000 Hz, but the fact that the SID
can't generate frequencies above 4000 Hz isn't really a serious
handicap. The frequencies between 4000 and 20,000 Hz are
not often used in music. For example, the highest note on a
piano (a C four octaves above middle C) has a frequency of
4186 Hz, just slightly beyond the SID's range. The SID can
produce notes corresponding to those for any of the 88 keys
on a piano keyboard except the very rightmost one. The lower
limit of human hearing is about 20 Hz, so register values less
than about 320/$0140 should result in inaudible output re-
gardless of the volume setting. Actually, this is true only for
the triangle waveform. The sudden transitions in output am-
plitude during sawtooth and pulse waveforms will produce a
clicking or buzzing output at these supposedly inaudible low
frequencies.

If you know the frequency (in hertz) that you wish to
generate, you can calculate the corresponding register setting
using the following formulae:
register value = desired frequency * 16.40 (for NTSC systems)
register value = desired frequency * 17.03 (for PAL systems)
See Appendix D for a list of the standard frequencies for musi-
cal notes and the register values required to produce those fre-
quencies. It is permissible to change the frequency of a sound
while it is playing. The change will take effect immediately,
and will not affect the envelope. Changing the frequency of an
active sound can produce interesting effects. See the entry for
the register at 54299/$D41B for an example.

The noise waveform doesn't have a regularly repeating
pattern like the triangle, sawtooth, and pulse waveforms. The
output jumps erratically from one amplitude level to another,
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so noise doesn't really have a frequency in the same sense
that the other waveforms do. For noise, the value in these reg-
isters determines how rapidly the amplitude level changes.
The number of changes per second is approximately equal to
the register value. For example, a register value of 1000/$03E8
will cause the noise output level to change about 1000 times
per second, or approximately one change every 1/1000 sec-
ond. The faster the output level changes, the higher the per-
ceived pitch of the generated noise.

Remember that these are write-only registers; they will al-
ways return 0/$00 when read, regardless of the values you
have stored in them.

54274 $D402 PWLO1
54275 SD403 PWHI1
Pulsewidth control registers
This register pair controls the waveform shape when pulse
output is selected for voice 1. The value here has no effect on
any other waveform. The pulse waveform is binary; that is, it
has two states: maximum amplitude and off {no amplitude).
Unlike the ideal sine waveform, which has a smooth transition
between maximum and minimum amplitudes, the pulse wave-
form switches almost instantly. The duration of each cycle of
the waveform is controlled by the registers at 54272-54273/
$D400-$D401. What the registers here control is how much of
each cycle the waveform spends in the zero-amplitude state.

Pulse waveforms are often described in terms of their duty
cycles, the percentage of the total waveform cycle spent in the
maximum amplitude state. A pulse waveform with a 0-percent
duty cycle is always off, while a pulse waveform with a 100-
percent duty cycle is always at maximum amplitude. A wave-
form with a 50-percent duty cycle is at maximum amplitude
for half of the cycle and off for the remaining half, resulting in
a square wave. Figure 8-11 illustrates various duty cycles.

This register pair controls the duty cycle (expressed as a
percentage of the total duration of one cycle of the waveform)
according to the following formula:
duty cycle = 100 — (register value / 40.95)
Only 12 of the 16 bits in the register pair are used. The lower
8 bits come from the register at 54274/$D402 and the higher
4 bits come from bits 0-3 of the register at 54275/$D403. Bits
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Figure 8-11. Pulse Waveform Duty Cycles
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4-7 of 54275/$D403 are unused; any value written to these
bits has no effect. The available 12 bits allow register values of
0-4095/$000-$EFF, Thus, you can specify duty cycles in the
full range 0-100 percent. If you know the duty cycle you
want, you can calculate the proper register value with:
register value = (100 — desired duty cycle) * 40.95
In the expression above, the duty cycle is expressed as a per-
centage. For example, the required register value for a 50-percent
duty cycle—a square wave—would be (100 — 50) * 40.95 =
2048/$0800. For this, you would store the low byte (0/$00) in
54274/$D402 and the high byte (8/$08) in 54275/$D403.

There's one phemomenon you need to be aware of when
selecting duty cycles. The relative percentage of the pulse
waveform cycle spent in each state, rather than the actual
state, determines how the resulting output will sound. Notice
in Figure 8-11 that both the 25-percent and 75-percent duty
cycles have waveforms that are in one state for 25 percent of
the cycle and the other state for 75 percent of the cycle. In
either case, the ratio of time spent in each state is 3 to 1. A
pulse wave with a 75-percent duty cycle will sound exactly
the same as one with a 25-percent duty cycle. For every pulse
waveform duty cycle less than 50 percent, there is a duty cycle
greater than 50 percent that will produce the same sound. For
example, a waveform with a 10-percent duty cycle (on for 10
percent of the cycle and off for the remaining 90 percent) will
sound the same as a waveform with a 90-percent duty cycle
(on for 90 percent of the cycle and off for the remaining 10
percent), since for either waveform the cycle is divided be-
tween the two states in a 9-to-l ratio.

The closer the register value is to 2048/$0800—the value
for a square wave (50-percent duty cycle, 1-to-l ratio of time
in each state)—the richer the resulting output will sound. As
the register value approaches 4095 or 0, for 0- or 100-percent
duty cycles, respectively, the ratio approaches its maximum of
1 to 4095 and the resulting sound output becomes increasingly
thin. Very low or very high duty cycles result in nearly inau-
dible output. Duty cycles of exactly 0 or 100 percent result in
constant output levels. Since some variation in the output is
required to produce sound, register values of 0/$000 or 4095/
$FFF produce no audible output.

It is permissible to change the value in these registers, and
hence the width of a pulse waveform, while the voice is gen-
erating output. This will affect only the waveform, not the en-
velope. Remember that these are write-only registers; they will
always return 0/$00 when read, regardless of the values you
have stored in them.

54276 8D404 VCREG1
Voice 1 control register
Each bit of this register controls some aspect of the output
sound for the voice. Remember that this is a write-only regis-
ter. All of the following bits return %0 when read.
Bit 0: This bit, called the gate flag, is used to initiate output for
this voice and to trigger the release portion of the defined
sound envelope for the voice. (See the introduction of this sec-
tion for more information on sound envelopes.) Writing a %1
here starts the attack portion of the envelope. This is some-
times referred to as gating the voice. For audible output, the
frequency registers for this voice and the overall volume regis-
ter for the chip must contain nonzero values. The attack por-
tion of the envelope will normally be followed by the decay
phase, after which the sound amplitude will remain at the
specified sustain level until a %0 is written to this register.
After the %0 is written, the release phase begins and the
sound output level will fade away to silence at the specified
release rate. (Release does not occur unless a %0 is specifically
written to this bit.)

Note that writing a %0 here triggers the release phase re-
gardless of the current state of the envelope. For example, if
you write a %1 here and then immediately write a %0 before
the attack phase is completed, the attack will be aborted and
release will begin from the current amplitude level. Likewise,
writing a %1 here initiates the attack phase, regardless of the
current state of the envelope. For example, if a %1 is written
here while the envelope for the voice is in the decay phase,
the decay phase will be aborted and another attack phase will
begin from the current amplitude level.
Bit 1: This bit, called the sync flag, controls a special effect
known as synchronization, which changes the frequency of
and adds extra harmonics to the voice 1 output. When this bit
is set to %1 , the waveform of voice 1 will be synchronized
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with the waveform of voice 3. That is, whenever the waveform
of voice 3 starts a new cycle, voice 1 will also start a new cy-
cle, regardless of its point in its current waveform. Figure 8-12
illustrates the effect on the voice 1 waveform.

Figure 8-12. Voice 1 Synchronized with Voice 3

voice I

voice 3
frequency

resulting
output

Only the frequency specified for voice 3 is significant for
synchronization. In fact, it doesn't matter whether voice 3 is
turned on or not, so long as a frequency value is stored in the
frequency control registers for the voice. (Synchronization has
no effect if the frequency for the synchronizing voice is zero.)
Ideally, the frequency for voice 3 should be less than that
specified for voice 1.

Synchronization also works for voices 2 and 3. Setting
this bit in the control register for voice 2 (54283/$D40B) al-
lows voice 2 to be synchronized with voice 1, and setting this
bit in the control register for voice 3 (54290/$D412) allows
voice 3 to be synchronized with voice 2. It is possible to have
two or all three voices synchronized simultaneously.
Bit 2: This bit, called the ring mod flag, controls a special effect
known as ring modulation. When this bit is set to %1 and a
triangle waveform is selected for the voice, the triangle wave-
form will be ring modulated at the frequency of voice 3. (Ring
modulation works only when the triangle waveform is selected.)
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Ring modulation is rather difficult to explain simply.
When you ring modulate voice 1 at the frequency of voice 3,
the resulting waveform is the equivalent to the sum of two
waveforms of different frequencies. However, the resulting fre-
quencies are different from both the frequency of voice 1 and
that of voice 3. Figure 8-13 is an example of one observed
ring-modulated output.

Figure 8-13. Voice 1 Ring Modulated by Voice 3

voice 1

voice 3
frequency

resulting
output

The ring modulated waveform will have a complex mix of
harmonics. This is useful for simulating the sounds of bells,
gongs, and similar instruments whose waveforms don't closely
resemble the triangle, sawtooth, or pulse.

Only the frequency specified for voice 3 is significant for
ring modulation, (Voice 1 must be set for a triangle waveform,
but the waveform of voice 3 is irrelevant.) It doesn't even mat-
ter whether voice 3 is turned on or not, as long as a frequency
value is stored in the frequency control registers for the voice.
(Ring modulation has no audible effect if the frequency for the
modulating voice is zero.)

Ring modulation also works for voices 2 and 3. Setting
this bit in the control register for voice 2 (54283/$D40B) al-
lows voice 2 to be ring modulated by voice 1. (Voice 2 must
be set for a triangle waveform.) Setting this bit in the control
register for voice 3 (54290/$D412) allows voice 3 to be ring
modulated by voice 2, (Voice 3 must be set for a triangle
waveform.) It is possible for two or all three voices to be
simultaneously ring modulated.
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Bit 3: This bit, called the test flag, can be used to reset the in-
ternal oscillator for the voice. When this bit is set to % 1 , the
internal-oscillator register is reset to zero, halting sound output
for the voice. The oscillator remains stopped until a %0 is
written to this bit. You can use this bit to precisely control
when the voice oscillator turns off or on. You must also use
this bit to unfreeze the noise output if you accidentally turn on
noise while another waveform is active.

Bits 4-7: These bits control the behavior of the internal oscil-
lator for the voice, and hence the resulting waveform of the
sound output for the voice. (See the introduction to this sec-
tion for more information on waveforms.) Each bit controls
one of the standard waveforms, as follows:
Bit
4
5
6
7

Value
16/$10
32/$20
64/$40

128/$80

Waveform
triangle
sawtooth
pulse
noise

Setting one of these bits to %1 tells the oscillator to produce
the corresponding waveform. Setting the bit to %0 turns off
that waveform. One of the waveforms must be selected for the
voice to produce any output.

Since the waveforms can be independently selected, you
might be tempted to simultaneously enable more than one
waveform for the voice. This won't hurt the SID chip, but
you'll probably be disappointed with the results. When you
select more than one waveform, the resulting output is not the
simple combination of the selected waveforms. Commodore
literature continues to claim that the result will be a logical
ANDing of the selected waveforms, but the SID's designer has
stated that this is not the case. In any event, mixed waveforms
tend to produce a rather erratic sound, so the technique isn't
really useful. Furthermore, you'll cause a problem if one of the
waveforms in the combination is noise. When the noise wave-
form is selected while any other waveform is also selected, the
noise generator for the voice will cease to function. To restart
it you'll have to write a %1 and then a %0 to the TEST flag
(bit 3 of this register) or reset the computer.

54277 $D405 ATDCY1
Attack and decay control register
This register controls the behavior of the attack and decay
phases of the envelope for the voice.
Bits 0-3: These bits control the decay rate, the amount of time
required for the voice to drop from the peak amplitude at-
tained during the attack phase to the specified sustain level.
For decay to have any audible effect, the sustain level must be
less than %1111/$F. There is no simple formula relating the
bit value to the corresponding time. The following table shows
the relationship:

Time required for
decay phase (in seconds)

0.006

Value
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Bits
32 10
0 0 0 0 0/$00
0 0 0 1 l/$01 0.024
0 0 10 2/$02 0.048
0 0 11 3/$03 0.072
0 10 0 4/$04 0.114
0 10 1 5/$05 0.168
0 1 1 0 6/$06 0.204
0 1 1 1 7/$07 0.240
10 0 0 8/$08 0.300
10 0 1 9/$09 0.750
10 10 10/$0A 1.50
10 11 11/S0B 2.40
1 1 0 0 12/$0C 3.00
1 1 0 1 13/$0D 9.00
1 1 1 0 14/$0E 15.0
1 1 1 1 15/$0F 24.0

You can change the decay rate while a sound is being played.
However, unless the envelope is currently in the attack or de-
cay phase, the change won't have any effect until the next
time the envelope is started by writing a %1 to the gate bit for
the voice (bit 0 of the control register).
Bits 4-7: These bits control the attack rate, the amount of time
required for the sound output of the voice to rise from silence
(zero amplitude) to peak amplitude. The attack phase begins
when a %1 is written to the gate bit for the voice (bit 0 of the
control register). There is no simple formula relating bit values
to the corresponding attack rates. The following table shows
the relationship. Note that attack rates are three times faster
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than corresponding decay or release rates. This is because the
attack phase tends to be shorter than decay or release for most
naturally occurring sounds.

Bits
7 6 5 4
0 0 0 0
0 0 0 1
00 10
00 11
0 1 0 0
0 10 1
0 1 1 0
0 111
1 0 0 0
100 1
10 10
10 11
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Yot
played.

Value Time required for
attack phase (in seconds)

0/$00
16/$10
32/$20
48/$30
64/$40
80/$50
96/560

112/$70
128/$80
144/$90
160/$A0
176/$B0
192/$C0
208/$D0
224/$E0
240/$F0

i can change the
However, unless

0.002
0.008
0,016
0.024
0.038
0.056
0.068
0.080
0.100
0.250
0.500
0.800
1,00
3.00
5.00
8.00

attack rate while a sound is being
the envelope is currently in the at-

tack phase, the change won't have any effect until the next
time the1 gate bit for the voice (bit 0 of the control register) is
set to %1 to restart the envelope.

54278 SD406 SUREL1
Sustain and release control register
This register controls the behavior of the sustain and release
phases of the envelope.

Bits 0-3: The value in these bits determines the amount of
time required for the volume level for the voice to drop to
zero (silence) during the release phase of the envelope. The re-
lease phase doesn't begin until it is triggered by writing a %0
to bit 0 of the control register for the voice. Note that release
will have no audible effect if the specified sustain level is zero.
There's no simple formula relating the value in these bits to
the corresponding release times. The following table lists the
relationships:
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Bits
3 2 1 0
0 0 0 0
0 0 0 1
00 10
00 11
o i o o
0 1 0 1
o i i o
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
10 11
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Value

0/$00
l/$01
2/$02
3/$03
4/$04
5/$05
6/$06
7/S07
8/$08
9/$09

10/$0A
ll/$0B
12/$0C
13/$0D
14/$0E
15/$0F

Time required for
release phase (in seconds)

0.006
0.024
0.048
0.072
0.114
0.168
0.204
0.240
0.300
0.750
1.50
2.40
3.00
9.00

15.0
24,0

It is possible to change the release rate while a sound is
being played. The new rate will supersede the old one, even if
the envelope is currently in the release phase.
Bits 4-7: These registers specify the volume level at which the
voice output will be maintained during the sustain level of the
envelope. Note that this is different from the attack, decay,
and release values, which specify periods of time instead of
levels. Once the attack and decay phases are completed, the

Bits
76 5
0 0 0
0 0 0
00 1
00 1
0 1 0
0 1 0
0 1 1
0 1 1
1 00
1 00
1 0 1
1 0 1
1 1 0
1 1 0
1 1 1
1 1 1

4
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Value

0/$00
16/$10
32/$20
48/$30
64/$40
80/$50
96/$60

112/$70
128/$80
144/$90
160/SAO
176/$B0
192/$C0
2O8/$D0
224/$E0
240/SFO

Percentage of
peak output

0 (no output)
7

13
20
27
33
40
47
53
60
67
73
80
87
93

100 (peak output)
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voice will remain at the level specified here until the release
phase is specifically triggered by writing a %0 to the control
register for the voice. The sustain level can be considered a
percentage of the peak volume level of the output, as shown
in the following table. (The overall peak output level is con-
trolled by bits 0-3 of the register at 54296/$D418.)

If 0 is specified for the sustain level, the voice will die
away to silence at the end of the decay period. You can
change the value in these bits to reduce the sustain level (and
hence the output volume) while a sound is being played.
However, if you try to increase the sustain level above its cur-
rent value while a voice is in the sustain phase, the voice will
be turned off.

Voice 2 Control Registers
The following seven registers (54279-54285/$D407-$D40D)
provide the same control functions for voice 2 that the regis-
ters at 54272-54278/$D400-$D406 provide for voice 1. Refer
to the entries for the voice 1 registers for details of how these
registers are used.

54279 $D407 FRELO2
54280 $D408 FREHI2
Frequency control registers

54281 $D409 PWLO2
54282 $D40A PWHI2
Pulsewidth control registers

54283 $D40B VCREG2
Waveform control register

54284 $D40C ATDCY2
Attack and decay control register

54285 $D40D SUREL2
Sustain and release control register

Voice 3 Control Registers
The following seven registers (54286-54292/$D40E-$D414)
provide the same control functions for voice 3 that the regis-
ters at 54272-54278/$D400-$D406 provide for voice 1. Refer
to the entries for the voice 1 registers for details of how these
registers are used.
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54286 SD40E
54287 $D40F
Frequency control register

54288 $D410
54289 $D411
Pulsewidth control register

54290 $D412
Waveform control register
54291 $D413
Attack and decay control register
54292 $D414
Sustain and release control register

54293 $D415
54294 SD416

FRELO3
FREHI3

PWLO3
PWHI3

VCREG3

ATDCY3

SUREL3

FCLO
FCHI

Filter cutoff frequency registers
The value in these registers specifies the cutoff frequency for
the filter. See the entry for bits 4-6 of the register at
54296/$D418 for more information on the effect of filtering.
Only 11 of the 16 bits in this register pair are used. The lower
3 bits of the value come from bits 0-2 of the register at
54293/SD415 and the upper 8 bits come from the register at
54294/$D416. Bits 3-7 of 54293/$D415 are not used, and
writing to those bits has no effect. Remember that these are
write-only registers; they will always return 0/$00 when read,
regardless of the values you have stored in them.

The available 11 bits allow you to specify values in the
range 0-2047/$0000-$07FF. However, there is a great deal of
confusion about the exact relationship between the value in
these registers and the corresponding cutoff frequency. Sup-
posedly, the value here specifies the cutoff frequency in linear
steps between a minimum of about 30 Hz and a maximum de-
termined by two external capacitors connected to the SID chip.
Commodore's formal specifications for the SID chip state that
the equation for maximum cutoff frequency is:
frequency = 2.6 X 10"5 / capacitance
Other official literature, including the 128 Programmer's Refer-
ence Guide, states that the maximum cutoff frequency is about
12,000 Hz, a calculation based on filtering capacitors of 2200
picofarads (2200 X 10"12). There are a number of problems
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here. First of all, the capacitors used in the 128 (and, by the
way, also in later versions of the Commodore 64) are instead
actually 470 picofarads, not 2200, If the stated equations were
correct, this would give a maximum cutoff value of over
55,000 Hz, implying that the majority of register values would
produce cutoff frequencies beyond the audible range. Simple
experimentation shows that this is not the case. This isn't sur-
prising, since the SID's designer, Bob Yannes, stated in an in-
terview in the March 1985 issue of IEEE Spectrum magazine
that filtering doesn't work according to the specified equation
anyway.

So how do you go about selecting a cutoff frequency? Our
experience suggests that, while filtering does work after a
fashion for any given 128, a value that produces a particular
cutoff frequency on one computer may produce a slightly dif-
ferent cutoff frequency on another system. Although it's not a
particularly scientific approach, the best way to discover the
proper register value for a given cutoff frequency is simply to
try different values until the desired effect is achieved.

54295 $D417 RES/FILT
Filter selection and resonance control register
The bits of this chip select whether the various audio sources
in the SID will be passed directly to the chip output or routed
through the filter stage. This register also controls a special fil-
tering effect known as resonance. Remember that this register
is write-only; all bits will return %0 when read, regardless of
the values you write to them.
Bit 0: This bit controls whether or not the output for voice 1
passes through the SID's filter stage. When the bit is %0, the
filter is bypassed and voice 1 output is routed directly to the
combined SID output. When the bit is % 1 , voice 1 output is
routed through the filter before being passed to the chip out-
put. The filter will modify the voice 1 output according to the
filter parameters specified in the registers at 54293-54294/
$D415-$D416 and 54296/$D418.
Bit 1: This bit provides the same filter control function for
voice 2 that bit 0 provides for voice 1.

Bit 2: This bit provides the same filter control function for
voice 3 that bit 0 provides for voice 1.

Bit 3: This bit controls the handling of any external audio in-
put to the SID. As with bits 0-3, setting this bit to %0 con-
nects the external input directly to the combined output, while
setting the bit to %1 routes the external input through the fil-
ter before output. These two functions—adding directly to the
output or adding to the filtered output—are the only process-
ing the SID can perform on the input signal from an external
source. The SID's external input line is connected to pin 5 of
the composite (40-column) video port. To avoid damage to the
SID, you should not use highly amplified signals such as the
final output of a home stereo system for the external input
source.
Bits 4-7: These bits control an effect of filtering known as res-
onance. The four bits provide for 16 evenly spaced steps from
no resonance (%0000) to full resonance (%1111). Resonance
accentuates frequencies near the cutoff frequency for the filter.
The higher the resonance, the more pronounced the effect of
the selected filter.

54296 $D418 SIGVOL
Volume and filter mode control register
This register controls the overall volume of the SID output, as
well as the type of frequency attenuation provided by the fil-
ter. Remember that this register is write-only; reading any of
the following bits will return %0, regardless of the values you
write to the bits.

Bits 0-3: These bits specify the peak volume for the combined
output of all three voices plus any external input. The four bits
allow for 16 evenly spaced steps between no output (%0000)
and maximum output (%1111). Expressed as a percentage of
maximum possible output volume, the effects of the settings
are roughly as follows:
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0 1
0 1
0 1
0 110
0 111
1000
100 1
10 10
10 11

Bits Value Percentage of
3 2 10 maximum output
0 0 0 0 0/$0 0 (no output)
0 0 0 1 1/$1 7
0 0 10 2/$2 13
0 0 11 3/$3 20

0 0 4/$4 27
5/$5 33
6/$6 40
7/$7 47
8/$8 53
9/$9 60

10/$A 67
11/$B 73

110 0 12/$C 80
110 1 13/$D 87
1 1 1 0 14/$E 93
1 1 1 1 15/$F 100 (maximum output)
These bits must be set to some value greater than zero for the
SID to produce any audible output. There's only one volume
control for the chip, but the relative output volume level of
each voice can be controlled by adjusting the sustain level of
the voice's envelope.

Bits 4-6: These bits control the operation of the SID's filter
stage. The SID has only one filter for all three voices (plus the
external input), so the filtering selections affect any source
passed through the filter. Any of the voices can also bypass
the filter and connect directly to the output. Bits 0-3 of the
register at 54295/$D417 control which voices are routed
through the filter. Bits 4-7 of that register control resonance,
which can be used to emphasize the effects of filtering.

The SID provides three basic types of filtering, as illus-
trated in Figure 8-14(a-c). The first type, called a low-pass fil-
ter, allows frequencies below a specified cutoff frequency to
pass virtually unchanged, but sharply reduces (attenuates) the
volume of frequencies higher than the cutoff. The high-pass
filter provides the opposite effect, allowing frequencies above
the specified cutoff to pass while attenuating frequencies lower
than the cutoff. The third selection, the band-pass filter, allows
frequencies near the specified cutoff to pass while blocking
frequencies that are much above or below the cutoff. The fil-
tering types can also be combined. For example, selecting low-
pass and high-pass filters simultaneously provides a fourth
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Figure 8-14. Filter Types

(a) low-pass

(b) high-pass

(c) band-pass

id) band-stop
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type of filter known as the band-stop, or notch, filter (see Fig-
ure 8-14d). In this case, frequencies well above and below the
cutoff are passed with little change, while frequencies near the
cutoff are attenuated. The cutoff frequency is specified in the
registers at 54293-54294/$D415-$D416.

Bit 4 controls the low-pass filter, which is enabled when
the bit is %1 and disabled when the bit is %0. Bits 5 and 6
provide the control for the high-pass and band-pass filters, re-
spectively, in the same manner. Thus, standard filter selections
are as follows:

Bits Value Filter type
6 54
0 0 1 16/$10 Low-pass
0 10 32/$20 Band-pass
10 0 64/S40 High-pass
10 1 80/$50 Band-stop

Bit 7: This bit controls whether or not voice 3 can be con-
nected directly to the combined output of the SID chip. While
the bit is %0, the voice 3 output will be added to the com-
bined output unless it is routed through the filter. Setting this
bit to %1 will prevent the direct connection of voice 3 to the
combined output. However, even when voice 3 is blocked
from direct connection to the combined output, it's still possi-
ble to route voice 3 output through the filter and hence to the
combined output. To prevent this and completely disconnect
voice 3, make sure that bit 2 of the register at 54295/$D417 is
set to %0.

Voice 3 is often used in conjunction with one of the other
voices to generate special audio effects, since the oscillator and
envelope generator output values for this voice can be read
from registers 54299/$D41B and 54300/$D41C, respectively.
While voice 3 is used to generate special envelopes or as a
random-number generator, it's desirable to insure that the
specified frequency and envelope for voice 3 don't cause any
disruption of the other voices. This bit provides that feature.
Voice 3 is the only voice which can be disconnected.

54297 SD419 POTX
54298 8D41A POTY
Potentiometer (paddle) reading registers
The SID chip has two special input lines, designated POTX
and POTY, which are connected to a pair of internal devices
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called analog-to-digital (A/D) converters. The A/D converters
generate a one-byte value based on the input voltage. These
read-only registers return the values generated by the convert-
ers; writing to these locations has no effect. As connected in
the 128, the converters measure the voltage across capacitors
at the input pins. When a variable resistor (also called a poten-
tiometer) is connected between a constant voltage source and
the capacitor, the converters can be used to read the input re-
sistance. The output values will be in the range 0-255, accord-
ing to the resistor value. Minimum resistance (or a closed
circuit) produces a reading of 0/$00 and maximum resistance
(or an open circuit, as when nothing is connected to the lines)
results in a reading of 255/SFF. The official SID chip specifica-
tions state that the relationship between the installed capacitor
values and the resistance for maximum output value is:

resistor value = 4.7 X 10~4 / capacitor value
The capacitors in the 128 are 1800 picofarads (1800 X 10"12),
so any resistance greater than about 4.7 X lO"4 / 1800 X
IO-12 = 261 X 103 ohms (261 Kfl) will result in a register
value of 255/$FF. (Actually, our experience indicates that a
slightly higher value, 270-280 KQ or so, may be required.)

The SID input lines can be connected to either of the two
control ports on the right side of the 128. Bits 6-7 of the CIA
#1 port A register at 56320/$DC00 determine which control
port is currently connected (for details, see the section on the
CIA chip later in this chapter). The default setting connects
control port 1, the front one. For either port, the SID register
lines are connected to port pins 5 and 9. Location 54297/
$D419 will read the level at pin 9 and location 54298/$D41A
will read the level at pin 5. From BASIC, the POT function
can be used to read these registers. POT(l) reads the register
at 54297/$D419 connected to pin 9 of port 1 and POT(2)
reads the register at 54298/$D$lA connected to pin 5 of port
1. POT(3) and POT(4) read the same registers when con-
nected, respectively, to pins 9 and 5 of port 2.

The device most commonly connected to these inputs is
the game paddle controller. A paddle is an extremely simple
device, consisting of a variable resistor connected between a
+ 5 volt source (pin 7 of the control port) and the SID A/D
converter input line. Turning the paddle knob changes the re-
sistance, and hence the register value. The paddle tends to be
more efficient than the joystick for games that require only
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horizontal or only vertical movement, such as Pong-type
games for which the paddle was originally developed. Since
the steps between output levels are so small (only about one
ohm), consecutive readings of the same paddle position can
vary by one or two register values. This "jitter" can be annoy-
ing. The recommended solution is to read the paddle several
times, then calculate the average of the readings and use that
value.

One thing you should be aware of is that Commodore has
changed the values of the capacitors used with the converters
since the Commodore 64 was first introduced. The original 64
used 1000 picofarad capacitors, so a resistance of about 470
KX2 was required for a maximum register value. Thus, most
paddles currently available for Commodore computers use
potentiometers with a top resistance of 470 Kf2 or 500 KQ.
Such paddles can be used with the 128, but they will swing
the full range of register values (0-255) in about the first half
of the paddle's full turn. Thus, you probably won't be able to
select fine increments of intermediate values. Furthermore,
paddles for Atari computers, which are much more widely
available than Commodore paddles, use 1 M£l (1 million ohm)
potentiometers. Again, these can be used with the 128, but in
this case you'll see the full register value swing (0-255) in
about the first quarter of the paddle's ful] turn. Thus, Atari
paddles will give you only very coarse control of the resulting
register values.

Most paddle controllers also have fire buttons like joy-
sticks. However, since paddles almost always come in pairs,
and since there is only one fire button line per control port,
the paddle fire buttons are connected to the lines normally
used for joystick direction. Standard Commodore paddles use
the lines connected to bits 2 and 3 of each CIA #1 data port
(locations 56320-56321/$DCOO-$DC01), the lines for joystick
left and right.

These A/D converters can also be used for other interfac-
ing projects. Any device which provides a variable resistance
can be connected to the appropriate control port lines and
read via these registers. For example, most graphics tablets
such as the popular KoalaPad effectively function as paddles,
with one resistance for the horizontal coordinate of the stylus
position and another for the vertical coordinate. You could
also rig an interface for an Apple/IBM-style joystick, which
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consists of two variable resistors—one on the horizontal axis
and one on the vertical axis.

54299 $D41B OSC3
Voice 3 oscillator output register
This register reflects the upper eight bits of the internal-oscillator
register for voice 3. This is a read-only register; storing values
here has no effect. The output signal for each voice is gener-
ated by converting the digital bit pattern from the voice's os-
cillator register into an analog voltage level, so the output
signal for the voice is directly proportional to the value in its
oscillator. However, voice 3 is the only voice for which the os-
cillator contents can be read.

For triangle and sawtooth waveforms, the oscillator acts
as a repeating counter. For the triangle waveform, the oscil-
lator count starts at zero and increments upward to its maxi-
mum count, then decrements downward to zero again. Once
the count reaches zero, it immediately begins incrementing
again, and the process repeats over and over. The counting
rate depends on the value in the frequency control registers
for the voice. For all but the lowest frequencies, the count
sweeps up and down so quickly that you won't read every in-
termediate value between 0/$00 and 255/$FF in this register.
For the sawtooth waveform, the count also starts at zero and
increments upward to maximum count, but in this case the
count then returns immediately to zero and begins increment-
ing again.

Unlike the triangle and sawtooth waveforms, the pulse
waveform doesn't sweep smoothly from one output level to
the next. Instead, the it jumps back and forth between two
discrete levels. When the pulse waveform is selected for voice
3, this register will contain one of two values: 0/$00 when the
waveform is at minimum (zero) amplitude and 255/$FF when
the waveform is at maximum amplitude. The portion of the
cycle spent in the zero-amplitude state is determined by the
value in the pulsewidth registers for the voice, and the rate at
which the off/on switching repeats is determined by the value
in the frequency control registers for the voice.

The noise waveform is different from the others in that it
exhibits no regularly repeating pattern. Rather, the oscillator
will contain a series of random values. The rate at which the
value in the oscillator changes—and hence the rate at which
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the value in this register changes—-is determined by the value
in the frequency control registers for the voice. This feature
can be used to provide a random-number generator. If your
program needs random numbers in the range 0-255/$00-$FF,
simply set the voice 3 frequency registers (54286-54287/
$D40E-$D40F) for a high frequency; then set bits 0 and 7 of
the voice 3 control register (54290/$D412) to %1 to start the
noise waveform. After that, just read this register whenever
you need a random value.

In addition to its use as a random-number generator, this
register can be used for a number of special audio effects. The
changing output of the oscillator can be used to modify the
frequency or pulsewidth of a voice or the filter parameters in
realtime. The following is a simple example:
1 BOO LDA #$F0 ;set sustain to maximum level
1B02 STA $D406
1B0S LDA #$8F ;set maximum volume; disconnect voice 3
1B07 STA $D418
1B0A LDA #$01 ;set frequency (high byte) for voice 3
1B0C STA $D40F
1B0F LDA #$21 ;start sawtooth waveform on voice 3
1B11 STA $D412
1B14 LDA #$11 ;start triangle waveform on voice 1
1B16 STA $D404
1B19 LDA $D41B ;change voice 1 frequency according to
1B1C STA $D401 ;voice 3 oscillator output
1B1F JMP $1B19

Whenever voice 3 is used for special effects such as
random-number generation, it should be disconnected from
the combined SID output so that it doesn't distort any sounds
produced by the other voices. To disconnect voice 3, set bit 7
to %1 in the register at 54296/$D418. Also, make sure that bit
2 of the register at 54295/$D417 is %0. This will insure that
voice 3 output is not routed through the filter.

ENV354300 $D41C
Envelope generator 3 output register
The value in this register reflects the contents of the internal
envelope generator for voice 3, This is a read-only register;
storing values here has no effect. Each voice has its own enve-
lope generator which controls the peak amplitude of the out-
put for that voice. However, voice 3 is the only one for which
the envelope-generator register contents can be read.
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The envelope generator regulates the amplitude (volume)
of the output for the voice. When voice 3 is silent or turned
off, this register will contain 0/$00, indicating no output.
When the gate bit for the voice (bit 0 in the register at
54290/$D412) is set to % 1 , the value here will begin incre-
menting to 255/$FF, indicating peak output amplitude. This
peak amplitude for the voice will be relative to the overall
peak volume level specified in bits 0-3 of the register at
54296/$D418.

The rate at which the register increments depends on the
attack rate specified in bits 4-7 of the register at 54291/$D413.
Once the register reaches 255/$FF, it immediately begins
decrementing to the sustain level specified in bits 4-7 of the
register at 54292/$D414 (unless the specified sustain level is
15/$F—in that case, the register value remains at 255/$FF fol-
lowing the attack phase).

The rate at which the amplitude drops to the sustain level
depends on the decay rate specified in bits 0-3 of the register
54291/$D413. The register value while the voice is in the sus-
tain phase will be equal to the specified sustain-level value re-
peated in both nybbles. For example, if the sustain level is
%1001 = $9, then the value in this register while the voice is
in the sustain phase of the envelope will be $99/153. Once
the gate bit for the voice is set to %0, the value in this register
will decrease from the sustain level to 0/$00. The rate at
which the register value decrements is determined by the re-
lease rate specified in bits 0-3 of the register at 54292/$D414.

The value in this register can be used to modify other SID
parameters, such as the contents of one of the write-only reg-
isters, in realtime. For example, you could try continuously
storing the value from this register in the filter cutoff-frequency
register at 54294/$D416. This would cause the cutoff fre-
quency to rise and fall in conjunction with the voice 3 enve-
lope. If you use the voice 3 envelope generator for special
effects, you may want to disconnect voice 3 from the com-
bined SID output so that it doesn't distort any sounds pro-
duced by the other voices. To disconnect voice 3, set bit 7 to
%1 in the register at 54296/$D418. Also, make sure that bit 2
of the register at 54295/$D417 is %0. This will insure that
voice 3 output is not routed through the filter.
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54301-54303 $D41D-$D41F Unused
These unused register locations always return the value 0/$00
when read. Writing to these locations has no effect.

54304-54527 $D420-$D4FF
SID register images
Due to incomplete address decoding, images of the SID chip
registers appear repeatedly every 32 locations throughout the
remainder of this page of memory. That is, storing a value in
any location with an address which is an exact multiple of 32
greater than one of the base address locations listed above has
the same effect as storing a value in the corresponding base
register. For example, storing a value in 54328/$D318 or
54520/$DF18 has the same effect as storing that same value
in 54296/$D018. However, it's better programming practice to
use the officially designated register addresses.

MMU (Memory Management Unit) Chip
Registers
54528~54539/$D500-$D50B and
65280-65284/$FF00-$FF04
The MMU memory management chip, officially designated the
8722, is the cornerstone of the 128 system. In fact, the MMU
is what makes most of the 128's special features possible. The
MMU was designed by Commodore's engineers specifically to
support the 128's multiple operating modes and elaborate
memory banking scheme. It is the MMU which determines
which microprocessor, 8502 or Z80, has control of the com-
puter. When the 8502 is in control, the MMU determines
whether the computer operates in 128 mode or 64 mode. As
described in Chapter 1, the 128 hardware includes many times
more elements than can simultaneously fit in the 64K address
space of the 8502 or Z80 microprocessors. The MMU chip also
determines which memory resources are visible to the
processsor at any given time.

Most BASIC programming can be done without under-
standing the inner workings of the MMU, simply by using the
available standard bank configurations. However, a thorough
knowledge of the MMU is essential for taking full advantage
of all the 128's features.
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The 17 registers of the MMU are unusual in that they are
divided into two separate groups at different memory loca-
tions. The first 12 appear in the I/O block at 54528-54539/
$D500-$D50B, while the other 5 appear at 65280-65284/
$FF00-$FF04. This second set of MMU registers is special in
that it appears in all memory configurations. There is no way
to make the processor see anything other than the MMU regis-
ters at those locations while the 128 is in 128 mode. Table 8-4
lists the MMU registers. A detailed description of each register
follows.

Table 8-4. MMU Chip Registers

Address
54528/$D500
54529/$D501
54530/$D502
54531/$D503
54532/$D504
54533/SD505
54534/$D506
54535/$D507
54536/$D508
54537/$D509
54538/$D50A
54539/$D50B
65280/$FF00
65281/$FF01
65282/$FF02
65283/$FF03
65284/$FF04

Function
Configuration register
Preconfiguration register A
Preconfiguration register B
Preconfiguration register C
Preconfiguration register D
Mode configuration register
RAM configuration register
Page 0 page pointer
Page 0 block pointer
Page 1 page pointer
Page 1 block pointer
MMU version register
Configuration register
Load configuration register A
Load configuration register B
Load configuration register C
Load configuration register D

MMUCR154528 SD500
Configuration register
The value in the configuration register determines which of
the available memory resources will be visible to the
microprocessor at any given time. However, this particular
register is only rarely used—-not at all in 128 ROM except dur-
ing MMU register initialization—because it has an identical
twin at address 65280/SFF00 which is more convenient. There
is really only one configuration register; it just appears at two
different addresses. The register is accessible here only when
the I/O block is visible, whereas it is always accessible at
65280/$FF00, regardless of the memory configuration. As a
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result, memory configuration is usually done with the higher
configuration register location. Refer to the entry (below) for
the other configuration register for details of the function of
the register bits.

This register is initialized during the Kernal RESET rou-
tine [$E000] to 0/$00, the setting for the bank 15 configura-
tion. However, that step of the routine is redundant because
the same value has previously been stored in 65280/$FF00.
Reading this register returns the current configuration setting,
regardless of whether the setting has been established by writ-
ing to this register or to 65280/$FF00.

PCRA
PCRB
PCRC
PCRD

54529 8D501
54530 8D502
54531 8D503
54532 SD504
Preconfiguration registers

These registers provide an indirect method of setting up a
memory configuration. Whenever a value—any value—is
stored in one of the four ]oad configuration registers at
65281-65284/$FF01-$FF04, the value in the corresponding
preconfiguration register is transferred to the configuration
register. Thus, the preconfiguration registers allow you to set
up as many as four different memory configurations, each of
which can then be established with a single store operation.
The bit functions for preconfiguration register locations are the
same as for the configuration register. For details, see the entry
below for 65280/$FF00.

The Kernal RESET routine [SEOOO] initializes all the pre-
configuration registers to 0/$00, the setting for the bank 15
configuration. The preconfiguration/load configuration register
memory management technique is not used by the operating
system. However, BASIC ROM routines do make use of this
method. The BASIC cold start [$4023] and warm start [$4009]
routines both initialize the preconfiguration registers as follows:
Register Setting Bank configuration
54529/$D501 63/$3F 0
54530/$D502 127/$7F 1
54531/$D503 l/$01 14
54532/$D504 65/$41 A custom setting with the same visible

ROM as bank 14, but with RAM from
block 1 instead of block 0
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In a number of instances in BASIC ROM you'll find instruc-
tions like STA $FF03, where BASIC is using this shortcut
method of bank selection.

Because BASIC depends on standard values in the precon-
figuration registers, it's generally best to avoid changing the
register settings in machine language programs which must
work in conjunction with BASIC. To reset the preconfiguration
registers to their default values without performing the entire
BASIC warm start or cold start sequence, call the BASIC ROM
subroutine at 16762/$417A. Of course, if BASIC is not being
used, you're free to use the preconfiguration registers to set up
any memory configuration you desire.

54533 $D505 MMUMCR
Mode configuration register
The primary function of this register is to select the current
operating mode from the three possibilities—-128, 64, or CP/M.
Bit 0: This bit determines which microprocessor is in control
of the system. Writing a %0 here puts the Z80 in command,
while writing a %1 switches to the 8502. Since this bit is reset
to %0 when the system is reset or powered on, the Z80 al-
ways has control of the system before the 8502. The reset se-
quence in Z80 ROM is nearly identical to that in 128 mode
ROM, including checking for the presence of Commodore 64
cartridges and testing whether the Commodore key is held
down for Commodore 64 mode. If the Z80 reset routine does
not find a CP/M boot disk in the drive (or a Commodore 64
cartridge or the Commodore key held down), it jumps to a
routine it has copied into 65504/$FFE0 in block 0 RAM. That
routine ends by setting this bit to %1 to return control to the
8502 for 128 mode.

Switching processors is not for the faint of heart. When
you activate the Z80, it will begin executing instructions at
whatever address is currently in its program counter registers.
The address in those internal processor registers can't be
changed from 128 mode, so you're stuck with having the Z80
take up wherever it left off when the system was switched to
128 mode. This address is usually 65518/$FFEE, the location
following the one where 128 mode was activated at the end of
the Z80's reset routine. In block 0 RAM, that location is initial-
ized with a Z80 instruction (RST1) to perform a warm start of
CP/M mode. If you don't have a valid Z80 machine language
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instruction there when you activate the Z80—for example, if
the system is in a memory configuration such as bank 15
where 128 Kernal ROM is seen at that address—you'll proba-
bly experience an immediate system lockup.

If you wish to use any routines in the CP/M BIOS (Basic
Input/Output System) ROM, you must make sure that bit 6 of
this register also is set to make 128 mode ROM visible. The
BIOS code is stored in the same ROM chip used to hold the
128 mode screen editor and Kernal routines, so you'll have
problems if that ROM is not visible. Activating the Z80 makes
the BIOS ROM visible at addresses 0-4095/$0000-$0FFF
(even though the ROM is physically located at 53248-57343/
$DO00-$DFFF). Thus, the Z80 never disturbs the lowest 4K of
block 0 RAM, so the 8502's zero page and stack (page 1) are
preserved while the Z80 is in control.

If you want to switch to full CP/M mode, there's more in-
volved than simply turning on the Z80. Most of the CP/M op-
erating system must be loaded from disk, so you should instead
use the BASIC BOOT statement or the Kernal BOOT_CALL
routine [$FF53] with a CP/M boot disk in the drive.
Bits 1-2: Unused. These bits always return %1 when read,
and writing to these bits has no effect.
Bit 3: This bit is connected to the MMU pin labeled FSDIR.
This line is bidirectional, meaning that it can be both an input
and an output. The 128 uses the line only as an output, to
control the direction of data flow on the fast serial bus. The
lines of the slow serial bus are each controlled by a pair of
CIA chip lines, one for input and one for output, but the fast
serial bus uses the same CIA chip lines for both input and out-
put. The 128's designers added additional circuitry which in-
sures that the fast serial bus will ignore incoming data during
fast serial output. The FSDIR (fast serial direction) line controls
that circuitry. Writing a %0 to the bit pulls the line to a low (0
volts) state, which sets the fast serial bus for input. Writing a
%1 to the bit allows the line to go to a high ( + 5 volts) state,
which sets the fast serial bus for output. The IOINIT routine
[$E109] leaves this bit set to %0 so that the system can detect
fast serial input. The setting of this bit is controlled in Kernal
ROM by the routines SPIN [$E5C3] and SPOUT [$E5D6].

412

$D505 54533

Bits 4-5: These bits are connected, respectively, to the MMU
pins labeled GAME and EXROM, which in the 128 are con-
nected to the memory expansion port lines with the same
names. These MMU lines are bidirectional, meaning that they
can be both inputs and outputs. The 128 uses the lines only as
inputs, to read the state of the memory expansion port lines
(pins 8 and 9 of the port). Writing to one of the bits sets the
corresponding line's output level. Writing a %0 to the bit pulls
the line to a low (0 volts) state, while writing a %1 to the bit
allows the line to go to a high ( + 5 volts) state. When used for
input, an external device connected to the line can pull the
line low if its output level is set high, but cannot bring the line
high if its output level is set low, so writing a %0 to one of
these bits effectively blocks the use of the line as an input.

The Kernal RESET routine [$E000] initializes both of these
bits to %1 so that they can be used to read the state of the
port lines. In 128 ROM, these bits are read during the reset se-
quence by the routine which checks for the presence of a
Commodore 64 ROM cartridge [$E242], Almost all Commo-
dore 64 cartridges ground one or both of these port lines, so
the 128 will assume that a 64 cartridge is present if either of
these bits is found to be %0, and will respond by switching to
Commodore 64 mode.

While the system is in 128 mode, you can use these bits
to control the corresponding expansion port pins as either in-
puts or outputs. Keep in mind, however, that the pins must be
high during reset or the system will enter Commodore 64 mode.
Bit 6: This bit controls which set of ROMs will be visible to
the system. Writing a %0 here selects the 128 mode ROM set,
while writing a %1 selects the Commodore 64 mode ROM.
The 128 mode RESET routine [$EOOOj, of course, initializes
this bit to %0. However, simply writing a %1 here won't
cause a clean transfer to 64 mode; it's necessary to perform
the 64 mode reset sequence after the 64 mode ROM is se-
lected. See the C64_MODE routine [$E24B] for details. This
bit has one other effect—selecting 64 mode also makes all the
MMU chip registers invisible, so once you make the jump to
64 mode there is no way back to 128 mode short of resetting
the computer or turning it off and back on.
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Bit 7: This bit is connected to the MMU pin labeled 40/80.
This line is bidirectional meaning that it can be both an input
and an output. The 128 uses the line only as an input, to read
the 40/80 DISPLAY switch on the 128's keyboard. Writing to
the bit sets the state of the line output. Writing a %0 to the bit
pulls the line to a low (0 volts) state, while writing a %1 to
the bit allows the line to go to a high ( + 5 volts) state. The
switch connected to the line can pull the line low if its output
level is set high, but cannot bring the line high if its output
level is set low. Thus, writing a %0 to this bit effectively
blocks the reading of the 40/80 DISPLAY switch. The CINT
screen editor initialization routine [SC07B], part of both the re-
set and RUN/STOP-RESTORE sequences, sets this bit to %1
to insure that the switch can be read. The bit returns a %0
when read while the switch is down (80-column position), or
a %1 while the switch is up (40-column position). In 128
ROM, this bit is read only during the CINT routine, where its
setting is used to determine which display to make active.

54534 8D506 MMURCR
RAM configuration register
An important aspect of the MMU's memory configuration ca-
pabilities is its ability to create common areas of RAM, areas
where the same RAM is seen regardless of the configuration
register selection. Kernal routines copied into the default com-
mon area allow the processor to jump from bank to bank, or
to manipulate data in other banks. This register controls the
common RAM feature, and also specifies which RAM block
the VIC video banks are seen in.

Bits 0-3: These bits control the common RAM feature. Bits 0-1
control the size of the common areas, and bits 2-3 control
whether the common areas will exist at the top, bottom, or
both top and bottom of the RAM blocks. (No RAM will be
common if bits 2-3 are set to %00.) When common RAM is
specified, the RAM seen as common is always that from block
0. As long as the common RAM feature is enabled, there is no
way for the processor to access the RAM in block 1 which is
covered by the common area. When a common area at the top
of memory is selected, it will be visible only when bits 4-5 of
the configuration register are set to make RAM visible at the
top of memory.

414

There are a few exceptions to the common RAM rules.
First, locations 0-l/$00-$01, the 8502 on-chip I/O port, and
locations 65280-65284/$FF00-$FFO4, the upper MMU regis-
ters, always appear in any configuration, regardless of the
setting of these bits. That is, there is no way to make the pro-
cessor see anything other than the hardware registers in these
locations (at least not while the computer is operating in 128
mode). Second, the area where the two lowest pages of mem-
ory are seen is also affected by the registers at 54535-54538/
$DF07-$DF0A. Even if you change the page pointers at
54535/$D507 or 54537/SD509 to physically move zero page
or page 1 somewhere in memory outside the common area,
the contents of those pages will still appear to be common as
long as a common area at the bottom of memory is selected. If
you disable the common area at the bottom of memory, all
references to zero page and page 1 will continue to affect only
block 0 RAM unless you specifically change the block pointers
for those pages in the registers at 54536/SDF08 and 54538/
$DF0A. Finally, you should be aware that the common area
setting does not affect the RAM block from which the VIC
chip sees its video bank. The VIC's RAM block is determined
by bits 6-7 of this register, and all RAM in the VIC bank is
seen in the block specified in those bits without regard for the
common area specification. The VIC chip can see the memory
that is hidden from the processor.

The four possible selections for the size of the common
areas are as follows:

Hits
1
0
0
1
1

0
0
1
0
1

Size of
common areas

IK
4K
8K

16K

Figure 8-15 illustrates the address ranges of these selections.

The four possible selections for location of the common
areas are as follows:

Location of
common areas
No common RAM
Common area at bottom of memory
Common area at top of memory
Common areas at both top and bottom of memory
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Figure 8-15. Common RAM Areas
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The default value in these bits, established during the Kernal
RESET routine [SEOOO], is %0100 = $4. This setting selects a
IK common area at the bottom of memory, addresses 0-1023/
$0000-$03FF. The proper functioning of both the operating
system and BASIC depends on the presence of this common
area, so you should change the setting of these bits with great
care. BASIC is almost certain to crash if the common area is
disabled altogether. The operating system will crash if an in-
terrupt occurs while the system is configured for block 1 RAM
with the common area disabled.

You can manipulate these bits to gain temporary access to
the IK of RAM from block 1 which is normally hidden by the
standard common area, but making any practical use of the
hidden area is more than a little complicated. The standard in-
terbank data transfer routines like INDFET and INDSTA can't
be used because they depend on the common area. Further-
more, the machine language routine you write to perform the
transfer can't use any zero-page locations, nor can it use jumps
to subroutines or other instructions which would affect the
stack (page 1). Interrupts must also be disabled while the com-
mon area is disabled. The following routine swaps the con-
tents of the hidden block 1 area with the contents of the next
higher IK area of block 1 (addresses 1024-2047/$0400-$07FF).
Note that this routine must be placed in block 1 RAM:

1FF60
1FF61
1FF63
1FF66
1FF68
1FF6B
1FF6D
1FF70
1FF73
1FF75
1FF78
1FF7A
1FF7D
1FF7F
1FF82
1FF85
1FF87
1FF8A
1FF8D
1FF8F

SEI
LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA
STA
LDY
LDA

#$7E
$FF0O
#$00
$D506
#$01
$D508
$D50A
#$00
$D507
#$01
$D509
#$00
$FF91
$FF98
#$04
$FF95
$FF9C
#$02
$0000,Y

;Disable interrupts
;Make I/O block visible

;Disable common RAM

;Make pages 0 and 1 visible
; block 1 RAM

•Initialize source starting
; address locations

initialize target starting
; address locations

initialize index for first page
;Swap bytes
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1FF92
1FF93
1FF96
1FF99
1FF9A
1FF9D
1FF9E
1FFA0
1FFA3
1FFA6
1FFA9
1FFAC
1FFAF
1FFB1
1FFB3
1FFB5
1FFB8
1FFBB
1FFBE
1FFCO
1FFC3
1FFC5
IFFC8
1FFC9

TAX
LDA
STA
TXA
STA
INY
BNE
INC
INC
INC
INC
LDA
CMP
BCC
LDA
STA
STA
STA
LDA
STA
LDA
STA
CLI
RTS

$04O0,Y
$000O,Y

$O4O0,Y

$FF8F
$FF91
$FF95
SFF98
$FF9C
$FF9C
#$08
$FF8F
#$00
$D508
$D50A
$D507
#$01
$D509
#$04
$D5O6

;Repeat for 256 bytes per page

increment address high bytes

;Check whether all four pages have
; been swapped

;I( so, restore pages 0 and 1
; to block 0 RAM

;Reenable common RAM

;Reenable interrupts

To execute the routine, use J 1FF60 from the monitor or BANK
1:SYS 65376 from BASIC.

Bits 4-5: These two bits are not used in the current version of
MMU. The design specifications for the chip indicate that in
future versions these bits may be used in a "superbanking"
scheme to select one of four separate 256K blocks of RAM in a
1M (one-megabyte, or 1024K) system. It's a tantalizing pros-
pect, but there's no guarantee that a Commodore 1024 will
ever be produced. In the current MMU, the bits will retain
whatever value is written to them, but changing the bit
settings has no effect on the memory configuration. The bits
are initialized during the Kemal RESET routine [$E000] to %00.
Bits 6-7: These bits determine which 64K block of RAM the
VIC video bank is located in. (See the section on the VIC chip
earlier in this chapter for more information on video banks.)
The formally defined selections for the bits are as follows:
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Bits
7
0
0
1
1

6
0
1
0
1

RAM block for
VIC video bank

0
1
2
3

Remember, however, the 128 actually has only two 64K
blocks of RAM. Thus, the setting of bit 7 is meaningless, al-
though that bit will retain whatever value you write to it.
Only the setting of bit 6 matters, since the choice is between
blocks 0 and 1. The default setting for these bits is %00, since
the normal VIC text and bitmapped screens are located in
block 0 RAM.

You should note that the operating system and BASIC
will not support a VIC video bank in block 1, That is, all the
screen editor ROM routines and BASIC bitmapped graphics
routines assume that the VIC screen is located in block 0
RAM, and will continue to write data to block 0 even after
you've changed these bits to switch the video bank into block
1 RAM. Thus, you must provide your own text and graphics
routines for a display from block 1. For text displays, you can
use the standard character sets because the character ROM is
still visible in a block 1 video bank.

These bits actually determine the RAM block for all DMA
(direct memory access) operations, not just for the VIC chip,
but the VIC is the only built-in device in the 128 to use DMA.
The only other commonly available DMA device for the 128 is
the REC (RAM expansion controller) chip in the 1700 and
1750 Memory Expansion Modules. These bits, rather than bits
6-7 of the configuration register, determine which block of
128 system RAM is affected by REC transfer operations.

54535 8D507 MMUPOL
54536 $D508 MMUPOH
Page 0 pointers
One unique feature provided by the MMU is the ability to re-
locate page 0 anywhere in memory. Zero page is the most
heavily used area of memory in any computer built around a
6502-family microprocessor like the 128's 8502, since the pro-
cessor has many instructions that are designed to work only
with this page. Although neither the 128 operating system or
BASIC makes use of this page-relocation capability, it has sev-
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eral interesting applications. For example, you could have sev-
eral programs in memory simultaneously and give each its
own personal zero page, without having to worry about mem-
ory conflicts.

Location 54535/$DF07, the page pointer, selects the page
of memory to which zero page is to be relocated. The Kernal
RESET routine [$E0O0] stores the value 0/$00 here to locate
zero page initially in the true zero page. To move zero page,
store the target page number here. {The page number is equiv-
alent to the high byte of the first address in the page.) Actu-
ally, the operation is more a swap than a relocation. When
you redirect zero page to another page of memory, all refer-
ences to addresses in the target page are diverted to the true
zero page. For example, if you store the value 19/$13 in this
register to move zero page to page 19, then all references to
addresses in the range 2-255/$02-$FF will be redirected to
4866-5119/$1302-$13FF, and all references to 4864-5119/
$1300-$13FF will be redirected to 0-255/$00-$FF. Notice that
addresses 0-1 from zero page are not affected. These are the
processor's on-chip I/O port registers—not RAM. Storing values
in these locations always affects the registers rather than RAM.

Location 54536/$D508 selects the block of RAM in which
zero page will be seen. Only bit 0 of the block pointer is sig-
nificant. Setting that bit to %0 selects block 0 RAM, while set-
ting it to %1 selects block 1. The bit is set to %0 by the Kernal
RESET routine [$E000]. Bits 1-3 will retain whatever value is
written to them, but changing these bits has no effect. The RE-
SET routine sets these bits to %000, Bits 4-7 are also unused,
but these bits always return %1 when read. As a result, the
value in this register will always be at least 240/$F0. Values
written to the page pointer take effect immediately, but values
written to the block pointer are actually effective only after the
next time a value is stored in the page pointer. Thus, if you
are changing both registers it is important to remember to
store the value in the block pointer (54536/$DF08) before
storing the value in the page pointer (54535/$DF07).

However, the block pointer value is ineffective while the
RAM configuration register (54534/$D506) is set to provide a
common area at the bottom of memory. With the bottom com-
mon area enabled, zero page is always seen in block 0 RAM,
although it can still be moved around freely within block 0.
Since this is the default configuration for the 128, there is
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rarely a need to change the value in 54536/$D508. If you se-
lect block 1 RAM while the bottom common area is enabled, a
strange effect results. Zero page is relocated to the page speci-
fied in the page pointer, but that page is not swapped with
zero page. That is, both pages will occupy the same area of
memory, and the true zero-page area remains untouched.

When choosing areas of memory for a relocated zero
page, you must avoid page 1 (or the area where you relocate
page 1), since that page is also vital to proper system opera-
tion. You should also avoid page 255/$FF, since attempting to
place zero page there will cause conflicts with the MMU regis-
ters. Because all references to the target page will affect true
zero page, you should be careful to avoid using any locations
in the target page while zero page is relocated (unless you
really want to change true zero page). After relocating zero
page, you will probably want to call the Kernal routines
RAMTAS [$FF87] and CINT [$FF81] to initialize important
zero-page locations. (If you switch to a zero page without
proper screen editor variables, you may find yourself looking
at a garbled mess on the screen.)

54537 $D509 MMUP1L
54538 SD50A MMUP1H
Page 1 pointers
Just as the MMU can relocate zero page, it also has the ability
to make page 1 appear anywhere in memory. Page 1 is vital in
any computer built around a 6502-family microprocessor like
the 128's 8502, since that page is the processor stack. The
stack is the area of memory where the processor stores return
addresses while it is executing subroutines or handling inter-
rupts. The stack is also used extensively for temporary data
storage. Although neither the 128 operating system or BASIC
makes use of this page-relocation capability, it has several in-
teresting applications. For example, you could have several
programs in memory simultaneously and give each its own
personal stack, without having to worry about memory conflicts.

Location 54537/$DF09, the page pointer, selects the page
of memory to which page 1 is to be relocated. The Kernal RE-
SET routine [$E000] stores the value 0/$01 here to locate page
1 initially in the true page 1. To move page 1, store the target
page number here. (The page number is equivalent to the high
byte of the first address in the page.) Actually, the operation is
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more a swap than a relocation. When you redirect page 1 to
another page of memory, all references to addresses in the tar-
get page are diverted to the true page 1. For example, if you
store the value 21/$ 15 in this register to move page 1 to page
21, then all references to addresses in the range 256-511/
$0100-$01FF will be redirected to 5376-5631/$1500-$15FF,
and all references to 5376-5631/$1500-$15FF will be re-
directed to 256-511/$0100-$01FF.

Location 54539/$D50A selects the block of RAM in
which page 1 will be seen. Only bit 0 of the block pointer is
significant. Setting that bit to %0 selects block 0 RAM, while
setting it to %1 selects block 1. The Kernal RESET routine
[$E000] sets this bit to %0 for block 0. Bits 1-3 will retain
whatever value is written to them, but changing these bits has
no effect. The bits are set by the RESET routine to %000. Bits
4-7 are also unused, but these bits always return %1 when
read. As a result, the value in this register will always be at
least 240/$F0. Values written to the page pointer take effect
immediately, but values written to the block pointer are actu-
ally effective only after the next time a value is stored in the
page pointer. Thus, if you are changing both registers it is im-
portant to remember to store the value in the block pointer
(54538/$DF0A) before storing the value in the page pointer
(54537/$DF09).

However, the block pointer value is ineffective while the
RAM configuration register (54534/$D506) is set to provide a
common area at the bottom of memory. With the bottom com-
mon area enabled, page 1 is always seen in block 0 RAM—al-
though it can still be moved around freely within block 0,
Since this is the default configuration for the 128, there is
rarely a need to change the value in 54538/$D50A. If you se-
lect block 1 RAM while the bottom common area is enabled, a
strange effect results. Page 1 is relocated to the page specified
in the page pointer, but that page is not swapped with page 1.
That is, both pages will occupy the same area of memory, and
the true page 1 area remains untouched.

This mobile page 1 allows a tricky technique for filling
areas of memory. Instead of storing values in a series of loca-
tions, you can redirect page 1 to the desired area of memory
and push values onto the relocated stack. The advantage of
this is that the PHA instruction takes only half as long to exe-
cute as the STA (address),Y instruction. Just be sure to pre-

serve the original stack pointer; otherwise, your program will
crash when the memory moving subroutine tries to return to
its calling routine. The two routines below are alternate meth-
ods of filling the high-resolution screen area. The conventional
method (on the left) is shorter, but the relocated stack method
(on the right) is about 30 percent faster.
BOO LDA #$00 COO TSX

STA $FB C01 STX $FB
L D A #$20 C03 LDX #$FF
STA $FC COS TXS
LDA #$FF C06 LDA #20
LDX #$20 COS STA $D509
LDY #$00 COB LDA #$FF
STA ($FB),Y COD LDX #$20
INY C0F LDY #$00

B02
B04
B06
BOS
BOA
B0C
B0E
B10
Bll BNE
B13 INC
B15 DEX
B16 BNE
B18 RTS

$B0E
$FC

$C11

Cl l
C12
C13
C15
CIS
C19
C1B
C1D
C1E
C20
C23

PHA
INY
BNE
INC
DEX
BNE
LDX
TXS
LDA
STA
RTS

$C11
$D509

$C11
SFB

#$01
$D509

$D50B MMUVER54539
Version register
This read-only register returns a constant value (much like a
ROM location) reflecting the amount of RAM in the system
and the version of the MMU. If Commodore ever introduces
successors to the 128 built with similar system architecture (a
Commodore 256 or 1024, for example), this register will allow
software to identify the amount of memory available.
Bits 0-3: These four bits indicate the version of the MMU chip
installed in the 128. In current 128s the value here is %0000
= 0, indicating version 0 of the MMU, but this may change if
new versions of the chip are introduced.
Bits 4-7: These four bits indicate the number of 64K blocks of
RAM present in the system. In the 128, the value here is
%0010 = 2, indicating 128K of RAM in two 64K blocks.
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54540-54783 $D50C-$D5FF Unused
All the unused register addresses in this range return the value
255/SFF when read. Writing to these locations has no effect.

65280 $FF00 MMUCR
Configuration register
This is one of the most important locations in all of 128 mem-
ory, since the value here determines what other memory ele-
ments will be visible to the processor. The entire design of the
128 is contingent on the MMU's ability to make various selec-
tions of the system's memory resources visible at shared loca-
tions within the processor's limited address space. The 16
banks supported by the operating system are merely 16 pre-
defined settings of this register—not 16 physical arrangements
of memory. See Table 1-1 in Chapter 1 for details of the stan-
dard bank configurations.

Configurations other than the standard banks are certainly
possible. Since each of the eight bits of this register is assigned
a function in the MMU specifications, there are theoretically
256 possible different memory configurations. Actually, there
are only 128 functional combinations because bit 7 of the reg-
ister in not implemented in the current version of the MMU.
However, not all of these possible configurations are equally
useful. For example, none of the configurations which involve
either internal or external function ROM are useful unless you
have a function ROM installed. The only configuration regu-
larly employed by the system that doesn't correspond to a
standard bank is one used by BASIC, consisting of BASIC
ROM, screen editor ROM, character ROM, and Kernal ROM,
plus block 1 RAM (essentially the same as bank 14, but with
RAM from block 1 instead of block 0). Machine language pro-
grammers may find it useful to set up a configuration which
switches out BASIC ROM while retaining the I/O block and
screen editor and Kernal ROM, Such a configuration leaves 4IK
free for ML programs in the range 7168-49151/$1COO-$BFFF.
To set up this arrangement, use LDA #$0F:STA $FFOO.

This location has an identical twin at address 54528/
$D500. Actually, there is only one configuration register, but it
can be accessed at two different addresses. The higher address
is used almost exclusively because it is visible in all memory
configurations, whereas the register is visible at 54528/$D500
only when the I/O block is selected (and you must have ac-
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cess to the configuration register to make the I/O block visi-
ble). Both registers will hold identical values, regardless of
which register is written to set the value.

There is an alternative to storing values directly in this
register. You can store up to four configuration register
settings in the preconfiguration registers at 54529-54532/
$D501-$D504, then transfer the values to the configuration
register by writing to the corresponding load configuration
registers at 65281-65284/$FF01-$FF04. See the precon-
figuration and load configuration register entries for details.

Bit 0: This bit determines what is seen at addresses in the
range 53248-57343/$D000-$DFFF. When the bit is set to %0,
the I/O block (containing hardware chip registers and color
RAM) is visible. When the bit is set to % 1 , the contents of the
address area is determined by the setting of bits 4-5.

Bit 1: This bit determines what is seen at addresses in the
range 16384-32767/$4000-$7FFF. When the bit is set to %0,
the lower portion of BASIC ROM appears there. When the bit
is set to % 1 , the address area will contain RAM from the block
specified in bits 6-7.

Bits 2-3: These bits determine what is seen at addresses in the
range 32768-49151/$8000-$BFFF. The four possible selections
are as follows:
Bits
3 2 Address range contents
0 0 Upper portion of BASIC ROM ($8000-$AFFF), plus monitor

ROM ($BOOO-$BFFF)
0 1 Internal function ROM
1 0 External function ROM
1 1 RAM
Internal function ROM refers to ROM in the free ROM socket
on the 128 circuit board. External function ROM refers to
ROM in a cartridge plugged into the expansion port. If you se-
lect either of these sources when no ROM is actually installed,
the area will appear to contain unpredictable changing values.
When RAM is selected in this area, the block from which the
RAM will be seen is determined by the setting of bits 6-7.

Bits 4-5: These bits determine what is seen at addresses in the
range 49l52-65535/$C000-$FFFF, with some exceptions. The
MMU configuration and load configuration registers always
appear at 65280-65284/$FF00-$FF04, regardless of the
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settings of these bits. Also, bit 0 of this register can override
the specification for the contents of addresses in the range
53248-57343/$D000-$DFFF. As long as bit 0 is set to %0, the
I/O block will be seen in that portion of this area, regardless
of the setting of these bits. The four possible selections for this
area are as follows:
Bits
5 4
0 0

Address area contents
Screen editor ROM ($COOO-$CFFF), character ROM
($D00O-$DFFF), Kemal ROM ($EOOO-$FFFF)
Internal function ROM
External function ROM
RAM

Internal function ROM refers to ROM in the free ROM socket
on the 128 circuit board. External function ROM refers to
ROM in a cartridge plugged into the expansion port. If internal
or external function ROM is selected when no ROM is actually
present, the area will appear to contain unpredictable chang-
ing values. When RAM is selected, the area will contain RAM
from the block specified in bits 6-7, unless the MMU's RAM
configuration register at 54534/$D506 specifies a common
area at the top of memory. When a common area is enabled,
all RAM in the common area will come from block 0, regard-
less of the block specified in bits 6-7.

Bits 6-7: The memory configuration established by the 128 al-
ways includes RAM in the lowest 16K area (addresses
2-16383/$0002-$3FFF), and RAM may be selected in any of
the other three 16K segments in the processor's 64K address
space. These bits determine which 64K RAM block the RAM
in the selected configuration will be seen from. The formal
specifications for these bits are as follows:
Bits
7 6 RAM block selected
0 0 Block 0
0 1 Block 1
1 0 Block 2
1 1 Block 3

Remember, however, that the 128 actually has only two 64K
blocks of RAM (blocks 0 and 1). Thus, the setting of bit 7 is
meaningless and has no effect in the current version of the

MMU. Bit 7 will retain whatever value you write to it, but
only bit 6 is significant.

The block specification in these bits will be overridden for
certain ranges of memory if any common RAM areas are spec-
ified by the RAM configuration register at 54534/$D506.
When common areas are enabled, any visible RAM in the
common range will be seen from block 0, regardless of the set-
ting of these bits.

These bits specify the RAM block for the processor only;
the block in which the VIC (40-column) chip's video RAM
bank is seen can be selected independently. The VIC block is
specified in bits 6-7 of the MMU's RAM configuration register
at 54534/$D506. The RAM configuration register bits, rather
than the configuration register bits, also determine which
block will be affected by other DMA (direct memory access)
operations, such as data transfers by the REC (RAM expansion
controller) chip in the RAM expansion modules.

65281 SFF01 LCRA
65282 $FF02 LCRB
65283 $FF03 LCRC
65284 $FF04 LCRD
Load configuration registers
Each of these registers has a corresponding preconfiguration
register at 54529-54532/$D501-$D504. Storing a value in a
load configuration register causes the value in the precon-
figuration register to be transferred to the configuration regis-
ter. The value stored in the load configuration register is
irrelevant; it is the store operation, rather than the value
stored, which causes the transfer. Reading any of the load
configuration register locations returns the value in the cor-
responding preconfiguration register. Values stored in a load
configuration register location have no effect on the value re-
turned when the register is read.

The 128 operating system does not use the preconfigur-
ation or load configuration registers, but BASIC does. See the
entry above for the preconfiguration registers for details of the
standard configuration settings.
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VDC (Video Display Controller) Chip
Registers
54784-54785/$D600-$D601
The VDC (video display controller), officially designated the
8563, is a custom chip designed by Commodore's engineers
especially to provide the 80-column display for the 128. The
VDC provides a digital RGBI signal requiring a special moni-
tor, but other than that the fundamentals of its video display
are similar to those described for the VIC chip. The other
thing that distinguishes the VDC from the VIC is the VDC's
high degree of programmability. Many of the features that are
fixed in the silicon of the VIC can be customized on the VDC
simply by storing a value in one of its registers. For example,
the VDC gives you complete control over the number of rows
and columns in the screen display, and even over the number
of pixels and scan lines in each character position.

Figure 8-16. VDC Memory Configuration
S3FFF-

$3000-

$2000-

$1000-

$0800-

$0000- .

Lowerra se/uppercase
character set

Uppercase/graph ic
character set

Unused

Attribute memory

Screen memory
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Although the VDC does have a graphic mode (see the en-
try for bit 7 of register 25/$19), it is primarily used for text
displays. In this mode, it uses the same basic elements as the
VIC: screen memory, character memory, and attribute memory
(which corresponds to the VIC's color memory). However, all
these elements for the VDC appear in a 16K block of memory
that is totally separate from the 128's system address space.
This separate block is reserved solely for the VDC. Figure 8-16
illustrates the configuration of VDC memory.

VDC screen memory holds screen code values identical to
the screen codes for the VIC display. For each screen position,
the screen code serves as an index into character memory to
select the pattern to be displayed in the position. All character
patterns are in RAM. The VDC has no character ROM of its
own, so the contents of the VIC's character ROM is copied
into VDC RAM during system initialization. Redefining char-
acters for the VDC is as simple as storing the new pattern in
the proper area of character memory. Each character definition
is 16 bytes long, but because the default character height is
eight scan lines, only the first eight bytes are used to hold
character pattern information. The remaining eight bytes are
generally padded with zeros. To determine the starting ad-
dress for the definition for any character, use the appropriate
formula from the following:

for uppercase/graphics character set:
address = (screen code * 16) + 8192

for lowercase/uppercase character set:
address = (screen code * 16) + 12288

The remaining memory area is attribute memory, which
determines the display characteristics for the character speci-
fied in screen memory. It is called attribute memory to distin-
guish it from simple color memory because each attribute
memory location specifies more than just the color. Figure 8-
17 shows the use of each bit of attribute memory.

The lower four bits specify the foreground color for the
character in the corresponding screen position. Unlike the
VIC's color numbers, there is a strictly logical relationship be-
tween the value in these bits and the resulting color. The RGBI
in Figure 8-17 stands for red, green, blue, and intensity. For ex-
ample, a value of %1000 in these bits selects only red, while
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Figure 8-17. VDC Character Attributes

R G B I

character set
(0 «• uppercase/graphics)
(1 = lowercase/uppercase)

reverse
(0 •" normal)
(1 = reverse)

color (see Table 8-5)

flash (0 = off, J = on)

underline (0 — off, 1 — on)

%1011 selects red plus blue plus intensity, resulting in light
purple. Table 8-5 shows the standard VDC color values. Note
that these values are different from the BASIC color numbers.

Table 8-5. Standard VDC Color Values

Value VDC color
0/$00 black
l/$01 dark gray (light black)
2/$02 dark blue
3/$03 light blue
4/$04 dark green
5/$05 light green
6/$06 dark cyan
7/$07 light cyan
8/$08 dark red
9/$09 light red

10/$0A dark purple
ll/$0B light purple
12/$0C dark yellow
13/$0D light yellow
14/$0E light gray (dark white)
15/$0F white

Bit 4 selects the flash attribute, causing the character in
the corresponding character position to blink at the rate speci-
fied in bit 5 of internal register 24/$18. Bit 5 selects the under-
line attribute, but the line can be moved to any scan line of
the character position. Bit 6 controls the reverse attribute,
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.̂ hich reverses the foreground and background pixels of the
character pattern. However, this attribute isn't used by the 128,
which instead has reversed character patterns as part of the stan-
dard character sets. Finally, bit 7 selects which of the two charac-
ter sets will be used. The VIC allows only one of the two
character sets to be used at any one time, but the VDC allows

ju to select the character set independently for each character
position.

The register structure of the VDC chip is rather unusual. It
has only two registers visible in the normal system address
space. You must go through these registers to access any of the
internal functions of the VDC. Table 8-6 lists the VDC communi-
cations registers visible to the processor. A detailed description of
both locations follows.

Table 8-6. VDC External Communications Registers

54784/$D600 VDC address/status register
54785/$D601 VDC data register

54784 $D600 VDCADR
Address/status register
The VDC actually has two different registers at this location: a
write-only address register and a read-only status register. Any
value you store in this location goes to the address register.
The value specifies which one of the 37 internal VDC registers
can be accessed via the data register at 54785/$D601. Since
only six bits are needed to specify all the valid register num-
bers (0-36), bits 6 and 7 of the address register are unused
and have no effect when you are writing to this register.

You can't read this location to determine which internal
register is being accessed; reading always returns the status
register contents. The status register bits are defined as
follows:

Bits 0-2: These locations hold a constant number (like a ROM
location) indicating the version number of the VDC chip cur-
rently installed. There have been two versions of the VDC to
date. In early 128s, the value here will be %000 = 0, while in
later models the value will be %001 = 1, The exact difference
between the versions is not clear, but they do require slightly
different initialization. Specifically, internal register 25, the
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horizontal smooth scrolling register, requires different settings
for the different versions. The IOINIT routine [$E109] checks
these VDC status register bits and performs the initialization
accordingly.

Bits 3-4: These bits are unused, and always return %0 when
read.

Bit 5: This bit, called the VBLANK flag, is used to indicate
when the VDC raster scan is in its vertical blank period. After
a full screen has been drawn and the electron beam has reached
the lower right corner of the display, the beam must be turned
off briefly while it is moved back to its home position in the
upper left corner to begin the next frame. Otherwise, moving
the beam would result in a diagonal line across the screen.
The time while the beam is turned off for this repositioning is
called the vertical blanking interval. This bit, normally %0,
will be set to %1 during the vertical blanking period.

When you're programming special screen effects, it's
handy to know when the blanking period is occurring. The
time when one frame has been completely drawn but another
one has not yet been started is a good time to change screen
parameters without causing excessive flicker. The VIC chip can
generate a raster interrupt to signal when its vertical blanking
interval is beginning, but the VDC chip can't generate inter-
rupt requests, so this bit provides an alternate method of sig-
naling that vertical blanking is in progress.
Bit 6: This bit, known as the LP flag, is used to indicate when
new values have been latched in the internal light pen regis-
ters. Whenever a pulse is detected on the VDC chip's LP input
line, the row and column positions of the raster beam at that
time are latched into internal registers 16—17/$10-$ll and
this bit is set to % 1 . This bit will remain %1 until one or both
of the internal light pen registers are read, at which time it
will be reset to %0. Thus, a %1 in this bit is a signal that a
new light pen position can be read from the internal registers,
while a %0 indicates that the register values have not changed
since they were last read. See the entry for internal registers
16-17/$10-$ll for details of light pen reading.

Bit 7: This bit, known as the STATUS flag, is used to indicate
that the VDC is ready to read from or write to the internal
register specified by writing to the external address register.
The flag bit will be set to %0 when a value is stored in this Io-
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cation, and will return to %1 w h e n the specified register is
ready for access. The s tandard procedure for reading from or
writing to a VDC register is as follows;

Writing:
LDX
5TX

Reading:
LDX
STX

WAIT LDX
BPL
LDA

#register number
$D600
$D600
WAIT
$D601

WAIT LDX
BPL
STA

#register number
$D600
$D600
WAIT
$D601

Refer to the entry below for information concerning the
restrictions on accessing this location from BASIC.

SD601 VDCDAT54785
Data register
This register is the gateway to the internal registers of the
VDC. After you have set the desired internal register number
by writing to the address register at 54784/$D600, the speci-
fied register becomes visible at this location. Reading from this
location shows the internal register contents, and writing to
this location stores the value in the internal register. Once you
specify an internal register, that register remains visible here
until you change registers by storing a new value in 54784/
$D600. Refer to the internal register descriptions below for
more information on the effects of reading from and writing to
the various registers.

Commodore's specifications for this chip state that when
accessing the VDC, you should avoid machine language in-
structions that use the indirect addressing mode. That is, you
should avoid using instructions like LDA ($CC),Y to read this
register because the VDC apparently responds improperly to
such instructions. This imposes no particular hardship on ma-
chine language programmers, but has highly unfortunate con-
sequences for BASIC programmers. The 128's PEEK, POKE,
and WAIT instructions are implemented using the Kernal
INDFET, INDSTA, and INDCMP routines, all of which use in-
direct-Y addressing to read or store values. As a result, you
should not use PEEK, POKE, or WAIT statements to read or
change the contents of this location or of location 54784/$D600.

This would seem to make the VDC inaccessible from
BASIC. Fortunately, a pair of screen editor ROM routines pro-
vide a simple detour around this roadblock. In Chapter 7 they
are designated WRITEREG [$CDCC] and READREG [SCDDA],

433



54786-55039 $D602-$D6FF

and they have the form shown above in the discussion of lo-
cation 54784/$D600. To store a value in any VDC register
from BASIC, use:
SYS DECCCDCC"), value, register

or

SYS 52684, value, register

where register is the number (0-36) of the internal VDC regis-
ter you wish to access, and value is the value (0-255) you
wish to place in that register. If you have used any other
BANK statements in your program, it would be wise to add a
BANK 15 statement before these SYS statements to insure the
proper memory configuration.

To read the contents of an internal VDC register from
BASIC, use a statement of the form:
SYS DECC'CDDA"),, register : RREG A

or
SYS 52698,, register : RREG A

Be sure you have two commas between the SYS address and
the register number. After this statement has been executed,
the variable A will contain the value read from the specified
register. Again, if you change bank configurations elsewhere
in your program, it would be wise to add a BANK 15 before
the SYS statement.

54786-55039 $D602-SD6FF
VDC chip register images
Due to incomplete address decoding, images of the VDC chip
registers appear repeatedly through the remainder of this page
of memory. That is, storing a value in any even-numbered lo-
cation in this range has the same effect as storing a value in
54784/$D600, and storing a value in any location in this
range having an odd address has the same effect as storing a
value in 54785/$D601. It might be easier to remember the ad-
dress of one of the image locations, such as 55000 in place of
54784. Nevertheless, it's better programming practice to use
the officially designated register addresses.
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VDC Internal Registers
Table 8-7 lists the various internal VDC registers which can be
accessed via the external communications register. A detailed
description of each follows.

Table 8-7. VDC Internal Registers

0/$00 Total number of horizontal character positions
l/$01 Number of visible horizontal character positions
2/$02 Horizontal sync position
3/$03 Horizontal and vertical sync width
4/$04 Total number of screen rows
5/$05 Vertical fine adjustment
6/$06 Number of visible screen rows
7/$07 Vertical sync position
8/$08 Interlace mode control register
9/$09 Number of scan lines per character

10/$OA Cursor mode control
ll/$0B Ending scan line foT cursor
12/$0C Screen memory starting address (high byte)
13/$0D Screen memory starting address (low byte)
14/$0E Cursor position address (high byte)
15/$0F Cursor position address (low byte)
16/$10 Light pen vertical position
17/$11 Light pen horizontal position
18/$12 Current memory address (high byte)
19/$13 Current memory address (low byte)
20/$14 Attribute memory starting address (high byte)
21/$15 Attribute memory starting address {low byte)
22/$ 16 Character horizontal size control register
23/$17 Character vertical size control register
24/$18 Vertical smooth scrolling and control register
25/$19 Horizontal smooth scrolling and control register
26/$lA Fore ground/background color register
27/$lB Address increment per row
28/$lC Character set address and memory type register
29/$lD Underline scan-line-position register
30/$lE Number of bytes for block write or copy
31/$1F Memory read/write register
32/$20 Block copy source address (high byte)
33/$21 Block copy source address (low byte)
34/$22 Beginning position for horizontal blanking
35/$23 Ending position for horizontal blanking
36/$24 Number of memory refresh cycles per scan line
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0 $00
Total number of horizontal character positions
The value in this register determines the total width (in char-
acter positions) of each horizontal line of the display. The
value stored here should be one less than the desired number
of horizontal character positions. This total includes the active
portion of the display (where characters can be displayed), the
left and right borders, and the horizontal sync width. The total
number of horizontal pixels is given by multiplying the value
here (plus 1) by the total number of pixels per character posi-
tion (the value in bits 4-7 of register 22/$16 plus 1).

The default value for this register, established during the
IO1NIT routine [$E109], is 126/$7E, This provides 127 hori-
zontal character positions. You'll need to reduce this by half if
you enable the pixel double feature (see the entry for bit 4 of
register 25/$19). You may need to increase the value here
slightly if you use one of the interlaced modes.

1 $ 0 1
Number of active horizontal character positions
The value in this register determines how many of the hori-
zontal character positions specified in register 0/$00 can actu-
ally be used to display characters. The value stored here
should be the desired number of columns for the display. The
value here must be less than the value in register 0/$00. The
default value for this register is 80/$50, since the default VDC
display is an 80-column text screen. The value here also deter-
mines the width of the bitmap when the VDC is set for graphic
mode. The bitmap width is given by multiplying the number
of character positions by the character-position width specified
in bits 0-3 of register 22/$16.

The screen editor routines that support printing to the 80-
column screen assume that each screen line occupies 80 screen
memory locations. If you want the screen printing routines to
continue to function properly after you reduce the number of
active character positions in this register, you should increase
the value in register 27/$lB so that the sum of the value in
that register plus the value in this register remains equal to 80.
Reducing the value here removes characters from the right of
the display area. To center the active display area after reduc-
ing the number of character positions, you must reduce the
value in register 2/$02. The screen editor routines will not

AP600-$D601 54784-54785

support a display wider than 80 columns, so you'll have to
write your own text handling routines if you want to use a
wider display.

2 $ 0 2
Horizontal sync position
The value in this register determines the character position at
which the vertical sync pulse begins. The value here also de-
termines the horizontal position of the active portion of the
screen within the total display. The default value here is
102/$66. Increasing this value moves the active screen area to
the left; decreasing it moves the active area to the right.

3 $ 0 3
Horizontal and vertical sync width
Bits 0-3: These bits specify the width of the horizontal sync
pulse. The value here should be one greater than the desired
number of character positions for the pulse. The default value
for these bits is 9/$9, for a pulse eight character positions wide.

Bits 4-7: These bits specify the width of the vertical sync
pulse. The bit value here should be equal to the desired num-
ber of scan lines for the pulse, unless the interlaced sync and
video mode is being used (in that case, use a value that is
twice the desired number of scan lines). The default value for
these bits is 4/$4, for a pulse four scan lines wide.

4 $04
Total number of screen rows
This register specifies the total height (in character positions)
of the VDC display. The value stored here should be one less
than the desired number of vertical character positions. The
total includes the rows for the active display, the top and bot-
tom portions of the border, and the vertical sync width. To de-
termine the height of the raster in scan lines, multiply the
value in this register (plus 1) by the number of scan lines per
character position (the value in register 9/S09 plus 1) and add
any additional scan lines specified in register 5/$05.

The proper number of scan lines for the display is a func-
tion of the video system being used; it's different for NTSC
(North American) and PAL (European) systems. During the
IOINIT routine [$E109], the 128 checks the VIC chip to deter-

436 437



54784-54785 $D600-$D601

mine which system is being used (since the VIC isn't pro-
grammable like the VDC, there is a different version of the
VIC for each of the two video systems). This register is then
initialized accordingly: to 32/$20 for NTSC systems or 39/$27
for PAL systems, selecting 33 or 40 rows, respectively. Since
the default character-position height is eight scan lines, the re-
spective total heights are 33 * 8, or 264 lines, for NTSC, and
40 * 8, or 320 scan lines, for PAL. These scan-line totals
should remain constant, so if you increase the character height
you must decrease the total number of rows, and vice versa.

5 $05
Vertical fine adjustment
Bits 0-4: The total number of scan lines in the VDC's video
display should be 264 for an NTSC (North American) system
or 320 for a PAL (European) system. The number of scan lines
used in the VDC display is given by the total number of verti-
cal positions (specified in register 4/S04) multiplied by the
number of scan lines per character position (specified in regis-
ter 9/$09). If the result doesn't come out exactly equal to the
required 264 or 320, the VDC can add a few extra scan lines at
the end to achieve the proper result. The value in this register
specifies the number of extra scan lines to add. The available
five bits allow up to % 11111 = 3 1 / $ i F additional scan lines.

The default character height of eight scan lines is an exact
multiple of both 264 and 320 (33 * 8 = 264 and 40 * 8 =
320). Thus, no extra scan lines are required, so this register is
initialized to 0/$00 by the Kernal IOINIT routine [$E109]. As
an example of the use of this register, assume that you in-
creased the character height to nine scan lines. For an NTSC
system, 264 / 9 = 29 with a remainder of 3. Thus, for this
case you should specify 29 for the total number of vertical
character positions and store a 3 in this register to provide the
required additional scan lines.
Bits 5-7: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value you
read from this register will always be at least 224/$E0. To
mask off these bits and see only the valid bits of the register,
use AND 31 in BASIC or AND #$1F in machine language.
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6 $06
Number of visible screen rows
The value in this register determines how many of the vertical
character positions specified in register 4/S04 can actually be
used to display characters. The value here must be less than
the total number specified in register 4/$04. The default value
established for this register by the Kernal IOINIT routine
[$E109] is 25/$19, which sets up the standard 25-row display.
One obstacle to selecting other numbers of rows is that the
screen editor ROM routines will, by default, assume a 25-line
screen. When decreasing the number of rows, you can make
the screen editor use the reduced number by storing a value
equal to the new number of rows minus 1 in location 237/
$ED, then resetting the output window to full screen size (by
printing two cursor-home characters, for example). The screen
editor routines will not support a display with more than 25
rows, so you'll have to provide your own character manipula-
tion routines to use such a screen.

7 $07
Vertical sync position
The value in this register determines the vertical character po-
sition at which the vertical sync signal will be generated. This
register can be used to adjust the vertical location of the active
display area within the screen. The default value for this regis-
ter, established by the IOINIT routine [$E109], is 29/S1D for
NTSC (North American) systems or 32/S20 for PAL (Euro-
pean) systems. Decreasing the value here will move the active
display area down the screen, while increasing the value will
move the active display area upwards. However, you should
not increase the value here above the maximum number of
rows specified in register 4/$04.

8 $08
Interlace mode control
Bits 0-1: The value in these bits controls the interlace mode of
the screen. The complete standard for NTSC video calls for a
frame (raster) of 525 lines to be redrawn 30 times per second,
while the PAL standard calls for 625 lines redrawn 25 times
per second. The full screen isn't drawn all at once; instead, it's
drawn in two passes with half the lines for the frame drawn
on each pass. The lines for the second pass of the frame are
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drawn between the lines for the first. Like most computer dis-
plays, the VDC normally takes a shortcut and draws half the
full number of lines at twice the rate. This noninterlaced dis-
play provides sufficiently sharp output for most uses. How-
ever, the VDC is also capable of producing two interlaced
display modes. The modes are selected as follows:
Bits
I 0 Value Interlace mode
x 0 0 or 2 noninterlaced
0 1 1 interlaced sync
II 3 interlaced sync and video

The default value is 0/$00, which selects the standard
noninterlaced mode. The system never uses any other mode.
In the interlaced sync mode, the number of scan lines is dou-
bled. Each horizontal scan line is drawn twice, once on the
first pass and very slightly lower on the second pass. The re-
sult should be greatly improved vertical resolution, but you'll
probably be disappointed. Remember that each tiny dot on the
screen glows only very briefly after being struck by the raster
video beam. Since this mode must draw twice as many lines,
it draws each line only half as often. On most video monitors,
the first set of lines will have started to fade before the second
set is completely drawn. As a result, the screen will appear to
jitter annoyingly in this mode.

The remaining choice is interlaced sync and video mode.
In this case, the VDC also draws twice as many lines as non-
interlaced mode, but the alternating half-frames are indepen-
dent, so you can use twice as many horizontal lines per frame
(the maximum screen height in scan lines is double that of the
noninterlaced mode). This creates the tantalizing prospect of
an 80-column X 50-line text screen. The following routine
sets up such a display:

10 WR=DEC("CDCC")
20 SYS WR,3,8
30 SYS WR,64,4
40 SYS WR,50 ,6
50 SYS WR,58,7
60 SYS WR,128 ,0

However, this setup does have limitations. It suffers from the
same jitter problems as the other interlaced mode. Further-
more, the screen editor routines that control printing to the
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screen will not support a display longer than 25 lines, so
you'll have to write your own text manipulation routines to
handle the extra 25. Nevertheless, this mode has interesting
possibilities.

Bits 2-7: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value you
read from this register will always be at least 252/$FC. To
mask off these bits and see only the valid bits of the register,
use AND 3 in BASIC or AND #$03 in machine language,

9 $ 0 9
Total number of scan lines per character
Bits 0-4: These bits determine the total vertical height (in scan
lines) of each character position. The value stored here should
be one less than the desired number of scan lines. The total
vertical height value includes the scan lines for the active por-
tion of each character position, plus any desired number of
blank scan lines for intercharacter vertical spacing. The height
of the active portion of the character position is determined by
the value in register 23/$17.

The default value for this register, established during the
IOINIT routine [SE109], is 7/$07, for a total character-position
height of eight scan lines. In this case, there will be no vertical
intercharacter spacing because this is less than the active char-
acter height. (In the default character set, intercharacter spacing
is achieved by leaving the bottom row of the character pattern
blank.) The five available bits allow values up to %11111 =
31/$IF, for character-position heights of up to 32 scan lines.
However, when changing this value to allow for greater verti-
cal resolution, you must keep in mind that the value here mul-
tiplied by the total number of rows specified in register 4/$04
(and plus the number of extra scan lines specified in register
5/$05) determines the number of scan lines in the display.
This total should always be 264 lines for NTSC (North Ameri-
can) systems or 320 lines for PAL (European) systems.

The value here also determines how much memory is re-
quired for character pattern memory. While the value here is
less than or equal to 15 (while the character height is 16 or
fewer scan lines), each character pattern is allocated 16 bytes.
Since the VDC supports two complete 256-character sets, a to-
tal of 512 * 16, or 8192 bytes, are required for character mem-
ory' However, if the character height exceeds 16 scan lines (if
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the value here is greater than 15), then 32 bytes are allocated
for each character pattern. In this case, 512 * 32, or 16,384
bytes, are required for character memory. Note that this is all
the memory available to the VDC.

Bits 5-7: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value you
read from this register will always be at least 224/$E0. To
mask off these bits and see only the valid bits of the register,
use AND 31 in BASIC or AND #$1F in machine language.

10 $0A
Cursor mode control
The value in this register cannot be changed directly while the
standard screen editor ROM routines are used for printing.
The contents of a shadow location at 2603/$OA2B are copied
to this register each time the cursor position is updated. Thus,
to change the value in this register, you must store the desired
value in the shadow location rather than in the register.
Bits 0-4: The value in these bits determines the scan line
within each character position for the top of the cursor. Scan
lines within character positions are numbered beginning with
0 for the top line of the position. Bits 0-4 of register ll/$0B
determine the bottom line, and together these registers deter-
mine the height of the cursor. The available five bits allow
starting row numbers as large as %11111 = 31/$1F. The de-
fault value for these bits is %00000, to start the cursor at char-
acter scan line 0, the top line of the character, for the standard
full-height block cursor. The operating system also supports
an underline cursor, selected by printing ESC U [$CAFE], In
this case, the value here is changed to %00111 (7) to start the
cursor on the bottom line of the standard character position.
The value for the top scan line should be no greater than the
maximum number of scan lines specified in register 9/$09, or
else the cursor will not be visible.

Bits 5-6: These bits control the type of cursor provided. Unlike
the VIC, where the cursor is an effect maintained by software,
the VDC has hardware to generate a cursor automatically. The
possible modes are as follows:
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Bit values Cursor mode

0/$00 solid {nonblinking) cursor
32/S20 no cursor
64/$40 blinking at 1/16 screen refresh rate
96/$60 blinking at 1/32 screen refresh rate

The default setting for these bits is %11, specifying a cursor
blinking at the slower of the two rates. The operating system
also supports a nonblinking cursor, selected by printing ESC E
[$CB0B]. In this case, the bits are changed to %00. To rum the
cursor off when the system is not accepting input (as when a
program is running), these bits are reset to %01 [$CD9F].
Bit 7: This bit is unused; writing to it has no effect, and it al-
ways returns %1 when read. Thus, the value you read from
this register will always be at least 128/$80. To mask off this
bit and see only the valid bits of the register, use AND 127 in
BASIC or AND #$7F in machine language,

11 $0B
Bottom scan line for cursor
Bits 0-4: These bits determine the scan line within a character
position for the bottom of the cursor. Together with bits 0-4
of register 10/$0A, this serves to determine the height of the
cursor. The value here should be one greater than the desired
bottom scan line (scan-line numbering starts with 0 for the top
scan line of the character position). The five available bits
allow values up to % 11111 = 31/$1F, so the cursor can go as
low as scan line 30, However, the actual displayed cursor
height will never be greater than the character-position height
specified in register 9/$09. The default value for this register,
established by the IOINIT routine [$E109], is 7/$07, so the
normal bottom scan line of the cursor is scan line 6 of the
character position.
Bits 5-7: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value you
read from this register will always be at least 224/$E0, To
mask off these bits and see only the valid bits of the register,
use AND 31 in BASIC or AND #$1F in machine language.
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12 $0C
13 $0D
Starting address for screen memory

For standard text mode, the value in this register pair deter-
mines the starting address for screen memory, the area which
holds screen codes specifying which character will be displayed
in each screen position. The size of the screen memory area is
determined by the number of active horizontal positions (spec-
ified in register l/$01) multiplied by the number of active rows
(specified in register 6/$06) and the address increment per
row (specified in register 27/$lB). The order of bytes for the
pair is opposite that normally used in the 128 system: The first
register (12/$0C) holds the high byte and the second (13/$0D)
holds the low byte. Unlike VIC screen memory, which must
begin on an even IK address boundary, VDC screen memory
can begin at any address in the VDC's address space. See Fig-
ure 8-16 for a diagram of the VDC's memory configuration.

For graphic mode, the value in this register pair deter-
mines the starting address for the bitmap of the graphic
screen. The amount of memory required for the bitmap is
found by multiplying the number of horizontal character posi-
tions (from register l/$01) by the number of vertical character
positions (in register 6/$06) times the total height of each
character position (from register 9/$09 plus 1). The bitmap
can be started at any address in the VDC address space.

Even if you change the value here, the screen editor ROM
routines will continue to assume that screen memory is located
in its default position unless you also change the value in the
screen memory starting-page pointer at 2606/$0A2E.

14 $0E
15 SOF
Address of current cursor position

For the VIC chip's display, the cursor is an effect laboriously
maintained by software. The VDC, by contrast, has hardware
to maintain the cursor for its display automatically. The cursor
will appear at the character position with the screen memory
location specified in this register pair. If the address specified
here is outside the area of VDC memory currently being used
for screen memory, no cursor will be visible. Other characteris-
tics of the cursor such as its blinking status and position within
the character are specified in registers 10/$OA and 11/$OB.
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The value in these registers cannot be changed directly
while the normal screen editor 80-column printing routines are
in use. The printing routines update the cursor position after
each character is printed so that these registers always hold
the address of the next available character position.

16 $10
17 S l l
Light pen vertical and horizontal positions
Whenever the LP input line to the VDC chip is brought to a
low (0 volts) state, the row and column values for the current
position of the raster beam are latched into these registers. The
vertical (row) number will be latched into register 16/$10, and
the horizontal (column) number will be latched into register
17/$11. To signal that a value has been latched, the LP flag
(bit 6 of the external register at 54784/SD600) will be set to
%1. That bit will remain at %1 until either of these registers is
read, at which time it will be reset to %0. However, reading
these registers does not clear them; the latched values will be
retained until the LP line is brought low again.

The VDC's LP line is connected to pin 6 of control port 1
(control port 2 does not support a light pen). A light pen has
at its tip an electronic device known as a phototransistor,
which is connected so as to cause a low pulse whenever the
video beam moves past the pen. Note that the pen will not be
triggered if the screen position is black or one of the other
dark colors. Only positions which have bright characters can
be read. The ideal character to read with a light pen is a white
re verse-video space.

When a light pen is used, the range of values in these
registers depends on the screen width and height selected by
other VDC registers. Unlike the VIC chip, whose light pen
registers return scan line and dot position values, these regis-
ters return row and column numbers corresponding to the
light pen position. This makes the results much easier to inter-
pret, but does not allow precise positioning, so it is unlikely
that you'll see any 80-column drawing programs using the
light pen as an input device. For the standard 80-column X
25-line screen, the value in register 16/$ 10 corresponds very
closely to the row number: ranging from l/$01 at the top of
the screen to 25/$19 at the bottom. Actually, you may find
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that if you position the pen slightly below the bottom screen
line you can get a reading of 26/S1A.

While the vertical resolution is good, the horizontal reso-
lution is quite poor. The horizontal reading won't correspond
to the row number (1-80). Instead, it corresponds approxi-
mately to the absolute horizontal character position, which in-
cludes the border areas on the left and right edges of the
screen. You should find that when the pen is pointed at the
leftmost character position, you get a reading of about 27-29
in register 17/$11. This implies that the rightmost character
position should give readings of about 106-108. Actually, you
may get higher readings—120 or more. In fact, even if you
hold the pen perfectly stil] you may see the character position
vary up or down by 4 or 5. The moral is that the light pen is
much better at reading vertical than horizontal positions.
You'll have better luck if you limit yourself to checking
whether the pen is within a range of horizontal positions. For
example, if you read the horizontal position and store the re-
sult in the variable H, then an expression such as H = INT({H
— 30) / 8) will return a range of values 0-9 indicating
roughly which one of ten eight-column horizontal areas the
pen is pointing to.

You should be aware that these registers can be tricked
into reading false values. Pin 6 of control port 1 is also used
for light pen input for the VIC chip, and a light pen signal
generated on the 40-column screen will latch meaningless val-
ues in these registers. In lieu of a light pen, several other
events can cause a pulse on the LP line. That control port pin
is also used for the joystick fire button, so pressing the button
of a joystick plugged into port 1 will also latch values in these
registers. Because of this joystick button function, the port line
is also connected to the line from row 4 of the keyboard matrix.
This has two consequences. First, pressing any of the follow-
ing keys with no light pen connected will latch meaningless
values: Fl, Z, C, B, M, period, right SHIFT, space, the 2 and
ENTER keys on the numeric keypad, and the ^ key in the
cursor group. More significantly, while a light pen is con-
nected, all of these keys will be "dead," and cannot be typed.
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18 §J2
19 $13
Current memory address
This register pair specifies which address in the VDC's private
block of RAM will be referenced by the next read or store op-
eration involving register 31/S1F. As with the other VDC ad-
dress register pairs, the first register (18/$12) holds the high
byte of the address and the second (19/$13) holds the low
byte. A value stored in register 31/$1F is transferred to the
VDC memory location specified in this register pair. Reading
register 31/$1F returns the value in the location in VDC mem-
ory with the address specified in this register pair. For copy or
fill operations, the value in these registers determines the des-
tination address for the operation. These registers are auto-
incrementing, meaning that the address value here is auto-
matically increased by 1 after each read or store to register
31/S1F. Thus, when you wish to read or load a continuous se-
ries of VDC memory locations you only need to set the mem-
ory address in these registers before the first read or store.
After that, you can just read from or write to register 31/$1F
and the address will be handled automatically.

20 $ 1 4
21 $15
Starting address for attribute memory
When attributes are activated, this register pair determines the
starting address for attribute memory, the area which holds
attribute values for each active character position on the
screen. (Attributes can be turned on and off by setting bit 6 of
register 25/$19.) The size of the attribute memory area de-
pends on the number of active rows and columns specified in
registers 2/$02 and 6/$06, and will be the same as the size of
the screen memory area. See the discussion of attributes in the
introduction to this section for more information.

These locations are initialized to 2048/S0800, the default
starting address for attribute memory. Like the other address
pairs in the VDC, the first register (20/$14) holds the high
byte and the second (21/$15) holds the low byte. Attribute
memory can start at any address within the VDC's address
space. Even if you change the value here, the screen editor
ROM routines will continue to assume that attribute memory
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is in its default position unless you also change the value in
the attribute starting-page pointer at 2607/$0A2F.

22 $16
Character horizontal size control
Bits 0-3: The value in these bits determines how many of the
total horizontal pixels in the character position will be used to
display character pattern data. (The total number is specified
in bits 4-7 of this register.) If the number of active pixels is
less than the total number of pixels, the extra pixels will be
blank for intercharacter spacing. If you specify a value here
that is greater than the total number of pixels available for the
position, only the specified total number of pixels will be visi-
ble. However, the value here should not exceed 8, since a
maximum of eight bits are available per byte of character pat-
tern data. Even for values greater than 8, no more than eight
pixels will be active per horizontal scan line within the charac-
ter position. For graphic mode, the value here should be equal
to the total number of pixels; otherwise there will be gaps in
the display.

The default value for these bits is 8, for eight active hori-
zontal pixels per character-position scan line. This is the same
as the total number of pixels per position, so there will be no
intercharacter spacing. (For the default character set, the
rightmost column of each character pattern is left blank to pro-
vide the effect of intercharacter spacing,)

Bits 4-7: The value in these bits determines the width of each
character position (in pixels). The value stored here should be
one less than the desired total number of pixels. If the total is
greater than the number of active pixels specified in bits 0-3
of this register, the extra pixels will be blank for intercharacter
spacing. The default value for these bits is 7, for eight total
pixels per character position. The total number of horizontal
pixels is determined by multiplying the value here (plus 1) by
the total number of character positions (from register 0/$00).

23 $17
Character vertical size control
Bits 0-4: The value in these bits determines how many of the
total scan lines for each character position (specified in register
9/$09) will be used to display character pattern data. The

available five bits allow you to specify values up to % 11111
= 31/$1F. If the value here is less than the total number of
scan lines for the character position, the extra lines will be
blank for intercharacter spacing. If the value here is greater
than the total number of scan lines, only the total number of
scan lines will be displayed. For graphic mode, the value here
should be at least equal to the total number of scan lines (the
value in register 9/$09 plus 1); otherwise there will be gaps in
the display.

The default value stored in this register is 8/$08, for eight
active scan lines per character position. This is equal to the de-
fault total number of scan lines for the position, so there will
be no intercharacter spacing. (For the standard character set,
intercharacter spacing is achieved by leaving the bottom row
of most character definition patterns blank.)

Bits 5-7: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value you
read from this register will always be at least 224/$E0. To
mask off these bits and see only the valid bits of the register,
use AND 31 in BASIC or AND #$1F in machine language.

24 $18
Vertical smooth scrolling and control
Bits 0-4; These bits can be used to smoothly scroll the screen
vertically upward. The value here specifies the number of scan
lines the display should be shifted upward. Although five bits
are available, the value here should not exceed the value in
register 9/$09.

Bit 5: This bit controls the blinking rate for all characters on
the screen with the flash attribute. A character position has the
flash attribute when bit 4 of its corresponding attribute mem-
ory is set to % 1 . The two available blinking rates are once
each 16 times the screen is refreshed (selected when this bit is
set to %0) or once each 32 times (selected when this bit is set
to %l). For NTSC (North American) systems, the screen is re-
drawn 60 times per second, so the corresponding blinking
rates are about four times per second when the bit is %0 and
about twice per second when the bit is % 1 .

The default setting for this bit is % 1 , for the slower blink-
ing rate. This is established during the IOINIT routine [$E109],

448 449



54784-54785 $D600-$D601 $D600-$D601 54784-54785

part of both the reset and RUN/STOP-RE STORE sequences.
This setting is not changed by any other ROM routine.

Bit 6: This bit controls a special VDC feature known as reverse
mode. While this bit is %0, all pixels on the screen repre-
sented by %0 bits in character patterns or the graphic screen
bitmap take the background color specified in bits 0-3 of reg-
ister 26/$lA, and all pixels represented by %1 bits take the
foreground color specified in a corresponding attribute mem-
ory location (or in bits 4-7 of register 26/$lA if attributes are
disabled). Setting this bit to %1 reverses the color sources, so
that all pixels for %0 bits take the foreground color and all
pixels for %1 bits take the background color.

This bit is initialized to %0 for a normal screen display.
The screen editor ROM supports escape sequences to change
this bit. The ESC R sequence will set the bit to % 1 , reversing
the screen display. The ESC N sequence will clear the bit to
%0, returning the display to normal.

Bit 7: This bit determines whether the next block operation
initiated by writing to register 3O/$1E will be a copy or a fill.
Setting this bit to %0 specifies a fill operation, while setting it
to %1 specifies a copy operation. See the entry for register
3O/$1E for more information on VDC block operations. This
bit is set to %0 when the register is initialized during the
IOINIT routine [$E109].

25 $19
Horizontal smooth scrolling and control
Bits 0-3: These bits can be used to smoothly scroll the screen
horizontally. The use of these bits depends on the version of
the VDC in your 128. (The version number can be determined
by reading bits 0-2 of the external communications register at
54784/$D600.) For version 1 of the VDC, which includes most
128s, this register should be initialized to the maximum char-
acter width (in bits 4-7 of register 22/$16). Each decrement of
this register shifts the display one pixel to the left. For the
older version 0 of the VDC, these bits should be initialized to
%0000. In this case, each increment of these bits shifts the dis-
play one pixel to the right.

Bit 4: This bit controls the VDC's pixel double feature. While
this bit is %0, pixels will be their normal size. Setting this bit
to %1 will double the size of all horizontal screen pixels. Since
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each pixel is twice as large, there will be room for only half as
many on the screen. Thus, you must reduce the values in the
horizontal screen width registers (0-2/$00-$02) to half their
normal values. The following routine sets up a VDC 40-column
display that will be very similar to the VTC's 40-column display:

10 WR=DEC("CDCC"):RR=DEC("CDDA")
20 SYS WR,63,0:SYS WR,40,1:SYS WR,55,2
30 SYS RR,,25:RREG A:SYS WR,(A OR 16),25
40 SYS WR,(8*16)+9,22
50 SYS WR,40,27
60 POKE 238,39
70 PRINT"{2 HOMEllCLR}"

Bit 5: This bit controls a special VDC feature called
semigraphic mode. When semigraphic mode is activated
(when this bit is %1), the rightmost active pixel will be re-
peated through the intercharacter spacing pixels. For this
mode to have any visible effect, there must be some
intercharacter spacing (the value in bits 0-3 of register 22/$16
must be less than the total number of pixels specified in bits
4-7 of that register). This mode has no effect in graphic mode.
One use of this mode is to create a simple "digital" character
effect. Try these lines:

SYS 52684,118,22
SYS 52698,,25: RREG A: SYS 52684,(A OR 32),25
Bit 6: The VDC has two methods of supplying foreground
information for its display. When this attribute enable bit is set
to % 1 , each character position will have a corresponding
attribute memory location. Refer to the introduction to this
section for details on attributes. The starting address of attribute
memory is determined by the value in registers 20-21/$14-
$15, When this bit is %0, attribute memory is not used. In-
stead, all character positions take the foreground color specified
in bits 4-7 of register 26/$lA. In this case, the character posi-
tions cannot have the flash, underline, or reverse attributes,
and only the first of the two character sets will be available.

Bit 7: This bit determines whether the VDC will operate as a
text or graphics display. Text mode, selected when the bit is
set to %0, is the only one supported by the 128 operating sys-
tem (%0 is the default value for this bit). In that mode, each
screen memory position holds a screen code which serves as
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an index into character memory to specify the pattern to be
displayed in that position.

When this bit is set to %1 , graphics mode is selected. In
that mode, screen memory is replaced with a bitmap. (There is
no cursor on the graphic display.) Each bit in the bitmap con-
trols the state of one pixel in the display. The layout of the
bitmap is much simpler than that for'the VIC screen. Each
horizontal scan line is controlled by a sequential series of
bytes. The size of the bitmap (in bytes) is determined by the
number of active horizontal positions times the number of ver-
tical positions times the number of scan lines per vertical posi-
tion. For the standard screen setup, this means that 80 * 25 *
8, or 16,000 bytes, are required—almost all of the available
VDC memory. At eight pixels per byte, there are 128,000 indi-
vidual pixels on the graphic display.

The graphic display can use attribute memory for color
information. In this case, the relationship of attribute locations
to bitmap positions is similar to that for the VIC screen. Each
attribute memory location controls the color for all pixeis
within a character-position area on the screen. However, there
isn't enough free memory available for a full bitmap and a full
attribute memory area. One solution is to turn off attributes
(set bit 6 of register 25/$19 to %0). This limits all screen posi-
tions to the same foreground and background colors (as speci-
fied in register 26/$lA). The other solution is to reduce the
size of the active screen area to free up enough memory for an
attribute area. For example, if you reduce the number of active
rows to 22, then 80 * 22 * 8, or 14,080 bytes, will be required
for the bitmap, and 80 * 22, or 1760 bytes, will be required for
attribute memory, so there will be enough room within VDC
memory for both bitmap and attributes.

When attribute memory is enabled for a graphic display,
the lower four bits of each attribute memory location deter-
mine the color of all foreground (%1) pixels in the correspond-
ing character-position area, and the upper four bits determine
the color of all background (%0) pixels in the character
position.

Program 8-1 is a very simple example of a bitmapped
drawing program for the VDC. Use a joystick in port 2 to
sketch. Pressing the B key will change the background color
and pressing the F key will change the foreground color
(attribute memory is turned off, so all character positions use
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program 8-1. 80-Column Sketchpad

100 GRAPHIC 0:FAST
110 WR=DEC("CDCC"):RR=DEC("CDDA")
120 SYS RR,,25:RREG A:SYS WR,(A AND 63)OR 128,25
130 SYS RR,,24:RREG A:SYS WR,A AND 127,24
140 SYS WR,0,13:SYS WR,0,19:SYS WR,0,31
150 FOR 1=0 TO 63:SYS WR,255,30:NEXT 1
160 X=320:Y=100:BC=0:FC=15
170 GET KS:ON INSTR( "BF{HOME HCLR j " , KS ) GOTO 180,1

80,160,140:GOTO 190
180 BC={BC-(K?="B"))AND 15:FC=(FC-(K$="F"))AND 15:

SYS WR,FC*16+BC,26
190 D=JOY(2) AND 15:IF D=0 THEN 170
200 Y=Y+(D<3 OR D=8)-(D>3 AND D<7);IF Y<0 THEN Y=l

99:ELSE IF Y>199 THEN Y=0
210 X=X-(D>1 AND D<5)+{D>5):IF X<0 THEN X=639:ELSE

IF X>639 THEN X=0
220 AD=(Y*80)+INT(X/8):AH=INT(AD/256):AL=AD-(AH*25

6)
230 SYS WR, AH ,18:SYS WR,AL,19
240 SYS RR,,31:RREG A
250 SYS WR,AH,18:SYS WR,AL,19
260 SYS WR,A OR 2T(7-(X AND 7)),31
270 GOTO 170

the same foreground and background colors). The CLR/
HOME key can be used to move the drawing point back to its
home position in the center of the screen, and SHIFT -
CLR/HOME will clear the display.

2 6 $ 1 A
Background and foreground colors
Bits 0-3: The value in these bits determines the background
color of the display. For text mode, this is the color of all
pixels represented by %0 bits in the pattern definition for the
character in each screen position. For graphic mode with
attribute memory disabled, the value here determines the color
°f all pixels represented by %0 bits in the bitmap. The cor-
respondence between register value and background color is
as shown in Table 8-5. For graphic mode with attribute mem-
ory enabled, the value here determines the color of the screen
border only.

The default background color value, 0/$00 (black), is es-
tablished by the Kernal IOINIT routine [$E109], part of both
the reset and RUN/STOP-RESTORE sequences. From BASIC,
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the background color can be changed using the statement
COLOR 6, color number. However, the values for the color num-
ber parameter are not the same as the color values shown in
Table 8-5. Refer to the description of the COLOR statement in
the System Guide that came with your 128 for more information.

Bits 4-7: When attributes are disabled (by setting bit 6 of reg-
ister 25/$19 to %0), the value in these bits specifies the fore-
ground color for the display. For text mode, this is the color
for all pixels represented by %1 bits in the pattern definitions
for all screen positions. For graphic mode, the value here de-
termines the color of all pixels represented by %1 bits in the
bitmap. For either mode, if the screen is switched to reverse
mode (by setting bit 6 of register 24/S18), the value here will
instead determine the color for all pixels represented by %0
bits in the character pattern or bitmap. The correspondence
between bit values and colors is as shown in Table 8-5.

27 $1B
Address increment per row of characters
The value in this register will be added to the value in register
1/S01 to determine the amount by which to increase the screen
memory address for each new row of the display. This allows
you to set up a virtual screen wider than the actual screen.
You can scroll back and forth across the virtual screen by ad-
justing the screen starting address in registers 12-13/$0C-$0D.

The default value for this register is 0/$00, since no extra
columns are used with the 80-column text display. The screen
editor routines that support printing to the VDC screen all as-
sume an 80-column screen line. If you reduce the number of
active columns in register l/$01, you should increase the value
in this register correspondingly so that the total remains 80.

28 $1C
Character pattern address and memory type
Bits 0-3: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value you
read from this register will always be at least 15/SOF. To mask
off these bits and see only the valid bits of the register, use
AND 240 in BASIC or AND #$F0 in machine language.
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Bit 4: This bit specifies the type of RAM chip used for VDC
video memory. When the bit is %0, the VDC is configured for
4416 chips (16K X 4 bits). When the bit is % 1 , the VDC is
configured for 4164 chips (64K X 1 bit). Since the 16K VDC
video memory space in the 128 is provided by two 4416 chips,
this bit is initialized to %0 by the Kernal IO1NIT routine
[$E109]. It is theoretically possible to replace the existing chips
with the 64K variety to quadruple the amount of available
VDC RAM. However, the swap involves unsoldering the exist-
ing chips from the circuit board and soldering the new ones in
their place. This is not a task for the inexperienced, and will
most certainly void any warranty on your 128.

Bits 5-7: These bits determine where within VDC memory the
character pattern definitions will be located. The amount of
memory required for the character set depends on the value in
register 9/$09. If the character height is 16 or fewer scan lines,
each character set requires 4K (4096 bytes). Character heights
of 17-32 scan lines require 8K (8192-b'yte) character sets. The
VDC normally supports a pair of character sets, using bit 7 of
the attribute memory location to select between them for each
character position. Thus, 8K is normally used for character sets
when the character height is 16 or fewer scan lines, and 16K is
used when the character height is greater than 16 scan lines.
In the latter case, bit 5 is not used in the address selection.
The possible starting addresses for character patterns are as
follows (the asterisks indicate valid selections for 16K-character
set pairs):

Bits Character memory
7 6 5 starting address
0 0 0 0/$0000 *
0 0 1 8192/$2000
0 1 0 16384/$4000 *
0 1 1 24576/$6000
1 0 0 32768/$8000 *
1 0 1 40960/SAOOO
1 1 0 39152/SC0O0 *
1 1 1 57344/$E000

Since the 128 has only 16K of RAM for the VDC, only the
first two settings are currently valid. (Note that there is insuffi-
cient room in the 128's 16K of VDC video memory for a 16K
character set plus screen and attribute memory.) These bits are
initialized to %001 by the IOINIT routine [$E109], part of the
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reset and RUN/STOP-RESTORE sequences, so the default
character set starting address is 8192/$2000. Since this area is
RAM, not ROM, it is necessary to copy character patterns into
this area of memory if the VDC is to display recognizable
characters. This step is performed during the IOINIT routine
by calling the screen editor INIT80 routine [$CE0C].

29 $1D
Underline scan-line control
Bits 0-4: The value in these bits determines which scan line
within the character position will be filled for any characters
with the underline attribute. (A character position has the un-
derline attribute when the corresponding attribute memory po-
sition has bit 5 set to %1.) Since the line can appear on any
horizontal scan line of the character position, it's not strictly
correct to call it an underline. For example, you could move
the line to the top line of the position to be an overbar, or to
the middle line of the position to serve as an overstrike. Scan
line 0 is the top line of the character position. The available
five bits allow a maximum scan-line value of %11111 = 3 1 /
$1F. However, the underline will not be visible if the value is
greater than the maximum character-position height in bits
4-7 of register 22/$16.

Bits 5-7: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value you
read from this register will always be at least 224/$E0. To
mask off these bits and see only the valid bits of the register,
use AND 31 in BASIC or AND #$1F in machine language.

30 $1E
Number of bytes to copy or fill
The VDC has the capability to copy blocks of data up to 255
characters long from one area of VDC memory to another, and
to fill areas up to 255 bytes long with a specified value. The
value in this register determines the number of bytes to be
copied or filled. The copy or fill operation begins immediately
after the count value is stored here. The setting of bit 7 of reg-
ister 24/$18 determines whether the operation will be a copy
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or a fill. The operations require different preparatory steps, as
outlined below:

For a fill operation:
1. Set bit 7 of register 24/S18 to %0 to indicate a fill

operation.
2. Load registers 18-19/$12-$13 with the starting address of

the area to be filled (the destination area).
3. Store the value with which the area is to be filled in register

' 31/$1F. This will fill the first location.
4. Store the number of bytes to be filled, minus one because of

the store performed in step 3, in register 3O/$1E. This will
initiate the block fill operation.

For a copy operation:
1. Set bit 7 of register 24/$18 to %0 to indicate a fill operation.
2. Load registers 18-19/$12-$13 with the starting address of the

area to be filled (the destination area).
3. Store the value with which the area is to be filled in register

31/$1F. This will fill the first location.
4. Store the number of bytes to be filled, minus one because of

the store performed in step 3, in register 3O/$1E. This will ini-
tiate the block copy operation.

Either operation can be performed repeatedly to copy or
fill areas larger than 255 bytes. The destination address regis-
ters (18-19/$12-$13) and, for copy operations, the source ad-
dress registers (32-33/$20-$21) increment automatically each
time a location is copied or filled, so upon completion of one
copy or fill operation they will hold the address of the first
byte beyond the area affected by the copy or fill. Thus, it is
not necessary to reload the address registers to copy or fill
more subsequent memory locations, nor is it necessary to set
the operation flag or to load the data register after the first
block. (For multiple fill operations, the instruction above to
subtract 1 from the desired number of bytes to fill applies only
for the first block.)

31 $ 1 F

Memory read/write
This register is the gateway between the VDC's private block
of RAM and the rest of the 128 system. When read, this
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location reflects the contents of the VDC memory location ad-
dressed in registers IS—19/$12—$13. Writing a value to this
register will cause the value to be transferred to the location
addressed in registers 18—19/$12—13. For both reading and
writing, the address in registers 18-19/$12-$13 will automati-
cally be incremented after this register is accessed. Thus, to
read or write a sequential series of locations you need only
load the starting address of the series into registers 18—19/
$12—$13. You can then read or write repeatedly to register
31/$1F; the destination address will automatically increment
after each read or write.

32 $20
33 $21
Source address for block copy
The VDC has the capability to copy blocks of data up to 255
bytes long from one area of memory to another (see the entry
for register 3O/$1E for details). The value in this register pair
determines the source address for copy operations, the address
from which data will be copied. Like all other address register
pairs in the VDC, the first register (32/$20) holds the high
byte of the address and the second (33/$21) holds the low
byte—the opposite of the normal 8502 address format. The
registers should be loaded with the desired source starting ad-
dress before the copy operation is initiated. Upon completion
of the operation, the registers will hold the address of the next
location beyond the last one involved in the operation. Thus,
it is possible to copy blocks of more than 255 successive bytes
by using repeated copy operations without reloading these
registers.

34 $22
35 $23
Horizontal blanking positions

The VDC can adjust its horizontal blanking interval to blank a
portion of the screen. These locations control the horizontal
width and position of the blanked area. If the blanked area ex-
tends onto the active portion of the screen, any text under the
blanked area is only covered, not erased. The value in register
34/$22 determines the rightmost blanked column, and the
value in register 35/$23 determines the leftmost blanked col-
umn. The blanked area extends the entire height of the screen.
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The value in register 34/$22 must be less than the value
in register 0/$00; otherwise, the entire display will be
blanked. The value in 34/$22 here must also be greater than
the value in register 35/$23 to prevent an entirely blank dis-
play. The default values for these locations are 125/S7D and
100/$64, respectively. This positions the blanking interval en-
tirely outside the active screen area. For purposes of blanking
an area of the screen, a value of 6/$06 in these registers corre-
sponds to the leftmost column of the standard screen and a
value of 85/$55 corresponds to the rightmost column.

36 $24
Number of memory refresh cycles per scan line
Bits 0-3: The value in these bits determines the number of
memory refresh cycles per scan line. The RAM chip used for
the VDC's video memory is a type known as dynamic RAM.
A dynamic RAM can hold data only briefly without external
support. Just as the image on the video screen must be con-
stantly redrawn to keep it from fading away, dynamic RAM
must be constantly refreshed to keep it from losing its con-
tents. The VDC handles this refresh function automatically for
its video RAM, just as the VIC automatically handles the re-
freshing of system RAM. However, for the VDC, the number
of refresh cycles provided during each scan line is programma-
ble. The IOINIT routine [SE109] initializes these bits to %0101
for five refresh cycles per scan line, and there's no reason to
change that setting.

Bits 4-7: These bits are unused; writing to them has no effect,
and they always return %1 when read. Thus, the value you
read from this register will always be at least 240/SFO. To
mask off these bits and see only the valid bits of the register,
use AND 15 in BASIC or AND #$0F in machine language.

37-63 $25-83F Unused
Since the external address register at 54784/$D600 allows a
six-bit register number, these register addresses can also be
specified. However, none of these internal registers are used,
and writing to them has no effect. All register numbers in this
range return the value 255/$FF when read.
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Unused I/O Area
55040-55295/$D700-$D7FF
This area is described in Commodore literature as a reserved
I/O expansion slot, but no currently available devices use
these locations. All locations in this area of the I/O block re-
turn unpredictable changing values, and storing values here
has no effect.

VIC Color RAM
5S296-56319/$D800-$DBFF
When the I/O block is selected, this IK area holds color infor-
mation for the VIC 40-column video chip. Unlike the other
portions of the I/O block, this area is RAM memory, not hard-
ware chip registers. Since the VIC chip can generate only 16
different colors, all possible color values can be specified in
just four bits (0-15 - %0000-%llll). Thus, the RAM in this
area does not consist of the usual eight-bit bytes, but rather of
four-bit half-bytes, also called nybbles. When you read a loca-
tion in this area, the upper four bits of the location's contents
are meaningless, random values which may be different each
time the location is read. Those bits should be masked off to
determine the true color value (use AND 15 in BASIC or
AND #$0F in machine language). When you store values in
these locations, only the lower four bits of the stored values
are significant (POKE 55300,1 and POKE 55300,241 have the
same effect).

In the standard character display mode (GRAPHIC 0),
each character position in screen memory has a corresponding
location in this area which determines the color of the screen
dots drawn for any %1 bits in the character pattern specified
for that position. Since the screen background color shows in
any %0 bits in the character pattern, the color specified in
color memory is referred to as the foreground color for the
character position. The colors resulting from the possible val-
ues in these nybbles are as follows:
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Value Color
0/$00 black
l/$01 white
2/$02 red
3/$03 cyan
4/$04 purple
5/$05 green
6/$06 blue
7/$07 yellow
8/$08 orange
9/$09 brown

10/$0A light red
11/$OB dark gray
12/$0C medium gray
13/$0D light green
14/$0E light blue
15/$0F light gray

The standard screen editor ROM routines for printing text
to the 40-column display also set the color memory location
for each character displayed. The color to be used is specified
in location 241/$F1, the current foreground color. Whenever
the output window is cleared—as when you print the {CLR}
character, CHR$(147)—all locations in this area which corre-
spond to character positions in the window will be filled with
the color specified in the lower four bits of location 241/$F1.
Since the output window is reset to full screen size and
cleared by the CINT routine [$C07B], part of both the reset
and RUN/STOP-RESTORE sequences, either of those events
will fill the first 1000 locations in this area, addresses
55296-56295/$D800-$DBE7, with the default foreground
color value, 13/SOD (light green). The highest 24 addresses in
this area are not affected.

Multicolor Character Mode Usage
For multicolor character mode, each screen position has a cor-
responding location in this area which serves two functions.
Multicolor character mode is selected by setting bit 4 of the
VIC register at 53270/$D016 to % 1 . In multicolor mode, each
character is four dots wide by eight lines tall, and the dots can
have one of four colors. However, simply enabling multicolor
mode does not automatically specify multicolor mode for all

460 461



55296-56319 $D800-$DBFF

character positions. Multicolor mode must be selected on a po-
sition-by-position basis. For each position, bit 3 of the color
memory location for that position specifies whether the position
will behave like standard character mode or multicolor mode.

Setting bit 3 of a color memory location to %0 will make
the position behave as if standard character mode were still
active for that position, except that only bits 0-2 of the color
memory location are then available to hold foreground color
information. Such positions are therefore limited to only 8
choices for foreground color instead of the usual 16. Only the
first 8 of the colors listed above are available, since using a
color value greater than 7 would put the position into multi-
color mode.

Setting bit 3 of a color location to %1 selects multicolor
mode for that position. In that case, bits 0-2 of the color mem-
ory location specify the color of any %11 bit pairs in the char-
acter pattern specified for the position. Since only three bits
are available, only eight different colors can be selected. The
first eight of the standard colors (black-yellow) are the only
ones available, but since bit 3 must be set to %1 for multicolor
mode, the value you must store in color memory to get these
colors is different from that used for standard character mode.
You must add 8 to the normal color value. For example, to
make all %11 bit pairs in a character position white, you must
store the value 9 (8 + 1, the normal value for white). Com-
modore's Programmer's Reference Guide states that the color
values still produce the standard colors, but this is not correct.
For a multicolor mode position, storing a 9 in its color memory
location makes the %11 bit pairs white, not brown.

Since the operating system does not specifically support
multicolor character mode, clearing the output window when
this mode is active has the same effect it does in standard
character mode—color memory is filled with the value from
the current foreground color location (241/SF1).

Bitmapped Mode Usage
This area of memory is not used by the standard bitmapped
mode (GRAPHIC 1). That mode gets all of its color infor-
mation from video matrix locations. For multicolor bitmapped
mode (GRAPHIC 3), values stored in this area control the
color of those dots defined by %11 bit patterns in the bitmap.
For the purposes of controlling color, the 160-dot X 200-line

anH00-$DBFF 55296-56319

multicolor bitmapped screen can be thought of as a grid of 4
X 8-pixel blocks that is 40 blocks across and 25 blocks tall.
Each block of dots in the grid has a corresponding color mem-
ory location. The color of dots within the block which have
the same bit pattern is not independently selectable—all dots
with %11 bit patterns within the same 4-dot X 8-line block
take the same color, the one specified in the color memory lo-
cation for that block. The color memory locations can hold
any of the 16 standard color values.

When the multicolor screen area is cleared with the
BASIC statements GRAPHIC 3,1 or SCNCLR 3, all color
memory locations are filled with the value from location
133/$85, the multicolor source 2 location. The default value
for that location is 2, but that can be changed with the
COLOR statement. The GRAPHIC 4,1 or SCNCLR 4 state-
ments should have the same effect, but they do not. The con-
tents of color memory are not affected by either of those
statements. Due to a bug in the SCNCLR routine [$6A79],
color memory is filled for GRAPHIC modes 2 and 3 rather
than 3 and 4. However, the fact that SCNCLR 2 unnecessarily
fills color memory has no obvious effect, since the standard
bitmapped mode doesn't use color memory.

Color Banks
The 128 actually has two separate IK blocks of RAM available
for this address area—a new feature not available in the Com-
modore 64 (or in the 128's Commodore 64 mode). Normally,
the 128 uses one block for character color and the other for
multicolor bitmapped mode. This is why GRAPHIC 4 mode
(split multicolor bitmapped and text) doesn't cause the con-
flicts you might otherwise expect. That is, printing on the text
screen doesn't disturb colors on the multicolor bitmapped
screen, and drawing on the multicolor bitmapped screen
doesn't disturb the colors on the text screen, even though both
appear to use the same color RAM.

The banking of color RAM is handled by the screen editor
portion of the IRQ service routine [$C194j. Bits 0-1 of the
8502's on-chip I/O port at location l/$01 determine which
block of color RAM is visible in this address area (see the en-
try for location l/$01 in Chapter 2 for details). Block 0 is nor-
mally used for the multicolor bitmapped screen and block 1
for the text screen. If you disable the screen handling portion
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of the interrupt service routine, you can use this feature for
other effects. For example, you can maintain two separate
color displays for the text screen, or two separate text screens—
each with its own color memory—or two separate sets of %11
pixel color patterns for the multicolor bitmapped screen.

Program 8-2 shows one effect you can create with multiple
color memory blocks for a single text screen. Line 110 selects
the BANK 15 configuration (so that the I/O block, including
color RAM, will be visible) and stores the value 255 in the
screen mode flag to disable the screen handling portion of the
interrupt service routine. Remember that split screen modes
like GRAPHIC 2 and GRAPHIC 4 will not work while this por-
tion of the interrupt service routine is disabled. Lines 130-150
set up block 0 of color RAM, filling the screen borders with an
alternating pattern of black and white positions. Lines 170-190
perform a similar setup for block 1, but using an alternating
pattern of white and black. Lines 210-230 set up screen mem-
ory, drawing a border of ball characters around the screen.
Lines 250-310 then switch between the two color blocks, pro-
ducing a marquee effect as the border colors alternate.

Program 8-2. Color Bank Switching Demo

100 REM ** COLOR SWITCHING DEMONSTRATION
110 BANK 15:POKE 216,255:REM DISABLE SCREEN INTERR

UPTS
120 REM ** SET UP BLOCK 0 OF COLOR RAM
130 POKE 1,PEEK(1) AND 254:PRINT"[CLR}"
140 FOR 1=0 TO 39 STEP 2:POKE 55296+1,0:POKE 55297

+I,1:POKE 56256+1,0:POKE 56257+1,1:NEXT I
150 FOR 1=0 TO lliPOKE 55336+(1*80),1:POKE 55375+{

I*S0),0:POKE 55376+(I*80),0:POKE 55415+(1*80),1
:NEXT I

160 REM ** SET UP BLOCK 1 OF COLOR RAM
170 POKE 1,PEEK(1) OR 1:PRINT"ICLRJ"
180 FOR 1=0 TO 39 STEP 2:POKE 55296+1,1:POKE 55297

+I,0:POKE 56256+1,1:POKE 56257+1,0:NEXT I
190 FOR 1=0 TO 11:POKE 55336+(1*80),0:POKE 55375+(

I*80),1:POKE 55376+(I*80),l:POKE 55415+(1*80),0
:NEXT I

200 REM ** SET UP SCREEN MEMORY
210 PRINT"{HOME}[3 DOWNJtRIGHT}tRVSJ PRESS ANY KEY

TO HALT DEMONSTRATION^ SPACES J "
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220 FOR I = 0 T0 3 9 ! P O K E 1024+1,81 sPOKE 1984+1,81 -.NE
XT I

230 FOR 1=0 TO 22:POKE 1064+(1*40),81:POKE 1103+(I
*40),81:NEXT I

240 REM ** ALTERNATE COLOR RAM BLOCKS
250 POKE 1,PEEK(1) AND 253
260 FOR 1=1 TO 65JNEXT I
270 GET A$:IF A$<>"" THEN 310
280 POKE 1,PEEK(1} OR 2
290 FOR 1=1 TO 65:NEXT I
300 GET A$:IF A$="" THEN 250
310 END

CIA (Complex Interface Adapter) Chip
Registers
56320-56335/$DC00-$DC0F and
56576-56591/$DD00-$DD0F
The CIA (complex interface adapter) chips perform the major-
ity of the 128's input and output functions. Between them, the
CIAs are responsible for handling communications with the
keyboard, joysticks, the serial bus (where disk drives and
printers are connected), the RS-232 port (where modems are
connected), and the user port. In fact—with the exception of
video output provided by the VIC and VDC chips and the au-
dio output provided by the SID chip—the list of I/O functions
performed by devices other than the CIAs is quite short: the
VIC and VDC chips handle light pen input for their respective
displays, the SID chip reads paddle controllers (although a
CIA reads paddle buttons and selects which pair of paddles is
to be read), the processor's on-chip I/O port is used to control
some aspects of tape data storage and to read the CAPS LOCK
key, and an MMU register line is used to read the 40/80 DIS-
PLAY key.

All CIA registers are set to zero when the system RESET
line is pulled low, as when the reset button is pushed. Most of
the CIA registers are initialized during the IOINIT routine
[$E1O9]. Table 8-8 lists the functions of the various CIA regis-
ters. A detailed description of the use of each follows.
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Table 8-8. CIA Chip Registers

CIA #1 CIA #2
56320/$DC00 56576/$DD00 Port A data I/O register
56321/$DC01 56577/$DD01 Port B data I/O register
56322/$DC02 56578/$DD02 Port A data direction register
56323/$DC03 56579/$DD03 Port B data direction register
56324/$DC04 56580/$DD04 Timer A latch/counter (low byte)
56325/$DC05 56581/$DD05 Timer A latch/counter (high byte)
56326/$DC06 56582/$DD06 Timer B latch/counter (low byte)
56327/$DC07 56583/$DD07 Timer B latch/counter (high byte)
56328/$DC08 56584/$DD08 Time-of-day dock (1/10 seconds)
56329/$DC09 56585/$DD09 Time-of-day clock (seconds)
56330/$DC0A 56586/$DD0A Time-of-day dock (minutes)
56331/$DC0B 56587/$DD0B Time-of-day dock (hours)
56332/$DC0C 56588/$DD0C Serial data register
56333/$DC0D 56589/$DD0D Interrupt control register
56334/$DC0E 56590/$DD0E Control register A
56335/$DC0F 56591/$DD0F Control register B

CIA #1 Registers
This CIA is used to read the keyboard, joysticks, and other de-
vices connected to the control ports, such as the 128 mouse. It
also selects which pair of paddles will be read. The timers and
FLAG input line are used in reading from and writing to tape.
The chip's serial data communications hardware is used for
fast serial bus I/O.

56320 SDC00 D1PRA
56321 $DC01 D1PRB
I/O port data registers
The CIA chip has two eight-line data ports, designated A and
B. Each bit in the data registers is connected to one of the port
lines (PA0-PA7 for port A and PB0-PB7 for port B). The lines
can be either inputs or outputs, depending on the setting of
the data direction registers (56322-56323/$DC02-$DC03). For
port B, bits 6-7 (lines PB6-PB7) can also have special timer
output functions. See the discussion of the control registers at
56334-56335/$DC0E-$DC0F for more information.

When a port line is set for input, its corresponding data
register bit will reflect the state of the line. The bit will hold
%0 when the line is pulled low (0 volts), or %1 when the line
is high ( + 5 volts). An unconnected input line, or one con-
nected to a device that isn't actively pulling the line low, will
466

SDC01 56321

"float" in a high state, and the corresponding data register bit
yn\\ hold a % 1 . Writing to a data register bit for an input line
has no effect on the state of the line, or on the value returned
when the bit is read. However, the value written to the bit will
be retained internally, and will determine the state of the line
if the line is changed to an output.

When a port line is set for output, its corresponding data
register bit will control the state of the line. Setting the bit to
%0 will pull the line to a low (0 volts) state, and setting the
bit to %1 will allow the line to go to a high state (+5 volts).
Note that string the bit to %1 doesn't guarantee that the out-
put line will be set to a high state. The data CIA can force an
output line low when an external device connected to the line
is trying to hold the line high, but it cannot bring an output
line high when an external device is holding the line low.
Reading the data register bit for an output line returns the cur-
rent state of the line (%0 if the line is low, or %1 if the line is
high). Thus, a line set for output can still be used for a limited
form of input. If the data register bit for the output line is set
to %1 , then reading that bit will return %1 while the output
line is high and %0 when an external device pulls the line
low. This explains how a joystick can be read from port A de-
spite the fact that the lines of that port are normally config-
ured as outputs.

Port B has a feature not available with port A. A special
handshaking output line (from the CIA) designated PC, nor-
mally high, will go low for one system clock cycle each time
data is read from or written to port B. This can be used to sig-
nal an external device that data has been written or accepted
at the port. The PC line from CIA #1 is not connected to any-
thing in the 128, but the PC line from CIA #2 is available at
pin 8 of the user port.

For CIA #1, all port A lines are normally configured as
outputs and all port B lines are normally configured as inputs.
This is to set up the lines for their primary function—reading
the keyboard. Refer to Figure 7-1 and the discussion of the
keyboard-scanning routine [$C55D] in Chapter 7 for more de-
tails on how these lines are used for that purpose.

The second major function of these ports is to read the
status of digital controllers connected to the two control ports
°n the side of the 128. Each control port is connected to five
lines of one of the CIA #1 ports. Port B is connected to control
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port 1 {the front one) and port A to control port 2 (the back
one), which is the opposite of what you might expect. The
connections are as follows:

CIA port bit
0
1
2
3
4

Controller port pin
1
2
3
4
6

Joystick function
up
down
left
right
button

The control port pins are usually described in terms of
their joystick functions, since the joystick is the device most
commonly connected to the ports. A joystick is a very simple
device consisting of five switches, one for each of the four pri-
mary directions and one for the fire button. The switches are
normally open, meaning that no connection is made when the
joystick is not being pressed. Remember that unconnected CIA
port lines float to a high state ( + 5 volts), so the corresponding
CIA port bits will be % 1 . Pressing the stick in one of the eight
possible directions (four primary directions and four diagonals)
closes one or two of the switches, grounding the CIA port
lines and forcing the corresponding bit or bits to %0. Pressing
the fire button grounds that line, so it is possible to have as
many as three lines simultaneously grounded.

For reading the joysticks, BASIC provides the JOY func-
tion [$8203], which returns a value from 1-7, depending on
the direction the stick is pressed (the value is 0 if it is not be-
ing pressed), with 128 added if the fire button is pressed. To
read the joystick from machine language, you simply read the
corresponding CIA port data register and check for %0 bits.
Even though the port A lines are normally set up as outputs,
you can still read the joystick without switching the lines to
inputs. The keyboard scan routine leaves all port A bits except
bit 7 set to % 1 , so it is still possible for external devices like
the joystick to pull the lines low (bit 7 of that port will nor-
mally always be %0). The possible port readings are as follows:

o r t l
SDC01)
255/SFF
254/SFE
253/$FD
251/SFB
250/$FA
249/$F9
247/$F7
246/$F6
245/$F5

Control
CIA port A

%oiinm
%01111110
%01111101
%01111011
%01111010
%01111001
%omom
%01110110
%onioioi

port 2
. ($DC00)
127/$7P
126/S7E
125/$7D
123/$7B
122/S7A
121/579
119/$77
118/$76
117/$75

Joystick
direction
not pressed
up
down
left
up + left
down + left
right
up + right
up + left

$11111111
fciiiiino
%11111101
ftllUlOll
£11111010
£11111001
%iinom
#11110110
%11110101

If the fire button is pressed, bit 4 of the data register will also
be set to %0, and the values listed above will be reduced by
16/$10.

If you'd prefer to read %1 bits instead, try the following
code:
Control port 1

LDA $DC01
AND#$1F
EOR #$1F

Control port 2
LDA $DC00
AND #$1F
EOR #$1F

Using this method, the accumulator will hold one of the fol-
lowing values after the port is read:

Value Joystick direction
0/$00 not pressed
l/$01 up
2/$02 down
4/$04 left
5/$05 up + left
6/$06 down + left
8/$08 right
9/$09 up + right

10/$00 down + right

Pressing the fire button will add 16/$10 to any of the values
listed above.

You should be aware, however, that using control port 1
(CIA port B) for joystick input can have an undesirable side ef-
fect. Since the input lines of that port are also used for reading
the keyboard, the keyscan routine [$C55D] has no way to tell
whether the port lines are being grounded by keypresses or
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joystick presses. As a result, moving a joystick effectively gen-
erates a keypress, and certain keypresses produce the same ef-
fect as moving the joystick:

Joystick conflicts Keyboard conflicts
Direction Effective keypress Keypress Effective direction
up ALT 1 up
down SHIFT-INST/DEL - down
left RETURN CONTROL left
right cursor left 2 right
fire SHIFT-F7 space fire

Many programs avoid this problem by using only port A
(control port 2), which is the simplest solution. Because the
port A lines are outputs, the joystick is never mistaken for the
keyboard in control port 2. You can prevent the keyboard con-
flicts by disabling interrupts and forcing all keyboard column
lines high before reading the port (add SEI:LDA #$FF:5TA
$DC00:STA $D02F before the LDA $DC01 instruction, and
CLI after it). The joystick conflicts are more difficult to pre-
vent—there is no way to disable the joystick. If your program
doesn't require keyboard input, a rather inelegant solution is
to simply zero the count of keys in the buffer and pending
function key characters (locations 208/$D0 and 2O9/$D1)
before exiting from the program.

Any device which behaves like a joystick can be read in
the same manner. This includes trackballs and the new mouse
controllers (which are more or less upside-down trackballs).
Devices such as paddles or graphics tablets are analog, not
digital, devices, and are read by the SID chip. (See the entry
for the SID registers at 54297-54298/$D419-$D41A.) How-
ever, any buttons on these devices are read as if they were
joystick lines. For example, the two buttons on a standard pair
of Commodore paddles are read exactly like the joystick left-
and right-direction lines for the corresponding control ports.
Since the CIA ports are bidirectional, you could also use the
control port lines in interfacing projects. Together they provide
ten lines which can be either inputs or outputs.

The final function of these CIA ports is that bits 6-7 (lines
PA6-PA7) of port A control which control port will be con-
nected to the SID lines for reading paddles. Since paddles
come in pairs and the 128 has two control ports, you can con-
nect up to four paddles. However, the SID has only two pad-
dle inputs. As a result, you can read paddles from only one
port at a time. Valid selections are as follows:
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Control port selected

The other combinations result in either both or neither ports
being selected. The port A lines are always outputs, so there is
no problem with using them for this purpose. The default
value in port A (except during the IRQ, when it is being used
to scan the keyboard) is 127/$7F. This has the bits set to %01,
selecting control port 1. Unless you really need four paddles,
it's best to use this port. To write any value other than
127/S7F into port A, you must disable interrupts, since the
keyboard-scanning routine always leaves the port set to that
value.

Another bit of 128 hardware trivia: Our experience
indicates that a CIA #1 failure is one of the most common
hardware problems the 128 owner is likely to experience. Inte-
grated circuit chips like the CIA are very sensitive to electric
discharges such as the static electric spark you see when you
touch a doorknob after shuffling across a carpet. Since the
control port lines lead directly to the pins of CIA #1, touching
a control port pin when your body carries a static charge is
like a lightning strike to the chip. Unfortunately, since the
control ports lie so close to the reset and power switches, it's
very easy to touch them unintentionally, especially control
port 2. Of the five 128s we have had at COMPUTE! Publica-
tions to date, three have experienced "blown" CIAs. Bit 1 of
port A seems to be particularly susceptible. This is in keeping
with our experience with Commodore 64s over the past sev-
eral years, where we have lost approximately a dozen CIA
chips out of about 30 computers. If one joystick direction or a
group of keys suddenly becomes impossible to read, a blown
CIA is the likely source. To prevent this, some users resort to
covering the control ports with masking or electrical tape
when the port is not in use. Another solution is to leave the
joystick plugged in at all times.

56322 8DC02 D1DDRA
56323 SDC03 D1DDRB
Data direction registers
Each of the eight lines in the CIA's two data ports can be indi-
vidually configured as either an input or an output. These data
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direction registers (DDRs) specify the direction of data flow on
the port lines. Each register bit corresponds to one port line
(PA0-PA7 for port A and PB0-PB7 for port B). Setting a regis-
ter bit to %0 makes the corresponding port line an input
while setting the bit to %1 makes the line an output. The lines
are read and controlled by the data registers at 56320-56321/
$DCOO-$DC01. For lines PB6-PB7 of port B, the settings of
bits 6-7 of 56323/$DC03 can be superseded when those lines
are used for their special timer output functions. See the dis-
cussion of the control registers at 56334-56335/$DC0E-$DC0F
for more information.

For CIA #1, the IOINIT routine [$E109]—part of both the
reset and RUN/STOP-RESTORE sequences—initializes the
port A DDR (56322/$DC02) to 255/$FF, making all port A
lines outputs, and the port B DDR (56323/$DC03) to 0/$00,
making all port B lines inputs. These settings are not changed
by any other ROM routines. You can change these settings
briefly for special I/O functions involving the control ports,
but leaving any port A lines set as inputs or port B lines set as
outputs will disable normal keyboard functioning. See the dis-
cussion of the data registers above for more information on
the uses of the port lines.

D1T1L
D1T1H

56324 $DC04
56325 $DC05
Timer A latch/counter registers

Timer A is a programmable counter that can provide a variety
of timing functions. It is a countdown timer, meaning that it
repeatedly decrements the counter contents until the value is
decremented below zero, a condition known as underflow.
When Timer A underflow causes an internal CIA interrupt, bit
0 of the CIA interrupt register at 56333/$DC0D will be set to
% 1 . The timer can be set to count down repeatedly or just
once. The timer countdown can be driven by either of two
sources: the system clock frequency or a signal provided on
the CNT line by an external device. The operating conditions
of the timer are specified in the CIA control register A
(56334/$DC0E).

When read, the registers here return the current value in
the 16-bit counter (low byte in 56324/SDC04 and high byte in
56325/$DC05), Data written to these registers does not go di-
rectly into the counter unless the timer is currently stopped.
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Instead, the values are held in an internal latch register. The
latch contents are transferred into the counter whenever the
timer underflows. Alternatively, a bit in the control register
can force an immediate transfer of the latched value into the
counter.

One special function of timer A is to control the rate of
data output over the CIA's serial port (SP) line. In this case,
timer A generates a clock signal that is provided as an output
on the CNT line. Since timer A must underflow twice to pro-
duce the full clock cycle on the CNT line required for each bit,
you should load timer A with a value which will produce an
underflow in half the time desired for each bit. In other words,
the duration of each bit transmitted on the serial line will be
twice the time required to count down the value specified in
the timer A latch. See the entry for the CIA serial data register
(56332/$DC0C) for more information on the CIA's serial data
I/O capabilities.

For CIA #1, timer A can be a source of IRQ interrupts to
the processor. This feature is used during tape I/O to generate
the IRQ interrupts which drive the reading and writing of
data. CIA #1 timer A also controls the transmission rate for
data sent over the fast serial bus. Thus, if you use the timer
for your own timing applications, you should be aware that
both tape and fast serial operations will change the settings of
the timer. (The timer will be stopped upon completion of any
tape or fast serial operation.) The IOINIT routine [$E109] calls
the Kernal fast serial output setup routine, which starts the
timer counting down from $0004, but then immediately calls
the fast serial input setup routine, which halts timer A. Thus,
upon completion of the reset or RUN/STOP-RESTORE se-
quence, the timer will contain some very low value: usually
either $0001 or $0002. Unlike the Commodore 64, CIA #1
timer A is not the source of the 128's normal jiffy IRQ inter-
rupts. That task is instead performed by raster interrupts from
the VIC chip.

56326 $DC06 D1T2L
56327 $DC07 D1T2H
Timer B latch/counter registers
The operation of timer B is quite similar to that described
above for timer A, but is a bit more flexible. In addition to
c°unting system clock and CNT pulses, timer B can also count
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timer A underflows. This effectively ties the two timers to-
gether to form a 32-bit countdown value, allowing countdown
intervals of up to 70 minutes. The operation of timer B is con-
trolled by the register at 56335/$DC0F.

For CIA #1, the IOINIT routine [$E109], part of both the
reset and RUN/STOP-RESTORE sequences, loads the latch
for this timer with 65535/$FFFF and starts the timer running
in continuous mode. There is no obvious reason for this step.
The only use of timer B by 128 ROM routines is during tape
I/O, where it is used to generate IRQ interrupts to drive the
reading and writing of data. Upon completion of a tape opera-
tion, the timer will be left halted and set for one-shot mode.

56328 SDC08 D1TOD1
56329 $DC09 D1TODS
56330 $DC0A D1TODM
56331 $DC0B D1TODH
Time-of-day clock registers
The time-of-day (TOD) clock is a special feature of the CIA. It
keeps time in hours, minutes, seconds, and tenths of sec-
onds—units more useful to humans than the jiffies of the sys-
tem software clock or the fractional microseconds of timer A
or B. There are actually two sets of registers at these locations,
the time and the alarm. By storing an alarm value here, you
can trigger an internal interrupt (and, optionally, an external
IRQ request) when a specified time is reached. When you read
the registers, you always see the time value (the alarm setting
is never visible). When you're writing to the register, bit 7 of
control register B (56335/SDCOF) determines whether the
value being written will set the time or the alarm.

The time is kept in 12-hour format, with bit 7 of the
hours register used as a flag to indicate AM or PM. The time
data in the registers is in binary coded decimal (BCD) format.
In this format, each half-byte (nybble) contains a value which
represents one decimal digit. For example, if the minutes regis-
ter contains the value %00100110, equivalent to 38/$26, the
minutes digits should be interpreted as 2 and 6—26 minutes
past the hour, rather than 38 minutes. The register bits should
be interpreted as follows:
56328/$DC08: Bits 0-3 hold the 1/10-seconds digit. Bits 4-7
are unused. Writing to those bits has no effect, and they al-
ways return %0 when read.
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56329/$DC09: Bits 0-3 hold the ones digit for seconds. Bits
4_6 of this register hold the tens digit (only three bits are
needed, since this digit will never be greater than %101 =
5 the seconds count rolls over to $00 after reaching $59.) Bit
7 is unused. Writing to that bit has no effect, and it always re-
turns a %0 when read.
56330/$DC0A: Bits 0-3 hold the ones digit for minutes. Bits
4-6 hold the tens digit. Bit 7 is unused. Writing to that bit has
no effect, and it always returns a %0 when read.

56331/$DC0B: Bits 0-3 of this register hold the ones digit for
hours. Bit 4 holds the tens digit for hours (only one bit is
needed, since this digit will always be either 0 or 1). Bits 5-6
are unused. Writing to these bits has no effect, and they al-
ways return %0 when read. Bit 7 is the AM/PM flag. The 12-
hour format time value is taken to represent AM (midnight-
noon) when this bit is %0 and PM (noon-midnight) when the
bit is % 1 . Be sure to remember this bit when setting an alarm
time.

The order in which you read and write these registers is
important. When reading the clock, the registers latch (remain
constant) after you read the hours register until you read from
the 1/10-seconds register. The clock continues to count inter-
nally; only the register values remain constant. Thus, each
read of the hours register must be followed by a read of the
1/10-seconds register, even if you don't care about the 1/10-
second value. Likewise, the clock stops whenever a value is
written to the hours register, and does not start again until a
value is written to the 1/10-seconds register. Thus, for both
reading and writing you should start with the hours register
and end with the 1/10-seconds register.

The following routine illustrates the use of the time-of-
day clock by displaying the current time in the upper left cor-
ner of the screen:

i

D00
D02
D05
D07
D0A
DOC
DflF

LDA
STA
LDA
STA
LDA
STA
LDA

#$89
$DC0B
#$05
$DC0A
#$00
$DC09
#$00

;Load clock registers with desired
; initial time. (This example uses
; 9:05:00.0 PM)
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;Gock starts when this register is written
;Read hours byte (this latches the time value)
;Add either an A or a P to the time string,
; depending on the state of the AM/PM bit

,Mask off the AM/PM bit
;Convert the hours byte to two characters
;RepIace leading zero with a space

;Add hours-digit characters to string

;Read minutes byte
;Convert to two characters
;Add minutes-digit characters to string

;Read seconds byte
;Convert to two characters
;Add seconds-digit characters to string

;Read 1/10-seconds byte (to unlatch time)
;Print time string
;Repeat indefinitely

;Convert BCD byte to two ASCII characters
;Stash the byte
;Mask off all but the lower four bits
;Add base ASCII numeral value
;Leave low digit in X register
;Retrieve original value
;Move high four bits into low nybble

;Add base ASCII numeral value

;Print time string using Kernal PRIMM
3A 30 30 3A ;String characters:
4D 20 00 ; {HOME}{RVS}00:00:00 AM

Neither CIA's time-of-day clock is used by 128 mode, al-
though CP/M does make use of the CIA #1 dock for time-
keeping. None of these registers is initialized by any 128 ROM
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D l l
D14
D17
D19
DIB
DID
D1F
D22
D24
D27
D29
D2B
D2D
D30
D33
D36
D39
D3C
D3F
D42
D45
D48
D4B
D4E
D51

TJ S4
D55
D57
D59
D5A
D5B
D5C
D5D
D5E
D5F
D61
D62
> D 6 5
>D6D
D74

STA
LDA
BMI
LDX
BNE
LDX
STX
AND
JSR
CMP
BNE
LDA
STA
STX
LDA
JSR
STA
STX
LDA
JSR
STA
STX
LDA
JSR
JMP

PHA
AND
ORA
TAX
PLA
LSR
LSR
LSR
LSR
ORA
RTS
JSR
13 12
30 30

RTS

$DC08
$DC0B
$OD1D
#$41
$0DlF
#$50
$0D70
#$7F
$0D54
#$30
$0D2D
#$20
$0D67
S0D6S
$DC0A
$0D54
$0D6A
$0D6B
$DC09
$0D54
$0D6D
$0D6E
$DCO8
$0D62
$0D14

#$0F
#$30

#$30

$FF7D
30 30
20 41

routine. Thus, both are free for your own programming. All
clock registers are reset to %0 when the system is reset.

56332 8DC0C D1SDR
Serial data register
The CIA supports serial (bit-by-bit) data transfers in hardware.
This register holds the byte of data to be sent over the CIA's
SP (serial port) line, or the byte read from the line. At any
given time, the CIA serial line must be configured for either
input or output. This is controlled by the setting of bit 6 of
control register A (56334/$DC0E).

When the line is set for input, the state of the SP line is
read as a data bit each time there is a low-to-high (0 to +5
volts) transition on the CNT input line. (CNT must be driven
by the external device which is sending data.) As each bit is
read, it is transferred into an internal serial shift register.
When an entire byte has been read (after eight pulses of the
CNT line), the value in the internal shift register is transferred
to this register and an interrupt will be indicated in bit 3 of the
CIA interrupt register (56333/$DC0D). At this point, the re-
ceived byte can be read from the register.

When the line is set to be an output, data written to this
register will be transferred into the internal shift register and
then sent out a bit at a time over the SP line. Timer A deter-
mines the rate at which bits will be sent. The transmission will
begin immediately if timer A is running; otherwise, it begins
when the timer is started. Bits will be written on the serial line
at one-half the countdown rate of timer A. That is, timer A
must underflow twice for each bit sent. This clock signal ap-
pears as output on the CNT line. After all eight bits are sent,
an interrupt will be indicated in bit 3 of the CIA interrupt reg-
ister (56333/$DC0D) to indicate that another byte can be sent.

This hardware serial data communications feature went
unused in the Commodore 64, but in the 128 it is used to sup-
port the fast serial bus. The only fast serial peripheral device
currently in widespread distribution is the 1571 disk drive, but
others may appear in the future. For CIA #1, the SP line is
connected to the serial bus DATA line (with additional cir-
cuitry to prevent conflicts with slow serial communications)
and the CNT line is connected to the SRQIN line. The CIA #1
SP and CNT lines are also available from the user port, at pins
5 and 4, respectively.
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D1ICR56333 SDCOD
Interrupt control register
The CIA chip has five internal interrupt sources: timer A
underflow, timer B underflow, time-of-day clock alarm, serial
data buffer full or empty, and FLAG signal. The CIA can also
generate an interrupt request output signal as a result of any
of these conditions. The location actually has two different
functions, depending on whether it is being read from or writ-
ten to. When you read from this register, you see the contents
of an internal interrupt data register that indicates which inter-
rupts, if any, have occurred. When you write to this register,
the value goes to an internal interrupt mask register that speci-
fies which interrupts—if any—are to result in an external in-
terrupt request being generated. The data register is read-only
{it can't be written to), and the mask register is write-only (it
can't be read from).

When you're reading from the register, bits 0-4 indicate
which interrupts have occurred since the last time those bits
were read. The bit is set to %1 when the corresponding inter-
rupt occurs, regardless of whether or not the source is set to
trigger an external interrupt request output. All these bits are
automatically cleared to %0 after the register has been read.
The interrupt type indicated by the individual bits is as follows:
Bit Interrupt source
0 Timer A underflow
1 Timer B underflow
2 Time-of-day clock alarm
3 Serial data buffer full or empty
4 High-to-low transition on FLAG input line

A timer underflow occurs when the timer counts down below
zero. A time-of-day clock alarm occurs when the time in the
clock registers matches the value in the alarm registers. The
serial-buffer-empty condition occurs during output after all
eight bits for a byte have been written on the serial port (SP)
line, and a buffer-full condition occurs during input after eight
bits have been read from the SP line. The FLAG line is a spe-
cial input provided on the CIA specifically for the purpose of
generating interrupts. A FLAG interrupt occurs whenever the
device connected to the FLAG line causes a high-to-low volt-
age transition ( + 5 to 0 volts) on the line.

Bits 5-6 are unused. Writing to them has no effect, and
they always return %0 when read.
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Bit 7 controls the interrupt mask register function. When
vou're writing to this register, bit 7 determines which mask
bits will be set or cleared. If bit 7 is set to %1 in a value writ-
ten to this register and any of bits 0-4 in the value are also set
to %1/ then the corresponding interrupt mask bits will be set
and the specified interrupt or interrupts will generate an exter-
nal interrupt request output. The mask bits correspond to the
sources listed above the data register. For example, to enable
timer B as an interrupt source you would write a value to the
register which has bits 1 and 7 set to % 1 — LDA #$82:STA
$DC0D. (Bits in the value which are %0 are not significant.) If
bit 7 in the value written to the register is set to %0 and any
of bits 0-4 in the value are % 1 , then the corresponding mask
bits will be cleared and the specified interrupt or interrupts
will be disabled. For example, you could use LDA #$0F:STA
$DC0D to clear all except FLAG interrupts. (Again, bits in the
value which are %0 have no effect.)

When external interrupt requests are enabled, you can
read bit 7 to determine whether any interrupts have occurred.
When read, bit 7 will be %0 if no CIA source has generated
an interrupt request, or %1 if an interrupt request output has
been generated as the result of one or more enabled internal
CIA interrupt conditions. Remember, however, that all the
data bits in this register are cleared to %0 after the register is
read. Thus, you must preserve the read register value if you
wish to determine which source produced the interrupt re-
quest. For example, you shouldn't test bit 7 with the machine
language BIT instruction, since that will result in the loss of
the data register bit settings.

For CIA #1, the interrupt request output is connected to
the processor's IRQ input line, so interrupt requests from CIA
#1 result in IRQ interrupts to the processor. The IOINIT rou-
tine [SE109] clears all interrupt mask bits, so initially no inter-
rupts are enabled. Some operations enable interrupts for the
duration of their activity. Tape I/O, which is interrupt-driven,
uses timer A, timer B, and FLAG interrupts as IRQ sources.
Fast serial bus I/O uses internal serial data buffer interrupts,
but does not trigger external IRQ requests. See the tape and
fast serial routines in Chapter 9 for details. You are, of course,
'ree to set up your own CIA #1 interrupts, but you must write
your own interrupt service routine. The standard IRQ handler
[5>FA65] merely reads this register to clear it, and ignores the
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value read. See Appendix A for more information on inter-
rupts. In Commodore 64 mode (and in the original Commo-
dore 64), timer A interrupts from CIA #1 were the source for
the system's 1/60-second jiffy IRQ. However, 128 mode in-
stead uses raster interrupts from the VIC chip for that function.

56334 $DCOE D1CRA
Control register A
This register controls the operation of timer A, except for bits
6-7, which control serial data port and time-of-day clock func-
tions, respectively. See the entry at 56324-56325/$DC04-$DC05
for more information on timer A.

Bit 0: This bit acts as the ignition switch for timer A. Writing a
%0 here stops the timer. If the timer is currently stopped,
writing a %1 here causes the counter to begin decrementing
its current contents (unless the force load strobe, bit 4 of this
register, is also set to %1—in that case, the latch value is
loaded into the counter before counting resumes). Writing a
%1 here when the bit is already set to %1 has no effect. Set-
ting the bit to %0 when it has previously been %1 halts the
timer, leaving the counter holding the value it has reached
when stopped. When the timer is set for one-shot mode, this
bit will automatically be reset to %0 when the count under-
flows. In this case, the counter will be reloaded with the latch
value.

For CIA #1, the IOINIT routine sets this bit to %0, so
timer A is initially stopped. The ROM routines for tape I/O
use this timer to generate IRQ interrupts for reading and writ-
ing tape bits, but the bit is reset to %0 upon completion of
any tape operation. The Kernal SPOUT routine [$E5D6],
which prepares the fast serial bus for output, starts the timer
and leaves it counting. (Timer A determines the rate at which
data is sent over the fast serial lines.) The Kernal fast serial
output routines end with calls to the SPIN routine [$E5C3],
which resets this bit to %0, halting the timer.

Bit 1: This bit controls whether or not timer A generates out-
put on the PB6 line of port B. Writing a %1 here enables PB6
output. When PB6 is selected for timer A output, the line
automatically becomes an output, regardless of the setting of
the data direction register bit for that line. The output on PB6
will be either short pulses or a regular toggling of the line be-
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tvveen high and low states. The output mode is controlled by
bit 2 of this register. Writing a %0 here disables timer A out-
put and restores PB6 to the state and function defined in the
port B data and data direction registers.

For CIA # 1 , this bit is set to %0 during the IOINIT rou-
tine [$E109], and is not changed by any 128 ROM routine.
The PB6 output feature is not useful on CIA # 1 , since the PB6
line for that CIA is connected only to a keyboard row scan-
ning line, and is not available externally. However, the PB6
line from CIA #2 is available at pin K of the user port, so this
feature could be used with timer A of that CIA.

Bit 2: When bit 1 of this register is set to allow timer A to gen-
erate output on the PB6 line of port A, this bit controls the
type of output. (This bit has no effect when bit 1 is %0.) The
two selections for output type are pulse and toggle. For pulse
output, selected when this bit is set to %0, the output line is
held low except for a very brief high pulse each time timer A
overflows. The line will be held high for one cycle of the O2
clock rate. For the 128, that is equal to 0.978 microseconds in
NTSC (North American) systems, or 1.01 microseconds on
PAL (European) systems. For toggle output, selected when this
bit is set to % 1 , the PB6 line switches state—low-to-high or
high-to-low—each time the timer underflows, starting from a
high state.

For CIA # 1 , this bit is set to %0 during the IOINIT rou-
tine [$E109], and is not changed by any 128 ROM routine.

Bit 3: This bit controls whether timer A runs in continuous or
one-shot mode. In continuous mode, selected when this bit is
set to %0, the timer will perform repeated countdowns. After
each underflow, the counter is reloaded with the latch value
and restarted. In one-shot mode, selected when this bit is set
t° % 1 , the timer counts down to underflow only once, at
which time bit 0 of this register is reset to %0 to halt further
counting. However, the latch value is still transferred to the
counter when the underflow occurs.

For CIA # 1 , the IOINIT routine [$E109] initializes this bit
to % 1 , Tape I /O routines use this timer, but also in one-shot
wode, so the bit should still be set to %1 after any tape opera-
tion is performed. The Kernal fast serial output routines will
change this bit to %0 to run the timer in continuous mode.
However, upon completion of any fast serial output operation,
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the port is reset for fast serial input, which includes resetting
this bit to %1 for one-shot mode.

Bit 4: Writing a %1 to this bit, called the force load strobe,
causes the contents of the timer A latch to be transferred to
the counter, regardless of whether the timer is currently run-
ning or stopped. Using the strobe bit while the timer is run-
ning allows you to modify the counter contents in the middle
of a countdown. Writing a %0 to this bit has no effect. This bit
is write-only; it always returns a %0 when read.

Bit 5: This bit controls which of two possible events will drive
timer A. Two different input signals can be used to make the
timer decrement. The timer will be decremented once for each
cycle of the specified event, but only if bit 0 of this register is
set to %1 to allow counting. When this bit is set to %0, the
timer will be driven by the system O2 clock, which provides
a "tick" every 0.978 microseconds in NTSC (North American)
systems, or 1.01 microseconds on PAL (European) systems.
The maximum delay between underflows with this clock rate
is in the neighborhood of 1/15 second. Setting the bit to %1
makes the CIA's CNT line the clock source, so that an external
source can drive the count rate. In this case, the counter will
be decremented once each time the external device connected
to CNT provides a low-to-high transition on the line. For CIA
#1, the CNT line is available at pin 4 of the user port. The
CNT line is also used as the clock source for the fast serial
bus, and is connected to the SRQIN line of the serial port.
However, the line from SRQIN will be an input only when
the FSDIR bit (bit 3) of the MMU mode configuration register
at 54533/$D505 is set to %0.

For CIA #1, this bit is initialized to %0 during the IOINIT
routine [$E109], and that setting is not changed by any other
128 ROM routine. Timer A must be set to count system clock
pulses in order for tape operations to perform properly.
Bit 6: This bit does not control a timer A function, but instead
specifies the direction of data flow on the CIA's serial port
(SP) line. When this bit is set to %0, the SP line is an input.
Data read on the line will be collected in the serial shift regis-
ter until a full byte has been received; then an interrupt will
be generated. When this bit is set to %1 , the SP line is an out-
put, and data written to the serial data register at 56332/
$DC0C will be sent out on the SP line at a rate depending on
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timer A. See the discussion of the serial data register for more
information.

For CIA #1, this bit is initialized during the IOINIT rou-
tine to %0. The 128 uses the CIA #1 serial data register for
fast serial bus communications, so the bit must be set to %1
whenever fast serial output is being performed. However, after
the output has been completed the Kernal fast serial output
routines reset the bus for input, which includes resetting this
bit to %0.
Bit 7: This bit controls a time-of-day clock function rather than
a timer A function. It determines the rate at which the time-of-
day clock will be incremented. The clock is driven by the
CIA's TOD input pin, which, in the 128, is connected to cir-
cuitry which produces a clock signal from the AC power sup-
ply. This signal will have the same frequency as the local
power supply, generally 60 hertz (60 cycles per second) in
North America and 50 hertz in Europe. Setting this bit to %0
specifies that the 1/10-seconds digit of the clock time should
be incremented once for every 6 cycles of the TOD signal (for
a 60-hertz source), while setting it to %1 specifies that the
digit should be incremented on every fifth cycle (for a 50-hertz
source). Specifying an incorrect rate will make the time-of-day
clocks in your system count either too fast or too slow.

For CIA #1, this bit is initialized to %0 during the IOINIT
routine [$E109], and that setting is not changed by any other
128 ROM routine. This is the proper setting for North Amer-
ica, but unless there is a different version of the ROM in Euro-
pean 128s, overseas users will need to change this bit to get
proper timekeeping.

56335 $DC0F D1CRB
Control register B
This register controls the operation of timer B, except for bit 7,
which controls a time-of-day clock function. See the entry at
56324-56325/$DC04-$DC05 for more information on timer B.
Bit 0: This bit acts as the ignition switch for timer B. While the
bit is %0, the timer is stopped. If the timer is currently
stopped, writing a %1 here starts the counter. The countdown
will resume with the current counter contents unless bit 4 of
this register is also set to %1 to force the latch value to be re-
loaded. Writing a %1 here when the bit is already set to %1
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has no effect. Setting the bit to %0 when it has previously
been %1 halts the timer, leaving the counter holding whatever
count value it has reached when stopped. When the timer is
set for one-shot mode, this bit is automatically reset to %0
when the count underflows. In this case, the counter is re-
loaded with the latch value.

For CIA #1, the IOINIT routine sets this bit to %1 , so
timer B is normally running (although there is no obvious rea-
son for this). The timer is used in one-shot mode for tape I/O,
so this bit will be set to %0 (and the timer will be stopped)
upon completion of any tape operation.
Bit 1: This bit controls whether or not timer B generates out-
put on the PB7 line of port B. Writing a %1 here enables PB7
output. When PB7 is selected for timer B output, the line auto-
matically becomes an output, regardless of the setting of the
data direction register bit for that line. The output on PB7 will
be either short pulses or a regular toggling of the line between
high and low states. The output mode is controlled by bit 2 of
this register. Writing a %0 here disables timer B output and re-
stores PB7 to the state and function defined in the port B data
and data direction registers.

For CIA #1, this bit is set to %0 during the IOINIT rou-
tine [$E109], and is not changed by any 128 ROM routine.
The PB7 output feature is not useful on CIA #1, since the PB7
line for that CIA is connected only to a keyboard row scan-
ning line, and is not available externally. However, the PB7
line from CIA #2 is available at pin L of the user port, so this
feature could be used with timer B of that CIA.

Bit 2: When bit 1 of this register is set to allow timer B to gen-
erate output on the PB7 line of port B, this bit controls the
type of output. (This bit has no effect when bit 1 is %0.) The
two selections for output type are pulse and toggle. For pulse
output, selected when this bit is set to %0, the output line is
held low except for a very brief high pulse each time timer B
overflows. The line will be held high for one cycle of the O2
clock rate. For the 128, that is equal to 0.978 microseconds in
NTSC (North American) systems, or 1.01 microseconds on
PAL (European) systems. For toggle output, selected when this
bit is set to %1 , the PB7 line switches state—low-to-high or
high-to-low—each time the timer underflows, starting from a
high state.
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For CIA #1, this bit is set to %0 during the IOINIT rou-
tine [$E109], and is not changed by any 128 ROM routine.
Bit 3: This bit controls whether timer B runs in continuous or
one-shot mode. In continuous mode, selected when this bit is
set to %0, the timer will perform repeated countdowns. After
each underflow, the counter is reloaded with the latch value
and restarted. In one-shot mode, selected when this bit is set
to %1/ the timer counts down to underflow only once, at
which time bit 0 of this register is reset to %0 to halt further
counting. However, the latch value is still transferred to the
counter when the underflow occurs.

For CIA #1, the IOINIT routine [$E109] initializes this bit
to %0, so timer B starts running continuously. However, the tape
I/O routines use this timer in one-shot mode, and this bit will
be left set to %1 after any tape operation has been performed.
Bit 4: Writing a %1 to this bit, called the force load strobe,
causes the contents of the timer B latch to be transferred to the
counter, regardless of whether the timer is currently running
or stopped. Using the strobe bit while the timer is running al-
lows you to modify the counter contents in the middle of a
countdown. Writing a %0 to this bit has no effect. This bit is
write-only; it always returns a %0 when read.
Bits 5-6: These bits control which of four possible events will
drive timer B. That is, four different input signals can be used
to make the timer decrement. The timer will be decremented
once for each specified event, but only if bit 0 of this register
is set to %1 to allow counting. The four possible selections are
as follows:
Bits
6 5 Timer B driving source
0 0 System <&2 clock
0 1 CNT line transitions
1 0 Timer A underflows
1 1 Timer A underflows while the CNT line is high

The default source, the system O2 clock, provides a "tick"
every 0.978 microseconds in NTSC (North American) systems,
°r 1.01 microseconds on PAL (European) systems. The maxi-
mum delay between underflows with this clock rate is in the
neighborhood of 1/15 second. The CNT option (%01) allows
an external source to drive the count rate. In this case, the
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counter will be decremented once each time some external de-
vice causes a low-to-high transition on the CIA's CNT line.
For CIA #1, the CNT line is available at pin 4 of the user port.
The CNT line is also used as the clock source for the fast se-
rial bus, and is connected to the SRQIN line of the serial port.
However, the line to SRQIN will be an input only when the
FSDIR bit (bit 3) of the MMU mode configuration register at
54533/$D505 is set to %0. The option to count timer A under-
flows is convenient for creating longer delays. By setting timer
A to count system O2 clock pulses and timer B to count timer
A underflows, you can achieve a countdown interval of up to
70 minutes when both timers start with maximum counts.

For CIA #1, these bits are initialized by the IOINIT rou-
tine to %00 to have the timer count system clock pulses. This
setting is not changed by any other Kerna] routine. Tape oper-
ations will function properly only when CIA #1 timer B is
counting system clock pulses.

Bit 7: Unlike the other bits of this register, this one does not
control a function of timer B. Instead, it specifies whether val-
ues written to the time-of-day clock registers at 56328-56331/
$DC08-$DC0B will be directed to the clock time latch or to
the alarm latch (see the discussion of the time-of-day clock
registers for more information on the alarm function). While
the bit is %0, values written to the registers affect the clock
time latch. Setting this bit to %1 allows you to set the alarm
time. This bit affects only writing to the time-of-day clock reg-
isters. When read, the registers always return the clock time,
never the alarm time.

56336-56575 $DC10-$DCFF
CIA #1 register images

Due to incomplete address decoding, images of the CIA chip
registers appear repeatedly every 16 bytes throughout the re-
mainder of this page of memory. That is, storing a value in
any location in this range with an address that is an exact
multiple of 16 greater than one of the base register addresses
has the same effect as storing the same value in one of the
base register locations. For example, storing a value in
56336/$DC10 or 56560/$DCF0 has the same effect as storing
a value in 56320/SDC00. However, it's better programming
practice to use the officially designated register addresses.

486

CiA #2 Registers
This CIA is used to support the serial bus, and to provide the
RS-232 interface. It also provides programmable I/O lines at
the user port for custom interfacing projects. Another vital
function of this unit is to select which area of memory is used
aS the current VIC video bank.

56576 SDDOO D2PRA
56577 $DD01 D2PRB
I/O port data registers
These registers are used to read data from port lines which are
configured as inputs and to write data to port lines configured
as outputs. Refer to the entry for the CIA #1 ports at
56320-56321/$DC00-$DC01 for details of how these registers
and ports operate. For CIA #2, the ports are used as follows:

Port A (56576/$DD00)

Bits 0-1 of this port (lines FA0-PA1) are normally configured
as outputs and are used to specify which 16K area of the 64K
RAM block will be used for the current VIC video bank. The
four possible selections are as follows:

Bits
1 0 Video bank System address range
0 0 3 49152-65535/$C000-$FFFF
0 1 2 32768-49252/$8000-$BFFF
1 0 1 16384-32767/$4000-$7FFF
1 1 0 0-16383/$0000-$3FFF

These bits are initialized to %11 by the IOINIT routine
[$E109] during the reset and RUN/STOP-RESTORE se-
quences. This selects video bank 0, the default bank, and the
128 itself never selects another bank. The 64K block from
which the video bank is seen is determined by bit 6 of the
MMU register at 54534/$D506.

Bit 2 (port line PA2) is connected to pin M of the user
port. The line is normally configured as an output, and this bit
is initialized by the IOINIT routine to % 1 , allowing the line to
go high (+5 volts). The Kernal RS-232 routines use this line
as the transmitted data (TXD) output. You can also use the
user port line for your own I/O functions.

The remaining bits are used for the serial bus, the 128's
avenue of communications with disk drives and printers. The
lines are connected as follows:
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Bit Port line Function
3 PA3 Handles output on the serial bus ATN line.
4 PA4 Handles output on the serial bus CLK line.
5 PAS Handles output on the serial bus DATA line {for

slow serial mode).
6 PA6 Handles input from the serial bus CLK line.

PA7 Handles input from the serial bus DATA line {for
slow serial mode).

The bits for the output lines are all initialized to %0 by the
IOINIT routine, causing the output lines to be pulled low {0
volts). However, all these lines have inverters between the
CIA and the serial port connector, so pulling the port lines low
allows the lines at the serial port connector to go high. Refer
to the discussion of Kernal serial input and output routines in
Chapter 9 for more information on how these lines are used
for serial bus communications.
Port B (56577/$DD01)

All the lines from port B are tied directly to the user port, a
24-pin connector located on the back of the 128. The lines are
connected as follows:

6DD0i 56577

Bit Port B line
PBO

1 PB1
2 PB2
3 PB3
4 PB4
5 PBS
6 PB6
7 PB7

User port pin
C
D
E
F
H
J
K
L

All port lines are initialized as inputs, but this can be changed
by changing the value in the port's data direction register at
56579/$DD03. The handshake line (PC) for port B is also
available at pin 8 of the user port, These lines provide a full
eight-bit parallel I/O port for your own interfacing projects.
However, the port B lines also have another use. The 128
lacks a true RS-232 hardware interface, so the Kernal RS-232
routines program the user port lines to support RS-232 com-
munications (refer to Chapter 9 for details). For RS-232, the
port lines are used as follows:
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Line Pin RS-232 function
FLAG B This interrupt input is tied to the received data

line. The high-to-low transition on the line at the
beginning of the start bit for an incoming byte will
cause a FLAG interrupt to initiate the reception of
the byte.

FBO C RXD (received data). This input line is used to
read incoming data bits from the modem or other
external device.

\ PB1 D RTS (request to send). This output line is used to
signal the modem that the 128 is ready to send a
byte.

1 PB2 E DTR (data terminal ready). This output line is used
to signal the modem that the 128 RS-232 interface
is active.

3 PB3 F Rl (ring indicator). This input line is not supported
by the Kernal RS-232 routines, but is intended to
allow the modem to signal the 128 that a ringing
signal has been detected on the phone line. The
line, normally high, goes low when a ring is de-
tected. (Commodore modems support this line.)

4 PB4 H DCD (carrier detected). This input line is used to
allow the modem to signal the 128 that it has de-
tected another modem on the other end of the
telecommunications link. The line, normally high,
goes low when the incoming carrier signal is
detected.

5 PBS J This line is not formally assigned, but Commodore
modems use it to control whether or the not the
modem is connected to the phone line. Since the
line is configured by the IOINIT routine as an in-
put, you must change the corresponding data di-
rection register bit to %1 to use the line as an
output for this control function. Writing a %0 to
this bit will connect the modem to the phone line
(the off-hook state), while writing a %1 will dis-
connect (hang up) the modem.

6 PB6 K CT5 (clear to send). This input line is used to
allow the modem to signal the 128 that it is ready
to accept another byte.

7 PB7 L DSR (data set ready). This input line is used to
allow the modem to signal the 128 that it is active.

(The following port A line is also used:)
PA2 M TXD (transmitted data). This output line is used to

send data bits to the modem or external device.
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D2DDRA
D2DDRB

56578 $DD02
56579 $DD03
Data direction registers
These registers specify whether the lines of ports A and B will
be inputs or outputs. Refer to the discussion of the CIA #1
data direction registers at 56322-56323/$DC02-$DC03 for de-
tails of how these registers operate. For CIA #2, the IOINIT
routine [$E1O9]—part of both the reset and RUN/STOP-
RESTORE sequences—initializes the port A DDR (56578/
$DD02) to 63/S3F, making port A lines PA0-PA5 outputs and
lines PA6-PA7 inputs, and the port B DDR (56579/$DD03) to
0/$00, making all port B lines inputs. The port A setting is not
changed by any other ROM routine. Bits 0-1 of the port A
register should always remain set to %1 to keep PA0-PA1
outputs for the VIC video bank selection function. You can
change the setting of the port B register freely to achieve the
desired user port I/O configuration. The routine to set up CIA
#2 for R5-232 communications [$F0B0] will set the port B
DDR to 6/$06, which changes lines PB1-PB2 to outputs and
all the others to inputs. See the discussion of the data registers
at 56576-565 77/$DD00-$DD01 for more information on the
uses of the port lines.

D2T1L
D2T1H

56580 SDD04
56581 $DD05
Timer A latch/counter registers
Refer to the discussion of CIA #1 timer A at 56324-56325/
$DC04-$DC05 for details of how these registers operate. For
CIA #2, the latch value for the timer is not specifically initial-
ized during the reset or RUN/STOP-RESTORE sequences, al-
though resetting the system will automatically set the latch
count to 65535/$FFFF. The only use for this timer in system
ROM is during the routines which transmit bits over the RS-
232 interface, where it is used to determine the duration of
outgoing bits. After RS-232 transmission is completed, the
timer will continue running with a latch count value depen-
dent on the baud rate used in the RS-232 communications.
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£fi582 $DD06 D2T2L
56583 $DD07 D2T2H
Timer B latch/counter registers
Refer to the discussion of CIA #1 timer B at 56326-56327/
$DC06-$DC07 for details of how these registers operate. For
CIA #2, the latch value for the register is not specifically ini-
tialized during the reset or RUN/STOP-RESTORE sequences,
although resetting the system will automatically set the latch
count to 65535/$FFFF. The only use for this timer in system
ROM is during the routines which receive bits from the RS-
232 interface, where it is used to determine the duration of in-
coming bits. After RS-232 reception is completed, the timer
will continue running with a latch count value dependent on
the baud rate used in the RS-232 communications.

56584 $DD08 D2TOD1
56585 $DD09 D2TODS
56586 $DD0A D2TODM
56587 $DD0B D2TODH
Time-of-day clock registers
Refer to the discussion of the CIA #1 time-of-day clock regis-
ters at 56328-56331/$DC08-$DC0B for details of how these
registers operate. Like the CIA #1 time-of-day clock, these
registers are unused in 128 mode, and are available for your
own timekeeping projects.

56588 $DD0C D2SDR
Serial data register
Refer to the discussion of the CIA #1 serial data register at
56332/$DC0C for details of how this register operates. Unlike
the serial data line from CIA #1, the serial port (SP) line from
CIA #2 is not used by the 128. It is, however, available at pin
7 of the user port on the back of the 128, along with the CNT
Une (at pin 6), so you can use this port for your own interfac-
ing projects.

56589 $DD0D D2ICR
Interrupt control register
Refer to the discussion of the CIA #1 interrupt control register
at 56333/$DC0D for details of how this register operates. Be-
cause of the way CIA #2 is wired into the 128 system, the in-
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terrupts it generates trigger processor NMI interrupts instead
of the IRQ interrupts generated by CIA #1. The IOINIT rou-
tine [$E109], executed during both the reset and RUN/
STOP-RESTORE sequences, initializes the interrupt mask for
this register to 0/$00, disabling all interrupt sources. Any CIA
#2 interrupt source can trigger an NMI interrupt, but 128
ROM routines use only three of the possible sources: NMI in-
terrupts generated by FLAG, timer A, and timer B are used to
drive RS-232 communications. You can use any CIA #2 source
to generate an NMI interrupt for your own purposes. (The
FLAG interrupt input line is available at pin B of the user
port.) However, you'll have to write your own interrupt han-
dling routine. The standard NMI handler [$FA40] assumes that
any CIA #2-generated interrupt it encounters is for RS-232,

D2CRA
D2CRB

56590 $DD0E
56591 $DD0F
Control registers A and B

Refer to the discussions of CIA #1 control registers A and B at
56334/SDCOE and 56335/$DC0F, respectively, for details of
how these registers operate. For CIA #2, these registers are
both initialized to 8/$08 by the IOINIT routine [$E109], part
of both the reset and RUN/STOP-RESTORE sequences. This
value leaves both rimers stopped and set for one-shot mode.
The only ROM routines which change those settings are the
Kernal's RS-232 I/O routines. Timers A and B are used to
generate the NMI interrupts which drive the transmission and
reception of bits over the RS-232 interface. When RS-232
transmission is started, timer A is started, and it will continue
running in continuous mode even after the transmission is
completed and the logical file for RS-232 is closed (56590/
$DD0E will be set to 1/S01). Likewise, timer B is started when
the first RS-232 byte is received, and will continue running in
continuous mode even after the reception is complete and the
logical file has been dosed (56591/$DD0F will be set to
1/901).

56592-56831 $DD10-$DDFF
CIA #2 register images
Due to incomplete address decoding, images of the CIA chip
registers appear repeatedly every 16 bytes throughout the re-
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mainder of this page of memory. That is, storing a value in
any location in this range with an address that is an exact
multiple of 16 greater than one of the base register addresses
has the same effect as storing the same value in one of the
base register locations. For example, storing a value in
56592/SDD10 or 56816/SDDFO has the same effect as storing
a value in 56576/$DD00. However, it's better programming
practice to use the officially designated register addresses.

I/O Expansion Slot #1
56832-57087/$DE00-$DEFF
This range of addresses is available for future additional I/O
chips. No Commodore peripherals currently use this area, but
it is possible that some third-party devices addressed in this
area will appear. The original releases of CP/M for the 128
(those dated prior to December 6, 1985) expect to find a UART
chip here for RS-232 serial communications, which is why the
RS-232 portion of those versions doesn't work. No expansion
card with a UART at this address was ever introduced, and
more recent versions of CP/M properly support RS-232 com-
munications in the standard fashion (via software). When no
hardware chip is addressed here, all locations in this range
will appear to contain unpredictable changing values when
read, and writing to addresses in this range will have no
effect.

I/O Expansion Slot #2
57088-57343/$DF00-$DFFF
This range of addresses is available for additional I/O chips.
The REC (RAM expansion controller) chip in Commodore's
RAM expansion modules is currently the only device to use
this area, but it is possible that some other third-party devices
addressed in this area will appear. See the following section
for more information on the REC. When no hardware chip is
addressed here, all locations in this range will appear to con-
tain unpredictable changing values when read, and writing to
addresses in this range will have no effect.
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REC (RAM Expansion Controller) Chip
Registers
57088-57098/$DF00-$DF0A
The REC chip is different from the other chips described in
this chapter in that it isn't part of the 128's internal hardware.
No REC chip will be present unless you have a model 1700 or
1750 RAM Expansion Module plugged into the memory ex-
pansion port, since the REC is part of the hardware in the
module. However, with an expansion module installed, the
registers for the REC appear here just like the other hardware
chip registers. Other chips could be addressed in this I/O slot,
but the Kernal DMA_CALL routine [$F7A5] and the BASIC
STASH, FETCH, and SWAP statements all attempt to store
values in the REC registers listed below.

Some would claim the expansion modules increase the
amount of available RAM in the system. This claim is a bit
misleading. The 8502 processor cannot directly access any of
the 128K of RAM in a model 1700 expansion module or any
of the 512K in a 1750. RAM from the modules never appears
in the 128's normal address space; it cannot be used to fill in
the missing RAM blocks 2 and 3 in the memory banking
specifications. The REC chip is the 128's only gateway to the
expansion module RAM. The REC is actually a highly special-
ized processor dedicated to the task of transferring the con-
tents of blocks of memory. It can perform four bask operations:
transferring data from system RAM to expansion RAM (called
a stash operation), transferring data from expansion RAM to
system RAM (called a fetch operation), exchanging the con-
tents of an area of system RAM and an area of expansion
RAM (called a swap operation), and comparing the contents of
an area of system RAM and an area of expansion RAM (called
a verify operation).

You'll notice that these are essentially the same basic
functions performed by a disk drive, which is why the expan-
sion module is sometimes referred to as a RAMdisk. The latest
version of CP/M supports the expansion module as a virtual
disk drive, referenced as drive M:. The 128-mode operating
system doesn't have this feature built-in, but a program to
provide a 128-mode RAMdisk would not be impossible to write.

The REC is a DMA (direct memory access) device, mean-
ing that when called upon to perform a transfer operation it
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actually shuts down the 8502 microprocessor and takes com-
plete control of the system. Because the REC is optimized for
the task of transferring data, it can perform its transfers with
blinding speed. The specifications for the 1700 and 1750 mod-
ules claim transfer rates of 1 million bytes per second for
stash, fetch, or verify operations, and half that rate for swap
operations. In more practical terms, the REC can completely
fill the 8502's 64K address space in about 1/16 second, or
load an 8K bitmapped screen in 1/128 second—faster than
the 8502 itself can move the equivalent amount of data.

Table 8-9 lists the REC registers. A detailed description of
each register follows.

Table 8-9. REC Chip Registers

Address
57088/$DFO0
57089/$DF01
57090/$DF02
57091/$DF03
57092/$DF04
57093/$DF05
57094/$DF06
57095/$DF07
57096/$DF08
57097/SDF09
57098/$DF0A

Register
Status register
Command register
System RAM base address (low byte)
System RAM base address {high byte)
Expansion RAM base address (low byte}
Expansion RAM base address (high byte)
Expansion RAM bank
Count of bytes to transfer (low byte)
Count of bytes to transfer (high byte)
Interrupt mask register
Address control register

SDFOO DMA ST57088
Status register
This register is read-only, meaning that writing values to this
location has no effect on the setting of any register bits.
Bits 0-3: These bits hold a constant number (similar to a ROM
location) indicating the version of the REC chip installed in
the expansion module. In the initial release of expansion mod-
ules the value here is 0 (%0000), but this may change as re-
vised versions of the REC are introduced.
Sit 4: This bit indicates the amount of RAM available in the
expansion module. A %0 here indicates that the REC is in a
mode] 1700 module with 128K of RAM, while a %1 here indi-
cates that the REC is part of a model 1750 module with 512K
of RAM.
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Bit 5: This bit, the fault flag, is set to %1 when a mismatch is
detected during a verify operation. The bit is set whenever a
verify error occurs, regardless of whether or not the cor-
responding bit in the interrupt mask register (57097/$DF09) is
set to trigger an interrupt on this condition. The bit is cleared
to %0 whenever the register is read.

Bit 6: This bit, the end-of-block flag, is set to %1 when all
bytes for the operation have been transferred or verified. The
bit is set whenever an operation is successfully completed, re-
gardless of whether or not the corresponding bit in the inter-
rupt mask register (57097/$DF09) is set to trigger an interrupt
on this condition. The bit is cleared to %0 whenever the regis-
ter is read.

Bit 7: This bit, the interrupt pending flag, signals that the REC
has generated an IRQ interrupt. The REC can generate an IRQ
in response to two conditions: a verify error (fault) and the
normal completion of an operation (end-of-block). Since the
8502 processor is inactive while the REC is performing a
transfer, the IRQ is actually generated after the REC returns
control to the 8502, No IRQ will be generated unless the inter-
rupt enable bit in the register at 57097/$DF09 is set to %1
and one or both of the interrupt condition bits in that register
are set.

The normal IRQ interrupt handling routine [$FA65]
doesn't consider the REC as a source of interrupts, so you will
have to write your own routine to process IRQs from the REC.
See Appendix A for more information on interrupt handling.
Bits 5-7 of this register are cleared to %0 whenever the regis-
ter is read, so when testing this bit to determine whether an
interrupt has occurred you must save the value read from the
register if you wish to subsequently test bits 5 and 6 to deter-
mine which event has caused the interrupt.

SDF01 DMA CMD57089
Command register
This register determines the type of operation to be performed
by the REC. While it is possible to write directly to this regis-
ter, the preferred practice is to use the Kernal DMA_CALL
routine [$FF50], To use DMA_CALL, first set all the other
REC registers to their desired values; then call the routine with
the X register containing the system bank number for the op-
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eration and the Y register containing the REC command (the
value to be stored in this register). For example, BASIC sup-
ports stash, fetch, and swap operations, but not verify. The fol-
lowing routine is an example of how the current BASIC
program text could be verified against the expansion RAM
contents:

499 REM * SET SYSTEM STARTING ADDRESS TO START-OF-
PROGRAM VALUE

500 BANK 15:POKE 57090,PEEK(45):POKE 57091,PEEK{46
)

509 REM * SET NUMBER OF BYTES TO END-OF-PROGRAM MI
NUS START-OF-PROGRAM

510 POKE 57095,PEEK(4624)-PEEK{45):POKE 57096,PEEK
(4625)-PEEK(46)

519 REM * SET EXPANSION ADDRESS AND BANK
520 POKE 57092,0:POKE 57093,0:POKE 57094,0
529 REM * USE KERNAL DMA CALL ROUTINE {BANK = $00,

COMMAND = $83)
530 SYS 6 5 3 6 0 , , 0 , 1 3 1
539 REM * CHECK STATUS REGISTER FOR VERIFY ERROR F

LAG
540 IF (PEEK(57088) AND 32 ) = 0 THEN PRINT"VEHIFY OK

":ELSE PRINT"BYTE MISMATCH AT ADDRESS";PEEK(45)
+256*PEEK(46)+PEEK(57095)+256*PEEK(57096)-l

Of course, a verify error will occur if a copy of the program
has not been previously stashed in the corresponding area of
expansion memory.
Bits 0-1: These bits determine the type of operation to be per-
formed by the REC. The four possible operations are specified
as follows:
Bits
1 0 Operation
0 0 Stash (transfer from system memory to expansion RAM)
0 1 Fetch (transfer from expansion RAM to system memory)
1 0 Swap (exchange contents of system memory and expansion

RAM)
1 1 Verify (compare contents of system memory and expansion

RAM)
These bits are set to %00 during system reset. They retain
their settings after an operation is completed.
pits 2-3: These bits are described in Commodore literature as
"reserved," meaning that they have no function in the present
version of the REC, but may in some future version. For now,
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the bits seem merely to hold whatever value is written to
them. They are set to %00 during system reset.
Bit 4: This bit, called the $FF00 flag, controls the execution
mode for REC operations. When this bit is %0, operations do
not begin immediately when bit 7 of this register is set to %1 ,
but rather are deferred until a write to the MMU mode con-
figuration register (65280/$FF00) occurs. This is convenient
because it allows the memory configuration to be changed
after the MMU registers are set up. When this bit is % 1 , the
operation specified in bits 0-1 begins immediately when bit 7
is set. This bit is set to %1 during reset, and also whenever an
operation is completed. Thus, the bit must always be specifi-
cally written with a %0 to enable the deferred execution option.

Bit 5: This bit, called the load flag, controls a special feature
known as autoload mode. During a REC operation the system
and expansion base registers and expansion bank register are
incremented and the byte-count registers are decremented.
When this bit is %0 {the default state after a reset), the regis-
ters are left at the end of an operation containing the final ad-
dresses and byte count. However, setting this bit to %1
enables the autoload feature, in which case the address, bank,
and byte-count registers are automatically reloaded with their
starting values after the operation is completed. This can be
handy if you are repeatedly performing an operation involving
the same area of memory.

Bit 6: This bit is described in Commodore literature as "re-
served," meaning that it has no function in the present version
of the REC, but may in some future version. For now, the bit
seems merely to hold whatever value is written to it.
Bit 7: This bit, known as the execute flag, is used to signal the
REC to begin the operation specified in bits 0-1. However, the
start of the operation can be deferred. If bit 4 of this register is
set to %1 , the DMA process begins immediately when this bit
is set. When bit 4 is %0, the operation does not actually start
until the next time a value is stored in location 65280/$FF00
(the MMU configuration register). In this case, the bit remains
set to %1 until the operation begins. In either case, the bit is
cleared to %0 once the operation begins.

57090 $DF02 DMA ADL
57091 $DF03 DMA ADH
System memory base address registers
This register pair specifies the starting address in the 128's ad-
dress space for the current REC operation. The first register
(57090/$DF02) holds the low byte and the second (57091/
$DF03) holds the high byte. The memory configuration in which
this address is seen is determined by the values in the MMU
configuration register (65280/$FF00) and RAM configuration
register (54534/$D506). The configuration register setting de-
termines which ROM, if any, will be seen in the configuration,
and whether or not the I/O block will be visible. However, for
REC data transfers the configuration register determines only
whether or not RAM is visible—not the block from which the
RAM is seen. That is, the setting of configuration register bits
6-7 is irrelevant to the REC. For DMA operations like REC
transfers, the RAM block is instead determined by the setting
of bits 6-7 of the RAM configuration register. If you want to
transfer data to or from block 1 of RAM, you'll need to set bit
6 of location 54534/SD506 to % 1 .

That RAM configuration register bit also controls the
block from which the VIC chip (another DMA device) gets its
screen and character information, so be sure to reset the MMU
register to its original value immediately after the REC opera-
tion is completed. Switching the VIC to a bank with no pre-
pared screen data will turn the 40-column display to garbage,
but in practice REC operations are completed so quickly that
as long as the RAM configuration register bit is restored imme-
diately after the REC operation is completed, the result of the
switching is merely a barely noticeable flash of the screen. Of
course, the VIC block switching has no visible effect whatso-
ever on the 80-column display.

One interesting consequence of the fact that the REC uses
the VIC block setting rather than the configuration register
block setting is that the REC has no trouble seeing the lowest
IK of block 1 RAM, which is normally hidden from the pro-
cessor under the common area from block 0. While bit 6 of the
RAM configuration register is set to % 1 , the REC can freely
transfer data to and from locations 0-1023/$0000-$03FF in
block 1.
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Both system base address registers are set to 0/$00 during
system reset. During REC operations the address in the regis-
ters is usually incremented after each byte is transferred or
verified, so that at the end of the operation the registers will
hold a value one location higher than the last system memory
address involved in the operation. If the address reaches
65535/$FFFF, it will roll over to 0/$0000, but the configura-
tion will not change (the bank number will not be incre-
mented). For verify operations that terminate with a fault (byte
mismatch), the registers will hold an address which is one lo-
cation beyond the one at which the mismatch was detected.

It is possible to have these registers automatically re-
loaded with the starting system memory address upon com-
pletion of an operation. See the entry for bit 5 of the
command register at 57089/$DF01 for details of the autoload
feature.

It also is possible to fix the system memory address so
that it does not increment. In this case, all bytes in the opera-
tion will be read from or written to the same 128 memory lo-
cation. See the entry below for the address control register at
57098/$DF0A for more information on this feature.

57092 $DF04 DMA LO
57093 $DF05 DMA HI
Expansion memory base address registers
This register pair specifies the starting address in the expan-
sion module's address space for the current REC operation.
The first register (57092/$DF04) holds the low byte and the
second (57093/$DF05) holds the high byte. The expansion
memory bank in which this address is seen is determined by
the value in the expansion bank register at 57094/$DF06.

Both registers are set to 0/$00 during system reset. Dur-
ing REC operations the address in the registers is usually in-
cremented after each byte is transferred or verified, so that at
the end of the operation the registers will hold a value one lo-
cation higher than the last expansion memory address in-
volved in the operation. When the address in these registers
exceeds 65535/$FFFF, the address wraps to 0/$0000, but the
expansion bank register is also incremented. For example, the
next byte after 65535/$FFFF in bank 3 of expansion RAM will
come from location 0/$0000 in bank 4, The address will also
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wrap from the last address in the last bank to the first address
of the first bank. Thus, the REC scarcely notices the bound-
aries between the expansion memory banks. For verify opera-
tions that terminate with a fault (byte mismatch), the registers
will hold an address which is one location beyond the one at
which the mismatch was detected.

It is possible to have these registers automatically reloaded
with the starting expansion memory address upon completion
of an operation. See the entry for bit 5 of the command regis-
ter at 57089/$DF01 for details of the autoload feature.

It is also possible to fix the expansion memory address so
that it does not increment. In this case, all bytes in the opera-
tion will be read from or written to the same expansion mod-
ule memory location. See the entry below for the address
control register at 57098/$DF0A for more information on this
feature.

57094 $DF06 DMA BNK
Expansion bank register
This register holds the expansion bank number for REC
operations.
Bits 0-2: These bits determine the 64K bank of expansion
memory for the address in the registers at 57092-57093/
$DF04-$DF05. The 1700 module has two 64K banks, so only
the first two selections are valid for that model. The 1750 has
eight 64K banks. The possible bank selections are as follows:

Bits Expansion bank
2 1 0 0
0 0 0 1
0 0 1 2
0 1 0 3
O i l 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1

tf all the bytes involved in a REC operation are located within
one bank, this register will still hold its original value after the
operation is completed. However, when the value in the expan-
sion address register rolls over from 65535/$FFFF to 0/$0000,
the value here will be incremented, unless this register already
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holds the highest bank number. In that case the bank number
will be reset to 0. These bits are reset to %000 when the com-
puter is reset.

Bits 3-7: Unused. Writing to these bits has no effect. The bits al-
ways return %1 when read, so the value returned when this reg-
ister is read will always be at least 248/$F8. To get the true bank
number when reading the register, you should mask off these
bits. (Use AND 3 in BASIC or AND #$03 in machine language.)

It is possible to have this register automatically reloaded
with the starting bank number upon completion of an operation.
See the entry for bit 5 of the command register at 57089/ $DF01
for details of the autoload feature.

57095 $DF07 DMA DAL
57096 $DF08 DMA DAH
Count of bytes to transfer
This pair of registers holds the number of bytes to be trans-
ferred or verified in the current operation. The first register
(57095/$DF07) is the low byte of the count, and the second
(57096/$DF08) is the high byte. As each byte is transferred or
verified, the value in these registers is decremented. The regis-
ters will always hold the value 1 ($01 $00) after an operation
is successfully completed. If a verify operation stops because
of a fault (byte mismatch), the value in the registers will be
the original value minus the number of bytes which have been
successfully verified when the fault occurs. All bits in these
registers are set to %1 (equivalent to a byte count of 65535/
$FFFF) during system reset.

It is possible to have these registers automatically re-
loaded with the starting byte count upon completion of an op-
eration. See the entry for bit 5 of the command register at
57089/$DF01 for details of the autoload feature.

57097 $DF09 DMA SUM
Interrupt control register
The REC can generate an 8502 IRQ interrupt on two condi-
tions: When a byte mismatch is detected during a verify oper-
ation and when all bytes have been successfully transferred or
verified. No IRQ will be generated unless bit 7 and one or
both of bits 5-6 are set to % 1 . Bit 7 of the status register at
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57088/$DF00 signals when the REC has generated an IRQ,
and bits 5-6 of that register indicate which condition caused
the interrupt. After being set to %1 , the bits in this register re-
main set until specifically cleared. Thus, once REC interrupts
are enabled, they remain enabled until at least bit 7 of this
register is reset to %0. Bits 5-7 are all reset to %0, disabling
interrupts, when the system is reset.

Bits 0-4: Unused. Writing to these bits has no effect. The bits
always return %1 when read, which means that the value re-
turned when this register is read will always be at least 31/$1F.
Bit 5: Setting this bit to %1 specifies that an IRQ interrupt is
to be generated when a verify operation terminates because
the bytes being compared do not match. However, no inter-
rupt will occur unless bit 7 of this register is also set to % 1 .
Bit 6: Setting this bit to %1 specifies that an IRQ interrupt is
to be generated if the current REC operation is completed
without errors, the end-of-block condition. However, no inter-
rupt will occur unless bit 7 of this register is also set to % 1 .
Bit 7: Setting this bit to %1 allows IRQ interrupts to be gener-
ated on either of the conditions specified in bits 5-6. No inter-
rupt will occur unless this bit is set, regardless of the settings
of bits 5-6. However, setting this bit to %1 won't produce in-
terrupts unless one or both of bits 5-6 are also set to % 1 .
Changing this bit to %0 does not affect the setting of bits 5-6.

57098 $DF0A DMA VER
Address control register
Bits 0-5: Unused. Writing to these bits has no effect. The bits
always return %1 when read, which means that the value re-
turned when this register is read will always be at least 63/$3F.
Bits 6-7: These bits control the incrementing of the base ad-
dress registers. The four possible settings are as follows:
Bits
7 6 Address register status
0 0 Both addresses increment
0 1 Only the system (128) address increments
1 0 Only the expansion memory address increments
1 1 Neither address increments
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The first option, both addresses increment, is the default set-
ting after power on or reset. With this setting, both registers
are incremented after each byte is transferred or verified, so
that the operation involves a sequential series of locations in
both system and expansion memory. However, it is possible to
fix either the system or expansion address. This allows you to
fill either system or expansion memory with a repeating value.
For example, to fill an area of expansion memory with a par-
ticular value, you would set these bits to increment only the
expansion address register, then store the value in a system
memory location and transfer the value to expansion memory
the desired number of times. The following example uses
BASIC to fill bank 1 of expansion memory with zeros:

500 POKE 254,0: REM PLACE A ZERO IN SYSTEM MEMORY
510 BANK 15:POKE 57098,128: REM FIX SYSTEM ADDRESS
520 STASH 65535,254,0,1: REM FILL EXPANSION MEMORY

WITH THE VALUE IN SYSTEM LOCATION 254
530 POKE 57098,0: REM RESTORE REC TO NORMAL MODE

You could use a similar technique to fill an area of system
memory with the contents of an expansion memory location.
The final option, neither address incrementing, is useful only
when a single byte is being transferred,

57099-57119 $DFOB-$DF1F Unused
When the REC is present, all the unused register addresses in
this range return the value 255/$FF when read. Writing to
these addresses has no effect.

57120-57343 $DF20-$DFFF
REC chip register images
Due to incomplete address decoding, images of the REC chip
registers appear repeatedly every 32 locations throughout the
remainder of this page of memory. That is, storing a value in
any location in this range with an address an exact multiple of
32 greater than one of the REC register base addresses has the
same effect as storing that value in the base register location.
For example, the effect of storing a value in 57121/$DF21 or
57313/$DFE1 is the same as storing the value in 57089/
$DF01. However, it's better programming practice to use the
officially designated register addresses.

Character Pattern ROM
53248-57343/$D000-$DFFF
This ROM contains character shape information for the VIC
40-column video chip, and also, indirectly, for the VDC 80-
column video chip. Because character shapes are drawn in an
8-dot X 8-dot matrix, each character pattern consists of 64
dots, each of which can be on or off. To store pattern infor-
mation, on-dots are represented by %1 bits and off-dots are
represented by %0 bits. Thus, the pattern for each character
requires 64 bits, or eight 8-bit bytes. Since the 128 can display
256 different characters, a complete character set requires 256
* 8 = 2048 bytes (2K). This 4K ROM has room for two com-
plete character sets. The first, at 53248-55295/$D000-$D7FF,
is known as the uppercase/graphics set. It is the default char-
acter set for the 128—the one you see when you turn the
computer on.

The second set, at 55296-57343/$D800-$DFFF, is known
as the lowercase/uppercase set. Character patterns are stored
in the ROM in screen code order. In fact, that's what screen
codes are—indexes into character ROM. See Appendix C for a
table of character patterns for both sets.

As an example, consider the first character pattern in
the ROM, consisting of the eight bytes at 53248-53255/
$D000-$D007. As the first pattern, it corresponds to the char-
acter with screen code 0/S00, the @ character. The pattern is
shown in Figure 8-18.

Figure 8-18. Typical Character Pattern

% 00111100 •» 53C

% 01100110 - S66

% 01101110 - $6E

Vn 01101110 - $6E

% 01100000 - $60

% 01100010 - S62

% 00111100 = $3C

% oooooooo = $00
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For the VIC chip, this character ROM is the normal source
of character data. Bits 1-3 of the VIC register at 53272/$D018
control which 2K block within the current 16K VIC video bank
is seen as the character source. Since the VIC's default video
bank 0 corresponds to locations 0-16383/$0000-$3FFF in the
processor's address space, it would seem impossible for the
character ROM at 53248/$D000 to be used as the normal char-
acter source. However, the 128's memory manipulation ca-
pabilities are used to make the ROM appear to the VIC at an
address within the video bank. The uppercase/graphics set ap-
pears at 4096-6143/$1000-$17FF and the lowercase/uppercase
set appears at 6144-8191/$1800-$lFFF. Only the VIC chip
sees the character ROM at those addresses; when the MMU
configuration register is set to allow the microprocessor to see
the ROM, the processor always sees it at 53248/$D000. The
VIC chip, on the other hand, never sees the ROM at its actual
address. That couldn't be possible; remember, the VIC itself
resides at 53248-53296/$D000-$D030.

The VIC can see the character ROM in any of its four
video banks. In each case, the uppercase/graphics set appears
to the VIC at an offset of 4096/$1000 from the starting ad-
dress of the video bank, and the lowercase/uppercase set ap-
pears at an offset of 6144/$1800 from the first address of the
video bank. It is possible to disable the ROM image feature so
that the VIC never sees character ROM at all. This would be
useful, for example, if you wished to place a custom character
set in the free RAM at 6144-7167/$1800-$1BFF. Bit 2—called
the CHREN bit—in the 8502's on-chip I/O port at location
l/$01 determines whether or not the ROM image is visible in
the current VIC video bank. See Chapter 2 for more infor-
mation on the I/O port bit and its associated shadow location,
217/$D9.

When setting up custom character sets, you may want to
copy all or part of the character pattern data from this area of
ROM into RAM. Remember that the only standard bank con-
figuration in which character ROM is visible is bank 14, The
following BASIC lines will copy the uppercase/graphics set
into RAM at 8192-10239/$2000-$2800. (You must have pre-
viously protected this area from BASIC. Using GRAPHIC
1:GRAFHIC 0 to reserve the bitmapped screen area is a simple
way to do this.)
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100 BANK 14:CA = 53248:CS = 8192
110 FOR 1=0 TO 2047
120 POKE CS + LFEEK(CA+D
130 NEXT I
To copy the lowercase/uppercase set, change the value of the
variable CA to 55296. The following routine shows one
method for accomplishing the same thing in machine language:

;number of 256-byte pages
; to be copied
;load pointer at $FB with
; target address ($2000)

1400 LDA #$08
1402 STA $FA
1404 LDA #$00
1406 STA $FB
1408 LDA #$20
140A STA $FC
140C LDA #$00
140E STA $FD
1410 LDA #$D0
1412 STA $FE
1414 LDY #$00
1416 LDX #$0E
1418 LDA #$FD
141A JSR $FF74
141D STA ($FB),Y
141F INY
1420 BNE $1416
1422 INC $FC
1424 INC $FD
1426 DEC $FA
1428 BNE $1414
142A RTS

Refer to the discussion of the VIC chip earlier in this chapter
for more information on creating and using custom character sets.

As mentioned, this ROM indirectly supplies character pat-
terns for the VDC (8563) 80-column video chip. That chip has
no character ROM of its own, so the contents of this ROM are
copied into the VDC's private block of RAM during the reset
sequence (see the INIT80 routine [$CE0C] in Chapter 7). Refer
to the section on the VDC earlier in this chapter for more
information on how the 80-column character set is managed.

;load pointer at $FD with
;source address ($D000)

initialize offset
;read from bank 14
;use $FD as source pointer
;Kernal INDFET routine
;store in target address area

;repeat for 256 bytes per page

;increment page pointers

;decrement block count
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Kernal ROM

In software engineering jargon, the collection of subroutines
that perform basic input and output functions for a computer
is referred to as the operating system kernel. The developers
of the kernel for the original Commodore PET spelled (or mis-
spelled) the term as kernal, and Commodore operating systems
have been referred to as the Kernal ever since. There are both
similarities and significant differences between the 128 Kernal
and the Kernals of earlier models.

The Kernal handles input from or output to five basic
sources: the keyboard, the video screen, the tape drive (Datas-
sette), the RS-232 port, and the serial bus (to which disk
drives and printers are connected). In the 128 Kernal, all key-
board and video functions have been transferred to a separate
block of ROM, the screen editor, at 49152/$C000 (see Chapter
7 for details).

Significant enhancements include the addition of an 80-
column screen, ESC-key screen-editing sequences, and key-
board table pointers in RAM that make it easy to customize
the keyboard. Tape and RS-232 support is largely unchanged
from that provided in the Commodore 64 Kernal. Serial bus
operation is significantly enhanced by the addition of a new
fast serial mode which can transfer data much more quickly
than the old system, now fittingly referred to as slow serial
mode.

Additional new features of the 128 Kernal include routines
to handle the storage, retrieval, and comparison of data from
the various memory banks supported by the system, and sup-
port for DMA (Direct Memory Access) transfer operations to
and from the 1700 and 1750 Memory Expansion Modules.

The heart of the Kernal is the collection of routines called
by the Kernal jump table at 65409-65525/$FF81-$FFF5. The
routines called from that table, and their supporting subrou-
tines, make up the bulk of the Kernal and provide access to
the majority of the 128's input/output (I/O) capabilities. Al-
most any I/O operation can (and should) be performed
through the appropriate jump table entry. The Kemal jump ta-
ble has been a feature of all Commodore operating systems.
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The 128 adds an additional jump table with 19 new entries at
65351-65407/$FF47-$FF7E These entries provide access to
most of the 128 Kernal's new or enhanced features,

57344 $E000 RESET
Performs main system initialization sequence.
Resets the processor stack pointer to the top of the stack, dis-
ables IRQ interrupts, and insures that the processor is not in
decimal mode; then sets the MMU configuration register for
bank 15. Other MMU registers are initialized from the table at
57419/$E04B. Next, the initialization status flag (2564/$0A04)
is reset to 0/$00 to indicate that all variables and vectors need
to be initialized. The interrupt and reset handling routines at
65285-65348/$FF05-$FF44 in Kernal ROM are copied to that
same area in all RAM banks, and the INDFET, INDSTA,
INDCMP, J5RFAR, JMPFAR, and DMA_CALL routines are
copied from the table at 63488/$F800 into bank 0 RAM.

Locations 65525-65527/$FFF5-$FFF7 in bank 1 are then
examined to see if they contain the character codes for the let-
ters CBM, If not, those locations are initialized with that char-
acter pattern, and the soft reset vector at 65528/$FFF8 in bank
1 is initialized. However, if the test pattern is found (indicating
that RESET has already been performed at least once), the
routine jumps to the address in the vector. Normally, the vec-
tor points to the routine at 57892/$E224, which simply
reinitializes the test pattern and vector. You can change the
address to add your own extra steps to the reset sequence. See
the soft reset vector entry in Chapter 4 for details.

The subroutine at 57922/$E242 is called to check for the
presence of a Commodore 64 cartridge. If one is detected, the
system is switched to 64 mode and the computer becomes a
Commodore 64. (You must press the RESET button or turn
the computer off and back on to return to 128 mode.) Other-
wise, the subroutine records the presence of any 128 function
ROMs in the table at 2753-2756/$0ACl-$0AC4. If a logged
function ROM is autostarting, its cold start routine is called. It
is possible that an autostarting ROM will retain control of the
system and will not return to complete the reset sequence.

Next, the IOINIT routine [$E109] is called to initialize the
video, CIA, and SID chip registers. The keyboard column
which includes the RUN/STOP and Commodore keys is
scanned. If RUN/STOP has been pressed, the Kernal memory
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initialization flag (2562/S0A02) is checked. If the flag contains
a nonzero value, the following memory initialization step is
skipped. Since the flag is given the value 165/SA5 after the
first call to RAMTAS [$E093], zero-page values and memory
pointers are preserved if RUN/STOP is held down during a
subsequent reset. Otherwise, RAMTAS [$E093] is called to
clear all zero-page RAM locations and reestablish Kernal
pointers.

RESTOR [$E056] is called to load default Kernal indirect
vectors into 788-819/$0314-$0333. CINT [$CO0O] is called to
initialize the screen editor, after which IRQ interrupts are once
again allowed. If the RUN/STOP key has been pressed, the
monitor is entered through its cold start entry point [$B000]. If
the Commodore key has been held down, 64 mode is entered
using the C64_MODE routine [$E24B], Otherwise, BASIC 7.0
is entered via the restart vector at 2560/S0A00. If the
RAMTAS step has been performed, the restart vector will
point to BASIC'S cold start entry point [$4000].

It is possible to perform most of the reset sequence with-
out losing the BASIC program currently in memory. Simply
hold down RUN/STOP while pressing the RESET button,
This will skip the RAMTAS step, which would wipe out im-
portant program pointers. You will land in the monitor after
the reset; type X to exit to BASIC, where the current program
should still be intact.

Note that the reset routine does not explicitly attempt to
boot a disk or to initialize function ROMs that are not
autostarting. These tasks are performed by the Kernal PHOE-
NIX routine [$F867]. In 128 ROM, PHOENIX is called only
during the BASIC cold start routine [$4023]. However, as long
as the RUN/STOP or Commodore key is not held down, the
reset routine ends by jumping to the BASIC cold start routine,
so those actions are implicitly part of the normal reset
sequence.

57419 $E04B
Table of default MMU register settings.
The 11 values in this table are copied into the MMU chip reg-
isters at 54528-54538/$D500-$D50A by the system reset rou-
tine [$E000]. See Chapter 8 for details of the function and
default settings of the registers.
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57430 SE056 RESTOR
Restores Kernal indirect vectors to their default values.
{This routine has a jump table entry at 65418/$FF8A.)
Loads the X and Y registers with the value 57459/$E073, the
address of the default vector table, then clears the status regis-
ter carry bit, and falls through into the following routine to
load default vector values.

57435 $E05B VECTOR
Loads or copies Kernal indirect vector values.
(This routine has a jump table entry at 65421/$FF8D.)
Transfers the address value in the X and Y registers upon en-
try into a working pointer (195-196/$C3-$C4). If the carry bit
is clear, 32 bytes starting at the specified address are copied to
the Kernal indirect vectors at 788-819/$0314-$0333. If carry
is set, the contents of the indirect vectors are copied to 32 lo-
cations starting at the specified address. In either case, the tar-
get address must be visible in bank 15.

57459 $E073
Table of default Kernal indirect vector values.
The 16 two-byte values in this table are copied to the Kernal
indirect vectors (788-819/$0314-0$333) by the RESTOR rou-
tine [$E056], part of the reset sequence. See Chapter 2 for the
default vector target addresses.

57491 SE093 RAMTAS
Initializes zero page and Kernal pointers.
(This routine has a jump table entry at 65415/$FF87.)
Sets all zero page RAM locations (2-255/$02-$FF) to 0/$00,
then initializes the cassette buffer pointer (178-179/$B2-$B3)
to 2816/S0B00, the RS-232 input buffer pointer (200-201/
$C8-$C9) to 3072/$0CO0, and the RS-232 output buffer
pointer (202-203/$CA-$CB) to 3328/SODOO. The MEMSIZ
pointer (2567-2568/$0A07-$0A08) is set to 65280/$FF00
to mark the top of free RAM, and the MEMSTR pointer
(2565-2566/$0A05-$0A06) is set to 7168/$1COO to mark the
bottom of free RAM in bank 0. The BASIC restart indirect vec-
tor (2560-2561/$0A00-$0A01) is loaded with 16384/$4000,
the address of BASIC'S cold start entry point. Finally, the
Kernal memory initialization flag (2562/$0A02) is set to
165/$A5 to indicate that this routine has been performed.
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57549 $E0CD
Initializes all RAM-resident Kernal routines.
Copies the interrupt- and reset-handling routines at
65285-65348/$FF05-$FF44 in Kernal ROM into the same ad-
dresses in both RAM banks. These routines redirect interrupts
and reset to the proper handling routine in Kernal ROM (bank
15). It's necessary to have a copy in each bank, because an in-
terrupt or reset can occur while the system is configured for
any bank. The routines are actually copied into banks 0-3,
even though there isn't unique RAM in banks 2 and 3 in the
current 128.

Next the code for the RAM-resident portions of vital indi-
rect access routines—INDFET [$02A2], INDSTA [$02AF],
INDCMP [$02BE], JSRFAR [$02CD], and JMPFAR [$02E3]—is
copied from the table at 63488/$F800 into page 2 of the com-
mon area of RAM. Finally, the code for the DMA_CALL exe-
cution routine [$03F0] is copied from 63578/$F85A into page
3 of the common area of RAM.

57609 $ E 1 0 9 IOINIT
Initializes I/O chip registers.
(This routine has a jump table entry at 65412/SFF84.)
Begins by disabling all interrupt sources on both CIA chips
and halting all CIA timers. All lines from the four CIA I/O
ports (ports A and B on both chips) are assigned their default
directions, input or output. Output lines are also assigned their
default states, high or low. See Chapter 8 for more infor-
mation on the functions and default settings of these lines.
The direction and status of lines connected to the processor's
built-in I/O port are also established. See Chapter 2 for more
information on the functions of these lines.

The VIC-II video chip's raster compare register is tested to
determine whether the raster line count ever reaches the value
264/$108. This indicates which video system, NTSC (North
American) or PAL (European), is being used. The video sys-
tem depends on the VIC-II chip currently installed. There are
separate versions for NTSC and PAL. The highest possible
raster line for an NTSC system is 263, so a value of 264 here
means that the system is using PAL. The NTSC/PAL flag
(2563/$0A03) is set accordingly—to 0/$00 for NTSC or
255/$FF for PAL. By designing the Kernal to adjust itself for
either system. Commodore's engineers avoided the need for
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separate versions of the Kernal for North American and Euro-
pean 128s.

Next, a number of Kerna! I/O flags are cleared: clock
mode storage (2615/$0A37), IRQ vector storage (2570/$0A0A),
custom mode setting (2618/$0A3A), and jiffy count com-
pensation (2614/$0A36), The keyboard (device 0) is made the
current input device (153/S99), and the screen (device 3) is
made the current output device (154/$9A).

VIC-II chip registers (53248-53296/$D000-$D030) are
initialized from the table at 58055/$E2C7, and 8563 video
chip registers are initialized using the subroutine at
5782O/$E1DC. If the version number of the 8563 chip (bits
0-2 of the register at 54784/$D600) indicates that one of the
newer revisions of that chip is installed, the subroutine is
called again to adjust the horizontal scrolling register (R25). If
the PAL video system is in use, the subroutine is called yet
again to adjust vertical display registers (R4 and R7). Bit 7 of
the initialization status flag (2564/$0A04) is tested. If the bit is
set to % 1 , IOINIT has been called at least once before, so the
following step, which sets up the 80-column character set, is
skipped. If the bit is %0 (as will normally be the case when
this routine is called as part of the reset sequence), the screen
editor INIT80 routine [$C027] is called to copy the ROM char-
acter definitions into 8563 RAM. Then bit 7 of the initializa-
tion status flag will be set to %1 to indicate that the step has
been performed.

All registers for the SID sound chip (54272-54296/
$D400-$D418) are cleared to zero to disable any sound out-
put; then VIC-II raster interrupts are enabled. The raster inter-
rupt (set by the default table value to occur at scan line 255) is
the normal source of jiffy IRQ interrupts for the 128. The fast
serial flag (2588/$0AlC) and RS-232 activity flag (2575/
$0A0F) are cleared to zero. Timer B of CIA #1 is loaded with
65535/$FFFF and started counting continuously. Finally, a fast
serial mode setup sequence is performed.

57820 $E1DC
Initializes 80-column video chip registers.
Retrieves a byte from the position in the table at 58104/$E2F8
specified in the X register. The value is used as a register num-
ber and the next value in the table is written to that 8563 reg-
ister, Once called, the routine repeatedly reads register
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numbers and initializes registers until a value greater than
127/$7F is read for the register number. Normal X register
values upon entry are 0/$00 (to initialize the 8563), 59/$3B
(to adjust horizontal scrolling for different versions of the 8563
chip), or 62/S3E (to adjust register settings for a PAL video
system).

57840 $E1FO
Initializes or jumps through the soft reset vector.
Examines the contents of locations 65525-65527/$FFF5-$FFF7
in bank 1 to determine whether those locations contain the
character codes for the letters CBM. If not, a branch is taken to
the following routine to initialize the test pattern and vector. If
the pattern is found, the reset vector has already been initial-
ized, so the address in the vector at 65528-65529/$FFF8-$FFF9
in bank 1 is loaded into locations 2-3/$02-$03. The routine
then takes an indirect jump to the specified address. (The sys-
tem will still be configured for bank 15, so the target routine
must in that bank.)

57892 $E224
Initializes the soft reset vector.
Loads the system soft reset vector, locations 65528-65529/
$FFF8-$FFF9 in bank 1, with the value 57892/$E224, the ad-
dress of this routine. Next, the character codes for the letters
CBM are copied to locations 65525-65527/$FFF5-$FFF7 in
bank 1 to indicate that the vector has been initialized.

57922 $E242
Checks for the presence of 64 cartridges or 128 function ROMs.
Tests the GAME and EXROM lines from the memory expan-
sion port (reflected by bits 4 and 5 of the MMU mode configu-
ration register at 54533/$D505). If either of the lines is
grounded, the routine falls through to enter 64 mode. Other-
wise, a branch is taken to the routine at 57963/$E26B to
check for 128 function ROMs.

57931 $E24B C64_MODE
Switches the system into 64 mode.
(This routine has a jump table entry at 65357/$FF4D.)
Loads the processor data direction and I/O port registers
(locations 0-l/$00-$01) with their standard Commodore
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64 settings, copies the reset routine from 57955-57962/
$E263-$E26A to 2-9/$02-$09, stores a zero in the clock rate
register (53296/$D030) to insure that the system is in slow (1
MHz) mode, then jumps to the reset-to-64 routine at 2/$02.
The short routine copied there stores the value 247/$F7 in the
MMU mode configuration register. Compared to the default
setting, that value clears bit 3 (prohibiting fast serial output)
and sets bit 6 (making 64 ROM visible while making 128
ROM and the MMU chip registers invisible). The routine then
initializes 64 mode by jumping through the hardware reset
vector (65532/$FFFC) in the now-visible Commodore 64 ROM.

57963 $E26B
Logs 128 function ROMs.
Clears the function ROM ID table (2 753-2 75 6/$0ACl-$0AC4),
then checks the seventh through ninth bytes beyond the start-
ing address in each of the four possible memory slots for func-
tion ROM: 32768/$8000 and 49152/$C000 in bank 8 for
external (cartridge) ROM, and 32768/$8000 and 49152/$COO0
in bank 4 for internal ROM (in the free socket on the 128's
main circuit board). If the bytes are the character codes for the
letters CBM, a valid function ROM is present in the slot, and
the sixth byte beyond the starting address (the cartridge ID) is
retrieved and stored in the ID table. If the ID value is 1, indi-
cating an autostarting ROM, the starring address of the ROM
is loaded into the JSRFAR pointer (3-4/$03-$04), and JSRFAR
[$02CD] is used to call the ROM's cold start routine. (It is pos-
sible that the autostarting ROM will retain control of the sys-
tem and not return.) ROMs that don't autostart are initialized
during the PHOENIX routine [$F867J.

58052 $E2C4
Initialization test pattern.
These three bytes are the character codes for the letters CBM,
used as a test pattern in various operations: testing whether
the soft reset vector has been initialized [$E1FO], checking for
128 function ROM [$E26B], and checking for boot disks
[$F890].
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58055 SE2C7
Table of default VIC chip register values.
The 49 values in this table are copied to the V1C-II 40-column
video chip registers during the IOINIT routine [$E109] to es-
tablish default register settings. See Chapter 8 for more infor-
mation on the registers and their default settings.

58104 $E2F8
Table of default 8563 chip register values.
The first value in each two-byte table entry is the number of
the 8563 80-column video chip register into which the second
value is to be copied. The register settings are initialized by
the routine at 5782O/$E1DC.

58171 $E33B TALK
Sends TALK command to a serial device.
(This routine has a jump table entry at 65460/$FFB4.)
Sets bit 6 of the device number value in the accumulator to
%1 (the serial bus TALK command has the format %010?jnrittn,
where %nnnnn is the number of the device being commanded
to talk). A BIT opcode is used to fall through into the next
routine to send the byte as a serial bus command.

58174 $E33E LISTEN
Sends LISTEN command to a serial device.
(This routine has a jump table entry at 65457/$FFBl.)

Sets bit 5 of the device number value in the accumulator to %1
(the serial bus LISTEN command has the format %001nnnnn,
where %nnnnn is the number of the device being commanded
to listen). RS-232 activity is disabled. If a serial byte is await-
ing transmission in the buffer at 149/$95, it is sent with an
EOI (end-or-identify) handshake; then the command byte is
placed in the buffer.

The subroutine at 58739/$E573 is used to disable IRQ in-
terrupts and standardize timing. Then the serial bus DATA
line is allowed to go high. If the serial bus ATN line is not
currently low, the routine attempts to establish fast serial
mode. It does this by setting the serial port for fast serial out-
put and sending out the value 255/$FF (eight %1 bits) using
the fast serial hardware. The port is then set for fast serial in-
put mode, and a short delay loop is executed. If a serial device
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capable of fast serial communications is present, it should re-
spond by sending back a byte. This will cause a serial register
interrupt on CIA # 1 , which will be detected later to determine
that fast serial mode is available.

1. 128 pulls ATN line low.
2. 128 pulls CLK line low and allows the DATA line to go high.
3. The external device must respond by holding the DATA line low.

If the DATA line is still high after approximately one millisecond,
it is assumed that the device is not present.

4. If the external device responded, the 128 allows the CLK line to
go high.

5. The external device must now allow DATA to go high again. (The
128 will wait indefinitely for this to happen.)

6. Once DATA goes high, the 128 responds by pulling the CLK line
low.

7. The command byte is then sent one bit at a time, starting with the
least significant bit (bit 0). Command bytes are always sent in
slow serial mode. To send a bit, the DATA line is set either low or
high, depending on whether the bit being sent is %0 or % 1 . Then
the CLK is allowed to go high briefly to signal that a valid bit can
be read on the DATA line.

8. After the last data bit is sent, the 128 checks the DATA line. The
external device must pull that line low within approximately one
millisecond or a write-timeout error will be indicated.

9. The status of the ATN line after a command is sent depends on
the command. If it is TALK or LISTEN, ATN remains high so that
the secondary address can be sent as a command as well. How-
ever, ATN is immediately pulled low following UNTALK and
UNLISTEN commands.
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Next, the serial bus ATN line is pulled low to indicate
that the following byte will be a command. The serial bus
CLK line is pulled low, and the DATA line is allowed to go
high. A delay loop of approximately one millisecond is exe-
cuted, and the routine falls through into the following routine
to send the command byte. Figure 9-1 illustrates the process.

Note that there is no corresponding routine for the 128
to receive a serial bus command. The 128 has no ATN input
line, so it cannot be commanded to listen (it only listens "vol-
untarily"). It must always be the only master device on the se-
rial bus.

58252 SE38C
Sends buffered byte to a serial device.
Begins by calling the subroutine at 58739/$E573 to disable
IRQ interrupts and standardize timing. If the system is set for
the fast {2 MHz) clock mode, it will be temporarily reset to the
normal (1 MHz) mode, which explains why serial communica-
tions are not significantly affected by the clock mode.

The routine makes sure that the serial bus DATA line is
free to go high, then tests the state of the line. If the external
device is not holding DATA low, the device is considered not
present, so bit 7 of the serial status flag (144/$90) will be set
to % 1 , the ATN and CLK lines will be allowed to go high, and
the routine will exit. Otherwise, the routine will allow the CLK
line to go high. If bit 7 of the EOI flag (163/$A3) is set to %1 ,
the routine performs the EOI (end-or-identify) handshake by
waiting for the external device to set the DATA line high and
then low. Next, the routine waits for the external device to re-
lease the DATA line to a high state. While it's waiting, the
routine checks whether a CIA #1 serial register interrupt has
occurred, indicating that a byte has been received via the fast
serial hardware. If so, the external device can accept fast serial
input, and the fast serial flag (2588/S0A1C) is set to 192/$C0
to indicate this.

Once the DATA line goes high, the routine immediately
pulls the CLK line low and proceeds to send the byte of data.
If fast serial mode is available, the process is simple: The serial
port is set for fast serial output, and the buffered byte from
149/$95 is stored in the CIA #1 serial data register (56332/
$DC0C). After that, the transfer is automatic, handled by the

v
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CIA chip hardware. The routine simply waits until a serial reg-
ister interrupt indicates that the byte has been completely sent,
then resets the port for fast serial input (its default state).

The process for sending a byte in standard (slow) serial
mode is more complicated because it is handled in software.
Bits are pulled from the buffered byte (149/$95), one at a
time, starting with the least significant tit (bit 0). For each bit,
the serial bus DATA output line is set either high or low, de-
pending on whether the bit to be sent is %0 or % 1 . Then the
CLK line is allowed to go high to signal to the external device
that a valid data bit can be read from the DATA line. After a
brief delay, the CLK line is pulled low, and the DATA line is

Figure 9-2. Sending a Serial Data Byte

1. The 128 allows the DATA line to go high. If the external device
does not continue to hold the line low, it is assumed that the de-
vice is not present.

2. The 128 allows the CLK line to go high.
3. The external device must now allow DATA to go high. (The 128

will wait indefinitely for this to happen.)
4. Once DATA goes high, the 128 responds by pulling the CLK line

low.
5. The data byte is sent one bit at a time using either fast or slow se-

rial mode. To send a bit in slow serial mode {illustrated above),
the DATA line is set either low or high, depending on whether the
bit being sent is %0 or % 1 . Then the CLK line is allowed to go
high briefly to signal that a valid bit can be read on the DATA
line. Fast serial mode works in a similar manner, except the trans-
fer is managed by CIA chip hardware rather than ROM software,
and the bits are clocked by pulses on the SRQ line rather than on
the CLK line,

6. After all of the byte is sent, the 128 checks the DATA line. The ex-
ternal device must pull that line low within approximately one
millisecond, or a write-timeout error will be indicated.
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allowed to go high again. If the external device holds the
DATA line low between bits, a write-timeout occurs (the rou-
tine sets bits 0 and 1 in the serial status flag to % 1 , allows the
ATN and CLK lines to go high, and exits).

After the byte has been sent (in either mode), the routine
waits for the external device to pull the DATA line low. If this
does not happen within approximately one millisecond, a
write-timeout occurs, and the routine sets bits 0 and 1 in the
serial status flag to % 1 , allows the ATN and CLK lines to go
high, and exits. Otherwise, the routine at 58783/$E59F is used
to restore interrupts and the clock mode setting, then exits
with the status register carry bit clear. The Y register is unused
during the routine, and the X register value is preserved. Fig-
ure 9-2 illustrates the process of sending a data byte. Figure
9-3 illustrates the EOI handshake.

200 \is.

1. As in a normal byte transfer, the external device must hold the
DATA line low or it will be assumed that the device is not
present.

2. The 128 allows the CLK line to go high.
3. The external device should then allow the DATA line to go high.

(The 128 will wait indefinitely for this to happen.)
4. When the 128 does not respond by pulling the CLK line low

within 200 microseconds, the external device should recognize
that an EOI handshake is being performed and should respond by
pulling DATA low again. (The 128 will wait indefinitely for DATA
to go low.)

5. The external device should then release DATA high again. The
128 will respond by pulling CLK low, and the final byte of the file
is then sent in the usual manner. (See steps 5-6 of Figure 9-2.)
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58430 8E43E ACPTR
Reads a byte from a serial device.
(This routine has a jump table entry at 65445/$FFA5.)
Begins by calling the subroutine at 58739/$E573 to disable
IRQ interrupts and standardize timing. If the system is set for
the fast (2 MHz) clock mode, it will be temporarily reset to the
normal (1 MHz) mode, which explains why serial communica-
tions are not significantly affected by the clock mode. The rou-
tine insures that the serial bus CLK line is free to go high,
then tests the state of the line and waits in a loop until it goes
high. Next, a delay counter is initialized, and the DATA line is
allowed to go high. If the external device responds by pulling
the CLK line low before the delay count expires, the routine
begins to process the incoming data bits. Otherwise, it assumes
that the external device is requesting an EOI (end-or-identify)
handshake. So the EOI bit (bit 6) of the serial status flag
(144/$90) is set to %1 , and the DATA line is pulled low, then
allowed to go high again. The external device must acknowl-
edge the EOI handshake by pulling the CLK line low before
another delay period expires. If it doesn't, a read-timeout oc-
curs, and the routine sets bit 1 in the serial status flag to % 1 ,
allows the ATN and CLK lines to go high, and exits.

If a serial register interrupt has occurred on CIA #1, a
byte has been received via the fast serial hardware. In this
case, the byte is retrieved from the serial data register
(56332/$DC0C) and stored in 164/$A4; then the fast serial
flag (2588/$0AlC) is reset to 192/$C0.

The process for receiving a byte in standard (slow) serial
mode is more complicated because it is handled in software.
The routine waits for the data line to go high and then for the
CLK line to go low. Then, when CLK goes high again, a bit is
read from the DATA line and shifted into the working byte
(164/$A4). The routine waits until CLK goes low before at-
tempting to read the next bit, and the process is repeated for
each of the eight bits of the byte.

After a byte has been received, the DATA line is pulled
low to mark the end of the frame. If the EOI handshake has
been performed, the CLK line is allowed to go high. The rou-
tine at 58783/$E59F is used to restore interrupts and the clock
mode setting. The routine exits with the status register carry
bit clear and with the received byte in the accumulator. The Y
register is unused during the routine, and the X register value
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is preserved. Figure 9-4 illustrates the process of receiving a
data byte.

Figure 9-4. Receiving a Serial Data Byte

1. The 128 allows the CLK line to go high and waits for it to go high
if the external device is holding it low.

2. Once the CLK line goes high, the 128 allows the DATA line to go
high.

3. The 128 waits for the external device to respond by pulling the
CLK line low. If this hasn't happened after a delay of approxi-
mately 260 microseconds, the 128 assumes that an EOI handshake
is requested and briefly pulls the DATA line low. The external
device must respond by pulling CLK low before another 260-
microsecond delay expires; otherwise, a read-timeout error will
occur,

4. Once the CLK line goes low, the 128 prepares to read data. To re-
ceive a bit in slow serial mode (illustrated above), the 128 waits
until the CLK line goes high, reads the CIA port bit connected to
the DATA input line, then waits for the CLK line to go low again.
Fast serial mode works in a similar manner, except the transfer is
managed by CIA chip hardware rather than ROM software, and
the bits are clocked by pulses on the SRQ line rather than the
CLK line.

5. After the byte is received, the 128 pulls the DATA line low to in-
dicate the end of the byte frame.

6. If the EOI handshake is performed, the CLK line is allowed to go
high after the byte is received.
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58578 $E4D2 SECOND
Sends secondary address after LISTEN.
{This routine has a jump table entry at 65427/$FF93.)
Stores the secondary address value from the accumulator into
the serial byte buffer at 149/$95, sends the buffered byte as a
command (the ATN line should still be high from the previous
LISTEN command), then falls through into the next routine to
allow the ATN line to go high again so that following bytes
will be seen as data instead of commands.

5 8 5 8 3 $E4D7
Allows the serial bus ATN output line to go high.
Forces bit 3 of CIA #1 port A to %0. Since that bit is con-
nected to the serial bus ATN output line via an inverter, this
will set the ATN output line to a high state ( + 5 volts).

58592 $E4E0 TKSA
Sends secondary address after TALK.
(This routine has a jump table entry at 65430/$FF96.)
Stores the secondary address value from the accumulator into
the serial byte buffer at 149/$95, then sends the buffered byte
as a command (the ATN line should still be high from the
previous TALK command). If the device is not present, the
routine exits (after allowing the ATN and CLK lines to go high
again). Otherwise, the routine falls through into the next one
to make the 128 the listener and recognize the external device
as the talker,

58601 $E4E9
Performs talk-listen turnaround.
Begins by calling the subroutine at 58739/SE573 to disable
IRQ interrupts and standardize timing. The DATA line is held
low, and the ATN line is allowed to go high (signaling the
end of the command). The CLK line is then allowed to go
high. The device which is commanded to talk should respond
by pulling CLK low. The routine waits for this to happen, then
jumps to the routine at 58783/$E59F to restore interrupts and
the clock mode. Figure 9-5 illustrates the talk-listen
turnaround.
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Figure 9-5. Talk-Listen Turnaround

1. The 128 holds the DATA line low and allows the ATN line to go
high.

2. The 128 allows the CLK line to go high.
3. The external device must respond by pulling CLK low, (The 128

will wait indefinitely for this to happen.) The external device is
now the talker and the 128 is the listener.

58627 $E503 CIOUT
Sends a byte to a serial device.
(This routine has a jump table entry at 65448/$FFA8.)
Tests bit 7 of the serial buffer flag (148/S94). If the bit is %0,
indicating that the one-byte serial buffer (149/$95) is empty,
the byte in the accumulator is simply stored in the buffer and
the flag bit is set to %1 before exiting. However, if the flag bit
is already % 1 , a character is currently waiting in the buffer. In
this case, the routine at 58252/$E38C is used to send the pre-
viously buffered character before the new character is added to
the buffer. Carry will always be clear upon exit, and the byte
value will still be in the accumulator. The X and Y register val-
ues are also preserved. The success of the operation can be de-
termined from the value in the serial status flag (144/$90).
The purpose of the buffering scheme is to make it possible to
perform the EOI (end-or-identify) handshake with the final
character of a file,

58645 $E515 UNTLK
Sends UNTALK command to a serial device.
(This routine has a jump table entry at 65451/$FFAB.)
Begins by calling the subroutine at 58739/$E573 to disable
IRQ interrupts and standardize timing. The CLK line is pulled
low; then ATN is pulled low as well to indicate that the byte
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will be a command. The accumulator is loaded with the UN-
TALK command value, 95/$5F. Then a BIT opcode is used to
fall through into the next routine to send the byte as a com-
mand. Unlike TALK, which affects only a specified serial de-
vice, UNTALK affects all serial devices. However, this shouldn't
cause problems because the 128 serial bus allows only one ac-
tive talker at any given time.

58662 8E526 UNLSN
Sends UNLISTEN command to a serial device.
(This routine has a jump table entry at 65454/SFFAE.)
Loads the accumulator with the UNLISTEN command value,
63/$3F, then clears bit 7 of the serial mode flag (2588/$0AlC)
to disable fast serial mode, and sends the byte in the accumu-
lator as a command on the serial bus. Afterward, the ATN line
is allowed to go high (signaling the end of the command), and,
after a short delay, the CLK and DATA lines are allowed to go
high as well. Unlike LISTEN, which affects only a specified se-
rial device, UNLISTEN affects all serial devices. However, this
shouldn't cause problems because the 128 serial bus normally
has only one listener at any given time.

58693 $E545
Allows serial bus CLK output line to go high.
Sets bit 4 of CIA #2 port A to %0. Since the output line for
that port bit is connected to the serial bus CLK output line via
an inverter, this will set the output line to a high state ( + 5
volts).

58702 $E54E
Pulls serial bus CLK output line low.
Sets bit 4 of CIA #2 port A to % 1 . Since the output line for
that port bit is connected to the serial bus CLK output line via
an inverter, this will set the output line to a low state (0 volts).

58711 $E557
Allows serial bus DATA output line to go high.
Sets bit 5 of CIA #2 port A to %0. Since the output line for
that port bit is connected to the serial bus DATA output line
via an inverter, this will set the output line to a high state
( + 5 volts).
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58720 $E560
Pulls serial bus DATA output line low.
Sets bit 5 of CIA #2 port A to % 1 . Since the output line for
that port bit is connected to the serial bus DATA output line
via an inverter, this will set the output line to a low state (0
volts).

58729 $E569
Reads the serial bus DATA and CLK input lines.
Reads the value at port A of CIA #2, then shifts the value of
bit 7, connected to the serial bus DATA input line, into the
status register carry bit. This will also shift the value of bit 6,
connected to the CLK input line, into bit 7. Upon return, the
DATA bit can be tested with BCC/BCS or shifted into a work-
ing byte, and the CLK bit can be tested with BPL/BMI.

58739 $E573
Disables IRQ interrupts and standardizes timing during I/O
operations.
Begins by disabling IRQ interrupts. Next (at 58740/$E574), the
custom mode flag (2618/S0A3A) is checked. If bit 7 of this
flag is set to % 1 , the routine exits without changing the clock
mode setting or disabling sprites. The 128 sets this flag to zero
during the IOINIT routine (part of both the reset and
RUN/STOP-RESTORE sequences) and does not normally
change the value. You can set bit 7 of the flag if for some rea-
son you want to retain fast clock mode or sprites during an
I/O operation. The clock mode storage flag (2615/$0A37) is
then checked. The routine exits if bit 7 of this flag is set to
%1 , indicating that a clock mode has already been stored (bits
2-7 of $D030 are always %1). Otherwise, the value in the
VIOII register at 53296/SD030, which determines the system
clock frequency, is stored in the clock mode flag, and the
value in the register at 53269/$D015, which determines which
sprites are currently enabled, is stored in 2616/$0A38. Both
registers are then reset to zero, which disables all sprites and
sets the system to normal (1 MHz) clock speed. This is done to
standardize system timing. Tape and serial data transfers rely
on software delay loops for critical timing functions, so the
system must be in a standard mode for the loops to provide
the correct delay. If any sprites have previously been enabled,
a delay loop is executed before the routine exits.
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58783 $E59F
Reenables interrupts and restores clock mode after I/O
operations.
Begins by checking the custom mode flag (2618/$0A3A). If bit
7 of this flag is set to % 1 , the routine skips ahead to reenable
interrupts and exit. The 128 sets this flag to zero during the
IOINIT routine (part of both the reset and RUN/STOP-
RESTORE sequences) and does not normally change the value.
You can set bit 7 of the flag if for some reason you want the
clock mode or sprite enable setting preserved after an I/O op-
eration. The clock mode storage flag (2615/$0A37) is then
checked. If bit 7 of this flag is set to %0, indicating that no
clock mode is stored, the routine skips ahead to reenable inter-
rupts and exit. Otherwise, the value in 2616/$0A38 is restored
to the VIC-II sprite enable register (53269/$D015), and the
value in 2615/$0A37 is restored to the clock mode register
(53296/$D030). The clock mode flag is then reset to zero. IRQ
interrupts are reenabled before exiting.

58812 $E5BC
Performs fast serial turnaround.
Waits for a serial register interrupt on CIA #1, indicating that
the current output byte has been completely sent, then falls
through into the next routine to reset the serial port lines for
fast serial input. The port is left set up for input so that incom-
ing fast serial communications can be detected automatically.

58819 $E5C3 SPIN
Sets serial device for fast serial input.
Sets the serial line from CIA #1 for input and halts timer A on
CIA #1; then clears bit 3 of the MMU register at 54533/SD505
to set the serial port's fast communications hardware for input.

58838 8E5D6 SPOUT
Sets serial device for fast serial output.
Sets bit 3 of the MMU register at 54533/$D505 to set the se-
rial port's fast communications hardware for output; then
clears all CIA #1 interrupts. Timer A is loaded with 4/$0004,
the timing constant for fast serial output bits. The serial line
for CIA #1 is set for output, and timer A is started. Bytes sub-
sequently stored in the serial data register of CIA #1 will be
sent via the fast serial hardware.
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58875 SE5FB SPIN_SPOUT
Sets serial device for fast serial input or output.
Branches to one of the fast serial setup routines, depending on
the setting of the status register carry bit. If carry is clear, the
routine at 58819/$E5C3 is used to set up the port for fast se-
rial input. If carry is set, the routine at 58838/$E5D6 is used
to set up the port for fast serial output.

58879 $E5FF
prepares next bit for RS-232 transmission.
(Called by the NMI handling routine when a timer A interrupt
occurs.)
If the count of bits remaining to be sent is zero, indicating that
all stop bits for the current byte have been sent, a branch is
taken to 58954/$E64A to prepare the next byte for transmis-
sion. If bit 7 of the count is set, a branch is taken to 58948/
$E644 to prepare to send a stop bit. Otherwise, the next bit to
be sent is pulled from the data byte storage (182/$B6) into the
carry bit, and the parity flag (189/$BD) is updated accordingly.
The count of remaining bits is decremented. If the result is zero,
a branch is taken to 58907/SE61B to prepare parity or stop
bits. Finally, bit 2 of 181/SB5 is set to the bit value to be sent.

58907 $E61B
Prepares parity and stop bits.
Checks bit 5 of the RS-232 command register (2577/$0All) to
determine whether a parity bit is to be sent. If not (if the bit is
%0), the routine skips ahead to determine the number of stop
bits. Otherwise, a parity bit is prepared. Bits 6 and 7 of the
command register determine the parity type. These are possi-
ble types:
Bits Parity type
7 6
0 0 Odd
0 1 Even
1 0 Mark
1 1 Space

If odd parity is specified, the parity flag (189/$BD) is
tested. When the flag is nonzero, indicating that an odd num-
ber of % 1 bits has already been sent in the current byte, the
routine prepares a parity bit of %0. When the number of %1
bits already sent is even, a parity bit of %1 is prepared to
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make the total odd. If even parity is specified, a parity bit of
%0 will be prepared when the parity flag indicates that the
number of %1 bits already sent is even, and a parity bit of %1
will be prepared when the number of %1 bits sent is odd so
that the total number of %1 bits sent (including the parity bit)
will always be even. Mark and space parity are simpler: In the
former case, the parity bit is always %1; in the latter, it's al-
ways %0. (Early versions of the Commodore 64 Kernal incor-
rectly computed even and odd parity. All types of parity are
handled properly in the 128 Kernal and in the version of the
Commodore 64 Kernal used for 64 mode in the 128.)

Next, the routine prepares for the transmission of either
one or two stop bits, depending on the setting of bit 7 of the
RS-232 control register (2576/$0A10). If one stop bit is speci-
fied (if the register bit is %0), the count of bits remaining to be
sent (180/$B4) is decremented once {to 255/$FF). If two stop
bits are sent (if the register bit is %1), the count is
decremented twice (to 254/$FE). The routine ends by branch-
ing back into the previous routine to set the prepared parity or
stop bit as the next bit to send.

5 8 9 4 8 $E644
Prepares to send a stop bit.
Increments the count of bits remaining to be sent (180/$B4),
then prepares a %1 bit for transmission (stop bits are always
%1).

58954 SE64A
Prepares to transmit next byte.
Checks bit 0 of the RS-232 command register (2577/$0All) to
determine which handshaking mode is in use. If x-line
handshaking is specified (if the register bit is %1), the RS-232
DSR and CTS lines (pins K and L of the user port) are tested.
If the external device is not holding these lines high, the cor-
responding bit in the RS-232 status flag (2580/$0A14) is set—
bit 6 for DSR missing or bit 4 for CTS missing—then the rou-
tine disables timer A interrupts to halt transmission.

For three-line handshaking, or for x-line handshaking
when DSR and CTS are held high, the parity flag (189/SBD)
is cleared and the current bit flag (181/$B5) is set to 0/$00
(start bits are always %0). The count of bits to send (180/$B4)
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is loaded from 2581/S0A15. Tf the RS-232 output buffer is
empty, the routine disables timer A interrupts and exits. Oth-
erwise, the next available byte from the output buffer is
loaded into 182/$B6, and the pointer to the head of the buffer
(2586/S0A1A) is incremented,

59007 $E67F
Sets CIA interrupt register and RS-232 activity flag.
Sets or clears bits in the interrupt control register for CIA #2,
depending on the value in the accumulator. If bit 7 of the ac-
cumulator value is %0, the interrupt register bits correspond-
ing to the %1 bits in the accumulator value will be cleared. If
bit 7 is % 1 , the interrupt register bits corresponding to any
other %1 bits in the accumulator value will be set. The RS-232
activity flag (2575/$0A0F) is then updated to reflect the new
setting of the interrupt register.

59022 $E68E
Computes bit count for the RS-232 operation.
Computes a bit count based on the setting of bits 5 and 6 of
the RS-232 control register (2576/$0A10). The count value,
which will be one greater than the number of data bits speci-
fied, will be returned in the X register.

Bits
6 5
0 0
0 1
1 0
1 1

Data bits

8
7
6
5

Bit count

9
8
7
6

59037 $E69D
Processes received bits.
Checks the start bit flag (169/$A9) to determine whether the
start bit for a byte has been read yet. If not, a branch is taken
to 59092/$E6D4 to see whether this is a start bit. Otherwise,
the received bit count (168/SA8) is decremented. If the count
has reached zero, all bits for a byte have been received, so a
branch is taken to 59103/$E6DF to process the byte. Other-
wise, the parity indicator is toggled, and the received bit in
167/$A7 is shifted into the work byte (170/$AA).
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59058 $E6B2
Tests for stop bit.
Decrements the received bit count and checks whether the re-
ceived bit is a %1 (stop bits are always %1). If it is, bit 7 of
the RS-232 control register (2576/$0A10) is tested. If one stop
bit is specified (if the register bit is %0), the routine falls
through into the next one to prepare to receive the next byte.
If two stop bits have been specified, the routine exits to look
for another stop bit.

If a stop bit has not been received, the routine branches to
set a bit in the serial status flag (2580/$0A14) according to the
previously received byte (170/SAA): bit 1—the framing error
bit—if the previously received byte is nonzero, or bit 7—the
break error bit—if the previously received byte is zero (indi-
cating that the received data line is being held low).

59074 $E6C2
Prepares to receive next byte.
Enables FLAG interrupts for CIA #1, then updates the RS-232
activity flag (2575/$0A0F) to indicate that FLAG interrupts are
active. The nonzero flag value will also be stored in the start
bit flag (169/$A9) to indicate that no start bit has been re-
ceived. Timer B interrupts are then disabled, and the activity
flag is updated to reflect this. (Timer B interrupts, used to time
incoming bits, are reenabled after the FLAG interrupt occurs,)

59092 SE6D4
Tests for start bit.
Tests the received bit (in 16 7/$A 7). If it is not %0, it is not a
start bit, so a branch is taken to 59074/$E6B2 to look for an-
other byte. Otherwise, the zero value is stored in the start bit
flag (169/$A9) to indicate that a start bit has been received,
and the parity indicator flag (171/$AB) is initialized to 1/S01.

59103 $E6DF
Stores received character in buffer and checks parity.
Checks whether space for an additional character is available
in the input buffer. If not, the routine branches to set the re-
ceiver buffer overflow bit (bit 2) in the RS-232 status flag
(2580/$0A14) and to prepare for the reception of the next
byte, (The received character is lost in this case.) Otherwise,
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the received character is padded with %0 bits if it is less than
eight bits long and then stored at the current tail of the input
buffer. If no parity is used, a branch is taken to 59058/$E6B2
to check for a stop bit. Otherwise, the current bit received
(167/$A 7) is taken to be a parity bit and is compared against
the calculated parity for the byte. If the two do not correspond
to the specified parity type, the parity error bit (bit 0) of the
status flag will be set, and the routine will jump to reset for
the reception of the next byte.

59177 SE729
Handles CKOUT for RS-232 device.
Sets the device number in the accumulator as the current out-
put device (154/$9A), then tests bit 0 of the RS-232 command
register (2577/$0All). If the bit is %0, three-line handshaking
has been specified, so the routine exits at this point. For x-line
handshaking, the routine tests the DSR line (pin L of the user
port). If the external device is not holding this line high, a
branch is taken to set bit 6 of the RS-232 status flag (2580/
$0A14) and exit with the status register carry bit clear. If DSR
is high, the state of the RTS line (pin D of the user port) is
checked. If the 128 previously set this line high, the routine
exits with carry clear. Otherwise, the routine waits until any
current transmission is completed, then waits for the external
device to pull the CTS line (pin K of the user port) low. The
routine then sets the RTS line high to signal that it is ready to
send a byte and waits until an external device sets the CTS
line high to acknowledge that it is ready. (If DSR goes low
while the routine is waiting, bit 6 of the status flag will be
set). The routine then exits with carry clear.

59228 $E75C
Handles BSOUT for RS-232 device.
(The normal entry point for this routine is 59231/SE75F.)
Checks whether the output buffer is currently full. If no space
is available, the routine loops to enable interrupts for RS-232
transmission and waits until space becomes available in the
buffer. The buffer tail pointer (2587/$0AlB) is incremented,
and the value in the accumulator is placed at the tail of the
output buffer. If bit 0 of the RS-232 activity flag (2575/$0A0F)
is set to % 1 , timer A interrupts are already enabled, so the
routine exits at this point. Otherwise, timer A is loaded with
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the bit timing constant value in 2582-2583/$0A16-$0A17;
then timer A interrupts are enabled, and the activity flag is up-
dated to reflect this. The routine at 58954/$E64A is called to
prepare to transmit the byte; then timer A is started.

59285 $E795
Handles CHKIN for RS-232 device.
Sets the device number in the accumulator as the current in-
put device (153/S99), then tests bit 0 of the RS-232 command
register (2577/lOAll). If the bit is %0, three-line handshaking
has been specified, so the routine skips ahead to test whether
interrupts are enabled. For x-Iine handshaking, the routine
tests bit 4 of the command register to determine the duplex
mode in use. For full duplex (bit 4 is %0), the routine skips
ahead to test whether interrupts are available. For half duplex,
the RS-232 DSR line (pin L of the user port) is tested. If the
external device is not holding this line high, a branch is taken
to set bit 6 of the RS-232 status flag (2580/$0A14) and exit
with the status register carry bit clear. If DSR is high, the state
of the RTS line (pin D of the user port) is checked. If the 128
is currently holding this line high, the routine exits with carry
clear, then pulls the CTS line (pin K of the user port) low. The
routine then waits for DTR line to go high, after which FLAG
interrupts are enabled to detect the start bit.

The final step of the routine is to test whether FLAG or
timer B interrupts are enabled. If neither is enabled, FLAG in-
terrupts are enabled. The routine exits with carry clear.

59342 $E7CE
Handles GETIN for RS-232 device-
Checks whether any characters are available in the input
buffer. If so, bit 3 of the RS-232 status flag (2580/$0A14) is
cleared, the buffer head pointer (2585/$0A19) is incremented,
and the character from the buffer is returned in the accumu-
lator. If no characters are available, bit 3 of the status flag is
set to %1 , and the value 0/$00 is returned in the accumulator.
The carry bit will be set in this case.

59372 $E7EC
Disables RS-232 activity during tape or serial bus operations.
Exits immediately if the RS-232 activity flag (2575/$0A0F)
contains the value 0/$00, indicating that no RS-232 operations
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are being used. Otherwise, the routine waits until the trans-
mission or reception of the current byte is completed, then dis-
ables FLAG interrupts so that no further bytes can be received
and clears the activity flag so that no more bytes will be sent.
The contents of the accumulator are preserved during this
routine.

59397 SE805
Handles NMI interrupts for RS-232.
Controls the transmission and reception of data through the
RS-232 port. Three CIA #2 interrupt sources are used in RS-232
communications. Timer A is used to establish the duration of
bits being transmitted. The FLAG line, which triggers an inter-
rupt when it detects a high-to-low transition, is used to initiate
the reception of a byte when an incoming start bit is detected.
Timer B is used to time the reception of subsequent bits.

The routine begins by comparing the CIA #2 interrupt
register value at the time of the NMI interrupt (in the Y regis-
ter when the routine is called by the main NMI handler at
65285/$FF05) against the value in the RS-232 activity flag
(2575/$0A0F), If bit 0 is set in both, a valid timer A interrupt
has occurred to indicate that it is time to send the next bit. So,
the bit value (in bit 2 of 181/$B5) is written to bit 2 of CIA #2
port A, which is connected to the transmitted data line (pin M
of the user port). RS-232 interrupts are then reenabled by
writing the activity flag contents to the CIA interrupt register
(56589/$DD0D). In addition, the routine checks whether bit 1
or 4 is set in both the interrupt register value and the activity
flag, indicating that a valid FLAG or timer B interrupt occurred
concurrently with a timer A interrupt (RS-232 devices must be
capable of simultaneous transmission and reception). If neither
has occurred, the routine skips ahead to prepare the next bit
for transmission. For timer B interrupts, the subroutine at
59512/SE878 is called to read a bit. For FLAG interrupts, the
subroutine at 59561/$EA81 is called to start reception of a
byte. The subroutine at 58879/$E5FF is then called to prepare
the next bit for transmission. CIA interrupt sources are again
enabled before exiting.

If no timer A interrupt occurred, the routine checks
whether bit 1 is set in both the interrupt register value and the
activity flag, indicating that a valid timer B interrupt occurred.
If so, the subroutine at 59512/$E878 is called to read a bit.
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Otherwise, a test is made of bit 4 in both the interrupt register
value and the activity flag. If the bit is set in both, a valid
FLAG interrupt has occurred, so the subroutine at 59561/
$E8A9 is called to start reception of a byte. In either case, the
activity flag value is stored in the CIA interrupt register to
reenable RS-232 interrupts before exiting.

59472 $E850
Table of baud rate timing constants for NTSC systems.
The ten two-byte values in this table (in low-byte/high-byte
order) are the CIA timer settings used to transmit and receive
bits at the ten standard baud rates when the 128 is operating
with NTSC clock frequency (1.02273 MHz). This is the for-
mula for table values:
value = 1.02273E6 / (2 * baud rate) - 100

59492 $E864
Table of baud rate timing constants for PAL systems.
The ten two-byte values in this table (in low-byte/high-byte
order) are the CIA timer settings used to transmit and receive
bits at the ten standard baud rates when the 128 is operating
with PAL clock frequency (0.985265 MHz). This is the formula
for table values:

value = 0.985265E6 / (2 * baud rate) - 100

59512 $E878
Reads a bit from RS-232 device.
(Called by the NMI handling routine when a rimer B interrupt
occurs.)

Reads the current status of the R5-232 received data line (pin
C of the user port) and stores the bit value in 167/$A7. The
interrupt time for the next bit is calculated and stored in the
timer B latch (56582-56583/$DD06-$DD07); then timer B is
restarted. CIA #2 interrupts are reestablished by storing the
RS-232 activity flag (2575/$0A0F) in the interrupt register
(56589/$DD0D), and the timer latch is reloaded with $FFFF.
The routine ends by jumping to 59037/$E69D to process the
received bit.
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59561 $E8A9
Initiates reception of RS-232 byte.
(Called by the NMI handling routine when a FLAG interrupt
occurs.)
Begins by copying the bit timing constant value (2578-2579/
$0A12-$0A13) into the latch for timer B (56582-56583/
$DD06-$DD07) and starting timer B. Then, FLAG interrupts
are disabled and timer B interrupts are enabled. The RS-232
activity flag (2575/$0A0F) is updated to reflect the change.
The latch for timer B is loaded with $FFFF so that the timer
will count continuously after it counts down for the next bit.
Finally, the count of bits to be received for the current char-
acter is loaded from 2581/$0A15 into the working counter
(168/SA8).

59600 SE8D0
Reads next header block from tape.
Calls the subroutine at 59890/$E9F2 to fill the cassette buffer
with the next block from tape, exiting with the status register
carry bit set if the RUN/STOP key is pressed while the block
is being loaded.

The first byte in the header block, the type identifier, is
then examined. If the identifier value is 5, this is an end-of-
tape marker, so the routine branches to exit with carry set (in
this case, the Y register will hold the value 255/$FF). If the
identifier value is something other than 1, 3, or 4, the routine
loops back to read another block. If Kernal messages are al-
lowed, FOUND is displayed, followed by 16 filename charac-
ters from the buffer. (The buffer is filled with space characters
when the header is written, so the displayed name will be
padded with spaces if it is fewer than 16 characters long.) A
delay loop lasting for two increments of the middle byte of the
jiffy clock (161/$A1), about 8-1/2 seconds, is then started. If
the space key is pressed during this delay, the routine loops
back to the beginning to read another header. If any other key
in the same column (for example, Commodore or CONTROL)
is pressed, the loop is terminated. At the end of the loop, the
routine exits with carry clear. The X register will hold the type
identifier value for the header.
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59673 $E919
Writes a header block to tape.
Stores the type identifier value from the accumulator in 158/
$9E, then checks the address of the cassette buffer, exiting im-
mediately if it is less than 512/$0200. Otherwise, the contents
of the starting address pointer (193-194/ $C1-$C2) and end-
ing address pointer (174-175/$AE-$AF) for the current opera-
tion are stored on the stack, and the cassette buffer is filled
with space characters (32/$20). The type identifier value is
placed in the first byte of the buffer, and the starting address
and ending address values are placed in the next four bytes
(each in standard low-byte/high-byte order). The characters, if
any, of the current filename are then copied into the buffer
following the filename (the filename can fill the remainder of
the buffer, up to 187 characters). The buffer starring and end-
ing addresses are then set as the operation starting and ending
addresses; the leader flag (171/$AB) is loaded with 105/$69
for a long interfile leader; and the subroutine at 59932/$EAlC
is called to write the buffer contents to tape as a header. The
original starting and ending address pointer values are then
restored from the stack. Carry will be clear upon exit unless
the RUN/STOP key is pressed while the header is being
written.

59776 8E980
Loads and tests cassette buffer address.
Loads the address value in the cassette buffer pointer (178-179/
$B2-$B3) into the X and Y registers; then compares the high
byte (in the Y register) with the value 2/$02 to test whether
the buffer address is greater than 511/$01FR Upon exit, the
status register carry and Z bits will reflect the result of the
comparison.

59783 $E987
Sets buffer address as block address
Loads the address of the cassette buffer into the pointer to the
starting address of the block to be read or written (193-194/
$C1-$C2) and the ending address of the buffer (192 bytes be-
yond the starting address) into the pointer to the end of the
block (174-175/$AE-$AF).
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59802 SE99A
Searches for a specified header.
Calls the routine at 59600/$E8D0 to load the next header
from tape into the cassette buffer; exits if carry is set upon re-
turn from that routine (indicating that the RUN/STOP key has
been pressed or that an end-of-tape header has been read).
Characters from the current filename (pointed to by 187-188/
$BB-$BC in the bank specified in 199/SC7) are compared
against those in the buffer. If all characters match up to the
end of the current filename, the names are considered match-
ing, and the routine exits with carry clear, regardless of how
many characters may remain untested in the buffer (there's
nothing to indicate the length of the name read from tape).
However, if a mismatch is found, the routine loops back to
search for another filename.

59838 $E9BE
Checks for cassette buffer filled or emptied.
Calls the routine at 59776/$E980 to get the high byte of the
cassette buffer address into the X register. The buffer index
(166/$A6) is then incremented, loaded into the Y register, and
compared against the value 192/$C0, the maximum count of
characters in the buffer. Upon exit, the status register Z and
carry bits will reflect the result of the comparison (both will be
set if the end of the buffer is reached),

S9848 $E9C8
Requests PLAY button if necessary.
Checks whether a tape button is currently pressed; exits with
the status register carry and Z bits set if any buttons are al-
ready pressed. Otherwise, if Kernal messages are allowed,
PRESS PLAY ON TAPE is displayed. The routine then waits
for a tape button to be pressed. If the RUN/STOP key is
pressed in the meantime, the routine exits with the status reg-
ister carry bit set. When a button is pressed, the routine dis-
plays OK (if messages are allowed) and exits.

59871 8E9DF
Checks tape buttons.
Tests the setting of bit 4 of the processor on-chip I/O port
(l/$01), connected to the cassette button sense line. The status
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register Z bit will be clear if no button is pressed or will be set
if any button is detected.

5 9 8 8 1 $E9E9
Requests RECORD and PLAY buttons if necessary.
Checks whether a tape button is currently pressed; exits with
the status register carry and Z bits set if any buttons are al-
ready pressed. Otherwise, if Kernal messages are allowed,
PRESS RECORD & PLAY ON TAPE is displayed. The routine
then waits for a tape button to be pressed. If the RUN/STOP
key is pressed in the meantime, the routine exits with the sta-
tus register carry bit set. When a button is pressed, OK is dis-
played (if messages are allowed) and the routine exits.

59890 $E9F2
Reads next header or data block from tape.
Clears the tape status flag (144/$90) and operation flag
(147/$93) to zero; then sets the starting and ending addresses
of the cassette buffer as the starting and ending addresses for
the current operation and falls through into the next routine.

59899 $E9FB
Reads or verifies a block from tape.
Calls the subroutine at 59848/$E9C8 to request that the PLAY
button be pressed and exits (with carry set) if the RUN/STOP
key is pressed during that subroutine. IRQ interrupts are dis-
abled, and a series of variables and counters are initialized.
The accumulator is loaded with 144/$90 (the value to enable
FLAG interrupts), and the X register is loaded with 14/$0E
(the offset for read interrupts), and the routine branches to the
main tape I/O routine (59942/SEA26).

59925 $EA15
Writes a header or data block to tape.
Calls the subroutine at 59783/$E987 to set the buffer ad-
dresses as the starting and ending addresses for the operation-
then falls through into the next routine to write the buffer
block to tape.
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59928 $EA18
Writes a block to tape.
Loads the leader flag (171/SAB) with 20/$14 to specify a
short leader between the header and the block; then calls the
subroutine at 59881/$E9E9 to request that the PLAY and
RECORD buttons be pressed. (The routine will exit with carry
set if the RUN/STOP key is pressed during the subroutine.)
IRQ interrupts are disabled and the accumulator is loaded with
130/$82 (the value to enable timer B interrupts), and the X
register is loaded with 8/$08 (the offset to write leader bits).
The routine then falls through into the next one to perform
the operation.

59942 $EA26
Initiates tape I/O operation.
Begins by disabling all VIC-II interrupt sources and clearing
any pending VIC-II interrupts. The value in the accumulator
upon entry is loaded into the interrupt control register for CIA
#1 (56333/$DC0D), and timer B is started. Tape operations de-
pend on precise timing, so all other activities that affect system
timing are disabled: RS-232 interrupts are disabled, the 40-
column screen is blanked, and the subroutine at 58740/ $E574
is called to switch to standard (1 MHz) clock mode and disable
sprites. The current address in the IIRQ vector at 788-789/
$0314-$0315 is preserved in 2569-2570/$0A09-$0A0A; then
the subroutine at 61083/$EE9B is called to load a new value
into IIRQ, according to the value in the X register. This new
IRQ service routine will be responsible for reading or writing
data to tape. The count of blocks to be read or written (190/
$BE) is initialized to 2 (blocks are always read or written in
pairs). The subroutine at 60762/$ED5A is called to initialize
variables; then the tape motor is started, the interlock location
(192/$C0) is set to keep it on, and a delay loop is executed to
allow the motor to get up to normal speed. IRQ interrupts are
then enabled to begin the reading or writing process.

Since the actual tape operations are performed during IRQ
interrupts, the routine must now wait in a loop for the opera-
tion to be completed. It continually tests the IRQ storage flag
(2570/S0A0A), waiting for the IIRQ vector to be reloaded with
the address stored there, which will happen after the IRQ-
driven tape routines are finished. In the meantime, the RUN/
STOP key is also tested. If that key is pressed, the operation is
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halted and the routine exits with carry set. Otherwise, when
the original IIRQ address is restored at the end of the opera-
tion, the vector storage flag will be reset to zero, and the rou-
tine will exit with carry clear.

60047 $EA8F
Checks for RUN/STOP keypress during tape operations.
Calls the Kernal STOP routine [$FFE1] to determine whether
the RUN/STOP key has been pressed. If it has been, the cas-
sette motor is stopped, the default IIRQ vector address is re-
stored, the return address of the calling routine is removed
from the stack, and the IRQ vector storage flag (2570/$0A0A)
is cleared.

60065 $EAA1
Sets timer A to check for FLAG interrupts.
The reception of tape dipole is normally initiated by a FLAG
interrupt from CIA #1, which is triggered by the low-to-high
transition on the cassette read line at the start of a dipole.
Timer A of CIA #1 is loaded with a timing value for the type
of dipole being read, and it's used to check whether too much
time elapses between FLAG interrupts (which should be
equally spaced) in an attempt to determine whether any di-
poles might have been missed. If no FLAG interrupt occurs
before the timer counts down to zero, the timer will trigger an
interrupt. This prevents the 128 from waiting indefinitely for a
FLAG interrupt.

6 0 1 3 9 $EAEB
Reads or verifies a block of data from tape.
{This is a tape IRQ service routine.)

Reads magnetic patterns (known as dipoles) from tape, assem-
bles them into bytes, and loads the bytes into memory (or
compares the bytes against memory) until a specified ending
address is reached. The routine for reading from tape is the
longest and most complex one in the Kernal, and will not be
discussed in detail here. For a thorough description of the pro-
cess, refer to COMPUTERS VIC-20 and Commodore 64 Tool Kit:
Kernal, by Dan Heeb.

i
$ED51 60753

Briefly, the routine reads dipoles from tape and deter-
mines whether they represent leaders, word markers, or data
bytes. The routine does not demand that the dipoles have an
absolutely exact duration, but rather it employs a concept
known as an adjustable baseline to determine whether the di-
pole is within an acceptable range for a particular type. This
makes it possible to compensate for minor variations in the
motor speed of different Datassette units. Because two com-
plete copies of the data block are recorded, error correction is
possible. If an error is detected while a byte is being read from
the first block, the address of the byte which could not be read
is recorded in page 1. Up to 31 error addresses can be re-
corded in 256-317/$0100-$013D. When the second block is
read, the bytes can be corrected if no error is encountered
when the byte is read from that block.

When a byte is successfully read from tape, the handling
of the byte depends on the value in the operation flag (147/
$93). If the flag value is zero, the byte is stored in the location
pointed to by 172-173/$AC-$AD in the bank specified in
198/$C6. If the value is nonzero, the byte is compared against
the contents of the location pointed to by 172-173/$AC-$AD
in the bank specified in 198/$C6 (a verify operation).

Errors which cannot be corrected are recorded in the tape
status flag (144/S90). If the end of a block is reached before
the specified ending address (a short-block error), bit 2 of the
flag is set to % 1 . If more than 31 errors occur while the first
block is being read, or if an error recorded during the first
block cannot be connected during the second block, an unre-
coverable-read error occurs, and bit 4 of the flag is set to % 1 .
That bit is also set during a verify operation if the byte in
memory doesn't match the corresponding byte in either block
on tape. If the byte read from tape as a checksum doesn't
match the calculated checksum for the bytes previously read
from tape, a checksum error occurs, and bit 5 of the flag is set
to % 1 .

60753 $ED51
Loads working pointer with starting address.
Transfers the starting address of the current block (193-194/
$C1-$C2) to the tape working pointer (172-173/$AC-$AD).
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60762 $ED5A
Initializes tape variables between each byte.
Resets the count of bits for the next byte (163/$A3) to 8; then
clears the dipole flag (164/$A4), the word marker half-dipole
flag (168/$A8), the parity work byte (155/$9B), and the word
marker flag (169/$A9).

60777 $ED69
Initiates writing of a tape half-dipole.
Reads the bit value for the current half-dipole to be sent (the
current value of the rightmost bit in 189/$BD) and loads CIA
#1 timer B with the appropriate value: $0060 for a short half-
dipole if the bit is %0 or $00B0 for a long half-dipole if the bit
is % 1 . The routine then clears the CIA interrupt register, starts
timer B, and toggles the cassette write line (bit 3 of the 8502's
on-chip I/O port at location l/$01) to begin writing the cur-
rent half-dipole. Upon exit, the status register 2 bit will be set
if the line is currently low or will be clear if the line is cur-
rently high.

60816 6ED90
Writes a block of data to tape.
(This is a tape IRQ service routine.)
Writes bytes of data from memory to tape until the specified
ending address is reached. The system used for representing
the bytes on tape is rather complex. Each bit of a byte is rep-
resented by a magnetic pattern called a dipole, which is gener-
ated by holding the cassette write line (bit 3 of the 8502's on-
chip I/O port at location l/$01) high for a period, then low
for a different period. The duration of the periods is deter-
mined by the value loaded into CIA #1 timer B, which con-
trols the amount of time between IRQ interrupts for tape. The
routine at 60777/$ED69 actually writes each half of the di-
pole. A %0 bit is represented by a short half-dipole followed
by a long one, while a %1 bit is represented by a long half-
dipole followed by a short one. Each byte is preceded by a
word marker dipole, which consists of an extra-long word
marker half-dipole followed by a long half-dipole. Each byte is
followed by a parity bit dipole. The parity bit will be either
%0 or % 1 , as necessary to provide an odd total number of %1
bits in the byte and parity bit combined. The routine writes
two complete copies of the data block, separated by a short
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leader. As each byte is written, it is also excIusive-ORed with
a checksum work byte. This checksum byte is written to tape
following the second copy of the block to provide an addi-
tional error check. For a more thorough description of the pro-
cess, refer to COMPUTE'S VIC-20 and Commodore 64 Tool Kit:
Kernal, by Dan Heeb.

6 0 9 7 4 $EE2E
Writes a leader to tape and prepares to write a data block.
(This is a tape IRQ service routine.)
Writes leader dipoles to tape until the count specified in
171/$AB is decremented to zero, about 9.5 seconds for the
leader before a header, 1.9 seconds for the leader between a
header and the first data block, or 0.045 seconds between data
blocks. The IIRQ vector is then loaded with the address of the
routine to write the data block [$ED90], but if both blocks
have been written, the routine branches to 61077/$EE95 to re-
store normal IRQs and exit from the operation. Otherwise, the
starting address for the block to be written is loaded into the
working pointer (173-174/$AC-$AD), and a branch is taken
into the block write routine to write the block countdown
characters. Each block is preceded by a countdown character
pattern—8 7 6 5 4 3 2 1 0—to mark the end of the leader and
the beginning of data. (For the second block of a pair, bit 7 of
the countdown character codes will be set to %1.)

61015 6EE57
Restores IRQ vector and operating modes after tape operation.
Reenables the screen (it is normally blanked during tape oper-
ations), then checks the custom mode flag (2618/$0A3A). If
the flag has bit 7 set, indicating that a special operation mode
has been specified, the routine skips ahead to turn off the cas-
sette motor and restore the IRQ vector. Otherwise, the VIC-II
chip sprite enable register is reloaded with the value stored in
2616/$0A38 at the start of the operation. The clock mode reg-
ister is reloaded with its original value from 2615/$0A37; then
the clock mode storage location is reset to zero to indicate that
no value is stored. The routine to turn off the cassette motor
[SEEBO] is called; then raster interrupts are reenabled, and the
IIRQ vector (788-789/$0314-$0315) is reloaded with its origi-
nal address, stored in 2569-2570/$0AO9-$0A0A at the begin-
ning of the operation.
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61077 6EE95
Ends tape write interrupts.
Calls the subroutine at 61O15/$EE57 to restore the IRQ inter-
rupt vector address and system operating modes to their origi-
nal values; then exits from the interrupt to return to normal
processing.

61083 $EE9B
Loads IIRQ vector for tape operation.
Loads the IIRQ vector (788-789/$0314/$0315) with a value
from the table at 61096/$EEA8, depending on the offset speci-
fied in the X register:

Function
Write a leader to tape
Write a block to tape
Restore normal IRQ functions
Read a block from tape

Offset Vector address
8/$08 60974/$EE2E

10/$0A 60816/$ED90
12/$0C 64101/$FA65
14/$0E 60139/$EAEB

61104 $EEB0
Turns cassette motor off-
Sets bit 5 of the processor I/O port (location l/$01) to %1,
which has the effect of turning off power to the cassette motor
(pins 3 and C of the cassette port).

6 1 1 1 1 $EEB7
Tests whether ending address has been reached.

Compares the value in the working pointer for tape and serial
operations (172-173/$AC-$AD) against the ending address in
174-175/$AE-$AF. Upon exit, the status register carry and Z
bits will reflect the result of the comparison.

6 1 1 2 1 $EEC1
Increments the working pointer-

Increments the address in 172-173/$AC-$AD.

61128 $EEC8
Handles FLAG interrupts for tape.
Insures that the B bit in the status register value on the stack
is clear, then jumps to the IRQ interrupt handler [$FF17].
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61136 $EED0
Controls tape motor interlock.
Checks bit 4 of the processor I/O port (location l/$01) to de-
termine whether any buttons are pressed on the Datassette. If
no button is pressed (indicated when the bit is %1), the inter-
lock byte (192/$C0) is cleared and the tape drive motor is
turned off by setting bit 5 of the processor I/O port to % 1 . If a
button is pressed (if bit 4 is %0), the interlock byte is checked.
If that byte already contains a nonzero value, the routine exits.
Otherwise, the tape motor is turned on by setting bit 5 of the
processor I/O port to %0.

This routine is part of the normal IRQ sequence, so it's
not possible to control the tape motor by directly changing bit
5 of the processor I/O port. If you turn on the motor while no
buttons are pressed, it will be turned off again during the next
IRQ interrupt. If you turn off the motor while a button is
pressed, it will be turned on again during the next IRQ inter-
rupt (unless the interlock byte contains a nonzero value).

6 1 1 6 3 $EEEB GETIN
Retrieves a byte from the current input device.
(This routine is the normal target of the jump table entry at
65508/$FFE4, via the indirect vector at 810/$032A.)
Checks whether the current input device (153/$99) is the key-
board (device 0) or RS-232 (device 2). If it is neither of these,
the routine branches to 61205/SEF15 in the BASIN routine to
accept a byte from the specified device. For keyboard and RS-
232, the significant difference between GETIN and BASIN is
that GETIN returns the value 0/$00 if no character is avail-
able, whereas BASIN will wait until a valid character becomes
available.

For keyboard input, the routine checks the number of
characters available in the keyboard buffer (208/$D0) and the
number of characters available from the current programmable
key string (2O9/$D1). If both are zero (no characters avail-
able), the routine exits with 0/$00 in the accumulator and
carry clear. However, if characters are available, the screen
routine at 49158/SC006 is used to retrieve the next available
character and return it in the accumulator. Neither the X nor
the Y register values are preserved in this case.

For RS-232 input, the routine at 59342/SE7CE is used to
retrieve a byte from the RS-232 input buffer and return it in
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the accumulator. If the buffer is empty, the accumulator will
contain 0/$00, and bit 3 of the RS-232 status flag (2580/
$0A14) will be set to % 1 . For RS-232 input, the X register is
unused, and the Y register value is preserved.

61190 $EF06 BASIN
Accepts a byte from the current input device.
(This routine is the normal target of the jump table entry at
65487/$FFCF, via the indirect vector at 804/$0324.)
If the current input device (153/$99) is the keyboard (device
0), the routine sets the current cursor row and column
(232/$E8 and 233/$E9) as the starting row and column for in-
put (235/SEB and 236/$EC); then it calls the screen editor
routine to retrieve a character from a keyboard input line
[$C009], For input from the screen (device 3), the routine
stores the device number in the input source flag (214/$D6)
and sets the current right window margin (231/$E7) as the
ending column for input (234/$EA); then it calls the screen
editor routine to retrieve a character from the screen line
[$C009], Unfortunately, this is not the proper setup procedure
for screen input, so BASIN from the screen does not work in
the current 128 Kernal. For screen input, the ending row for
input (2608/$0A30) must be specified, and the setting of bit 7
of the input source flag must be preserved so that the screen
editor routine will know when the end of the input line is
reached. See the entry at 49819/$C29B for details of the
proper procedure.

To retrieve a byte from a serial device (device number
greater than 3), a branch is taken to the routine at 61276/
$EF5C. For RS-232 input (device 2), a branch is taken to the
routine at 61287/$EF67. For tape (device 1), this routine falls
through into the next routine.

61224 $EF28
Accepts a byte from tape.
Retrieves a byte from the cassette buffer (2816-3007/
$OBO0-$0BBF), then checks the next character in the buffer. If
that character is the zero byte marking the end of the file, bit
6 of the tape status flag (144/S90) will be set to %1 to indicate
that the end has been reached. If all characters have been re-
trieved from the buffer, the next block of data will be read.
The retrieved byte will be in the accumulator upon exit and
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the X register contents will be preserved. Carry will be clear
unless the RUN/STOP key has been pressed (the accumulator
will contain 0/$00) or an error is encountered when reading
the data block from tape (the accumulator will contain the er-
ror code).

61276 SEF5C
Accepts a byte from a serial device.
Checks the serial status flag (144/$90) and returns the code
for the RETURN character (13/$0D) if the status is nonzero
(indicating error or end of file). Otherwise, the routine jumps
to the Kernal ACPTR routine [$E43E] to retrieve a byte from a
serial device.

61287 6EF67
Accepts a byte from RS-232.
Calls the RS-232 GETIN routine at 61181/SEEFD to retrieve a
character from the RS-232 input buffer. If the character value
is nonzero, indicating that a valid character has been returned,
the routine exits with that value in the accumulator. However,
because of a branch to an incorrect address, the routine ne-
glects to clear the carry bit, which will be set as a result of the
comparison with zero. Thus, contrary to other versions of the
Kernal, the carry bit will be set when the character code is
valid. If the value returned is zero, the routine checks bit 6 of
the RS-232 status flag (2580/$0A14) to determine whether the
DSR signal is still present (indicating that the external device
is still active). If the flag value indicates that the DSR signal is
present, the routine loops back to see whether a character has
arrived in the input buffer. If DSR is missing, the character
code for RETURN, 13/$0D, is returned in the accumulator
with the carry bit clear. In any case, the X register value is un-
used and the Y register value is preserved.

61305 $EF79 BSOUT
Sends a byte to the current output device.
(This routine is the normal target of the jump table entry at
65490/$FFD2, via the indirect vector at 806/$0326.)
If the current output device (154/S9A) is the screen (device 3),
the routine jumps to the screen editor routine to display the
character in the accumulator [$C00C]. If a serial device is spec-
ified (device number greater than 3), the routine jumps to the
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CIOUT routine [$E503] to send the byte in the accumulator
over the serial bus. Otherwise, the value to be sent is stored in
158/$9E, and the X and Y register contents are placed on the
stack for later restoration. For RS-232 (device 2), a branch is
taken to 61367/$EFB7. The branch will also be taken if the
keyboard (device 0) is specified as the output device, but that
shouldn't happen if you use normal Kernal calls to set the de-
vice number—CKOUT [$F14C] won't accept the keyboard as
an output device. For tape (device 1), this routine falls through
into the following routine.

6 1 3 3 2 $EF94
Sends a byte to tape.

Checks whether the cassette buffer has been filled. If not, the
byte stored in 158/$9E is placed in the next available position
in the buffer. However, if the buffer is currently full, the cur-
rent block must be written before the character can be placed
in the buffer. The subroutine to write the block to tape
[$EA15] is called; then the type identifier value for a data
block (2/$02) is placed in the first byte of the buffer, and the
buffer pointer (166/SA6) is initialized to the next buffer posi-
tion, If the RUN/STOP key is pressed while the block is being
written, the routine will exit with the status register carry bit
set and with the accumulator containing the value 0/$00.

After the character is placed in the buffer, the X and Y
register values will be restored from the stack, and the accu-
mulator will be reloaded with the stored byte value so that all
registers have the same value on exit that they did on entry.
The carry bit will be clear upon exit.

61367 SEFB7
Sends a byte to the RS-232 port.
Calls the routine at 59231/$E75F to store the character code
from the accumulator into the RS-232 output buffer; then
jumps into the preceding routine to restore the accumulator
and X and Y register values from the stack and exits with carry
clear.

61373 $EFBD OPEN
Opens a logical file to a specified device.
(This routine is the normal target of the jump table entry at
65472/SFFCO, via the indirect vector at 794/$031A.)
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Checks whether the specified logical file number (184/$B8) is
already used for a currently open file and exits with a Kernal
file-open error if it is (the status register carry bit will be set,
and the accumulator will hold the error code, 2/$02).

Next, the routine checks the number of files currently
open (152/$98) and exits with a Kernal too-many-files error if
ten files are already open (the carry bit will be set and the ac-
cumulator will hold the error code, l/$01). Otherwise, the
number of open files is incremented and the logical file num-
ber is added to the file number table (866/$0362), The current
secondary address (185/$B9) is ORed with the value 96/S60
and placed in the corresponding position in the secondary ad-
dress table (886/$0376). The OR step is significant; some Kernal
routines expect bits 5 and 6 of the secondary address to be set.
The current device number (186/$BA) is placed in the cor-
responding position in the device number table (876/S036C).

For files opened to the keyboard (device 0) or screen (de-
vice 3), the routine exits at this point, since no further setup
steps are required for those devices. For RS-232 files (device
2), a branch is taken to the routine at 61504/$F040. For tape
(device 1), a branch is taken to the routine at 61430/$EFF6.
For a serial device (device number greater than 3), the subrou-
tine at 61643/$F0CB is called; then the routine exits with
carry clear (except in the case where the specified device is not
present).

61430 SEFF6
Opens a file for input or output to tape.
Checks the cassette buffer address and exits with a Kernal ille-
gal-device-number error if it is less than 512/$0200. The
lower four bits of the secondary address are then tested. If all
are %0, the file has been opened for reading, so the routine
searches for the specified tape header (or simply for the next
header if no filename is specified). If the RUN/STOP key is
pressed while the routine is searching for the header, the rou-
tine will exit with carry set and with the accumulator holding
the value 0/$00. If an end-of-tape header is read before the
data header is found, the routine exits with a Kernal file-not-
found error (the carry bit will be set, and the accumulator will
contain the error code, 4/$04), If a file header is found, the
routine sets the buffer pointer (166/$A6) to 191/$BF {the
value to indicate that the buffer is empty) so that the first
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block of data will be read when BASIN is called for the first
time; then it exits with carry clear.

This routine does have a flaw: It neglects to check
whether the loaded header block has a type identifier of 4 (the
type identifier for data file headers). Thus, if a program file
(type identifier of 1 or 3) is found with the specified name, or
before the next data header if no name is specified, it will be
opened. However, tape program files cannot be read or writ-
ten, only saved or loaded, so it does no good to open them for
reading. When a program file is opened, a long block error oc-
curs after you try to read the first block.

If any of bits 0-3 of the secondary address are % 1 , a data
file will be opened for writing. The subroutine to request that
the PLAY and RECORD buttons be pressed is called. If the
RUN/STOP key is pressed during that subroutine, the routine
will exit with carry set and with the accumulator containing
0/$00. The subroutine at 59673/$E919 is then called to write
a data header for the file (type identifier of 4). After the
header is written, the data block type identifier value (2/$02)
is placed in the first position of the cassette buffer; then the
buffer pointer is initialized to the next position, and the rou-
tine exits with carry clear.

61504 $F040
Opens a file for RS-232 communications.
Calls the subroutine at 61616/$F0B0 to initialize the CIA #2
port lines to the user port; then clears the RS-232 status flag
(2580/$OA14) and retrieves up to four characters from the cur-
rent filename (if more are specified, those after the first four
are ignored). The first character, if present, is placed in the RS-
232 control register (2576/$0A10), the second into the com-
mand register (2577/$0All), and the last two into the baud
rate timing constant (2578-2579/$0A12-$0A13). The number
of bits to be sent or received is calculated and stored in
2581/$0A15. The lower four bits of the control register value
are checked to determine the baud rate to use. If the bits are
all %0, a custom rate is indicated, so the following step to
load a value from the tables is skipped. Otherwise, the value
from bits 0-3 is used as an index into one of the baud rate
timing constant tables, depending on the video system in use
(59470/$E84E for NTSC or 59490/$E862 for PAL), and the
specified table entry is loaded into 2578-2579/$0A12-$0A13.
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No error checking is done, so if you specify a value greater
than 10 (%1010) in those bits, you'll wind up with an invalid
timing constant and won't be able to send or receive data.
Also, for higher baud rates, the time between interrupts is so
short that the system may not have time to process received
bytes. In general, stick to rates of 1200 baud or lower.

The rate factor value in 2578-2579/$0A12-$0A13 is then
converted into a bit timing constant, the number of CIA timer
counts for the bit duration, and the result is stored in
2582-2583/$0A16-$0A17. The formula is bit time equals rate
factor times 2 plus 200.

Next, the routine checks the handshaking setting specified
by bit 0 of the command register. For x-line handshaking, the
routine checks the CIA port bit connected to the DSR line (pin
L of the user port). If the external RS-232 device is not holding
this line high, bit 6 of the RS-232 status flag will be set. How-
ever, there's a bug here: If the line is high, indicating that the
external device is present, the routine will proceed with carry
set, which is normally used to indicate a problem. (Carry clear
upon return from OPEN is supposed to mean that the file has
been opened successfully.)

If you're calling OPEN from machine language, you can
just remember that a set carry can be ignored when x-line
handshaking is in use. However, BASIC still thinks a problem
has occurred and will give a DEVICE NOT PRESENT error
when the device is present. The converse side of the problem
is that carry will be clear when DSR is low, so BASIC will
think everything is okay when the device is absent.

The final step is to set the input buffer tail pointer
(2585/S0A19) equal to the head pointer (2584/$0A18), and
the output buffer head pointer (2586/S0A1A) equal to the tail
pointer (2587/$0AlB). This effectively makes both buffers ini-
tially empty.

6 1 6 1 6 $F0B0
Sets up CIA #2 ports for RS-232 communications.
Disables all interrupt sources from CIA #2; then makes the
user port lines connected to bits 0 and 3-7 of port B inputs,
while making the lines for bits 1-2 outputs and setting them
high (+5 volts). The line for bit 2 of port A (initialized to an
output line during IOINIT) is set high. This is the transmitted
data line, which is normally held high when no data is being
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sent. For information on the usage of the other lines, refer to
the discussion of CIA #2 in Chapter 8. Finally, the RS-232 ac-
tivity flag (2575/S0A0F) is cleared to indicate that no CIA #2
interrupts are enabled.

61643 $FOCB
Opens a file for serial bus communications.
Checks the current secondary address (185/$B9) and exits im-
mediately (with the status register carry bit clear) if the sec-
ondary address value has bit 7 set (if the value is greater than
127). The routine also exits without performing any other ac-
tions if the length of the name specified for the file being
opened (183/SB7) is zero. Otherwise, the serial status flag
(144/$90) is cleared to zero, and the specified device (186/
$BA) is commanded to listen. If the serial status flag indicates
that the device has not responded, the return address of the
calling routine will be discarded and the routine will exit with
a Kernal device-not-present error (the carry bit will be set and
the accumulator will contain the error code, 5/$05). If the de-
vice has responded, the secondary address is sent as a com-
mand using the SECOND routine [$E4D2]. (The upper four
bits of the secondary address are masked to %0000, so only
the lower four bits are significant.) Again, if the device does
not respond, the routine exits OPEN with a Kernal device-not-
present error. If a filename has been specified, the characters
of the name are sent to the serial device. (Since the ATN line
is allowed to go high after the secondary address is sent, the
filename characters are not seen as commands.) The routine
ends by commanding the device to unlisten.

61702 $F106 CHKIN
Sets the current input file for GETIN and BASIN.
(This routine is the normal target of the jump table entry at
65478/$FFC6, via the indirect vector at 798/$031E.)

Checks whether a file with the logical file number specified in
the X register is currently open by verifying that a matching
entry exists in the logical file table at 866-875/$0362-$036B.
If no match is found, the routine exits with a Kernal file-not-
open error (the status register carry bit will be set and the ac-
cumulator will hold the error code, 3/$03). If an entry for the
file is found in the table, the file number is loaded into
184/SB8, and the corresponding device number and secondary
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address values are loaded into 186/SBA and 185/SB9, respec-
tively. If the device number is 0 (keyboard) or 3 (screen), the
routine skips ahead to set this as the input device number and
exit, since that's all that's necessary for input from those
sources. For device numbers greater than 3 (serial devices), a
branch is taken to the routine at 61735/$F127. For device 2
(RS-232), a jump is taken to the routine at 59285/$E795 to
prepare for RS-232 input. For device 1 (tape), the secondary
address is tested. If it is not 96/$60 (0/$00 before the OR in
the OPEN routine), the file has been opened for writing, so
the routine exits with a Kernal not-input-file error (the status
register carry bit will be set and the accumulator will hold the
error code, 6/$06). Otherwise, the device number is set as the
current input device (153/$99), and the routine exits with
carry clear.

61735 $F127
Prepares a serial device file for input.
Sends a TALK command to the serial device specified in the
accumulator, then tests the serial status flag (144/$90) to see
whether the device has responded. If the flag indicates that
the device is not present, the routine exits with a Kernal de-
vice-not-present error (the status register carry bit will be set
and the accumulator will contain the error code, 5/$05). If the
device has responded, the routine checks the value of the sec-
ondary address (185/$B9). If bit 7 of the value is %1 (if the
secondary address is 128 or greater), no secondary address is
sent—the routine simply performs the talk-listen turnaround.
Otherwise, the TKSA routine [$E4E0] is called to send the sec-
ondary address as a command on the serial bus and perform
the talk-listen turnaround. If the device responds again, the
routine sets the device number as the current output device
(154/$9A) and exits with carry clear. If the device does not re-
spond, the routine exits with a Kernal device-not-present error.

61772 $F14C CKOUT
Sets the current output file for BSOUT.
(This routine is the normal target of the jump table entry at
65481/$FFC9, via the indirect vector at 800/$0320.)
Checks whether a file with the logical file number specified in
the X register is currently open by verifying that a matching
entry exists in the logical file table at 866-875/$0362-$036B.
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If no match is found, the routine exits with a Kernal file-not-
open error (the status register carry bit will be set and the ac-
cumulator will hold the error code, 3/$03). If an entry for the
file is found in the table, the file number is loaded into 184/
$B8, and the corresponding device number and secondary ad-
dress values are loaded into 186/$BA and 185/$B9, respec-
tively. If the device number is 0, the routine exits with a
Kernal not-output-file error (the status register carry bit will be
set and the accumulator will hold the error code, 7/$07), since
it's not possible to send output to the keyboard. If the device
number is 3, the routine skips ahead to set this as the output
device number and exit, since that's all that's necessary to
route output to the screen. For device numbers greater than 3
(serial devices), a branch is taken to the routine at 61805/
$F16D. For device 2 (RS-232), a jump is taken to the routine
at 59177/$E729 to prepare for RS-232 output. For device 1
(tape), the secondary address is tested. If it is 96/$60 (0/$00
before the OR in the OPEN routine), the file has been opened
for reading, so the routine exits with a Kernal not-output-file
error. Otherwise, the device number is set as the current out-
put device (1154/$9A), and the routine exits with carry clear.

61805 8F16D
Prepares a serial device file for output.
Sends a LISTEN command to the device specified in the accu-
mulator, then tests the serial status flag (144/$90) to see
whether the device has responded. If the flag indicates that
the device is not present, the routine exits with a Kernal de-
vice-not-present error (the status register carry bit will be set
and the accumulator will contain the error code, 5/$05), If the
device has responded, the routine checks the value of the sec-
ondary address (185/$B9). If bit 7 of the value is %1 (if the
secondary address is 128 or greater), no secondary address is
sent—the routine simply allows the serial bus ATN line to go
high. Otherwise, the SECOND routine [$E4D2] is called to
send the secondary address as a command on the serial bus. If
the device responds again, the routine sets the device number
as the current output device (154/$9A) and exits with carry
clear. If the device does not respond, the routine exits with a
Kernal device-not-present error.
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61832 $F188 CLOSE
Closes a specified logical file.
(This routine is the normal target of the jump table entry at
65475/$FFC3, via the indirect vector at 796/$031C.)
Shifts the value of the status register carry bit upon entry into
bit 7 of 146/$92; then checks whether a file with the logical
file number specified in the accumulator is currently open. If
not, the routine simply exits with carry clear. If an entry for
the file is found in the file number table, the file number is
loaded into 184/$B8, and the corresponding device number
and secondary address values are loaded into 186/$BA and
185/$B9, respectively. The file's position in the tables is
placed on the stack for later retrieval. The routine then checks
whether the file is open to the keyboard (device 0) or screen
(device 3). In either of these cases, simply removing the table
entries for the file is sufficient to close the file, so a branch is
taken to the routine at 61924/$F1E4. For device numbers
greater than 3 (serial devices), a branch is taken to the routine
at 619O3/$F1CF. For device 1 (tape), a branch is taken to the
routine at 61865/$F1A9. For device 2 (RS-232), the table en-
tries for the file are deleted, then a jump is taken to the rou-
tine at 61616/$F0B0 to reinitialize the CIA ports and disable
the interrupts that drive RS-232 communications.

61865 $F1A9
Closes a tape file.
Checks the secondary address for the file (185/$B9). If it is 0,
indicating that the file has been opened for reading, all that is
required is to delete the table entries for the file, so a branch is
taken to 61924/$F1E4. If the file has been opened for writing,
the routine adds a zero following the last data byte in the
buffer (which contains the final block of data for the file), then
writes the final block to tape. If the RUN/STOP key is pressed
while the last block is being written, the routine will exit with
status register carry bit set and with the accumulator holding
0/$00. If bit 1 of the secondary address is set to % 1 , then an
end-of-tape header will be written following the final data
block. The routine then jumps to 61924/$F1E4 to remove the
table entries for the file.
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61903 SF1CF
Closes a file on a serial device.
Checks the preserved status of the cany bit when the CLOSE
routine is entered. If carry is set, and if the device number
(186/$BA) is 8 or greater, and if the secondary address for the
file is 15 (indicating that the file has been opened as a com-
mand channel to the drive), a branch is taken to 61924/$F1E4
to simply remove the file entries rather than actually closing
the file. This provides a solution to a problem in previous ver-
sions of the Kernal. Closing the command channel to a drive
also closes all other open files on the drive, possibly an un-
wanted side effect. By calling CLOSE with carry set, this can
now be avoided.

If carry is clear when CLOSE is called, the normal closing
steps are performed: The subroutine at 62878/$F59E is called
to close the file on the serial device; then the routine falls
through into the next one to remove the table entries for the
file.

61924 SF1E4
Removes an entry from the logical file tables.
Retrieves the offset to the file's position in the logical file
number, device number, and secondary address tables from
the stack and decrements the number of open files (152/$98).
Next, the routine checks whether the file to be deleted is the
last entry in the tables. If so, decrementing the number of
open files is sufficient to effectively remove the file's table en-
tries; and the routine exits at this point. Otherwise, the current
last entry in the table is copied to the specified file's position,
overwriting the entries for the file to be deleted. Carry will al-
ways be clear upon exit.

61954 $F202
Checks whether a file is already open.
Clears the serial status flag (144/$90), then searches the logi-
cal file number table (866-875/$0362-$036B) for an entry
with the same number as the value specified in the X register.
If no match is found, or if no files are open, the routine exits
with the status register N bit set (test with BMI). If a file using
the specified number is already open, the status register Z bit
will be set (test with BEQ).
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Load parameters for a logical file.
Loads the current logical file number (184/$B8), current de-
vice number (186/SBA), and secondary address (185/$B9)
with the values for a specified open file from the tables at
866-895/$0362-$037E The routine should be called with the
X register containing the offset (0-9) into the tables for the
file's entry.

61986 8F222 CLALL
Clears file table entries,
(This routine is the normal target of the jump table entry at
65511/$FFE7, via the indirect vector at 812/$032C.)
Resets the number of open files (152/$98) to zero, then falls
through into the next routine to reestablish default I/O channels.
Note that this routine doesn't actually close any files that may
be open to external devices. Unclosed tape or disk files may
cause problems and should be avoided. See the CLOSE ALL
entry at 62013/$F23D for a routine that properly closes all
files opened to a specified serial device.

61990 $F226 CLRCH
Resets default I/O channels.
(This routine is the normal target of the jump table entry at
65484/$FFCC, via the indirect vectoT at 802/$0322.)
Sends an UNLISTEN command over the serial bus if the cur-
rent output device number (154/S9A) is greater than 3, and an
UNTALK command if the current input device number (153/
$99) is greater than 3. The channels are then reset to the de-
fault devices: 3 (screen) for output and 0 (keyboard) for input.

62013 $F23D CLOSE_ALL
Closes all open files for a specified serial device.
(This routine has a jump table entry at 65354/$FF4A.)
Stores the value in the accumulator as the current device num-
ber (186/$BA). If the specified device number is the current
input or output device, the input or output channel is reset to
the default device (keyboard or screen). Next, the routine
searches the device number table at 876-885/$036C-$0375
for files that might be open to the specified device. Any that
are found are closed by using the Kemal CLOSE routine
65475/$FFC3.
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62053 $F265 LOAD
Loads or verifies a program file from disk or tape.
(This routine has a jump table entry at 65493/SFFD5.)
Stores the address value from the X and Y registers into the
pointer to the starting address for the load (195-196/
$C3-$C4), then takes an indirect jump through the ILOAD
vector (816/$0330). The vector normally points back to the lo-
cation immediately following the jump, but you can modify
the action of the LOAD routine by redirecting this vector to a
routine of your own. See the ILOAD entry for details.

The operation type value in the accumulator is stored in
the load/verify flag'(147/$93), and the tape/serial status flag
(144/$90) is cleared. The device number (186/$BA) is then
tested. If it's 4 or greater, a branch is taken to the routine at
62075/$F27B to attempt a load from the specified serial de-
vice. Otherwise, a jump is taken to the routine at 62246/
$F326 to attempt a load from tape.

62075 $F27B
Loads or verifies a file from a serial device.
Begins by clearing bits 6 and 0 of the fast serial flag
($2588/$0AlC). Bit 6 is cleared so that the routine which at-
tempts fast serial output will have to verify for itself that fast
communications are available; there is no apparent reason for
clearing bit 0. The current secondary address (185/$B9) is
placed in temporary storage (158/$9E). If the length of the
current filename (183/$B7) is zero, the routine exits with the
Kernal missing-filename error (the status register carry bit will
be set and the accumulator will hold the error code, 8/$08).
Otherwise, the length value is placed in temporary storage
(159/$9F), and (if Kernal control messages are allowed)
SEARCHING FOR, followed by the filename, is displayed.
The subroutine at 62369/$F3Al is called to attempt a fast se-
rial load or verify of the specified file. If carry is clear upon re-
turn (indicating that a fast load or verify has been performed),
the routine exits with carry clear and with the X and Y regis-
ters holding the ending address for the data. Otherwise, the
routine proceeds with the standard serial load or verify.

The filename length is restored from temporary storage,
and the current secondary address is set to 96/$60—cor-
responding to a secondary address of zero, the value for read-
ing a file. The serial OPEN routine [$F0CB] is called to send
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the filename to the specified device; then the device is com-
manded to talk and is sent the secondary address. The first
two bytes, which, for a program (PRG) file, contain the start-
ing address, are loaded into the working pointer (174-175/
$AE-$AF). If the original secondary address value in 158/$9E
is 0/$00, indicating that a relocating load has been specified,
the starting address in the pointer is replaced with the one in
195-196/$C3-$C4. If Kernal messages are allowed, LOAD-
ING or VERIFYING is displayed.

The main reading step consists of clearing the read
timeout bit (bit 1) of the serial status flag, checking for a
RUN/STOP keypress, calling ACPTR [$E43E] to read a byte
from the program file, and testing whether the read timeout
bit has been set during the read. If it has been set, the routine
loops back to try to read the byte again. If RUN/STOP is
pressed, the routine goes to 62901/$F5B5 to halt the
operation.

For a verify operation (nonzero value in 147/$93), the
byte read from disk is compared to the one at the address
pointed to by 174-175/$AE-$AF in the bank specified in
198/$C6. If the bytes do not match, the verify error bit (bit 4)
in the serial status flag is set to % 1 . For a load operation (0 in
147/$93), the byte read from disk is stored at the address
pointed to by 174-175/$AE-$AF in the bank specified in
198/$C6. In either case, the address in the pointer is then in-
cremented and compared against the value 65280/$FF00. If it
reaches this value, a Kernal out-of-memory error occurs (the
routine exits with carry set and with the accumulator holding
the error code, 16/$10). If the EOI bit in the serial status flag
(bit 6) is not % 1 , the routine loops back to read another byte.
When EOI is set, indicating that the end of the file has been
reached, the routine sends an UNTALK command, closes the
file, loads the address from 174-175/$AE-$AF (which will
point to the location immediately following the last byte
loaded) into the X and Y registers, then exits with carry clear.

62246 $F326
Loads or verifies a program file from tape.
Exits with the Kernal illegal-device-number error if the device
number in the accumulator is not 1/S01, or if the cassette
buffer address is less than $0200. (The status register carry bit
will be set and the accumulator will hold the error code,
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9/$09.) Otherwise, a request for the PLAY button will be
printed if no buttons are currently pressed, and if Kernal mes-
sages are allowed. If the RUN/STOP key is pressed while
waiting for a button press (or at any other time during the
routine), the routine will exit with carry set and with 0/$00 in
the accumulator. If Kernal messages are allowed, SEARCHING
is displayed; if a nonzero filename length is specified, that will
be followed by FOR and the filename. If a filename is sup-
plied, the routine looks for a specified header block [$E99A],
Otherwise, it merely loads the next header block [$E8D0], In
either case, if an end-of-tape header (type identifier of 5) is
encountered, the routine exits with a Kernal hie-not-found er-
ror (the carry bit will be set and the accumulator will hold the
error code, 4/$04). The routine also exits with carry set if bit 4
of the tape status flag (144/$90) is %1 after the header is
loaded, indicating that a read error has occurred. If the type
identifier byte for the header is not 1 or 3, this is not a pro-
gram file, so the routine loops back to read another header.

If the type identifier is 3, indicating that this is a
nonrelocatable program file, or if the secondary address
(185/$B9) is nonzero, the current starting address pointer
value in 195-196/$C3-$C4 is replaced with the one specified
in the two header bytes following the type identifier. Next, the
ending address for the file is calculated and stored in
174-175/$AE-$AF. If the ending address value is greater than
65279/$FEFF, the routine exits with a Kernal out-of-memory
error (the carry bit will be set and the accumulator will hold
the error code, 16/$10). The starting address is transferred to
a working pointer (193-194/$C1-$C2) and, if Kernal mes-
sages are allowed, LOADING or VERIFYING is displayed. The
subroutine at 59899/$E9FB is used to read the program data
from tape into the specified area of memory (carry should be
clear upon return if the load is successful). Finally, the ending
address is loaded into the X and Y registers before exiting.

62369 $F3A1
Attempts to set up fast serial load or verify.
Checks the first character of the filename to be loaded and ex-
its immediately if it's $, indicating that a disk directory rather
than a program is to be loaded. Otherwise, the routine opens
a command file (secondary address of 15) to the specified se-
rial device. If the file is not opened successfully, the routine
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exits with the Kernal device-not-present error (tVie status regis-
ter carry bit will be set and the accumulator will hold the error
code, 5/$05). If the command channel has been opened, the
burst mode load command—UO, followed by the value 31 /
$1F to specify a program file, followed by the codes for the
characters of the filename—is sent to the drive. The CLRCH
routine [$FFCC] is called to reset the default I/O channels. Bit
7 of the fast serial flag at 2588/$0AlC is then tested. If the se-
rial device is capable of fast serial communications, the bit will
have been set to %1 by the BSOUT routine calls used to send
characters to the device. In this case, the routine branches to
62442/SF3EA to perform the operation using the very high
speed burst mode. If fast serial communications are not avail-
able, the command channel file is closed, and the routine re-
turns with carry set, indicating that a standard (slow) load or
verify must be performed.

62442 $F3EA
Loads or verifies a file using fast serial burst mode.
Performs a high-speed load or verify of the file specified in the
preceding routine. Burst mode loads are quite different from
standard loads. In burst mode, data is sent a sector (254 bytes)
at a time. A status byte is sent before the data bytes for each
sector. The serial bus CLK line must be toggled between bytes
to acknowledge receipt of the byte.

The routine begins by restoring the filename length
(183/$B7) from temporary storage (159/$9F), then disabling
IRQ interrupts, allowing the serial bus CLK line to go high
and setting the serial port for fast serial input. The status byte
for the first sector is read. If the status value is 2/$02, the
specified file has not been found, so the command channel to
the drive is closed and the routine exits with a Kernal file-not-
found error (the status register carry bit will be set and the ac-
cumulator will hold the error code, 4/$04). If the status byte is
31/$1F, the file is only one block long. The LOADING or
VERIFYING message is then displayed (if Kernal control mes-
sages are allowed), and the first two data bytes from the first
sector are then read and stored in the starting address pointer
(174-175/$AE-$AF), If the stored secondary address (158/
$9E) is zero, a relocating load has been specified, so the
pointer is reloaded with the value from 195-196/$C3-$C4.
The starting address is then transferred to the working pointer
(172-173/$AC-$AD).
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Before each sector is read, the RUN/STOP key is tested.
If that key has been pressed, a branch is taken to the routine
at 62630/$F4A6 to halt the operation. Otherwise, the count of
data bytes in the sector (165/$A5) is initialized—252 bytes for
a full first sector, 254 bytes in following full sectors, and a
variable number of bytes in the last sector—and the subrou-
tine at 62661/$F4C5 is called to load or verify the data bytes.
After each sector is loaded or verified, the status byte for the
next sector is read. If the status value is 0 or 1, the routine
loops to read the next sector. If it is 31/$IF, the next block is
the last one for the file, so an additional byte is read from the
device. This value will be the number of bytes in the final sec-
tor. If the status value is 2 or greater (but not 31), an error has
occurred, so a branch is taken to the routine at 62616/$F498
to handle the error.

After all bytes for the file have been read, the routine al-
lows the CLK line to go high, reenables IRQ interrupts, and
closes the command channel file. (The status register carry bit
is set before CLOSE [$FFCC] is called so that the special com-
mand file close is performed.) The status register carry bit will
be clear upon exit for a successful load. Bit 4 of the serial sta-
tus flag (144/$90) will reflect the success of a verify operation.

62616 $F498
Handles read error during burst mode load/verify.
Sets bit 1 of the serial status flag (144/$90) to %1 to indicate a
read timeout. Then it discards the return address of the calling
routine and exits with the status register carry bit set and the
accumulator holding the value 41/$29, the code for BASIC'S
FILE READ error message.

62630 SF4A6
Stops burst mode load/verify if RUN/STOP key pressed.
Closes the file, then changes the current secondary address to
zero, discards the return address of the calling routine, and ex-
its with the status register carry bit set and the accumulator
holding the value 0/$00.
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62642 $F4B2
Aborts burst mode load/verify if maximum address exceeded.
Closes the file, then discards the return address of the calling
routine and exits with the Kernal out-of-memory error (upon
exit, the status register carry bit will be set and the accumu-
lator will hold the error code, 16/$10).

62650 SF4BA
Reads a byte using fast serial hardware.
Waits for a serial register interrupt to occur on CIA # 1 (indi-
cating that a byte has been received via the fast serial hard-
ware), then retrieves the byte from the serial data register and
returns it in the accumulator.

62661 $F4C5
Loads or verifies a block of data using burst mode.
Waits for a serial register interrupt to occur on CIA #1 (indi-
cating that a byte has been received via the fast serial hard-
ware); then retrieves the byte from the serial data register and
toggles the CLK line to acknowledge reception of the byte. If
the operation flag (147/S93) contains a nonzero value, indicat-
ing verify, the byte read from the serial bus is compared with
the one pointed to by 174-175/$AE-$AF in the bank speci-
fied in 198/$C6. If the bytes do not match, the verify error bit
(bit 4) of the serial status flag (144/$90) is set to % 1 . For a
load operation, the byte read from the bus is stored at the ad-
dress pointed to by 174-175/$AE-$AF in the bank specified
in 198/$C6. The address value in the pointer is then incre-
mented; if it exceeds 65279/$FEFF, the routine will exit with
the status register carry bit set. The count of bytes to be read
from this sector (165/$A5) is decremented. If bytes remain to
be read, the routine is repeated. Otherwise, it exits with carry
clear and with the accumulator holding the high byte of the
next load address.

62723 $F503
Toggles state of serial bus CLK line.
Reverses the value of bit 4 of CIA #2 port A. Since the line for
this bit is connected to the serial bus CLK output line, this will
reverse the state of the line. This is the handshake for burst
mode loads from disk.
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62735 $F50F
Displays SEARCHING FOR message.
Checks the Kernal message flag (157/$9D), exiting immedi-
ately if messages are not allowed. The message SEARCHING
is displayed; then the current filename length (183/$B7) is
tested. If it's nonzero, the message FOR and the characters of
the filename are displayed following SEARCHING.

6 2 7 7 1 $ F 5 3 3
Displays LOADING or VERIFYING message.
Loads the accumulator with the offset for either the LOAD-
ING or VERIFYING message, depending on whether the value
in the operation flag (147/S93) is zero or nonzero. The routine
at 63262/$F7lE is then called to display the message (if
Kernal messages are allowed).

62782 $F53E SAVE
Saves a block of memory to tape or disk.
(This routine has a jump table entry at 65496/$FFD8.)
Stores the address value from the X and Y registers into the
pointer to the ending address for the save (174-175/$AE-$AF),
and stores the address from the two-byte zero-page pointer
specified in the accumulator into the pointer to the starting ad-
dress for the save (193-194/$C1-$C2). The routine then takes
an indirect jump through the ISAVE vector at 818/$0332.
That vector normally points back to the location immediately
following the indirect jump, but you can modify the actions of
the SAVE routine by redirecting the vector to your own rou-
tine. See the ISAVE entry in Chapter 2 for details.

The device number (186/$BA) is then tested. If it's 1
(tape), a branch is taken to the routine at 62920/$F5C8. If it's
4 or greater (serial device), a branch is taken to the routine at
62817/$F561. Otherwise, the routine exits with the Kernal
illegal-device-number error (the status register carry bit will be
set and the accumulator will hold the error code, 9/$09).

62817 SF561
Saves a block of memory to a serial device.
Begins by checking the filename length (183/$B7). If the
length value is zero, the routine exits with the Kernal missing-
filename error (the status register carry bit will be set and the
accumulator will contain the error code, 8/$08). The second-
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ary address is set to 97/$61, the value to open a program file
for writing; then a file is opened using the current filename
(pointed to by 187-188/$BB-$BC). A LISTEN command is
sent to the current device (186/$BA) along with the secondary
address. The low and high bytes of the starting address for the
save are then written as the first two bytes of the file.

The subroutine at 63436/$F7CC is used to retrieve a byte
from the specified memory area, and the subroutine at 58629/
$E503 is used to write the byte to the file (using fast serial
mode if it is available). After each byte, the routine checks
whether the RUN/STOP key has been pressed. If it has been
pressed, a branch is taken to the routine at 62901/$F5B5 to
abort the SAVE. Otherwise, the address pointer is incremented,
and the process repeats until all bytes have been written.
(Before this routine is called, the starting address must be
loaded into 193-194/$C1-$C2 and the ending address plus 1
into 174-175/$AE-$AF.) When all bytes have been written,
an UNLISTEN command is sent to the serial device; then the
routine falls through into the following one to close the file.

When fast serial communications are available, files are
loaded by sectors (254-byte chunks of data) using a special
feature of the 1571 drive known as burst mode. However, fast
mode SAVEs are still done byte by byte. This is the reason
more time is required to save a file using fast serial mode than
to load a file of the same length,

62878 $F59E
Closes a file on a serial device.
Exits immediately if the secondary address is greater than
127/$7F (if bit 7 of 185/$B9 is %1). Otherwise, a LISTEN
command is sent to the current serial device; then the upper
four bits of the secondary address are set to %1110/$E to
form the CLOSE command for the logical file. This command
is then sent to the current serial device, followed by an
UNLISTEN command. The routine then exits with the status
register carry bit clear. The serial status flag (144/S90) will re-
flect the success of the operation.

62901 $F5B5
Aborts LOAD or SAVE to serial device.
Calls the subroutine at 62878/SF59E to close the file, then
loads the accumulator with zero and exits with the status reg-
ister Z and carry bits set.
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62908 $F5BC
Displays SAVING message and filename.
Checks the Kernal message flag (157/$9D) and exits immedi-
ately if Kernal messages are not allowed. Otherwise, the mes-
sage SAVING is printed. If a filename is being used (indicated
by a nonzero length value in 183/$B7), the name is also
printed following SAVING.

6 2 9 2 0 $F5C8
Saves a block of memory to tape.
Begins by checking the tape buffer address, exiting immedi-
ately if it is less than $0200. If no buttons are currently
pressed on the tape drive, the subroutine to print PRESS
PLAY &. RECORD ON TAPE (if Kernal messages are allowed)
and wait for a button press is called. If the RUN/STOP key
has been pressed while waiting for the tape button (or at any
other time during this routine), the routine exits with the sta-
tus register carry bit set and with the accumulator holding
0/$00. Otherwise, if Kernal messages are allowed, the SAV-
ING message is displayed, followed by the filename (if one is
used). Next, a header type identifier value is selected for the
file, according to bit 0 of the secondary address (185/$B9). If
that bit is %0, a type identifier of 1 (relocatable file) is used. If
the bit is % 1 , the type identifier byte will be 3 (nonrelocatable
file). The subroutine at 59673/$E919 is used to write the
header for the file. The subroutine at 59928/$EA18 is used to
write the data to the file. (Before this routine is called, the
starting address must be loaded into 193-194/$C1-$C2 and
the ending address plus 1 into 174-175/$AE-$AF.) Finally, bit
1 of the secondary address is tested. If that bit is %0, the rou-
tine exits with carry clear. However, if the bit is % 1 , an end-
of-file header (type identifier of 5) is written to tape following
the program.

62968 $F5F8 UDTIM
Updates jiffy timers and checks RUN/STOP key column.
(This routine has a jump table entry at 65514/$FFEA.)

Increments the software jiffy clock at 160-162/$A0-$A2 (part
of the normal IRQ sequence). If the timer has reached a count
of 5184OO1/$4F1AO1 (corresponding to a time of 24:00:00), all
three timer bytes are reset to zero. Next, the jiffy timer at
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2589-2591/$0AlD-$0AlF is decremented. The 128 uses this
timer only when executing the BASIC SLEEP statement; other-
wise, it is available for your own timing applications.

If the PAL/NTSC flag (2563/S0A03) indicates that PAL
(European) video is in use, the jiffy clock compensation
counter at 2614/$0A36 is decremented. Each time this counter
rolls over from 0 to 255/$FF, it is reset to 5 and the routine is
repeated. Thus, in a PAL system the timers are updated 6
times for every 5 IRQ interrupts, or 60 times for every 50 in-
terrupts. As a result, the clock is incremented 60 times per sec-
ond regardless of whether the system interrupts occur at the
NTSC rate (60 times per second) or the PAL rate (50 times per
second). The routine then falls through into the following one.

63037 $F63D
Scans RUN/STOP key column.
Reads the CIA port connecting the rows of the keyboard ma-
trix. The keyboard scan routine [$C55D], normally performed
earlier in the IRQ sequence, leaves the CIA port connected to
the columns of the keyboard matrix set to scan column 7, the
column containing the RUN/STOP key (see Figure 7-1 in
Chapter 7). If the RUN/STOP key is pressed, the matrix rows
for columns 1 and 6 (containing the SHIFT keys) are tested. If
any key in those columns is pressed, the routine exits (so
SHIFT-RUN/STOP will not be registered as a RUN/STOP
keypress). Otherwise, the row register value is stored in
145/$91.

6 3 0 7 0 $F65E RDTIM
Reads the software jiffy clock.
{This routine has a jump table entry at 65502/$FFDE.)
Returns the values in the software jiffy clock locations
(160-162/$A0-$A2), which hold the count of jiffies (1/60 sec-
ond intervals) since the system has been turned on or since
the clock time has last been reset. Upon return, the accumu-
lator will hold the low byte of the clock value (from 162/$A2),
the X register will hold the middle byte (from 161/$A1), and
the Y register will hold the high byte (from 160/$A0).
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63077 $F665 SETTIM
Sets the software jiffy clock.
{This routine has a jump table entry at 65499/$FFDB.)
Stores the value in the accumulator upon entry in 162/$A2,
the low byte of the clock. The X register contents will be
placed in 161/$A1, the middle byte of the clock value, and
the Y register contents will be placed in 160/$A0, the high
byte of the clock value.

6 3 0 8 6 $F66E STOP
Tests for a RUN/STOP keypress.
(This routine is the normal target of the jump table entry at
655O5/$FFE1 via the 1ST0P vector at 808/$0328.)
Checks the STOP key flag (145/191), set during the UDTIM
routine [$F5F8] in the IRQ sequence. If the flag contains the
value 127/$7F, indicating that RUN/STOP has been pressed,
the Kernal CLRCH routine [$FFCC] is called to restore default
I/O, and the count of characters in the keyboard buffer (208/
$D0) is reset to zero. Upon exit, the status register Z bit will be
set if the RUN/STOP key has been pressed or clear otherwise.

63100 $F67C
Handles Kernal I/O errors.
Loads the accumulator with an error number depending on
the entry point into the routine, then uses BIT opcodes to fall
through to handle the error.
Entry point Error number Meaning
63100/$F67C 1 Too many files
63103/SF67F 2 File open
63106/$F682 3 File not open
63109/$F685 4 File not found
63112/$F688 5 Device not present
63115/$F68B 6 Not input file
63118/$F68E 7 Not output file
63121/$F691 8 Missing filename
63124/$F694 9 Illegal device number
63127/$F697 16 Out of memory

Next the CLRCH routine [$FFCC] is used to reset default
I/O (output to screen). If Kernal error messages are allowed,
I/O ERROR # is printed, followed by the character code for the
digit corresponding to the error number. Upon exit, the error
number will be in the accumulator and the carry bit will be set.
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Kernal error messages are normally disabled when BASIC
is active. (BASIC substitutes its own, more verbose error mes-
sages.) However, Kernal error messages are enabled while the
machine language monitor is active,

63152 $F6B0
Table of Kernal control messages.
The messages in this table are displayed by the following rou-
tine. The end of each message is marked by a character with
its high bit set to % 1 .
Offset Message

0/$00 I/O ERROR #
12/SOC SEARCHING
23/$17 FOR
27/$lB PRESS PLAY ON TAPE
46/$2E PRESS RECORD & PLAY ON TAPE
73/$49 LOADING
81/$51 SAVING
89/$59 VERIFYING
99/$63 FOUND

106/$6A OK

63262 $F71E
Handles Kernal control messages.
Begins by checking the Kernal message flag (157/$9D), exiting
immediately if bit 7 of the flag is %0 (indicating that Kernal
control messages are disabled). If control messages are al-
lowed, the value in the Y register is used as an offset to the
first character of the message in the table at 63152/$F6B0.
Characters from the message string are printed until a charac-
ter with its high bit set is encountered. Upon exit, the carry bit
will be clear,

6 3 2 8 1 SF731 SETNAM
Sets the length and address of filename for I/O operations.
(This routine has a jump table entry at 65469/$FFBD.)
Stores the value in the accumulator upon entry as the length
of the current filename (183/$B7), and the value in the X and
Y registers as the starting address of the character codes for
the current filename (187-188/$BB-$BC). The low byte of the
address should be in the X register and the high byte in Y.
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63288 $F738 SETLFS
Sets logical file number, device number, and secondary address
for I/O operations.
(This routine has a jump table entry at 65466/$FFBA.)
Stores the value in the accumulator upon entry as the current
logical file number (184/$B8), the value in the X register as
the current device number (186/$BA), and the value in the Y
register as the current secondary address (185/$B9).

63295 $F73F SETBNK
Sets data and filename banks for I/O operations.
(This routine has a jump table entry at 65384/$FF68.)
Stores the value in the accumulator upon entry as the bank
number for data being saved or loaded (198/$C6), and the
value in the X register as the bank where the current filename
can be found (199/SC7).

63300 SF744 READSS
Reads the tape/serial or RS-232 status byte.
(This routine has a jump table entry at 65463/$FFB7.)
Checks the current device number (186/$BA); if it's 2 (RS-
232), the value in the RS-232 status flag (2580/$0A14) is re-
turned in the accumulator and the status flag is reset to zero.
For other device numbers, the value in the tape/serial status
flag (144/$90) is returned in the accumulator.

63324 $F75C SETMSG
Sets the Kernal message control flag.
(This routine has a jump table entry at 65424/SFF90.)
Stores the value in the accumulator upon entry as the Kernal
message flag (157/S9D).

63327 $F75F SETTMO
Sets the IEEE timeout flag.
(This routine has a jump table entry at 65442/$FFA2,)
Stores the value in the accumulator upon entry as the IEEE
timeout (2574/$0A0E). This location is unused by the 128.
The routine is a holdover from the original PET/CBM Kernal;
the IEEE-488 parallel interface is not implemented in the 128.

SF786 63366

63331 SF763 MEMTOP
Sets or reads the system's top-of-memory pointer.
(This routine has a jump table entry at 65433/$FF99.)
Begins by checking the status register carry bit. If carry is
clear, the values in the X and Y registers are loaded into the
svstem top-of-memory pointer (2567-2568/$OA07-$OA08),
the low byte from X and the high byte from Y. If carry is set,
the current top-of-memory pointer value is returned in the X
and Y registers, the low byte in X and the high byte in Y.

63346 $F772 MEMBOT
Sets or reads the system's bottom-of-memory pointer.
(This routine has a jump table entry at 65436/$FF9C.)
Begins by checking the status register carry bit. If carry is
clear, the values in the X and Y registers are loaded into the
system bottom-of-memory pointer (2565-2566/$0A05-$0A06),
the low byte from X and the high byte from Y. If carry is set,
the current bottom-of-memory pointer value is returned in the
X and Y registers, the low byte in X and the high byte in Y.

63361 $F781 IOBASE
Returns base address of I/O block.
(This routine has a jump table entry at 65523/$FFF3.)
Returns the value 53248/$D000, the lowest address in the
system's I/O block, in the X and Y registers, 0/$00 in X and
208/$D0 in Y.

63366 $F786 LKUPSA
Checks whether a secondary address value is used.
(This routine has a jump table entry at 65372/$FF5C.)
Searches the secondary address table (886-895/$0376-$037F)
for an open file with the secondary address value specified in
the Y register upon entry. If no match is found, the status reg-
ister carry bit will be set upon exit. If an open file with the
same secondary address is found, the corresponding logical
file number will be returned in the accumulator, the device
number in the X register and the secondary address in the Y
register. In this case the carry bit will be clear upon exit.
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63389 $F79D LKUPLA
Checks whether a logical file number value is used.
(This routine has a jump table entry at 65369/$FF59.)
Searches the logical file number table (866-875/$0362-$036B)
for an open file with the logical file number value specified in
the accumulator upon entry. If no match is found, the status
register carry bit will be set upon exit. If an open file with the
same file number is found, the logical file number will be re-
turned in the accumulator, with the corresponding device num-
ber returned in the X register and the secondary address in the
Y register. In this case the carry bit will be clear upon exit.

63397 $F7A5 DMA-CALL
Performs a DMA operation.
(This routine has a jump table entry at 65360/$FF50.)
Translates the bank number for the current operation, in the X
register upon entry, into the equivalent MMU configuration
register setting value; then forces bit 0 of the setting value to
%0 to insure that the I/O block will be visible at 53248-57343/
$D000-$DFFF. With that value in the accumulator, and with
the DMA chip command register value in the Y register, the
routine then jumps to the DMA request routine in common
RAM [$03F0].

This routine is provided for the purpose of passing com-
mands to the REC (RAM Expansion Controller) chip in the
Commodore 1700 and 1750 RAM Expansion Modules. The
chip appears in 128 memory at 57088-57098/$DF00-$DF0A
in the I/O block when one of the modules is plugged in. Ad-
ditional setup steps may be required, depending on the com-
mand. See the REC chip description in Chapter 8 for more
information.

63406 $F7AE
Retrieves a character from the current filename.
Loads a character from the current filename address (pointed
to by 187-188/$BB-$BC) in the bank specified in 199/$C7.
The Y register value is used as an offset into the filename. The
character will be returned in the accumulator; the X register
value upon entry will be preserved during this routine.

63440

\

63420 $F7BC
Writes a byte value to memory.
Stores the value in the accumulator upon entry into the loca-
tion specified by the address in 172-173/$AC-$AD (plus the
offset specified in the Y register) in the bank specified in
198/SC6.

63423 $F7BF
Writes a byte value to memory.
Stores the value in the accumulator upon entry into the loca-
tion specified by the address in 174-175/$AE-$AF (plus the
offset specified in the Y register) in the bank specified in
198/SC6.

6 3 4 3 3 $F7C9
Reads a byte value from memory.
Returns with the accumulator holding the value from the loca-
tion specified by the address in 174-175/$AE-$AF (plus the
offset specified in the Y register) in the bank specified in
198/$C6.

63436 $F7CC
Reads a byte value from memory.
Returns with the accumulator holding the value from the loca-
tion specified by the address in 172-173/$AC-$AD (plus the
offset specified in the Y register) in the bank specified in
198/$C6.

63440 $F7D0 INDFET
Retrieves a character from any bank.
(This routine has a jump table entry at 65396/$FF74.)
Stores the zero-page pointer address, in the accumulator upon
entry, in the INDFET address pointer byte (682/$02AA); then
converts the bank number for the target address, in the X reg-
ister upon entry, into the corresponding MMU configuration
register setting and calls the RAM-resident portion of the
INDFET routine [$02A2]. Upon return, the accumulator will
hold the value from the location at the address specified in the
zero-page pointer (plus the offset specified in the Y register) in
the specified bank.
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63450 $F7DA INDSTA
Stores the accumulator contents in any bank.
{This routine has a jump table entry at 65399/$FF77.)
Converts the bank number for the target address, in the X reg-
ister upon entry, into the corresponding MMU configuration
register setting; then calls the RAM-resident portion of the
INDSTA routine [$02AF]. This will place the value in the ac-
cumulator into the specified bank at the address specified in a
zero-page pointer, plus the offset in the Y register. The ad-
dress of the zero-page pointer must be stored in location
697/$02B9 before this routine is called.

63459 8F7E3 INDCMP
Compares the accumulator contents with a value from any bank.
{This routine has a jump table entry at 65402/$FF7A.)
Converts the bank number for the target address, in the X reg-
ister upon entry, into the corresponding MMU configuration
register setting; then calls the RAM-resident portion of the
INDCMP routine [$02BE], This will compare the value in the
accumulator with the value at the address specified in a zero-
page pointer, plus the offset in the Y register, in the specified
bank. The address of the zero-page pointer must be stored in
location 712/$02C8 before this routine is called. Upon return,
the status register N, Z, and C (carry) bits will reflect the result
of the comparison.

63468 8F7EC GETCFG
Translates a bank number into an MMU register setting.
(This routine has a jump table entry at 65387/$FF6B.)
Returns with the accumulator holding the MMU register set-
ting value corresponding to the bank number in the X register
upon entry. See Chapter 8 for more information on the MMU.

63472 6F7F0
Table of MMU register settings for standard banks.
Each of the 16 values in this table corresponds to the MMU
configuration register value that sets up one of the 16 standard
banks.

SF867

Bank
o/$oo
l/$01
2/$02
3/$03
4/$04
5/$05
6/$06
7/$07
8/$08
9/$09

10/SOA
11/$OB
12/$0C
13/$0D
14/$0E
15/$0F

63591

r

MMU Configuration Setting
63/$3F (%00111111)

127/$7F (%0111111I)
191/$BF (%10111111)
255/$FF (%111I1111)

22/$16 (%00010110)
86/$56 (%01010110)

150/$96 <%10010110)
214/$D6 (%11010ll0)

42/$2A (%00101010)
106/$6A (%0I101010)
170/$AA (%10101010)
234/$EA (%11101010)

6/$06 (%00000110)
13/$0D (%00001110)

l/$01 (%00000001)
0/$00 {%00000000}
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63488 8F800
Code for Kernal RAM-based subroutines.
This area of ROM contains the code for the RAM-resident por-
tions of the INDFET, INDSTA, INDCMP, JSRFAR, JMPFAR,
and DMA_CALL routines. The routines are copied to the ap-
propriate areas of RAM by the routine at 57549/SEOCD, part
of the reset sequence.

63591 $F867 PHOENIX
Initializes function ROMs and attempts to boot a disk in the
default drive.
(This routine has a jump table entry at 65366/$FF56.)
Initializes any internal or external 128 function ROMs logged
during the reset sequence (by the routine at 57963/$E26B). If
a ROM is detected at one of the four possible address areas for
function ROMs, the corresponding byte in the ROM ID table
at 2753-2756/$0ACl-$0AC4 will contain a nonzero value.
For logged ROMs, the JSRFAR routine is used to call the cold
start vector of the ROM ($8000 or $C0O0 in bank 4, or $8000
or $C000 in bank 8). Depending on the ROMs, there may be
no return from the JSR. However, if the routine does return
from all the ROM initializations {or if no ROMs are present),
the X register is loaded with the value 8, and the accumulator
with 48/$30, the character code for 0. The routine then falls
through into the following one to attempt to boot a disk in
drive 0 of device 8.
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63632 $F890 BOOT_CALL
Attempts to boot a disk.
(This routine has a jump table entry at 65363/SFF53.)
Stores the value in the accumulator upon entry as the charac-
ter code for the current drive number and the value in the X
register as the current device number; then closes any open
files on the specified device. The sector number ($C2/194) is
initialized to 0 and the track number is initialized to 1 (booting
begins at sector 0 of track 1). The disk block read command is
copied from the table at 64008/$FA08 into the disk command
buffer at 256-268/$0100-$010C. Logical file 0 (the system
file) is opened as a command channel and logical file 13 as a
data channel. The first boot sector is read from the specified
drive into the buffer at 2816-3071/$0B00-$0BFF. If the first
three bytes in the sector (bytes 0-2) are the character codes for
the letters CBM, this is a valid first boot sector. Otherwise, the
drive will be reset and the routine will exit.

For a valid first boot sector, the message BOOTING is
printed; then bytes 3-4 from the sector (the load address for
data from any following boot sectors) are stored in locations
172-173/$AC-$AD, byte 5 from the sector (the bank number
into which data is to be loaded) is stored in 174/$AE, and
byte 6 (the number of additional boot sectors to load) is stored
in 175/$AF. Subsequent bytes from the sector are printed to
the screen as character codes until a byte with the value zero
is encountered or until the end of the sector is reached. Fol-
lowing that message, three periods (...) will be printed.

The bank number for boot data is transferred into the
working bank number location (198/$C6). If any more boot
sectors are to be loaded (if the value in 175/$AF is nonzero),
data from the sectors is loaded into the bank specified in
198/$C6, starting at the address in 172-173/$AC-$AD. Addi-
tional sectors are loaded sequentially starting with sector 1 of
track 1. The high byte of the load address will not be allowed
to roll over from 255/$FF to 0/$00, regardless of the number
of boot sectors specified, (That is, the boot sectors should not
attempt to load data to addresses above 65279/$FEFF.)

After all additional boot sectors are loaded (or if no addi-
tional sectors are to be loaded), the drive is reset. The routine
then searches the buffer from the zero byte marking the end
of the message until another byte containing a zero is found.
The characters, if any, between the zero bytes are taken to be
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the name of a file to be loaded, and the drive number and a
colon are placed immediately before the name in the buffer. If
a filename is found, the routine attempts to load a file with
that name into bank 0. Because the Kernal LOAD routine is
used, this file must be PRG (program) type. This file is always
loaded into bank 0, regardless of the bank number specified
for boot sectors.

After the file is loaded (or if no filename is specified), the
JSRFAR address pointer (3-4/$03-$04) holds the address of
the buffer location following the end-of-filename zero byte,
and the JSRFAR bank (2/$02) is set for bank 15. The JSRFAR
routine is then used to execute the machine language subrou-
tine following the filename in the boot sector buffer. (Some
machine language code must be present, even if it's only an
RTS opcode.) Finally, the routine exits with the status register
carry bit clear.

63883 SF98B
Resets the disk drive.
Preserves the status register and accumulator values on the
stack for later retrieval, then restores the data channel for
booting (logical file 13). The reset command (UI) is sent to the
disk drive; then I/O channels are reset and the command
channel (logical file 0) is closed as well. Finally, the status reg-
ister and accumulator are restored to their original values
before exiting.

6 3 9 2 3 $F9B3
Loads additional boot sectors.
Begins by incrementing the sector number (194/SC2). If the
count exceeds 20 (the maximum sector number for tracks
1-17), the sector number is reset to zero and the track number
(193/$C1) is incremented. (Since a maximum of 255 addi-
tional sectors can be loaded, all boot sectors will be located on
tracks 1-13.) The equivalent ASCII digits for the track and sec-
tor values are then added to the block read command in the
buffer at 256-268/$0100-$010C, and the command is sent to
the drive via the command channel (logical file 0). The 256
data bytes from the sector are then read via the data channel
(logical file 13) and are stored starting at the address in
172-173/$AC-$AD in the bank specified in 198/SC6.
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63995 8F9FB

63995 $F9FB
Converts a byte value into two ASCII digits.
Returns two character codes representing digits for the decimal
equivalent of the value in the accumulator upon entry. The
left digit will be in the X register upon return, and the right
digit will be in the accumulator. This routine works only for
input values in the range 0-99/$00-$63.

6 4 0 0 8 $FA08
Table of disk commands for booting.
This table holds the text for the disk block read command for
booting (Ul:13 0 01 00), the initialize command (I), and the
channel number command (#).

64023 $FA17 PRIMM
Handles PRIMM (print immediate) function.
(This routine has a jump table entry at 65405/$FF7D.)
Begins by stashing the accumulator and X and Y register val-
ues on the stack for later retrieval, then increments the return
address on the stack and loads it into a working pointer at
206-207/$CE-$CF. The pointer thus contains the address of
the location immediately following the JSR which called this
routine. The byte at that location is retrieved and, unless its
value is zero, is printed as a character. The routine then loops
back to increment the address on the stack and retrieve an-
other character, repeating until a zero byte is found. At that
point, the original accumulator and X and Y register values are
restored and the routine exits. Because the return address on
the stack has been incremented, the routine will return to the
address following the zero byte rather than to the address fol-
lowing the calling JSR.

It's very important always to call this routine (or its jump
table entry) with JSR, not JMP, Only JSR puts a return address
on the stack in the expected position; entering with JMP will
cause the stack to be garbled, which will almost certainly re-
sult in a crash.

64064 $FA40 NMI
Handles NMI interrupts.
{This routine is the default target of the INMI indirect vector at
792/$0318.)

SFA65 64101

Begins by clearing the status register D (decimal) bit to insure
that the system is not in decimal mode. Next, all CIA #2 inter-
rupt sources are disabled, and the interrupt control register for
that chip is checked to determine whether any CIA #2 source
triggered the NMI interrupt. If so, the routine skips ahead to
call the RS-232 handling routine. (CIA #2 interrupts are used
to drive RS-232 output.) If the NMI was not triggered by a
CIA #2 source, the routine checks whether the RUN/STOP
key is pressed. If so, it's assumed that the NMI was triggered
by pressing the RESTORE key, so the RUN/STOP-RESTORE
sequence is performed. Otherwise, the RS-232 NMI handling
routine [$E805] is called (if the NMI was not triggered by a
CIA #2 source, this step will simply reenable any active RS-
232 CIA #2 interrupt sources), and the routine exits via the
common interrupt return [SFF33],

The RUN/STOP-RESTORE sequence consists of the fol-
lowing steps:

• A call to the RESTORE routine [$E056] to restore default
Kernal indirect vectors.

• A call to the IOINIT routine [$E109] to reset all I/O chip reg-
isters to their default values (character definitions for 80-
column video are normally not reinitialized).

• A call to the CINT routine [$C000] to restore screen editor
variables to their default values (keyboard table pointers and
programmable key definitions will normally be preserved).

• A jump back to BASIC through the restart vector
(2560/$0A00), which normally points to the BASIC warm
start entry vector, 16387/$4003.

You can modify NMI handling by redirecting the INMI
vector (792-793/$0318-$0319) to a routine of your own. See
the INMI entry and Appendix A for details.

64101 $FA65 IRQ
Handles IRQ interrupts.
(This routine is the default target of the IIRQ indirect vector at
788/$0314.)
Begins by clearing the status register D (decimal) bit to insure
that the system is not in decimal mode. The screen editor IRQ
routine [SC024] is called to handle screen mode settings, scan
the keyboard, and blink the cursor. If the carry is clear upon
return from that routine, indicating that the interrupt was trig-
gered by a midscreen raster interrupt, the routine exits without
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64128 SFA80

performing any further actions. Otherwise, the UDTIM routine
[$F5F8] is called to update the jiffy timers; then the tape motor
interlock handling routine [$EED0] is called. The interrupt
control register for CIA #1 is read to clear any CIA #1 inter-
rupts that might have occurred. Next, the initialization status
flag (2564/$0A04) is checked. If the flag has bit 0 set to % 1 ,
indicating that BASIC has been initialized, the BASIC IRQ
routine [$4006] is called to handle sprite movement and sound
statements. Finally, the routine exits via the common interrupt
return [$FF33].

You can modify IRQ handling by redirecting the IIRQ
vector (788-789/$0314-$0315) to a routine of your own. See
the IIRQ entry and Appendix A for details.

6 4 1 2 8 $FA80
Standard keyboard decoding tables.
The following five 89-byte tables are used to translate the
keyscan code generated by the SCNKEY routine [$C55D] into
the corresponding character code. The appropriate table is se-
lected according to the value in the shift key flag (211/$D3),
and its address is loaded into the keyboard table pointer
(204-205/$CC-$CD). Then the keyscan code is used as an
offset into the table to retrieve the appropriate character code.
The table starting addresses are as follows:
Address Table
64128/$FA80 Standard (unshifted) and ALT
64217/$FAD9 SHIFT
64306/$FB32 Commodore
64395/$FB8B CONTROL
64484/$FBE4 CAPS LOCK

Tables 9-1 through 9-5 show the character codes for each ta-
ble. See 830-841/$033E-$0349 for information on how you
can customize the tables. Values in the standard table (the one
addressed in 830-831/$033E-$033F, normally 64128/$FA80),
rather than the physical keyboard layout, determine which
keys are treated as shift keys. Any key having an entry in that
table with one of the following values is treated as the cor-
responding shift key:

l/$01 SHffT
2/$02 Commodore
4/$04 CONTROL
8/$08 ALT
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This also means that these character codes cannot be re-
turned by a key in the standard table. The special functions of
the RUN/STOP key (halting a BASIC program, stopping a
listing, aborting a save or load, working with RESTORE, and
so forth) cannot be transferred to another key. That key has a
character code of 3/$03 in the standard table, but for its spe-
cial functions, the keyboard column containing RUN/STOP is
scanned separately (see 63037/$F63D), and its character code
is irrelevant.

Table 9-5 (the CAPS LOCK table) shows one of the more
amusing bugs in the first version of 128 Kernal ROM. Note
the entry for the Q key. That key is separated from the other
alphabetic keys, so the programmer at Commodore who pre-
pared this table overlooked it and neglected to change the en-
try when the other letter values were changed to their
SHIFTed equivalents. The Q entry should be 2O9/$D1, which
explains why the Q key is unaffected by CAPS LOCK.

64573-6S279 $FC3D-$FEFF Unused
All bytes in this unused area of Kernal ROM hold the value
255/$FF.

65280-65284 $FF00-$FF04 MMU Registers
The MMU configuration and load configuration registers ap-
pear here in all banks (refer to Chapter 8 for details).

65285 $FF05 JNMI
Jump to NMI handler routine.
(This routine is the target of the processor NMI vector at
65530/$FFFA.)
Pushes the accumulator and X and Y register values onto the
stack, then places the current MMU configuration register
value onto the stack as well. (Thus, 128 interrupts place one
more byte on the stack than do Commodore 64 interrupts.)
The routine then configures the system for bank 15 and jumps
through the INMI indirect vector at 792/$0318 to a routine to
handle the NMI. The vector normally points to 64064/$FA40,
but you can redirect it to a routine of your own for special
handling. See the INMI entry for details. If normal processing
is to continue following the interrupt handling, the handling
routine should end with a jump to the routine at 65331/$FF33
to restore the processor registers and MMU configuration to
their original values.
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Table 9-1. Standard (Unshifted) and ALT Decoding Table
64128-64216/$FA80-$FAD8
Table
index
0/$00
l/$01
2/S02
3/$03
4/$04
5/$05
6/506
7/$07
8/$08
9/509

10/$0A
11/SOB
12/50C
13/$0D
14/$0E
15/$0F
16/$10
17/S11
18/$12
19/$13
20/$14
21/$15
22/$16
23/$:7
24/$18
25/$19
26/51A
27/$IB
28/$lC
29/$ ID
30/S1E
31/S1F
32/$20
33/$21
34/S22
35/523
36/$24
37/$25
38/$26
39/527
40/528
41/$29
42/$2A
43/$2B
44/$2C

Key

INST/DEL
RETURN
CRSR w
F7
Fl
F3
F5
CRSR I
3
W
A
4

Z

sE
left SHIFT
5
R
D
6
C
F
T
X
7
Y
G
S

B
l-l
U
V
9
I

j0
M

K
O
N
+
P
L

Character
code
20/$14
13/SOD
29/$lD

136/$88
133/$85
134/586
135/$87
17/$11
51/$33
87/$57
65/541
52/S34
90/$5A
83/$53
69/$45
l/$01

53/535
82/$52
68/$44
54/S36
67/$43
70/$46
84/$54
88/$58
55/537
89/559
71/$47
56/$38
66/$42
72/548
85/$55
86/$56
57/S39
73/549
74/$4A
48/$30
77/$4D
75/54B
79/S4F
78/S4E
43/52B
80/$50
76/$4C
45/$2D
46/52E

Table
index
45/$2D
46/$2E
47/$2F
48/530
49/$31
50/$32
51/$33
52/$34
53/$35
54/$36
55/$37
56/$38
57/$39
58/S3A
59/$3B
60/$3C
61/$3D
62/$3E
63/$3F
64/$40
65/$41
66/$42
67/$43
68/544
69/$45
70/$46
71/$47
72/S48
73/$49
74/$4A
75/54B
76/$4C
77/$4D
78/$4E
79/$4F
80/$50
81/$51
82/$52
83/$53
84/$54
85/555
86/$56
87/$57
88/$58

Key

@

E
*

CLR/HOME
right SHIFT
—

/
1
<
CONTROL
2
space bar
Commodore
Q
RUN/STOP
HELP
8 (keypad)
5(keypad)
TAB
2 (keypad)
4 (keypad)
7 (keypad)
1 (keypad)
ESC
+ (keypad)
— (keypad)
LINE FEED
ENTER
6(keypad)
9 (keypad)
3 (keypad)
ALT
0(keypad)
. (keypad)
t (cursor)
1 (cursor)
*- (cursor)
- (cursor)
NO SCROLL
no key
pressed

Character
code
58/S3A
64/$40
44/$2C
92/$5C
42/52A
59/S3B
19/$13
1/501

61/$3D
94/$5E
47/S2F
49/S31
95/$5F
4/$04

50/$32
32/520
2/S02

81/$51
3/$03

132/$84
56/S38
53/$35
9/$09

50/S32
52/$34
55/$37
49/$31
27/S1B
43/S2B
45/$2D
10/$0A
13/$0D
54/S36
57/539
51/533
8/$08

48/$30
46/S2E
145/$91
17/$11

157/S9D
29/S1D

255/SFF

255/SFF
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Table 9-2. SHIFT Decoding Table
64217-64305/$FAD9-$FB31

Table
index
0/S00
l/$01
2/$02

3/$03
4/S04
5/$05
6/S06
7/$07
8/S08
9/$09
10/SOA
ll/$0B
12/$0C
13/$0D
14/$0E
15/$0F
16/S10
17/111
18/$12
19/$13
20/$14
21/$15
22/$16
23/$17
24/$18
Z5/S19
26/$1A
27/$lB
28/$1C
29/$ ID
30/$1E
31/$1F
32/$20
33/$21
34/$22
35/123
36/$2*
37/$25
38/$26
39/$27
40/$28
41/$29
42/$2A
43/$2B
44/$2C

Key

INST/DEL
RETURN
CRSR ~
F7
Fl
F3
F5
CRSR 1
3
W
A
4
Z

s
E
left SHIFT
5
R
D
6
C
F
T
X
7
Y
G
8
B
H
U
V
9
[

J
0
M

K
0
N
+
P
L
-

Character
code
148/S94
141/$8D
157/S9D
140/$8C
137/$89
138/$8A
139/$8B
145/S91
35/$23

215/SD7
193/$C1
36/$24

218/SDA
211/SD3
197/SC5

l/$01
37/$25

210/SD2
196/SC4
38/$26
195/$C3
198/SC6
212/SD4
216/SD8
39/$Z7

217/$D9
199/$C7
40/$28
194/SC2
200/$C8
213/$D5
214/$D6
41/$29

201/$C9
202/$CA
48/530

205/$CD
203/5CB
207/5CF
206/5CE
219/$DB
208/5D0
204/$CC
221/$DD
62/$3E

Table
index
45/$2D
46/$2E
47/$2F
48/$30
49/$31
50/$32
51/$33
52/534
53/535
54/$36
55/$37
56/$38
57/539
58/53A
59/S3B
60/$3C
61/$3D
62/$3E
63/53F
64/540
65/541
66/$42
67/543
68/544
69/545
70/546
71/$47
72/548
73/549
74/54A
75/54B
76/$4C
77/$4D
78/$4E
79/$4F
80/$50
81/$51
82/$52
83/$53
84/$54
85/$55
86/$56
87/$57
88/$58

Key

@

£
*

CLR/HOME
right SHIFT

/
1
4
CONTROL
2
space bar
Commodore
Q
RUN/STOP
HELP
8(keypad)
5 (keypad)
TAB
2 (keypad)
4 (keypad)
7(keypad)
1 (keypad)
ESC
+ (keypad)
- (keypad)
LINE FEED
ENTER
6(keypad)
9(keypad)
3(keypad)
ALT
0(keypad)
. (keypad)
T (cursor)
1 (cursor)
- (cursor)
- (cursor)
NO SCROLL
no key
pressed

Character
code
91/55B
186/5BA
60/53C
169/$A9
192/$C0
93/$5D
147/$93

1/501
61/53D

222/$DE
63/$3F
33/$21
95/$5F
4/$04

34/$22
160/SAO
2/$02

209/5D1
131/483
132/$84
56/$38
53/S35
24/$18
50/$32
52/$34
55/$37
49/$31
27/$lB
43/$2B
45/$2D
10/$0A

141/58D
54/$36
57/$39
51/533
8/508

48/530
46/52E
145/$91
17/511

157/$9D
29/51D

255/$FF

255/$FF
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Table 9-3. Commodore Decoding Table
64306-64394/$FB32-$FB8A
Table
index
0/$00

1/S01
2/502
3/$03
4/$04
5/$05

6/$06
7/$07
8/$08
9/$09
10/50A
11/50B
12/50C
13/SOD
14/$0E
15/$0F

16/$10
17/511

18/$12
19/$13
20/$14
21/515
22/516
23/$17
24/$18
25/$19
26/51A
27/51B
28/51C
29/$ ID
30/$IE
31/$1F
32/$20
33/$21
34/$22
35/$23
36/$24
37/$25
3S/$26
39/$27
40/$28
41/S29
42/$2A
43/$2B
44/S2C

Key

1NST/DEL
RETURN
CRSR —

F7
Fl
F3
F5
CRSR I
3
W
A
4
Z

s
E
left SHIFT

5
R
D
6

C
F
T
X
7
Y
G
8
B
H
U
V
9

I
I
0
M
K
0
N
+
P
L
-

Character
code

148/$94
141/SSD
157/$9D

U0/$8C
137/$89
138/$8A
139/$8B
145/$91
150/596
179/$B3
176/$B0
151/S97
173/$AD
174/$AE
177/5B1

1/S01
152/$98
178/$B2

172/$AC
153/$99
188/$BC
187/$BB
163/$A3
189/5BD
154/$9A
183/5B7

165/SA5
155/59B
191/SBF
180/$B4
184/$B8
190/$BE
41/529
162/$A2
181/$B5
48/$30
167/$A7
161/$A1
185/$B9

170/$AA
166/$A6
175/SAF
182/5B6
220/5DC
62/$3E

Table
index

45/$2D
46/S2E
47/52F
48/$30
49/$31
50/$32
51/$33
52/534
53/$35
54/$36
55/$37
56/$38
57/539
58/$3A
59/$3B
60/$3C
61/S3D
62/53E
63/$3F
64/$40
65/$41
66/542
67/543
68/$44
69/$45
70/S46
71/$47
72/548
73/$49
74/$4A
75/S4B

76/S4C
77/54D
78/$4E
79/$4F
80/S50
81/$51
82/$52
83/$53
84/$54
85/S55
86/$56
87/$57
88/558

Key

@

E

CLR/HOME
right SHIFT
=
*
/
1
4
CONTROL
2
space bar
Commodore
Q
RUN/STOP
HELP
8(keypad)
5 (keypad)
TAB
2 (keypad)
4 (keypad)
7 (keypad)
1 (keypad)
ESC
+ (keypad)
- (keypad)
LINE FEED
ENTER
6 (keypad)
9 (keypad)
3(keypad)
ALT
0(keypad)
.(keypad)
T (cursor)
•I (cursor)
* (cursor)
- (cursor)
NO SCROLL
no key
pressed

Character
code

91/$5B
164/SA4
60/$3C
168/5A8
223/$DF
93/55D
147/S93

l/$01
61/S3D

222/5DE
63/53F

129/$81
95/$5F
4/$04

149/595
160/$A0
2/$02

I71/5AB
3/$03

132/584
56/538
53/$35
24/$18
50/S32
52/534
55/537
49/$31
27/$IB
43/$2B
45/$2D
10/$0A

141/58D
54/J36
57/539

51/533
8/508

48/530
46/$2E

145/591
17/$11

157/$9D
29/$ ID

255/$FF

255/5FF

Table 9-4. CONTROL Decoding Table
64395-64483/$FB8B-$FBE3

Table
index
0/500
l/$01
2/502
3/503

4/$04
5/$05
6/$06
7/S07

9/$09
10/$0A
ll/$0B
12/$0C
13/$0D
14/$0E
15/$0F
16/S10
17/$11
1S/S12
19/$13
20/$14
21/S15
22/$16
23/$17
24/$18
25/$19
26/$1A
27/$lB
28/$lC
29/$ ID
30/$IE
31/51F
32/$20
33/$21
34/$22
35/S23
36/$24
37/525
38/526
39/527
40/$28
41/529
42/52A
43/S2B
44/S2C

Key

INST/DEL
RETURN
CRSR —
F7
Fl
F3
F5
CRSR I
3
W
A
4
Z
S
E
left SHIFT
5
R
D
6
C
F
T
X
7
Y
G
8
B
H
U
V
9
1

r0
M
K
O
N
+
P
L
-

Character
cade

255/5FF
255/$FF
255/SFF
255/$FF
255/$FF
255/$FF
255/SFF
255/$FF
28/51C
23/517
l/$01

159/$9f
26/51A
19/513
5/$05

255/$FF
156/$9C
18/512
4/$04

30/S1E
3/$03
6/$06

20/514
24/518
31/51F
25/519
7/$07

158/$9E
2/S02
8/$08

21/$15
22/516
18/512
9/$09

10/50A
146/$92
13/50D
ll/$0B
15/50F
14/SOE

255/$FF
16/$10
12/SOC

255/5FF
255/5FF

Table
index

45/$2D
46/$2E
47/S2F
48/S30
49/$31

50/$32
51/S33
52/S34
53/$35
54/$36
55/537
56/$38
57/$39
58/$3A
59/S3B
60/$3C
61/$3D
62/$3E
63/53F
64/$40
65/$41
66/$42
67/$43
68/$44
69/$45
70/$46
71/$47
72/$48
73/$49
74/54A
75/$4B
76/$4C
77/$4D
78/$4E
79/$4F

80/550
81/S51
82/$52
83/S53
84/$54
85/S55
86/$56
87/$57
88/$58

Key

b
£

;
CLR/HOME
right SHIFT
=

/
1

4
CONTROL
2
space bar
Commodore

Q
SUN/STOP
HELP
8(keypad)
5 (keypad)
TAB
2(keypad)
4 (keypad)
7(keypad)
1(keypad)
ESC
+ (keypad)
- (keypad)
LINE FEED
ENTER
6(keypad)
9(keypad)
3(keypad)
ALT
0(keypad)
.(keypad)
f (cursor)
i (cursor)
- (cursor)
•• (cursor)
N O SCROLL
no key
pressed

Character
code

27/51B
0/$00

255/$FF
28/$lC

255/$FF
29/$lD

255/$FF
255/$FF
31/51F
30/51E

255/$FF
144/S90
6/$06

255/$FF
5/505

255/$FF
255/$FF
17/$11

255/$FF
132/$84
56/$38
53/535
24/$18
50/532
52/534
55/$37
49/$31
27/51B
43/52B
45/52D
10/50A

141/$8D
54/$36
57/$39
51/533
8/$08

48/530
46/$2E
145/$91
17/$11

157/$9D
29/51D

255/$FF

255/$FF
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Table 9-5. CAPS LOCK Decoding Table
64484-64572/$FBE4-$FC3C
Table
index

0/$00

l/$01

2/E02

3/$03

4/$04

5/$05
6/$06
7/S07
8/$O8
9/$09
10/$0A
11/$OB
12/SOC
13/SOD
H/$0E
15/SOF
16/$10
17/$11

1S/S12
19/$13
20/$14
21/$15
22/$16
23/$17
24/$18
25/$19
26/$lA
27/$lB
28/$lC
29/$lD
3O/$1E
31/$1F
32/$20
33/S21
34/$22

35/$23
36/$24

37/$25
38/$26
39/$27
40/$28
41/$29
42/$2A
43/$2B
44/$2C

Key

INST/DEL
RETURN
CRSR <-

F7
Fl
F3
F5
CRSR !
3
W
A
4

Z
s
E
left SHIFT
5
R

D
6

C
F
T
X
7
Y
G

e
B
H
U
V
9
I
J
0
M
K
O
N
+
P
L
-

Character
code

20/$14
13/$0D
29/$ ID
136/$88
133/$85
134/S86
135/$87
17/S11
51/$33
215/$D7
193/SCI
52/$34

218/SDA
211/$D3
197/$C5

l/$01
53/135

210/SD2
196/$C4
54/$36

195/$C3
198/$C6
212/$D4
216/$D8
55/$37

217/$D9
199/SC7
56/$38

194/$C2
200/$C8
213/$D5
2U/SD6
57/S39
201/SC9
202/SCA
48/S30

205 /$CD
203/$CB
207/$CF
206/$CE
43/$2B
208/SDO
204/$CC
45/S2D
46/S2E

Table
index

45/$ 2D
46/S2E
47/$2F
48/$30
49/$31
50/$32
51/$33
52/$34
53/$35
54/$36
55/$37
56/$38
57/$39
58/$3A
59/$3B
60/$3C
61/$3D
62/$3F_
63/$3F
64/$40
65/$41
66/$42
67/$43
6S/$44
69/$45
70/$46
71/$47
72/$48
73/$49
74/$4A
75/$4B
76/$4C
77/$4D
78/S4E
79/$4F

80/$50
81/S51
82/$52

83/$53
84/S54
85/$55
86/$56
87/$57
88/$58

Key

:
@

£
•

CLR/HOME
right SHIFT

—
*
/
1
4
CONTROL
2
space bar
Commodore

Q
RUN/STOP
HELP
8 (keypad)

5 (keypad)

TAB
2 (keypad)

4 (keypad)

7 (keypad)

1(keypad)

ESC
+ (keypad)
- (keypad)
LINEFEED
ENTER
6(keypad)
9(keypad)
3(keypad)
ALT
0(keypad)
. (keypad)
! (cursor)
I (cursor)
*• (cursor)
-• (cursor)

NO SCROLL
no key

pressed

Character
code

58/S3A

64/$40

44/$2C

92/$5C

42/$2A

59/$3B

19/313

l/$01

61/$3D

94/S5E

47/$2F

49/$31

95/$5F

4/$04

50/$32
32/S20
2/$02
81/$51
3/$03

132/$84
56/$3S
53/$35
9/$09
50/S32
52/$34
55/$37
49/$31
27/$IB
43/$2B
45/$2D
10/$0A
13/$0D
54/$36
57/$39
51/$33
8/$08

48/$30
46/$2E
145/$91
17/$11

157/$9D
29/$lD
255/$FF

255/SFF

This routine is also copied into all RAM banks to handle
interrupts which occur when the system is configured for a
bank where Kernal ROM is not visible.

65303 $FF17 JIRQ
Jump to IRQ or BRK handler routine.
(This routine is the target of the processor IRQ/BRK vector at
65534/$FFFE.)
Pushes the accumulator and X and Y register values onto the
stack, then places the current MMU configuration register
value onto the stack as well. (Thus, 128 interrupts place one
more byte on the stack than do Commodore 64 interrupts.)
The routine then configures the system for bank 15 and reads
the processor status register value on the stack (the interrupt
automatically causes the status register value and return ad-
dress to be placed on the stack before this routine is called). If
the B bit (bit 4) of the status register is set to % 1 , indicating
that the interrupt is the result of the execution of a BRK in-
struction (a software interrupt), the routine jumps through the
IBRK indirect vector at 790/$0316 to a routine to handle the
BRK. That vector normally points to 45059/$B003, the break
entry point into the machine language monitor. If the B status
bit is %0, a hardware interrupt has been triggered by an exter-
nal source, so the routine jumps through the IIRQ indirect vec-
tor at 788/$0314. That vector normally points to the handling
routine at 64101/$FA65. In either case, you can redirect the
vector to a routine of your own for special handling. See the
IBRK and IIRQ entries for details.

If normal processing is to continue following the interrupt
handling, the handling routine should end with a jump to the
routine at 65331/$FF33 to restore the processor registers and
MMU configuration to their original values. For example, the
normal IRQ service routine exits in this manner, so processing
resumes unaffected after a standard IRQ interrupt. However,
the BRK service routine does not return, since normal process-
ing is halted when the monitor is entered.

This routine is also copied into all RAM banks to handle
interrupts which occur when the system is configured for a
bank where Kernal ROM is not visible.
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65331 8FF33 CRTI
Common exit routine for all interrupt routines.
Retrieves the MMU configuration register value from the stack
and restores the system to its original bank setting, then re-
stores the Y and X register and accumulator values from the
stack. Processing resumes at the instruction following the one
during which the interrupt has occurred.

65341 $FF3D JRESET
Jump to reset handler routine.
(This routine is the target of the processor RESET vector at
65532/$FFFC.)
Sets the system for the bank 15 configuration, then jumps to
the RESET routine [$E000].

This routine is also copied into all RAM banks to handle
any reset which might occur when the system is configured
for a bank where Kernal ROM is not visible.

65349-65350 $FF45-$FF46 Unused
Two unused bytes, filled with the value 255/SFF.

New 128 Kernal Jump Table
Locations 65351-65407/$FF47-$FF7F are a table of jump vec-
tors to routines found in 128 ROM, but not in previous ver-
sions of the Kernal for earlier Commodore computers. As with
the other jump tables, each table entry consists of a JMP
opcode (76/$4C) followed by the address of the target routine.

65351 SFF47 JSPIN_SPOUT
Entry point for the Kernal SPIN-SPOUT routine at 58875/
$E5FB, which sets up the serial bus for fast communications
mode. Enter with the status register carry bit clear to establish
fast serial input or with the bit set to establish fast serial out-
put. Unless you are writing a custom data transfer routine, it's
not necessary to call this routine explicitly. All the standard
serial I/O routines already include this setup step.

65354 $FF4A JCLOSE^ALL
Entry point for the Kernal CLOSE_ALL routine at 62013/
$F23D, which closes all files currently opened to a specified
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device. (This is different from the Kernal CLALL routine
f$FFE71, which merely resets the number of open files to zero
without explicitly closing any open files.) Enter the routine
with the accumulator holding the number of the device on
which files are to be closed. If the specified device is the cur-
rent input or output device, the channel will be reset to the
default device {screen or keyboard). If all files to the device
have been successfully closed, the status register carry bit will
clear upon return. A set carry bit indicates that a device error
has occurred.

65357 $FF4D JC64_MODE
Entry point for the Kernal C64_MODE routine at 57931/
$E24B, which switches the system immediately to 64 mode.
To get back to 128 mode, it is necessary to reset the computer
or to turn it off and back on.

65360 $FF50 JDMA_CALL
Entry point for the Kernal DMA_CALL routine at 63397/
$F7A5, which passes commands to a DMA (direct memory
access) controller. The DMA device will take control of the
system to perform the requested command. The only DMA
peripherals currently available for the 128 are the 1700 and
1750 Memory Expansion Modules, controlled by a DMA chip
known as the REC (see Chapter 8 for more information). Call
the routine with the Y register holding the command for the
DMA device and the X register holding the bank number for
the operation. Additional setup steps may be required, de-
pending on the command.

65363 SFF53 JBOOT_CALL
Entry point for the Kernal BOOT_CALL routine at
63632/$F890, which attempts to load and execute boot sectors
from a specified disk drive. Call the routine with the X register
holding the device number for the desired disk drive (usually
8) and the accumulator holding the character code correspond-
ing to the desired drive number—not the actual drive number.
(For example, the single drive in 1541 and 1571 units is desig-
nated drive 0, so you would use 48/$30, the character code
for zero.) If the specified drive is not present or turned off, or
tf the disk in the drive does not contain valid boot sectors, the
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routine will return with the status register carry bit set. If boot
sectors are found and executed, the boot code may or may not
return to the calling routine.

65366 8FF56 JPHOENIX
Entry point for the Kernal PHOENIX routine at 63591/$F867,
which initializes any installed-function ROMs and attempts to
boot a disk from the default drive (drive 0 of device 8). The
Kernal reset routine [$E000] records the presence of function
ROMs in cartridges plugged into the expansion port or into
the spare ROM socket on the system circuit board, but it does
not initialize them unless they are autostarting (unless their
cartridge ID byte holds the value 1). This routine initializes all
recorded function ROMs by calling their cold start entry ad-
dresses (the first address of the memory slot for the ROM). If
any ROMs are present, they may or may not return to this
routine, depending on the initialization steps performed. If all
ROMs return after initialization (or if no ROMs are present),
the routine attempts to boot a disk in drive 0 of device 8.

65369 $FF59 JLKUPLA
Entry point for the Kernal LKUPLA routine at 63389/$F79D,
which checks whether a specified logical file number is cur-
rently in use. Call the routine with the accumulator holding
the desired logical file number. If that number is used for a
currently open file, the status register carry bit will be clear
upon return. The accumulator will still hold the logical file
number; the X register will hold the associated device number,
and the Y register the secondary address. However, if the logi-
cal file number is not currently used, the carry bit will instead
be set upon return (the logical file number will still be in the
accumulator).

65372 $FF5C JLKUPSA
Entry point for the Kernal LKUPSA routine 63366/$F786,
which checks whether a specified secondary address is cur-
rently in use. Call the routine with the Y register holding the
desired secondary address. If that number is used for a cur-
rently open file, the status register carry bit will be clear upon
return. The Y register will still hold the secondary address; the
accumulator will hold the associated logical file number, and

SFF65 65381

the X register the device number. However, if the secondary
address is not currently used, the carry bit will instead be set
upon return (the secondary address value will still be in the Y
register).

65375 $FF5F JSWAPPER
Calls the Kernal SWAPPER routine's screen editor jump table
entry at 49194/$C02A. The routine switches active screen dis-
plays by exchanging the active and inactive screen editor vari-
able tables, tab stop bitmaps, and line link bitmaps, and by
toggling bit 7 of the active screen flag (215/$D7). The routine
doesn't physically turn either video chip on or off; both chips
remain enabled. Instead, the routine determines which display
will be the recipient of subsequent printing. (Only the active
screen will have a "live" cursor.)

65378 $FF62 JDLCHR
Calls the Kernal INIT80 routine's screen editor jump table en-
try at 49191/$C027. The routine copies character shape data
from ROM into the 8563 80-column video chip's private
block of RAM (the 8563 has no character ROM of its own).

65381 $FF65 JPFKEY
Calls the Kernal KEYSET routine's screen editor jump table
entry at 49185/$C021. The routine assigns a new definition to
one of the ten programmable function keys (F1-F8, SHIFT-
RUN/STOP, and HELP). Call the routine with the accumu-
lator holding the address of a three-byte string descriptor in
zero page, the X register containing the key number (1-10),
and the Y register containing the length of the new definition
string. The descriptor in zero page should consist of the two-
byte address of the new definition string (in standard low-
byte/high-byte order), followed by the bank number where
the definition string is located. The key number is not checked
for validity; if you specify a value outside the acceptable
range, you may garble existing definitions. Upon return, the
carry bit will be clear if the new definition has been success-
fully added, or it will be set if there is insufficient room in the
definition table for the new definition.
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65384 $FF68 JSETBNK
Entry point for the Kernal JSETBNK routine at 63295/$F73F,
which establishes the current bank from which data will be
read or to which data will be written during load/save opera-
tions, as well as the bank where the filename for the I/O op-
erations can be found. Call the routine with the accumulator
holding the bank number for data and the X register holding
the bank for the filename. All register values are preserved
during this routine.

65387 $FF6B JGETCFG
Entry point for the Kernal GETCFG routine at 63468/$F7EC,
which translates a bank number into the MMU register setting
which will configure the system for that bank. Call the routine
with the X register containing the bank number (0-15). Upon
return, the accumulator will hold the corresponding MMU
configuration register setting value. The routine does not check
the validity of the bank number input. If you specify a number
outside the acceptable range, the routine will return a mean-
ingless value.

65390 SFF6E JJSRFAR
Entry point for the Kernal JSRFAR routine at 717/$02CD,
which jumps to a subroutine in a specified bank and returns to
the calling routine in bank 15. Prior to calling this routine, you
must load location 2/$02 with the bank number (0-15) of the
target routine and locations 3-4/$03-$04 with the address of
the target routine (in high-byte/low-byte order, the opposite
of the normal arrangement). You should also load location
5/$05 with the value you want placed in the status register
when the target routine is called. (The behavior of many
routines is influenced by the status register setting, particularly
the state of the carry bit. Load 5/$05 with the value 0/$00 if
the target routine is to be called with carry clear, or with
l/$01 if it is to be called with carry set,) If you wish to pass
other register values to the routine you will be calling, store
the desired accumulator value in location 6/$06, the X register
value in 7/$07, and the Y register value in 8/$08. Upon re-
turn, location 5/$05 will hold the status register value at the
time of exit, 6/$06 will hold the accumulator value, 7/$07
will hold the X register value, 8/$08 will hold the Y register

SFF74. 65396

value, and 9/$ 09 will hold the stack pointer value. The sys-
tem is always reconfigured for bank 15 upon exit.

$FF71 JJMPFAR65393
Entry point for the Kernal JMPFAR routine at 739/S02E3,
which jumps to a routine in a specified bank, with no return
to the calling bank. Prior to calling this routine, you must load
location 2/$02 with the bank number (0-15) of the target rou-
tine and locations 3-4/$03-$04 with the address of the target
routine (in high-byte/low-byte order, the opposite of the nor-
mal arrangement). You should also load location 5/$05 with
the value you want placed in the status register when the tar-
get routine is entered. (The behavior of many routines is influ-
enced by the status register setting, particularly the state of the
carry bit. Load 5/$05 with the value 0/$00 if the target rou-
tine is to be entered with carry clear or with l/$01 if it is to
be entered with carry set.) If you wish to pass other register
values to the routine you will be calling, store the desired ac-
cumulator value in location 6/$06, the X register value in
7/$07, and the Y register value in 8/$08.

65396 SFF74 JINDFET
Entry point for the Kernal INDFET calling routine at
63440/$F7DO, which retrieves a byte from a specified bank.
Prior to calling this routine, you must load a two-byte zero-
page pointer with the address of the location from which the
byte is to be retrieved (or the base location if a series of bytes
are to be retrieved). Call the routine with the accumulator
holding the address of the zero-page pointer, the X register
holding the bank number (0-15) for the target location, and
the Y register holding an offset value which will be added to
the address in the pointer to determine the location from
which the byte is to be loaded. (Load Y with zero if no offset
is desired.) Upon return, the accumulator will hold the byte
from the specified address. The value in the Y register will be
preserved during the routine. If you are retrieving data from a
series of locations, it is necessary to reload the accumulator
and X registers with the pointer address and bank number
before every call to this routine, but you can read up to 256
sequential locations without changing the address in the zero-
page pointer by simply incrementing the Y register between
calls.
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65399 $FF77 JINDSTA
Entry point for the Kernal INDSTA calling routine at 63450/
$F7DA, which stores the accumulator contents at an address
in a specified bank. Prior to calling this routine, you must load
a two-byte zero-page pointer with the address of the location
at which the byte is to be stored (or the base location if a se-
ries of bytes is to be stored); then store the address of this
pointer in location 697/$02B9. Call the routine with the accu-
mulator holding the byte to be stored, the X register holding
the bank number (0-15) for the target location, and the Y reg-
ister holding an offset value which will be added to the ad-
dress in the pointer to determine the location in which the
byte is to be stored. (Load Y with zero if no offset is desired.)
Upon return, the accumulator will still hold the byte value.
The value in the Y register will also be preserved. If you are
writing data to a series of locations, it is necessary to reload
the X register with the bank number before every call to this
routine, but you can write to up to 256 sequential locations
without changing the address in the zero-page pointer by sim-
ply incrementing the Y register between calls.

65402 $FF7A JINDCMP
Entry point for the Kemal INDCMP calling routine at 63459/
$F7E3, which compares the accumulator contents against the
contents of a location in a specified bank. Prior to calling this
routine, you must load a two-byte zero-page pointer with the
address of the location with which the byte is to be compared
(or the base location if a series of bytes are to be compared);
then store the address of this pointer in location 712/$02C8.
Call the routine with the accumulator holding the byte to be
compared, the X register holding the bank number (0-15) for
the target location, and the Y register holding an offset value
which will be added to the address in the pointer to determine
the location with which the byte is to be compared. (Load Y
with zero if no offset is desired.) Upon return, the accumulator
will still hold the byte value, and the status register N, Z, and
C (carry) bits will reflect the result of the comparison. The
value in the Y register will also be preserved. If you are com-
paring a series of locations, it is necessary to reload the X reg-
ister with the bank number before every call to this routine,
but you can compare up to 256 sequential locations without
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changing the address in the zero-page pointer by simply incre-
menting the Y register between calls.

65405 $FF7D JPRIMM
Entry point for the Kernal PRIMM routine 64023/$FA17,
which prints the string of character codes immediately follow-
ing the JSR to this routine. You must always call this routine
with JSR, never with JMP. Only JSR places the required ad-
dress information on the stack. The end of the character code
string is indicated by a byte containing 0/$00 (the routine
continues printing bytes as character codes until a zero byte is
encountered). When the ending marker is found, the routine
returns to the address immediately following the zero byte.

65408 $FF80
Some Commodore literature suggests that this location will be
updated in future revisions of the Kernal ROM to indicate the
revision number. For the original version of the 128 Kernal,
this location contains the value 0/$00.

Standard Commodore Jump Table
Locations 65409-65525/$FF81-$FFF5 are a table of jump vec-
tors to the standard Commodore Kernal routines, most of
which have been part of previous versions of the Kernal. As
with the other 128 jump tables, each table entry consists of
either a direct JMP opcode (76/$4C) followed by the address
of the target routine or an indirect JMP opcode (108/$6C) fol-
lowed by the address of a Kernal indirect vector containing the
address of the target routine.

65409 SFF81 JCINT
Calls the Kernal CINT routine's screen editor jump table entry
at 49152/$C000. This routine initializes all the RAM locations
used by the screen editor, clears both displays, and redirects
printing to the display indicated by the position of the 40/80
DISPLAY key.

65412 $FF84 JIOINIT
Entry point for the Kemal IOINIT routine at 57609/$E109,
which initializes the CIA, SID, and 40- and 80-column video
chips, along with related RAM locations.
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65415 SFF87 JRAMTAS
Entry point for the Kernal RAMTAS routine at 57491/$E093,
which clears zero-page RAM (locations 2-255/$02-$FF) and
initializes Kernal memory pointers. The routine also sets the
BASIC restart vector (2560/$0A00) to point to BASIC'S cold
start entry address, 16384/$4000.

65418 SFF8A JRESTOR
Entry point for the Kernal RESTOR routine at 57430/$E056,
which restores the Kernal indirect vectors at 788-819/
$0314-$0333 to their default values.

65421 $FF8D JVECTOR
Entry point for the Kernal VECTOR routine at 57435/SE05B,
which loads or stores the Kernal indirect vectors at 788-819/
$0314-$0333. When this routine is called, the X and Y regis-
ters should be loaded with the address of a 32-byte table (low
byte in X, high byte in Y). If the status register carry bit is
clear when the routine is called, the vectors will be loaded
with the values from the table. If carry is set, the 16 two-byte
address values currently in the vectors will be copied to the
table.

65424 $FF90 JSETMSG
Entry point for the Kernal SETMSG routine at 63324/$F75C,
which sets the value of the Kernal message flag (157/$9D).
Call the routine with the accumulator holding the desired flag
value. Refer to the entry for 157/$9D for information on flag
values.

65427 $FF93 JSECOND
Entry point for the Kernal SECOND routine at 58578/$E4D2,
which sends a secondary address to a serial device which has
been commanded to listen. The value in the serial status flag
(144/$90) upon return will indicate whether the operation is
successful.

65430 $FF96 JTKSA
Entry point for the Kernal TKSA routine at 58592/$E4E0,
which sends a secondary address to a serial device which has
been commanded to talk. The value in the serial status flag
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Cl44/$90) upon return will indicate whether the operation is
successful.

65433 $FF99 JMEMTOP
Entry point for the Kernal MEMTOP routine at 63331/$F763,
which reads or sets the value of the Kernal's top-of-memory
pointer (2567-2568/$0A07-$0AO8). To read the pointer, call
the routine with the carry flag set; the pointer value will be re-
turned in the X and Y registers (low byte in X, high byte in Y).
To set the pointer, call the routine with the carry flag clear
and with the X and Y registers containing the low and high
bytes, respectively, of the desired pointer value.

65436 $FF9C JMEMBOT
Entry point for the Kernal MEMBOT routine at 63346/$F772,
which reads or sets the value of the Kernal's bottom-of-memory
pointer (2565-2566/$0A05-$0A06). To read the pointer, call
the routine with the carry flag set; the pointer value will be re-
turned in the X and Y registers (low byte in X, high byte in Y).
To set the pointer, call the routine with the carry flag clear
and with the X and Y registers containing the low and high
bytes, respectively, of the desired pointer value.

65439 $FF9F JKEY
Calls the Kernal SCNKEY routine's screen editor jump table
entry at 49170/$C012. The routine scans the keyboard matrix
to determine which keys, if any, are currently pressed. The
character code for the key currently pressed is loaded into the
keyboard buffer at 842/$034A, from which it can be retrieved
using the Kernal GETIN routine [$FFE4], The matrix code of
the keypress read during this routine can also be read in loca-
tion 212/$D4, and the status of the shift keys can be read in
211/$D3. Since this routine is normally called as part of the
standard IRQ service routine, it's not usually necessary to call
it explicitly to read the keyboard.

65442 $FFA2 JSETTMO
Entry point for the Kernal SETTMO routine at 63327/$F75F,
which sets the value of the IEEE timeout flag <2574/$0A0E).
This routine is superfluous, since the flag isn't used by any
128 ROM routine. It is present merely to maintain consistency
with previous versions of the Kernal.
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65445 $FFA5 JACPTR
Entry point for the Kernal ACPTR at routine 58430/$E43E,
which retrieves a byte from a serial device. The success of the
operation will be indicated by the value in the serial status
flag (144/$90) upon return. If the operation is successful, the
accumulator will hold the byte received from the device. The
value in the Y register will be preserved. For the routine to
function properly, the serial device must currently be a talker
on the serial bus, which requires a number of setup steps.
Generally, it's preferable to use higher level Kernal calls such
as BASIN [$FFCF] instead.

65448 $FFA8 JCIOUT
Entry point for the Kernal CIOUT routine at 58627/$E503,
which sends a byte to a serial device. Call the routine with the
accumulator holding the byte to be sent. All register values are
preserved during this routine. The success of the operation
will be indicated by the value in the serial status flag
(144/$90) upon return. For the routine to function properly,
the serial device must currently be a listener on the serial bus,
which requires a number of setup steps. However, if you have
already performed all the preparatory steps necessary for
BSOUT [$FFD2] to a serial device (SETLFS, SETBNK,
SETNAM, OPEN, and CKOUT), you can freely substitute
CIOUT for BSOUT since for a serial device BSOUT simply
jumps to the CIOUT routine.

65451 $FFAB JUNTLK
Entry point for the Kernal UNTLK routine at 58645/$E515,
which sends an UNTALK command to all devices on the serial
bus. Any devices which are currently talkers will cease send-
ing data.

65454 $FFAE JUNLSN
Entry point for the Kernal UNLSN routine at 58662/$E526,
which sends an UNLISTEN command to all devices on the se-
rial bus. Any devices which are currently listeners will cease
receiving data.
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65457 $FFB1 JLISTN
Entry point for the Kernal LISTN routine at 58174/$E33E,
which sends a LISTEN command to a specified serial device.
Call the routine with the accumulator holding the device num-
ber (4-31) of the desired serial device. The success of the op-
eration will be indicated by the value in the serial status flag
(144/S90) upon return.

$FFB4 JTALK65460
Entry point for the Kernal TALK routine at 58171/$EE3B,
which sends a TALK command to a specified serial device.
Call the routine with the accumulator holding the device num-
ber (4-31) of the desired serial device. The success of the op-
eration will be indicated by the value in the serial status flag
(144/$90) upon return.

65463 8FFB7 JREADSS
Entry point for the Kernal READSS routine at 63300/$F744
(called READST in previous versions of the Kernal), which re-
turns the status of the previous I/O operation. The status
value will be in the accumulator upon return; the contents of
the X and Y registers are unaffected. If the current device
number is 2 (indicating an RS-232 operation), the status value
is retrieved from the RS-232 status flag (2580/$0A14), and the
flag is cleared. Otherwise, the status value is retrieved from
the tape/serial status flag (144/$90). That flag is not cleared
after being read.

65466 $FFBA JSETLFS
Entry point for the Kernal SETLFS routine at 63288/$F7E8,
which assigns the logical file number, device number, and sec-
ondary address for an I/O operation. Call the routine with the
accumulator holding the logical file number, the X register
holding the device number, and the Y register holding the sec-
ondary address. All register values are preserved during the
routine.

65469 SFFBD JSETNAM
Entry point for the Kernal SETNAM routine at 63281/SF731,
which assigns the length and address of the filename for an
I/O operation. Call the routine with the accumulator holding
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the length of the filename and the X and Y registers holding
the address of the first character of the name (low byte in X,
high byte in Y). The Kernal SETBNK routine [$FF68] must be
used to specify the appropriate bank for the filename address.
If no name is used for the current operation, load the accumu-
lator with the value 0/$00; the values in X and Y are then ir-
relevant. All register values are preserved during this routine.

65472 $FFCO JOPEN
Entry point for the Kernal OPEN routine, which opens a logi-
cal file to a specified device. The routine is entered via the
IOPEN indirect vector (794/$031A), which normally points to
the OPEN routine at 61403/$EFDB. You can modify the ac-
tions of the routine by changing the vector to point to a rou-
tine of your own. See the IOPEN entry for details.

At least one preparatory step is required before the stan-
dard OPEN routine is called: The SETLFS routine [$FFBA]
must be called to establish the logical file number (184/$B8),
the device number (186/SBA), and the secondary address
(185/$B9). For tape (device 1), RS-232 (device 2), or serial (de-
vice 4 or higher), SETBNK [$FF68] and SETNAM [$FFBD] are
also required to specify the length (183/$B7) and address
(187-188/$BB-$BC) of the associated filename and the bank
number (199/$C7) where the filename can be found.

The status register carry bit will be clear if the file is suc-
cessfully opened, or set if it cannot be opened. When carry is
set upon return, the accumulator will hold an error code indi-
cating the problem. Possible error code values include 1 (10
files, the maximum allowed, are already open), 2 (a currently
open file already uses the specified device number), and 5
(specified device did not respond). One exception is when RS-
232 files are opened with x-line handshaking. Because of a
bug in the RS-232 OPEN routine [$F040], carry will be set if
the RS-232 device is present when x-line handshaking is used
(if the DSR line is high), or it will be clear if the device is ab-
sent—the opposite of the proper setting. The RS-232 and
tape/serial status flags (2580/$OA14 and 144/$90, respec-
tively) also reflect the success of the operation.

65475 $FFC3 JCLOSE
Entry point for the Kernal CLOSE routine, which closes a
specified logical file. The routine is entered via the ICLOSE in-
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direct vector (796/$031C), which normally points to the
CLOSE routine at 61832/$F188. You can modify the actions
of the routine by changing the vector to point to a routine of
your own. See the ICLOSE entry for details.

The standard CLOSE routine should be called with the
accumulator holding the number of the logical file to be
closed. If no file with the specified logical file number is cur-
rently open, the routine exits immediately. (No error will be
indicated.) If a file with the specified number is open, its entry
in the logical file number, device number, and secondary ad-
dress tables will be removed. For RS-232 files, the driving CIA
#2 interrupts will be disabled. For tape files, the final block of
data will be written (followed by an end-of-tape marker, if one
has been specified). For disk files, the EOI sequence will be
performed. However, the 128 Kernal routine offers a special
close function for disk files: If this routine is called with the
status register carry bit set, and if the device number for the
file is 8 or greater, and if the file has been opened with a sec-
ondary address of 15, the EOI sequence is skipped (the table
entries for the file are deleted, but that's all). This provides a
solution to a problem in earlier versions of the Kernal. A disk
file opened with a secondary address of 15 is a command
channel to the drive. Performing an EOI sequence to such a
file closes all files currently open to the drive, not just the
command channel file. This special mode allows the command
channel file to be closed without disturbing other files that
may be open to the drive.

65478 $FFC6 JCHKIN
Entry point for the Kernal CHKIN routine, which specifies a
logical file as the source of BASIN and GETIN input. The rou-
tine is entered via the ICHKIN indirect vector (798/$031E),
which normally points to the CHKIN routine at 61702/$F106.
You can modify the actions of the routine by changing the
vector to point to a routine of your own. See the ICHKIN en-
try for details.

For a logical file to receive input, it must first be opened
(see the OPEN routine entry at 65472/$FFC0). The standard
CHKIN routine should be called with the desired logical file
number in the X register. The input channel (153/$99) is set
to the device number for that file. If the device is RS-232 (de-
vice number 2), the routine also enables the CIA #2 interrupts
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responsible for RS-232 reception. If a serial device (device
number 4 or greater) has been specified, the device is also made
a talker on the serial bus. If the file has successfully been set
for input, the carry bit will be clear upon return. If carry is set,
the operation is unsuccessful and the accumulator will contain
the Kernal error code indicating which error has occurred. Pos-
sible error codes include 3 (file not open), 5 (device did not re-
spond), and 6 (file not open for input). The RS-232 and serial
status flags (2580/$0A14 and 144/$90, respectively) also re-
flect the success of the operation on one of those devices.

65481 SFFC9 JCKOUT
Entry point for the Kernal CKOUT routine, which specifies a
logical file as the recipient of BSOUT output. The routine is
entered via the ICKOUT indirect vector (800/$0320), which
normally points to the CKOUT routine at 61772/$F14C. You
can modify the actions of the routine by changing the vector
to point to a routine of your own. See the ICKOUT entry for
details.

For output to be sent to a logical file, it must first be
opened (see the OPEN routine entry at 65472/$KFC0). The
standard CKOUT routine should be called with the desired
logical file number in the X register. The output channel
(154/$9A) is set to the device number for that file. If the de-
vice is RS-232 (device number 2), the routine also enables the
CIA #2 interrupts responsible for RS-232 transmission. If a se-
rial device (device number 4 or greater) has been specified, the
device is also made a listener on the serial bus. If the file has
successfully been set for output, the carry bit will be clear
upon return. If carry is set, the operation is unsuccessful and
the accumulator will contain the Kernal error code indicating
which error has occurred. Possible error codes include 3 (file
not open), 5 (device did not respond), and 7 (file not open for
output). The RS-232 and serial status flags (2580/$0A14 and
144/$90, respectively) also reflect the success of the operation
on one of those devices.

65484 $FFCC JCLRCH
Entry point for the Kernal CLRCH routine, which resets the
system for default I/O sources. The routine is entered via the
ICLRCH indirect vector (802/$0322), which normally points
to the CLRCH routine at 61990/$F226. You can modify the
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actions of the routine by changing the vector to point to a rou-
tine of your own. See the ICLRCH entry for details.

The standard CLRCH routine resets the output channel
(154/$9A) to device 3, the video display. (If the previous out-
put channel is a serial device, it will be sent an UNLISTEN
command.) The input channel (153/$99) is reset to device 0,
the keyboard. (If the previous input channel is a serial device,
it will be sent an UNTALK command.)

65487 $FFCF JBASIN
Entry point for the Kernal BASIN routine (called CHRIN in
previous versions of the Kernal), which receives a byte from
the logical file currently specified for input. The routine is en-
tered via the IBASIN indirect vector (804/$0324), which nor-
mally points to the BASIN routine at 61190/$EF06. You can
modify the actions of the routine by changing the vector to
point to a routine of your own. See the IBASIN entry for
details.

Except to retrieve input from the keyboard when the sys-
tem is set for default I/O, you must open a logical file to the
desired device and specify the file as the input source (see the
entries for the OPEN and CHKIN routines, 65472/$FFC0 and
65478/$FFC6, respectively). For keyboard input (device 0), the
standard BASIN routine accepts keypresses until RETURN is
pressed; then it returns characters from the input string one at
a time on each subsequent call. The character code for RE-
TURN, 13/$0D, is returned when the end of an input string is
reached. (Generally, the GETIN routine [$FFE$] is preferred
for retrieving individual keypresses.) BASIN from tape (device
1) retrieves the next character from the cassette buffer. If all
characters have been read from the buffer, the next data block
is read from tape into the buffer. BASIN from RS-232 (device
2) returns the next available character from the RS-232 input
buffer. If the buffer is empty, the routine waits until a charac-
ter is received—unless the RS-232 status flag (2580/$0A14)
indicates that the DSR signal from the external device is miss-
ing, in which case a RETURN character code, 13/$0D, is
returned.

BASIN from the screen (device 3) is supposed to retrieve
characters one at a time from the current screen line, ending
with a RETURN character code when the last nonspace char-
acter on the logical line is reached. However, it does not work
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properly in the current version of the 128 Kernal (see the en-
try for 49819/SC29B in Chapter 7 for details). BASIN from se-
rial devices (device numbers 4 and higher) returns the next
character available from the serial bus, unless the serial status
flag (144/S90) contains a nonzero value. In that case, the RE-
TURN character code is returned.

For all input devices, the received byte will be in the ac-
cumulator upon return. The contents of the X and Y registers
will be preserved during input from keyboard, screen, or RS-
232. For input from tape, only the X register contents are pre-
served. For input from serial devices, only the Y register
contents are preserved. For input from screen, keyboard, or se-
rial devices, the status register carry bit will always be clear
upon return. For tape input, the carry bit will be clear unless
the operation has been aborted by pressing the RUN/STOP
key. For tape and serial input, the success of the operation will
be indicated by the value in the tape/serial status flag
(144/$90). Due to a bug in the RS-232 portion of BASIN, the
carry bit will be set if a byte has been successfully received; it
will be clear only if a RETURN character code is returned
when the DSR signal is missing. The success of an RS-232 op-
eration will be indicated by the value in the status flag
(2580/$0A14).

65490 SFFD2 JBSOUT
Entry point for the Kernal BSOUT routine (called CHROUT in
previous versions of the Kernal), which sends a byte to the
logical file currently specified for output, The routine is en-
tered via the IBSOUT indirect vector (806/$0326), which nor-
mally points to the BSOUT routine at 61305/$EF79. You can
modify the actions of the routine by changing the vector to
point to a routine of your own. See the IBSOUT entry for
details.

Except to send output to the screen when the system is
set for default I/O, you must open a logical file to the desired
device and specify the file as the output target (see the entries
for the OPEN and CKOUT routines, 65472/$FFC0 and 65481/
$FFC9, respectively). For output to tape (device 1), the charac-
ter is stored at the next available position in the cassette buffer.
When the buffer is full, the data block is written to tape. For
output to RS-232 (device 2), the character is stored in the next
available position in the RS-232 output buffer. If the buffer is
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full, the routine waits until a character is sent. BSOUT to the
screen (device 3) [$C00C] prints the character on the active
display at the current cursor position. The CIOUT routine
r$FFA8] is used for output to serial devices (device numbers 4
and higher).

Regardless of the output device, the contents of the accu-
mulator and X and Y registers will be preserved during this
routine. The status register carry bit will always be clear upon
return unless tape output has been aborted by pressing the
RUN/STOP key (in that case, the accumulator will also be set
to 0/$00 to set the Z bit as well). For tape, serial, or RS-232
output, the success of the operation will be indicated by the
value in the status flag (144/$90 for tape or serial operations;
2580/$0A14 for RS-232).

65493 $FFD5 JLOAD
Entry point for the Kernal LOAD routine 62053/$F265, which
loads or verifies a program file from tape or disk into a speci-
fied area of memory. Before calling this routine, the SETLFS
routine [$FFBA] must be called to establish the device number
(186/$BA) and the secondary address (185/SB9) for the opera-
tion. The logical file number (184/$B8) isn't significant for
loading. The secondary address value determines whether the
load/verify will be absolute or relocating. If bit 0 of the sec-
ondary address is %0 (if the value is 0, for example), the file
will be loaded starting at the address specified in the X and Y
registers when the LOAD routine is called (a relocating load).
If the bit is %1 (if the value is 1, for example), the data will be
loaded starting at the address specified in the file itself (an ab-
solute load). For tape files, the secondary address specification
can be overridden by the file type. Nonrelocatable tape pro-
gram files always reload to their absolute address, even if the
secondary address value specifies a relocating load. The
SETNAM routine [$FFBD] must be called to specify the length
(183/$B7) and address (187-188/$BB-$BC) of the associated
filename. The SETBNK routine [$FF68] must be called to spec-
ify the bank number where the filename can be found (199/
$C7) and the bank into which data is to be loaded (198/$C6).

When the routine is called, the accumulator should hold
the operation type value (0/$00 for a load or any nonzero
value for a verify). If the secondary address specifies a relocat-
ing load, the X and Y registers should hold the starring ad-
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dress at which data is to be loaded (low byte in X, high byte
in Y). The load will be aborted if it extends beyond address
65279/$FEFF. This is to prevent corruption of the MMU con-
figuration register, which appears at 65280/$FF00 in every
bank.

The status register carry bit will be clear upon return if
the file has successfully been loaded, or it will be set if an er-
ror has occurred or if the RUN/STOP key has been pressed to
abort the load. When carry is set upon return, the accumulator
will hold the Kernal error code indicating the problem. Possi-
ble error code values include 4 (file was not found), 5 (device
was not present), 8 (no name was specified for a serial load), 9
(an illegal device number was specified), and 16 (the load ex-
tended beyond address $FEFF). The success of the operation
will also be indicated by the value in the tape/serial status
flag (144/$90).

6 5 4 9 6 $FFD8 JSAVE
Entry point for the Kernal SAVE routine at 62782/$F53E,
which saves the contents of a block of memory to disk or tape.
Before this routine is called, the SETLFS routine [$FFBA] must
be called to establish the device number (186/$BA) and sec-
ondary address (185/$B9) for the operation. The logical file
number (184/$B8) isn't significant for saving. The secondary
address is irrelevant for saves to serial devices, but for tape it
specifies the header type. If bit 0 of the secondary address
value is %1 (if the value is 1, for example), the data will be
stored in a nonrelocatable file—one that will always load to
the same memory address from which it has been saved.
Otherwise, the data will be stored in a relocatable file. If bit 1
of the secondary address is %1 (if the value is 2 or 3, for ex-
ample), the file will be followed by an end-of-tape marker.
The SETNAM routine [$FFBD] must be called to specify the
length (183/$B7) and address (187-188/$BB-$BC) of the as-
sociated filename. The SETBNK routine [SFF68] must be called
to specify the bank number where the filename can be found
(199/$C7) and the bank from which data is to be saved
(198/SC6).

A two-byte zero-page pointer should be loaded with the
starting address of the block of memory to be saved. The rou-
tine should be called with the accumulator holding the address
of the zero-page pointer and the X and Y registers holding the
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ending address plus 1 for the save (low byte in X, high byte in
Y). To save all bytes in the desired area, it's important to re-
member that X and Y must hold an address that is one loca-
tion beyond the desired ending address.

The status register carry bit will be clear if the file has
successfully been saved, or it will be set if an error has oc-
curred or if the RUN/STOP key has been pressed to abort the
save. When carry is set upon return, the accumulator will hold
the Kernal error code indicating the problem. Possible error
code values include 5 (serial device was not present), 8 (no
name was specified for a serial save), and 9 (an illegal device
number was specified). The success of the operation will also
be indicated by the value in the tape/serial status flag
(144/S90) upon return.

65499 6FFDB JSETTIM
Entry point for the Kernal SETTIM routine at 63077/$F665,
which sets the value in the software jiffy clock (160-162/
$A0-$A2). The clock is normally incremented 60 times per
second by the UDTIM routine [$FFEA] as part of the IRQ se-
quence. The value in the accumulator is transferred to the low
byte (162/$A2), the value in the X register to the middle byte
(161/$A1), and the value in the Y register to the high byte
(160/$A0). The specified value should be less than $4F1AO1,
the count corresponding to 24:00:00. Whenever the clock
reaches that value (which corresponds to the number of jiffies
in 24 hours), the UDTIM routine resets all three bytes to zero.

65502 $FFDE JRDTIM
Entry point for the Kernal RDTIM routine at 63070/$F65E,
which returns the current value in the jiffy clock (160-162/
»A0-$A2). The clock is normally incremented 60 times per
second by the UDTIM routine [$FFEA] as part of the IRQ se-
quence. The clock value corresponds to the number of jiffies
U/60 second intervals) that have elapsed since the system
J ! a s t u n i e d on or reset, or the number of jiffies since midnight
UW:00:00) if the clock value has been set. The low byte of the
oock value (162/SA2) is returned in the accumulator, the mid-
, . e 5 t e (161/SA1) in the X register, and the high byte (160/
$A0) in the Y register.
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65505 SFFE1 JSTOP
Entry point for the Kernal STOP routine, which checks
whether the RUN/STOP key is pressed. The routine is en-
tered via the ISTOP indirect vector (808/$0328), which nor-
mally points to the STOP routine at 63086/$F66E. You can
modify the actions of the routine by changing the vector to
point to a routine of your own. See the ISTOP entry for
details.

The standard STOP routine returns with the status regis-
ter Z bit clear if the key is not pressed or with the bit set if it
is. Additionally, if RUN/STOP is pressed, the CLRCH routine
[$FFCC] is called to reset default I/O, and the count of keys in
the keyboard buffer (208/$D0) is reset to zero.

65508 8FFE4 JGETIN
Entry point for the Kernal GETIN routine, which retrieves a
character from the current input device. The routine is entered
via the IGETIN indirect vector (810/S032A), which normally
points to the GETIN routine at 61163/$EEEB. You can modify
the actions of the routine by changing the vector to point to a
routine of your own. See the IGETIN entry for details.

The standard GETIN routine checks to see whether the
current input device is 0 (keyboard) or 2 (RS-232). If it's not
one of these, the BASIN routine [$EF06] is used instead. (See
the BASIN entry for information on GETIN's behavior for
other devices.) For keyboard or RS-232, the retrieved character
will be in the accumulator upon return, and the status register
carry bit will be clear. The value 0/$00 will be returned if no
character is available from the device. The contents of the Y
register are unaffected by this routine. For RS-232, bit 3 of the
status flag (2580/$0A14) will be set if no characters are
available.

65511 $FFE7 JCLALL
Entry point for the Kernal CLALL routine, The routine is en-
tered via the ICLALL indirect vector (812/$032C), which nor-
mally points to the CLALL routine at 61986/SF222. You can
modify the actions of the routine by changing the vector to
point to a routine of your own. See the ICLALL entry for
details.

The standard CLALL routine resets the number of open
files (152/$98) to zero, then falls through into the CLRCH
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routine to reset default I/O. Note that, despite its name, the
routine doesn't actually close any files that may be open to
tane, disk, or RS-232 devices. Unclosed files may cause prob-
lems' particularly on disks, so this routine is of limited useful-
n e 5 S ' s e e the Kernal CLOSE_ALL entry [$FF4A] for a routine
that properly closes all files open to a serial device.

$FFEA JUDTIM65514
Entry point for the Kernal UDTIM routine at $62968/$F5F8,
which increments the software jiffy clock, decrements the
countdown timer, and scans the keyboard column containing
the RUN/STOP key.

65517 $FFED JSCRORG
Calls the Kernal SCRORG routine's screen editor jump table
entry at 49167/$C00F. (This routine was called SCREEN in
previous versions of the Kernal.) The routine returns infor-
mation on the size of the screen's current output window.
Upon return, the X register will contain the number of col-
umns minus 1 in the current window, and the Y register will
contain the number of rows minus 1. The accumulator will
hold the maximum column number for the display currently
active (39 for the 40-column screen or 79 for the 80-column
screen).

65520 $FFF0 JPLOT
Calls the Kernal PLOT routine's screen editor jump table entry
at 49176/$C018. The routine reads or sets the cursor position
on the active display. If it is called with the status register
carry bit clear, the value in the X register will specify the new
cursor row (vertical position), and the value in the Y register
will specify the column (horizontal position). The position will
be relative to the home position of the current output window
rather than to the upper left corner of the screen. (Of course,
in the case of a full-screen output window, the default condi-
tion, the upper left comer of the screen is the home position
of the window.) The carry bit will be set upon return if the
specified column or row value is beyond the right or bottom
margin of the current output window. If the routine is called
with the carry bit set, the row number for the current cursor
position is returned in the X register, and the current column
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number is returned in the Y register. Again, the position is rel-
ative to the home position of the output window rather than
the absolute home position of the screen,

65523 8FFF3 JIOBASE
Entry point for the Kernal IOBASE routine at 63361/$F781,
which returns the base address of the system I/O block
(53248/$D000). The low byte, 0/$00, is returned in the X reg-
ister, and the high byte, 208/$D0, is returned in Y.

65526-65527 $FFF6-$FFF7 Unused
Two unused bytes filled with the value 255/$FF.

65528 $FFF8 System Vector
These locations in bank 1 are the soft reset vector, an address
through which the reset routine [$E000] takes an indirect
jump. The ROM vector (in bank 15) is not normally used, but
it still contains the default address (57892/$E224).

8502 CPU Vectors
One of the hardware features of the 8502 microprocessor (and
its predecessors, the 6502 and 6510) is that certain events
cause the processor to jump to an address held in one of the
following two-byte vectors. This implies that any system using
one of these processors must have ROM at these addresses, or,
as in the case of the RAM banks of the 128, must have some
method of initializing the RAM at these addresses with the ap-
propriate values.

An NMI (nonmaskable interrupt), triggered by a high-to-
low transition on the processor's NMI input line, causes a
jump to the address at 65530/$FFFA. A reset, triggered when
the RESET input line is pulled low, causes a jump to the ad-
dress in 65532/$FFFC An IRQ (interrupt request), triggered
when the IRQ input line is pulled low, causes a jump to the
address in 65534/$FFFE, as does the execution of a BRK
opcode (0/$00),

65530 $FFFA NMI
When an NMI signal is detected, the processor completes exe-
cution of the current instruction, then stores the contents of
the status register and the address of the next instruction on
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the stack. The address in this vector is then loaded into the
program counter, and execution continues from that address.
In the 128, this vector contains 65285/SFF05, the address of a
routine that saves the accumulator, X and Y register, and
MMU configuration register values on the stack; it then config-
ures the system for bank 15 and jumps through the INMI vec-
tor at 792/$0318.

65532 $FFFC RESET
When a reset signal is detected, the processor immediately
terminates the current operation and loads the program
counter with the address in this vector, Execution then re-
sumes with the routine at that address. In the 128, this vector
contains 65341/$FF3D, the address of a routine which config-
ures the system for bank 15, then jumps to the reset routine at
57344/$E000.

65534 SFFFE IRQ/BRK
When a BRK opcode is executed or an IRQ signal is detected,
the processor completes execution of the current instruction,
then stores the contents of the status register and the address
of the next instruction on the stack. The address in this vector
is then loaded into the program counter, and execution contin-
ues from that address. In the 128, this vector contains 65303/
$FF17, the address of a routine that saves the accumulator, X
and Y register, and MMU configuration register values on the
stack; it then configures the system for bank 15, determines
whether the interrupt was the result of a BRK or IRQ, and
jumps accordingly through either the 1BRK vector at 790/S0316
or the IIRQ vector at 788/$0314.
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Interrupts
Todd Heimarck
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The 8502 microprocessor that is the brains of the 128 is highly
methodical and single-minded. When executing a program, it
fetches an operation code from memory, fetches additional op-
erand bytes (depending on the opcode it gets), and executes
the instruction. Then it goes back for the next one, the next
one, and so on. If you left the 8502 to itself, it would execute
lots of instructions, but it would never communicate with the
outside world. For example, the 8502 has no way of remem-
bering by itself to check the keyboard. Without the keyboard,
you'd have an awfully tough time writing a program.

The situation is analogous to the absent-minded professor
who would forget to eat dinner or go to sleep if it weren't for
the housekeeper's help. The 8502 needs an assistant to give it
a nudge occasionally to remind it to attend to other tasks. In
computer parlance, this nudge is called an interrupt. When an
interrupt request occurs, the 8502 saves its position in the cur-
rent program and goes off to run another program elsewhere
in memory. When it's finished with the interrupt routine, the
8502 returns to the main program that was running before the
interrupt occurred.

Interrupts for the 8502 fall into two broad classes: mask-
able interrupts (called IRQs) and nonmaskable interrupts
(NMIs). As the names imply, the processor can be told to ig-
nore IRQ interrupts (using the SEI instruction), but NMIs
demand immediate attention. The 128 uses both types to man-
age a variety of housekeeping chores.

The Housekeeping Chores
The main housekeeping interrupt is an IRQ generated 60 times
per second. It's called the system hardware interrupt, or some-
times the jiffy interrupt—a 1/60-second unit of time is called
a j^fy. (Actually, if you have a European 128 using the PAL
video system, your jiffies last 1/50 second, and your system
IRQ interrupts occur 50 times per second.) The interrupt

619



causes several things to happen. First, the 8502 automatically
pushes the current address in the program counter onto the
stack, as if it were executing a JSR, Next other sources of in-
terrupts are turned off, so an interrupt doesn't happen in the
middle of servicing the IRQ. The accumulator and X and Y
registers are pushed on the stack, and the current state of the
MMU configuration register at 65280/$FF00 is also put on the
stack (because the computer has to return to the proper bank
setup when it's finished handling the interrupt).

The IRQ handling routine has several distinct segments.
The first sets up the current screen display mode. For example,
if you've created a split graphics screen with either GRAPHIC
2 or GRAPHIC 4, the VIC chip has to be set up for the proper
screen and color memory areas. Next, the keyboard is scanned.
If a key has been pressed, the appropriate character code is
determined and stored in the keyboard buffer at 842/$034A.
If it's time for the 40-column display's cursor to blink, that's
taken care of. The software jiffy clock at 160-162/$A0-$A2 is
clicked up a notch. The last big segment of the IRQ sequence
is the BASIC IRQ routine, which handles a variety of sprite
and sound support functions. For example, if you've used the
MOVSPR to put a sprite into motion, the new locations have
to be calculated and the sprite position updated. COLLISION
is also an interrupt-driven command, handled during the IRQ
routine. And the sound durations for the SOUND and PLAY
statements are manipulated during this routine.

Then, the interrupt ends. The registers are restored to
their former values and the bank configuration is stored back
to 65280/$FF00. Interrupts are reenabled and the RTI instruc-
tion brings the 8502 back to the program it was working on.

In 128 mode, the timing of the system IRQ interrupt is
tied directly to the position of the raster beam that traces the
video screen. When the VIC chip gets to the point where it's
drawing a certain line on the screen, the interrupt occurs. This
is a convenient way to tie in the split-screen modes. In 64
mode, the interrupt request is generated by a hardware timer
in one of the CIA chips; this timer is not necessarily in sync
with the current position of the raster beam.

Nonmaskable Interrupts (NMIs)
The other type of interrupt, the NMI, is normally caused by
one of two things: pressing the RESTORE key, or performing
a n RS-232 operation. When an NMI occurs, the 128 jumps to
the address held at 65530/SFFFA, which points to the Kernal
area at 65285/$FF05. This is a very short program, which
ends up bouncing off the RAM vector at 792-793/
$0318-$0319.

If the interrupt was triggered by the RESTORE key, the
system immediately checks to see if the RUN/STOP key was
held down at the time RESTORE was pressed. If not, the 8502
merely returns to the program it was running. If both RUN/
STOP and RESTORE were pressed, the RUN/STOP-RESTORE
initialization sequence is performed, ending with a warm start
of BASIC (see the entry for 64064/$FA40 in Chapter 9).

If something's happening at the RS-232 port, the incom-
ing character is processed and stored in the buffer at 3072/
$0C00, or the outgoing character is sent from the buffer at
3328/$0D00.

Other Sources of IRQs
The hardware interrupt is not the only way to have an IRQ
happen. You can force the equivalent of an IRQ by including
the BRK instruction (the opcode is $00) in a machine language
program. Any of the the interrupt sources in the VIC chip or
CIA #1 can generate an IRQ request. These include sprite col-
lisions, raster interrupts, the light pen input, or any of the CIA
timers. Of these, only the raster interrupt is used by the sys-
tem. As mentioned, a raster interrupt occurs when the screen
redraw routine reaches a certain line on the screen. The line to
trigger the standard jiffy interrupt is off the bottom of the visi-
ble area of the screen. However, the system also supports mid-
screen raster interrupts to manage the split-screen displays of
the GRAPHIC 2 and GRAPHIC 4 modes. The IRQ routine
checks for mid-screen raster interrupts, and performs only the
screen-setup portion of the interrupt routine in that case. For
a ny other type of IRQ, you must write your own handling
routine.
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The first thing the 128 does at the start of an IRQ is jump
off the processor vector at 65534/$FFFE, which takes it to the
short routine at 65303/$FF17. At this point, it decides whether
the interrupt was caused by software (a machine language
BRK instruction) or hardware (the raster, the timer, the light
pen, a sprite collision, and so on).

A BRK instruction causes the system to proceed to a RAM
vector at 790-791/$0316-$0317. The usual response to a BRK
is to start up the built-in monitor, which is also called by the
BASIC MONITOR command. The advantage to this is plain:
When you're writing a machine language program, you can
insert $00s here and there in the program (breakpoints) and
monitor the progress of the program.

Any type of hardware interrupt sends the computer to the
vector at 788-789/$0314-$0315, where the interrupt is han-
dled. It's at this point that the keyboard is polled, the jiffy
clock is updated, and the various other housekeeping chores
are done.

Writing Your Own Interrupt Handler
Commodore has inserted a deliberately vulnerable point in the
process of handling interrupts: the RAM vectors at 788-793/
$0314-$0319. You can change these pointers to turn off inter-
rupts or to set up your own interrupt processing routine.

The following machine language program provides a
short example of how to wedge into the IRQ routine. Before
jumping to the normal IRQ handler, it checks the status of the
40/80 DISPLAY key and switches screens if the key setting
doesn't match the currently active screen.

First, the address currently in the IRQ vector (788-789/
$0314-$0315) is stored as the target address of the JMP that
ends our own routine. Then the address of our MAIN routine
is stored into the IRQ vector. And that's the end of the in-
staller routine.

From then on, whenever an IRQ interrupt occurs, the 128
jumps to our custom routine, because the vector has been
changed. Within our routine, the 40/80 switch is checked and
if it has been changed, an ESCape (CHR$(27)) and X are
placed in the keyboard buffer. Whether or not the 40/80 DIS-
PLAY key has been pressed, we finish the routine by execut-
ing a JMP to the normal IRQ routine.
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10 ; This program sets up an interrupt that checks the 40/80 key
20 ; and switches to the appropriate screen if a change has been made
30 !oRG $0C00 ; Put the program at $0C0O
40 FORTY = $D7 ; 0 if set to 40 columns, 128 if 80
50 KEYNDX = $D0 ; Index to how many keys are waiting in the

buffer
60 IRQVEC = $0314 ; Vector to the IRQ routine
70 KEYBUF = $034A ; The keyboard buffer
80 SWITCH = $D505 ; Bit 7 tells us if the 40/80 switch is up or down
90 ; %0 is down, %1 is up
170 ;
180 ; The first step is to save the current address in the IRQ vector
190 ;
200 SEI ; Disable interrupts while the vector is being

changed
210 LDA IRQVEC ; Get the low byte of the vector
220 CMP JUMP+1 ; See if we've done this before
230 BEQ LEAVE ; If ifs equal, jump ahead to exit the routine
240 STA JUMP +1 ; Else store the current IRQ vector address as the
250 LDA 1RQVEC+1 ; target of the JMP to exit from the MAIN routine
260 STA JUMP+ 2
265 ;
270 ; Now reset the vector to point to our routine at MAIN
275;
280 LDA #<MAIN ; Put the address of the MAIN routine
290 STA IRQVEC ; into IRQVEC
300 LDA #>MAIN
310 STAIRQVEC+1
320;
330 CLI ; We're done resetting the vector, so reenable
340 LEAVE RTS ; interrupts and exit from the setup routine
350;
400 MAIN = •
420 ; First, check the status of the 40/80 switch
430 ;
440 LDA FORTY ; Value is either 0 (40 columns) or $80 (80 columns)
450 EOR SWITCH ; Exclusive-OR with the 40/80 switch flag (bit 7)
460 ; if (he status register N flag is %0,
470 BPL CHANGE ; go ahead and switch displays
480 JUMP JMP $FFFF ; Else jump to the normal IRQ routine
490 ; Note: We never really jump to address $FFFF.
495 ; The installation routine changes the $FFFF to the
500 ; address of the normal IRQ routine
510 ;
520 CHANGE LDA #27; Put the code for the ESCape key
530 STA KEYBUF ; into the keyboard buffer, along with

1
540 LDA #"X" ; the letter X (ESC X means switch

550 STA KEYBUF-1 ; active displays)560 LDA #2 ; We're putting two keys in the buffer570 STA KEYNDX ; so tell the 128 that 2 keys are pressed580 JMP JUMP ; Finish up by going to the normal IRQ routine623



Appendix B

—

Bugs and Quirks in
128 ROM
Like all new computer systems, the 128 has a few bugs in its
system ROMs. Neither BASIC nor the Kernal is seriously
flawed, but both include many new routines that weren't part
of earlier versions of the operating system. With all the new
code, it was inevitable that some mistakes would be made.
Some of the items described below are more idiosyncrasies
than true bugs. Others aren't really errors in programming, but
rather errors in documentation—instances where the routine
works, but not exactly as described in the 128 System Guide or
128 Programmer's Reference Guide. It's entirely possible that
some of these situations will be corrected in future versions of
either the ROMs or the manuals.

BASIC
1. Perhaps the most significant bug in BASIC 7.0 is that,

contrary to what the manuals claim, you can't use negative
relative parameters in graphics statements. For example, ac-
cording to the System Guide, DRAWTO - 5 , - 5 should be a
valid statement to draw a line five pixels up and five pixels
left of the current pixel cursor position. Instead, it causes an
ILLEGAL QUANTITY error. The graphics routines themselves
are set up to handle such coordinates, but the routine which
evaluates parameters uses a subroutine that checks the sign of
the value and causes an error if the value is negative.

2. An attempt to OPEN a logical file to an RS-232 device
such as a modem will result in a DEVICE NOT PRESENT er-
ror if x-line handshaking is specified. This is the result of the
Kernal RS-232 OPEN bug described below.

3. An attempt to use INPUT* with a logical file specified
for device 3 (the screen) will not work because of the Kernal
screen BASIN bug mentioned below.

4. In strings for the PLAY statement, any number of digits
can follow a U (volume) command, but only the last one
counts. Also, a digit alone, with no other command, is the

625



same as U followed by that digit. All four of the following
statements are equivalent:
PLAY "VI U7 ABCDE"
PLAY "VI U1234567 ABCDE"
PLAY "VI U7777 ABCDE"
PLAY "VI 7 ABCDE"

5. The RSPRITE function accepts sprite number param-
eters up to 16, even though only 1-8 are valid.

6. The RWINDOW function doesn't return values stated
in the System Guide. The manual states that RWINDOW(O) re-
turns the number of lines in the current output window and
RWINDOW(l) returns the number of rows. Actually,
RWINDOW(O) returns the number of rows minus 1 in the out-
put window, and RWINDOW(l) returns the number of col-
umns minus 1.

7. Commodore literature claims that the default scaled
size for a standard bitmapped screen (if you use SCALE 1
without additional parameters) is 1023 X 1023. Actually, it's
1024 X 1024, but that's relatively trivial. A more serious prob-
lem with scaling is that it doesn't work as claimed for multi-
color (GRAPHIC 3 or GRAPHIC 4) screens. The default scaled
multicolor screen is also 1024 X 1024, not 511 X 511 as
claimed in the System Guide. When you supply scaling factors
for a multicolor screen, you must use twice the desired hori-
zontal scaling value. For example, to scale the multicolor dis-
play to 256 X 256, you must use SCALE 1,512,256. The
horizontal factor must be greater than 320 to prevent an ILLE-
GAL QUANTITY error.

8. The SCNCLR routine doesn't properly fill color mem-
ory for a GRAPHIC 4 (split multicolor bitmapped and text)
screen. That is, the routine fails to fill color memory with the
current color source 3 value. Since that routine is also used for
the clear option of the GRAPHIC statement, GRAPHIC 4,1
won't properly initialize color memory either. For multicolor
bitmapped mode, color memory determines the color of pixels
with % 11 bit patterns. The solution is to follow any GRAPHIC
4 statement with a SCNCLR 3, which does properly fill the
color memory area. As part of the same bug, color memory is
unnecessarily filled for SCNCLR 2 or GRAPHIC 2,1, but that
has no visible effect because color memory is not used in stan-
dard bitmapped mode.
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9. All BASIC disk commands automatically add the drive
0 specification if no other drive number is specified, except for
CATALOG and DIRECTORY. Although Commodore drives
will supply the directory of drive 0 by default, failing to spec-
ify a drive number sets up conditions for the infamous 1541
drive Save-with-Replace bug. Thus, it's safest to add a DO
after each CATALOG or DIRECTORY.

10. In the BASIC disk commands, the ON U parameter
can be specified any number of times; only the last occurrence
counts. CATALOG ON U6 ON U7 ON U8 is equivalent to
CATALOG ON U8.

11. Commodore literature fails to describe the RREG
statement included in BASIC 7.0. The proper format is RREG
variable 1, variable 2, variable 3, variable 4. The specified vari-
ables will be set to the values in locations 6, 7, 8, and 5, re-
spectively. These locations hold the accumulator, X register, Y
register, and status register values from the last time the
JSRFAR routine was used, such as upon return from the most
recent SYS statement. Any of the variables may be omitted, so
RREG AC,,,SP and RREG ,,YR are valid statements.

12. BASIC 7.0 allows LIST to be used as a statement
within a program, but the RENUMBER statement will not re-
number any line numbers that may follow LIST in a program
being renumbered. This is a trivial oversight, since occasions
to use LIST within a program are quite rare,

Kernal
1. The BASIN routine will not accept input from the

screen because it fails to properly mark the end of the input
string. Refer to the discussion of the routine at 49819/$C29B
in Chapter 7 for more information and a solution to the
problem.

2. Although it isn't mentioned in the manuals, ESC ESC
is accepted as a synonym for ESC O (cancel quote mode).

3. The screen editor CINT and SWAPPER routines copy
one too many bytes when initializing or exchanging the con-
tents of the screen editor variable table at 224-249/$E0-$F9.
As a result, the contents of the otherwise unused locations
250/$FA and 256O/$0A5A are overwritten whenever the
screen is initialized or switched.
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4. The keyboard decoding table for CAPS LOCK has the
incorrect value for the Q key, so that key will appear to be un-
affected by CAPS LOCK,

5. If x-line handshaking was specified in the OPEN rou-
tine for RS-232, the routine returns with the status register
carry bit set if the external device responded, or clear other-
wise. This is the opposite of the carry bit setting when any
other device is successfully opened.

628

Appendix C

Character, Screen,
and Keyboard
Codes
The Commodore 128 represents characters in several different
manners: as characters, as screen codes, and as keyboard
codes. This appendix covers each of these possible
representations.

Character Codes
The 128 has two separate sets of 256 characters. The set that
is normally activated when the computer is turned on is called
the uppercase/graphics set. It has only uppercase (capital) let-
ters, but includes many graphics characters. The alternative
lowercase/ uppercase set has both lowercase and uppercase
letters, but includes substantially fewer graphics characters. It
is useful for creating more attractive text displays, and is es-
sential for tasks like word processing. You can switch man-
ually between sets by pressing the SHIFT and Commodore
keys simultaneously. You can also switch to the
lowercase/uppercase set within a program by printing charac-
ter 14—PRINT CHR$(14). To switch back to the normal
uppercase/graphics set, print character 142,

In the 40-column display mode, switching character sets
affects all characters currently on the screen. For example, up-
percase letters printed from the uppercase /graphics set will
change to lowercase characters after CHR$(14) is printed.
However, any character set switching in 80-column mode af-
fects only those characters printed after the switch. In this
case, uppercase letters printed from the uppercase/graphics set
will remain in uppercase after a CHR$(14) is printed.

The lowercase/uppercase character set has two identical
groups of uppercase letters, characters 97-122 and characters
193-218. When this set is being used, PRINT CHR$(97) and
PRINT CHR$(193) both cause an A to be displayed on the
screen. However, you should be aware that the ASC function
always returns values from the higher group—in lowercase/
uppercase, PRINT ASC("A") always gives 193 instead of 97.
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In machine language, the Kernal GETIN routine also returns
values 193-218 for shifted letters in the lowercase/uppercase
set.

The following table lists the codes for the 128 character

25, 26,

Dec
2
5
7
8

9

10

11

12

13

14

15

17

18

19

20

24

27

28

29

30
31

32

33

34

35

36

37

128,

Hex
02

05

07

08

09

0A

0B

OC
0D
0E
OF

11

12

13

14

18
IB

1C

ID

IE

IF

20

21

22

23

24

25

131, and 132.

Uppercase/Graphics Set Lowercase/Uppercase Set
underline on3

white
bell tone2

disable SHIFT-Commodore3

tab'
enable SHIFT-Commodore3

linefeed2

disable SHIFT-Commodore*
enable SHIFT-Commodore2

RETURN
switch to lowercase

flash on1

cursor down
reverse on

home

delete
tab set/clear2

ESCape
red

cursor right
green

blue
space

! !

# #
$ $
% %

pec

38

39

40

41

42

43

44

45

46

47

48
49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Hex

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

Uppercase/Graphics Set
&

(

)
*

+

-

/
0
1
2
3
4
5
6

7

8

9

• •

<

=

>

?

@
A
B

C
D
E
F

Lowercase/Uppercase Set
&

(
)
*
+

r

-

•

/

0
1
2
3

4
5
6

7

8

9

*

<

=

>

?

@
a

b

c

d

e

f

630
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Dec

71

72

73

74

75

76

77

78

79

80

81
82

83

84
85

86

87

88

89

90

91

92

93

94

95
96

97

98

99

100

101

102

103

Hex

47

48

49

4A

4B

4C

4D

4£

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

Uppercase/Graphics Set

G

H

I

J
K

L

M

N
O

P

Q
R

S

T

U

V

w
X
Y

z
[
£

]
I
4 -

B
*
DD

a
Hs
DD

Lowercase/Uppercase Set

g
h

i

j
*
k

1
m

n

o

p

q
*

r

t

u
V

w

X

y
2

[
L

E
1
r

&
A

B

C

D

E

F

G

Dec

104

105

106
107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

124

125

127

129

130

133

134

137

Hex

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

81

82

85

86

87

88

89

8A

Uppercase/Graphics Set Lowercase/Uppercase Set

LL

E
ffl
E
LJ
\
Zr
n•
y

I]
r̂

ip

r
s
B
[E

orange4

dark purple1

underline off

Fl

F3

F5

F7

F2

F4

H
I

J
K

L

M
N
O
P

Q
R

S

T

u
V

w
x
Y
z
+
•D
SB
S3



Dec

139

140
141

142

143

144

145

146

147

148
149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

Hex

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

Al

A2

A3

A4

A5

A6

A7

A8
A9

Uppercase/Graphics Set Lowercase/Uppercase Set

F6

F8

SHIFT-RETURN
switch to uppercase

1
y••
ri
Si
IH
V .
n

flash off1

black
cursor up

reverse off
clear screen

insert
brown4

dark yellow1

light red
dark gTay4

dark cyan1

medium gray
light green

light blue
light gray

purple
cursor left

yellow

cyan
SHIFT-space

E
y
—

r
1

• A
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

170 AA 3 [ ]
171 AB [B IB
172 AC Ld Q
173 AD ffl ffl
174 AE ffl T
175 AF U •
176 B0 ffl ffl
177 Bl ffl ffl
178 B2 &H ffl
179 B3 m m
180 B4 C J

181 B5 C ID
182 B6 LI Ll
183 B7

184 B8 H n
185 B9 U y
186 BA • ~V\
187 BB H B
188 BC L3 1
189 BD ffl ffl
190 BE H H
191 BF fij BJ
192 CO H H
193 Cl H A
194 C2 J | B
195 C3 H C
196 C4 S D
197 C5 H E
198 C6 H F
199 C7 l i G
200 C8 U H
201 C9 B I
202 CA f? J



Notes
1. For 80-column display only
2. For 128 mode only
3. For 64 mode only
4. For 40-colunm display only
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set
203 CB ffl K

204 CC t ] L
205 CD k | M

206 CE g ] N

207 CF |-j 0
208 DO 3 P
209 DI \m\ Q

210 D2 H R
211 D3 m S
212 D4 11 T

213 D5 H U
214 D6 X V
215 D7 [g w

216 D8 t X
217 D9 [ J Y
218 DA 3 Z
219 DB + +
220 DC BC B
221 DD f l I f
222 DE iil g |
223 DF ^ jg
224 E0
225 El | J | j
226 E2 y y
227 E3 ^ •
228 E4 •
229 E5. O Hi

231 E7 1 [ ]
232 E8 i i ^
233 E9 B 5g
234 EA El •
235 EB DB Lfe

Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

236 EC H ~~m
237 ED t ^
238 EE ffl SI
239 EF U U
240 F0 _T L^

241 FI a m
242 F2 H ffl
243 F3 tfj J !
244 F4 G I !
245 F5 [ I I I
246 F6 | | |
247 F7 H
248 F8 H H
249 F9 y M

250 FA Ul ^
251 FB kJ B
252 FC " H
253 FD B ?J
254 FE Fl
255 FF ifl S?



Screen Codes
There are 256 screen codes for each character set; codes
128-255 are the reverse images of codes 0-127. To display
any character in reverse video, simply add 128 to its screen
code value. Thus, POKE 1024,1:POKE 1025,1 + 128 displays
an A and a reverse A.

The character ROM has a total of 153 different characters.
In the uppercase/graphics set, the character patterns for codes
32 and 96 are identical, as are those for 64 and 67, 66 and 93,
101 and 116, and 103 and 106.

Dec

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55

56

Hex

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35
36

37

38

Uppercase/Graphics

X

Y

Z

[
E

]
t
*-

!

#
$
%
&

(
)

+
t

-

/

0

1
2

3

4

5
6
7
8

Set Lowercase/Uppercase Set

X

y
z

[
E

]
T

«-
space

!
ft

#

$

%

&

t

(

)

•

+
t

-

*

/

0

1

2

3
4

5
6

7
8
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set
0 00 @ @
1 01 A a
2 02 B b
3 03 C c
4 04 D d
5 05 E e
6 06 F i
7 07 G g
8 08 H h
9 09 I i
10 0A J j
11 0B K k
12 0C L 1
13 0D M m
14 0E N n
15 OF O o
16 10 P p
17 11 Q q
18 12 R r
19 13 S s
20 14 T t
21 15 U u
22 16 V v
23 17 W w
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

57 39 9 9
58 3A :
59 3B ; ;
60 3C < <
61 3D = =
62 3E > >
63 3F ? ?
64 40 g B
65 41 • A
66 42 I]] B
67 43 H C
68 44 g D
69 45 —' E
70 46 — F
71 47 | ] G
72 48 [11 H
73 49 E I
74 4A V j
75 4B ffi K
76 4C C L
77 4D SJ M
78 4E 2 N
79 4F C 0
80 50 ^ P
81 51 IB] Q
82 52 Q R
83 53 W S
84 54 Hj T
85 55 ffl U
86 56 J£ V
87 57 O W
88 58 |5 | X
89 59 d Y

Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

90 5A ffl Z
91 5B * +
92 5C £1 £J
93 5D [B T
94 5E ff1 ^
95 5F 15 ^
96 60 SHIFT-space
97 61 H | ]
98 62 y H

99 63 n
100 64 • •
ioi 65 r r

103 67 fl •
104 68 ki kaJ
105 69 Fl ^
106 6A • ]
107 6B [B |_£
108 6C ; H .
109 6D [5 ^
HO 6E h ffl
in 6F ^. y
112 70 ffl ffl
113 71 ffl ^
H4 72 ffl T

H5 73 3] ffi
116 74 Cl C
H7 75 IJ I
US 76 I d
ii9 77 n

121 79 U Q
122 7A • |Z



Dec

123

124

125

126

127

Hex

7B

7C

7D

?E

7F

Uppercase/Graphics Set

F]
n

Lowercase/Uppercase Set

•

ffl

Keycodes
The 128 keyboard is arranged electrically as a matrix of 11 col-
umns X 8 rows of keys. Every 1/60 second, the computer
scans the keyboard to see if a key is pressed. If a key is
pressed, the keyscan routine generates a value that corre-
sponds to the key's position in the matrix. (The formula is
keycode = column * 8 + row, where column has a value from
0 to 10, and row has a value from 0 to 7.) If no key is pressed,
a value of 88 is generated. This value is stored in location 212.
Location 213 will also hold the same value. The contents of
this location can be used to determine which key is currently
being pressed, as an alternative to using GET (or the Kernal
GETIN routine inmachine language). For example, these two
lines have the the same effect—to pause the program until
any key is pressed:
100 GET K$:IF K$="" THEN 100
100 IF PEEK(212)=88 THEN 100

Figure C-l gives the keyscan codes for the 128 keyboard.
Notice that the figure shows no values for the left and' right
SHIFT keys, CONTROL, the Commodore key, and ALT. They
are the keys which use the missing codes 15, 52, 58, 61, and
80, respectively. These keys are detected later in the keyscan
routine, and location 211 is used to record their status. The
values found in that location are as follows:

No shift key pressed
SHIFT
Commodore
CONTROL
ALT
CAPS LOCK

0
1
2
4
8
16
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For this location the values are cumulative. If you press
both SHIFT and CONTROL, the location will contain 1 + 4
= 5. Holding down SHIFT, CONTROL, Commodore, and
ALT together results in a value of 15.

The other "missing" keys are not part of the keyscan ma-
trix. RESTORE is connected to the CIA #2 chip, and acts by
generating an NMI interrupt. The 40/80 column key is con-
nected to the MMU chip and is read and acted upon only at
power-on or reset. The SHIFT LOCK key is not scanned; it's
merely a switch that has the effect of holding down the SHIFT
key.

644
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Musical Note
Frequencies
The following table lists the frequencies for the standard musi-
cal notes which can be produced by the 128's SID sound chip,
along with the SID frequency register values required to pro-
duce these sounds. The register values shown are for 128s
using the NTSC (North American) video system. Refer to the
discussion of the SID chip in Chapter 8 for more information
on sound programming.

Although music is often considered an art rather than a
science, there is a precise mathematical relationship between
the notes in the scale. Any two adjacent notes differ in fre-
quency by a factor of 2 t (1 / 12), or about 1.05946. That is,
for any given note the frequency of the next higher note will
be equal to the current note frequency multiplied by 1.05946,
and the frequency of the next lower note will be equal to the
current note frequency divided by 1.05946. Furthermore, the
frequency of a note in one octave and that of a note with the
same letter designation in a higher or lower octave will differ
by a factor of 2 times the number of octaves between the
notes. For example, by international convention the base fre-
quency in this standard system of musical notation is the A at
440 hertz (octave 3 in the table below). You'll notice that the
A in octave 2 has a frequency of 220 hertz (440 / 2), and the
A in octave 4 has a frequency of 880 hertz (440 * 2); the A in
octave 1 has a frequency of 110 hertz (440 / 4), and the A in
octave 5 has a frequency of 1760 hertz (440 * 4). The octave
designations shown (0-6) correspond to those used with the O
parameter in the BASIC PLAY statement.

Note

Octave 0:
C
C/D
D
D/E
E

Frequency
(hertz)

32.70
34.65
36.71
38.89
41.20

Frequency
(low byte)

24/$18
56/$38
90/$5A

126/$7E
164/$A4

register value
(high byte)

2/$02
2/$02
2/$02
2/$02
2/$02
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Note

F
F/G
G
G/A
A
A/B
B

Octave 1:
C
C/D
D
D/E
E
F
F/G
G
G/A
A
A/B
B

Octave 2:
C
C/D
D
D/E
E
F
F/G
G
G/A
A
A/B
B

Octave 3:
C
C/D
D
D/E
E
F
F/G
G

Frequency
(hertz)

43.65
46.25
49.00
51.91
55.00
58.27
61.74

65.41
69.30
73.42
77.78
82.41
87.31
92.50
98.00

103.83
110.00
116.54
123.47

130.81
138.59
146,83
155.56
164.81
174.61
185.00
196.00
207.65
220.00
233.08
246.94

261.63
277.18
293.66
311.13
329.63
349.23
369.99
392.00

Frequency register value
(low byte) (high byte)

204/$CC
247/$F7

36/$24
84/$54

134/$86
188/$BC
245/$F5

49/$31
113/$71
180/$B4
252/$FC

72/$48
152/$98
237/$ED

72/$48
167/$ A 7
12/$0C

120/$78
233/$E9

2/$02
2/$02
3/$03
3/$03
3/$03
3/$03
3/$03

4/$04
4/$04
4/$04
4/$04
5/$05
5/$05
5/$05
6/$06
6/$06
7/$07
7/$07
7/$ 07

98/$62
225/$El
105/$69
248/$F8
144/$90
48/$30

219/$DB
143/$8F
78/$4E
25/$19

240/$F0
211/$D3

196/$C4
195/$C3
2O9/$D1
24O/$F0
31/$1F
97/$61
182/$B6
3O/$1E

8/$08
8/$08
9/$09
9/$09

10/$0A
ll/$0B
11/$OB
12/$0C
13/$0D
14/$0E
14/$0E
15/$0F

16/$10
17/$11
18/$12
19/$13
21/$15
22/$16
23/$17
25/$19

(middle C)

Note

G/A
A
A/B
B
Octave 4:
C
C/D
D
D/E
E
F
F/G
G
G/A
A
A/B
B

Octave S:
C
C/D
D
D/E
E
F
F/G
G
G/A
A
A/B
B
Octave 6:
C
C/D
D
D/E
E
F
F/G
G
G/A
A
A/B
B

Frequency
(hertz)
415.30
440.00
466.16
493.88

523.25
554.37
587.33
622.25
659.25
698.46
739.99
783.99
830.61
880.00
932.33
987.77

1046.50
1108.73
1174.66
1244.51
1318.51
1396.91
1479.98
1567.98
1661.22
1760.00
1864.65
1975.53

2093.00
2217.46
2349.32
2489.01
2637.02
2793.82
2959.95
3135.96
3322.44
3520.00
3729.31
3951.07

Frequency
(low byte)
157/$9D
50/$32

223/$DF
166/$A6

136/$88
134/S86
163/$A3
224/SEO
63/$3F

194/$C2
107/$6B
61/$3D
58/$3A
100/S64
190/SBE
76/$4C

15/$0F
12/$0C
70/$46

191/SBF
125/$7D
131/S83
214/$D6
122/$7A
115/$73
200/$C8
124/$7C
151/S97

3O/$1E
24/$18
139/$8B
127/$7F
251/$FB

7/$07
172/$ AC
243/$F3
230/$E6
143/$8F
249/SF9
47/$2F

register value
(high byte)
26/$lA
28/$lC
29/$lD
31/$1F

33/$21
35/$23
37/$25
39/$27
42/$2A
44/$2C
47/S2F
50/$32
53/$35
56/$38
59/$3B
63/$3F

67/$43
71/$47
75/$4B
79/$4F
84/$54
89/$59
94/$5E
100/$64
106/$6A
112/$70
119/$77
126/$7E

134/S86
142/$8E
150/$96
159/$9F
168/$A8
179/$B3
189/$BD
200/SC8
212/$D4
225/$El
238/$EE
253/$FD
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64/128 Memory
Map Cross
Reference
The following list provides a cross reference of the Commo-
dore 64 and Commodore 128 memory maps. In addition to
the RAM locations shown, all I/O chips appear in the 128 at
the same addresses as in the Commodore 64. (When the 128
is used in Commodore 64 mode, the two extra VIC chip regis-
ters and the VDC 80-column chip are still available, although
they must be programmed directly, since there are no routines
to support them.) Also, the Kernal jump table at 65409-65525/
$FF81-$FFF5 is common to both the Commodore 64 and 128.
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s Commodore 64 address
0/$00
l/$01
3-4/$03-$04

5-6/$05-$06

7/$07
8/$08
9/$09
1O/SOA
11/$OB
12/$0C
13/$0D
14/$0E
15/$0F
16/$10

17/$11
18/$12
19/$13
20-21/$14-$15
22/$16
23-24/$17-$18

25-33/$19-$21
34-37/$22-$25
38-42/$26-$2A
43-44/$2B-$2C
45-46/$2D-$2E
47-48/$2F-$30
49-50/$31-$32

Commodore 128 address
0/$00
l/$01
4474-4475/$117A-$117B

4476-4477/$117C-$117C

9/$09
10/$OA
11/$OB
12/$0C
13/$0D
H/$0E
15/$0F
16/$10
17/$11
I8/$12

19/$13
20/$14
2I/$15
22-23/$16-$17
24/$18
25-26/$19-$1A

27-35/$lB-$23
36-39/$24-$27
40-44/$28-$2C
45-46/$2D-$2E
47-48/$2F-$30
49-50/$31-$32
51-52/$33-$34

Function
Processor on-chip I/O port data direction register
Processor on-chip I/O port data register
Vector: Routine to convert a number from floating point to
signed integer
Vector: Routine to convert a number from integer to floating
point
Search character for scanning BASIC text input
Search character for statement terminator or quote
Column position of the cursor before the last TAB or SPC
BASIC LOAD/VERIFY flag
[ndex into the text input buffer / number of array subscripts
Flag for routines that locate or build an array
Flag: Type of data {string OT numeric)
Flag: Type of numeric data (integer or floating point)
Flag for LIST, garbage collection, and program tokenizatiort
Flag: Subscript reference to an array or user-defined function call
(FN)
Input source flag (GET, READ, or INPUT)
Flag: Sign of the result of the TAN or SIN function
Current I/O channel {CMD logical file) number
Integer line number value
Pointer to the next available space in the temporary string stack
Pointer to the address of the last string in the temporary string
stack
Descriptor stack for temporary strings
Miscellaneous temporary pointers and save area
Floating point multiplication work area
Pointer to the start of BASIC program text
Pointer to the start of the variable storage area
Pointer to the start of the array storage area
Pointer to the start of the area available for string storage

Commodore 64 address
51-52/$33-$34
53-54/$35-$36
55-56/$37-$38
57-58/$39-$3A
59-60/$3B-$3C
61-62/$3D-$3E
63-64/$3F-$40
65-66/$41-$42
67-68/$43-$44
69-70/$45-$46
71-72/$47-$48
73-74/$49-$4A
75-76/$4B-$4C
77/$4D
78-79/$4E-$4F
80-82/$50-$52
83/$53
84-86/$54-$56
87-96/$57-$60
97-101/$61-$65
102/$66
103/S67
104/$68
105-109/$69-$6D
110/S6E
111/$6F
112/$70
113-114/$71-$72
115-138/$73-$8A
139-143/$8B-$8F

Commodore 128 address
53-54/$35-$36
55-56/$37-$38
57-58/$39-$3A
59-60/$3B-$3C
4608-4609/$1200-$12ul
4610-4611/$1202-$1203
65-66/$41-$42
67-68/$43-$44
69-70/$45-$46
71-72/$47-$48
73-74/$49-$4A
75-76/$4B-$4C
77-78/$4D-$4E
79/$4F
80-81/$50-$5I
82-84/$52-$54
n.a.
86-88/$56-$58
89-98/$59-$62
99-103/$63-$67
104/$68
105/$69
991/$03DF
106-110/$6A-$6E
111/$6F
112/$70
113/$71
114-115/$72-$73
896-926/$0380-$039E
4635-4639/$121B-$121F

Function
Pointer to the bottom of the string pool
Temporary pointer for strings
Pointer to the highest address used by BASIC
Current BASIC line number
Previous BASIC line number
Pointer to the address of the current BASIC statement
Current DATA line number
Pointer to the address of the current DATA item
Pointer to the source of GET, READ, or INPUT
Current BASIC variable name
Pointer to the current BASIC variable value
Temporary pointer to the index variable used by FOR
Math operator table displacement
Mask for comparison operation
Pointer to the current FN descriptor
Temporary pointer to the current string descriptor
Constant for garbage collection
Jump to function instruction
BASIC numeric work area
Floating point accumulator #1
Floating point accumulator #1 sign
Number of terms in a series evaluation
Floating point accumulator #1 overflow digit
Floating point accumulator #2
Floating point accumulator #2 sign
Result of a sign comparison of FAC1 to FAC2
Low byte of floating point accumulator #1 (for rounding)
Series evaluation pointer
Subroutine to get next BASIC text character (CHRGET)
RND function seed value



to
Commodore 64 address
144/$90
145/S91
H6/$92
147/$93
148/$94
149/$95
150/$96
151/$97
152/$98
153/$99
154/$9A
155/S9B
156/$9C
157/$9D
158/$9E
159/$9F
160-162/$ A0-$A2
163-164/$A3-$A4
165/$A5
166/$A6
167/$A7
168/$A8
169/$A9
170/$AA
171/$AB
172-173/$AC-$AD
174-175/$AE-$AF
176-177/$BO-$B1
178-179/$B2-$B3
180/$B4

Commodore 123 address
144/$90
145/$91
146/$92
147/$93
148/$94
149/$95
150/$96
151/$97
152/$98
153/$99
154/$9A
155/$9B
156/$9C
157/$9D
158/$9E
159/$9F
160-162/$ A0-$A2
163-164/$A3-$A4
165/$A5
166/$A6
167/SA7
168/$A8
169/$A9
170/$AA
171/$AB
172-173/$AC-$AD
174-175/$AE-$AF
176-177/$B0-$BI
178-179/$B2-SB3
180/$B4

Function
Kemal I/O status word (ST)
Flag: Was STOP key pressed?
Timing constant for tape reads
Flag for Kerna! LOAD routine (0 = LOAD, 1 = VERIFY)
Serial bus buffered character flag
Buffered character for serial bus
Cassette block synchronization number
Temporary register save area
Number of open files / index into the file tables
Default input device (set to 0 for the keyboard)
Default output (CMD) device (set to 3 for the screen)
Tape character parity
Flag: Tape byte received
Kernal message control flag
Tape pass 1 error log index
Tape pass 2 error log correction index
Software jiffy clock
Cassette/serial work bytes
Cassette synchronization character countdown
Count of characters in tape I/O buffer
RS-232 input bits / cassette temporary storage area
RS-232 input bit count / cassette temporary storage
RS-232 start bit received flag
RS-232 input byte buffer / cassette temporary storage
RS-232 input parity / cassette leader counter
Pointer to the starting address of a load / screen scrolling
Pointer to the ending address of the load (end of program)
Tape timing
Pointer to start of tape buffer
RS-232 output bit count / cassette temporary storage

ON

Commodore 64 address
181/SB3
182/SB6
183/$B7
184/$B8
185/$B9
186/$BA
187-188/$BB-$BC
189/$BD
190/$BE
191/$BF
192/$C0
193-I94/$C1-$C2
195-196/$C3-$C4
197/$C5
198/$C6
199/$C7
200/$C8
201-202/$C9-$CA
203/$CB
204/$CC
205/$CD
206/$CE
207/$CF
208/$D0
209-210/$Dl-$D2
211/$D3
212/$D4
213/$D5
2H/$D6
215/$D7

Commodore 12S address
131/$B5
182/$B6
183/$B7
184/$B8
185/$B9
186/$BA
187-188/$BB-$BC
189/$BD
190/$BE
191/$BF
192/$C0
193-194/$C1-$C2
195-196/$C3-$C4
213/$D5
208/$D0
243/$F3
2608/$OA30
232-233/$E8-$E9
212/$D4
2599/$0A27
2600/$0A28
2601/$0A29
2598/$0A26
2]4/$D6
224-225/$E0-$El
236/$EC
244/$F4
238/$EE
235/$EB
240/$FO

Function
RS-232 next bit to send / tape EOT flag
RS-232 output byte buffer
Length of current filename
Current logical file number
Current secondary address
Current device number
Pointer to current filename
RS-232 output parity / cassette temporary storage
Cassette read/write block count
Tape input byte buffer
Tape motor interlock
I/O start address
Tape load temporary addresses
Matrix coordinate of last key pressed
Number of characters in keyboard buffer (queue)
Reverse character flag
Pointer to end of logical line for input
Cursor column and row position at start of input
Matrix coordinate of current key pressed
Cursor blink enable flag (0 = flashing cursor)
Timer: Countdown to blink cursor
Character under cursor
Flag: Was last cursor blink on or off?
Flag: Input from keyboard or screen
Pointer to the address of the current screen line
Cursor column on current line
Quote mode flag (0 — off)
Maximum length of physical screen line
Current cursor physical line number
Temporary storage area for last character printed



g; Commodore 64 address
^ 216/$D8

217-242/$ D9-$F2
243-244/$F3-$F4
245-246/$F5-$F6
247-248/$F7-$F8
249-250/$F9-$FA
251-254/$FB-$FE
255-266/$FF-$010A
256-317/$0100-$013D
256-511/$0100-$01FF
512-600/$0200-$0258
601-610/$0259-$0262
6Jl-62O/$0263-$O26C
621-630/$026D-$0276
631-640/$0277-$0280
641-642/$0281-$0282
643-644/$0283-$0284
645/$0285
646/$0286
647/$0287
648/S0288
649/$0289
650/$028A
651/$028B
652/$028C
653/$028D
654/$028E
655-656/$028F-$0290
657/S0291

Commodore 128 address
245/$F5

n.a.
226-227/$E2-$E3
204-205/$CC-$CD
200-201 /$C8-$C9
202-203/$CA-$CB
251-254/$FB-$FE
255-266/$FF-$010A
256-217/$0100-$013D
256-511/$0100-$01FF
512-671/$0200-$02AO
866-875/$0362-$036E
876-885/$036C-$0375
886-895/$0376-$037F
842-851/$034A-$0353
2565-2566/$OA05-$OA06
2567-2568/$OA07-$OA08
2574/$OA0E
241/$F1
2602/$OA2A
2619/$0A3B
2592/$0A20
2594/$0A22
2595/S0A23
2596/$0A24
211/$D3
n.a.
826-827/$033A-$033B
247/$F7

Function
Flag: Insert mode (any number greater than 0 is the number of
inserts)
Screen line link table / editor temporary storage
Pointer to the address of the current screen color RAM location
Pointer to current keyboard decode table
Pointer to RS-232 input buffer
Pointer to RS-232 output buffer
Free zero-page locations for user programs
Work area for floating point to ASCII conversion
Tape input error log
Microprocessor stack area
BASIC input buffer
Table of active logical file numbers
Table of device numbers for each logical file
Table of secondary addresses for each logical file
Keyboard buffer
Pointer to start of memory
Pointer to end of memory
IEEE time-out flag
Current foreground color for text
Color of character undeT cursor
Top page of screen memory
Maximum keyboard buffer size
Flag: Which keys will repeat?
Counter for timing the delay between key repeats
Counter for timing the delay until the first key repeat begins
Current SHI FT/CTRL/Commodore keypress
Last pattern of SHIFT/CTRL/Commodore keypress
Vector to keyboard table setup routine
Flag: Enable/disable character set switching with SHIFT-
Commodore

Commodore 64 address Commodore 128 address
658/$0292
659/$0293
660/S0294
661-662/$0295-$0296
663/S0297
664/$0298
665-666/$0299-$029A
667/$029B
668/$029C
669/$029D
670/$029E
671-672/$029F-$02A0
673/$02Al
674/$02A2
675/$02A3

676/$02A4
677/S02A5
678/S02A6
768-769/$0300-$0301
770-771/$0302-$0303
772-773/$0304-$0305
774-775/$0306-$0307
776-777/$0308-$0309
778-779/$030A-$030B

780/$030C
781/$030D
782/$030H

8 783/$030F

248/$F8
2576/$OA10
2577/$0All
2578-2579/$OA12-$0A13
2780/$0A14
2581/$0A15
2582-2583/$OA16-$0A17
2584/$0A18
2585/S0A19
2586/$0AlA
2587/S0A1B
2569-2570/$OA09-$OAOA
2575/$0AOF
2571/S0A0B
2572/S0A0C

2573/S0A0D
223/$DF
2563/$0A03
768-769/$0300-$03ul
770-771/$0302-$0303
772-773/$0304-$0305
774-775/$0306-$0307
776-777/$0308-$0309
778-779/$030A-$030B

6/$06
7/$07
8/$08
5/$05

Function
Flag: Screen scroll enabled
RS-232 control register
RS-232 command register
RS-232 Nonstandard bit timing
RS-232 status register
Number of bits left to be sent/received
Time required to send a bit
Index to end of RS-232 input buffer
Index to start of RS-232 input buffer
Index to start of RS-232 output buffer
Index to end of RS-232 output buffer
Save area for IRQ vector during cassette operations
RS-232 interrupts enabled
CIA #1 control register B storage during cassette operations
Save area for CIA #1 interrupt control register during cassette
read
Save area for CIA #1 control register A during cassette read
Temporary index to the next 40-column line for screen scrolling
PAL/NTSC Hag
Vector to print BASIC error message routine
Vector to main BASIC program loop
Vector to routine that crunches the ASCII keywords into tokens
Vector to routine that lists BASIC program tokens
Vector to routine that executes next BASIC program token
Vector to routine that evaluates a single-term arithmetic
expression
Storage for A register (accumulator)
Storage for X index register
Storage for Y index register
Storage for status register
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BASIC Keyword
Index

656

The following table lists all of the BASIC 7.0 keywords in al-
phabetical order, along with their corresponding tokens and
the addresses of the routines called to perform each token's
operation.

Keyword
ABS
AND
APPEND
ASC
ATN
AUTO
BACKUP
BANK
BEGIN
BEND
BLOAD
BOOT
BOX
BSAVE
BUMF
CATALOG
CHAR
CHR$
CIRCLE
CLOSE
CLR
CMD
COLLECT
COLLISION
COLOR
CONCAT
CONT
COPY
COS
DATA
DCLEAR

Token
182/$B6
175/$AF
254/$FE + 14/$0E
198/$C6
193/$C1
220/SDC
246/$F6
254/$FE + 2/$02
254/$FE + 24/$18
254/$FE + 25/$19
254/$FE + 17/$ll
254/$FE + 27/$lB
225/$El
254/$FE + l6/$10
206/$CE + 3/$03
254/$FE+12/$0C
224/$E0
199/$C7
226/$E2
160/$AO
156/$9C
157/$9D
243/$F3
254/$FE + 23/$17
231/SE7
254/$FE+19/$13
154/$9A
244/$F4
190/$BE
131/S83
254/$FE + 21/$15

Address
35972/$8C84
19593/$4C89
41268/$A134
34423/$8677
38067/$94B3
22901/$5975
41852/$A37C
27593/$6BC9
[1]
21135/S528F
41496/$A218
29493/$7335
25271/$62B7
41416/$A1C8
33660/S837C
41086/$A07E
26583/$67D7
34239/$85BF
26254/$668E
37274/$919A
20984/$51F8
21824/$5540
41775/SA32F
29028/$7164
27106/$69E2
41826/$A362
23136/$5A60
41798/$A346
37897/$9409
21135/I528F
41762/$A322

657



Keyword
DCLOSE
DEC
DEF
DELETE
DIM
DIRECTORY
DLOAD
DO
DOPEN
DRAW
D5AVE
DVERIFY
ELSE
END
ENVELOPE
ERR$
EXIT
EXP
FAST
FETCH
FILTER
FN
FOR
FRE
GET
GO
GOSUB
GOTO
GRAPHIC
GSHAPE
HEADER
HELP
HEX$
IF
INPUT
INPUT#
INSTR
INT
JOY
KEY
LEFTS
LEN
LET
LIST
LOAD

658

Token
254/$FE+15/$0F
2O9/$D1
150/$96
247/$F7
134/$86
238/$EE
240/$F0
235/$EB
254/$FE+13/$0D
229/$E5
239/$EF
254/$FE + 20/$14
213/$D5
128/$80
254/$FE + 10/$OA
211/$D3
237/$ED
189/IBD
254/$FE + 37/$25
254/$FE + 33/$21
254/$FE + 3/$03
165/$A5
129/$81
184/$B8
161/$A1
203/$CB
141/$8D
137/$89
222/$DE
227/$E3
241/$F1
234/$EA
210/$D2
I39/S8B
133/$85
132/$84
212/SD4
181/$B5
207/$CF
249/$F9
200/$C8
195/$C3
136/$88
155/$9B
147/$93

Address

41327/$A16F
32886/$8076
34042/$84FA
24199/$5E87
22651/$587B
41086/$A07E
41383/$A1A7
24544/$5FE0
41245/$A11D
26519/$6797
41356/$A18C
4138O/$A1A4
21393/$5391
19405/$4BCD
28865/$70Cl
33014/$80F6
24633/$6039
36915/$9033
30643/$77B3
43556/$AA24
28742/$7046
34107/$853B
24057/$5DF9
32768/$8000
22034/$5612[2]
23101/$5A3D
22991/$59CF
23003/$59DB
27482/$6B5A
25997/$658D
4I575/$A267
22918/$5986
33090/S8142
21189/$52C5
22H4/$5662
22088/$5648
39361/S99C1
36091/$8CFB
33283/$8203
24842/$610A
34262/$85D6
34408/$8668
21446/$53C6
20706/$50E2
37164/$912C

Keyword

LOCATE
LOG
LOOP
MID$
MONITOR
MOVSPR
NEW
NEXT
NOT
OFF
ON
OPEN
OR
PAINT
PEEK
PEN
PLAY
POINTER
POKE
POS
POT
PRINT
PRINT*
PUDEF
QUIT
RCLR
RDOT
READ
RECORD
REM
RENAME
RENUMBER
RESTORE
RESUME
RETURN
RGR
RIGHTS
RND
RREG
RSPCOLOR
RSPPOS
RSPRITE
RUN
RWINDOW
SAVE

Token

23O/SE6
188/$BC
236/$EC
202/$CA
250/$FA
254/$FE + 6/$06
162/$A2
130/$82
168/$A8
254/$FE + 36/$24
145/$91
159/$9F
176/$B0
223/SDF
194/$C2
206/$CE+4/$04
254/$FE + 4/$04
206/$CE + 10/$0A
151/S97
185/$B9
206/$CE + 2/$02
153/$99
152/$98
221/$DD
254/$FE + 30/$lE
205/$CD
208/$D0
135/$87
254/$FE + 18/$12
143/$8F
245/$F5
248/$F8
140/$8C
214/$D6
142/$8E
204/$CC
201/$C9
187/$BB
254/$FE + 9/$09
206/$CE + 7/$07
206/$CE + 5/$05
206/$CE + 6/$06
138/$8A
206/$CE + 9/$09
148/$94

Address

26965/$6955
35274/$89CA
24714/$608A
[3]
45056/$B000
27846/$6CC6
20950/$51D6
22516/$57F4 [4]
31024/$7930
18502/$4846 [5]
21411/$53A3 [6]
37261/$918D
19590/$4C86
25000/$61A8
32965/$80C5
33454/$82AE
28129/S6DE1
33530/$82FA
32997/$80E5
34000/$84DO
33357/$824D
21850/$555A
21818/$553A
24372/$5F34
18502/$4846 [5]
33179/$819B
39692/$9B0C
22185/S56A9
41687/$A2D7
21149/$529D
41838/$A36E
23288/$5AF8
23242/$5ACA
24418/$5F62
21090/$5262
33154/$8182
34314/$860A
33844/$8434
22717/$58BD
33633/$8361
33687/$8397
33566/$831E
23195/$5A9B
33799/$8407
37138/$9112
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Keyword
SCALE
SCNCLR
SCRATCH
SGN
srN
SLEEP
SLOW
SOUND
SPC(
SPRCOLOR
SPRDEF
SPRITE
SPRSAV
SQR
SSHAPE
STASH
STEP
STOP
STR$
SWAP
SYS
TAB(
TAN
TEMPO
THEN
TO
TRAP
TROFF
TRON
UNTIL
USING
USR
VAL
VERIFY
VOL
WAIT
WHILE
WIDTH
WINDOW
XOR
+
*
/
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Token
233/$E9
232/$E8
242/$F2
180/$B4
191/$BF
254/$FE + ll/$0B
254/$FE + 38/$26
218/$DA
166/$A6
254/$FE + 8/$08
254/$FEH-29/$lD
254/$FE + 7/$07
254/$FE + 22/$16
186/$BA
228/$E4
254/$FE + 31/$lF
169/$A9
144/$90
196/$C4
254/$FE + 35/$23
158/$9E
163/$A3
192/$C0
254/$FE + 5/$05
167/$A7
164/$A4
215/$D7
217/$D9
216/$D8
252/$FC
251/$FB
I83/$B7
197/$C5
149/$95
219/$DB
146/$92
253/$FD
254/$FE + 28/$lC
254/$FE + 26/$lA
206/$CE + 8/$08
170/$AA
171/$AB
172/$AC
173/$ AD
174/$AE

Address
26976/$6960
2 725 7/$ 6A 79
41633/$A2A1
35941/$8C65
37904/$9410
27607/$6BD7
30660/$77C4
29164/$71EC
[7]
29072/$7190
29554/$7372
27727/$6C4F
30444/$76EC
36791/$8FB7
25643/$642B
43551/$AA1F
[8]
19403/$4BCB
34222/$85AE
43561/$AA29
22661/$5885m
37977/$9459
28631/$6FD7
[9]
[10]
24397/$5F4D
22711/$58B7
22708/$58B4

m
4632/$1218
32842/$804A
37161/$9129
29125/$71C5
27693/$6C2D
[11]
29110/$71B6
29388/$ 72CC
33761/$83E1
34888/$8848
34865/$8831
35367/$8A27
35660/$8B4C
36801/S8FC1

Keyword Token Address
< 179/$B3

178/$B2
> 177/$B1
K 255/$FF

19638/$4CB6
19638/$4CB6
19638/$4CB6
[12]

Notes:
1. Normally handled during IF execution. When encountered

outside IF processing, the target routine merely prints a
SYNTAX ERROR message.

2. There are no separate tokens for the keywords GET* and
GETKEY; both are handled as special cases during GET
execution. GET* is represented by a GET token followed
by a # character (code 35/$23). GETKEY is represented by
a GET token followed by a KEY token (249/SF9).

3. Can be used as either a statement or a function. The rou-
tine at 22785/$5901 handles processing as a statement;
when a function, the routine at 34332/S861C is used.

4. Can also be used in conjunction with the RESUME
statement.

5. Defined but not implemented. The target routine merely
prints an UNIMPLEMENTED COMMAND ERROR
message.

6. Can also be used in conjunction with most disk commands
to specify the device (unit) number.

7. Processed during PRINT execution.
8. Processed during FOR execution.
9. Processed during IF execution.

10. Processed during the execution of several other keywords
which accept TO as part of a valid statement: DRAW, FOR,
GO, and assorted disk commands (BACKUP, BSAVE,
CONCAT, COPY, and RENAME).

11. Processed during DO or LOOP execution.
12. Processed during the operand evaluation routine (EVAL),

30935/$78D7.
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Appendix G

Index of Locations
and Routines
Chapter 2: Common Working Storage

so

1
2
3-4
5
6
7
g
9
9
10
11
12
13
14
15
16
17
18
19
20
21
22-23
24
25-26
27-35
36-37
38-39
40-44

45-46
47-48
49-50
51-52
53-54
55-56
57-58
59-60
61-62
63-64
65-66
67-68
69-70
71-72

$01
$02
$03-$04
$05
$06
$07
$08
$09
$09
$0A
$0B
$0C
$0D
$0E
$0F
$10
$11
$12
$13
$14
$15
$16-$17
$18
$19-$1A
$lB-$23
$24-$25
$26-$27
$28-$2C

$2D-$2E
$2F-$30
$31-$32
$33-$34
$35-$36
$37-$38
$39-$3A
$3B-$3C
$3D-$3E
$3F-$40
$41-542
$43-$44
$45-$46
$47-$48

Data direction register for processor's on-chip I/O
port
Data register for processor's on-chip I/O port
Target bank for JMPFAR and JSRFAR
Target address for JMPFAR and JSRFAR
Status register storage for JMFFAR and JSRFAR
Accumulator storage for JMPFAR and JSRFAR
X register storage for JMPFAR and JSRFAR
Y register storage for JMPFAR and JSRFAR
Stack pointer storage for JSRFAR and monitor
Working storage for various routines
Working storage for various routines
Current screen column for TAB and SPC calculations
BASIC LOAD/VERIFY flag
Working storage for various routines
Array dimension flag
Variable type flag
Numeric type flag
Working storage for various routines
Integer/subscript prohibit flag
Input source flag
Comparison type flag/Tangent sign flag
Logical file number for BASIC input and output
Integer value of ASCII digit string
Pointer into temporary string descriptor stack
Pointer to most recent descriptor stack entry
Temporary string descriptor stack
Multipurpose address pointer
Multipurpose address pointer
Temporary storage area for multiplication and
division
Start-of-BASIC-program pointer
Start-of-variables pointer
Start-of-arrays pointer
Start-of-free-memory pointer
Bottom-of-string-space pointer
Temporary pointer into the string pool
Top-of-memory pointer
Current BASIC line number
Pointer for main BASIC character retrieval routine
Working pointer for varoious routines
line number of current DATA statement
Pointer to next DATA item
Text pointer for input
Current variable name
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73-74
75-76
77-78
79
80-81
80-84
82-83
85
86-88
89-93
90-91
92-93
93-95
94-98
94-95
95
96-98
96-104
97-98
99-103
304
105

106-110
111
112
112-113
113
114-115
116-117
118
119
120
121
122
122-124
125-126
127
128
128-129
130
131
132
133
134
135-136
137-138
139
140-141
142-143
144
145
146
147
148
K 9

$49-$4A
$4B-$4C
$4D-$4E
$4F
$50-$51
$50-$54
$52-$53
$55
$56-$58
$59-$5D
$5A-$5B
$5C-$5D
$5D-$5F
$5E-$62
$5E-$5F
$5F
$60-$62
$60-$68
$61-$62
$63-$67
$68
$69

$6A-$6E
$6F
$70
$70-$71
$71
$72-$73
$74-$75
$76
$77
$78
$79
$7A
$7A-$7C
$7D-$7E
$7F
$80
$80-$81
$82
$83
$84
$85
$86
$87-$88
$89-$8A
$8B
$SC-$8D
$8E-$8F
$90
$91
$92
$93
$94
$95

Pointer to variable descriptor
Variable descriptor pointer and working storage
Temporary storage for text pointer
Relational operator flag
Defined function pointer and working pointer
Temporary storage for floating point value
Variable address storage and working pointer
HELP flag
BASIC function execution vector
Floating point work area
Multipurpose working pointer
Multipurpose address pointer
String length and pointer for MID$
Temporary storage for floating point value
Working pointer for garbage collection
Decimal point position
Substring length and pointer for MID$
Monitor zero-page pointers and working storage
Multipurpose address pointer
Floating point accumulator 1
Sign of FAC1
Sign flag during conversion/Count of terms in series
evaluation
Floating point accumulator 2
Sign of FAC2
Sign comparison flag
Multipurpose address pointer
Rounding flag for FAC1
Multipurpose address pointer and working storage
Step value for autoincrement
Graphics area flag
General purpose working storage
String offset pointer
Multipurpose temporary storage
Index into input buffer for monitor
Descriptor for disk error string DS$
BASIC runtime stack pointer
RUN mode flag
Decimal point position
Parameter flags for DOS support commands
Storage for processor stack pointer
Color source for current graphics command
Color source 2 storage
Color source 3 storage
Current foreground color (source 1) storage
Horizontal scaling factor
Vertical scaling factor
PAINT mode flag
Address pointer for graphics routines
Temporary storage for graphics routines
Status flag for tape and serial bus operations
Scan value of STOP key column
Tape timing adjustment factor
Kernal load/verify flag/Monitor operation flag
Serial deferred character flag
Serial character buffer
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150
151
152
153
154
155
156
157
158
159
160-162
163

164

165

166
167

$96
$97
$98
$99
$9A
$9B
$9C
$9D
$9E
$9F
$A0-$A2
$A3

$A4

$A5

$A6
$A7

168 $A8

169

170

171

172-173
172-175
174-175

176
177
178-179
180

181

182

183
184
185
186
187-188
189

190
191
192
193-194

$A9

$AA

$AB

$AC-$AD
$AC-$AF
$AE-$AF

$B0
$B1
$B2-$B3
$B4

$B5

$B6

$B7
$B8
$B9
$BA
$BB-$BC
$BD

(BE
$BF
$C0
$C1-$C2

195-196 $C3-$C4

Cassette block synchronization count
Temporary register storage
Number of files currently open
Current input device
Current output device
Tape character parity
Tape dipole received flag
Kemal message control flag
Tape pass 1 error-log pointer
Tape pass 2 error-log pointer
Software jiffy clock
Tape: Count of bits to be read or written
Serial: EOI flag
Tape: Half-cycle indicator
Serial: Byte received
Tape: Leader synchronization countdown
Serial: Count of bits to send
Pointer into cassette buffer
Tape: Leader clipole count/block indicator
RS-232: Current bit received
Tape: Half-cycle indicator for writing/error flag for
reading
RS-232: Count of bits remaining to be received
Tape: Word marker flag/half-cycle flag
RS-232: Start bit received flag
Tape: Read phase flag
RS-232: Assembly byte for received bits
Tape: Leader dipole counter / checksum work byte
RS-232: Received byte parity
Kernal working address pointer
Work area for disk booting
Kemal working storage: Used to hold the ending ad-
dress for SAVE [$F53E]
Kernal address pointer
TEMP
Pointer to cassette buffer
Tape: leader/data flag
RS-232: Count of bits transmitted
Taper Leader completed flag
RS-232: Next bit to send
Tape: Error flag / end of block flag
RS-232: Character being sent
Length of current filename
Logical file number
Current secondary address
Current device number
Pointer to start of filename
Tape: Byte read from tape / byte to be written to tape
RS-232: Parity calculation working storage
Serial: Current byte during burst mode load
Block count
Drive number (ASCII) for PHOENIX
Tape motor interlock
Kernal work pointer: Used to hold starting address for
save
Kemal work pointer (starting address for load)
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197 $C5

198
199

200-201
202-203
204-205
206-207
208
209

210
211
212
213
214
215
216
217
218-223
224-225

226-227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251-254
255-266
256-511
256-268
256-317
272-290
291-310
294

$C6
$C7

$C8-$C9
$CA-$CB
$CC-$CD
$CE-$CF
$D0
$D1

$D2
$D3
$D4
$D5
$D6
$D7
$D8
$D9
SDA-$DF
$EO-$E1

$E2-$E3

$E4
$E5
$E6
$E7
$E8
$E9
$EA
$EB
$EC
$ED
SEE
SEF
$F0
$F1
$F2
$F3
$F4
$F5
$F6
$F7
$F8
$F9
$FA
tFB-SFE
$OOFF-$010A
$0100-$0IFF
$0100-$010C
$0100-$013D
$0110-$0122
S0I23-S0136
$0126

Bit read from tape / checksum of block written to
tape
Bank where data for save, load, or verify is found
Bank where filename for open, save, load, or verify is
found
Pointer to RS-232 input buffer
Pointer to RS-232 output buffer
Pointer to current keyboard decode table
Pointer for Kern a 1 PR1MM routine
Number of characters in the keyboard buffer
Number of characters pending from programmable
key string
Pointer into the programmable key definition area
Shift key status flag
Current key pressed (matrix value)
Last key pressed
Input source flag
Active screen flag
Mode flag for 40-column screen
CHAREN bit shadow
5creen editor zero page work area
Pointer to first screen memory location for current
line
Pointer to first attribute memory location for current
line
Bottom margin of current window
Top margin of current window
Left margin of current window
Right margin of current window
Cursor row for start of input
Cursor column for start of input
Column of last nonspace character on logical line
Cursor row
Position of cursor within current logical line
Maximum number of rows allowed in output window
Maximum number of columns allowed per row
Character to print
Last character printed
Attribute of current character
Temporary storage for attribute byte
Reverse mode flag
Quote mode flag
Number of pending inserts
Autoinsert mode flag
Case switching/scroll pause control flag
Scroll/link control flag
Bell enable flag
Unused
Unused
Assembly area for numeric strings
Processor stack area
Assembly area for disk boot command
Tape error log
DOS command work area
PRINT USING work area
Command type indicator for PLAY processing

311-507
512-672
673
674-686
687-701
702-716

717-738
739-763
764-765
766-767
768-769
770-771
772-773
774-775
776-777
778-779
780-781
782-783
784-785
786-787
788-789
790-791
792-793
794-795
796-797
798-799
800-801
802-803
804-S05
806-807
808-809
810-811
812-813
814-815
816-817
818-819
820-821
822-823
824-825
826-827
828-829
830-841
842-851
852-861
862-865
866-875
876-885
886-895
896-926
927-977
978-980
981
982-985
986
987-990

$0137-$01FB
J0200-S02AO
S02A1
$02A2-$02AE
$02AF-$02BD
$02BE-$02CC

$02CD-$02E2
$02E3-$02FB
$02FC-$02FD
$02FE-$02FF
$0300-$0301
$0302-$0303
$0304-$0305
$0306-$030;
$0308-$0309
$030A-$030B
$030C-$030D
$030E-$030F
$0310-$0311
$0312-$0313
$0314-$0315
$0316-$0317
$0318-$0319
$031A-$031B
$031C-$031D
S031E-S031F
$0320-$0321
$0322-$0323
$0324-$0325
$0326-$0327
$0328-$0329
$032A-$032B
$032C-$032D
$032E-$032F
$0330-$0331
$0332-$0333
$0334-$0335
$0336-$O337
$0338-$0339
$033A-$033B
$033C-$033D
$033E-$0349
$034A-$0353
$0354-$035D
$035E-$0361
$0362-$036B
$036C-$0375
$0376-$037F
$0380-$039E
$O39F-$O3D1
$03D2-$03D4
$03D5
$03D6-$3D9
$03DA
$03DB-$03DE
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Stack space used by BASIC
BASIC and monitor input buffer
Unused
Retrieves a value from any bank
Stores a value in any bank
Compares the accumulator contents against a value
from any bank
Calls a subroutine in any bank
Jumps to a routine in any bank
Indirect vector for extended functions
Unused indirect vector
Indirect vector in BASIC ERROR routine
Indirect vector in BASIC MAIN routine
Indirect vector in BASIC CRUNCH routine
Indirect vector in BASIC QPLOP routine
Indirect vector in BASIC GONE routine
Indirect vector in BASIC EVAL routine
Indirect vector for tokenizing new keywords
Indirect vector for listing new keywords
Indirect vector for executing new statements
Unused
Indirect vector to IRQ handling routine
Indirect vector to BRK handling routine
Indirect vector to NMI handling routine
Indirect vector in Kernal OPEN routine
Indirect vector in Kemal CLOSE routine
Indirect vector in Kemal CHKIN routine
Indirect vector in Kernal CKOUT routine
Indirect vector in Kernal CLRCH routine
Indirect vector in Kemal BASIN routine
Indirect vector in Kemal BSOUT routine
Indirect vector in Kernal STOP routine
Indirect vector in Kemal GETIN routine
Indirect vector in Kemal CLALL routine
Indirect vector in monitor EXMON routine
Indirect vector in Kernal LOAD routine
Indirect vector in Kemal SAVE routine
Screen editor indirect vector
Screen editor indirect vector
Screen editor indirect vector
Screen editor indirect vector
Screen editor indirect vector
Screen editor indirect vector
Keyboard buffer
Tab stop bitmap
Line link bitmap
Logical file number table for currently open files
Device number table for currently open files
Secondary address table for currently open files
CHRGET (main BASIC character retrieval routine)
Alternate BASIC character retrieval subroutines
Null descriptor
Bank number for PEEK and POKE
Pointers for INSTR evaluation
String block flag
Temporary storage for SHAPE data
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991
992-993
994
995
996-1007
1008-1020
1021-1023

Chapter
1024-2023
2024-2559
2560-2561
2562
2563
2564
2565-2566
2567-2568
2569-2570

2571
2572
2573
2574
2575
2576
2577
2578-2579
2580
2581
2582-2583
2584
2585
2586
2587
2588
2589-2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609-2610

$03DF
$03E0-$03El
$03E2
$03E3
$03E4-$03EF
$03FO-$03FC
$03FD-$03FF

3: Bank 0
$0400-07FF
$0800-$09FF
$OA00-$0AOl
$OA02
$0A03
$0A04
$0A05-$OA06
$0AO7-$0A08
$OA09-$OAOA

$OA0B
$OA0C
$OA0D
$0A0E
$0A0F
$OA10
S0A11
$0A12-$0A13
S0A14
$0A15
$OA16-$0A17
$0A18
$0A19
$OA1A
$OA1B
J0A1C
$OA1D-$OA1F
$0A20
$0A21
$0A22
$0A23
$0A24
$0A25
$0A26
$0A27
$0A28
$0A29
$0A2A
$0A2B
S0A2C
$0A2D
$0A2E
$0A2F
$0A3O
$0A31-$OA32

Floating-point overflow byte
Temporary pointer storage
Standard bitmap color fill value
Multicolor bitmap color fill value
Unused
DMA—CALL execution routine
Unused

Working Storage
Default VIC screen memory
BASIC runtime stack
BASIC restart vector
Memory initialization status flag
PAL/NTSC flag
System initialization status flag
Kernal MEMBOT pointer
Kemal MEMTOP pointer
Temporary storage for ILRQ vector during tape
operations
CIA #1 control register A log
CIA #1 interrupt control register log
CIA #1 timer A status log
IEEE timeout flag
RS-232 activity flag
RS-232 control register
RS-232 command register
RS-232 baud rate factor
RS-232 status register
RS-232 bit count
R5-232 baud rate timing constant
Index to firs! character in RS-232 input buffer
Index to last character in RS-232 input buffer
Index to first character in RS-232 output buffer
Index to last character in RS-232 output buffer
Fast serial mode flag
Software jiffy timer
Maximum number of keys in the keyboard buffer
Scroll pause flag
Key repeat flag
Countdown between key repeats
Countdown until key repeating begins
Delay between case switching repeats
Cursor blink flag
Cursor enable flag
Cursor blink countdown
Character under cursor
Color under cursor
VDC cursor mode
VIC text screen and character base
VIC bitmap and video matrix base
Starting page for VDC screen memory
Starting page for VDC attribute memory
Ending row for screen input
Temporary storage for 80-column memory
manipulation
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/
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620-2621
2622-2623
2624-2650
2651-2655
2656-2665
2666-2669
2670-2687
2688-2703
2688-2719
2720-2727
2720-2729
2730
2731
2732-2734
2735
2736
2737
2738
2739
2740
2741
2742
2743-2745
2746-2751
2752
2753-2756
2757
2758-2815
2816-307]
3072-3327
3328-3583
3584-4095
4096-4351
4352-4400
4401-4402
4403-4404
4405-4406
4407-4408
4409-4455
4456
4457
4458
4459
4460
4461
4462
4463

S0A33
$0A34
$0A35
$0A36
$0A37
$0A38
$0A39
$0A3A
$0A38
$0A3C-$0A3D
$0A3E-$0A3F
$0A40-$0A5A
$0A5B-$0A5F
$0A60-$0A69
$0A6A-$0A6D
$0A6E-$0A7F
$OA80-$OA8F
$0A80-$0A9F
$0AA0-$0AA7
$0AA0-$0AA9
$0AAA
$0AAB
$OAAC-$0AAE
$0AAF
$OAB0
$0ABl
$0AB2
$0AB3
$0AB4
$0AB5
$0AB6
$0AB7-$0A39
$OABA-$0ABF
$0AC0
$0ACl-$0AC4
$0AC5
S0AC6-$0AFF
$OBO0-$0BFF
S0C00-SOCFF
$0DO0-$0DFF
$0E00-$OFFF
$1000-$lFFF
$1100-$1130
$1131-$1132
$1133-$1134
$1135-$U36
$1137-$1138
$1139-$1177
$1168
$1169
$116A
$116B
$116C
$116D
$116E
$116F

Attribute of current cursor position
Scan line for screen split
Temporary storage for X register
Jiffy clock compensation flag
Temporary storage for clock rate register
Temporary storage for sprite enable register
Temporary storage for VIC control register
Custom mode flag
Starting page for 40-coiumn screen memory
Working pointer into 80-column memory
Unused
Screen editor variable storage for the inactive screen
Unused
Storage for inactive tab stop bitmap
Storage for inactive line link bitmap
Unused
Filename buffer for load, save, or verify
Search pattern buffer
Working storage for base conversion
Instruction assembly buffer
Instruction format flag
Instruction length
Three-character mnemonic pattern
Temporary storage for X register
Unused
Calculated opcode
Temporary storage for X register
Transfer direction flag
Digit counter
Temporary storage for parameter conversion
Number of bits per digit for base
Monitor temporary storage
Unused
Counter for function ROM testing
Table of identifiers for function ROMs
DK_FLAG
Unused
Cassette buffer/disk boot buffer
RS-232 input buffer
RS-232 output buffer
Sprite pattern storage area
Programmable key definition storage area
DOS command assembly area
Bitmapped screen pixel cursor horizontal position
Bitmapped screen pixel cursor vertical position
Final horizontal pixel position for graphics operations
Final vertical pixel position for graphics operations
Working storage for assorted graphics routines
Starting page for character pattern definitions
Bit counter for shape retrieval
Scaling flag
Line width for bitmapped graphics routines
BOX fill flag
Bit mask value
Temporary storage for assorted routines
Trace mode flag
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4464-4467
4468
4469-4470
4471
4472
4473
4474-4475
4476-4477
4478-4565
4566-4582
4583-4584
4585-4586
4587
4588
4589
4590-4607
4608-4609
4610-4611
4612-4615
4616
4617-4618
4619-4620
4621

4622-4623
4624-4625
4626-4627
4628-4629
4630-4631
4632-4634
4635-4639
4640
4641
4642
4643-4648
4649-4650
4651
4652
4653-4654
4655
4656-4658
4659
4660-4661
4662
4663
4664
4665
4666
4667-4669
4670
4671-4720
4721-4722
4723
4724
4725
4726-4728

$1170-$1173
$1174
$1175-$1176
$1177
$1178
$1179
$117A-$117B
$117C-$117D
$117E-S11D5
$11D6-$1IE6
$11E7-$1IE8
$11E9-$11EA
$11EB
$11EC
$11ED
$11EE-$11FT
$1200-$1201
$1202-$1203
$1204-$!207
$1208
$1209-$120A
$120B-$120C
$120D

$120E-$120F
$1210-$1211
$1212-$1213
$1214-$1215
$1216-$1217
$1218-$121A
$121B-$121F
$1220
$1221
$1222
S1223-$1228
$1229-$122A
S122B
$122C
$122D-$122E
$122F
$1230-$1232
$1233
$1234-$1235
$1236
$1237
$1238
$1239
$123A
$123B-$123D
$123E
$123F-$1270
$1271-$1272
$1273
$1274
$1275
$1276-$!278

Working storage for RENUMBER
Loop counter for reading directory entries
Block count for directory entry
Working storage for graphics parameter scaling
Working storage for graphics parameter evaluation
Working storage for graphics parameter evaluation
Pointer to floating point-to-integer conversion routine
Pointer to integer-to-floating poinl conversion routine
Sprite movement control data
Shadows for VIC sprite position registers
Shadows for VIC sprite collision registers
Shadow for VIC light pen registers
Starting page for alternate character set during CHAK
Starting page for default character set during CHAR
Channel number for BASIC relative file operations
Unused
line number where program stopped
Pointer to the start of current line
Character definitions for PRINT USING
Number of most recent error
Line number where most recent error occurred
Target line number for TRAP statement
Temporary storage for high byte of TRAP line
number
Pointer to start of statement where last error occurred
End-of-program pointer
Top-of-BASIC pointer
Temporary text pointer storage for DO
Temporary line number storage for DO
USR function jump vector
Seed value for random number generation
Degrees between segments for CIRCLE routine
Unused
Tempo setting for PLAY statement
Durations for currently active notes
Duration of current note
Octave for current note
Sharp/flat flag
Frequency for current note
Voice number for current note
Waveforms for current notes
Dotted note flag
Current filter cutoff frequency
Current resonance setting
Current filter type
Filter type index
Temporary storage
Current instrument number
Envelope parameters for current instrument
Index into instrument table for current instrument
Instrument parameter tables
Current filter cutoff frequency
Current filter control and resonance setting
Current filter type selection
Current SID chip volume setting
Collision flags
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4729-4734
4735
4736
4737
4738-4770
4771-4776
4785
4786
4787-4790

4791-4806
4791-4854
4854-4857
4858
4859
4860
4861
4862-4863

Chaptei
16384
16387
16390
16393
16416
16419
16453
16658
16762
16781
16795
16827
16977
16999
17017
17102
17162
17328
17356
17378
17431
17929
18121
18172
18242
18172
18317
18454
18472
18502
18507
19074
19103
19190
19381

$1279-$127D
$127F
$1280
$1281
S1282-S12A2
$12A3-$12A8
$12B1
$12B2
$12B3-$12B6

$12B7-$12C6
$12B7~$12F6
$12F6-$12F9
S12FA
$12FB
$12FC
$12PD
$12FE-$12FF

5: BASIC
$4000
$4003
$4006
$4009
$4020
$4023
$4045
$4112
$417A
$418D
$419B
$41BB
$4251
$4267
$4279
$42CE
$430A
S43B0
$43CC
$43E2
$4417
$4609
$46C9
$46FC
$4742
$46FC
$478D
$4816
$4828
$4846
$484B
$4A82
$4A9F
$4AF6
S4BB5

Target line numbers for COLLISION
Collision enable flag
Collision type index
Voice for current SOUND statement
Table of SOUND statement settings
Parameters for most recent SOUND statement
Temporary storage for POT and PEN routines
Temporary storage for POT routine
Temporary parameter storage for WINDOW
statement
Filename buffer for DOS support commands
Sprite pattern storage
Sprite pattern suffix
Sprite mode indicator for SPRDEF
Sprite pattern line count for SPRDEF
Sprite number for SPRDEF
BASIC IRQ activity flag
Unused

BASIC cold-start entry point
BASIC warm-start entry point
BASIC IRQ entry point
Performs a warm start of BASIC
Unused
Performs a cold start of BASIC
Initializes BASIC pointers and constants
Initializes SID registers and sound routine locations
Initializes MMU preconfiguration registers
Initializes sprite speed and direction table
Displays the power-on message
Text for power-on message
Initializes BASIC indirect vectors
Table of default vector values
Text for character retrieval routines
Assorted character retrieval subroutines
Tokenizes keywords in lines of BASIC program text
Handles extended tokens
Deletes a character in the input buffer
Searches keyword tables for match
BASIC keyword tables
Table of extended token statements
Table of extended token functions
Table of statement dispatch addresses
Table of statement dispatch addresses
Table of statement dispatch addresses
Table of function dispatch addresses
Table of function dispatch addresses
Table of operator priorities and dispatch addresses
Prints unimplemented command message
Table of BASIC error messages
Sets pointer to error message
Main BASIC statement execution routine
Executes the next BA5IC statement
Tests for RUN/STOP keypress
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19403
19447
19587
19590
19593
19638
19754
19767
19770
19772
19836
19895
19938
20303
20371
20394
20478
20503
20569
20580
20640
20706
20771
20950
20984
21076
21090
21135
21149
21189
21280
21393
21411
21446
21818
21824
21844
22034

22088
22114
22185
22474

22516
22648
22661
22708
22717
22785
22901
22918
22956

2299]
23003

$4BCB
$4BF7
$4C83
$4C86
$4C89
$4CB6
$4D2A
$4D37
$4D3A
$4D3C
$4D7C
$4DB7
$4DE2
$4F4F
S4F93
$4FAA
$4FFE
$5017
$5059
$5064
$50AO
$50E2
$5123
$51D6
$51F8
$5254
$5262
$528F
$529D
$52C5
$5320
$5391
$53A3
$53C6
$553A
$5540
$5554
$5612

$5648
$5662
$56A9
$57CA

$57F4
$5878
$5885
$58B4
$58BD
$5901
$5975
$5986
$59AC

$59CF
$59DB

Handles the STOP and END statements
Handles the execution of function keywords
Displays the SYNTAX ERROR message
Handles the OR logical operator
Handles the AND logical operator
Handles relational operators (<, —, >)
Prints the READY prompt
Enters MAIN with a READY prompt
Displays an OUT OF MEMORY error message
Handles BASIC errors
Prints a specified error message
Handles immediate mode and program line entry
Adds or deletes BASIC program lines
Relinks BASIC program lines
Reads a line of input into the buffer
Searches for a particular token in the runtime stack
Decrements the runtime stack pointer
Checks for available string space
Increments runtime stack pointer
Searches program text for a specified line number
Creates integer value from a character string
Handles the LIST statement
Lists a single BASIC program line
Handles the NEW statement
Handles the CLR statement
Resets the CHRGET text pointer
Handles the RETURN statement
Handles the BEND and DATA statements
Handles the REM statement
Handles the IF statement
Skips a BEGIN-BEND block
Handles the ELSE statement
Handles the ON statement
Handles variable value assignments
Handles the PRINT* statement
Handles the CMD statement
Handles the PRINT statement
Handles the GET statement (also GET# and
GETKEY)
Handles the ENPUT# statement
Handles the INPUT statement
Handles the READ statement
Moves the CHRGET text pointer to the next DATA
statement
Handles the NEXT statement
Handles the DIM statement
Handles the SYS statement
Handles the TRON and TROFF statements
Handles the RREG statement
Handles MID$ when used as a statement
Handles the AUTO statement
Handles the HELP statement
Highlights the portion of a listed line containing an
error
Handles the GOSUB statement
Handles the GOTO statement

23069
23101
23136
23169
23195
23242
23280
23288
24057
24199
24372
24397
24418
24544
24633
24714
24801
24842
24989
25000
25271
25643
25997
26254
26443
26519
26583
26965
26976
27096
27106
27212

27228
27257
27482
27593
27607
27693
27727
27846
28129
28631
28644
28689
28742
28865
29028
29072
29110
29125
29164
29388
29493
29554
30444

$5A1D
S5A3D
$5A60
$5A81
$5A9B
$5ACA
$5AF0
$5AF8
$5DF9
S5ES7
$5F34
$5F4D
$5F62
$5FE0
$6039
$608A
$6OE1
$610A
$619D
$61A8
$62B7
$642B
$65 8D
$668E
$6750
$6797
$67D7
$6955
$6960
$69D8
$69E2
$6A4C

$6A5C
$6A79
$6B5A
$6BC9
$6BD7
$6C2D
$6C4F
$6CC6
$6DE1
$6FD7
$6FE4
$7011
$7046
$70Cl
$7164
$7190
$71B6
$71C5
$71EC
$72CC
$7335
$7372
$76EC

Places RETURN parameters in the runtime stack
Handles the GO statement
Handles the CONT statement
Sets flags for running a program
Handles the RUN statement
Handles the RESTORE statement
Table of tokens for RENUMBER
Handles the RENUMBER statement
Handles the FOR statement
Handles the DELETE statement
Handles the PUDEF statement
Handles the TRAP statement
Handles the RESUME statement
Handles the DO statement
Handles the EXIT statement
Handles the LOOP statement
Assigns a definition string to a programmable key
Handles the KEY statement
Table of characters for KEY
Handles the PAINT statement
Handles the BOX statement
Handles the SSHAPE statement
Handles the GSHAPE statement
Handles the CIRCLE statement
Bitmapped graphics circle drawing subroutine
Handles the DRAW statement
Handles the CHAE statement
Handles the LOCATE statement
Handles the SCALE statement
Table of scaling factors
Handles the COLOR statement
Table for translating VIC color values to VDC color
values
Calculates color fill values
Handles the SCNCLR statement
Handles the GRAPHIC statement
Handles the BANK statement
Handles the SLEEP statement
Handles the WAIT statement
Handles the SPRITE statement
Handles the MOVSPR statement
Handles the PLAY statement
Handles the TEMPO statement
Data tables for PLAY string processing
Default values for ENVELOPE instrument tables
Handles the FILTER statement
Handles the ENVELOPE statement
Handles the COLLISION statement
Handles the SPRCOLOR statement
Handles the WIDTH statement
Handles the VOL statement
Handles the SOUND statement
Handles the WINDOW statement
Handles the BOOT statement
Handles the SPRDEF statement
Handles the SPRSAV statement
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30643
30660
30679
30703
30935
31084
31096
31407
31632

31846

31915
32768
32800
32842
32886
32965
32997
33014
33090
33154
33179
332S3
33357
33454
33530
33566
33633
33660
33687
33761
33799
33844
33936
34000
34009
34032
34042
34107
34222
34239
34262
34314
34332
34408
34423
34437
34440
34458
34573
34683
34801
34819
34831
34837

$77B3
$77C4
$77D7
$77EF
$78D7
$796C
$7978
$7AAF
$7B90

$7C66

$7CAB
$8000
$8020
$804A
$8076
$80C5
$80E5
$80F6
$8142
$8182
$819B
$8203
$824D
$82AE
$82FA
$831E
$8361
$837C
$8397
$83E1
$8407
$8434
$8490
$84D0
$84D9
$84F0
$84FA
$853B
$85AE
$85BF
$85D6
$860A
$861C
$8668
$8677
$8685
$8688
$869A
$870D
$877B
$87F1
$8803
$880F
$8815

Handles the FAST statement
Handles the SLOW statement
Evaluates an expression with a test for type mismatch
Evaluates an expression
Evaluates a single term of a numeric expression
Displays a SYNTAX ERROR message
Evaluates a variable value
Finds or creates a variable
Creates an entry in the variable table for a new scalar
variable
Moves arrays upward in bank 1 to make room for a
new scalar variable
Finds or creates an array variable
Handles the FRE function
Prints designers message
Handles the VAL function
Handles the DEC function
Handles the PEEK function
Handles the POKE statement
Handles the ERR$ function
Handles the HEX$ function
Handles the RGR function
Handles the RCLR function
Handles the JOY function
Handles the POT function
Handles the PEN function
Handles the POINTER function
Handles the RSPR1TE function
Handles the RSPCOLOR function
Handles the BUMP function
Handles the RSPPOS function
Handles the XOR function
Handles the RW1ND0W function
Handles the RND function
Table of floating point constants for RND calculation
Handles the POS function
Checks that BASIC is in run mode
Checks that BASIC is in immediate mode
Handles the DEF statement
Handles user-defined functions using FN
Handles the STR$ fucntion
Handles the CHR$ function
Handles the LEFT$ function
Handles the RIGHT$ function
Handles the MTD$ function
Handles the LEN function
Handles the ASC function
Displays the ILLEGAL QUANTITY error message
Creates space for a string in the string pool
Stores a string in the string pool
Performs string concatenation
Evaluates a string parameter
Evaluates a numeric expression
Evaluates parameters for POKE or WAIT
Checks that the next character is a comma
Evaluates a numeric parameter

34862
34865
34885
34888
34993
35110
35165
35170
35274
35342
35364
35367
35465
35508
35607
35640
35657
35660
35796
35840
35880
35896
35911
35927
35941
35972
35975
36039
36091
36120
36130

36390
36398
36418

36791
36801
36869
36915
36998
370B0
37087
37093
37117
37129
37138
37161
37164
37261
37274
37294
37366
37433
37457
37457

$882E
$8831
$8845
$8848
$88B1
$8926
$895D
$8962
$89CA
$8A0E
$8A24
$8A27
$8A89
$8AB4
$8B17
$8B38
$8B49
$8B4C
$8BD4
$8C00
$8C28
$8C38
$8C47
$8C57
$8C65
$8C84
$8C87
$8CC7
$8CFB
$8D18
$8D22

$8E26
$8E2E
$8E42

$8FB7
$8FC1
$9005
$9033
$9086
$90D8
$90DF
$90E5
$90FD
$9109
$9112
$9129
$912C
$918D
$919A
$91AE
$91F6
$9239
$9251
$9251
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Subtracts value in memory from FAC1
Subtracts FAC1 from FAC2
Adds value in memory to FAC1
Adds FAC1 to FAC2
Normalizes FAC1
Forms twos complement of FAC1
Displays OVERFLOW error message
Performs byte alignment of FAC1
Handles the LOG function
Adds 0.5 to FAC1
Multiplies value in memory by FAC1
Multiplies value in memory by FAC1
Loads FAC2 with value from the current bank
Loads FAC2 with value from bank 1
Multiplies FAC1 by 10
Divides FAC1 by 10
Divides value in memory by FAC1
Divides FAC2 by FAC1
Loads FAC1 from memory
Copies FAC1 value into memory
Copies FAC2 into FAC1
Copies FAC1 into FAC2
Rounds FAC1
Determines the sign of the value in FAC1
Handles the SGN function
Handles the AB5 function
Compares FAC1 against FAC2
Converts FAC1 to a four-byte integer
Handles the INT function
Fills FAC1 with the value in the accumulator
Generates floating point value representing character
string
Prints IN and a line number
Prints a line number
Generates a character string representing the value in
FAC1
Handles the SQR function
Handles the exponentiation (T) operator
Table of floating point constants for EXP evaluation
Handles the EXP function
Performs series evaluation
Calls the Kernal OPEN routine
Calls the Kernal BSOUT routine
Calls the Kernal BASIN routine
Calls the Kemal CHKIN routine
Calls the Kemal GETIN routine
Handles the SAVE statement
Handles the VERIFY statement
Handles the LOAD statement
Handles the OPEN statement
Handles the CLOSE statement
Evaluates parameters for SAVE, LOAD, and VERIFY
Evaluates parameters for OPEN and CLOSE
Clears DS$ after disk operations
BASIC calls to Kemal routines
BASIC call to Kernal's READSS routine
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37463
37469
37475
37481
37487
37493
37499
37505
37511
37517
37523
37529
37610
37897
37904
37977
38021
38067
38115
38176
39361
39692
39728
39931
40010
40366
40557
40712
40783
40903

40994
41076
41086
41245
41268
41303
43327
41347
41356
41380
41383
41416
41496
41575
41633
41687
41762
41775
41798
41826
41838
41852
41923
42535
42599

$9257
$925D
$9263
$9269
$926F
$9275
$927B
$9281
$9287
$928D
$9293
$9299
$92EA
$9409
$9410
$9459
$9485
$94B3
$94E3
$9520
$99C1
$9B0C
$9B30
$9BFB
$9C4A
$9DAE
$9E6D
$9F08
$9F4F
$9FC7

$A022
$A074
$A07E
$A11D
$A134
$A157
$A16F
$A183
$A18C
$A1A4
$A1A7
$A1C8
$A218
$A267
$A2A1
$A2D7
$A322
SA32F
$A346
$A362
$A36E
$A37C
$A3C3
$A627
$A667

BASIC call to Kemal's 5ETLFS routine
BASIC call to Kernal's SETNAM routine
BASIC call to Kemal's BASIN routine
BASIC call to Kemal's BSOUT routine
3ASIC call to Kemal's CLRCH routine
BASIC call to Kemal's CLOSE routine
BASIC call to Kemal's CLALL routine
BASIC call to Kemal's PRIMM routine
BASIC call to Kemal's SETBANK routine
BASIC call to Kemal's PLOT routine
BASIC call to Kemal's STOP routine
Creates space in the string pool for a temporary string
Performs garbage collection on string pool
Handles the COS function
Handles the SIN function
Handles the TAN function
Table of constants for trig function evaluation
Handles the ATN function
Table of constants for trig function evaluation
Handles the PRINT USING statement
Handles the INSTR function
Handles the RDOT function
Bitmapped graphics line drawing routine
Bitmapped point plotting routine
Scales graphics parameter
Applies scaling factor to a specified parameter
Evaluates graphics parameters
Handles relative graphics parameters
Allocates the bitmapped graphics area
Adjusts BASIC program pointers for graphics area
allocation or de-allocation
De-allocates the bitmapped graphics area
Confirms that the graphics area has been allocated
Handles the CATALOG and DIRECTORY statements
Handles the DOPEN statement
Handles the APPEND statement
Finds an available secondary address
Handles the DCLOSE statement
Closes all open files for a specified device
Handles the DSAVE statement
Handles the DVERIFY statement
Handles the DLOAD statement
Handles the BSAVE statement
Handles the BLOAD statement
Handles the HEADER statement
Handles the SCRATCH statement
Handles the RECORD statement
Handles the DCLEAR statement
Handles the COLLECT statement
Handles the COPY statement
Handles the CONCAT statement
Handles the RENAME statement
Handles the BACKUP statement
Evaluates parameters for disk commands
Table of disk command templates
Sets up disk command buffer
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42872
42977
43021
43077
43085
43504
43551
43556
43561
43630-44642
44643-44799
44800
44803
44806
44809
44812
44815
44818
44821
44824
44827
44830
44833
44836
44839
44842
44845
44848
44851
44854
44857
44860
44863
44866
44869
44872
44875
44878
44881
44884
44887
44890
44893
44896
44899
44902
44905
44908
44914
44917
44920
44923
44926
44929
44932
44935

$A778
$A7E1
$A80D
$A845
$A84D
$A9F0
$AA1F
$AA24
$AA29
$AA6E-$AE62
$AE63-$AEFF
$AF00
$AF03
$AF06
$AF09
$AF0C
$AF0F
$AF12
$AF15
$AF18
$AF1B
$AF1E
$AF21
$AF24
$AF27
$AF2A
$AF2D
$AF30
$AF33
$AF36
$AF39
$AF3C
$AF3F
$AF42
$AF45
$AF48
$AF4B
$AF4E
$AF51
$AF54
$AF57
$AF5A
JAF5D
$AF60
$AF63
$AF66
$AF69
$AF6C
$AF72
SAF75
$AF78
$AF7B
$AF7E
$AF81
$AF84
$AF87

Reads disk status string (DS$)
Provides AKE YOU SURF, query
Clears disk status string
Switches to bank 15 configuration
BASIC IRQ service routine
Common exit point from BASIC IRQ routine
Handles the STASH statement
Handles the FETCH statement
Handles the SWAP statement
Unused
Encoded message from the designers of the 128
Entry point for the AYINT routine
Entry point for the GIVAYF routine
Entry point for the FOUT routine
Entry point for the VA1 1 routine
Entry point for the GETADR routine
Entry point for the FLOATC routine
Entry point for the FSUB routine
Entry point for the FSUBT routine
Entry point for the FADD routine
Entry point for the FADDT routine
Entry point for the FMULT routine
Entry point for the FMULTT routine
Entry point for the FDIV routine
Entry point for the FDIVT routine
Entry point for the LOG routine
Entry point for the INT routine
Entry point for the SQR routine
Entry point for the NEGOP routine
Entry point for the FPVVR routine
Entry point for the FPWRT routine
Entry point for the EXP routine
Entry point for the COS routine
Entry point for the SIN routine
Entry point for the TAN routine
Entry point for the ATN routine
Entry point for the ROUND routine
Entry point for the ABS routine
Entry point for the SIGN routine
Entry point for the FCOMP routine
Entry point for the RND_0 routine
Entry point for the CONUPK routine
Entry point for the ROMUPK routine
Entry point for the MOVFRM routine
Entry point for the MOVFM routine
Entry point for the MOVMF routine
Entry point for the MOVFA routine
Entry point for the MOVAF routine
Entry point for the DRAWLN rotuine
Entry point for the GPLOT routine
Entry point for the CIRSUB routine
Entry point for the RUN routine
Entry point for the RUNC routine
Entry point for the CLR routine
Entry point for the NEW routine
Entry point for the LNKFRG routine
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44938
44941
44944
44947
44950
44953
44956
44959
44962
44965

SAFSA
$AF8D
$AP90
$AF93
$AF96
$AF99
$AF9C
$AF9F
$AFAZ
$AFA5

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

point
point
point
point
point
poinl
point
point
point
point

for the
for the
for the
for the
for the
for the
for the
for the
for the
for the

CRUNCH routine
FNDLN routine
NEWSTT routine
EVAL routine
FRMEVL routine
RUN routine
SETEXC routine
LINGET routine
GARBA2 routine
MAIN routine

Chapter 6: Machine Language Monitor ROM
45056
45059
45062
45065

45089
45136
45195
45285
45288
45308

45338
45354
45373
45394
45460
45483
45526
45535
45544

45617
45774
45879
45983
45995
46033
46043
46086
46489
46548
46681
46753
46787
46855
46869
468S1
47013
47054
47242
47250
47277
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$B0OO
$B003
$B006
$B009

$B021
$B050
$B08B
$B0E3
$B0E6
SB0FC

$B11A
$B12A
SB13D
$B152
$B194
$B1AB
$B1D6
$B1DF
$B1E8

$B23I
$B2CE
$B337
$B39F
$B3AB
$B3D1
$B3DB
$B406
$B599
SB5D4
$B659
$B6A1
$B6C3
$B707
$B715
$B721
$B7A5
SB7CE
$BS8A
$B892
$B8AD

Monitor cold start entry point
Monitor break entry point
Reentry point from the IMON indirect vector
Monitor entry routine when BRK instruction
encountered
Cold start routine for monitor
Handles R (register display) command
Main command execution loop for the monitor
Handles X (exit to BASIC) command
Table of monitor commands
Table of execution addresses for the monitor
commands
INDFET call for the monitor
INDSTA call for the monitor
INDCMP call for the monitor
Handles M (memory display) command
Handles ; (change register) command
Handles > (change memory) command
Handles G (go to routine) command
Handles ] (jump to subroutine) command
Displays a line of memory as hex bytes and ASCII
characters
Compares or transfers blocks of memory
Searches memory for byte pattern
Prepares for save, load, or verify
Handles save for monitor
Handles load and verify
Prepares for relocating load or verify
Fills memory with specified byte value
Handles A (assemble) command, or its equivalent
Handles D (disassemble) command
Disassembles a single instruction
Calculates mnemonic and addressing mode
Prints mnemonic for opcode
Opcode decoding table
Table of addressing mode indicators
Table of mode identification characters
Table of mnemonics in packed form
Evaluates a parameter in the input buffer
Transforms numeric parameter into byte value
Table of bases and bits-per-digit
Prints a hexadecimal value
Moves cursor to start of current line

47284
47289
47298
47314
47335
47361
47374

47394
47420
47440
47456
47476
47491
47537
47623
47687
47760
47875
47986-49151

Chapter
49152
49263
49275

49474
49488

49500
49502
49556

49716
49752

49819
49919
49932
49952
49982
50019
50044
50086
50140
50189
50341
50492
50525
50769

50909
50919
50989
51055

$B8B4
$B8B9
SB8C2
JB8D2
$B8E7
$B901
$B90E

$B922
$B93C
$B950
SB960
$B974
$B983
SB9B1
$BA07
$BA47
$BA90
$BB03
$BB72-$BFFF

7: Screei
$cooo
$C06F
$C07B

$C142
$C150

$C15C
$C15E
$C194

$C234
$C258

$C29B
$C2FF
$C30C
$C320
SC33E
$C363
$C37C
$C3A6
$C3DC
$C40D
$C4A5
$C53C
$C55D
SC651

$C6DD
$C6E7
$C72D
$C76F

Moves cursor to start of next line
Clears a screen line
Prints two ASCII characters for a byte value
Converts a byte value into two ASCII characters
Tests next character in the input buffer
Transfers address and bank values to working pointer
Calculates number of bytes and banks to display or
move
Decrements address or line count
Decrements byte count
Increments address pointer
Decrements address pointer
Changes bank and address
Prepares pointers for dual-address operations
Performs number base conversion
Converts a hexadecimal value to decimal
Prints octal, binary, or decimal values
Handles @ (disk) commands
Displays disk directory
Unused

Editor ROM
Screen editor jump table
Table of default keyboard decoding table pointers
Initializes screen editor constants, variables, tables,
and vectors
Clears the current window and homes the cursor
Moves the cursor to the home position of the current
window
Sets starting address pointers for the current line
Sets starting address pointers for a specified line
Performs screen and keyboard portion of IRQ
functions
Performs GETIN from keyboard
Accepts a line of keyboard input and returns the first
character
Performs BASIN from screen or keyboard
Handles quote mode flag
Provides common exit for screen BSOUT subroutines
Handles character printing for screen BSOUT
Updates the cursor position
Moves the cursor down one line
Inserts a new line linked to the one above
Scrolls the window up one line
Copies lines up one row and clears bottom line
Copies a line
Clears a line
Fills or copies a block of 8563 RAM
Scans keyboard matrix for keypress
Decodes key matrix value into character value and
handles key repeating
Table of programmable key character values
Handles cursor blinking for 40-column screen
Handles BSOUT to the screen
Handles RETURN and SHIFT-RETURN characters,
CHR$(13) and CHR$(141)

679



51069 SC77D

51084
51126
51162
51190
51202
51220
51284
51290
51293
51303
51317
51328
51346
51366
51372
51379
51391
51394
51399
51406
51413
51420
51427
51483
51506
51517
51535
51553
51564
51584
51587
51598
51633
51646
51678
51732
51734
51739
51748
51773
51794
51830
51851
51871
51900
51914
51938
51941
51946
51949
51954
51966
51979
52001

$C78C
$C7B6
$C7DA
$C7F6
$C802
$C814
$C854
$C85A
$C85D
$C867
$C875
$C880
$C892
$C8A6
$C8AC
$C8B3
$C8BF
$C8C2
$C8C7
$C8CE
$C8D5
$C8DC
$C8E3
$C91B
$C932
SC93D
$C94F
$C961
$C96C
$C980
$C983
$C98E
$C9B1
$C9BE
$C9DE
$CA14
$CA16
$CA1B
$CA24
$CA3D
$CA52
$CA76
$CA8B
$CA9F
$CABC
$CACA
$CAE2
$CAE5
$CAEA
$CAED
$CAF2
$CAFE
$CB0B
SCB21

Cancel quote arid reverse modes and dear pending
inserts (ESC O and ESC ESC)
Tables of screen control codes and dispatch addresses
Interprets character codes less than 32
Handles color change characters
Calls control code execution routines
Interprets character codes greater than 127
Handles character codes 128-159
Handles cursor right character, CHR$(29)
Handles cursor down character, CHR$(17)
Checks whether cursor moved onto a new logical line
Handles cursor up character, CHR$(145)
Handles cursor left character, CHR$(157)
Handles switch-to-lowercase character, CHR$(14)
Handles switch-to-uppercase character, CHR${142)
Handles case switching disable character, CHR$(11)
Handles case switching enable character, CHR$(12)
Handles cursor home character, CHR$(19)
Handles reverse off character, CHE${146)
Handles reverse on character, CHR$(18)
Handles underline on character, CHR$(2)
Handles underline off character, CHR$(130)
Handles flash on character, CHR$(15)
Handles flash off character, CHR$(143)
Handles insert character, CHR$(148)
Handles delete character, CHR$(20}
Restores the cursor row and column positions
Deletes a character in a logical line
Handles tab character, CHR$(9)
Handles clear/set tab stop character, CHR$(24)
Tests tab stop bit for current cursor position
Clears all tab stops (ESC Z)
Sets default tab stops (ESC Y)
Handles bell character, CHR$(7)
Handles line feed character, CHR$(10)
Handles ESC sequences
Table of ESC key dispatch addresses
Defines the upper left corner of the window (ESC T)
Defines the lower right comer of the window (ESC B)
Sets window boundaries
Resets the window to full screen size
Inserts a blank line (ESC I)
Deletes the current logical line (ESC D)
Erases to the end of the current logical line (ESC Q)
Erases to the start of the current logical line (ESC P)
Erases to the end of the window (ESC (a)}
Scrolls the display up one line (ESC V)
Scrolls the display down one line (ESC W)
Enables screen scrolling (ESC L)
Disables screen scrolling (ESC M)
Cancels autoinsert mode (ESC C)
Enables autoinsert mode (ESC A)
Changes 80-column cursor to solid block (ESC S)
Changes 80-column cursor to underline (ESC U)
Disables cursor blinking (ESC E)
Enables cursor blinking (ESC F)

680

52023
52026
52031
52040
52050

52056

52084
52097
52101
52115
52127
52145
52163
52205
52224
52254
52263
52271
52274
52276
52315
52330
52386
52512

52524
52526
52567
52591
52639
52682
52684
52696
52698
52710
52729

52748
52812
52828
52844
52852
52904
52981-53247

$CB37
$CB3A
$CB3F
SCB48
$CB52

$CB58

$CB74
$CB81
$CB85
$CB93
$CB9F
$CBB1
$CBC3
SCBED
$CC00
$CC1E
$CC27
$CC2F
$CC32
SCC34
$CC5B
$CC6A
$CCA2
SCD20

$CD2C
$CD2E
$CD57
$CD6F
$CD9F
$CDCA
$CDCC
$CDD8
$CDDA
$CDE6
$CDF9

$CE0
$CE4C
SCE5C
SCE6C
SCE74
$CEA8
$CEF5-$CFFF

Enables tone for bell character (ESC G)
Disables tone for bell character (ESC H)
Switches 80-column screen to reverse mode (ESC R}
Switches 80-column screen to normal mode (ESC N)
Moves the cursor past the last character on the cur-
rent logical line (ESC K)
Reads character and attribute at current cursor
position
Tests whether a line is linked
Links or unlinks the current screen line
Unlinks a screen line
Links a screen line
Calculates offsets into the line link bitmap
Moves the cursor to the start of logical line (ESC J)
Finds the position of the last character in a line
Moves the cursor one position to the right
Moves the cursor one position to the left
Stores the cursor position for later restoration
Prints a space
Displays a character using the current attribute
Displays a character using the previous attribute
Displays a character at the current cursor position
Returns height and width of current screen window
Reads or sets the current cursor position
Defines a programmable function key
Calculates the offset to the start of key definition
string
Changes screen displays (ESC X)
Switches active screen displays
Sets cursor position on 80-column screen
Turns cursor on
Turns cursor off
Writes a byte value to SO-column chip memory
Writes to an 80-column chip register
Reads a byte value from 80-column chip memory
Reads from an 80-column chip register
Sets the current address in 80-column screen memory
Sets the current address in 80-column attribute
memory
Initializes character definitions for BO-column screen
Table of color character translation values
Table of 8563 color code translation values
Table of bit mask values
Tables of default screen editor variables
Table of standard function key definitions
Unused

Chapter 8: Hardware Chip Registers, Color RAM,
and Character ROM
VIC (40-Column) Video Chip Registers
53248 $D000 Sprite 0 horizontal position register
53249 $D001 Sprite 0 vertical position register
53250 SD002 Sprite 1 horizontal position register
53251 $D003 Sprite 1 vertical position register
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53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53265
53266
53267
53268
53269
53270
53271
53272
53273
53274
53275
53276
53277
53278
53279
53280
53281
532S2
53283
53284
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294
53295
53296

$D004
$D005
$D006
$D007
$D008
$D009
$D00A
$D00B
$D00C
$D00D
$D00E
$D00F
$D010
SD011
$D012
$D013
$D014
$D015
$D016
$D017
$D018
$D019
$D01A
$D018
$D01C
$D01D
SD01E
$D01F
$D020
$D021
$D022
$D023
$D024
$D025
$D026
$D027
$D028
$D029
$D02A
$D02B
SD02C
$D02D
$D02E
SD02F
$D030

SID (Sound Interface I
54272
54273
54274
54275
54276
54277
54278
54279
54280

$D400
$D401
$D402
$D403
SD404
$D405
$D406
$D407
$D408

Sprite 2 horizontal position register
Sprite 2 vertical position register
Sprite 3 horizontal position register
Sprite 3 vertical position register
Sprite 4 horizontal position register
Sprite 4 vertical position register
Sprite 5 horizontal position register
Sprite 5 vertical position register
Sprite 6 horizontal position register
Sprite 6 vertical position register
Sprite 7 horizontal position register
Sprite 7 vertical position register
Sprites 0-7 horizontal position (most significant bits)
Control/vertical fine scrolling register
Raster scan line register
Light pen horizontal position
light pen vertical position
Sprite enable register
Control /horizontal fine scrolling register
Sprite vertical expansion register
Memory control register
Interrupt flag register
Interrupt mask register
Sprite-to-foreground priority register
Sprite multicolor mode register
Sprite horizontal expansion register
Sprite-to-sprite collision register
Sprite-to-foreground collision register
Border color register
Background color (source 0) register
Background color source 1 register
Background color source 2 register
Background color source 3 register
Sprite multicolor source 0 register
Sprite multicolor source 1 register
Sprite 0 color register
Sprite 1 color register
Sprite 2 color register
Sprite 3 color register
Sprite 4 color register
Sprite 5 color register
Sprite 6 color register
Sprite 7 color register
Extended keyboard scan register
Processor dock rate control register

Device) Chip Registers
Frequency register for voice 1 (low byte)
Frequency register for voice 1 (high byte)
Pulsewidth for voice 1 (low byte)
Pulse width for voice 1 (high byte)
Control register for voice 1
Attack/decay register for voice 1
Sustain/release register for voice 1
Frequency register for voice 2 (low byte)
Frequency register for voice 2 (high byte)

54281
54282
54283
54284
54285
54286
54287
54288
54289
54290
54291
54292
54293
54294
54295
54296
54297
54298
54299
54300

54528
54529
54530
54531
54532
54533
54534
54535
54536
54537
54538
54539

VDC
54784
54785

$D409
$D40A
JD40B
$D40C
$D40D
$D40E
$D40F
$D410
$D411
$D412
$D413
$D414
$D415
$D416
$D417
$D418
$D419
$D41A
$D41B
$D41C

$D500
$D501
$D502
$D503
$D504
$D505
$D506
$D507
$D508
$D509
$D50A
$D50B

(80-column) Video
$D600
$D601

Pulsewidth for voice 2 (low byte)
Pulsewidth for voice 2 (high byte)
Control register for voice 2
Attack/decay register for voice 2
Sustain/release register for voice 2
Frequency register for voice 3 (low byte)
Frequency register for voice 3 (high byte)
Pulsewidth for voice 3 (low byte)
Fulsewidth for voice 3 (high byte)
Control register for voice 3
Attack/decay register for voice 3
Sustain/release register for voice 3
Filter cutoff frequency (low byte)
Filter cutoff frequency (high byte)
Resonance/filter control register
Volume/filter mode register
Potentiometer 0 reading
Potentiometer 1 reading
Voice 3 oscillator output
Voice 3 envelope generator output
MMU (Memory Management Unit) Chip Registers
Configuration register
Preconfiguration register A
Preconfiguration register B
Preconfiguration register C
Preconfiguration register D
Mode configuration register
RAM configuration register
Page 0 page pointer
Page 0 block pointer
Page 1 page pointer
Page 1 block pointer
MMU version register

Chip External Registers

VDC address/status register
VDC data register
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VDC Chip Internal Registers

2 $02
3 $03
i $04
5 $05
6 $06
7 $07
8 $08
9 $09
10 $0A
11 SOB
12 $0C
13 SOD
14 $0E
15 $0F
16 $10
17 $11
18 $12

Total number of horizontal character positions
Number of visible horizontal character positions
Horizontal sync position
Horizontal and vertical sync width
Total number of screen rows
Vertical fine adjustment
Number of visible screen rows
Vertical sync position
Interlace mode control register
Number of scan lines per character
Cursor mode control
Ending scan line for cursor
Screen memory starting address (high byte)
Screen memory starting address (low byte)
Cursor position address (high byte)
Cursor position address (low byte)
Light pen vertical position
Light pen horizontal position
Current memory address (high byte)
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19
20
21
22
23
24
25
26
27
2$
29
30
31
32
33
34

as36

55296
CIA (Complex
56320
56321
56322
56323
56324
56325
56326
56327
56328
56329
56330
56331
56332
56333
56334
56335

CIA (Complex
56576
56577
56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588
56589
56590
56591
56832-57087
57088-57343

$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20
$21
$22
$23
S24

$D800
Interface Ada]
$DC00
$DC01
SDC02
SDC03
$DC04
$DC05
$DC06
$DC07
$DC08
$DC09
$DC0A
$DC0B
$DC0C
SDCOD
$DC0E
$DC0F

Interface Ada]
$DD00
$DD01
SDDO2
$DD03
$DD04
$DD05
$DD06
$DD07
$DD08
$DD09
$DD0A
$DD0B
$DD0C
$DD0D
$DD0E
$DD0F
$DE00-$DEFF
$DF00-$DFFF

Current memory address {low byte)
Attribute memory starting address (high byte)
Attribute memory starting address (low byte)
Character horizontal size control register
Character vertical size control register
Vertical smooth scrolling and control register
Horizontal smooth scrolling and control register
Foreground/background color register
Address increment per row
Character set address and memory type register
Underline scan line position register
Number of bytes for block write or copy
Memory read/write register
Block copy source address (high byte)
Block copy source address (low byte)
Beginning position for horizontal blanking
Ending position for horizontal blanking
Number of memory refresh cycles per scan line

VIC color memory (two blocks)
Adapater) Chip #1

Port A data I/O register
Port B data I/O register
Port A data direction register
Port B data direction register
Timer A latch/counter (low byte)
Timer A latch/counter (high byte)
Timer B latch/counter (low byte)
Timer B latch/counter (high byte)
Time-of-day dock (1/10 seconds)
Time-of-day clock (seconds)
Time-of-day Hock (minutes)
Time-of-day clock (hours)
Serial data register
Interrupt control register
Control register A
Control register B

Port A data I/O register
Port B data I/O register
Port A data direction register
Fort B data direction register
Timer A latch/counter (low byte)
Timer A latch/counter (high byte)
Timer B latch/counter (low byte)
Timer B latch/counter (high byte)
Time-of-day clock (1/10 seconds)
Time-of-day clock (seconds)
Time-of-day clock (minutes)
Time-of-day clock (hours)
Serial data register
Interrupt control register
Control register A
Control register B
I/O Expansion Slot #1
I/O Expansion Slot #2
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KEC (RAM Expansion Con in
57088
57089
57090
57091
57092
57093
57094
57095
57096
57097
57098

53248-57343

Chapter
57344
57419
57430
57435
57459
57491
57549
57609
57820
57840
57892
57922

57931
57963
58052
58055
58104
58171
58174
58252
58430
58578
58583
58592
58601
58627
58645
58662
58693
58702
58711
58720
58729
58739

58783

58812
58819

SDF00
$DF01
$DF02
$DF03
$DF04
$DF05
$DF06
$DF07
$DF08
$DF09
$DF0A

$D000-$DFFF

9: Kerna
$EO00
$E04B
$E056
$E05B
E073
$E093
$E0CD
$E109
$E1DC
$E1FO
$E224
$E242

$E24B
$E26B
$E2C4
$E2C7
$E2FS
$E33B
$E33E
$E38C
$E43E
$E4D2
$E4D7
$E4E0
$E4E9
$E503
$E515
$E526
$E545
$E54E
$E557
$E560
$E569
$E573

$E59F

$E5BC
$E5C3

Controller) Chip Registers
Status register
Command register
System RAM base address (low byte)
System RAM base address (high byte)
Expansion RAM base address (low byte)
Expansion RAM base address (high byte)
Expansion RAM bank
Count of bytes to transfer (low byte)
Count of bytes to transfer (high byte)
Interrupt mask register
Address control register

Character pattern ROM (bank 14)

Performs power-on/reset sequence
Table of default MMU register settings
Restores Kemal indirect vectors to their default values
Loads or copies Kernal indirect vector values
Table of default Kernal indirect vector values
Initializes zero page and Kemal pointers
Initializes all RAM-resident Kernal routines
Initializes I/O chip registers
Initializes 80-column video chip registers
Initializes or jumps through the soft reset vector
Initializes the soft reset vector
Checks for the presence of 64 cartridges or 128 func-
tion ROMs
Switches the system into 64 mode
Logs 128 function ROMs
Initialization test pattern
Table of default VIC chip register values
Table of default 8563 chip register values
Sends TALK command to a serial device
Sends LISTEN command to a serial device
Sends buffered byte to a serial device
Reads a byte from a serial device
Sends secondary address after LISTEN
Allows the serial bus ATN output line to go high
Sends secondary address after TALK
Performs talk-listen turnaround
Sends a byte to a serial device
Sends UNTALK command to a serial device
Sends UNLISTEN command to a serial device
Allows serial bus CLK output line to go high
Fulls serial bus CLK output line low
Allows serial bus DATA output line to go high
Pulls serial bus DATA output line low
Reads the serial bus DATA and CLK input lines
Disables IRQ interrupts and standardizes timing dur-
ing I/O operations
Reenables interrupts and restores clock mode after
I/O operations
Performs fast serial turnaround
Sets serial device for fast serial input
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58838
58875
58879
58907
58948
58954
59007
59022
59037
59058
59074
59092
59103
59177
5922B
59285
59342
59372

59397
59472

59492
59512
59561
59600
59673
59776
59783
59802
59838
59848
59871
59881
59890
59899
59925
59928
59942
60047

60065
60139
60753
60762
60777
60816
60974

61015

61077
61083
61104
6U11
61121

SE5D6
$E5FB
$E5FF
$E61B
$E644
$E64A
$E67F
$E68E
$E69D
$E6B2
$E6C2
SE6D4
$E6DF
$E729
$E75C
$E795
$E7CE
$E7EC

$E805
$E850

$E864
$E878
$E8A9
$E8D0
$E919
$E980
$E987
$E99A
SE9BE
$E9C8
$E9DF
$E9E9
$E9F2
$E9FB
$EA15
$EA18
$EA26
$EA8F

$EAA1
$EAEB
$ED51
$ED5A
$ED69
$ED90
$EE2E

$EE57

$EE95
$EE9B
$EEB0
$EEB7
$EECI

Sets serial device for fast serial output
Sets serial device for fast serial input or output
Prepares next bit for RS-232 transmission
Prepares parity and stop bits
Prepares to send a stop bit
Prepares to transmit next byte
Sets CIA interrupt register and RS-232 activity flag
Computes bit count for the RS-232 operation
Processes received bits
Tests for stop bit
Prepares to receive next byte
Tests for start bit
Stores received character in buffer and checks parity
Handles CKOUT for RS-232 device
Handles BSOUT for RS-232 device
Handles CHKIN for RS-232 device
Handles GETIN for RS-232 device
Disables RS-232 activity during tape or serial bus
operations
Handles NMI interrupts for RS-232
Table of baud rate timing constants for NTSC
systems
Table of baud rate timing constants for PAL systems
Reads a bit from RS-232 device
Initiates reception of RS-232 byte
Reads next header block from tape
Writes a header block to tape
Loads and tests cassette buffer address
Sets buffer address as block address
Searches for a specified header
Checks for cassette buffer filled or emptied
Requests PLAY button if necessary
Checks tape buttons
Requests RECORD and PLAY buttons if necessary
Reads next header or data block from tape
Reads or verifies a block from tape
Writes a header or data block to tape
Writes a block to tape
Initiates tape I/O operation
Checks for RUN/STOP keypress during tape
operations
Sets timer A to check FLAG interrupts
Reads or verifies a block of data from tape
Loads working pointer with starting address
Initializes tape variables between each byte
Initiates writing of a tape half-dipoie
Writes a block of data to tape
Writes a leader to tape and prepares to write a data
block
Restores IRQ vector and operating modes after tape
operation
Ends tape write interrupts
Loads IIRQ vector for tape operation
Turns cassette motor off
Tests whether ending address has been reached
Increments the working pointer
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61128
61136
61163
61190
61224
61276
61287
61305
61332
61367
61373
61430
61504
61616
61643
61702
61735
61772
61805
61832
61S65
61903
61924
61954
61970
61986
61990
62013
62053
62075
62246
62369
62442
62616
62630

62642

62650
6266]
62723
62735
62771
62782
62817
62878
62901
62908
62920
62968

63037
63070
63077
63086
63100

$EEC8
$EED0
$EEEB
$EF06
$EF28
$EF5C
$EF67
$EF79
$EF94
$EFB7
SEFBD
$EFF6
JF040
$F0B0
$F0CB
$F106
$F127
$F14C
SF16D
$F188
$F1A9
$F1CF
$F1E4
$F202
$F212
$F222
$F226
$F23D
$F265
F276
$F326
$F3A1
$F3EA
$F496
$F4A6

SF4B2

SF4BA
SF4C5
$F503
SF50F
$F533
SF53E
$F561
SF59E
$F5B5
$F5BC
$F5C8
$F5F8

$F63D
$F65E
$F665
$F66E
$F67C

Handles FLAG interrupts for tape
Controls tape motor interlock
Retrieves a byte from the current input device
Accepts a byte from the current input device
Accepts a byte from tape
Accepts a byte from a serial device
Accepts a byte from RS-232
Sends a byte to the current output device
Sends a byte to tape
Sends a byte to the RS-232 port
Opens a logical file to a specified device
Opens a file for input or output to tape
Opens a file for RS-232 communications
Sets up CIA #2 ports for RS-232 communications
Opens a file for serial bus communications
Sets the current input file for GETIN and BASIN
Prepares a serial device file for input
Sets the current output file for BSOUT
Prepares a serial device file for output
Closes a specified logical file
Closes a tape file
Closes a file on a serial device
Removes an entry from the logical file tables
Checks whether a file is already open
Loads parameters for a logical Sle
Clears file table entries
Resets default I/O channels
Closes all open files for a specified serial device
Loads or verifies a program file from disk or tape
Loads or verifies a file from a serial device
Loads or verifies a program file from tape
Attempts to set up fast serial load or verify
Loads or verifies a file using fast serial burst mode
Handles read error during burst mode load/verify
Stops burst mode load/verify if RUN/STOP key
pressed
Aborts burst mode load/verify if maximum address
exceeded
Reads a byte using fast serial hardware
Loads or verifies a block of data using burst mode
Toggles state of serial bus CLK line
Displays SEARCHING FOR message
Displays LOADING or VERIFYING message
Saves a block of memory to tape or disk
Saves a block of memory to a serial device
Closes a file on a serial device
Aborts LOAD or SAVE to serial device
Displays SAVING message and filename
Saves a block of memory to tape
Updates jiffy timers and checks RUN/STOP key
column
Scans RUN/STOP key column
Reads the software jiffy clock
Sets the software jiffy clock
Tests for a RUN/STOP keypress
Handles Kemal I/O errors
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63152
63262
63281

63288

63295
63300
63324
63327
63331
63346
63361
63366
63389
63397
63406
63420
63423
63433
63436
63440
63450
63459

63468

63472
63488
63591

63632
63883
63923
63995
64008
64023
64064
64101
64128

$F6B0
$F71E
$F731

SF738

$F73F
$F744
$F75C
$F75F
$F763
$F772
$F781
$F?86
$F79D
$F7A5
$F7AE
$F7BC
$F7BF
$F7C9
$F7CC
$F7D0
$F7DA
$F7E3

$F7EC

$F7F0
$F800
$F867

SF890
$F98B
$F9B3
$F9FB
$FA08
$FA17
$FA40
$FA65
$FA80

M M U (Memory Management
65280
65281
65282
65283
65284
65285

65303
65331
65341
65351
65354
65357
65360
65363
65366

5FF00
$FF01
$FF02
$FF03
$FF04
$FF05

$FF17
$FF33
SFF3D
$FF47
$FF4A
$FF4D
$FF50
$FF53
SFF56

Table of Kernal control messages
Handles Kemal control messages
Sets the length and address of filename for I/O
operations
Sets logical file number, device number, and second-
ary address for I/O operations
Sets data and filename banks for I/O operations
Reads the tape/serial or RS-232 status byte
Sets the Kemal message control flag
Sets the IEEE timeout flag
Sets or reads the system's top-of-memory pointer
Sets or reads the system's bottom-of-memory pointer
Returns base address of I/O block
Checks whether a secondary address value is used
Checks whether a logical file number value is used
Performs a DMA operation
Retrieves a character from the current filename
Writes a byte value to memory
Writes a byte value to memory
Reads a byte value from memory
Reads a byte value from memory
Retrieves a character from any bank
Stores the accumulator contents in any bank
Compares the accumulator contents with a value
from any bank
Translates a bank number into an MMU register
setting
Table of MMU register settings for standard banks
Code for Kemal RAM-based subroutines
Initializes function ROMs and attempts to boot a disk
in the default drive
Attempts to boot a disk
Resets the disk drive
Loads additional b< Jt sectors
Converts a byte value into two ASCII digits
Table of disk commands for booting
Handles PRIMM (print immediate) function
Handles NMI interrupts
Handles IRQ interrupts
Standard keyboard decoding tables

Unit) Chip Registers
Configuration register
Load configuration register A
Load configuration register B
Load configuration register C
Load configuration register D
Jump to NMI handler routine

Jump to IRQ or BRK handler routine
Common exit routine for all interrupt routines
Jump to reset handler routine
Entry point for the Kemal SPIIsLSPOUT routine
Entry point for the Kemal CLOSF_J\LL routine
Entry point for the Kemal C64—MODE routine
Entry point for the Kema! DMA_CALL routine
Entry point for the Kemal BOOT_CALL routine
Entry point for the Kemal PHOENIX routine
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65369
65372
65375
65378
65381
65384
65387
65390
65393
65396
65399
65402
65405
65409
65412
65415
65418
65421
65424
65427
65430
65433
65436
65439
65442
65445
65448
65451
65454
65457
65460
65463
65466
65469
65472
65475
65478
65481
65484
65487
65490
65493
65496
65499
65502
65505
65508
65511
65514
65? 17
65520
65523
65528
65530
65532
65534

$FF59
$FF5C
$FF5F
$FF62
$FF65
$FF68
$FF6B
$FF6E
$FF71
$FF74
$FF77
$FF7A
$FF7D
$FF81
$FF84
$FF87
$FF8A
SFF8D
$FF90
$FF93
$FF96
$FF99
$FF9C
$FF9F
$FFA2
$FFA5
$FFA8
$FFAB
$FFAE
$FFB1
$FFB4
$FFB7
$FFBA
$FFBD
$FFC0
$EFC3
$FFC6
$FFC9
$FFCC
$FFCE
$FFD2
$FFD5
$EFD8
$FFDB
$FFDE
$FFE1
$FFE4
$FFE7
$FFEA
$FFED
$FFF0
$FFF3
$FFF8
$FFFA
SFFFC
$IH1:

Entry point for the Kernal LKUPLA routine
Entry point for the Kernal LKUTSA routine
Calls the screen editor SWAPPER routine
Calls the screen editor INIT80 routine
Calls the screen editor KEYSET routine
Entry point for the Kemal JSETBNK routine
Entry point for the Kemal GETCFG routine
Entry point for the Kernal JSRFAR routine
Entry point for trie Kemal JMPFAR routine
Entry point for the Kemal INDFET calling routine
Entry point for the Kemal INDSTA calling routine
Entry point for the Kemal INTJCMP calling routine
Entry point for the Kemal PRIMM routine
Calls the screen editor CINT routine
Entry point for the Kernal IOINIT routine
Entry point for the Kemal RAMTAS routine
Entry point for the Kemal RESTOR routine
Entry point for the Kemal VECTOR routine
Entry point for the Kemal SETMSG routine
Entry point for the Kemal SECOND routine
Entry point for the Kemal TKSA routine
Entry point for the Kemal MEMTOP routine
Entry point for the Kernal MEMBOT routine
Calls the screen editor SCNKEY routine
Entry point for the Kemal SETTMO routine
Entry point for the Kemal ACPTR at routine
Entry point for the Kemal C1OUT routine
Entry point for the Kemal UNTLK routine
Entry point for the Kemal UNLSN routine
Entry point for the Kemal L1STN routine
Entry point for the Kernal TALK routine
Entry point for the Kemal READSS routine
Entry point for the Kemal SETLFS routine
Entry point for the Kemal SETNAM routine
Entry point for the Kemal OPEN routine
Entry point for the Kemal CLOSE routine
Entry point for the Kemal CHKIN routine
Entry point for the Kernal CKOUT routine
Entry point for the Kemal CLRCH routine
Entry point for the Kemal BASIN routine
Entry point for the Kernal BSOUT routine
Entry point for the Kemal LOAD routine
Entry point for the Kemal SAVE routne
Entry point for the Kemal SETT1M routine
Entry point for the Kernal RDTIM routine
Entry point for the Kernal STOP routine
Entry point for the Kemal GETIN routine
Entry point for the Kemal CLALL routine
Entry point for the Kemal UDTIM routine
Calls the screen editor SCRORG routine
Calls the screen editor PLOT routine
Entry point for the Kernal IOBASE routine
Soft reset vector (bank 1)
Processor NMI vector
Processor reset vector
Processor BRK/IRQ vector
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Here's the complete guire to understanding the inner
workings of the Comrodore 128. Collected in this one

volume are the answe's to practically any questions you
might have about thy -vav +he Commodore 128 operates.

Moreover, the information presented here isn't just edu-
cational—it has tremendous practical value as well. Increas-
ing your understanding of how the computer operates puts
you more fully in control. Whether you program in BASIC or
machine language, or whether you are just starting out or
are an expert programmer, you'll find that this book unlocks
secrets of the 128 that will allow you to write more powerful
and more sophisticated programs. Inside you'll find:

• A complete reference to BASIC, the Kerndl, the screen edi-
tor, even the machine language monitor. Not just a list of
addresses, but detailed discussions of all the important ROM
routines.

« Thorough descriptions of all the video, sound, and Interface
chips—VIC, SID, VDC, MMU, CIA, and REC. Every register of
every chip is explained in detail.

• A clear and straightforward explanation of how the 128's
elaborate memory management system operates, and how
you can create your own custom memory configurations.

• Hundreds of suggestions and hints on how to take full ad-
vantage of the 128's enhanced capabilities.

- Examples of ways you can modify and improve the per-
formance of your computer, including how to add new
statements to BASIC and how to customize Kernal functions.

• Explanations of the bugs in BASIC and the Kernal, and how
to avoid them.

If you've mastered the fundamentals of your 128 and are
seeking to expand your knowledge of this powerful, versatile
system. Mapping the Commodore 128 can be your guide, If
you're a veteran programmer who moved up to the 128
after years of experience on an older Commodore model,
this book will help you adapt your established techniques to
your new machine. For advanced programmers. Mapping
the Commodore 128 provides a wealth of ideas for exciting
new programming projects, Much of the information gath-
ered here is available elsewhere only in bits and scraps, if at
all. You'll want to keep a copy close at hand every time you
turn on your 128,
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