CAN COUNT ON l"ﬂ(fqtq \ \.'\
LIS [ty \
re 2l

THE ANATOMY OF THE

1541 DISK DRIVE

A Complete Guide to Using
The Commodore Disk Drive

Authors: Lothar Englisch
Norbert Szczepanowski
Edited by: Greg Dykema
Arnie Lee

ABACUS SOFTWARE
P.O. BOX 7211
GRAND RAPIDS, MI 49510

Second English Printing, June 1984
Printed in U.S.A
Copyright (C)1983 pata Becker GmgH
Merowingerstr. 30
4000 Dusseldorf W. Germany
Copyright (C)1984 Abacus Software
P.O. Box 7211
Grand Rapids, MI 49510

This book 1s copyrighted. No part of this publication may be
reproduced, stored 1n a retrieval system, or transmitted in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of ABACUS Software, Inc.

ISBN 0-916439-01-1

PREFACE

The VIC-1541 disk drive represents a very efficient external
storage medium for the Commodore user. It is an affordable
peripheral., In order to get the most from your 1541, you
need the appropriate information. In months of 1long,
detailed work, Lothar Englisch and Norbert Szczepanowski
have discovered many secrets of the 1541,

This book progresses from simple storage techniques, to
direct access commands , to program chaining techniques.
Beginners will welcome the numerous sample programs that are
fully explained in clear text. Machine language programmers
will particularly like the detailed documentation listing of
the Disk Operating System (DOS).

This book contains many useful and ready-to-run programs
that need only be typed in, Some of these programs
are: routines for extending BASIC, helpful routines such as
spooling, efficient address management, a complete household
budget planner and an easy-to-use DOS monitor to manipulate
individual sectors. Have fun with this book and your VIC-
1541 disk drive.

TABLE OF CONTENTS

Chapter 1: Programming the VIC-154l...ccceveevcsccassssscasl

1.1

Getting Started.c.ceeccescscssesssssosesssesssoscssasnnsl
1.1.1 The Disk Operating SySteM...seeecesoesocscocssesl
1.1.2 The TEST/DEMO Diskett@..cceececesccsassscseacenssl
1.,1.3 Formatting New DisketteS....eeveccecsccsoscessoss?
1.1.4 Some Facts about a 1541 Diskette..,cieeeseeseose3
ing Programs on DisSkett@....eoceessssocsvscssocsoceed
1 SAVE - Storing BASIC ProgramSe..cesscccseccessceed
2 LOAD - Loading BASIC ProgramS...cseessssosoecsssd
3 VERIFY - Checking Stored programS..ceescsccsssesd
4 SAVE "@:..." Replacing ProgramS..seecesesceassesd
5 Loading Machine Language ProgramS....sesessssessb
6 Storing Machine Language ProgramsS....seceeeesseee’

-

k System COmMandS.sssceoeeseessoessescsssscassonsassll
Transmitting Commands to the Disk Drive........10
NEW - Formatting DisketteS...seescoseescsvessssll
Reading the Error Channel......ceveevsosaacseassl2
LOAD "S$",8 Loading the Directorye.sseecsoesscessl3
SCRATCH - Deleting FileS.eeaceecocssscosonnsoasold
RENAME - Renaming FileS..eeeeseescssesnoseessasld
COPY - Copying FileS.uiesesacseseccsessasssacesaslh
INITIALIZE - Intitializing the Diskette........16
VALIDATE - "Cleaning up" the Diskette..........1l7

0?2 * - The Wildcards.....eoeesvavecesnassaasaasl8

« 2 e o 3 s s e
WWwwWwwwwwwww
« » s ° s e e s e o
O 0 JO N WK

o b bt bt b e b b b b)

ential Data StOrag€...ceesseccscesocccscansccsesas20
1 The Principle..ceccsscsnsacseccssscacsascsacsseesll
2 OPENing a Sequential File,...cco0coceascsscssces2l
3 Transferring Data between Disk and Computer....24
4 Adding Data to Sequential FileS...cosesscssssse2?
S CLOSEing a Sequential File,..ecevevessccsoacsaas28
6 Redirecting the Screen OULPUt....ceevesassassss2?
7 Seqguential Files as Tables in the Computer.....30
8 Searching TableS.c.sececsssssssesssacacsocnnenasl?
9 Simple Sorting of Tables.c.veceerececaasaaeseeal3d
10 Mailing List Management with Sequential

Data StOrag€..ccescsscacnsecsascsssscsacsonas3d8
1.,4.11 Uses for Sequential StOrag€...seeacsssasnsccecssdd

t

1 The Principle.i.icceessseescscacssacasconsasosasdb
2 The Advantage over Sequential Storage..........47
3 OPENing a Relative File....eececveccoacocncasscd?
4 Preparing the Data for Relative Storage........50
5 Transferring Dat@.ccsceocsoessccesasenssseaoseaead2
6 CLOSEing a Relative File....cceceecscsvocsssessd5
7 Searching Records with the Binary Method..,....55
8 Searching Records with a Separate Index File...58
9 Changing RECOYAS.ssssssnsncsvacssscsscasncsssasebl
10 Expanding a Relative Fil€..seesecsessececnnssesb2

1.6

1.7

1.5.11 Home Accounting with Relative Data Storage.....64
Disk Error Messages and their CausSeS....eeeesecesacecaT?2

Overview of Commands with a Comparison of
BASIC 2.0 - BASIC 4.0 = DOS S5.lcciascescccssnssecnsall

Chapter 2: Advanced Programming....ceceeevesscceeconsacesaB2

2.1
2.2

The Direct Access of any Block of the Diskette..,.....82

The Direct Access COmMAandS...eececessssssecssasssassess86
2.2.1 The Block-Read CommMand...ceeeeeosoccesascencceeBb
2.2.2 The Block-Pointer COmMMaNnd.sssscecesseossonansaasl?
2.2.3 The Block-Write Command....veceeceocesasseseass88
2.2.4 The Block-Allocate Command. ..cceeceesescaansease89
2.2.5 The Block-Free Command...ceceeececccssocascsacssd0
2.2.6 The Block-Execute Command..c.veeececesessecnseassll

Uses Of Direct ACCeSS.esirrsecccosscocasosncnossssonsesd?

Accessing the DOS - The Memory COMMaNAS...csvoesceesssd
2.4.1 The Memory-Read COMMand...sssseeccassacsconssassdd
2.4.2 The Memory-Write COmmand...cceeeseesecceccnnesed5
2.4.3 The Memory-Execute Command....eeeeeossscessassadB
2.4.4 The User COMManNdS...ceesaceosasscascevosasaanead?

Chapter 3: Technical INformatioN.cieecaecesssssscascanesesd9

3.1

The Construction the VIC=154l..cceeceacrsconccncsccaceasdl
3.1.1 Block Diagram of the Disk Drive...ceseeccceoescse99
3.1.2 DOS Memory Map — ROM, RAM, I/0.¢cevvcescasasranl00

Operation of the DOS = AN OVErVieW....eeesscoconsesssl04

The Structure of the Diskette...cieesessscsscencassasllf
3.3.1 The BAM of the VIC 154]..ccetencencaccscnsssaslf
3.3.2 The DirectOry.scceeeseeescescessoessscccscensall?
3.3.3 The DirecCtory FOrmat.ceeecesesssasssceaancesesl09

The Organization of Relative FileS.,..eceeecenoecscsssalld

DOS 2.6 ROM LiStingS.cueesesescecssessscesssossceassall8

Chapter 4: Programs and Tips For Utilization

4.1

Of the VIC-1541..cccttneacscnnsesassnceansennasa269

Utility PrOQramS...eeeseceesssossscossssassccsccnnsas2b9
4.1.1 Displaying all File ParameterS..ceccececacess 269
4.1.2 Scratch-protect Files - File Protect...eee... .273
4.1.3 Backup Program - Copying a Diskett€...........278
4,1.4 Copying Individual Files to another Diskette..280

4.1.5 Reading the Directory from within a Program...281

Utility Programs on the TEST/DEMO DiSKaeeeseo....283
el DOS 5.)lcesecccsoosossescersanorrrsesscssensecssl83
e2 COPY/ALL.useeoonnsocosoosensnasossenssanceseans2Bd
+3 DISK ADDR CHANGE .. .uicueeosososossnnassancnneee2Bl
44 DIRutceesuoseessnsoesscocssnnssasorannacssrsossalbS
5 VIEW BAM..voeeeosesoosacscsnnsavecassseasennsss2B5
¢6 CHECK DISK.ssssssasonasoesassasssssasnacranesesB5
+7 DISPLAY T&Sevacevcesscossvunenssonsannseasaces286
+8 PERFORMANCE TESTesseavecssescncoonsssnsssnsassB6

Easy Use of the 1541...c000cneenccccasconcases?87
4.3.1 Input Strings of desired Length from the Disk.287
4,.,3.2 Easy Preparation of Data ReCOrdS...eesecessess290
4.3.3 Spooling - Printing Directly from the Disk....295

overlay Technique and Chaining
Machine Language ProgramS....esesocesecssacses2d9

Merge - Appending BASIC ProQramS...eecescscsscsessess302

Disk-Monitor for Commodore 64 and VIC 20.....000000..304

Chapter 5: The Larger CBM DiskS..ieiseeecosccocssascaceess3l?

5.1

5.2

IEEE-Bus and Serial BuS.....eveeevsccssssssescessenssll?

Comparison of all CBM DiSk DriveS...cccceoessecessses3ld

Anatomy of the 1541 Disk Drive

Chapter 1l: Programming the VIC-1541

1.1 Getting Started

There it sits, your new Commodore VIC-1541 disk drive., It's
fast and efficient but also intimidating. But have no fear.
We will 1nstruct you in the ways of disk programming. The
first part of this book gives the beginner an intensive look
at the VIC-1541. At least one example follows each command,
thereby explaining its functions and capabilities., You will
be surprised how easy the operation of your disk drive can
be, when you understand the "basics".

The beginner probably uses the disk drive mainly to store

programs, Perhaps he has not realized that there are many

other ways to use the disk drive. This book attempts to
gsMncover these other ways.

Experienced programmers should not ignore the first chapter.
There may be some seefions that may shed light on disk
usage. This is especially true concerning relative files and
data management.

1.1.1 The Disk Operating System

The disk drive is a rather complicated device which
coordinates mechanical hardware and electronic circultry to
allow the storage of data on the diskette, When the
Commodore 64 or VIC-20 needs to read from or write to the
disk drive, it sends commands to the disk drive along the
heavy black cable that connects the drive to the computer,
The commands sent by the Commodore 64 or VIC-20 are under-
stood at the disk drive by a by a built in program called
.the«Disk Operating System (DOS).

The DOS 1s a lengthy program contained on ROM in the disk
drive and carries out the activities of the disk drive as ,
commanded by the Commodore 64 or VIC-20., The version of DOS
contained in the VIC~1541 carries the designation CBM DOS
V2.6.

The Commodore 64 and VIC-20 contain a version of BAS1C
called COMMODORE BASIC 2.0, Other versions of BASIC (e.g.
BASIC 4.0 found of the Commodore 8032) have more advanced
disk commands which the VIC-1541 can also understand. In
order to use these advanced disk commands, you have to
simulate them using BASIC 2.0.

At the end of the chapter is a listing of the BASIC 2.0

Anatomy of the 1541 Disk Drive

commands with corresponding commands of the easier BASIC
4.0, as found on the larger Commodore computers,

1.1.2 The TEST/DEMO Diskette

The VIC-1541 disk drive is packaged with a diskette called
TEST/DEMO. Some of the programs contained on it cannot bhe
used without adequate knowledge of the way the disk drive
works. For now, lay this diskette aside.

The TEST/DEMO diskette is described in detail later.

1.1.3 Pormatting New Diskettes TN

N v L
Brand new diskettes must be prépared before using them to
store data. Preparing them is called formatting.

What does formatting mean? Each disk drive mechanism has its
own special characteristics., A diskette is8 divided into
tracks and information is written along each track (similar
to the grooves of a phonographic record). The number of
tracks per diskette is varies from one manufacturer to
another, Each track 1s divided into sectors, whose number
can also vary.

buring formatting empty sectors are itten to the diskette.
A sector is written to each track “sector location and
each sector receives its own "address". This allows the DOS
to identify its position on the diskette. A sector is also
given a code so that the DOS can recognize if this diskette
was formatted by this type of disk drive. The code for the
VIC-1541 disk drive is 2A. The remainder of the sector
(called a block) is used to store data aad accommodates
exactly 256 characters.

The final purpose of formatting is to construct the
directory for the diskette, The directory is a "table of
contents” of the files stored on the diskette. There is also
a special data block (called the bit availability map or
BAM) which indicates if a given block on the diskette is
already in use or available for use. The directory and BAM
are kept on track 18 of the diskette.

‘i‘ o~

4

Anatomy of the 1541 bisk Drive

1.1.4 Some Facts about a 1541 Diskette

Diskette:

Number of Tracks: 35

Sectors per Track: 17 to 21 (depending on track)

Bytes per block: 256

Total number of blocks: 683

Number of free blocks 644 (the directory occupies
the remainder)

Entries in the directory: 144 per diskette

Mechanism:

- 1ntelligent peripheral with its own processor and control
system

- connection to gerial bua<i%om CBM 64 or VIC-20, device
number 4-15 (8 standard) S W

Anatomy of the 1541 Disk Drive

1.2 Storing Programs on Diskette

The most common use of the disk drive is for storage of
programs. Storing programs with a disk drive is considerably
easier than with a cassette recorder. The greatest advantage
of the disk drive is the speed of data transfer to and from
the computer. Here's a comparison:

Saving a 3 Kbyte program takes:
- 75 seconds with the VIC-1530 Datasette
- 12 seconds with the VIC-1541 disk drive

An additional advantage 1s that a diskette can stoOre more
programs than the cassette, To load a program, you can
consult the directory S v1ew the selection of programs.
Even though the cassett# xive allows yQu to store more than
one program on a tape, r”‘for that program is very
time consuming. o

Before trying any of the follod?ng examples in this chapter,
you should remember that the diskette must be previously
formatted as explained in section 1.3.2 in order to be able
to save programs onto it.

1.2.1 SAVE - Storing BASIC Programs

programs. In this case the command prgave programs onto
diskette should be familiar to you. "SAVE command for the
disk drive is essentially the same as for the cassette
drive. You need only tell the computer that the program is
to be saved onto the disk drive and not on cassette. This
is done by adding the device number (usually 8) to the
command SAVE. Normally the drive is preset to respond to
this device number, Now write a small BASI; program and save
it with the command:

Perhaps you previously owned a datase%ée on which you stored

Cae

SAVE"TEST",8

type in a the NEW command s0 the program in the computer's
memory is erased. In the following section you will learn
how the program can be retrieved,

1.2.2 LOAD - Loading BASIC Programs

As with the SAVE command, this command is similar to the
LOAD command for the datasette with the addition of the
device number. Now load in the previously saved program
with:

Anatomy of the 1541 Disk Drive

LOAD "TEST",8

You can check the program by using the LIST command. Any
previous program in memory has now been replaced by the
program "TEST". It is possible to load a program into the
memory without replacing the previous program in memory.
Combining two program in memory is called "merging" An
example of merging is presented in a later section.

1.2.3 VERIFY - Checking Stored Programs

When you have saved a program on disk with the SAVE command,
it 15 often desirable to make sure that the program was
written error-free. You can do this by using the VERIFY
commang, It has the following format:

VERIFY"filename",8

Earlier you saved a program with SAVE "TEST",8. This pro-
gram should still be in memory. Using VERIFY, the program in
memory 1S checked against the program stored on diskette. If
both programs are identical, the computer responds with OK.

To try this out, type a few BASIC lines and then give the
following commands:

SAVE "TEST2",8
VERIFY “"TEST2",8

Your computer will respond with OK if it is performing
correctly.

Y.2.4 SAVE"@:..." - Replacing Programs

If you try to save your small TEST program on the disk
again, the computer will respond with a FILE EXISTS error
and will not complete the SAVE, The operating system of the
VIC-1541 disk drive does not allow two programs to be saved
under the same name. This is logical because the computer
would not be able to distinguish between two programs with
the same name.

However you may want to update a program on diskette that was
previously saved. There are three ways to accomplish this:

1. Save the program under a different name
2, First erase the old program from the disk and save tle
new one under the 0ld name

Anatomy of the 1541 Disk Drive

3. Use the addition @: in front of the file name in the SAVE
command

This is used as follows:
SAVE"@:TEST",8

If you forget to use the characters @: in front of the
filename, and try to save a program whose name is already
contained on the diskette, you get the FILE EXISTS error.

If you are replacing a program on a diskette then the DOS
carries this out as follows:

1. B free block is designated as the first block of the
program and its location is stored in the directory entry
of the old copy.

2. The new copy of the program is stored in a free area of
the diskette.

3. All of the blocks of the 0ld copy are marked as free.

1.2.5 Loading Machine Language Programs

Machine language programs are handled a little differently
from BASIC programs. A machine language program is trans-
ferred to the computer by using a secondary address of 1,
When secondary address 1 is used, the program is loaded
"absolutely”, that 1s, loaded into memory beginning at the
address specified in the first two bytes of the disk file.
An example:

LOAD “MACHPGRM",8,1
loads the machine language program at an absolute address.

For example, the program may be set up to load at the
decimal address 49152, and is started by the command : s¥s
49152. should you load a machine language program without
the secondary address, you will most likely see the message
“SYNTAX ERROR IN," if you type RUN.

Likewise, trying to LIST the machine language program will
display nonsense. Unfortunately, machine language programs
are not differentiated from BASIC progrars in the directory.
Both have the file type PRG.

Usually, if typing RUN results in SYNTAX ERROR IN, you
know that the program is not written in BASIC and should be
treated as a machine language program, In this case it must
be loaded with the command LOAD "program®,8,1. It cannot be

Anatomy of the 1541 Disk Drive

started with RUN however! You must first find the execution
address of this program,

In a later section is a program that lists all the file
parameters of a program., One of the parameters is a load
address. This load address 1s usually the initial execution
address of the program and can be called with the command
SYS load address. You can find the load address of a program
with the following program:

10 OPEN 1,8,2,"programname,S,R"

20 GET#1,X$:IF X$="" THEN X$=CHRS$(O0)
30 LB=ASCI(XS)

40 GET#1,X$:IF X$="" THEN XS$=CHR$(0)
50 HB=ASC(XS$)

60 CLOSE 1

70 AD=HB*256+LB

80 PRINT"LOAD ADDRESS:";AD

The program shows the load address of "programname®. Here
the program file is opened as a sequential data file, The
starting address is stored as the first two bytes of the
file and read using the GET command and appropriately con-
structed. The first byte is the low byte and the second byte
the high byte of the two-byte address. If the function of
this program is unclear, handling sequential files clarified
in the next sections,

1.2.6 sStoring Machine Language Programs

Machine language programs are usually written with an assem-
bler or a machine language monitor and saved using this
program, Machine language programs can alsO be written from
BASIC with the individual bytes of the program written in
decimal values in DATA statements, A machine language pro-
gram written in BASIC with the help of DATA statements
follows:

10 SA=starting address

20 EA=ending address

30 FOR I=SA TO EA

40 READ X

50 POKE I,PEEK(X)

60 NEXT I

80 DATA t.vevnvesvssosvnesnesssosossnssanans
90 DATA .iisecesosonsossnnssosasossnssssssos

In this example, the decimal value of the starting address
is placed in line 10 and the ending address in line 20. The
decimal values of the individual bytes of the machine
language program are typed into the DATA statements of the

Anatomy of the 1541 Disk Drive

program, separated by commas.

Naturally, you can save any machine language program that
you find in this book in the form of a BASIC program, This
is, however, a tedious and complicated process. A more
elegant and time-saving method is to store the machine
language program in true form., This way, you can immediately
execute the program after LOADing without requiring any
complicated conversion,

The following program will save such a program that is
already in memory:

10 SA=starting address

20 EA=ending address

30 OPEN 1,8,1,"programname"”

40 HB=INT(SA/256) : LB=SA-HB*256
50 PRINT#1,CHRS(LB);CHRS (HB):
60 FOR I=SA TO EA

70 PRINT#1,CHRS(PEEK(I));

80 NEXT I

90 CLOSE 1

This routine assumes that the machine language program is
already in the mewory of the computer. If a program is
already encoded into DATA statements, the following routine
can be used to produced a pure machine language program:

10 SA=starting address

20 EA=ending address

30 OPEN 1,8,1,"programname”

40 HB=INT(SA/256) :LB=SA-HB*256

50 PRINT#1,CHRS(LB);CHRS(HB);

60 FOR I=SA TO EA

70 READ X

80 PRINT#1,CHRS(X):

90 NEXT I

100 CLOSE 1

110 DATA c.ocovcessensnssccsssssnnacee
120 DATA ..ceceonsaconsssnossansoss

Here the addresses and DATA statements are filled in also.
The above program writes a machine language program to
diskette which can later be loaded with the command LOAD
*programname®,8,1. Then the program can be executed with
the command: SYS (starting address). Machine language pro-
grams can also be loaded and executed from a BASIC program,
Such a program might have this form:

10 IF A=0 THEN A=1:LOAD"programname",8,1
20 SYS (starting address)

The IF command in line 10 is puzzling at first. It must be
present because after performing a LOAD from within a pro-
gram, the BASIC interpreter begins executing again at the

Anatomy of the 1541 Disk Drive

first line of the new BASIC program, Because the machine
language program doesn't usually overlay the BASIC program
in memory, the original BASIC program remains intact and is
therefore 1s re-executed, If you use the routine:

10 LOAD"programname",8,1
20 SYS (starting address)

the program continues to LOAD “"programname" again, and the
SYS command 1s never executed. If the variable A is present,
the program branches to line 20 at the end of the first
command on line 10. This loader can be placed on the
diskette together with the machine language program. To
execute the machine language program, you need only give the
commands:

LOAD" loader”,8
RUN

This has the advantage that the starting address of the
machine language program need not be known, because 1t is
included in the SYS of the loader.

Anatomy of the 1541 Disk Drive

1.3 Disk System Commands

As already mentioned, the VIC-1541 disk drive is similar to
the the earlier, larger disk drives of the Commodore family
- the CBM 4040, 8050, 8250. They are all intelligent peri-
pheral device with their own processor and control system.
The Disk Operating System (DOS) occupies no space in the
memory of the Commodore 64 or VIC-20 and yet offers a flex-
ible set of efficient commands, These commands effectively
expand the builtin commands of your Commodore computer,

Because the disk drive is an intelligent peripheral, the
commands of the DOS can be executed independently of the
computer. But because the commands are not found in the
version of BASIC supplied 1in the Commodore 64 or VIC-20,
you will have to communicate to the disk using a special
method, When the commands are sent to the disk drive, the
DOS interprets and carries out the desired task.

1.3.1 Transmitting commands to the Disk Drive

Commands intended for the disk drive, are sent over a
channel, You can communicate with the disk drive over any of
the 15 available channels. But channel 15 is reserved as the
command channel. Data transfer over this channel takes place
as follows:

~ opening the channel (OPEN)
- data transfer (PRINT)
- close the channel (CLOSE)

In the OPEN command you specify a logical file number
(arbitrary between 1 and 127), a device number of the disk
drive (usually 8) and the secondary address (15 for the
command channel). You can also send a command to the device
as 1llustrated below:

OPEN 1fn,8,15,"command"
or
OPEN 1£n,8,15:PRINT#1£fn,"command”

The number 8 1s the device number of the disk drive and the
number 15 1s the secondary address or channel number. The
parameter 1fn is the logical file number which is used 1in
subsequent commands (PRINT#, INPUT4#, GET#). It can be a
number in the range 1-127. The "command" can either follow
the OPEN statement directly, or can be transferred with a
PRINT# command following the opening. Any number of system
commands can be transmitted until the channel is closed, but
must be referenced by the logical file number used in the
OPEN command.

10

Anatomy of the 1541 Disk Drive

1.3.2 NEW - Formatting Diskettes

The command to format a diskette is called NEW and can, as
every other command, be abbreviated to i1ts first letter (N).
As already mentioned, the command can follow an OPEN command
or be given in a PRINT# command. The NEW command has the
following format:

NEW:diskname, id

The parameter diskname may contain up to 16 characters and
is stored in the header of the diskette directory. The
parameter ID (identification) consists of two arbitrary
characters, so that the DOS can recognize if a different
diskette has been used. Since you can freely choose the 1id,
this allows you to uniquely 1dentify each diskette. Here is
an example for formatting a disk:

OPEN 1,8,15,"NEW:ABCDISK,KL"
The command can be abbreviated to:
OPEN 1,8,15,"N:ABCDISK,KL"

You need only use the command once - when you first use a
brand new diskette, Formatting takes about 80 seconds. For-
matting uses the processor of the 1541 drive while the
processor of the computer is not needed: you can continue to
work with the computer.

To use the command with a PRINT# statement, the following
commands must be given:

OPEN 1,8,15 to open the channel
PRINT#1,"N:ABCDISK,KL"

The number 1 in the PRINT# command is the logical file
number corresponding to the OPEN command. Other commands may
also be transmitted over this channel after the PRINT#
statement. When no more commands are to be transmitted, the
channel must be closed. This 1s accomplished through the use
of the CLOSE statement. Give the following command after
formatting:

CLOSE 1

Now the command channel is closed., The number 1 1s again the
logical file number of the corresponding OPEN command.

11

Anatomy of the 1541 Disk Drive

1.3.3 Reading the Error Channel

When the Commodore 64 or VIC~20 1s incorrectly programmed,
it responds with an error message. Disk commands are carried
out and verified by the processor of the disk drive.
Therefore the computer cannot directly display error
messages that are detected by the disk drive. Errors are
indicated by the flashing red LED on the disk drive, In
order to determine which error has occurred, the computer
must read the error from channel 15. Therefore channel 15
rust be OPENed, if this has not already been done. Then the
error can be read with the INPUT# command, An error is sent
back to the computer in four fields -

Field 1: Error number

Field 2: Description of the error (string)
Field 3: Track number

Field 4: Sector number

The track and sector information may indicate where the
error occurred (1f these fields are relevant to the
command), These four fields of the error message must be
read into four variables. You can use an INPUT# statement
followed by four variables. An example of reading the errcr
channel:

OPEN 1,8,15 (1f not already done)
INPUT#1,EN,DES, TR,SE
CLOSE 1

The INPUT# statement must be entered from within a program.
It is not proper to issue an INPUT# statement from command
mode.

10 OPEN 1,8,15

20 INPUT#1,EN,DES,TR,SE

30 PRINT EN;DES;TR:SE (to display the error)
40 CLOSE 1

To understand the operation of this program, first create
the following error:

OPEN 1,8,15,"NEW ABCDISK,T1"
CLOSE 1

When you have given these commands, the red LED on the disk
drive begins to blink. Did you spot the error? A colon is
missing from the command NEW. Now type the program to read
the error channel and type RUN. The error will appear on the
screen:

34 SYNTAX ERROR 0 O

The 34 1s the number of the error, which is explained later.
The track and sector fields are 0 because this information

12

Anatomy of the 1541 Dpisk Drive

is not relevant to this error.

If you read the error channel when an error had not
occurred, the message:

OOKO O

is returned. In any case, if the red LED on the drive
blinks, check the syntax of the command, since most errors
can be easily recognized, Otherwise, you can simply read the
error channel to find the error which the DOS has detected.
A detailed description of the error message and their causes
follows in section 1,6.

1.3.4 LOAD"$",8 - Loading the Directory

The directory is a "table of contents" of the diskette. All
the files on the diskette are cataloged here, Be sure to
note that loading the directory has a disadvantage: any
program previously in memory is overlayed by the directory
information. The directory is loaded by typing:

LOAD "$*",8

and can be viewed with the LIST command. Try LOADing the
directory of the TEST/DEMO diskette that accompanies your
disk drive. 1Insert this diskette into the disk drive and
enter: LOAD "$",8 to load the directory. Then display the
directory by using the LIST command. What follows should be
shown on the screen

0 "1541ltest/demo " zx 2a
13 "how to use" prg
5 "how part two" prg
4 “vic-20 wedge" prg
1 "c-64 wedge" prg
4 "dos 5.1" prg
11 "copy/all" prg
4 "disk addr change" prg
4 "dir” prg
6 "view bam" prg
4 "check disk" prg
14 "display té&s" prg
9 "performance test" prg
5 "sequential file" prg
13 "random file" prg

A lot of i1nformation is kept in the directory. Let's look at
the first line, the header of the directory. The number 0 in
this line means that the directory is of the diskette in
drive 0, Other disk drives such as the 4040, contain two
disk drives -~ drive 0 or drive 1. ©On the 1541 the drive

13

Anatomy of the 1541 Disk Drive

number is always 0. Next follows the name and ID of the
diskette as set up by formatting. The characters 2A sym-
bolize the disk format. If this format is not 2A then this
diskette was not formatted with a 1541 drive.

Next are the individual file names, their lengths in blocks
in the first column and the file type in the last column.
This diskette contains three different file types:

PRG These are PROGRAM files, written in either
BASIC or machine language

SEQ Sequential data files, explained later

REL This is another form of data storage, also
explained later

The length of the files is given in blocks. Each block
contains 256 bytes. You can find the approximate size a
program, by subtracting 2 bytes from each 256-byte block
that the file occupies. Finally at the end of the directory
is the number of free blocks remaining on the disk. When you
add the lengths of the files and the number of free blocks,
the result is the total number of available blocks on a
diskette (664),

If you own a printer, this directory can be printed as you
would print a program listing. Use the following commands:

OPEN 1,4 open the printer

CMD 1 the printer is now linked to the
screen

LIST the directory will be printed

PRINT#1 send a RETURN to the printer

CLOSE 1 close the printer again

It is assumed that the directory 1s already loaded with the
LOAD®"$",8 command before these commands are executed. By
inserting a wildcard when loading the directory, you can
cause only part of the directory to be loaded, such as only
the programs. This 1s explained in section 1.3.10

1.3.5 SCRATCH -~ Deleting Files

Sometimes an unneeded file must be removed from the
diskette. The SCRATCH command is provided for doing so.
Before using this command, you must be sure that the name
given in the SCRATCH command corresponds with the file to be
deleted. An unintentionally deleted file can ruin many hours
or even days of work, so be careful before using the SCRATCH
command.

14

Anatomy of the 1541 Disk Drive

To delete a file, the following format should be used:
PRINT#1£fn,"SCRATCH: filenamel, filename2,..."

More than one file can be deleted by using a single command.

But remember that only 40 characters at a time can be sent

over the transmission channel to the disk drive.

For example, to erase a file with the name TEST, the
following commands are used:

OPEN 1,8,15,"S:TEST"
CLOSE 1

If channel 15 is already open, only the PRINT# command 1s
required:

PRINT#1,"S:TEST"
It 1s possible to delete the entire contents of a diskette.
This is discussed in section 1.3.10, the wildcard character
(*):

PRINT#1,"S:*"
But be very careful! Make sure that you do not need any of
the files on the diskette before using this command. After
completing the operation the error channel transfers the
message:

01 FILES SCRATCHED nn 00

where nn is the number of deleted files. This message can be
read with the routine given in section 1.3.3.

1.3.6 RENAME - Renaming Piles

You can also change the name of a file on the diskette. The
command RENAME 1s provided for this purpose. It has tte
following format:

RENAME : newname=oldname

For example, 1f you want to change the name of the file from
TEST to PEST you would use the following commands:

OPEN 1,8,15,"R:PEST=TEST"
CLOSE 1

or

15

Anatomy of the 1541 Disk Drive

OPEN 1,8,15
PRINT#1,"R:PEST=TEST"
CLOSE 1

Note that you cannot rename a file until 1t is CLOSEd.

1.3,7 CoPY - Copying Files

Using this command, a file can by copled on a diskette.
Several different sequential files can be used to create a
new file, If, for example, you have a data record for each
month of your household expenses and they have the names
EXP.01, EXP.02, etc. you can combine them into quarters
(EXP.01 for example) with this command. The COPY command has
the format:

COPY:newfile=oldfilel,oldfile2,...
S0, the named data records can be combined as follows:

OPEN 1,8,15,"C:EXP.01=EXP.01,EXP.02,EXP.03"
CLOSE 1

This method of combining data records cannot be used for
programs., Only a single program can be copied on the
diskette, Also the name of the new file must not already
exist on the diskette.

The COPY command is seldom used. This is because copying
files onto the same diskette usually makes no sense. The
only sensible use of the command is to combine several
sequential or user files into a single file.

Copying files from one diskette to another diskette is much
more sensible, This is indispensible for data security. If
you own two disk drives, you can assign the device number 9
to one of them and use the program COPY/ALL to copy files
from one to the other. This program is found on the
TEST/DEMO diskette.

We have also thought of you who have only one disk drive. A

utility program 1s included in section 4.1 to allow you to
copy individual files and even the entire diskette.

1.3.8 INITIALIZE - Initializing the Diskette
The DOS requires a BAM (Block Allocation Map) to be present

on each disk. The BAM 1s a layout of the usage of the
blocks on each diskette. It marks each block on the diskette

16

Anatomy of the 1541 Disk Drive

as free for use or allocated (already in use). If you change
diskettes in the drive and the new diskette has the same id
as the old diskette, the DOS will not recognize the fact
that you have changed diskettes. The BAM of the rew diskette
will be different, but the DOS will still be working with
the old BAM.

Therefore, each diskette should be given a unique id when
you format it. It is a good practice to give each diskette a
different id. You can force the disk drive to read the BAM
of a new diskette by issuing the INITIALIZE command. This
command has the following format:

PRINT#1fn,"INITIALIZE"
or shortened to

PRINT#1£n,"1"
Example:

OPEN 1,8,15,"1"
CLOSE 1

If you change diskettes and also change data records, then
we strongly recommend that you use the INITIALIZE command
after changing the diskettes, to be safe.

1.3.9 VALIDATE -~ "Cleaning Up" the Diskette

The command VALIDATE frees all allocated blocks that are not
assigned to normally CLOSEd files. For example, if you OPEN
a file, and transfer data to that file, but forget to CLOSE
the file, the VALIDATE command can be used to free the data
blocks that were written to. If you use the direct access
commands, be sure to allocate them (using the BLOCK~ALLOCATE
command) or the VALIDATE command will free them again,

The command has an additional function: If a file is deleted
using the SCRATCH command, the file type in the first byte
of the file entry 1s set to 0. It no longer appears in the
directory. If you now change this byte back to its old file
type with the DOS monitor (described later) or other direct
access commands, VALIDATE will restore the file. If it has
rot been overwritten, it will be the same as before the
SCRATCH command, The command has the following format:

PRINT#1fn,"VALIDATE"
or the shorter form

PRINT#1£n,"Vv"

17

Anatomy of the 1541 Disk Drive

An example:

OPEN 1,8,15,"V"
CLOSE 1

If you have a diskette such that the sum of the file lengtts
plus the number of free blocks does not eqgual the total
number available (664), use the VALIDATE command to restore
it.

Another example: If you want to store a program or data
record that uses more than the number of free blocks, the
DOS will give the error DISK FULL., 1f the disk had shown
some blocks free before, the number is now zero. The
VALIDATE command will restore the original free blocks.

1.3.10 ? * - The Wildcards

There are two wildcard characters - the asterisk (*) and the
characters of the first file on the disk that begins with
the characters which precede the asterisk. An example:

LOAD®TEST*",8

This command loads the first program that begins with the
first four letters "TEST". The command:

LOAD"*" ,8

loads the first program on the diskette because there are no
characters i1n front of the asterisk. The asterisk in the
SCRATCH command has a different effect. If used in tbe
SCRATCH command, not only the first file will be deleted,
but all files. For instance, the command:

OPEN 1,8,15,"S:TEST**
CLOSE 1

erases all files beginning with the the letters "TEST". This
must be taken into account! Loading the directory with an
asterisk can also select certain files, An example:

LOAD"$A*",8

loads only the directory of the files that begin with the
letter "A“.

The DOS offers an additional use of the asterisk that has
not been mentioned yet, It can also select file types if the
asterisk is followed by the first letter of the desired file
type. Here is a summary:

18

Anatomy of the 1541 Disk Drive

*=g selects only sequential files
*=p selects program files

*=R selects relative files

*=(selects user-files

For example, the command:
LOAD “$*=P",8

causes only the directory entries of programs to be loaded
and shown when you type LIST, This can also be used with the
SCRATCH command to delete all sequential files, for
instance. Here is the command:

OPEN 1,8,15,"S:*=5"
CLOSE 1

With the question mark, certain characters of a file name
can be declared "not relevant”. To illustrate the function
of the question mark, here are two examples of shortened
file names and their effects:

A?27?7?? - refers to a six-letter filename of whichr
first character is B
??2??TEST - refers to an eight-character filename, the

last four letters of which are TEST

A combination of asterisks and guestion warks is allowed.
You should notice, however, that an asterisk followed by
guestion marks has no meaning. Two examples of combinations
of asterisks and question marks:

222?.% - refers to all file names that have four
characters before a period

TEST.??2* - refers to all file nawmes having at least 7
characters, of which the first five are
TEST.

TEST-?201*=8 - refers to all seguential files whose names

have at least nine characters, the first
five being TEST- and the eighth and ninth
being 01

19

Anatomy of the 1541 Disk Drive

1.4 Sequential Data Storage

A disk drive need not be used exclusively for storing pro-
grams, If you have written a program that manages a large
guantity of data, you need a fast way of organizing it.
Sequential data storage is not the fastest, but it is the
easilest method of managing data, This mwethod 1s comparabple
to sequential storage on a cassette, which can be maintained
in a program as such:

1. Load the program
2. Read the entire data file into the memory of the computer
3, Work with the data in memory (change, delete, combine)

4, Write the new file on an external medium (cassette,
diskette)

5. Exit the program

The maximum number of data items that the program can handle
depends on the size of the computer's memory, because a
single data item cannot be changed or erased directly on the
cassette or diskette, To that end, the entire set of data
items must be read in, changed, and then rewritten again.
Reading and rewriting the data occurs remarkably faster on a
disk drive than on cassette,

It 1s worth mentioning that programs which work with
sequential data on cassettes can be easily modified to work
with disk. Only the corresponding OPEN commands need be
changed.

1.4,1 The Principle

A sequential data file consists of several data records that
are further divided into fields. The following 1s a name and
address file and 1llustrates the principle of sequential
data storage. Individual names and addresses comprise the
data records of this file. A record consists of several
fields (last name, first name, etc.), The structure of the
file looks something like this:

20

Anatomy of the 1541 Disk Drive

Only two records are shown above. The data records of a file
are stored one after another (sequentially) as are the the
fields within each record. The fields and records may be of
any length, For example, field 1 of record 1 may be longer
than field 1 of record 2. This 1s possible because the
fields are separated from each other by a special character
{the RETURN character), which is generated by the PRINT#
statement. When read back into the computer by the INPUT#
statement, the RETURN character is recognized as a field
separator.

Each field is associated with a variable when written with a
PRINT# statement or read with an INPUT# statement.

How does the computer know, when reading the data, where
each field ends? Each field ends with a RETURN character.
The RETURN character has the decimal ASCII value 13. An
example of a telephone directory file illustrates this. Our
telephone directory file has three fields:

FIELD 1 : LAST NAME
FIFLD 2 : FIRST NAME
FIELD 3 : TELEPHONE EXTENSION

Let's look at a section of this previously written file (the
character + symbolizes a RETURN):

Position: 1111111111222222222233333333334444444
1234567890123456789012345678901234567890123456

Data: SMITH+JOHN+236+LONG+TIM+121+HARRIS+SAM+654+...

You can see that the fields are of different lengths and are
all separated by a RETURN character. This RETURN character
is automatically written after the data field by a PRINT#
statement, provided the PRINT# statement is not followed by
a semicolon (which suppresses the RETURN character).

These data items are assigned to the variables with an
INPUT# statement. After that, another INPUT# must follow in
order to read the next field, and so on. The following
sections explain the fundamentals of writing programs using
sequential data storage.

1.4.2 oOpening a Sequential Data File

To create a sequential data file, you must first OPEN the
file. When opening a file to be written to, the following is
carried out:

1. The diskette is checked tossee if an existing file has

21

Anatomy of the 1541 Disk Drive

the same name. If so. the error message FILE EXISTS is
given by the DOS.

2., The file entry in the directory is written, In the file
type it is noted that this file is not yet CLOSEd. This
appears 1in a directory listing with an asterisk which
preceeds the file type.

3. A free block is found, into which the first data items
are written., The address (track and sector) of this free
block is stored in the file entry of the directory.

4, The number of blocks in the file is set to 0, because no
blocks of the file have been written yet,

The OPEN command specifies for what purpose (mode) the file
1s to be used (reading or writing). The format of the OPEN
command looks like this:

OPEN 1fn,8,sa,"filename,filetype,mode”

When the logical file number 1s between 1 and 127, a PRINT#
statement sends a RETURN character to the file after each
variable, If the logical file number is greater than 127
(128-255), the PRINT# statement sends an additional line-
feed after each RETURN. This is necessary for printers, for
example, that do not provide an automatic line-feed after a
RETURN character.

The secondary address (sa) can be a value between 2 and 14.
The secondary address indicates the channel over which the
computer is to transfer data to and from the disk drive.
Secondary addresses 0 and 1 are reserved by the DOS for
saving and loading programs, Secondary address 15 is desig~
nated as the command and error channel., Should several files
be open at once, they must all use different secondary
addresses, as only one f1le can use a channel. If, however,
a file 1s opened with the secondary address of a previously
opened file, the previous file is closed.

A maximum of 3 channels can be opened with the VIC-1541 at a
time, When utilizing relative data files, the DOS requires 2
channels per file, Therefore, the following maximum
combinations are possible:

- 1 relative and 1 sequential file
or - 3 sequential files

When specifying the filename to be written to (in the OPEN
command), you must be sure that the file name does not
already exist on the diskette. If a file that already exists
is to be to opened for writing, an at sign followed by a
colon (@:) must be placed in front of the file name (same as
in the SAVE command). For example:

22

Anatomy of the 1541 Disk Drive

OPEN 1,8,2,"@:ADDRESSES,S,W"

The file type must be given when the file is opened. The
file type may be shortened to one of following:

- seqguential file
- user file

~ program

- relative file

WD w

User files are sequential files that are listed in the
directory with the file type USR. It 1s not a data file in
the true sense. This file type is usually used when output
that normally goes to the screen (BASIC listing, directory)
is sent to the disk. In section 1.4.6 you find a description
of this technigue.

The last parameter (mode) establishes how the channel will
used., There are four possibilities:

W - Write a file (WRITE - section 1.4.3)

R - Read a file (READ - sectionh 1.4.4)

A - BAdd to a sequential file
(APPEND ~ section 1.,4.4)

M - read a file that has not been closed
("discovered™ by us in the DOS listing and
explained in section 1.4.5)

Now open & sequential file with the name SEQU.TEST for
writing:

OPEN 1,8,2,%SEQU.TEST,S,W"
If you now load the directory with LOAD“S$",8 and then LIST
it, you see this file listed with an asterisk before the
file type:

0 SEQU.TEST *SEO
But you are no longer allowed to close this file! After a
file is OPENed and data written to it, it must he closed
pefore the directory is loaded!
While a file is open, the command/error channel 15 may be
opened, but when channel 15 is closed, all other channels
are closed as well. You must take note of this.

Now some examples of the OPEN command:

OPEN 1,8,2,"SEQU.TEST,S,R" - open a sequential file for
reading

OPEN 2,8,3,"SEQU.TEST,U,W" - open a user file for writing

OPEN 3,8,4,"TEST,P,R" - open a program file for
reading

23

Anatomy of the 1541 Disk Drive

OPEN 4,8,5,"SEQU.TEST,S,A" - open a sequential file for
appending data
OPEN 5,8,6,"CSTMRS.1983,S,M" - open the unclosed customer

file for reading

1.4.3 Transferring Data Between Disk and Computer

After opening a file for writing, you transfer data to be
stored to the diskette with the PRINT# statement., This
statement transmits an additional RETURN that is required
for separating data, In the following example, a file is
OPENed, data written to it, and CLOSEd again. PRINT# czn
also be used as a direct command, that 1s, outside of the
program, so the following commands can be typed one after
the other and executed, Now open a file with the name
“TEST":

OPEN 1,8,2,"TEST,S,WN"

You should notice that the red LED on the disk drive was
lit. It signals the fact that a file was OPENed. You can now
write to the file named TEST. Here is how we would write a
name and address record consisting of 4 fields:

PRINT#1, " SAM"
PRINT#1,“HARRIS"
PRINT#1,"200) MAIN STREET"
PRINT#1,"BANYTOWN"

Now these data items have been written to the file s0 we can
close the file with CLOSE 1. The red LED should go out. In
order to read this data again, you must open the file in the
read mode (R). Because the INPUT# statement cannot be used
directly, a small program must be written:

10 OPEN 1,8,2,"TEST,S,R"
20 INPUT#1,FNS
30 INPUT#1,LN$
40 INPUT#1,STS
50 INPUT#1,CTS

60 CLOSE 1

70 PRINT"FIRST NAME: "; FNS
80 PRINT"LAST NAME: " ; LNS
90 PRINT"STREET: ":STS
100 PRINT"CITY: ";CTS

The program 1s simple to explain:

Line 10 The file TEST is opened for reading

24

Anatomy of the 1541 Disk Drive

Lines 20-50 The data are read in the same order as they
were written, Variables are used so that the
data can be printed later,

Line 60 The file is closed.
Lines 70-100 The data are printed out on the screen.

When you enter this program and type RUN, the data will
appear as written earlier, on the screen:

FIRST NAME: SAM

LAST NAME: HARRIS

STREET: 2001 MAIN STREET
CiTY: ANYTOWN

Four INPUT# statements were used to read the data because
the name and address record is composed of four fields, But
when a record is written that has, say, 20 fields, it is
very time-consuming to type out 20 INPUT# statements. A loop
can make this much simpler, This is obvious in this example:

10 OPEN 1,8,2,"TEST,S,R"
20 FOR I=1 TO 4

30 INPUTH#1,D$(I)

40 NFXT 1

50 CLOSE 1

60 PRINT"FIRST NAME: “;
70 PRINT"LAST NAME: v,
80 PRINT"STREET: "
90 PRINT"CITY: ",

Here, instead of four separate string variables, an array
with index 1~4 1s used. 1t should be noted that an BASIC
2.0, if an 1ndex higher than 10 1s used, the array must be
dimensioned with a DIM statement. Should we want to read in
20 fields, the statement DIM D${20) must be given before any
are read.

There are still more ways of shortening input and output of
data, With the INPUT statement for keyboard input, several
variables can be given in one line, separated by commas. For
example:

INPUT FNS,LNS,TE

With this statement, three variables must be entered, such
as:

NICHOLAS ,MULLER, 7465
The read data can be printed on the screen with:

PRINT FN$,LNS$,TE

25

Anatomy of the 1541 Disk Drive

In this manner, sequential data can be written and later
read back 1n again, The only difference is that the string
variables containing the data to be written must be
separated by commas enclosed in quotes, For example, if you
wish to write the previous variables to a file, the PRINT#
statement command must changed as follows:

PRINT#1,PN$","LNS" ,"TE

Numeric varlables need only be separated with a comma from
the other wvariables. To read the data, use the command:

INPUT#1,FVS, LNS,TE

Because the maximum number of characters read by an INPUT#
statement may not exceed 88, this method of reading 1is only
marginally useful., If a field in a record is more than 88
characters long, a different statement must be used. This 1is
the GET# statement, which reads each individual character,
one at a time., Suppose you want to read a record of which a
field is 100 characters long. This record can be placed in a
string variable with the following routine:

10 OPEN 1,8 eccesccecssces
20 D$=vlll

30 FOR I=1 TO 100

40 GET#1,XS$

50 D$=DS$+X$

60 NEXT I

70 GET#1,X$

80 CLOSE 1

At the end of this program, the string variable D$ will
contain the 100 characters of the data field. After opening
a sequential data file, the DOS establishes a pointer that
always points to next character to be read. We assume that
the data was written with a PRINT# statement without a
trailing semicolon, so that a RETURN was written at the end
of the data i1tem., After reading the first 100 characters,
the pointer points to this RETURN, The next GET# in line 70
is necessary to read the RETURN found at the end of the
field. Then the next GET# statement can read the next field
and not the RETURN,

In the above example, we used data records with a constant
length of 100 characters. According to the rules of sequer-
tial access, the length of data records need not be con-
stant. Since the INPUT# statement can only read a maximum of
88 characters, we will use the GET# statement to recognize
the RETURN as the end of a field. Such a routine looks like
this:

10 OPEN 1,8 cctecconsnecoscacncsas
20 s$=ll L]

30 GET#1,X$

40 IF XS$=CHRS(13) THEN 80

26

Anatomy of the 1541 Disk Drive

50 S$=S$+X$

60 IF ST<>64 THEN 30
70 CLOSE 1:END

80 PRINT S$

90 GOTO 20

Here a file with variable record length is read and printed
on the screen. Naturally, you can use the data 1n other vways
instead of printing it on the screen.

To avoid the problem of reading data records of more than 88
characters, divide the record into several parts, which you
can combine after reading them.

1.4.4 Adding Data to Sequential Files

If you want to add data to a sequential file, you have to
read the entire file into memory, add the data, and write
the new file back to the diskette again, This is a very
time-consuming process, For this reason, the DOS offers an
easier alternative to add to a sequential data file without
reading the entire file. Tnis is made possible through the
OPEN mode A (Append). If you have a sequential data file, as
in the previous section, you can add data to it by selecting
the A mode in the OPEN command. An example follows.

Give the following commands:

OPEN 1,8,2,"TEST2,S,W"
PRINT#1,"1. DATA RECORD"
CLOSE 1

Now you have a sequential data file containing one data
record, This file can be expanded with two more records as
follows:

OPEN 1,8,2,"TEST2,S,A"
PRINT#1,"2. DATA RECORD"
PRINT#1,"3. DATA RECORD"
CLOSE 1

Now the file TEST2 has three data records. You can check
this with the following program:

100 OPEN 1,8,2,"TEST2,S,R"
110 FOR I=1 TO 3

120 INPUT#1,DRS$

130 PRINT DRS

140 NEXT I

150 CLOSE 1

After the program starts, the data records is read and
printed on the screen.

27

Anatomy of the 1541 Disk Drive

You can see that the append A mode makes it quick and easy
to expand a sequential data files.

1.4.5 Closing a Sequential File

OPENed data files can be closed with the CLOSE command. This
command has the format:

CLOSE 1l£n

The parameter 1£fn 1s the logical file number of the file
that was used i1n the OPEN statement. Should several files
need to be closed a CLOSE statement must be given for each
one. When the last file is closed, the red LED on the drive
goes out,

As you already know, data 1s sent to the disk drive over a
channel. This channel uses storage inside the disk (called a
buffer) in which the data transmitted by the computer is
stored. When this buffer 1s full, its contents are written
to the diskette,

wWhen the file is closed, any data still in the buffer is
written to the diskette. An unclosed file is incomplete and
1s also not recognized by the DOS as a properly closed file.
The DOS allows no read access in the R (Read) mode and
responds WRITE FILE OPEN when trying to read an unclosed
file.

This could be a problem if the DQS did not allow read access
to a file. For this reason, the DOS offers the M mode. A
file that is marked as an 1mproperly closed file can be read
in this mode. It 1s logical to then write these records to a
second file which can then be properly closed. In this way
one can "rescue" a file,

The following program will transfer an i1mproperly closed
file (original file) to a correctly closed file (destination
file):

100 INPUT"ORIGINAL FILE NAME";SS$
110 INPUT"DESTINATION FILE NAME";D$
120 OPEN 1,8,2,S%+",S,M"

130 OPEN 2,8,3,D8+",S,W"

140 INPUT#1,XS

150 PRINT#2,XS$

160 IF ST<>64 THEN 140

170 CLOSE 1:CLOSE 2

180 OPEN 1,8,15,"Ss:"+S$

190 CLOSE 1

At the completion of the program, the unneeded original file

28

Anatomy of the 1541 Disk Drive

is deleted (scratched).

1.4.6 Redirecting the Screen Output

Any output appearing on the video screen (PRINT, LIST, etc)
can be redirected to a sequential data file. This is accon-
plished through the CMD command, which has the following
format:

CMD 1fn

For this to occur, a file of type USR must be opened, To
transfer a BASIC program listing, for instance, as a
sequential file on diskette, use the following commands:

OPEN 1,8,2,"TEST.LIST,U,W"
CMD 1

LIST

CLOSE 1

The command CLOSE 1 causes further output to be sent to the
screen.

Storing a program as a seguential file on disk is very
useful, if, for example, you would like to read a program
with a word processor to edit it. It is assumed that the
word processor in this case reads data stored in ASCII code.

This is how the listings in this book were transferred from
a Commodore 64 to a Commodore 8032.

In order to print this file on the screen again, you need
the following routine:

10 OPEN 1,8,2,"TEST,LIST,U,R"
20 GET#1,XS

30 PRINT X$

40 IF ST<>64 THEN 20

50 CLOSE 1

This routine is a loop that reads every character (byte) of
the file and displays it on the screen, The end of the file
is signalled by the status variable which 1s set to 64 at
the end. To send a seqguential file to the printer, use the
following program:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 OPEN 2,4

30 GET#1,X$

40 PRINT#2,X$S

50 IF ST<>64 THEN 30

60 CLOSE 1

29

Anatomy of the 1541 Disk Drive

Here it assumed that the printer is connected as device
address 4.

1.4.7 Sequential Files as Tables in the Computer

Seguential data files must reside completely in the computer
for data management. Most of the time, a two dimensional
table can be used., This table is also called an array or
matrix, because a data element can be addressed through the
input of two coordinates. To this end, you use a two dimen-~
sional variable, which must be reserved with a DIM state=~
ment. The first dimension corresponds to the data record,
the second dimension to the field inside the record. The
following diagram shows an example of a table:

. Field 1 Field 2 Field 3
Record 1 4 pS(LD 4 D5(1,2) 4 D8(1,3 ¥
Recora 2 ¥ (2,10 4 Ds(2,2) & DS(1.3) 4
Record 3 :— D$(3,1) | D$(3,2) | --B;?ETST--—:
O Y
Record 5 :———DS(S,I) % D$(5,2) 9 D$(5,3) :
Record 6 ﬁ-— D$(6,1) | D$?g:;; | D$(6,3) —i

This table is a file composed of six records which have
three fields each, The variable D$ is reserved with DIM
D$(6,3). To read a seguential file as a table, it is
necessary to create such a file with, for example, six
records with three fields each., For this purpose, use the
following program:

100 OPEN 1,8,2,"TABFILE,S,W"

110
120
130
140
150
160
170
180
190
200

.210

FOR X=1 TO 6

PRINT CHRS$(147)
PRINT"RECORD " ;X

FOR Y=1 TO 3

PRINT"FIELD “;¥;": ";

INPUT X$
PRINT#1,X$
NEXT Y
NEXT X
CLOSE 1

Two nested loops are used here, whose variables are numbered
with the record and field. Enter six data records. When the
program is done, these records will be contained on the

30

Anatomy of the 1541 Disk Drive

diskette with the filename of TABFILE. A tip: save this
program with SAVE"TABPROG",8 so you can use it later.

This file can now be loaded into the computer as a table.
Two nested loops indexed for the table are necessary:

100 OPEN 1,8,2,"TABFILE.SEQ,S,R"
110 DIM DS$(6,3)

120 FOR X=1 TO &

130 FOR ¥=1 TO 3

140 INPUT#1,D$(X,Y)

150 NEXT Y

160 NEXT X

170 CLOSE 1

This program places data into the table. You can check this
with a PRINT statements, to see if the data has been stored
in the right place. Because each field can be addressed with
indices, you can give a command like PRINT D$(1,2) to see
the second field of record one. 1t is meaningful to be able
to display the fields of a given record. Use the following
routine for this purpose, after you have saved the previous
programs

100 INPUT"RECORD NUMBER: *;X
110 PRINT" - -
120 PRINT"FIELD 1l: “;D$(X,1)
130 PRINT"FIELD 2: “;D$(X,2)
140 PRINT"FIELD 3: ";D$(X,3)

Notice that the first index (the record number) after the
gquestion is used as the variable in the field output. The
second 1ndex (field number) is then constant,

This table can now be altered as desired. Add the following
lines to the preceeding program:

160 PRINT"————w—mmem e mememem "

170 INPUT"FIELD TO CHANGE:";:Y

180 INPUT"NEW CONTENTS: ";DS$(X,Y)
190 PRINT"OK"

200 PRINT*FURTHER CHANGES (Y/N)?"
210 GET X$:IF X$="" THEN 210

220 IF X$="Y" THEN 100

230 IF X$="N" THEN END

240 GOTO 210

Here the number of the field to pe cnanged 1s used as the
second index, which is adjacent to the index of the desired
record to input the new table element.

This modified table must now be written to the diskette

again. You can use the following routine. Don't forget to
save the previous edit program first!

31

Anatomy of the 1541 Disk Drive

100 OPEN 1,8,2,"®:TABFILE,S,W"
110 FOR %=1 TO 6

120 FOR ¥Y=1 TO 3

130 PRINT#1,DS$(X.,Y)

140 NEXT Y

150 NEXT X

160 CLOSE 1

This routine also is relatively short because of the use of
nested loops. The @: in line 10 is necessary in order to
overwrite the existing file.

Accessing data through the use of the table is very fast.
The access time is independent of the size of the table. The
size of the table and therefore the guantity of data is
dependent on the memory capacity of the computer, however.
The large storage area of the Commodore 64 is excellent for
table wmanagement, 1f you write a data management program
that occupies 8K bytes, then 30K bytes still remain for
storing data. If you consider that storing a name and
address record of about 80 characters, you can still store
384 records in memory! And this with an access time that
cannot be surpassed by refined data management techniques
{indexed sequential, relative). But with larger quantities
of data, sequential storage is no longer feasible,

1.4.8 Searching Tables

As mentioned in the table processing section, each data
record of a table can be indexed. Because the table is two
dimensional, the first index selects the data record. If a
record of the table 1s to be changed or accessed, the
operator must know the record number, The record number can
be a part or customer number. There are files, however, for
which there is no suitable method of numbering. In such
files, the number of the record must be found through a

search of all the records. Here is a practical example:

First of all, create a data file with the following program.
Names and telephone numbers are saved in the example:

100 OPEN 1,8,2,"TELEDAT,S,W"
110 PRINT CHRS$(147)
120 INPUT"LAST NAME H

130 INPUT"FIRST NAME :";FN$

140 INPUT"AREA CODE H

150 INPUT"NUMBER 1" NUS

160 PRINT"INFORMATION CORRECT (Y/N)?"

170 GETXS:IF X$="" OR X$<>"Y" AND X$<>"N" THEN 170
180 IF X$="N" THEN 110

190 PRINT#1,LNS","FNS","ACS","NUS

32

Anatomy of the 1541 Disk Drive

200 PRINT"MORE INPUT (Y/N)?"

210 GETXS:IF X$="" OR X$<>"Y" AND XS$<>"N" THEN 200
220 IF X$="N" THEN 240

230 GOTO 110

240 CLOSE 1

Program Documentation:

Line 100 The sequential file "TELEDAT" is opened for
writing
Line 110 The screen is cleared

Lines 120-150 The four fields are entered from the keyboard

Lines 160-180 If the data are not correct, they can entered

again
Line 190 The four fields are written to disk
Lines 200~220 Here the execution of the program can be
ended
Line 230 Input will be continued
Line 240 The file opened in line 100 is closed

Type this program in, RUN 1t, and enter some data. Save the
the program on diskette, so you can combine it with other
routines later if you like. In the last section of this
chapter, is a complete program for managing your telephone
numbers .

If you have entered some data, you would probably like to
find a telephone number. To do so, you could print the
entire file on the screen or printer and £ind it yourself.
This 1s, however, a wasteful method, especially if you have
entered many records,

The search for the telephone number corresponding to a given
name can be performed by the computer. It runs through the
who®e list, looking for the desired name. Once found, 1t
gives you the complete record which contained that name. The
following routine accomplishes this:

100 OPEN 1,8,2,"TELEDAT,S,R"

110 DIM D$(100,4):x=1

120 INPUT#1,DS(X,1),D$(X,2),D$(X,3),D$(X,4)
130 IF ST<>64 THEN X=X+1:G0TO 120

140 CLOSE 1

150 PRINT CHRS$(147)

160 PRINT"DESIRED NAME: “;N$

170 FOR I=} TO X

180 ID DS(I,1)=NS THEN 210

190 NEXT I

33

Anatomy of the 1541 Disk Drive

200 PRINT"NAME NOT FOUND!":GOTO 280
210 PRINT"NAME FOUND:"

220 PRINT"————-—-——== "

230 PRINT"LAST NAME: “;D$(I,l)

240 PRINT"FIRST NAME: “;D$(I,2)

250 PRINT"AREA CODE: ";:;D$(I,3)

260 PRINT"NUMBER: “;DS$(I,4)

270 PRINT"---——————ue "

280 PRINT"MORE (Y/N)?"

290 GETXS:IF X$="" OR XS$<>"Y" AND X$<>"N" THEN 290
300 IF X$="Y" THEN 150

310 PRINT"PROGRAM DONE":END

Program Documentation

Line 100 The sequential file "TELEDAT" is opened for
reading
Line 110 The table is dimensioned for 100 records and

the index is set to one
Line 120 The data records are read into the table

Line 130 The status variable ST is checked for end of
file (indicated by a value of 64). If the
end has not been reached, the index is
incremented and a new record is read.

Line 140 The file opened in line 100 1s closed
Line 150 The screen is cleared
Line 160 The last name to be searched for is read from

the keyboard and placed in the variable N$

Lines 170-190 The loop searches the table of records,
checking the name fields against the desired
name, If the position is found, the program
branches to the output routine

Line 200 The name was not found

Lines 210-270 The record containing the desired nawe is
displayed

Lines 280-310 The possibility to search for a new name is
allowed

You wi1ll notice that this search is quite fast when the data
is already loaded into the computer. Searching the
computer's memory is faster than searching the diskette. The
program can be easily changed to search for a desired field
other than the name. You might want to search for an area
code, for instance. The first program stops the search when
the first matching data record is found. This 1s not always

34

Anatomy of the 1541 Disk Drive

desired, however, If, for instance, you wish to search the
table looking for a particular area code and want all
matches to be displayed, a different routine is needed. The
routine must continue the search after the first match is
found. The next program takes care of this:

100 OPEN 1,8,2,"TELEDAT,S,R"

110 DIM D$(100,4) :X=1

120 INPUT#1,D$(X,1),D$(X,2),DS$(X,3),D$(X,4)
130 IF ST<>64 THEN X=X+1:GOTO 120

140 CLOSE 1

150 PRINT CHRS$(147)

160 PRINT"AREA CODE TO SEARCH FOR: ";ACS
170 FOR I=1 TO X

180 IF DS$(I,3)=AC$ THEN 210

190 NEXT I

200 PRINT"END OF DATA!":GOTO 270
210 PRINT" - "

220 PRINT"LAST NAME: “;DS(I,1)
230 PRINT"FIRST NAME: ":D$(1,2)
240 PRINT"AREA CODE: “";DS(I,3)
250 PRINT"NUMBER: ";D$(I,4)
260 PRINT"=———m———meem e "

270 PRINT"MORE (Y/N)?2"

280 GETXS:IF X$="" OR X$<>"Y" AND X$S<>"N" THEN 280
290 IF X$="Y" THEN 190

300 PRINT"SEARCH DONE!":END

Here the search is continued if a record with the
appropriate area code is found. This happens in line 290,
which branches back to the loop instead of ending the
program, After searching all of the records, the program
responds END OF DATA. If you understand the operation of
this program, you can now develop a search for the last
name, With the help of the previous programs, this should
present no difficulty.

1.4.9 sSimple Sorting of Tables

In data processing, it is often necessary to sort data into
numeric or alphabetic order. This has always been a time
consuming task, which the programmer has tried to shorten ty
using better sorting methods. Sorting is certainly a time
consuming task when performed with the programming language
BASIC, which is relatively slow.

Why should we sort the data at all? Suppose you had a
telephone book in which the names were not ordered. You
would have search the entire book from beginning to end to
find a name. Sorting offers advantages when searching data.
The computer can also search sorted data faster,

35

Anatomy of the 1541 Disk Drive

There are several search methods which differ mainly

in

their speed of execution, The simplest method compares each

data item with every other. If a table is supposed to
sorted in ascending order, the first item in the table
compared to the second. If the first is greater, it
exchanged with the second. After that, the first will
compared to the third, and so on, until the last item

be
is
is
re
is

reached. Now the smallest item is at the beginning, in the

right place. The next time through, the first item is

no

longer needed. A flowchart of the program logic appears

below.

TA(0)=TA(I)
TA(I)=TA(X)
TA(X)=TA(0)

|

36

Anatomy of the 1541 Disk Drive

This sort program starts using an index of 1, which is
stored in the variable I. The second index is the variable
X, which receives a value one greater than I. Then the first
item is compared to the second. If the value of TA(I) is
greater then TA(X), the program must use a temporary
variable, TA(0), to make the exchange between the two, After
this, the value of X is incremented, to three, and TA(I) is
again compared to TA(X), etc. When the last item in the
table is reached, (X > last index), the first item will be
the smallest, and the index I is incremented by one. Now the
second item is compared to every other {(starting with the
third), and so on.

This sort method looks gquite complicated at first glance.
Comparisons in memory are done relatively quickly, however,
This wmethod is sufficient for small quantities of data.

In order to run this program, a table must be built. Tnis
example uses a table with twelve items containing alpha-
numeric data (strings). The table is filled by the following
routine:

100 DIM TAS(12)
110 FOR I=1 TO 12
120 INPUT TAS(I)
130 NEXT I

This program allows you to enter twelve strings, which are
then sorted with the following program:

140 I=1

150 X=I+1

160 IF TAS(I) < TAS(X) THEN 180
170 TAS(0)=TAS(I):TAS(I)=TAS$(X):TAS(X)=TAS$(0)
180 X=x+1

190 IF X <= 12 THEN 160

200 I=I+1

210 IF I <> 12 THEN 150

220 FOR I=1 TO 12

230 PRINT TAS(12)

240 NEXT I

The table is sorted and displayed on the screen. If, instead
of a one dimensional table, you want to sort a two
dimensional table such as our telephone file, exchange the
fields by changing lines 160-170 as below:

160 IF DS(I,1) < DS(X,1) THEN 180

170 D$S(0,1)=DS$(I,1):D$(I,1)=DS(X,1):
D$(X,1)=DS$(0,1)

171 D$(0,2)=DS$(I,2):D$(I1,2)=DS$(X,2):
DS(X,2)=DS$(0,2)

172 DS(0,3)=DS(I,3):D$(1,3)=DS(X,3):
D$(Xx,3)=D$(0,3)

173 DS(0,4)=DS(1,4):DS(1,4)=DS$(X,4):
D$S(¥,4)=DS$(0,4)

37

Anatomy of the 1541 Disk Drive

It is very time consuming to sort a greater amount of data
with this method. If you have a large amount of data to be
sortved, we recommend that you use the very fast machine
language sort routine from our book Commodore 64 Tips &
Tricks.

1.4.10 MAILING LIST MANAGEMENT with Sequential Data Storage

At the end of this section, is a mailing list management
program that every user will hopefully find easy to use. At
the same time, this program provides insight into the opera-
tion of many data processing techniques.

A mailing list record of this program consists of the
following fields:

- NAME 1

- NAME 2

- STREET

- CITY, STATE

- ZIP CODE

-~ TELEPHONE NUMBER
~ NOTES

The use of the fields 'NAME 1' and 'NAME 2' are up to the
user, For instance, 'NAME 1' can be the first name and 'NAME
2' the last name, or 'NAME 1' the company name and "to the
attention of..." in "NAME 2', The field 'NOTES' can be used
for grouping the addresses (family, business, friends,
etc.).

The program offers the following Main Menu options:

-~1- LOAD DATA

~2- SAVE DATA

~3- INPUT DATA

~4- EDIT DATA

-5- SELECT/PRINT DATA
~-6- DELETE DATA

~0- END PROGRAM

~1- LOAD DATA

Use this function to enter the name of the mailing laist
file that is to be maintained. If the file exists on the
diskette, it is loaded and ready to be used. The number
of records 1n the file is displayed. If an error is
encountered while loading, or if the file does not exist,
the message DISK ERROR! is displayed. At the conclusion
of this function, the Main Menu reappears.

38

Anatomy of the 1541 Disk Drive

=-2- SAVE DATA

Use this function to write an updated or expanded copy of
the mailing list to the diskette., If the file name
already exists, then the file is overwritten.

The mailing list should be saved often while using the
program in case a power outage should erase the
computer's memory, After saving,-the file can be used
further, without having to reload it in again,

=3=- INPUT DATA
Use this function to add records to the mailing list:
l. When no data has been previously leoaded.

First a file name for the mailing list is entered.
Enter a file name which does not already exist on the
diskette or the old file is overwritten. All records
that are inputted are new to the mailing list.

2. when data has been previously loaded.

All records that are inputted are added to the
existing mailing list.

After entering an mailing list entry, the message CORRECT
(Y/N)? is displayed. Here you may correct the data. If
the entry is not correct, press the N key. If the entry
is correct, press Y. Now the message MORE INPUT (Y/N)? is
displayed. If you want to enter another mailing list
entry, press Y. If you press N, the Main Menu appears
again,

-4- EDIT DATA

Use this function to change existing mailing list rec-
ords. Both Name 1 and Name 2 must be entered. If both
names are not known, the other can be found with the
SELECT/PRINT DATA routine. After entering the names, the
mailing list is searched for matching names. When they
are found, the complete address is displayed with the
fields numbered. Now you must enter the number of the
field which you want to change. The new contents are
requested. The record is once again displayed in its
updated form. If no more changes to this record are
required, press 9. The program asks if another record is
to be changed. This qguestion is to be answered by
pressing Y or N,

39

Anatomy of the 1541 Disk Drive

-5- SELECT/PRINT DATA

Use this function to search for certain records and print
or display them., You must first specify if the selected
printed on the screen (S) or the
printer (P)., If you have selected the printer, you must
again choose if the data is to be printed with all fields
on normal paper (P), or if fields 1-5 are to be printed
on mailing labels (M). The address labels must be in a
single column and measure 89mm x 36mm.

records are to be

In order to select the data,
fields which are not relevant, simply press RETURN. If,
for example, you want to find all addresses in Grand
Rapids, press RETURN for the first three fields and type
GRAND RAPIDS, MI for the fourth, and press RETURN for the

next three.
An example:

NAME 1

NAME 2

STREET

CITY, STATE

ZIP CODE
TELEPHONE NUMBER
NOTES

o se se ye e ve e

M
<return>
<return>
<return>
<return>
<return>
FAMILY

enter search criteria., For

All family members whose name 1 begins with 'M' will be

displayed.

You can see how versatile this search is. Try it out

yourself.

-6- DELETE DATA

Use this function to delete records., After entering the
first and second names of the record, the record is read
and the remaining fields are displayed. Then you are
asked to confirm that the record is to be deleted. If you
press Y, the record is deleted.

-0- END PROGRAM

Use this function to leave the program. Before the
program is ended, you are reminded that you can restart
the program without losing data by typing GOTO 110. This
is important if you forget to save the data before ending

the program.

40

Here is the program listing:

100 POKE 53280,5:POKE53281,2:P
110 GosuB2030
120 PRINT"SELECT THE DESIRED F

Anatomy of the 1541 Disk Drive

RINTCHR$(158); :DIMDS(100,7)

UNCTION:"

130 PRINT" —-— " s PRINT
140 PRINT" -1- LOAD DATA"

150 PRINT" -2- SAVE DATA"

160 PRINT* —-3- INPUT DATA"

170 PRINT" -4- EDIT DATA"

180 PRINT" -5~ SELECT/PRINT DATA"

190 PRINT" -6~ DELETE DATAY:PRINT

200 PRINT" -0- END PROGRAM"

210 PRINT

220 PRINT" CHOICE (0-6)2"

230 GETXS:IFXS<"0"ORX$>"6"THEN230

240 IF XS$S<>"O"THEN340

250 PRINT:PRINT" ARE YOU SURE (Y/N)?"
260 GETXS:IFXS<>"N"ANDXS<>"Y"THEN260

270 IFX$="N"THEN110
280 GOsuB2030

290 PRINT"THE PROGRAM CAN BE RESTARTED WITH

300 PRINT" '‘GoTo 110'"
310 PRINT" WITHOUT LOSS OF
330 END

340 ONVAL(XS$)GOSUB360,540,680,

350 GOTO 110

360 REM ***kkskik

370 REM LOAD DATA

380 REM ****xkskix

390 GOSUB 2030

400 INPUT"NAME THE FILE :";FN$

410 OPEN 15,8,15

420 OPEN1,8,2,FN$+",S,R"

430 INPUT#1S5,FE:IF FE=0 THEN 4

440 PRINT"DISK ERROR:!"

450 GOTO 510

460 X=1

470 INPUT#1,D$(X,1),D$(X,2),DS$
D$(X,7)

480 IF ST<>64 THEN X=X+1:GOTO4

490 PRINT"FILE IS LOADED AND C

500 PRINT

510 CLOSE:CLOSE1l5

520 PRINT"RETURN FOR MORE"

530 INPUTX$:RETURN

540 REM ***kkkkxk

550 REM SAVE DATA

560 REM ***kkickkk

570 IF X>0 THEN 590

580 GOSUB2230:RETURN

590 GOSUB 2030

600 OPEN 1,8,2,"@:"+FNS+",S,W"

610 FORI=1TOX

620 PRINT#1,DS$(I,1)","“DS(I,2)"

41

DATA"

880,1190,1770

60

(X,3),D8(X,4),D$(X,5),D8(X,6),

70
ONTAINS" ;X ;"RECORDS. "

,"DS(1,3);

Anatomy of the 1541 Disk Drive

630 PRINT#1,D$(1,4)","D$(I1,5)","DS(1,6)","DS(I,7)
640 NEXT

650 PRINT"DATA IS SAVED":CLOSE]l :RETURN
660 PRINT"RETURN FOR MORE"

670 INPUTXS$:RETURN

680 REM de ke dk ke dodk ok ok kK

690 REM INPUT DATA

700 REM dc & de ke & d Kk ok ok ok

710 IFX>O0THEN730

720 GOSUB2030:INPUT"FILENAME ";FN$

730 X=X+1

740 GOSUB2030

750 PRINT"INPUT DATA:"

760 PRINT"-=—m—w————- ":PRINT

770 I=X:GOSUB2110

780 FORI=1TO7:PRINTCHR$(145);:NEXT

790 FORI=1TO7:PRINTTAB(12);:INPUTDS$(X,I) :NEXT
800 PRINT:PRINT"CORRECT (Y/N)?"

810 GETX$:IFX$<>"N"ANDXS$<>"Y"THEN810

820 IFXS$="Y"THEN840

830 GOTO 740

840 PRINT"MORE INPUT (Y/N)?"

850 GETXS$:IFXS$S<>"N"ANDXS<>"Y"THEN850

860 IFXS="Y"THEN730

870 RETURN

880 REM ERARXREXKk KKK

So0 REW EITOMM

910 IF X>OTHEN930

920 GOSUB2230:RETURN

930 GOSUB2030

940 INPUT"NAME 1: ";N1$

950 INPUT"NAME 2: ";N2$

960 FORI=1TOX

970 IF D$(I,1)=NI1SANDDS(I,2)=N2$THEN1010
980 NEXTI

990 PRINT"NAME NOT FOUND!"

1000 PRINT"RETURN FOR MORE" :INPUTXS$:RETURN
1010 GOSUB2030

1020 PRINT"-1- NAME 1 t*;D$(1,1)
1030 PRINT"-2- NAME 2 :";DS(T,2)
1040 PRINT"-3- STREET :";Ds$(1,3)
1050 PRINT"-4~ CITY, STATE :";D$(I,4)
1060 PRINT"-5- ZIP CODE :";DS$(1,5)
1070 PRINT"-6- TELEPHONE :";D$(1,6)
1080 PRINT"-7- NOTES s"3;D$(1,7)
1090 PRINT"NO. OF FIELD TO CHANGE: ":PRINT"(9=NO
CHANGES)"

1100 GETXS$:IFVAL(XS)<1ORVAL(X$)>7ANDVAL(X$)<>9THEN1100
1110 IFVAL(XS$)=9THEN1150

1120 y=VAL(XS)

1130 INPUT"NEW CONTENTS";D$(I,Y):PRINT

1140 GoTo 1010

1150 PRINT"MORE CHANGES (Y/N)?"

1160 GETXS:IFXS$<>"Y"ANDX$S<>"N"THEN1160

42

1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410

1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700

Anatomy of the 1541 Disk Drive

IFX$="Y"THEN880
RETURN
REM **AKKkkkkkhkrrhkhkk

REM SELECT/PRINT DATA

REM kkkhhkhhkkhkhkkkkhkkk

IF X>0THEN1240

GOSUB2230 : RETURN

GOSUB2030 :PRINT"OUTPUT TO PRINTER (P) OR SCREEN (S)?"
GETXS$: IFX$<>"S"ANDX$<>"P" THEN1250

0$=X$: IFO$="S"THEN1300

PRINT:PRINT"PAPER (P) OR MAILING LABELS (M)?"

GETXS : TFX$<>"P"ANDX$<>"M"THEN1280

D$=X$

GOSUB2030

PRINT"ENTER THE SEARCH DATA:"

PRINT"PRESS RETURN BY IRRELEVANT FIELDS."

PRINT " o= o mm o o e e e " : PRINT
I=0:GOSUB2110

FORI=1TO7:PRINTCHRS (145);:S$(I)="":NEXT

FORI=1TO7 :PRINTTAB(12); : INPUTS$ (I) :NEXT
IFO$="S"ORD$="M"THEN1450 .
GOSUB2030:PRINT"PRINTER READY (Y)?2"

GETX$: IFX$<>" Y*THEN1390

OPEN 1,4

PRINT#1,"NAME 1";SPC(8);"NAME 2";SPC(8);"STREET";
SPC(10);

PRINT#1,"CITY, STATE";SPC(4);"ZIP CODE TELEPHONE NOTES"
FORI=1TO79:PRINT#1,"="; :NEXT:PRINT#1

CLOSE1

FORI=1TOX

FORY=1TO7

IFS$ (Y)=LEFT$ (D$(I,Y) ,LEN(S$(Y))) THENZ=2+1:GOTO1480
NEXTY

IFZ=7THENGOSUB1550

2=0:NEXTI

PRINT: PRINT"END OF DATA!":PRINT
PRINT"RETURN FOR MORE":PRINT
INPUTXS

RETURN

IFO$="S"THEN1730

IFD$="M"THEN1670

OPEN1,4
PRINT#1,D$(I,1);SPC(14~LEN(DS(I,]
PRINT#1,D$(I,2);SPC(14-LEN(DS(I,2
PRINT#1,D$(I,3);SPC(16~-LEN(DS(I,3
PRINT#1,D$(I,4);SPC(15-LEN(DS(I,4
PRINT#1,D$(I,5);SPC(8-LEN(DS$(I,5)
PRINT#1,D$(I,6);SPC(12-LEN(DS(I,6
PRINT#1,D$(I,7)

PRINT#1:CLOSE1

RETURN

OPEN2,4

PRINT#2
FORJ=1TO5:PRINT#2,D$(1,J) :NEXT
PRINT#2:PRINT#2:PRINT# 2

~ w e oy

)))
1B
)))
)
));
)

.
H

43

Anatomy of the 1541 Disk Drive

1710 CLOSE2

1720 RETURN

1730 GOSUB2030:GOSUB2110

1740 PRINT:PRINT"MORE (Y)?"

1750 GETXS:IFX$<>"Y"THEN1750

1760 RETURN

1770 REM [EZ 2222 X2 2

1780 REM DELETE DATA

1790 REM kkkhkkkkkkkk

1800 IFX>QTHEN1820

1810 GOSUB2230:RETURN

1820 GOSUB2030

1830 INPUT"NAME 1 : ";N1$

1840 INPUT"NAME 2 : ";N2$

1850 FORI=1TOX

1860 IFDS(I,1)=N1$ANDDS(I,2)=N2$THEN1900
1870 NEXTI

1880 PRINT"NAME NOT FOUND!":PRINT

1890 PRINT"RETURN FOR MORE":INPUTXS :RETURN
1900 GOSUB2030:GOSUB2110

1910 PRINT:PRINT"DELETE RECORD (Y/N)2"
1920 GETXS:IFXS<>O"Y"ANDX$<>"N"THEN1920
1930 IFX$="N"THENRETURN

1940 FORY=ITOX~1

1950 FORJ=1TO6

1960 D$(Y,J)=D$(Y+1,J)

1970 NEXTJ,Y

1980 FORJ=1TO6:DS(X,J)="":NEXTJ

1990 X=X-1

2000 PRINT"RECORD IS DELETED!"

2010 PRINT"RETURN FOR MORE"

2020 INPUTXS:RETURN

2030 REM KhkkhkkNkrrkkkkkd

2040 REM PROGRAM HEADING
2050 REM ****kakkkrakkknn

2060 PRINTCHRS$(147);

2070 PRINTTAB(8) ;"==s==z=z====ss=z==s=zx=zzz="
2080 PRINTTAR(8);"M A I L I N G LIST
2090 PRINTTAB(8);"=====z=c==s=zs=zzzzzsx===az"

2100 RETURN

2110 REM ***kkkhkkkkk
2120 REM PRINT RECORD
2130 REM **xkkdkhdkik

2140 PRINT"NAME 1 : ";D8(1,1)
2150 PRINT"NAME 2 : ";D$(I,2)
2160 PRINT"STREET : ";D$(I,3)
2170 PRINT"CITY, STATE : ":DS(I,4)
2180 PRINT"ZIP CODE s ";DS$(I,5)
2190 PRINT"TELEPHONE : ";DS(I,6)
2200 PRINT"NOTES s ";D$(I,7)

2220 RETURN

2230 REM Khkkkkkkk
2240 REM NO DATA!
2250 REM kkkkdkkkk
2260 GOSUB2030

44

Anatomy of the 1541 Disk Drive

2270 PRINT"NO DATA IN MEMORY!":PRINT
2280 PRINT"RETURN FOR MORE"
2290 INPUTXS :RETURN

1.4.11 Uses for Sequential Storage

The great advantage of sequential storage as compared to
relative and direct access storage, is that a lot of_ data
can be written to the diskette quickly. Data of varying
lengths can be stored together, without requiring the rec-
ords to be of a definite length, It makes sense to make use
of this advantage, where the the file must not be
permanently divided into parts. Examples are:

* Bookkeeping files
In a bookkeeping journal, all entries are recorded
continuously. Changes should not be made to these
entries, Instead, adjustment entries should be made
to effect changes.

* Analysis files
You analyze a direct access file, looking for, say, all
customers with whom you have done more than 2000
dollars of business in a certain zip code, and write
the found records in a sequential file for later
access.

Naturally, sequential files also offer a substitute for
direct access files, as discussed in this chapter, if the
user does not possess further programming knowledge. We must
certainly recommend that you work through the other methods
of data storage, which offer other advantages.

45

Anatomy of the 1541 Disk Drive

1.5

Relative Data Storage

Relative data storage and its programming is not described
in the VIC-1541 user's manual., The reason may lie in the
fact that the Commodore 64 and the VIC-20 have no commands
to process relative files using BASIC 2.0. Therefore, it is
in principle not possible to use relative data storage on
the Commodore 64 and VIC-20 - but only in principle. We have
developed a few tricks that work within the limitations of
BASIC 2,0 and permit the Commodore 64 and also the VIC-20 to
use relative data storage. The examples may seem to be
somewhat complicated at first., For example, information
about the record lengths will be transmitted to the disk
using CHR$(x) codes. But they provide for a very easy method
of data storage.

1.5.1 The Principle

When using relative record data processing, the data records
are numbered. It is assumed that all records in a relative
file have the same length and that the record number of
every record is known or can be calculated. To find a
record, it is not necessary to search through the entire
file. Only the record number need be given to access the
record., Using the record number, the DOS can find where the
record is "relative" to the beginning of the file on the
diskette and can read it directly, Therefore, you don't have
to read an entire file into the computer, only the desired
records.

Managing a relative file follows this pattern:

Create a relative file:

1.

2,
3.

The file is opened. With this the length of a record
1s established.

The last record is marked.

The file 1is closed.

Writing a record:

1.
2.
3.
4.

The file is opened,

The file is positioned on the record to be written,
The record is written,

The file is closed.

Reading a record:

1.
2.
3.
4.

The file is opened.
The file 1s positioned over the record to be read.
The record is read.
The file is closed.

46

Anatomy of the 1541 Disk Drive

This is only an outline, In the following sections these
processes will be explained in detail.

1.5.2 The Advantage over Sequential Storage
The greatest advantages of relative storage are:

* faster access to individual records
* does not require much of the computer's memory

It has already been mentioned that the sequential file must
reside completely in the computer's memory for processing.
Using sequential techniques, it may be necessary to search
the entire file to find a given record. The record must be
read and compared during the search process. But if a
sequential file cannot be entirely loaded into memory, this
method of search is impossible.

Using relative data files, the processing is much simpler.
By using the record number, a desired record can be read
individually. The file size is not limited to the computer's
memory. So, for example, a program that uses all 3,5K bytes
of a standard VIC-20 can manage a file with up to 163
Kbytes!

The advantages of relative over sequential file management
are large enough that many of you, once acquainted with the
techniques will prefer to use them,

1.5.3 Opening a Relative File

Relative files are also opened with the OPEN command. The
command differs only slightly from that for sequential
files. Take a look at the format of the OPEN command:

OPEN 1fn,da,channel,"filename,L,"+CHR$(recordlength)

The first four parameters are identical to those for
sequential files., They are logical file number, device
address (normally 8), channel (2-14), and name of the file.
Next follows an L which informs the DOS that a relative file
should be opened, whose record length follows, This record
length is transmitted with a CHR$ code. The length is
between one and 254, Thus each record of a relative file is
limited to a maximum of 254 characters,

If the record length 1s smaller than 88, the record can be
read with an INPUT# statement. For this, it is necessary

47

Anatomy of the 1541 Disk Drive

that the PRINT# statement transfers the record with a
trailing RETURN. A PRINT# statement sends a RETURN when it
1s not ended with a semicolon., This RETURN is now a part of
the record. When you want to read records with INPUT#, the
record length must be increased by one.

A file composed of 80-character records, to be read by the
INPUT# statement would be opened as follows:

OPEN 1,8,2,"FILE.REL,L,"+CHRS$(81)

Here a relative file with the name "FILE,REL" 1s opened
using channel 2. The record length should total 81
characters, Records comprised of 80 characters should be
sent with a PRINT# statement, with no trailing semicolon.

It 1s important to note that only one relative file can be
opened at a time. If you want to work with two relative
files, you must always close the first before opening the
second, One sequential file may be opened in addition to one
relative file,

When a relative file 1s opened for the first time, the DOS
creates as many "null" or unused records that can fit in a
single 254 byte block, It creates these "null" records by
writing a record with a CHR$(255) at the beginning of each
record, This is called formatting a relative file,

If you want to expand a relative file beyond the 1initial
number of records that the DOS formatted, then you can
reference the last record number that you want to write (by
positioning to that record number) and the DOS automatically
formats the records between the current end of file and the
new last record number by writing records containing
CHRS$(255). Formatiing takes time to complete.

If you try to read a record whose number greater than that
of the last record, the DOS returns the error RECORD NOT
PRESENT. However, if you write a record which is greater
than the highest current record, all records less than the
new record number are also written with CHR$(255).
Subsequently accessing these record does not result in an
error,

If you want to avoid long delays as relative records are
formatted (as the file is expanded), then you should
reference the last record number immediately after opening
the file, The formatting of the null records takes place at
that time instead of at a more inconvenient time,

To position the DOS for a specific relative record you must
send a position command over the command channel (15), as
shown here:

PRINT#1£fn,"P"+CHRS (channel) +CHRS (1ow)+CHR$ { hig@) +CHRS (byte)

48

Anatomy of the 1541 Disk Drive

If you are positioning to a record which is beyond the
current end of file, the DOS presents the message RECORD
NOT PRESENT appears to the disk error channel., If cthis
record is to be written, then you can ignore the message.
The following PRINT# statement is carried out in spite of
the error message.

The parameters low and high in the P command designate the
record number. The maximum value that can be given with one
byte is 255, but a relative file contains up to 65535 rec-
ords. Therefore, the record number must be transmitted in
two bytes. These two bytes are calculated with the following
formula:

HB=INT(RN/256)
LB=RN-HB* 256

HB = High Byte (parameter high)
LB = Low Byte (parameter low)
RN = Record Number

The last parameter (byte) serves to position to a specific
location within the given record. An example:

PRINT#2,"P"+CHRS(2)+CHRS$(10)+CHRS (1) +CHR$(5)

Here the file is positioned to the fifth byte of the 266th
record. This 266 is coded as a low byte of 10 and a high
byte of 1 (high byte * 256 + low byte = record number).

To read or write a complete record, the file is positioned
to the first byte of the record. If the last parameter 1s
not given, the trailing RETURN (CHR${13)) is taken as the
character location.

The corresponding BASIC program to establish a file of 100
80-character records looks like this:

100 RN=100

110 HB=INT{RN/256)

120 LB=RN-HB*256

130 OPEN1,8,2,"FILE.REL,L,"+CHRS$(80)

140 OPEN2,8,15

150 PRINT#2,"P"+CHR$(2)+CHRS(LB)+CHRS (HB)+CHRS(1)
160 PRINT#1,CHRS$(255)

170 CLOSE 1:CLOSE 15

Freeing 100 records takes some time. The creation of this
file takes about ten minutes. Notice that of the 80 char-
acters in a record, only 79 can be used to hold data,
because transferring data with a PRINT# command adds a
trailing RETURN.,

49

Anatomy of the 1541 Disk Drive

1.5.4 Preparing Data for Relative Storage

As already mentioned, you cannot change the record length of
a relative file. If a record consists of several fields,
these fields must be combined, It is important that these
fields always be in the same position so that they can be
separated later, Let's work through a problem:

We want to manage an inventory using relative storage
techniques. To that end, the following fields are necessary:

PART NUMBER 4 CHARACTERS
DESCRIPTION 15 CHARACTERS
OUANTITY 5 CHARACTERS
COST 6 CHARACTERS
PRICE 6 CHARACTERS

The 1nventory contains approximately 200 items with a record
length of 36 bytes. This inventory file can now be created:

100 RN=200:REM NUMBER OF INVENTORY ITEMS

110 RL=36 :REM RECORD LENGTH

120 OPEN 1,8,2,"INVEN,L,"+CHRS$(36)

130 OPEN 2,8,15

140 PRINT#2,"P"+CHRS(2)+CHRS$(200)+CHRS$(0)+CHRS$ (1)
150 PRINT#1,CHRS$(255)

160 CLOSE 1:CLOSE 2

Now the file is created and all records are written. Let's
suppose that the inventory is present as a sequential file.
It consists of 200 records, the fields of which are ordered
one after the other. These fields must be written to the
relative file., This is not simple, however, because many of
the descriptions are not the full fifteen characters in
length, for example. The structure of the relative file
looks as follows:

111111111122222222223333333
pPosition : 123456789012345678901234567890123456

Contents 1 1/8 in. sheet 1344 11.40 20,30
2 No. 10 screw 1231 4.00 7.00
3 vValve A3a4 1243 11.45 16.40

200 1/2 15. tubing 2321 3.35 4.10

The fields will be read from the sequential file into the
following variables:

50

Anatomy of the 1541 Disk Drive

Part number PNS
Description DES$
Quantity o}
Cost c$
Price P$

The following command chains these fields together:
RCS = PNS + DES + 08 + C$ + PS$

The record variable RC$ does not have the desired structure.
The reason is that the quantity immediately follows the
description. Because the quantity must begin at position 20
and the description is not always fifteen characters, we
have a problem, In order to read the records from the rela-
tive file, the structure must be observed. Therefore, all
fields that are shorter than the planned length must be
padded with blanks. Taking this into account, the chaining
goes like this:

BL$=" “
RC$=PN$+LEFTS (BLS ,4-LEN(PNS))
RCS=RCS$+DES+LEFTS(BLS,15-LEN(DES))
RC$=RCS$+0S+LEFTS (BL$,5~LEN(QS))
RC$=RC$+CS$+LEFTS (BLS ,6~LEN(CS))
RC$=RCS+PS$+LEFTS (BLS ,6-LEN(PS))

This concatenation looks more complicated than it really is.
Each field must be filled with enough blanks to bring it to
its appropriate length. The blanks are added to the
individual fields from the string BLS, defined at the
beginning., T

Let's go through an example:

Suppose the first part number is 8., The length of this
string, LEN(PNS$), is then one. The maximum length of this
field (4) minus the actual length (1) is 3., The string PNS$
must therefore be padded with three blanks, LEFT$(BLS,3).

Each record of the old sequential file must be prepared 1n
this manner before it can be transferred to the relative
file.

Naturally, the above is true for all input values to be used
in a relative file, Therefore, you must always remember to
use a routine to fill each field with blanks to its full
length when working with relative data processing.

51

Anatomy of the 1541 Disk prive

1.5.5 Transferring Data

In principle, transferring data to and from a relative file

does not

differ from sequential storage. Records are written

with PRINT# and read with INPUT# or GET#. The only
difference is that before a record is be written or read,
the file must be positioned to that record, This is accom-
plished with the P command. This example program illustrates
what we have discussed:

100
105
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

BL$=II "

OPEN 1,8,2,"TEST.REL,L,"+CHRS$(41)

OPEN 2,8,15
PRINT#2,"P"+CHRS$(2)+CHRS (100)+CHRS (0)+CHRS (1)
PRINT#1,CHRS(255)

PRINT CHRS(147)

PRINT"INPUT RECORD:"

PRINT"——e—m e "

INPUT"RECORD NUMBER (1-100) : ";RN

IF RN<1 OR RN>100 THEN PRINTCHRS(145);:GOT0160
INPUT"FIELD 1 (MAX.10 CHAR.) : ";Fl$

IF LEN(F1$)>10 THEN PRINTCHRS(145);:G0OT0190
INPUT"FIELD 2 (MAX. 5 CHAR.) : ";F2$

IF LEN(F2$)>5 THEN PRINTCHRS(145)::G0T0210
INPUT"FIELD 3 (MAX.10 CHAR.) : ";F3$

IF LEN(F3$)>10 THEN PRINTCHRS(145);:G0T0230
INPUT"FIELD 4 (MAX.15 CHAR.) : ";F4S$

IF LEN(F4$)>15 THEN PRINTCHRS(145);:G0T0250
PRINT"CORRECT (Y/N)?"

GETXS$:IF X$<>"Y" AND X$<>"N" THEN 280

IF XS="N" THEN 140
RCS=F1S+LEFTS(BLS,10-LEN(F1%))
RCS=RCS$+F2$+LEFTS (BLS ,5-LEN(F2$))
RCS=RCS$+F3$+LEFTS$ (BLS,10-LEN(F3$))
RCS$=RCS+F4$+LEFTS (BL$,15-LEN(F4S))
PRINT#2,"P“+CHRS(2)+CHRS (RN)+CHRS$(0)+CHRS (1)
PRINT#1,RCS

PRINT"MORE INPUT (Y/N)?"

GETXS:IF XS<>"Y" AND XS<>"N" THEN 370

IF X$="Y" THEN 140

CLOSE 1:CLOSE 2:END

The following line-oriented documentation explains the
operation of the program:

100
105
110
120
130

140

A blank-character string with 15 blanks is
defined.

The relative file is opened with a length of 15.
The command channel 15 is opened,

To initialize the relative file, the head is
positioned over the first byte of the last (100th)
record.

The last record is freed and the initialization
begun.

The screen is erased.

52

Anatomy of the 1541 Disk Drive

150-260 The record no. and fields 1-4 are entered and
checked for correct length.

270-290 The entered data can be corrected.

300-330 The record is prepared.

340 The head is positioned over the first byte of the
record.

350 The record is written to the disk.

360-380 New data can be entered.

390 The program ends.

Now write some records with this program, but don't forget
to save in case you need it later.

Certainly, it also necessary to read and change existing
records., To do this, the relative file is opened, the file
is positioned to the appropriate record, and the record is
read. This record must then be divided into its fields.
Let's read a record that was recorded with the previous
program, The following routine reads the record:

100 OPEN 1,8,2,"TEST.REL,L,"“+CHRS$(41)

110 OPEN 2,8,15

115 PRINT CHRS$(147)

120 INPUT"RECORD NUMBER :";RN

130 PRINT#2,"P"+CHR$(2)+CHRS(RN)+CHRS(0)+CHRS(1)

140 INPUT#1,RCS

160 IF ASC(RCS$)<>255 THEN PRINT"RECORD NOT FOUND!":
GOT0250

170 PRINT RCS

250 CLOSE 1:CLOSE 2

This routine reads a specified record., If this record has
never been written, it is recognized by the value 255 with
which every record was marked at the establishment of the
file.

A record that is found is displayed. You can see that the
four fields are in the same positions. If you want to divide
the record into its individual parts, you must use the
funcrion MIDS$, For example, in order to extract field 1 of
the record, give the following statements in the direct mode
after the record is found and read:

F1$=MID$ (RCS,1,10)
PRINT F1$

Now the variable F1$ contains the first field, as written by
the first program. The division of records into individual
fields is accomplished by building on the previous program,
Add or change the following lines:

170 F1$=MID$(RC$,1,10)
180 F2$=MID$(RCS$,11,5)
190 F3$=MIDS$(RC$,16,10)
200 F4$=MID$(RCS,26,15)

53

Anatomy of the 1541 Disk Drive

210 PRINT"FIELD 1l: ";F1S$
220 PRINT"FIELD 2: ";F2$
230 PRINT"FIELD 3: ";F3$

240 PRINT"FIELD 4: ";F4S

250 PRINT"MORE (Y/N)?2"

260 GETXS:IF X$<>"Y" AND XS$S<>"N" THEN 260
270 IF XS="Y" THEN 115

280 CLOSE 1:CLOSE 2

Here the record is separated into the individual fields and
the fields are displayed. It is important for the MID$
function that the exact positions of the fields within the
record be maintained. The first parameter within the paren-
theses is the string variable containing the record. The
second parameter is the position at which the number of
characters represented by the parameter will be taken out.
Further work may done with the selected fields inside the
program,

Sso far, we have read the records with the INPUT# statement.
If the record is longer than 88 characters, it can no longer
be read with the INPUT# statement. The way to get around the
limited INPUT# statement 1s with the GET# statement. The
bytes of a record are read one at a time with this command
and assembled into a single string. Suppose you have a
relative file with 128-~character records. Now you want to
read the tenth record of this file and place it in the
variable RC$. The example of the following routine
illustrates reading this with GET#:

100 OPEN 1,8,2,"TEST.GET,L,"+CHRS(128)

110 OPEN 2,8,15

120 PRINT#2,"P"+CHRS(2)+CHRS(10)+CHRS(0)+CHRS(1)
130 RCS$=""

140 FOR I=1 TO 128

150 GET#1,X$

160 RC$S=RCS$+XS

170 NEXT I

After running this routine, the record is contained in the
variable RCS$. If this record had been written with a PRINT#
statement without a trailing semicolon, the last character
in the string will be a RETURN., To ignore this RETURN, allow
the loop in line 140 to run only to 127, The last character
of the record RETURN is not read.

As already mentioned, the last parameter of the P command
specifies at which character the transfer of data should
begin. If, for instance, 1n the 127-character record of the
previous example, you want to read positions 40-60 into a

54

Anatomy of the 1541 Disk Drive

field, the head must be positioned over the 40th character
and the next 21 bytes read. The following routine clarifies
this:

100 OPEN 1.8,2,"TEST.GET,L."+CHR$(128)

110 OPEN 2,8,15

120 PRINT#2,"P"+CHRS$(2)+CHRS(10)+CHRS(0)+CHRS(40)
130 F$=""

140 FOR I=1 TO 21

150 GET#1,X$S

160 F$=F$+X$

170 NEXT I

In line 120, the head 1s positioned over the the 40th byte
of the tenth record in line 120 and the loop in lines 140-
170 reads the following 21 bytes (bytes 40-60 of the record)
into FS.

You see then that the entire record need not be read if you
only want to work with part of it.

1.5.6 Closing a Relative File

There is no difference between closing a relative file and
sequential file. Because the command channel must always be
open to send the position command when working with relative
storage, 1t must also be closed.

1.5.7 searching Records with the Binary Method

Normally each record is accessed by record number. But what
if you want to search for a specific name in a relative file
and the record number is not known, It is possible to read
each record and compare each for the desired name., But this
is very time consuming if the file has many records.

If the file is kept 1n name order, the records can be
searched using an alternative method. This method is called
a binary search, In order to use a binary search, the
relative file must be arranged in sorted order. Using the
above example, relative record 1 must contain a name with
the lowest collating sequence while the last relative record
must contain a name with the highest collating sequence.
Thus the name AARON might be contained in relative record 1
and ZYPHER might be contained in the last relative record of

55

Anatomy of the 1541 Disk Drive

the file and all other names would be ordered throughout.

When records are added to the file, then the records must
be reordered. similarly if a name is changed, then the
records must be reordered.

The binary search can be explained using a simple example.
When you want to find a name in the telephone book, you
don't search through it sequentially. You open the book in
the middle and compare the first letter of the desired name
with the first letter of names on the page. If the desired
name comes before these, you turn halfway into the first
section of the book, and so on. You go through it
systematically.

The binary search is not a sequential search. It identifies
a record halfway through the remaining number of records,
The following example will clarify this:

There exists the following relative file, sorted in
ascending order:

Record number Contents

1985

1999

3 2005

4 2230

5 2465

6 2897

7 3490

8 3539

9 4123

10 5000
11 5210
12 6450
13 6500
14 6550
15 6999

Out of these fifteen records we will search for a contents
of 3490, It is not known which record it is stored in.

We must first know how many records are in the file. In this
case, there are fifteen. We divide this by two. The middle
of the file is record eight with the contents 3539. We
determine if the contents of this record equal to the target
value, and if not, whether it is larger or smaller. In this
case, it (3539) is larger. This means the record we are
looking for is in the first half of the file. So we divide
eight by two and examine the contents of record four, 2230.
Since 2230 1s less than 3490, 1t lies between four and
eight. We again divide by two and add this to record 4 which
and results in record 6 whose contents is 2897. 2897 is less
than 3490, so our target lies between records six and eight.
Record seven is indeed the record we are looking for.

56

Anatomy of the 1541 Disk Drive

The principle of the binary search is to determine by the
result of each comparison whether to search upwards or
downwards until the search data is found. The maximum number
of comparisons can be found using the following formula:

S=INT(LOG(N)/LOG(2)+1)

5 is the number of comparisons (searches) and N is the
number of records in the file. In a sorted relative data
file with 1000 records, no more than ten comparisons will be
necessary to find the desired record!

Let's create a relative data file with fifteen records to
test the binary search:

100 OPEN1,8,2,"BINARY.REL,L,"+CHRS(5)

110 FORI=1TOl5

120 READ RCS$

130 PRINT#1,RCS

140 NEXT I

150 CLOSE 1:CLOSE 2:END

160 DATA 1985,1999,2005,2230,2465,2897,3490,3539
170 DATA 4123,5000,5210,6450,6500,6550,6999

This program puts the fifteen records in a file called
BINARY.REL using the values given in lines 160-170. The
position command is not necessary because the data will be
written straight through from first to last record. After
opening the file the pointer points to the first record.
This file 1s designed to be searched with the binary method.
The following program is based on the logic of the binary
search:

100 OPEN1,8,2,"BINARY.REL,L,"+CHRS(5)

110 OPEN2,8,15

120 PRINTCHRS$(147)

140 N=15: REM NUMBER OF RECORDS

150 I=LOG(N)/LOG(2)

160 IF I-INT(I)<>0 THEN I=INT(I)+l

170 M=I-1

180 I=2~1

190 x=1/2

210 INPUT"RECORD TO FIND (* TO END): ";SR$
220 IF SRS$="*" THEN 320

230 IF M<0 THEN PRINT"RECORD NOT FOUND":GOTO140
240 M=M-1 -

250 PRINT#2,"P"+CHRS$(2)+CHRS(X)+CHRS$(0)+CHRS (1)
260 INPUT#1,RCS

270 IF SR$S=RCS THEN 340

280 IF SRS<RCS THEN X=X-2AM:GOTO0230

290 X=X+2AM

300 IF X>I THEN PRINT"END OF FILE EXCEEDED!"
310 GOTO 230

320 CLOSE 1:CLOSE 2

57

Anatomy of the 1541 Disk Drive

330 END

340 PRINT"RECORD FOUND!"
350 PRINT"CONTENTS : ";RCS
360 GOTO 140

Program Documentation:

100 The relative file "BINARY,.REL" is opened.

110 The command channel is opened.

120 The screen is erased.

140 The number of records is assigned to the variable
N.

150-190 If the maximum number of records does not
represent a power of two, the next higher power
of two is formed. The file will be expanded, but
no records are lost. The exponent of this power of
two is used as the index., X is the value of 1/2.
1/2 indicates the exact middle of the (expanded)
file. After that, the variable M receives the
value of I-1.

210-220 The record to be found is read. To end the
program, enter a '*',

230 If M0, the record was not found.

240 M is decremented by one. The next Mth power
represents half of the rest of the file,

250-260 The file is positioned over the record containing
in the variable X.

270 If the target record is found, the search is
ended and the record displayed.

280-310 It is determined if the target record 1s larger
or smaller than the record just read. The middle
of the upper or lower half (as appropriate) is
stored in the variable X.

320-330 The file is closed and the program is ended.

340-360 The found record i1s displayed.

This binary search, coded in BASIC, is implemented
universally. Only the number of records and the appropriate
record to be searched for need be changed. You can use this
routine for finding records 1in your sorted relative data
files.

1.5.8 Searching Records with a Separate Index File

If you work with individual records frequently and need
quick access with alphanumeric keys that don't correspond to
the logical record number, and your file is not sorted, we
recommend another method.

Create an index file for each desired key field, in which
each record is composed of

58

Anatomy of the 1541 Disk Drive

- an 1index key
- the corresponding record number

This entire index file is to be loaded into the computer's
memory. An example:

You have constructed your name and address mahager as a
relative file consisting of

- First name

- Last name

- Street

- City, State

- Zip code

- Telephone number

You want to be able to search the file based on the last
name, So you create an additional sequential file that
contains the desired key (in this case the last name) and
the record number of the corresponding record in the
relative file.

The index file is read completely into the computer so the
search can be accomplished as quickly as possible. If you
want to access a record that has the last name HARRIS, then
you search through the appropriate index in memory and when
found, read the corresponding relative record by using the
record number also contained in the index.

Here is an example:

We assume that a data file and an index file exist for the
names:

Index file:

Data file:

Last name First name more fields Index Record No.
(last name) LB HB
Smith John eesesessess Smith 01 00
Harris Sam eeseresesss Harris 02 00
Hanson Carl eeesssesses Hanson 03 00
Johnson Mark cesssesesss Johnson 04 00
Green Simon essasssenss Green 99 00

The file contains 99 records.
index file must be read 1in.
which can be read into a memory table
The first twenty characters of

used, the
sequential file,

reserved with DIM ITS$(99).

Before the program can be
This can be a

each index table position comprise the last name. The next

59

Anatomy of the 1541 Disk Drive

to the last byte (no. 21) is the low byte and the last byte
(no. 22) 1s the high byte of the record number. With these
conditions, a desired record can be found with the following
routine:

100 INPUT "LAST NAME";NS$

110 FOR I=1 TO 99

120 IF LEFTS(ITS(I),20)=N$ THEN 150

130 NEXT I

140 PRINT "NAME NOT FOUND!":END

150 PRINT "RECORD FOUND!"

160 OPEN1,8,2,"ADDRESS,L,"+CHRS(81)

170 OPEN 2,8,15

180 PRINT#2,"P"+CHRS$(2)+MIDS(ITS(I),21,1)+CHRS(0)
+CHRS(1)

190 INPUT#1,RCS

The loop in lines 110-130 goes through the index table
sequentially, searching for the target name contained in the
twenty leftmost characters, If the name 1s not found, an
appropriate message is given (line 140), before the program
is ended.

If, in line 120, the target name matches the index entry,
the program branches to line 150, After giving the message.
the address file is opened, After opening the command
channel, the position command is sent to the disk. Because
the next to the last byte of the index entry contains the
low byte of the record number, it must be extracted using
the MIDS$ function. The high byte is known to be zero since
there are fewer than 255 record.

Finally the relative record is read in line 190.

The access of index files is an equally fast and
extraordinarily flexible form of data organization, One can
theoretically have as many index files as desired. Above
all, you must take note of two important restrictions:

1. Changes in the main data file which affect the key
fields must also be made to the corresponding index
file, With several index files this can become very
time-consuming.

2. The number and size of the index files that are kept in
the computer's memory for fast access are limited by
the availability of memory.

60

Anatomy of the 1541 Disk brive

1.5.9 Changing Records
The logical process for changing a record is this:

1. Read the record

2, Split the record into its fields

3. Change the appropriate field

4, Rebuild the record (combine fields)
5. Rewrite the record

In section 1.5.5 we wrote some records in the file
"TEST.REL". This file had the following properties:

Record length 41 bytes
Number of records 100
Number of fields 4
Length, p051t10n field 1} ¢+ 10, 1-10
field 2 : 5, 11-15
" , " field 3 : 10, 16-25
" " field 4 ¢ 15, 26-40

Tra111ng RETURN in position 41

A file description such as the one above should be made for
each of your files, This is very important if other programs
are to use these data. The file description defines the
order and length of the fields of the file,

In this file, we allow for the contents of the records to be
changed. The following program allows changes:

100 REM ========z=======s==

110 REM PREPARATION

120 REM ========s===z=======

130 BLS$=" "

140 OPEN 1,8,2,"TEST.REL,L,"+CHRS$(41)
150 OPEN 2,8,15

160 REM =======z=zzs=z=z====xsx=

170 REM READ RECORD

180 REM =s===c=====cs=s========

190 PRINT CHR$(147)

200 INPUT"RECORD NUMBER (1-100): “;RN
205 IF RN<1 OR RN>100 THEN PRINTCHRS(145);:GOT0200
210 PRINT" - -"
220 PRINT#2,"P"+CHRS$(2)+CHRS(RN)+CHRS (0)+CHRS(1)
230 INPUT#1,RCS

240 IF ASC(RCS$)<>255 THEN 270

250 PRINT "RECORD NOT WRITTEN"

260 GOTO 630

270 REM ========zs===sc==s=====2

280 REM PREPARE RECORD

290 REM =======zzs=====zosm====

300 F$(1)=MIDS$S(RCS,1,10)

310 F$(2)=MIDS$(RCS$,11,5)

320 F$(3)=MID$(RCS$,16,10)

330 F$(4)=MIDS$(RCS,26,15)

61

Anatomy of the 1541 Disk Drive

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

After this program is RUN you can change any desired record,
This record must have been written with the program in

REM ===zz=s=s==z=z==s=c=sz===x
REM DISPLAY FIELDS
REM ===sc=zc==cc==zssszz===

PRINT CHR$(147)
FOR I=1 TO 4
PRINT"FIELD";I;": “:;FS(I)

NEXT I

PRINT"- "
REM =s=ss=smce=sz=szocs=z==

REM CHANGE FIELDS

RFM s==sc=zcoszssszscwsz===

PRINT"CHANGE WHICH FIELD (1-4)?"
GETX$:IFX$<"1" OR X$>"4" THEN 460
INPUT"NEW CONTENTS : ";FS$(VAL(XS))
PRINT"RECORD IS CHANGED"

PRINT"MORE CHANGES IN THIS RECORD (Y/N)2"
GETXS$:IF XS$<>"Y" AND X$<>"N" THEN 500

IF X$="Y" THEN 340

REM ====z=z=sc=s===z=====
REM CHAIN FIELDS
REM =z==========s==z====

RC$=F$(1)+LEFTS(BLS,10-LEN(FS$(1)))
RC$=RCS$+F$(2)+LEFTS$ (BL$,5~-LEN(F$(2)))
RC$=RCS+F$(3)+LEFTS$ (BLS,10-LEN(FS$(3)))
RC$=RCS$+FS$(4)+LEFTS(BLS,15-LEN(FS(4)))

REM WRITE RECORD BACK

REM ===sccoososcoomssssso==soxs
PRINT#1,RCS

REM ======z==s====z=xz====

REM END PROGRAM?

REM m=os=z=zs=z-=csoc=a=c==zz

PRINT"MORE CHANGES TO FILE (Y/N)?"
GETXS$:IF X$<O"Y" AND X$<>"N" THEN 670
IF X$="Y" THEN 160

CLOSE 1:CLOSE 2:END

section 1.5.5,

Thlis editing program does not check the new field data for

correct length.

The important commands in this program have already been

explained 1in the corresponding sections.

1.5.10 Expanding a Relative File

Every relative file has a user-determined number of records
This number is the record with
the highest record number and is written to the file with a

that ranges from 1 to 65538.

62

Anatomy of the 1541 Disk Drive

value of CHRS(255). Writing this last record also formats
all records in the file that precede this record number with
CHR$ (255) .

You can expand the size of a relative file at a later time,
For example, consider a relative file that is initially
created with three records, After the file is OPENed, you
position the file at record number 3 and write the record
with CHR$(255), Here's an example of how you might do this:

10 OPEN 1,8,2,"RELFILE,L,"+CHRS(50)

20 OPEN 15,8,15

30 PRINT#15,"P"+CHR$(2)+CHR$(3)+CHR$(0)+CHRS (1)
40 PRINT#1,CHRS(255)

When statement 40 is performed, not only is record 3
written, but records 1 and 2 are also formatted by the DOS,
Subsequently, if you position and write a 90th record, the
DOS formats records 4 through 89 (see lines 150 and 160
below)., Each time the file is expanded, the DOS formats
records between the current high record number and the new
high record number,

150 PRINT#15,"P"+ CHRS(2)+CHRS(90)+CHRS (0)+CHRS (1)
160 PRINT#1,CHRS$(255)

500 PRINTH15,"P"+CHRS(2)+CHRS(175)+CHRS (0)+CHRS (1)
510 PRINTH1,CHRS(255)

An existing relative file can be expanded at any time,
provided there is sufficient room on the disk. To do so, the
new last record is written with CHR$(255). At the same time,
all records between the o0ld and new end of file are also
formatted.

When writing a record to a relative file whose record number
is higher than the current high record number, a DOS error
is not returned., If there 1s room on the diskette for the
new records (current high record number through the new high
record number) the file is simply expanded. If there is a
lack of space on the diskette for the new records, the DOS
error FILE TOO LARGE is returned, When reading a record from
a relative file whose record number is higher than the
current high record number, the DOS error RECORD NOT PRESENT
is returned to the error channel.

63

Anatomy of the 1541 Disk Drive

1.5.11 Home Accounting with Relative Data Storage

A complete example of problem solving using relative files
offers you a good insight into the organization of relative
file processing. It can be used by most readers of this
book. Few examples of relative file usage have been
explained elsewhere, so here 1s such a program,

In this application, individual accounts are numbered. This
account number is used as a key to the corresponding
records.

This provides that each account contain a clear text
description, The first field of each record is this account
name. Twenty characters are allowed for the name,

Since information 1s needed for each month, twelve fields
are necessary for each record. These summary fields are each
ten characters long. The account summaries are stored as
strings which are converted to numbers with the help of the
VAL function. The record consists of 141 characters (twenty
for the name, 12*10 for the month summaries and one for
RETURN) .

The layout of the records follows:

Field Length Position
Account name 20 1-20
January summary 10 21-30
February summary 10 31-40
November summary 10 121-130
December summary 10 131-140

The maximum number of accounts per year is set to twenty,
Therefore, a year's file consists of twenty records of 141
bytes each.

We also specified the functions that this program is to
perform.

* Create accounts

* Post to accounts

Display summary by Account
* pisplay account names

Display Monthly summary

64

Anatomy of the 1541 Disk Drive
* Display Year-end summary

Create accounts:

This function creates the file for a year. It asks for the
number and names of the accounts. The records are then
written with the account name and the summary fields are set
to zero. Should a data file already exist with the sane
name, the old file is deleted,

Post to accounts:

This function asks for the account number to be posted and
whether the posting is an income or expense. For example,
the category "SALARY" 1s an income account and the category
"RENT" is an expense account.

After this, the current contents of the account are
displayed. When you post the appropriate amount, which is
always positive. If you are making a correction entry, use a
negative amount,

Now the updated contents are displayed. You may then make a

new entry.

Producing account summary:

After entering the account number, the summary of the twelve
months and the year's total are displayed for that account,

Display account names:
Each account is determined by 1ts number. Should you forget
a number, this function lists all accounts by name and
corresponding number,

Display monthly summary:
Here the 1ncome or expenses of all accounts are displayed.
The monthly balance of all accounts is also displayed.

Display year—-end summary:

This function shows the summary of all accounts and the
year-end balance. This display takes some time, since all
monthly fields of each record must be read and totaled, It
accesses the entire file,

Here's the program listing:

65

Anatomy of the 1541 Disk Drive

100

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

POKE 53280,2:POKE53281,2:PRINTCHRS (158);:

BLS$=" "sDIMS(12)

GOSUB 2050

INPUT"CURRENT YEAR : ";Y$

IF Y$S<"1984"ORYS>"1999"THENPRINTCHRS(145);:GOTO120
GOSUB 2050

PRINT"SELECT A FUNCTION:

PRINT"—=—mm e e m e e e " :PRINT
PRINT" ~1- CREATE ACCOUNTS"
PRINT" —2- POST TO ACCOUNTS"
PRINT" ~3- ACCOUNT SUMMARY"
PRINT" -4- DISPLAY ACCOUNT NAMES"
PRINT" -5- MONTHLY SUMMARY"
PRINT" ~6- YEAR SUMMARY":PRINT
PRINT™ -0- END PROGRAM"

GETXS$:IFXS$<"O"ORXS$>"9"THEN240
IFX$<>"0"THEN270

END

ONVAL(X$)GOSuB 290,560,920,1160,1370,1720
GOTO 140

REM ====zzsz=szzcosss=zssss=ss
REM CREATE ACCOUNTS

REM m=zssz=scszzsossscxssssss
GOSUB 2050

PRINT"CAUTION! ANY PREVIOUS FILE FOR THIS YEAR"
PRINT"WILL BE ERASED!":PRINT
PRINT"CONTINUE (Y/N)?"

GETXS : IFX$<>"Y" ANDXS<> "N"THEN360
IFX$="Y" THEN390

CLOSE1:CLOSE2:RETURN
OPEN2,8,15,"S:ACCOUNTS"+Y$
OPEN1,8,2,"ACCOUNTS"+YS+",L,"+CHR$ (141)
GOSUB 2050

INPUT"HOW MANY ACCOUNTS (1-20): “;AN
PRINT
IFAN<1ORAN> 20 THENPRINTCHRS (145) ; : GOTO420
FORI=1TOAN

PRINT"NAME OF ACCOUNT NO.";I;": “;
INPUTANS

IFLEN(ANS)>20 THENPRINTCHRS (145) ; : GOTO420
RC$=ANS+LEFTS(BLS ,20-LEN{ANS))
FORX=1TO12

RC$=RC$+STRS (0)+LEFTS (BLS ,8)

NEXTX

PRINT#1,RCS

NEXT I

CLOSE 1:CLOSE 2:RETURN

REM ESsEo=mxmomo

REM POSTING

REM P)

GOSUB2050

INPUT"ACCOUNT NUMBER" ;AN
IFAN<1ORAN> 20 THENPRINTCHRS (145) ; : GOTO600
GOSUB2140

640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180

Anatomy of the 1541 Disk

PRINT"NO.";AN;" - ";ANS

PRINT" -— - "
PRINT"INCOME OR EXPENSE (I/E)?"
PRINT"———om -- ——-
GETX$:IFX$S<>"I"ANDXS<>"E" THEN680
INPUT"MONTH (1-12) : "M
IFM(lORM)lZTHENPRINTCHRS(145)::GOT0690

PRINT"—- = —— -—
PRINT"OLD CONTENTS : "3S(M)
PRINT" -~~~ ——————————
INPUT"POSTING AMOUNT : "“;PA

PRINT" - - ——
IFX$="I"THENS(M)=5(M)+PA:GOTO780
S{M)=S(M)-PA

PRINT"NEW CONTENTS t ":S(M)
PRINT e e e e e "
RC$=ANS+LEFTS(BLS,20-LEN(ANS))
FORI=1TO12

S$=STRS(S(I))
RC$=RCS$+S$+LEFTS (BLS ,10-LEN(S$))
NEXTI
PRINT#2,"P"+CHRS$ (2)+CHRS (AN)+CHRS (0)+CHRS (1)
PRINT#1,RCS

CLOSE1:CLOSE2

PRINT"FURTHER POSTING (Y/N)?"

GETXS$: IFX$<>"Y"ANDXS$<>"N"THEN890
IFXS$S<>" Y" THENGOSUB2050 : GOTO600

RETURN

REM ==z=z==scs==s==x=====
REM ACCOUNT SUMMARY
REM ==z==s==szxzc======s=
GOSUB2050

INPUT"ACCOUNT NUMBER : " ;AN

IFAN<1ORAN> 20 THENPRINTCHRS (145) ; :GOT0960

GOSUB2140

GOSUB2050:PRINTCHRS (145) ; CHR$(145)
PRINT" -~
PRINT"NO.";AN;" - ";ANS

PRINT"MONIH TOTAL"

PRINT" - —
TL=0

FORI=1TO12

PRINTI; TAB(8);S(1)

TL=TL+S{I)

NEXTI

PRINT" == m—m e ——— i
PRINT"TOTAL"; TAB(8);TL
PRINTTAB(9)-"=======
PRINT"RETURN FOR MORE"

INPUTXS$

CLOSE]1 :CLOSE2:RETURN

REM ====szss==z=-=zzs==s==z==

prive

Anatomy of the 1541 pisk Drive

1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740

GOSUB2050
OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHRS(141)
OPEN2,8,15

I=1
PRIN?&2,"P"+CHR$(2)+CHR$(I)+CHR$(0)+CHR$(1)
RC$= L]

FORX=1T020

GET#1,X$

RC$=RC$+X$

NEXTX

INPUT#2,X

IFX=50THEN1340

PRINTI;" - ";RC$

I=I+1:G0T01230

PRINT"RETURN FOR MORE"

INPUTXS$

CLOSE1 :CLOSE2: RETURN

REM ==zs=s=szos=ss===

GOSUB2050

INPUT"MONTH : ":M

GOSUB2050

PRINT" ~w—occom—aa -
PRINT"NO. NAME CONTENTS"

OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHRS (141)
OPEN2,8,15

TL=0

FORAN=1TO020

AN$=" " : S$=nn
PRINT#2,"P"+CHRS$ (2)+CHRS (AN) +CHRS (0)+CHRS (1)
FORI=1T020

GET#1,X$

ANS=ANS$+X$

NEXTI

INPUT#2,F

IFF<>50THEN1590

GOTO1670
PRINT#2,"P"+CHRS (2)+CHRS (AN) +CHRS (0) +CHRS (20+(M-1)*10)
FORI=1TO10

GET#1,X$

S$=S8+XS$

NEXT I

TL=TL+VAL(S$)

PRINT AN;TAB(6);ANS;TAB(26);S$

NEXT AN

PRINT" ===~ —
PRINT"TOTAL BALANCE"; TAB(zs) STRS(TL)

PRINTTAR(26) ; "======="
PRINT"RETURN FOR MORE";

INPUTXS :CLOSE1 sCLOSE2: RBTURN
REM ==s=s=smczz=====
REM YEAR SUMMARY
REM ====z===z==zc===

68

Anatomy of the 1541 bisk Drive

1750 GOSUB2050

1760 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHRS$(141)
1770 OPEN2,8,15

1780 PRINT" - - "
1790 PRINT"NO. NAME YEAR BALANCE"
1800 PRINT"—-~-———rec———m "
1810 TL=0

1820 FOR AN=1T020

1830 PRINT#2,"P"+CHRS(2)+CHRS(AN)+CHRS (0)+CHRS (1)
1840 RCS=""

1850 FORI=1TO140

1860 GET#1,X$

1870 RC$=RC$+XS$

1880 NEXTI

1890 INPUT#2,F:IFF=50THEN1980

1900 ANS=LEFTS$(RCS$,20)

1910 YB=0

1920 FORI=1TO10

1930 YB=YB+VAL(MIDS$(RCS,20+(I-1)*10,10))

1940 NEXTI

1950 TL=TL+YB

1960 PRINTAN;TAB(6);ANS;TAB(26);YB

1970 NEXTAN

1980 PRINT"--- - -="

1990 CLOSEl:CLOSE2

2000 PRINT"TOTAL BALANCE";TAB(26);

2010 PRINTTAB(ZG)'“=======

2020 PRINT"RETURN FOR MORE"

2030 INPUTXS

2040 RETURN

2050 REM =========s==x=z=====

2060 REM PROGRAM HEADING

2070 REM ==========z==s=z=z=zz===

2080 PRINTCHRS$(147);

2090 PRINTTAB(4), B e T LT T T e
2100 PRINTTAB{(4);"H OME ACCOUNTTING"
2110 PRINTTAB(4);"====s===czs=sssszssssxzzss===="
2120 PRINT:PRINT

2130 RETURN

2140 REM =====s=zzz=====z=z=

2150 REM READ ACCOUNT

2160 REM ======s===S=======

2170 OPEN1,8,2,"ACCOUNTS"+YS$+",L,"+CHRS(141)
2180 OPEN2,8,15

2190 PRINT#2,"P"+CHRS(2)+CHR$(AN)+CHRS(0)+CHRS(1)
2200 RCS=""

2210 FORI=1TO140

2220 GET#1,X$

2230 RCS=RCS+XS

2240 NEXT I

2250 INPUT#2,F

2260 IFF<>50THEN2300

2270 PRINT"YEAR FILE OR ACCOUNT NOT FOUND!":PRINT
2280 PRINT"RETURN FOR MORE":INPUTXS

2290 CLOSEl:CLOSE2:RETURN

69

Anatomy of the 1541 Disk Drive

2300 ANS=LEFTS$(RCS$,20)

2310 TL=0

2320 FORI=1TOl2

2330 S(I}=VAL(MIDS$(RCS$,20+(I-1)*10,10))
2340 TL=TL+S(I)

2350 NEXT I

2360 RETURN

Program Documentation:

Initialization:

100 Screen and character color set; blank character
string defined; variable for account summaries
dimensioned,

110-130 Program heading displayed and current year read.

140-280 Program functions displayed and choice read;
corresponding subprogram called,

Establish Accounts:

390-400 Any existing files of this year are erased and the
new file is opened.

480 Account name is placed in positions 1-20 of the
record RCS,.

500-540 Month summaries are set to zero and placed in the
record as string variables.

530 The record is transferred with a trailing RETURN,
Posting:
590 The routine "Read Account" is called. This routine

places the month summaries of the account in the
variables S{1} to S(12).

800 Account name is placed in the record.

810-840 Account summary 1s placed in the record.

850-860 Record is transferred.

Account Summary:

980 Desired account is read and the month summaries
are placed in variables S(1) to S(12).

1050-1090 Month summaries are displayed and the total (TL)
is added up.

1110 Total displayed.

Display Account Names:

1220 Account number is initialized.
1230 The head 1s positioned over the corresponding

70

Anatomy of the 1541 Disk Drive

record,
1240-1280 Account name is read out of the record in RCS.
1290-1300 If RECORD NOT PRESENT is sent over the error
channel (error 50), the routine is broken off.
1320 Account number and name are displayed.

Month Summary:

1490-1660 Loop to read all accounts.

1510 Position head over record.

1520-1550 Read account name,

1560-1580 Determine if account exists; stop 1f all twenty
accounts have been defined.

1590 Position over summary field of the desired month.

1600-1630 Read the month summary,

1640 Add month summary to total.

1650 Account number, account name and month summary aie
displayed.

1680 Total balance displayed.

Year Summary:

1820-1970 Loop to read all accounts

1830 Position head over record.
1850-1880 Complete record read into RCS.
1890 Test if RECORD NOT PRESENT.
1900 Get account name from record.

1920~1940 Read month summary, convert to numerical form and
add to year summary (Y¥S).

1950 Year summary (¥S) is added to total (TL).

1960 Account number, account name and year summary
displayed.

2000 Total balance (month balance) displayed.

Read Account:

2190 Position over record given in AN,

2210~2240 Read record into RCS.

2250-2260 Test if RECORD NOT PRESENT,

2300 Account name read from record,

2320~-2350 Month summaries read from record, converted to
numerical form and placed into the table S(1l) to
s(12).

71

Anatomy of the 1541 Disk Drive

1.6 Disk Error Messages and their Causes

If you cause an error while working with the disk drive, the
drive signals this by blinking the red LED., The LED blinks
until you read the error channel of the disk drive or until
you send a new command, First we want to see how to read the
error message from the disk drive.

In order to do this, the error/command channel must be
opened with the secondary address 15:

100 OPEN 15,8,15
110 INPUT#15,A,BS$,C,D
120 PRINT A,B$,C,D

If no error has occurred, the following is displayed:
0 OK 0 0

The first number is the error number, in this case zero,
which means no error has occurred, Next follows the error
message (variable BS). The variables C and D contain the
track and sector numbers, respectively, in which the error
occurred, which is dependent on the type of error (mainly
associated with hardware errors and block-oriented
commands) .

This routine accomplishes the same function:

100 OPEN15,8,15
110 GET#15,A$:PRINTAS; :IFST<>64THEN110

00, OK,00,00

Here characters are read from the error channel until the
end is recognized (status = 64)., This gives the error message
exactly as the BASIC 4.0 command

PRINT DS$

When using BASIC 4.0, variables DS$ and DS are reserved
variables which contain the complete error message and error
number, Each access of these variables gives the error
status of the last disk operation. Unfortunately, the
Commodore 64 does not use BASIC 4.0, so these variables are
meaningless i1in Commodore 64 BASIC (BASIC 2.0).

Next follows the list of error messages that the DOS can
recognize:

00, OK,00,00
This message occurs when the last disk operation was error
free or if no command or data was sent after the last
error message,

72

Anatomy of the 1541 Disk Drive

01,FILES SCRATCHED,XX,00
This is the message after a SCRATCH command. The number XX
denotes the number of filed that were erased. Since this
is not really an error message, the LED does not blink.

20 ,READ ERROR,TT,SS
This error means that the 'header' of a block was not
found. It is usually the result of a defective diskette.
TT and SS designate the track and sector in which the
error occurred. Remedy: change defective diskette.

21,READ ERROR,TT,SS
This is also a read error. The SYNC (synchronous) marker
of a block was not found, The cause may be an unformatted
disk, or no disk in the drive. This error can also be
caused by a misaligned read/write head. Remedy: Either
insert a diskette, format the disk, or have the read/write
head aligned.

22 ,READ ERROR,TT,SS
This error message means that a checksum error has
occurred in the header of a data block, which can be
caused by the incorrect writing of a block.

. 23,READ ERROR,TT,SS

The error implies that a data block was read into the DOS
buffer, but a checksum error occurred. One or more data
bytes are incorrect. Remedy: Save as many files as
possible onto another diskette.

24 ,READ ERROR,TT,SS
This error also results from a checksum error in the data
block or in the preceding data header. Incorrect bytes
have been read. Remedy: same as error 23,

25,WRITE ERROR,TT,SS

This error 1s actually a VERIFY ERROR. After writing every
block the data is read again checked against the data 1in
the buffer. This error is produced if the data are not
identical. Remedy: Repeat the command that caused the
error, If this doesn't work, the corresponding block must
be locked out from further use with the block-allocate
command.

26 ,WRITE PROTECT ON,TT,SS
An attempt was made to wrlte to a disk with a write
protect tab on it. Remedy: Remove write protect tab.

27,READ ERROR,TT,SS

A checksum error occurred in the header of a data block.
Remedy: Repeat command or rescue block.

73

Anatomy of the 1541 Disk Drive

28 ,WRITE ERROR,TT,SS
After writing a data block, the SYNC characters of the
next data block were not found. Remedy: Format disk again,
or exchange 1t.

29,DISK ID MISMATCH,TT,SS
The ID (two character disk identification) in the DOS
memory does not agree with the ID on the diskette. The
diskette was either not initialized or there is an errcr
in the header of a data block., Remedy: Initialize
diskette,

30,SYNTAX ERROR,00,00
A command was sent over the command channel that the DOS
could not understand., Remedy: Check and correct command.

31,SYNTAX ERROR,00,00
A command was not recognized by the DOS, for example, the
BACKUP command (Duplicate) on the 1541. Remedy: Do not use
the command.

32,SYNTAX ERROR,00,00
The command sent over the command channel was longer than
40 characters, Remedy: Shorten command,

33,SYNTAX ERROR,00,00
A wildcard ('*' or '?') was used in an OPEN or SAVE
command, Remedy: Remove wildcard.

34,SYNTAX ERROR, 00,00
The DOS cannot find the filename in a command, This may be
because a colon was forgotten after the command word.
Remedy: Check and correct command.

39,FILE NOT FOUND,00,00
User program of type 'USR' was not found for automatic
execution. Remedy: Check filename,

50,RECORD NOT PRESENT,00,00
A record was addressed in a relative data file that has
not yet been written., When writing a record this is not
really an error. You can avoid this error message if you
write the highest record number of the file with CHRS(255)
when initializing it. This error will no longer occur upon
later access.

51,0VERFLOW IN RECORD,00,00
The number of characters sent when writing a record in a
relative file was greater than the record length, The
excess characters are ignored.

52,FILE TOO LARGE,00,00
The record number of a relative file is too big; the
diskette does not have enough capacity. Remedy: Use
another diskette or reduce the record number,

74

Anatomy of the 1541 Disk Drive

60,WRITE FILE OPEN,00,00
An attempt was made to OPEN a file that had not previously
been CLOSEd after writing. Remedy: Use mode 'M' in the
OPEN command to read the file,

61,FILE NOT OPEN,00,00
A file was accessed that had not been OPENed. Remedy: Open
the file or check the filename.

62,FILE NOT FOUND,00,00
An attempt was made to load a program or open a file that
does not exist on the diskette. Remedy: Check the
filename.

63,FILE EXISTS,00,00
An attempt was made to establish a new file with the name
of a file already on the diskette., Remedy: Use a different
filename or @: (to replace the old file).

64,FILE TYPE MISMATCH,00,00
The file type use in the OPEN command does not agree
with the file type in the directory. Remedy: Correct
file type.

65,NO BLOCK,TT,SS

This error message is given in association wlth the BLOCK-
ALLOCATE command when the specified block is no longer
free. In this case, the DUS automatically searches for a
free block with a higher sector and/or track number and
gives these values as the track and sector number in the
error message. If no block with a greater number is free,
two zeroes will be given.

66, ILLEGAL TRACK OR SECTOR,TT,SS
If you attempt to use a block with the block commands that
does not exist, this error is returned,

67,ILLEGAL TRACK OR SECTOR,TT,SS
The track-sector combination of a file produces a nhon-
existent track or sector,

70,NO CHANNEL,00,00
An attempt was made to open more files than chahnels
available or a direct access channel is already reserved,

71,DIR ERROR,TT,SS
The number of free blocks in the DOS storage does not
agree with the BAM., Usually this means the disk has not
been initialized,

72,DISK FULL,00,00
Fewer than three blocks are free on the diskette or the
maximum number of directory entries have been used (144 on
the VIC 1541).

75

Anatomy of the 1541 Disk Drive

73,CBM DOS V.26 1541,00,00
The message is the power-up message of the VIC 1541. As an
error message, it appears when an attempt is made to write
to a disk that was not formatted with the same DOS
version, for example, the forerunner of the CBM 4040, the
CBM 2040 (DOS version 1.0). .

74,DRIVE NOT READY,00,00
When one attempts to use the disk without a diskette in
the drive, this error message is returned.

75,FORMAT SPEED ERROR,00,00
This error message occurs only on the CBM 8250, It
indicates a deviation from the normal revolutions per
minute while formatting.

76

Anatomy of the 1541 Disk Drive

1.7 oOverview of Commands with a Comparison of BASIC 2.0 -

BASIC 4.0 -

BASIC 2.0

DOS 5.1

BASIC 4.0 (abbrev)

DOS 5.1

OPEN ~ Mode 'A'

APPEND (aP)
BACKUP (bA)

LOAD"S$",8 & LIST CATALOG (cA) @S or >S

V(alidate) COLLECT (coL) @V or >V
CONCAT (conC)

C(opy) COPY (coP) @C:.. or >C:..

CLOSE ... DCLOSE (d4C)

Lroap",..",8 DLOAD (dL) ©file or /file

OPEN ...,8,... DOPEN (d40)

OPEN 1,8,15 ... Dps$, DS @ or >

SAVE"...",8 DSAVE (ds)

N(ew) HEADER (hE) @N:.. or >N:..

I(nitialize) I(initialize) @I or >I

P RECORD (reC)

R(ename) RENAME (reN) @R:.. or >R:..

S(cratch) SCRATCH (sC) @S:.. or >S:..

This table lists the different versions of BASIC. The DOS
5.1 is found on the TEST/DEMO disk and will be described in
section 4.2.1.

The essential difference between BASIC 2.0 and BASIC 4.0 is
that with BASIC 2.0, each command is executed by the disk
control system (DOS) and must be sent over channel 15. The
disk commands of BASIC 4.0 manage this channel themselves
(with the exception of INITIALIZE). For example, the command
HEADER DO,"DISK1",IHJ generates the same sequence of
commands necessary in BASIC 2.0, namely:

OPEN 1,8,15,"N:DISKL,HJ"

CLOSE 1
Here are are the specifics of the BASIC 4.0 commands:
Note the following parameters:
1fn = logical file number
dn = drive number ~ drive 0 (DO) or drive 1 (Dl) with
a double drive, or DO for a single drive
da = device address of the disk drive (U4 to U3l)

Information in parentheses is optional. The standard
parameters DO and U8 will be used (meaning Drive 0 and Unit
8).

77

Anatomy of the 1541 Disk Drive

APPEND:
This command allows data to be added to a sequential file,
which 1s accomplished in BASIC 2.0 with the OPEN-command
mode A.

This command has the following format:

APPEND#1fn,"filename" (,Ddn,Uda)
For example, should the sequential file "SEQU.1" be on drive
0, the following statements are necessary to add a data
record to it:

100 APPEND#1,"SEQU.1",D0

110 PRINT#1,X$
120 CLOSE 1

BACKUP:

With this command, a complete diskette can be copied. The
BACKUP command can only be used with a dual disk drive (such
as the 4040), however. Notlce the format of this command:

BACKUP Ddn TO Ddn(,Uda)

It is 1mportant that either DO to Dl or D1 to DO be given.
An example:

The diskette in drive 1 is supposed to be copied onto the
disk in drive 0. To this end, give the following command:

BACKUP D1 TO DO
CATAILY

T 4% ALOG command of BASIC 4.0 has the advantage that the
program i1n the computer's memory is not erased, as is true
in BASIC 2.0. The format of the command:

CATALOG (Ddn,Uda)
If no drive number is given for a double drive, the contents
of both drives are given, With a single drive, CATALOG DO is
assumed. An example:

CATALOG DO

The contents of the disk in drive 0 will be displayed.

COLLECT:
This command corresponds with the VALIDATE command of BASIC
2.0. The syntax of this command looks like this:

COLLECT (Ddn)

78

Anatomy of the 1541 Disk Drive

CONCAT:
AT concatenates sequential files, in which one file 1s
to pe made from the data of two files, The format:

CONCAT (Ddn,)"filel" TO (Ddn,)"file2" (ON Uda)
Suppose you want to combine the data of the files "SEQU.2"
in drive 0 and "SEQU.1" in Dl. To accomplish this, issue the

following command:

CONCAT DO,"SEQU.2" TO D1,"SEQU.1"

COPY:

With this command files can be copied from one drive to the
other (except relative files). The command is useless with a
single drive. The syntax looks like this:

COPY (Ddn,)}("filel") TO (Ddn,)("file2")

To copy all files (for example, from drive 0 to drive 1),
use the following command:

COPY DO TO D1
DCLOSE:

The command DCLOSE has the same function as the simple CLOSE
command, with the following exceptions:

DCLOSE closes all files

DCLOSE#1 closes file number 1

DCLOSE#1 ON U9 closes the logical file #1 on device
address 9

DCLOSE U8 closes all files on device address 8

The command has the following syntax:
DCLOSE (#1fn) (ON Uda)
DLOAD:

The command DLOAD has the advantage that the standard device
address 8 used. The format:

DLOAD “program" (,Ddn)(,Uda)

For instance, if you want to load the program "PRG.2" from
drive 0 or from a single drive, give the following command:

DLOAD "PRG.2"

Drive 0 (DO) 1s the default value,

79

Anatomy of the 1541 Disk Drive

DOPEN:

This command of BASIC 4.0 is very comprehensive. The
following format verifies this:

.

DOPEN#1fn,"file"(,Ddn)(,0da)(,f1leparameter)
The peculiarity of this method of opening is the file
parameter, There are two file parameters, that have the
following function:

: 'L'-parameter : 'W'-parameter : Mode of operation H
: YES : NO : A relative file is :
: : : opened. :
: NO H YES : A sequential file is :
H : : opened for writing. H
: NO : NO : A file 1s opened for :
H H : reading(REL,SEQ,PRG,USR):

In addition to the 'L' parameter the record length must be
given (such as L80). A DOPEN command of this type looks like
this:

DOPEN#1,"FILE.REL",D0,L80

Here a relative file is opened with a record length of 80
bytes. The declaration of the file parameter is only
necessary once, at the establishment of the file. All later
openings of the file can occur without the parameter
declaration.

DS$ & DS:

After a disk error, the complete error message can be
displayed with PRINT DS$ or just the error number with PRINT
DS. Of course, the error can be read within a program and
the appropriate branch made. For example:

100 IF DS = 26 THEN GOTO ...
DSAVE:
A program can be saved on disk with this command. Tte
following format is to be noted:
DSAVE (Ddn,)"programname"(,Uda)
HEADER:

A disk is formatted with the HEADER command in BASIC 4.0. It

corresponds to the NEW command in BASIC 2.0. The syntax of
the command:

80

Anatomy of the 1541 Disk Drive

HEADER "diskname",D0,Iid(U,da)
or HEADER Ddn,"diskname",Iid

Here there are two possibillities to designate the drive. The
id is the diskette identification. If 1t 1s not given, the
disk is presumed to be formatted and is merely given a new
name and all files are erased.

RECORD:

This command corresponds to the position command of BASIC
2,0 (DOS 2.6). The read/write head can be positioned over a
record in a relative file, without the need to send the
position over channel 15, The syntax of this command
illustrates how easy this positioning 1s:

RECORD#1fn,rn(,bp)

The logical file number is obtained from the opened relative
file, 'rn' is the record number (1-65535) and 'bp' is the
position within this record (1-254).

An example: You want to position the head over the twelfth
byte of the 128th record of a relative file opened with the
logical file number 2. The following command accomplishes
this:

RECORD#2,128,12

RENAME :
This RENAME is similar to the RENAME of BASIC 2.0. The
format of this command:

RENAME (Ddn,)"old name" TO "new name"(,Uda)

SCRATCH:
This method of erasing files is essentially easier because
files can be erased with one command. The format of this
command :

SCRATCH (Ddn,)"file"(,uda)

After entering a SCRATCH command the message "ARE YOU SURE?"
which allows the command to be stopped. If the file is
really supposed to be erased, answer 'Y' else 'N'. After
erasing the file, the message "FILES SCRATCHED" appears on
the screen,

81

Apatomy of the 1541 Disk Drive

Chapter 2: Advanced Disk Programming

2.1 Direct Access of any Block of the Diskette

When handling files and programs on the diskette, as des-
cribed in Chapter 1, we didn't have to concern ourselves
with the organization on the diskette, because the disk
operating system (DOS) took care of these details for us.

But the DOS offers the capability of accessing each
individual block on the diskette. This gives us a lot of
flexibility - ranging from manipulation of individual files
to creating completely new data structures,

In order to access a block directly, a channel is OPENed to
a data buffer within the 1541 disk drive. It is over this
channel that data is transmitted. The data buffer serves as
an intermediate storage place for the data that 1s read from
the diskette or written to the diskette. In order to inform
the DOS that we want to work with direct access commands, we
use a special filename in the OPEN command:

OPEN 1,8,2,"§"

Using this command, logical file number 1 on device 8 (the
disk drive), is associated with a direct access file.
Channel 2 serves to transmit data to and from the disk
drive. The channel number (secondary address in the OPEN
command) may be 2 through 14. Channels 0 and 1 are reserved
for LOAD and SAVE and channel 15 is the command channel, The
choice of a secondary address is arbitrary. You may not use
the same secondary address simultaneously, since the DOS,
upon encountering the second OPEN command with the same
secondary address, closes the previous file using this
channel number. This also occurs when working with
sequential or relative files,

This form of the OPEN command causes the DOS to search for
a free data buffer and assign it to that channel. By using a
GET4 statement immediately after the OPEN we can find the
buffer number that the DOS assigns:

100 OPEN 1,8,2,"#"

110 GET#1, AS$

120 PRINT ASC(AS+CHR$(0))
RUN

3
In this case, buffer three was assigned. The buffer numbers

range from 0 to 4, Each buffer can hold 256 characters of
data. The buffers are located in the followilng memory

82

Anatomy of the 1541 Disk Drive

locations in the VIC 1541:

Buffer number Memory location

$300-$3FF, 768-1023
$400~-$4FF, 1024-1279
$500-S5FF, 1280-1535
$600-$6FF, 1536-1791
$700-$7FF, 1792-2047

AW O

Buffer 4 is normally unavailable, because the BAM is stored
there., If we work with sequential or relative files at the
same time, buffer 3 is also unavailable, because it is used
for the directory. If we want to associate a specific data
buffer for direct access, we can assign it with the OPEN
command.

OPEN 1,8,2,"#3"

This associates buffer 3 ($600-$6FF) with channel number 2,
assuming it is still free. Unless you have a pressing reason
to use a specific buffer, you should leave the choice of the
buffer up to the DOS, because the choice of a definite
buffer increases the possibility that it will not be
avallable,

After opening a channel, you should check the error channel.

130 OPEN 15,8,15
140 GET#15, AS : PRINT A$; : IF ST<>64 THEN 140

If the buffer is already in use, you will receive the error
message .

70,NO CHANNEL,00,00

If no other files are open, you can open up to 4 channels
for direct access. The following example illustrates this:

10 OPEN 1,8,15,"I0" : I=2 : REM ERROR CHANNEL
20 OPEN 2,8,2, "#" : GOSUB 100

30 OPEN 3,8,3, "#" : GOSUB 100

40 OPEN 4,8,4, "4#" : GOSUB 100

50 OPEN 5,8,5, "#" : GOSUB 100

60 OPEN 6,8,6, "#" : GOSUB 100

70 END

100 GET#I,AS:PRINT ASC(AS+CHRS(0))

110 I=I+1 : REM BUFFER NUMBER

120 GET#1,A$: PRINT A$; : IF ST<>64 THEN 120
130 RETURN

When RUN, the above program produces the following output:

3

83

Anatomy of the 1541 Disk Drive

00, OK,00,00
2

00, OK,00,00
1

00, OK,00,00

0

00, OK,00,00

199
70,NO CHANNEL,00,00

As you see, attempting to open a fifth channel for direct
access fails.

Transmitting data to and from the buffer usually takes place
using the GET#, INPUT# and PRINT# statements.

I1f a buffer contains pure text (alphanumeric data) which is
not longer than 88 characters and is separated using CR
(Carriage Return, CHR$(13)), it can be read using INPUT#.
However, if the buffer contains control characters or the
text 1is separated using commas or colons, the INPUT#
statement fails, Then we must use the GET# statement, which
retrieves only one character at a time. GET# does not allow
null values (CHRS$(0)) to be read. In this case, GE1#
receives an empty string and you must check for this
condition as below:

100 GET#2, A$: IF AS + "™ THEN A$ = CHRS(0)

A simpler alternative to the GET# statement is to use the
statement INPUT*, as is described in section 4.3.1. Here you
can declare how many characters are to be read into a
string. It also handles null values (CHR$(0)). You can read
almost the entire buffer (255 characters are possible) with
one command.

In the next section, all commands used for direct access are
described in detail. Keep the following points in mind when
using direct access commands.

When using direct access commands, you must explicitly cause
the blocks on the diskette to be read or written. The direct
access commands are transmitted over command channel 15. The
data that 1s read from or written to a buffer are
transmitted over a separate channel that is associated with
that buffer, Both channel 15 and the separate channel must
be OPENed before transmission can begin.

1) A PRINT# statement to command channel 15, sends a direct
access command to the DOS.

2) A PRINT# statement to channels 2 thru 14 sends data to a
buffer.

3) An INPUT# or GET# statement to command channel 15 re-

84

Anatomy of the 1541 Disk Drive

turns any error messages detected by the DOS.

4) An INPUT# or GET# statement to channels 2 thru 14, reads
the data from the buffer.

I1f you are ready to work with the block commands and want to
display individual blocks on the screen or change them, you
can use the DOS monitor in section 4.6, which provides a
simple and easy way of doing so.

85

Anatomy of the 1541 Disk Drive

2.2 The Direct Access Commands

2.2.1 The Block-Read Command B-R

The block-read command instructs the 1541 to read a block
from the diskette into a buffer of a previously opened
direct access file. The block-read command is sent over the
command channel (secondary address 15) to the disk drive.
The block-read command can be shortened to B-R. Because this
command does not read the first byte of the block, you can
substitute the command Ul to read a block. The command has
the following syntax:

Ul channelnumber drive track sector

You must give the channel number that you used when OPENing
the direct access file. Next follows the drive number, which
is always zero for the VIC 1541, and then the track and
sector numbers of the block you want to read.

10 OPEN 1,8,15
20 OPEN 2,8,2, "#"
30 PRINT#1, "Ul 2 0 18 0"

This reads the contents of track 18 sector 0 into the buffer
belonging to channel 2. Now you can read the data from this
buffer with GET#2.

40 GET#2, AS,BS
50 PRINT ASC(AS), ASC(BS)

18 1

Now we have read and displayed the first two bytes in the
buffer. Sector 0 of track 18 contains a pointer to the first
directory block (track and sector) and the BAM for the
diskette.

In the demo program DISPLAY T&S on the TEST/DEMO diskette
(section 4,2.7) this command is used in order to read the
BAM from the disk and to graphically display each record on
the disk,

We can read all 256 bytes of the block from the buffer with
the GET# statement; in our example we will read the diskette
name and ID from position 144.

The blocks which comprise a file are chained to each other,
The first two bytes of each file block contains a pointer to
the track and sector of the following block. Using this
information, you can piece together the usage of disk space
for a file. A track pointer of zero indicates the last

86

Anatomy of the 1541 Disk Drive

block of the file and the pointer which usually contains the
sector number now contains the number of bytes of the last
block which are part of this file. The first sector of a
file can be read with our program 1n section 4.l.1. The
following small program displays all of the remaining tracks
and sectors that are part of the file.

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 INPUT "TRACK AND SECTOR ";T,S

130 PRINT#1,"Ul 2 0";T;S

140 GET#2, TS, S$

150 T = ASC(T$+CHR$(0)): S = ASC(SS$S+CHRS(0))
160 IF T=0 THEN CLOSE 2 : CLOSE 1 : END

170 PRINT "TRACK";T,"SECTOR";S

180 GoTO 130

Enter 18 and 0 as track and sector to follow the blocks for
the BAM and directory.

2.2.2 The Block-Pointer Command B-P

The diskette name is located starting at position 144 of
track 18, sector 0. Using the above example, we have to read
the first 143 bytes of the buffer in order to be positioned
at the diskette name. But the DOS has an easier way to do
this, To access any desired byte of a buffer, you can use
the block-pointer command, Using the block-pointer command
the DOS moves to an exact position within the buffer. The
block-pointer command can be shortened to B-P. The syntax
is the following:

B-P channelnumber position
Now we can read the diskette name directly:

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#1,"U1 2 0 18 0"

130 PRINT#1,"B-P 2 144"

140 FOR I = 1 TO 16 : REM MAXIMUM LENGTH
150 GET#2, AS IF A$=CHRS(160) THEN 170
160 PRINT AS; NEXT

170 CLOSE 2 : CLOSE 1

Here we first read the block, set the buffer pointer to
position 144 and then read and print the diskette name which
has a maximum length of 16 characters. A shifted space
(CHRS(160)) indicates the end of the diskette name,

The bytes in the buffer are numbered 0 through 255, the
first byte having the number 0. The buffer pointer is auto-

87

Anatomy of the 1541 Disk Drive

matically set to zero by reading a block with U1, You can,
for example, read byte number 2 after reading the name. You
do shis by setting the buffer pointer to this value.,

PRINT#1, "B-p 2 2"

2.2.3 The Block-Write Command B-W

The block-write command allows us to write the contents of a

buffer to a desired block on the diskette, With this, you can
write the block one has sent to the buffer within the disk

drive.

It 1s possible to read a block into the buffer with the
block-read command, change some bytes, and then write the
block back. The block-write command can be shortened to B-W.
Because this B-W command writes the contents of the buffer
pointer, one usually uses the U2 command which always sets
the buffer pointer to 1. The syntax of the command 1s
analogous to the B-R command:

U2 channelnumber drive track sector

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#2, "TEST DATA"
130 PRINT#1, "U2 2 0 1 0"
140 CLOSE 2 : CLOSE 1

Here the text "TEST DATA" will be written to the buffer
associated to channel 2 and then written to track 1 sector 0
of the diskette. The U2 command does not change the contents
of the buffer.

Here's an example of using the block-write command to change
the diskette name that we read in the last section. For this
we must fill the new name with 16 characters ending with a
shifted spaces CHR$(160), so that we can write it to the
disk. We will again use the block-polnter command to set the
buffer pointer directly to the desired position within the
buffer.

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#1,"Ul1 2 0 18 Q"

130 PRINT#1,"B-P 2 144"

140 AS="NEW FILE NAME"

150 IF LEN(A$)<16 THEN A$=AS$+CHRS$(160) : GOTO 150
160 PRINT#2,AS;

170 PRINT#1,"U2 2 0 18 0"

180 CLOSE 2

190 PRINT#1,"I10" : CLOSE 1

88

Anatomy of the 1541 Disk Drive

First we read track 18 sector 0 into the buffer, set the
buffer pointer to the position of the diskette name and
write a new 16 character name to the buffer. Note that the
diskette name is changed 1n the buffer only. But 1n line
170, the buffer contents are written to the same block which
changes the name permanently on the diskette. Next channel 2
is closed, Finally the diskette is initialized so the BAM
and name in the DOS memory are updated. Get the directory
with

LOAD"S" ,8
LIST

on the screen to verify that the diskette name has changed.

2.2.4 The Block-Allocate Command B-A

The block-allocate command has the task of indicating in the
BAM (block availability map) 1s a particular diskette block
1s being used. The block allocate command can be shortened
to B-A. For program, sequential or relative files, as
diskette blocks are used, the BAM 1s updated to note that
the block is no longer available. But blocks written using
the direct access commands are not automatically allocated.
Wwhen blocks used in this manner are not allocated, the
possibility exists that they will be overwritten when other
files are used. The block-allocate command can be used to
prevent this overwriting. The block-allocate command has the
following syntax:

B-A drive track sector

With this the corresponding block in the BAM is marked as
allocated and is protected from being overwritten by other
files. If the block was already allocated, the error channel
returns error message 65,'NO BLOCK',

100 OPEN 1,8,15

110 INPUT “"TRACK, SECTOR "“;T,S
120 PRINT#1, "B-A 0";T;S

130 INPUT#1, AS$,BS,C$,DS

140 PRINT AS","BS","CS$","DS$

Using this program you can input a track and sector number
of a block that you want to allocate. If the block is still
free, it was allocated and the message 00, OK,00,00 1s
returned. If that block is already allocated, the message
65,N0 BLOCK,TT,SS is returned. In this case TT and SS
contain the next higher numbered free block on the diskette.
This tells you that the requested block 1s allocated but the
block at TT,SS is still available. If error message 65
returns zeroes as the track and sector numbers, it means

89

Anatomy of the 1541 Disk Drive

that no block with a higher track and/or sector number is
available. The following program automatically allocates the
next free sector:

100 OPEN 1,8,15

110 INPUT "TRACK, SECTOR ";T,S

120 PRINT#1l, "B-A 0":T:S

130 INPUT#1, A$,B$,TT,SS

140 IF AS = "00" THEN 190

150 IF A$<>"65" THEN PRINT AS$","BS$","TT","SS : END
160 IF TT=0 THEN PRINT "NO MORE FREE BLOCKS" :

170 IF TT=18 THEN TT=19 : SS=0

180 T=TT : S=SS : GOTO 120

190 PRINT "TRACK" TT "SECTOR" SS "ALLOCATED."

The test for track 18 in line 180 prevents a block in the
directory from being allocated. An additional error message
in connection with the B-A command is interesting. If one
attempts to allocate a block that does not exist, for
example, track 20 sector 21, one received the error message

66 ,ILLEGAL TRACK OR SECTOR,20,21

Marking a block as allocated in the BAM prevents it from
being overwritten by other files. The block will be
recognized as allocated until the command VALIDATE (COLLECT
in BASIC 4.0) is issued. The VALIDATE command rebuilds a new
BAM by rechaining the blocks of individual files and marking
each block as belonging to a a new BAM. Unclosed files,
marked 1n the directory with * are deleted. All blocks
allocated with the B-A command and those not belonging to a
properly closed file are freed. So, if you allocate blocks
that do not belong to a file that appears in the directory,
you should not use the VALIDATE command, or the blocks will
be freed, thus destroying your file.

2.2.5 The Block-Free Command B-F

The block-free command performs the opposite function of the
block-allocate command. It marks a block as not allocated
(fEree) in the BAM. The block-free command can be shortened
to B-F.The syntax is analogous to the block-allocate
command :

B-F drive track sector

100 OPEN 1,8,15
110 PRINT#1, "B-F 0 20 9"

Here the block in track 20 sector 9 is freed in the BAM. If
this block is already free, no error occurs.

90

Anatomy of the 1541 Disk Drive

Allocating and freeing blocks has an effect only on the
blocks used by program, sequential or relative file by the
DOS. The block~write and block-read commands do not check
the BAM before overwriting blocks. With these commands you
can write to blocks marked as allocated in the BAM. If, for
example, you have a disk containing only direct access
files, it is in principle unnecessary to allocate written
blocks because no other files will be written on the
diskette. In this case, you can use the directory blocks in

track 18 and have 672 blocks available on the VIC 1541
diskette.

2.2.6 The Block-Execute Command B-E

The block-execute command allows a block to be read from
diskette into a buffer and then the contents of the buffer
to be executed as a machine language program. You can cén
write routines that the DOS is supposed to execute with the
B-W or U2 command to a sector and later load it into a
buffer with the block-execute program where it will be
executed as a machine language program, Naturally, this
presupposes knowledge of the internal workings of the DOS.
If you want to use the B-E command, you usually give the
buffer number in the OPEN command, in case the machine
language program is not relocatable and is written for a
specific buffer. The block-execute command has the following
syntax:

B~E channelnumber drive track sector

100 OPEN 1,8,15
110 OPEN 2,8,2, "#3"
120 PRINT#1l, "B-E 2 0 17 12"

Here buffer 3 ($600-$6FF) is assigned to channel 2, The
contents of track 17 sector 12 is loaded into this buffer
and there the machine language program is executed,

The block-execute command is a combination of the block-read
and memory-execute commands., Examples of the design of
machine language programs to execute in the DOS are found in
section 2,4 by the memory commands.

91

Anatomy of the 1541 Disk Drive

2.3 Uses of direct access

What do the direct access commands permit us to do?

Here is a sample of their use:

By manipulating individual sectors you can make changes to

the BAM sector (Track 18, Sector 0) such as changing the
diskette name or 1ID.

You can make changes to the DIRECTORY (beginning at Track
18, sector 1). Each file entry in the directory has unused

Space. You can use the unused space to store additional
information.

You can change file names in the directory by using direct
access commands.

You can follow the "chaining” of the blocks in a file to
determine if the file is intact,

You can CLOSE an unclosed file by setting bit 7 of the file
type indicator in the directory. For example, you can change
the file type indicator from $02 to $82, Normally these
files are indicated in the directory with an asterisk; after
the above change the asterisk will disappear,

Each file entry also contains a "lock" which disallows
deletion (SCRATCH command). If you set bit 6§ of the file
type then the file is said to be locked and not available
for deletion, These entries have the < symbol after the type
designation in the directory listing. Using this bit of
knowledge, you can protect important programs on your
diskette from accidental erasure. More information on this
topic is found 1in section 4.1,

If you are interested in making such changes, you may want
to read an entire sector and display it on the screen,
change 1t, and write it back again. Such a program called
the DISK MONITOR is described 1n section 4.6. Before you
begin with such experiments, however, you should make a copy
of your diskette. A directory or BAM error can result in the
loss of the entire diskette contents.

Have you ever accidentally scratched a program or file from
a diskette? As long as you haven't written any other
programs or data to the diskette, you can recover this
scratched file. Scratching a file simply sets the file type
to 0 i1n the directory and frees the allocated blocks. You
need only search the directory entries for the file and
restore the file type: $81 for SEQ, $82 for PRG, $83 for
USR, and $84 for REL. After restoring the file type, you
should use the VALIDATE command to reallocate the blocks
again (for example: OPEN 1,8,15:PRINT#1,"V0").

92

Anatomy of the 1541 Disk Drive

Other uses of direct access can provide the means for
creating new data structures that the DOS normally does not
recognize. You can undertake the management of the new file
yourself, and use the direct access commands for reading and
writing. Such a data structure is the ISAM file. ISAM is an
abbreviation for Indexed Sequential Access Method. Witn an
ISAM file, you can directly access each record, similar to
the relative file., However, access is not by the record
number, however, but by a key or index. This index is a
field within the record. 1f, for example, a record consists
of 5 fields, last name, first name, street, city/state and
zip code, last name can be defined as the access key. To to
read the record Muller, the command is simply 'read record
"Muller"'. We need not concern ourselves with record number
or other ordering criteria and can select which record we
want to read, change, write or erase with clear text. In
such an ISAM file system, the index is usually saved
separately, together with the information where the data
record can be found on the disk. Such an ISAM file
management with very powerful additions as described here,
is found along with other features in the program
development system MASTER 64, also available for the
Commodore 64 from Abacus Software,

93

Anatomy of the 1541 Disk Drive

2.4 Accessing the DOS - The Memory Commands

In section 2.2.6 we saw a way to load a program into DOS
memory and execute it. With the memory commands, we can
access each byte of the DOS and execute programs in RAM and
ROM. For instance, we can access the work space of the DOS
and read the number of free blocks on the disk or get the
disk name from the BAM buffer, By writing into the DOS RAM
we can change constants such as the device number of the
drive or the number of read attempts for a block until an
error message results. Furthermore, we can execute routines
inside the DOS memory. These can be DOS ROM routines or yovr
own, that are stored in a buffer and executes there. Of
course this presumes knowledge of 6502 machine language and
of the method of operation of the DOS. We hope this book is
be helpful for the latter. Now follows a description of the
commands and examples of their use.

2.4.1 The Memory-Read Command M-R

Using this command, you can access each byte of the DOS. The
memory-read command can be shortened to M~R., The memory-read
command is transmitted over the command channel., The byte
read is then returned over the command channel where it can
be retrieved with GET#. The syntax of the command looks like
this:

M—-R CHR${LO) CHRS(HI)

LO and HI signify the low and high bytes of the address in
the DOS that should be read. The following program asks for
an address and reads the contents of the address out of the
DOS.

100 INPUT"ADDRESS ";A

110 HI = INT (A/256)

120 LO = A-256*HI

130 OPEN 1,8,15

140 PRINT#1, "M-R";CHRS$(LO);CHR$(HI)
150 GET#1,AS

160 PRINT ASC(AS+CHRS$(0))

For instance, if we want to know the number of free blocks
on a diskette, we don't have to read the entire directory,
rather we can read the appropria’. bytes directly from the
DOS storage. This may be necessary i/ files are to be
established by a program and you don't know if there is
enough space on the disk.

100 OPEN 1,8,15,"10"

110 PRINT#1, "M-R" CHRS$(250) CHRS$S(2)
120 GET#1, A$: IF AS="" THEN A$=CHRS$(0)

94

Anatomy of the 1541 Disk Drive

130 PRINT#1, "M-R"™ CHRS$(252) CHR$(2)

140 GET#1, B$: IF B$="" THEN B$=CHRS$(0)

150 PRINT ASC(A$) + 256 * ASC(BS) "BLOCKS FREE"
160 CLOSE 1

With this syntax, an M-R command must be given for each byte
that is to be read, As you can gather from the DOS listing
and through checking and verifying, one can read more than
one byte at a time with a M~R command. You need only give
the number of bytes to be read as the third parameter:

M~-R CHR$(LO) CHR$(HI) CHRS(NUMBER)

We can use this to read the name of a diskette from the BAM
buffer storage. Before this can be done, the diskette must
be 1nitialized so that the current diskette name is stored
in the buffer at address $700, out of which we will read the
name of the disk with the M-R command.

100 OPEN 1,8,15, "10"
110 PRINT#1, "M-R" CHR$(144) CHRS$(7) CHR$(16)
120 INPUT#1, AS

130 PRINT AS

This is a simple way to read the name of the diskette (16
characters padded with shifted spaces (CHR$(160))., With this
you can check if the correct diskette is in the drive,

The disk buffer can also be read using this method., It also
allows parts of the DOS to be manipulated by copying the
contents of the ROM to a buffer where it can be changed and
executed., This is explained in the next two sections.

2.4.2 The Memory-Write Command M-W

The complement command of memory-read is the command to
write data in the DOS storage memory-write or M~-W. Writing
is allowed only to DOS RAM - page zero, stack, and buffers.
It is possible to send several bytes with one command. The
syntax look like this:

M~W CHR$(LO) CHRS$(HI) CHRS$(NUMBER) CHRS${(DATAl) CHR$(DATA2)

The number of bytes as specified by NUMBER can be
transmitted, theoretically 255, but because the input buffer
holds only 40 characters, the number of bytes is limited to
34, A possible use of this command is to change the address
number (see program 'DISK ADDRESS CHANGE', section 4,2.3).
The address is stored in two memory locations in page zero.
The device number plus $20 (32 decimal) is stored in address
$77 (119 decimal) for LISTEN, for receiving data from the
computer. The address immediately following contains the

95

Anatomy of the 1541 Disk Drive

device number plus $40 (64 decimal) for TALK, for sending
data to the computer, Because the addresses are saved
separately. It is possible to use different send and receive
addresses, In the following example, the receive address is
set to 9 and the send address to 10.

100 OPEN 1,8,15

110 PRINT#1, "M-W" CHRS$(119) CHRS$(0) CHRS(2)
CHR$(9+32) CHR$(10+64)

120 CLOSE 1

140 OPEN 1,9,15

150 OPEN 2,10,15

160 PRINT#1.,"IO"

170 INPUT#2,A$,B$,C$,DS$

180 PRINT AS$","BS","CS","DS$S

00, OK,00,00

Programs cannot be loaded this way because the DOS will try
to load the program using the same address that the filename
was sent under.

Changing the device number is necessary if you want to use
more than one disk drive with a single computer. To this
end, change the device address of the second drive to 9.
This software change remains in effect only until a reset
(for example, turning the drive off), If the change needs to
be permanent, you can change the with DIP switches or cut
the circuit board jumper inside the drive.

Because many parameters of the DOS are in RAM, you can make
extensive changes to the function of the DOS, such as the
step si1ze, with which the number of sectors per track is
determined (address $69 (105 decimal), normally contains
10). We can also specify the number of attempted reads until
an error results (address $6A (106 decimal), contains 5),.
More addresses of parameters can be found in section 3.1.2.

2.4.3 The Memory—-Execute Command M~E

Using this command you can call up and execute machine
language programs in the DOS memory. The memory-execute
command can be shortened to M-E. The programs must end with
RTS (Return from Subroutine, $60). The syntax of the
command:

M~E CHR$(LO) CHRS (HI)
Again, LO and HI are the low and high bytes of the starting
address of the machine language routine., It is possible to

call up routines in the DOS ROM as well as our own routines
written to a buffer with M-W and there executed, As an

96

Anatomy of the 1541 Disk Drive

example, you can call up a routine that creates an error
message. For example, address SEFCY is the entry point for
message 72, "DISK FULL'. The example looks like this:

100 OPEN 1,8,15

110 PRINT#1,"M-E" CHR$(201) CHRS$(239)
120 INPUT#1,A$,BS$,C$,D$

130 PRINT AS$ "," BS "," CS$ “," D$

In line 110, the address SEFCY9 1s divided into a low byte of
$C9 (201) and high byte of $EF (239) and sent as the
parameters of the M—E command. Then the error channel is
read and the message displayed.

72,DISK FULL,00,00

If you want to run your own programs in the 1541 drive, the
program should be written to a buffer and there called with
M-E. Should this program be used more often, the contents of
the buffer can be written to a block on the diskette. It can
then be executed with the B~E command, which loads the
contents of the block in the buffer and then automatically
starts the routine. As a suggestion for your own program in
DOS, you can display the directory in a different form, with
additional parameters, similar to the program in section
4.1.1. In addition, you could count the number of files on
the disk and display that. Using such a routine you can get
a much clearer understanding of how the directory is created
in the DOS listing. If you are clear on the matter of the
new directory format, you are ready to take the additionel
parameters from the directory entries and assemble them in
the desired format.

2.4.4 The User Commands U

Using the USER commands there are two possible ways of
executing programs in the drive, The user commands have the
following syntax:

Ux

X can be a letter from A to J or a digit from 1 to 9 or ':'
(which takes the place of 10). When a command is called, a
jump is made to the following addresses in DOS:

UA Ul $SCD5F substitute for 'Block-Read’
UB U2 $DC97 substitute for 'Block-Write'
uc U3 $0500
UuD U4 $0503
UE us $0506
UF U6 $0509
UG u7 $050C

97

Anatomy of the 1541 Disk Drive

UH u8 SO050F
Ul U9 SFFO1
uJ U: SEAAO reset

You are already acquainted with the commands Ul and U2 (also
UA and UB); they serve as substitutes for BLOCK-READ and
BLOCK-WRITE, The commands U3 to U8 (UC to UH) jump to
addresses within buffer 2 (address $500 (1280) - see section
2.1). If you want to use several commands, a jump table to
individual routines can be placed there; if only one user
command (U3) is used, the program can begin directly at
$500.

The user command UJ jumps to the reset vector; the disk
drive is then reset.

100 OPEN 1,8,15

110 PRINT#1,"“UJ"

120 FOR I=1 TO 1000 : NEXT

130 GET#1,A$: PRINT A$: IF ST<>64 THEN 130

73,CBM DOS v2.6 1541,00,00

Line 120 waits for the reset to take place. Then the
initialization message is retrieved in line 130.

By using the user commands, parameters can be passed to the
routines, The complete command string is put in the input
buffer at $200 (512), Possible parameters are addresses,
command codes, and filenames. This way, the user commands
can be utilized to expand the commands of the disk or to
realize a new data structure. Whole user commands can
replace the M-E command with its corresponding addresses;
the user-call is shorter and clearer.

98

Anatomy of the 1541 Disk Drive

Chapter 3: Technical Information

3.1 The Construction of the VIC 1541

3.1.1 Block bDiagram of the Disk Drive

Q
|75
(3o0a301d

S —931aM 2

2
2 s 3 :
o« N
<L £ § o8
‘ A2duh] 2
o 'TE!-I-I‘N:;—’E
&
= a0 ST
JOW YSid
2]
&] —
= 0
0 w
O P . > :
< & |
a8 a
8 - 2
5 < < 8 ~
: : § A
> © o
-
&
)g 0
a [
o
3
[

6502
CPU

99

Anatomy of the 1541 Disk Drive

3.1.2 DOS Memory Map - ROM, RAM, 1I/0O

Memory map of the VIC 1541 disk drive

65535 $FFFF

16K

Control system

49152 SC000
7183 $1COF
VIA Disk Control
7168 $1C00
6159 $180F
VIA serial bus
6144 $1800
2047 $O7FF
2 K
RAM

0 $0000

100

Anatomy of the 1541 Disk Drive

Allocating and freeing blocks has an effect only on the
blocks used by program, sequential or relative file by the
DOS. The block~write and block-read commands do not check
the BAM before overwriting blocks. With these commands you
can write to blocks marked as allocated in the BAM. If, for
example, you have a disk containing only direct access
files, it is in principle unnecessary to allocate written
blocks because no other files will be written on the
diskette. In this case, you can use the directory blocks in

track 18 and have 672 blocks available on the VIC 1541
diskette.

2.2.6 The Block-Execute Command B-E

The block-execute command allows a block to be read from
diskette into a buffer and then the contents of the buffer
to be executed as a machine language program. You can cén
write routines that the DOS is supposed to execute with the
B-W or U2 command to a sector and later load it into a
buffer with the block-execute program where it will be
executed as a machine language program, Naturally, this
presupposes knowledge of the internal workings of the DOS.
If you want to use the B-E command, you usually give the
buffer number in the OPEN command, in case the machine
language program is not relocatable and is written for a
specific buffer. The block-execute command has the following
syntax:

B~E channelnumber drive track sector

100 OPEN 1,8,15
110 OPEN 2,8,2, "#3"
120 PRINT#1l, "B-E 2 0 17 12"

Here buffer 3 ($600-$6FF) is assigned to channel 2, The
contents of track 17 sector 12 is loaded into this buffer
and there the machine language program is executed,

The block-execute command is a combination of the block-read
and memory-execute commands., Examples of the design of
machine language programs to execute in the DOS are found in
section 2,4 by the memory commands.

91

Anatomy of the 1541 Disk Drive

2.3 Uses of direct access

What do the direct access commands permit us to do?

Here is a sample of their use:

By manipulating individual sectors you can make changes to

the BAM sector (Track 18, Sector 0) such as changing the
diskette name or 1ID.

You can make changes to the DIRECTORY (beginning at Track
18, sector 1). Each file entry in the directory has unused

Space. You can use the unused space to store additional
information.

You can change file names in the directory by using direct
access commands.

You can follow the "chaining” of the blocks in a file to
determine if the file is intact,

You can CLOSE an unclosed file by setting bit 7 of the file
type indicator in the directory. For example, you can change
the file type indicator from $02 to $82, Normally these
files are indicated in the directory with an asterisk; after
the above change the asterisk will disappear,

Each file entry also contains a "lock" which disallows
deletion (SCRATCH command). If you set bit 6§ of the file
type then the file is said to be locked and not available
for deletion, These entries have the < symbol after the type
designation in the directory listing. Using this bit of
knowledge, you can protect important programs on your
diskette from accidental erasure. More information on this
topic is found 1in section 4.1,

If you are interested in making such changes, you may want
to read an entire sector and display it on the screen,
change 1t, and write it back again. Such a program called
the DISK MONITOR is described 1n section 4.6. Before you
begin with such experiments, however, you should make a copy
of your diskette. A directory or BAM error can result in the
loss of the entire diskette contents.

Have you ever accidentally scratched a program or file from
a diskette? As long as you haven't written any other
programs or data to the diskette, you can recover this
scratched file. Scratching a file simply sets the file type
to 0 i1n the directory and frees the allocated blocks. You
need only search the directory entries for the file and
restore the file type: $81 for SEQ, $82 for PRG, $83 for
USR, and $84 for REL. After restoring the file type, you
should use the VALIDATE command to reallocate the blocks
again (for example: OPEN 1,8,15:PRINT#1,"V0").

92

Anatomy of the 1541 Disk Drive

Other uses of direct access can provide the means for
creating new data structures that the DOS normally does not
recognize. You can undertake the management of the new file
yourself, and use the direct access commands for reading and
writing. Such a data structure is the ISAM file. ISAM is an
abbreviation for Indexed Sequential Access Method. Witn an
ISAM file, you can directly access each record, similar to
the relative file., However, access is not by the record
number, however, but by a key or index. This index is a
field within the record. 1f, for example, a record consists
of 5 fields, last name, first name, street, city/state and
zip code, last name can be defined as the access key. To to
read the record Muller, the command is simply 'read record
"Muller"'. We need not concern ourselves with record number
or other ordering criteria and can select which record we
want to read, change, write or erase with clear text. In
such an ISAM file system, the index is usually saved
separately, together with the information where the data
record can be found on the disk. Such an ISAM file
management with very powerful additions as described here,
is found along with other features in the program
development system MASTER 64, also available for the
Commodore 64 from Abacus Software,

93

Anatomy of the 1541 Disk Drive

2.4 Accessing the DOS - The Memory Commands

In section 2.2.6 we saw a way to load a program into DOS
memory and execute it. With the memory commands, we can
access each byte of the DOS and execute programs in RAM and
ROM. For instance, we can access the work space of the DOS
and read the number of free blocks on the disk or get the
disk name from the BAM buffer, By writing into the DOS RAM
we can change constants such as the device number of the
drive or the number of read attempts for a block until an
error message results. Furthermore, we can execute routines
inside the DOS memory. These can be DOS ROM routines or yovr
own, that are stored in a buffer and executes there. Of
course this presumes knowledge of 6502 machine language and
of the method of operation of the DOS. We hope this book is
be helpful for the latter. Now follows a description of the
commands and examples of their use.

2.4.1 The Memory-Read Command M-R

Using this command, you can access each byte of the DOS. The
memory-read command can be shortened to M~R., The memory-read
command is transmitted over the command channel., The byte
read is then returned over the command channel where it can
be retrieved with GET#. The syntax of the command looks like
this:

M—-R CHR${LO) CHRS(HI)

LO and HI signify the low and high bytes of the address in
the DOS that should be read. The following program asks for
an address and reads the contents of the address out of the
DOS.

100 INPUT"ADDRESS ";A

110 HI = INT (A/256)

120 LO = A-256*HI

130 OPEN 1,8,15

140 PRINT#1, "M-R";CHRS$(LO);CHR$(HI)
150 GET#1,AS

160 PRINT ASC(AS+CHRS$(0))

For instance, if we want to know the number of free blocks
on a diskette, we don't have to read the entire directory,
rather we can read the appropria’. bytes directly from the
DOS storage. This may be necessary i/ files are to be
established by a program and you don't know if there is
enough space on the disk.

100 OPEN 1,8,15,"10"

110 PRINT#1, "M-R" CHRS$(250) CHRS$S(2)
120 GET#1, A$: IF AS="" THEN A$=CHRS$(0)

94

Anatomy of the 1541 Disk Drive

130 PRINT#1, "M-R"™ CHRS$(252) CHR$(2)

140 GET#1, B$: IF B$="" THEN B$=CHRS$(0)

150 PRINT ASC(A$) + 256 * ASC(BS) "BLOCKS FREE"
160 CLOSE 1

With this syntax, an M-R command must be given for each byte
that is to be read, As you can gather from the DOS listing
and through checking and verifying, one can read more than
one byte at a time with a M~R command. You need only give
the number of bytes to be read as the third parameter:

M~-R CHR$(LO) CHR$(HI) CHRS(NUMBER)

We can use this to read the name of a diskette from the BAM
buffer storage. Before this can be done, the diskette must
be 1nitialized so that the current diskette name is stored
in the buffer at address $700, out of which we will read the
name of the disk with the M-R command.

100 OPEN 1,8,15, "10"
110 PRINT#1, "M-R" CHR$(144) CHRS$(7) CHR$(16)
120 INPUT#1, AS

130 PRINT AS

This is a simple way to read the name of the diskette (16
characters padded with shifted spaces (CHR$(160))., With this
you can check if the correct diskette is in the drive,

The disk buffer can also be read using this method., It also
allows parts of the DOS to be manipulated by copying the
contents of the ROM to a buffer where it can be changed and
executed., This is explained in the next two sections.

2.4.2 The Memory-Write Command M-W

The complement command of memory-read is the command to
write data in the DOS storage memory-write or M~-W. Writing
is allowed only to DOS RAM - page zero, stack, and buffers.
It is possible to send several bytes with one command. The
syntax look like this:

M~W CHR$(LO) CHRS$(HI) CHRS$(NUMBER) CHRS${(DATAl) CHR$(DATA2)

The number of bytes as specified by NUMBER can be
transmitted, theoretically 255, but because the input buffer
holds only 40 characters, the number of bytes is limited to
34, A possible use of this command is to change the address
number (see program 'DISK ADDRESS CHANGE', section 4,2.3).
The address is stored in two memory locations in page zero.
The device number plus $20 (32 decimal) is stored in address
$77 (119 decimal) for LISTEN, for receiving data from the
computer. The address immediately following contains the

95

Anatomy of the 1541 Disk Drive

device number plus $40 (64 decimal) for TALK, for sending
data to the computer, Because the addresses are saved
separately. It is possible to use different send and receive
addresses, In the following example, the receive address is
set to 9 and the send address to 10.

100 OPEN 1,8,15

110 PRINT#1, "M-W" CHRS$(119) CHRS$(0) CHRS(2)
CHR$(9+32) CHR$(10+64)

120 CLOSE 1

140 OPEN 1,9,15

150 OPEN 2,10,15

160 PRINT#1.,"IO"

170 INPUT#2,A$,B$,C$,DS$

180 PRINT AS$","BS","CS","DS$S

00, OK,00,00

Programs cannot be loaded this way because the DOS will try
to load the program using the same address that the filename
was sent under.

Changing the device number is necessary if you want to use
more than one disk drive with a single computer. To this
end, change the device address of the second drive to 9.
This software change remains in effect only until a reset
(for example, turning the drive off), If the change needs to
be permanent, you can change the with DIP switches or cut
the circuit board jumper inside the drive.

Because many parameters of the DOS are in RAM, you can make
extensive changes to the function of the DOS, such as the
step si1ze, with which the number of sectors per track is
determined (address $69 (105 decimal), normally contains
10). We can also specify the number of attempted reads until
an error results (address $6A (106 decimal), contains 5),.
More addresses of parameters can be found in section 3.1.2.

2.4.3 The Memory—-Execute Command M~E

Using this command you can call up and execute machine
language programs in the DOS memory. The memory-execute
command can be shortened to M-E. The programs must end with
RTS (Return from Subroutine, $60). The syntax of the
command:

M~E CHR$(LO) CHRS (HI)
Again, LO and HI are the low and high bytes of the starting
address of the machine language routine., It is possible to

call up routines in the DOS ROM as well as our own routines
written to a buffer with M-W and there executed, As an

96

Anatomy of the 1541 Disk Drive

example, you can call up a routine that creates an error
message. For example, address SEFCY is the entry point for
message 72, "DISK FULL'. The example looks like this:

100 OPEN 1,8,15

110 PRINT#1,"M-E" CHR$(201) CHRS$(239)
120 INPUT#1,A$,BS$,C$,D$

130 PRINT AS$ "," BS "," CS$ “," D$

In line 110, the address SEFCY9 1s divided into a low byte of
$C9 (201) and high byte of $EF (239) and sent as the
parameters of the M—E command. Then the error channel is
read and the message displayed.

72,DISK FULL,00,00

If you want to run your own programs in the 1541 drive, the
program should be written to a buffer and there called with
M-E. Should this program be used more often, the contents of
the buffer can be written to a block on the diskette. It can
then be executed with the B~E command, which loads the
contents of the block in the buffer and then automatically
starts the routine. As a suggestion for your own program in
DOS, you can display the directory in a different form, with
additional parameters, similar to the program in section
4.1.1. In addition, you could count the number of files on
the disk and display that. Using such a routine you can get
a much clearer understanding of how the directory is created
in the DOS listing. If you are clear on the matter of the
new directory format, you are ready to take the additionel
parameters from the directory entries and assemble them in
the desired format.

2.4.4 The User Commands U

Using the USER commands there are two possible ways of
executing programs in the drive, The user commands have the
following syntax:

Ux

X can be a letter from A to J or a digit from 1 to 9 or ':'
(which takes the place of 10). When a command is called, a
jump is made to the following addresses in DOS:

UA Ul $SCD5F substitute for 'Block-Read’
UB U2 $DC97 substitute for 'Block-Write'
uc U3 $0500
UuD U4 $0503
UE us $0506
UF U6 $0509
UG u7 $050C

97

Anatomy of the 1541 Disk Drive

UH u8 SO050F
Ul U9 SFFO1
uJ U: SEAAO reset

You are already acquainted with the commands Ul and U2 (also
UA and UB); they serve as substitutes for BLOCK-READ and
BLOCK-WRITE, The commands U3 to U8 (UC to UH) jump to
addresses within buffer 2 (address $500 (1280) - see section
2.1). If you want to use several commands, a jump table to
individual routines can be placed there; if only one user
command (U3) is used, the program can begin directly at
$500.

The user command UJ jumps to the reset vector; the disk
drive is then reset.

100 OPEN 1,8,15

110 PRINT#1,"“UJ"

120 FOR I=1 TO 1000 : NEXT

130 GET#1,A$: PRINT A$: IF ST<>64 THEN 130

73,CBM DOS v2.6 1541,00,00

Line 120 waits for the reset to take place. Then the
initialization message is retrieved in line 130.

By using the user commands, parameters can be passed to the
routines, The complete command string is put in the input
buffer at $200 (512), Possible parameters are addresses,
command codes, and filenames. This way, the user commands
can be utilized to expand the commands of the disk or to
realize a new data structure. Whole user commands can
replace the M-E command with its corresponding addresses;
the user-call is shorter and clearer.

98

Anatomy of the 1541 Disk Drive

Chapter 3: Technical Information

3.1 The Construction of the VIC 1541

3.1.1 Block bDiagram of the Disk Drive

Q
|75
(3o0a301d

S —931aM 2

2
2 s 3 :
o« N
<L £ § o8
‘ A2duh] 2
o 'TE!-I-I‘N:;—’E
&
= a0 ST
JOW YSid
2]
&] —
= 0
0 w
O P . > :
< & |
a8 a
8 - 2
5 < < 8 ~
: : § A
> © o
-
&
)g 0
a [
o
3
[

6502
CPU

99

Anatomy of the 1541 Disk Drive

3.1.2 DOS Memory Map - ROM, RAM, 1I/0O

Memory map of the VIC 1541 disk drive

65535 $FFFF

16K

Control system

49152 SC000
7183 $1COF
VIA Disk Control
7168 $1C00
6159 $180F
VIA serial bus
6144 $1800
2047 $O7FF
2 K
RAM

0 $0000

100

Anatomy of the 1541 Disk Drive

Layout of the I/0 Ports (VIA 6522)

VIA 6522 1, Port for Serial Bus

$1800 Port B

$1801 Port A

$1802 Direction of Port B
$1803 Direction of Port A
$1805 Timer

PB 0: DATA 1IN

PB 1: DATA OUT

PB 2: CLOCK 1IN

PB 3: CLOCK OuUT

PB 4: ATN A

PB 5,6: Device address

CB 2: ATN IN

VIA 6522 2, Port for Motor and Read/Write Head Control

$1cC00 Port B, control port

$1C01 Port A, data to and from read/write head
$1C02 Direction of Port A

$1C03 Direction of Port B

PB 0: STP I

PB 1: STP O step motor for head movement
PB 2: MTR drive motor

PB 3: ACT LED on drive

PB 4: WPS Write Protect Switch

PB 7: SYNC

CA 1: Byte ready

CA 2: SOE

101

Anatomy of the 1541 Disk Drive

The Layout of the Important Memory Locations

0 $00 command code for buffer 0
1 $01 command code for buffer 1
2 $02 Command code for buffer 2
3 $03 Command code for buffer 3
4 s04 command code for buffer 4
6 $06-507 Track and sector for buffer 0
8 $08-S09 Track and sector for buffer 1
10 $SOA-$0B Track and sector for buffer 2
12 $0C-$S0D Track and sector for buffer 3
14 SOE-$0OF Track and sector for buffer 4
18 $12-813 ID for drive 0
20 $14-815 ID for drive 1
22 $16-$17 D
32 $20-$21 Flag for head transport
48 $30-$31 Buffer pointer for disk controller
57 $39 Constant 8, mark for beginning of data
block header
58 $3A Parity for data buffer
61 $3D Drive number for disk controller
63 $3F Buffer number for disk controller
67 $43 Number of sectors per track for
formatting
71 $47 Constant 7, mark for beginning of data
block header
73 $49 Stack pointer
74 $4A Step counter for head transport
81 $51 Actual track number for formatting
105 $69 Step size for sector division (10)
106 S6A Number of read attempts (5)
111 $6F-$70 Pointer to address for M & B commands
119 $77 Device number + $20 for listen
120 $78 Device number + $40 for talk
121 $79 Flag for listen (1/0)
122 $7A Flag for talk (1/0)
124 $7C Flag for ATN from serial bus receiving
125 $7D Flag for EOI from serial bus
127 $TF Drive number
128 $80 Track number
129 $81 Sector number
130 $82 Channel number
131 $83 Secondary address
132 $84 Secondary address
133 $85 pata byte
139 $8B-$8D Work storage for division
148 $94-$95 Actual buffer pointer
153 $99-5$9Aa Address of buffer 0 $300
155 $9B-$9C Address of buffer 1 $400
157 S$S9D-$9E Address of buffer 2 $500
159 $9F-SAD Address of buffer 4 $600
161 SAl-$SA2 Address of buffer 5 $700
163 SA3-SA4d Pointer to input buffer $200
165 SAS-$A6 Pointer to buffer for error message $2D5

102

181

187

193

199

212

213

214

215

231

249

256-325

512-552

586

600

601

602

628

632

663

640-644

645-649

725-761

762/764

768-1023
1024-1279
1280~-1535
1536-1791
1792-2047

$B5-$BA
$BB-SCO
$C1-$C6
$C7-$CC
$D4

$D5

$D6

$D7

SE7

SF9
$100-$145
$200-$228
$24A

$258

$259

$25A

$274

$278

$297
$280-5284
$285-$289
$2D5-$2F9
S2FA/$2FC
$300-$3FF
$400-$4FF
$500-$5FF
$600-S6FF
$700-S7FF

Anatomy of the 1541 Disk Drive

Record 4 lo, block # lo

Record # hi, block # hi

Write pointer for rel. file

Record length for rel., files

Pointer in record for rel. file

Side sector number

Pointer to data block in side sector
Pointer to record in rel. file

File type

Buffer number

Stack

Buffer for command string

File type

Record length

Track side-sector

Sector side-sector

Length of input line

Number of file names

File control method

Track of a file

Sector of a file

Buffer for error message

Number of free blocks

Buffer
Buffer
Buffer
Buffer
Buffer

B WK = O

103

Anatomy of the 1541 Disk Drive

3.2 Operation of the DOS - An Overview

The VIC-1541 is an intelligent disk drive with its own
microprocessor and control system (Disk Operation System,
DOS). This means that no memory space or processing time is
taken from the computer. The computer needs only transmit
commands to the disk drive, which it then executes on its
own.

The disk performs three tasks simultaneously: Firstly, it
manages data traffic to and from the computer. Secondly, it
interprets the commands and performs the management of files
and the associated communications channels and block buffer,
Thirdly, it handles the hardware-oriented related functions
of the disk drive - formatting, reading and writing, etc.

These tasks are carried out simultaneously by the 6502
microprocessor in the VIC 1541, This is possible with the
help of the interrupt technique. Only in this way can three
tasks be executed simultaneously.

Most of the DOS is concerned with interpreting and executing

the transmitted commands. The reception of data and commands
from the computer is controlled by interrupts. If the
computer wants to talk to a peripheral device, it sends a
pulse along the ATN line (ATteNtion, see section 5.1). This
generates an interrupt at the disk drive. The DOS stops its
current task and notices that the computer wants to send
data, The DOS then finishes the original task. After that,
the DOS will accept further data and commands from the the
computer. If the command is finished, the DOS stays in a
wait loop until new commands arrive from the disk.

The execution of a command at this level is limited to the
logical processing of the command, the management of che
communications channel to and from the computer and the
preparation and retrieval of data to be written or read,
respectively. The tasks of a disk controller, formatting
diskettes and writing and reading individual blocks, must
also be performed by the processor,

These tasks are again interrupt controlled. Regular programs
in the disk are interrupted every 14 milliseconds by a
built-in timer, and control branches to a program that
fulfills the tasks of a disk controller, Communications
between the two independent programs is handled through a
common area of memory, in which the main program places
codes for the disk controller program., If the interrupt
program is active, it looks at the memory locations to
determine which activities are demanded, such as formatting
a diskette, if this 1s the case, the drive and head motors
are set in motion. At the end of the interrupt routine, the
main program examines the memory locations to determine if
the task was carried out by the disk controller, or 1f it

104

Anatomy of the 1541 Disk Drive

must wait yet, In this way, the main program is informed in
case of an error, such as a read error or if a write protect
tab is present, The main program can then react
appropriately and display the error message, for example,

In the large CBM disks, two 6504 microprocessors are used as
a disk controller, Communication again occurs over a common
area of memory.

An overview of the storage layout of the DOS such as the I/0
primitives for managing the diskette and serial bus can be
found in the previous section.

This overview of the work of the DOS is naturally just a
rough outline. If you want more exact information, refer to
the DOS listing of the VIC 1541 in section 3.5, in which the
complete 16K control system is documented.

105

Anatomy of the 1541 Disk Drive

3.3 The Structure of the VIC 1541 Diskette

The diskette of the 1541 is divided into 35 tracks. Each
track contains from 17 to 21 sectors. The total number of
sectors is 683, Because the directory occupies track 18, 664
data are available for use, each containing 256 bytes, The
tracks are layed out as follows:

TRACK : NUMBER OF SECTORS

" .

: 1 TO 17 : 21 H
:18 TO 24 : 19 H
25 TO 30 : 18 :
:31 TO 35 : 17 H

The varying number of sectors per track is necessitated by
the shortening of the tracks from the midpoint on,

3.3.1 The BAM of the ViIC 1541

BAM is an abbreviation for Block Availability Map. The BAM
indicates whether a block on the diskette is free or
allocated to a file, After every manipulation of blocks
(saving, deleting, etc.) the BAM is updated. When the BAM
indicates that a file to be saved requires more blocks than
are available, an error message is given. When a file is
OEPNed, the BAM in the DOS storage is updated, and is
rewritten to disk when the file is CLOSEd., Commands that
have a write or delete function read the BAM, update it, and
rewrite 1t to the diskette., The BAM is organized as follows
on track 18 sector 0:

4-143 ($04-S8F) Bit map of free and

allocated blocks *

H * 1 = block free; 0 = block allocated

: Track 18, sector 0 s
: BYTE : CONTENTS : MEANING H
: 0,1 ($00-$01) : $12,$01 : Track and sector of the lst :
H H :+ block of the directory s
s 2 ($02) : $41 ASCII character ‘'A’'; H
H : indicates 1541 format H
: 3 ($03) : $00 Zero flag for future use H

o e 00 gu s

The bit map of the blocks is organized so that 4 bytes

106

Anatomy of the 1541 Disk Drive

represent the sectors on a track. As can be inferred from
the following table, the first of the 4 bytes contain the
number of free blocks in the track. The other 3 bytes (24
bits) indicate which blocks are free and which are allocated
in this track.

Structure of the BAM entry of a track:

w
2]
=]
(=]

CONTENTS :
Number of available blocks in this track
Bit map of sectors 0-7

Bit map of sectors 8-15

Bit map of sectors 16-23

o e w0 e
wWho-o

4 bytes of a track designation in the BAM:

: Track 18, sector 0, bytes 4-7 (track 1)

: 00001010 : 00000000 00000011 11111111
: (s0n)] ($00) ($03) ($FF)

: 10 free s 1
: blocks : 0 1located

Q ry
[a]
o
o
" o

Using a simple program, you can read the first byte of each
track entry in the bit map, add them up and find the total
number of free blocks on the diskette,

3.3.2 The Directory

The directory is the table of contents of the diskette. It
contains the following information:

- disk name

- disk ID

- DOS version number
- filenames

- file types

- blocks per file

- free blocks

This directory is loaded into memory with the command LOAD
"$",8., A program previously in memory will be destroyed! It
can be displayed on the screen with the LIST command,

The directory occupies all of track 18 on the disk. The file
entries follow the directory header. Each block accommodates

107

Anatomy of the 1541 Disk Drive

a maximum of 8 file entries, Because the BAM and the header
occupy one block, 18 blocks are left for file entries. A
total of 144 files may reside on one diskette (18 blocks
with 8 entries each).

Format of the directory header:

Track 18, sector 0 H

BYTE

Q
o
Z
=]
m
Z
]
n

MEANING H

: Disk name (padded with
: shifted spaces)
: Disk ID marker

$A0 : Sshifted Space

$32,541 : ASCII characters "2A"

144-161 ($90-SAl)

162,163 (SA2-SA3)

164 (SA4)

165,166 ($A5-SA6)
(format)

Shifted Space

not used, filled with O

167-170 ($SA7-$AA)
171-255 ($SAB-S$SFF)

$SAD
$00

* Bytes 180 to 191 have the contents "BLOCKS FREE" on
many diskettes

s oo

The Diskette Name:

The name of the diskette can be a maximum of 16 characters
in length and is established when the diskette is formatted,
If fewer then 16 characters are given, the rest is filled
with shifted spaces ($A0). The following BASIC routine reads
the name and saves it in the string variable DNS$:

100 OPEN 15,8,15,"10" ¢ REM COMMAND CHANNEL 15
AND DISK INITIALIZED

110 OPEN 2,8,2,"#" : REM DATA CHANNEL 2 OPENED

120 PRINT#15,"B-R";2;0;18;0 ¢ REM TRACK 18, SECTOR 0 READ
AND PLACED IN CHANNEL 2

130 PRINT#15,"B-P";2;144 ¢ REM BUFFER-POINTER TO BYTE
144

140 DN$="" REM STRING DN$ IS ERASED

150 REM LOOP TO READ THE 16 BYTES OF THE NAME
160 FOR I=1 TO 16

170 ::GET#2,X$

180 ::IF ASC(X$)=160 THEN 200
190 ::DN$=DNS+X$

200 NEXT I

210 CLOSE 2:CLOSE 15 ¢ REM CLOSE CHANNELS

REM READ A BYTE
REM IGNORE SHIFT SPACE
REM BYTE ADDED TO DNS

e s a

After running the routine, the string DNS contains the disk
name.

108

Anatomy of the 1541 Disk Drive

Diskette ID:

The diskette ID is two characters in length and is specified
when formatting the diskette., The DOS uses this ID to detect
if a diskette 1in the drive has been replaced. If so, then
the DOS performs an INITIALIZE, Initializing a diskette
loads the BAM into memory in the drive. This way, the actual
BAM is always 1in memory, provided the ID given when
formatting 1s always different., Should this not be the case,
a diskette must be initialized explicitly by using the
INITIALIZE command.

3.3.3 The Directory Format

Blocks 1 through 19 on track 18 contain the file entries.
The first two bytes of a block point to the next directory
block with file entries., If no more directory blocks follow,
these bytes contain $00 and SFF, respectively.

Track 18, sector 1

Byte : Contents :
0,1 ($00,s801) Track and sector number of the
next directory block

Entry of 1lst file

Entry of 2nd file

Entry of 3rd file

Entry of 4th file

Entry of 5th file

Entry of 6th file

2-31 ($02-$1F)
34-63 ($22-S3F)
66-95 ($42-S5F)
98-127 ($62-S7F)
130-159 ($82-S9F)
162-191 (SA2-SBF)
194-223 (SC2-SDF) Entry of 7th file
226-255 (SE2-SFF) Entry of 8th file

e e o o e 0 o e e e - - -

e e ss 55 se se as e s se
00 %0 4o se es ab es o6 se se

a0 s 0 se es s as 80 ee be

Format of a Directory Entry:

Each file entry consists of 30 bytes, the functions of which
are described bpelow:

109

Anatomy of the 1541 Disk Drive

¢ BYTE ¢ CONTENTS H
0 (S00) File type :
1,2 ($01,802) Track and sector number of the B

first data block :
3-18 ($03-812) Filename (padded with "SHIFT SPACE" :

19,20 ($13,814) Only used for relative files
(track and sector of the first
side-sector block)

Only used for relative files
(record length)

21 ($15) :
Not used H

22-25 ($16-$19)
26,27 (S1A-S1B) Track and sector number of the new
file when overwritten with the @:

Number of blocks in the file (low

byte, high byte)

28,29 (S1C-$1D)

4% us a0 ae Bs e a0 s B8 se we s be b8

File Type Marker:

Byte 0 of the file entry denotes the file type. Bits 0-2 are
used to indicate the 5 file types. Bit 7 indicates if the
file has been CLOSEd properly. Closing a file sets bit 7. An
unclosed file is denoted with an asterisk in front of the
file type in the directory 1listing., If, for example, a
sequential file "TEST" is opened and the directory is
listed, this file will be represented like this:

12 "TEST" *SEQ

If the file is CLOSEd again, the asterisk does not appear in
future directory listings, If this file remains unclosed and
later opened, the error message "WRITE FILE OPEN" will
appear.

The File Type:

In order to understand the function of byte 0 in the file
entry, the file type, a table of all file types follows:

File type : Bit mask opened : Bit mask closed :

:+ 7654 3210 HEX : 7654 3210 HEX :
: DELeted : 0000 0000 $00
: SEQuential : 0000 0001 $01
: ProGram s+ 0000 0010 $02

UseR 0000 0011 $03
RELative 0000 0100 sS04

v es se ae e
[
o
o
o
o
S
[
[=
0
@
N
s se as es ws

Perhaps you have noticed that bits 3-6 have no function. Rut
we verified with help from the DOS listing, bit 6 has a

110

Anatomy of the 1541 Disk Drive

function:
BIT 6 OF THE FILE TYPE DENOTES A PROTECTED FILE!

If you set this bit to 1, the corresponding file can no
longer be deleted. This is designated in the directory
listing with a < next to the file type. Because setting this
bit requires some complicated commands, you will find a
program in chapter 4 of this book with which you can
protect, unprotect, and delete files,

Track and sector of the first Data Block

Bytes 1 and 2 of the file entry point to the first data
block of the file. The first byte contains the track and the
second the sector number where the file begins. The first
data block, in turn contains a pointer to the second block
of the file (also contained in the first two bytes of the
block). The last data block of the file is indicated by a
first-byte value of $00. The second byte contains the number
of bytes used in this last sector,

This concatenation can be explained with the help of the DS
MONITOR, contained in this book:

>:BO A0 A0 A0 A0 A0 00 00 00 e
>:B8 00 00 00 00 00 00 OB 00
>sC0 00 00 81 13 09 54 31 32Tl2
>:C8 2F 53 30 31 A0 A0 A0 A0 /SOl
>:D0 A0 A0 A0 A0 A0 00 00 00 e
>:D8 00 00 00 00 00 00 06 00 ...c.uv0s
>:E0 00 00 82 10 00 44 49 53DIS
>:E8 4B 20 41 44 44 52 20 43 K ADDR C
>:F0 48 41 4E 47 45 00 00 00 HANGE...
>:F8 00 00 00 00 00 00 04 00

This is an extract from the directory (track 18, sector 1)
of the TEST/DEMO diskette. You can follow the organization
of the file DISK ADDR CHANGE. The entry of this file begins
at byte SE2 and ends with byte $FF. This is a PRG file,
which can be recognized by the file type $82 ir byte $E2.
This file comprises 4 blocks on the disk. This is evident
from bytes $FE and S$FF. Bytes $SE3 and SE4 of the entry
address the first data block of the file ($10, $00,
corresponding to track 16, sector 0).

Let's look at a section of this block:

>:00 10 OA 01 04 OF 04 64 00S.
>:08 97 35 39 34 36 38 2C 31 ,59468,1
>:10 32 00 39 04 6E OD 99 22 2.9...."
>:18 93 13 11 11 11 11 44 52 ,.....DR
>:20 49 56 45 20 41 44 44 52 IVE ADDR
>:28 45 53 53 20 43 48 41 4E ESS CHAN

111

Anatomy of the 1541 Disk Drive

>:30 47 45 20 50 52 4F 47 52 GE PROGR
>:38 4l 4D 22 00 59 04 6F 00 AM".Y./.
>:40 99 22 11 54 55 52 4E 20 .".TURN
>:48 4F 46 46 20 41 4C 4C 20 OFF ALL

This block contains the first part of the program. It 1is
stored on the diskette exactly as it is stored in the
computer's memory. The BASIC commands are converted to one
byte codes called tokens. This is why only the text can be
recognized 1n the right hand translation of the hexadecimal
codes. The first two bytes of this data block indicate the
second data block ($10 and $0A, track 16, sector 10) from
with this section follows:

>:00 10 14 34 30 00 1D 05 A0 ..40...
>:08 00 8D 20 33 30 30 3A 20 .. 300:
>:10 8F 20 46 49 4E 44 20 44 , FIND D
>:18 52 49 56 45 20 54 59 50 DRIVE TYP
>320 45 00 39 05 AA 00 8D 20 E.9. ..
>:28 36 30 30 3A 20 8F 20 43 600: . C
>:30 48 41 4E 47 45 20 41 44 HANGE AD
>:38 44 52 45 53 53 00 68 05 DRESS.(.
>:40 B4 00 99 22 11 54 48 45 «+".THE
>348 20 53 45 4C 45 43 54 45 SELECTE

The program is continued in this block. Bytes $00 and $01
point to the third data block of the file ($10, $14, track
16, sector 20):

>:00 10 08 31 30 30 30 00 23 ..1000.%
>:08 06 54 01 8B 20 43 B2 32 .T.. C 2
>:10 35 34 20 A7 20 4D 54 B2 54 MT
>:18 31 31 39 3A 20 8F 3A 20 119: .:
>:20 32 30 33 31 20 56 32 2E 2031 v2.
>:28 36 00 45 06 5E 01 8B 20 6.E. ..
>:30 43 B2 32 32 36 20 A7 20 C 226
>:38 4D 54 B2 35 30 3A 20 8F MT 50: .
>:40 3A 20 32 30 34 30 20 56 : 2040 V
>:48 31 2E 32 00 67 06 68 01 1.2. .(.

This is the next to the last block of the program. You have
no doubt recognized that the data blocks are in the same
track, but are not contiguously. The first data block is
block 0. The next is block 10, 10 blocks from the first
block. 9 blocks are always skipped between data blocks of a
file, The third data block is block number 20. The DOS
begins again with the first block if the calculated block
oversteps the highest block, Because track 16 contains 21
blocks, the last data block is block number 8. The first two
bytes of this third block address it:

>:00 00 F8 5A 42 B2 31 20 A7 . ZB 1
>:08 20 34 34 30 00 14 07 A3 440.,..
>:10 01 8B 20 53 54 20 A7 20 .. ST

>:18 31 30 30 30 00 45 07 B8 1000.E.

112

Anatomy of the 1541 Disk Drive

>:20 01 98 31 35 2C 22 4D 2D ..15,"M-
>:28 52 22 C7 28 31 37 32 29 R" (172)
>:30 C7 28 31 36 29 3A Al 23 (16): #
>:38 31 35 2C 5A 43 24 3A 5A 15,2C$:Z
>:40 43 B2 C6 28 5A 43 24 AA C F(2C$

>:48 C7 28 30 29 29 00 66 07 G(0)).&.

Here the end of the program is marked py the value $00 in
byte $00. Byte $01 gives the number of bytes in this last
block that belong to the program. ($F8 corresponds to 248
bytes). Now we can find out the size of the program:

3 blocks with 254 bytes each = 762 bytes
last block = 248 bytes

Size of the program 1100 bytes

The Filename:

The filename is contained in bytes 3-18 of the file entry.
It consists of a maximum of 16 characters. Should the name
be shorter than 16 characters, the rest of the name is
padded with shifted spaces ($A0).

Track and Sector of the new File for "Overwriting®:

If a file is overwritten by using the @:, the new file is
first completely saved, No filename entry is made in the
directory for this file because the file already exists
under this same name. Instead the address of the first block
of the new file is placed in bytes 26 and 27 of the filename
entry. If the new program 1s removed, the old one is
deleted, which merely designates the blocks allocated to the
file as free in the BAM, Now the address of the first data
block of the new file is placed into the filename entry in
bytes 1 and 2 is used and the file is "overwritten".

Number of Blocks in the FPile:

The length of a file is given in bytes 28 and 29 of its file
entry. A file consists of at least one block and as many as
664 bplocks, The first byte is the low pbyte, and the second
is the high byte. 1f, for example, you discovered the file
length $1F,$00 with the DISK MONITOR, the file consists of
31 blocks.

113

Anatomy of the 1541 Disk Drive

3.4 The Organization of Relative Files

Relative files differ from sequential files in that each
data record can be accessed directly by a record number,
The 1541 DOS takes care of most of the tasks required to
support relative records, Let's take a closer look at the
organization of a relative file,

First OPEN a relative file with a record length of 100:
OPEN 2,8,2, "REL-FILE,L,"+CHR$(100)
Now write data record number 70:

OPEN 1,8,15
PRINT#1,"P"+CHRS (2) +CHRS(70)+CHRS(0)+CHRS (1)
PRINT#2,"DATA FOR RECORD 70"

CLOSE 2 : CLOSE 1

The directory entry then looks like this:

>:00 ., .. 84 11 00 52 45 4C +«+REL
>:08 2D 46 49 4C 45 A0 A0 A0 -FILE

>:10 A0 A0 A0 A0 AO 11 OA 64 .-
>:18 00 00 00 00 00 00 1D 00 .evsvess

The first byte $84 denotes a relative file, The next two
bytes denote the first track and sector of the data ($11,
$00; track 17 sector 0); exactly as with a sequential file.
As usual, the name of the file follows (16 characters,
padded with shifted spaces, $A0). Following are two fields
not used with sequential files. The first field is a two
byte pointer to the track and sector of the first side-
sector block. A side-sector contains the pointers to each
data record and is described more in detail later ($11, $0A:
track 17, sector 10)., The second field is a byte which
contains the record length, a value between 1 and 254, in
our case $64 (100).

The convenience of being able to access each record
individually requires a definite length for each record thet
must be defined when establishing a relative file. The rest
of the fields 1n the directory entry have the usual
significance; the last two bytes contain the number of
blocks in the file (1o and hi byte, $1D and $00 (29)).

What does such a side-sector block look like and what 1s its
function?

The side-sector blocks contain the track and sector pointers
to the individual data records. For example, if we want to
read the 70th record in the relative file, the DOS consults
the side-sector block to determine which track and sector
contains the record and then read this record directly. As

114

Anatomy of the 1541 Disk Drive

a result, you can read the 70th record of the file without
having to read the entire file., Now let's take a look at the
exact construction of a side-sector block. This side-sector
block is from our previous file.

>:00 00 47 00 64 11 OA 00 00 .G.S....
>:08 00 00 00 00 00 00 00 00 .eveooss
>:10 11 00 11 OB 11 01 11 OC ..ceeesn
>:18 11 02 11 OD 11 03 11 OE .eveevs.
>:20 11 04 11 OF 11 05 11 10 ...evaas
>:28 11 06 11 11 11 07 11 12 .eeeease
>$30 11 08 11 13 11 09 11 14
>:38 10 08 10 12 10 06 10 10 ...eeses
>:40 10 04 10 OE 10 02 10 OC +eeavsse
>:48 00 00 00 00 00 00 00 00e0e
>:50 00 00 00 00 00 00 00 0000..
etc,

The first two bytes point to the track and sector of the
next side-sector block, as usual., In our case, no further
side-sector blocks exist ($00) and only $47 = 71 bytes of
this sector are used., Byte 2 contains the number of the
side-sector block, 00. A relative file can contain a maximum
of 6 such blocks; the numbering goes from 0 to 5. The record
length, $64 (100), is in byte 3., The next twelve bytes
(bytes 4 through 15) contain the track and sector pointers
(two bytes each) to the 6 side-sector blocks (00,00 means
the block is not yet used). Starting at byte 16 ($10) are
the pointers to the data, and the track and sector pointers
to the first 120 data blocks (in our case, only 28
pointers). Using the record number and record length, the
DOS can calculate in which block the data lies and at which
position within the block the record begins, Take the
following example, for instance:

To read the 70th record from the file with a record length
of 100 characters, you can perform the following calcula-
tions:

(70-1) * 100 / 254

We get a quotient of 27 and a remainder of 42. The DOS now
knows that the record can be found in the 27th data block at
the 4242 or 44th position,

Here's an explanation of the calculation. Each block
contains 256 bytes, the first two of which are used as a
pointer to the next block. 254 bytes are then left over for
data storage. We can calculate the byte number from the
start of the file (which 1s record 1) from the record number
and record length. If we divide this value by the number of
bytes per block, we get the number of the block containing
the record, The remainder of the division gives the position
within the block (add 2, because the first two bytes serve
as a pointer). If the record overlaps the end of the block,

115

Anatomy of the 1541 Disk Drive

the next block must also be read.

In our example, the 27th data block lies in track $10 = 16
and sector $0C = 12. If we read this block, we get the
following picture:

>:00 00 F3 00 00 00 00 00 00 ...cc0ne
>:08 00 00 00 00 00 00 00 00uecns
>:10 00 00 00 00 00 00 00 00 ..ovesse
>:18 00 00 00 00 00 00 00 00 ...aavse
>:20 00 00 00 00 00 00 00 00 .aeseave
>:28 00 00 00 00 44 41 54 41DATA
>:30 20 46 4E 52 20 52 45 43 FOR REC
>:38 46 52 44 20 37 30 OD 00 ORD 70..
>:40 00 00 00 00 00 00 00 00
>:48 00 00 00 00 00 00 00 00 ..euu.ce.
>:50 00 00 00 00 00 00 00 00 .covesnes
>:58 00 00 00 00 00 00 00 0000ee
>:60 00 00 00 00 00 00 00 00c..
>:68 00 00 00 00 00 00 00 00 ..evauss
>:70 00 00 00 00 00 00 00 00
>:78 00 00 00 00 00 00 00 00 ...eccne
>:80 00 00 00 00 00 00 00 00c.0e.
>:88 00 00 00 00 00 00 00 00es
>:90 FF 00 00 00 00 00 00 00
>:98 00 00 00 00 00 00 00 00 ...eacen
>:A0 00 00 00 00 00 00 00 00 ...c.0.e
>:A8 00 00 00 00 00 00 00 0000
>:BO 00 00 00 00 00 00 00 00 .evcoves
>:B8 00 00 00 00 00 00 00 00 ..veeves
>:CO 00 00 00 00 00 00 00 00 ...ccease
>:C8 00 00 00 00 00 00 00 00 .sccauss
>:DO 00 00 00 00 00 00 00 00ca.
>:D8 00 00 00 00 00 00 00 00 ..evus.-
9:E0 00 00 00 00 00 00 00 00ccovs
>:E8 00 00 00 00 00 00 00 00 ...0v...
>:F0 00 00 00 00 FF 00 00 00 .eeecues
>:F8 00 00 00 00 00 00 00 00 .ecsnvee

If we get a block number greater than 120 from the
calculation, the pointer can no longer be found on the first
side-sector block, ratHer in the next side-sector blocks. In
this case, you divide the block number by 120, the quotient
being the number of the side-sector block. The remainder
gives the location of the pointer within this block. Fer
instance, to find record number 425, divide by 120 and get a
quotient 3, remainder 65, Therefore, you must read side-
sector block 3 and get the pointer to the 65th data block.
Between 2 and 4 block accesses are necessary to access a
record of a relative data file.

wWhen creating or expanding a relative file, the following
takes place:

First, a directory entry is created for the relative file,

116

Anatomy of the 1541 Disk Drive

containing the record length, Two channels are reserved for
the relative file,one for the data, the other for the side-
sectors, If a record pointer is set to a specific record,
the DOS first checks to see if the record already exists. If
so, the corresponding block is read and the buffer pointer
set so that the contents can be accessed. If not, the record
is created. All records preceding this record number that do
not already exist are also created. The first byte of a new
record is written to contain SFF (255}, and the rest of the
record is filled with $00. '

If the corresponding record is at the beginning of a block,
the rest of the block is filled with empty records. Each
time a non-existing record is accessed, the error message
S0,RECORD NOT PRESENT is returned. When writing a new
record, this is not considered an error, but indicates that
a new record was created,

You can use this method for creating a new file if you know
the maximum number of data records. You simply set the
record pointer to this record and write $FF (CHRS$(255)) to
this record. By allocating a file like this, the error
message 50 no longer appears, You also know if there 1s
sufficient space on the diskette, If not, the error message
52, FILE TOO LARGE is returned.

With a maximum of 6 side sectors, a relative file can
contain 6 * 120 * 254 = 182,880 bytes. In the case of the
VIC 1541, this is more than the capacity of the whole
digkette. With the bigger 8050 drive, which contains more
than 500K of storage, this may present a limitation. But DOS
version 2,7 has an expansion of the side-sector procedure
('super side-sector'), with which a relative file mey
contain up to 23 MB, DOS 2.7 1s contained in the CBM 8250
and the Commodore hard drives as well as the newer 8050
drives (see section 5.2).

Because a relative file requires two data channels, and the
VIC 1541 has only 3 channels available, only one relative
file can pe open at a time, The third channel can still be
used for a sequential file open at the same time. With the
larger CBM drives, more channels are available (3 relative
files open simultaneously, see also section 5.2),

117

Anatomy of the 1541 Disk Drive

3.5 DOS 2.6 ROM LISTINGS

hkhkkhkhhkkhhkhhhkhkhhhhhhkhkhhkhhkhhkkkk

C100 78 SEI
C101 A9 F7 LDA
C103 2D 00 1C AND
C106 48 PHA
Cc107 AS 7F LDA
C109 FO 05 BEO
Cl0B 68 PLA
clo0cC 09 00 ORA
Cl0E D0 03 BNE
C110 68 PLA
Cl11 09 08 ORA
Cl13 8D 00 1C STA
Cllé 58 CLI
Cc1l17 60 RTS
AARR AR RN KNI R IR RN RN R ARk RR R R khk
C118 78 SEI
Cl19 A9 08 LDA
Cl1B 0D 00 1C QRA
Cl1E 8D 00 1C STA
Cl21 58 CLI
Cl22 60 RTS
KARRRRAR IR R R ARk kkk R AR AR AR Nk **
C123 A9 00 LDA
C125 8D 6C 02 STA
c128 8D 6D 02 STA
C12B 60 RTS
Xy YT I T T
cl2C 78 SEI
C1i2D 8A TXA
Cl2E 48 PHA
Cl12F A9 50 LDA
C131 8D 6C 02 STA
C134 A2 00 LDX
C136 BD CA FE LDA
C139 8D 6D 02 STA
C13C 0D 00 1C ORA
C13F 8D 00 1IC STA
Cl142 68 PLA
Cl43 AA TAX
Cl44 58 CLI
C145 60 RTS

AEXXXXX KRR XK %k ok 5k & ok & dok ok ok ko kb o

Cl46
Cl148
Cl4B

A9

00

8D F9 02
AD 8E 02

LDA
STA
LDA

#SF7
$1C00

$TF
$Cl110

#$00
$C113

#508
$1C00

#508
$1C00
$1C00

#$00
$026C
$026D

#850
$026C
#$00
SFECA,X
$026D
$1C00
$1C00

#S00
$02F9
$028E

118

turn LED on
erase LED bit
drive number
0?

not drive 0, turn LED off

turn LED on

turn LED on

LED on

erase error flags.

save X register

turn LED on

get x register back

interpret command from
computer

last drive number

Anatomy of the 1541 Disk Drive

Cl4E 85 7F STA S$7F drive number

C150 20 BC E6 JSR $SE6BC prepare 'ok' message

C153 A5 84 LDA $84 secondary address

C155 10 09 BPL $C160

C157 29 OF AND #SOF

C159 C9 OF CMP #SOF 15, command channel

C15B FO 03 BEQ $C160 yes

C15D 4C B4 D7 JMP $D7B4 to OPEN command

Cl160 20 B3 C2 JSR $C2B3 determine line length and
erase flags

C163 Bl A3 LDA (SA3),Y get first character

C165 8D 75 02 STA $0275 and store

C168 A2 OB LDX #$0B 11

Cl6a BD 89 FE LDA SFE89,X commands

C16D CD 75 02 CMP $0275 compare to first character

Cc170 FO 08 BEQ $C17A found?

C172 CA DEX

C173 10 F5 BPL $Cl1l6A

Ccl175 A9 31 LDA #831 not found

Cc177 4C C8 Cl JMP $C1C8 31, 'syntax error'

Cl7Aa 8E 2A 02 STX $022A number of command words

C17D EO 09 CPX #S09

Cl17F 90 03 BCC $C184 command number < 97

Cc181 20 EE Cl1 JSR S$ClEE test for 'R', 'S', and 'N'

C184 AE 2A 02 LDX $022A command number

c187 BD 95 FE LDA $FE95,X jump address lo

Cl8a 85 6F STA S$6F

C18C BD Al FE LDA SFEAl,X jump address hi

Cl18F 85 70 STA $70

Ccl191 6C 6F 00 JMP (S006F) jump to command

hhkhkhkhkhkhkhkkkkkhkhkhkhkkhdkrhkhhkhkkhhkr prepare error message after
executing command

C194 A9 00 LDA #$00

C196 8D F9 02 STA $02F9

C199 AD 6C 02 LDA $026C flag set?

ClacC DO 2A BNE $C1C8 yes, then set error message
C19E A0 00 LDY #$00

ClA0 98 TYA error number O

Clal 84 80 STY $80 track number 0

Cla3 84 81 STY $81 sector number 0

Clas 84 A3 STY $A3

ClA7 20 C7 E6 JSR SE6C7 prepare 'ok' message
ClAA 20 23 C1 JSR $C123 erase error flag

ClAD A5 7F LDA $7F drive number

C1AF 8D 8E 02 STA $028E save as last drive number
ClB2 AA TAX

CclB3 {A9 00 LDA #$00

ciBs (9% FF STA SFF,X

ClB?7 20 BD C1 JSR S$CIBD erase input buffer
C1BA 4C DA D4 JMO SD4DA close internal channel
khkkhhkhhkhkhkhkhkhhhkhrhrhkhrhkkrrhkxkkhkkk erase input buffer
C1BD A0 28 LDY #$28 erase 41 characters
C1BF A9 00 LDA #$00

119

Anatomy of the 1541 Disk Drive

clcl 99 00 02 STA $0200,Y $200 to $228

Clc4 88 DEY
C1cC5 10 FA BPL $C1C1
Cc1C7 60 RTS

khkkhhkhkkhkhhhhkhkhhkkhkhrhhkkhhk ki k give error message

(track & sector)

Ccl1cs8 A0 00 LDY #S00

Clca 84 80 STY $80 track = 0

clcc 84 81 STY S$81 sector = 0

C1CE 4C 45 E6 JMP SE645 error number acc, generate

error message

kkkkhxhkkhkrhkr bk kkhkhkkkrhkkhkr check input line

C1D1 A2 00 LDX #$00

C1iD3 8E 7A 02 STX $027A pointer to drive number

C1D6 A9 3A LDA #$3A et

C1D8 20 68 C2 JSR $C268 test line to ':' or to end

C1DB FO 05 BEQ S$C1E2 no colon found?

C1DD 88 DEY

C1DE 88 DEY

C1DF 8C 7A 02 STY $027A point to drive number
(before colon)

ClE2 AC 68 C3 JMP $§C368 get drive # and turn LED on

RhkAkAIARKKRARARAARA NIk Ak khkdkhhhdk Check 1nput 11ne

Cl1ES5 A0 00 LDY #$00 pointer to input buffer

C1E? A2 00 LDX #$00 counter for commas

ClE9 A9 3A LDA #$3A et

ClEB 4C 68 C2 JMP $C268 test line to colon or to end

Khkdkdkhhkhkhhkhkkkhhhhkkkhkdarhbhhhhkhhr Check input 1ine

ClEE 20 E5 Cl JSR $C1E5 test line to ':' or end

ClF1l DO 05 BNE $C1F8 colon found?

ClF3 A9 34 LDA #$34

C1lF5 4C C8 C1 JMP $C1cC8 34, ‘syntax error'

ClF8 88 DEY

C1F9 88 DEY set pointer to colon

ClFA 8C 7A 02 STY $027A position of the drive no.

ClFD 8A TXA comma before the colon

C1FE DO F3 BNE S$SC1F3 yes, then 'syntax error’

c200 A9 3D LDA #$3D 't

Cc202 20 68 C2 JSR $C268 check 1nput to '='

€205 8A TXA comma found?

C206 FO 02 BEO $C20A no

Cc208 A9 40 LDA #$40 bit 6

C20A 09 21 ORA #§21 and set bit 0 and 5

c20C 8D 8B 02 STA $028B flag for syntax check

C20F E8 INX

C210 8E 77 02 STX $0277
c213 8E 78 02 STX $0278

C216 AD 8A 02 LDA $028A wildcard found?
€219 FO 0D BEQ $C228 no

C21B A9 80 LDA #$80

C21p 0D 8B 02 ORA $028B set bit 7

C220 8D 8B 02 STA $028B

120

Anatomy of the 1541 Disk Drive

C223 A9 00 LDA #$00

C225 8D 8A 02 STA $028A reset wildcard flag
C228 98 TYA '=' found?

C229 FO 29 BEQ $C254 no

C22B 9p 7A 02 STA $027A,X

C22E AD 77 02 LDA $0277 number of commas before '=!
C231 8D 79 02 STA $0279

C234 A9 8D LDA #$8D shift CR

C236 20 68 C2 JSR $C268 check line to end

C239 E8 INX increment comma counter
C23A 8E 78 02 STX $0278 store # of commas

C23D CA DEX

C23E AD 8A 02 LDA $028A wildcard found?

C24A FO 02 BEQ $C245 no

C243 A9 08 LDA #$08 set bit 3

C245 EC 77 02 CPX $0277 comma after '='?

C248 FO 02 BEQ $C24C no

C24A 09 04 ORA #$04 set bit 2

C24C 09 03 ORA #$03 set bits 0 and 1

C24E 4D 8B 02 EOR $028B

C251 8D 8B 02 STA $028B as flag for syntax check
C254 AD 8B 02 LDA $S028B syntax flag

C257 AE 2A 02 LDX $022A command number

C25A 3D AS FE AND SFEA5,X combine with check byte
C25D DO 01 BNE $C260

C25F 60 RTS

C260 8D 6C 02 STA $026C set error flag

C263 A9 30 LDA #$30

C265 4C C8 C1 JMP S$C1C8 30, 'syntax error'

RRAAKKRRk Kk khkAkkhkkkkkhkkhkkkhkkkkkhk Search Characters in 1nput
buffer

C268 8D 75 02 STA $0275 save character

C26B cC 74 02 CPY $0274 already done?

C26E BO 2E BCS $C29E yes

c270 Bl A3 LDA ($A3),Y get char from buffer

c272 c8 INY

Cc273 cD 75 02 CMP $0275 compared with char

Cc276 FO 28 BEQ SC2A0 found

c278 c9 2A CMP #$2A T

c27A FO 04 BEO $C280

Cc27cC C9 3F CMP #S$S3F il

C27E D0 03 BNE $C283

€280 EE 8A 02 INC $028A set wildcard flag

Cc283 c9 2C CMP #$2C ‘!

C285 D0 E4 BNE $C26B

c287 98 TYA

c288 9D 7B 02 STA $027B,X note comma position

C28B AD 8A 02 LDA $028A wildcard flag

C28E 29 7F AND #S$7F

Cc290 FO 07 BEQ $C299 no wildcard

c292 A9 80 LDA #$80

C294 95 E7 STA SE7,X note flag

C296 8D 8A 02 STA $028A and save as wildcard flag

C299 E8 INX 1nc comma counter

121

Anatomy of the 1541 Disk Drive

C29A E0 04 CPX #$04 4 commas already?

c29cC 90 CD BCC $C26B no, continue

C29E A0 00 LDY #$00

C2A0 AD 74 02 LDA $0274 set flag for line end

C2A3 9D 7B 02 STA $027B.X

C2A6 AD 8A 02 LDA $028A wildcard flag

C2A9 29 7F AND #S7F

C2AB FO 04 BEQ S$C2B1 no wildcard

C2AD A9 80 LDA #380

C2AF 95 E7 STA $E7,X set flag

C2B1 98 TYA

C2B2 60 RTS

Ak khhkhkhhkhbkhkhhkkhkhkhthkhbhdhkk Check line 1ength

C2B3 A4 A3 LDY S$A3 ptr to command input buffer

C2BS FO 14 BEQ S$SC2CB zero?

c2B7 88 DEY

C2B8 FO 10 BEQ $C2cCa one?

C2BA B9 00 02 LDA $0200,Y pointer to input buffer

C2BD Cc9 0D CMP #$0D 'CR'

C2BF FO OA BEQ $C2CB yes, line end

ca2cl 88 DEY

c2c2 R9 00 02 LDA $0200,Y preceding character

Cc2C5 c9 0D CMP #S0D 'CR'

cac7 FO 02 BEQ $C2CB yes

c20c9 c8 INY

c2ca c8 INY pointer to old value again

C2CB 8C 74 02 STY $0274 same line length

C2CE CO 2A CPY #$2A compare with 42 characters

C2p0 AQ FF LDY #S$FF

C2D2 90 08 BCC $C2DC smaller, ok

C2b4 8C 2a 02 STY $022A

c2p7 A9 32 LDA #$32

c2D9 4C C8 Cl JMP $C1C8 32, ‘'syntax error' line too
long

AAARKKRRKKRXKKRKKKKKKRKRXXXNX* orage flag for input command
c2nc A0 00 LDY #$00

C2DE 98 TYA

C2DF 85 A3 STA $A3 pointer to input buffer lo
C2El 8D 58 02 STA $0258 record length

C2E4 8D 4A 02 STA $024A file type

C2E7 8D 96 02 STA $0296

C2EA 85 D3 STA $D3

C2EC 8D 79 02 STA S0279 comma counter

C2EF 8D 77 02 STA $0277 "
C2F2 8D 78 02 STA $0278 "

C2F5 8D 8A 02 STA $028A wildcard flag

C2F8 8D 6C 02 STA $026C error flag

C2FB A2 05 LDX #$05

C2FD 9D 79 02 STA $0279,X flags for line analysis
c300 95 D7 STA $D7,X directory sectors

c302 95 DC STA $DC,X buffer pointer

C304 95 El1 STA SE1,X drive number

C306 95 E6 STA S$SE6,X wildcard flag

122

C308 9D 7F 02 STA $027F,X
Cc308 9D 84 02 STA $0284,X
C30E CA DEX

C30F D0 EC BNE S$SC2FD
c311 60 RTS
L T T e
Cc312 AD 78 02 LDA $0278
C315 8D 77 02 STA $0277
C318 A9 01 LDA #S01
C31A 8D 78 02 STA $0278
C31D 8D 79 02 STA $0279
Cc320 AC 8E 02 LDY $028E
c3z3 A2 00 LDX #$00
C325 86 D3 STX $D3
c327 BD 7A 02 LDA $027A,X
C32A 20 3C C3 JSR $C33C
C32D A6 D3 LDX $D3
C32F 9D 7A 02 STA $027A
C332 98 TYA

C333 95 E2 STA $E2,X
C335 E8 INX

C336 EC 78 02 CPX $0278
C339 90 EA BCC $C325
C33B 60 RTS
kkdkkkhkkhhkhkkkhkhkbkhkhkhhhkhkhhkkkkk
C33C AA TAX

C33p A0 00 LDY #$00
C33F A9 3A LDA #S$3A
C341 pb 01 02 CMP $0201,X
C344 FO OC BEO $C352
C346 pDb 00 02 CMP $0200,X
C349 D0 16 BNE $C361
C34B E8 INX

Cc34cC 98 TYA

C34D 29 01 AND #$01
C34F A8 TAY

C350 8A TXA

C351 60 RTS

C352 BD 00 02 LDA $0200,X
C355 E8 INX

C356 E8 INX

C357 c9 30 CMP #S$30
C359 FO F2 BEQ $C34D
C35B c9 31 CMP #S$31
C35D FO EE BEO $C34D
C35F D0 EB BNE $C34C
C361 98 TYA

C362 09 80 ORA #$80
C364 29 81 AND #$81
C366 D0 E7 BNE $C34F

de de de de de de ode e o e de de de de de ok de de de o o o e e e O ok e ok ok

Anatomy of the 1541 Disk Drive

track number
sector number

preserve drive number
number of commas
save

number of drive numbers

last drive number

position of the colon
get drive no, before colon

save exact position
drive number in table

got all drive numbers?
no, continue

search for drive number
note position

[|

colon behind 1t?
yes

colon here?

no

drive number

get drive number

'0'?

yes

Y12

yes

no, use last drive number
last drive number

set bit 7, uncertailn drive #
erase remaining bits

get drive number

123

Anatomy of the 1541 Disk Drive

C368 A9 00 LDA #500
C36A 8D 8B 02 STA $028B
C36D AC 7A 02 LDY $027A
c370 Bl A3 LDA (SA3),Y
C372 20 BD C3 JSR $C3BD
C375 10 11 BPL $C388
Cc377 c8 INY

Cc378 cc 74 02 CPY $0274
C37B BO 06 BCS $C383
C37D AC 74 02 LDY $0274
C380 88 DEY

c381 DO ED BNE $C370
Cc383 CE 8B 02 DEC S028BR
C386 A9 00 LDA #$00
c388 29 01 AND #$01
C38A 85 7F STA $7F
c38cC 4C 00 C1 JMP S$C100
khkkkkRkkkkkRkkhkkkhkhhhhkhkdikkd
C38F A5 TF LDA STF
C391 49 01 EOR #501
Cc393 29 01 AND #$01
C395 85 TF STA $7F
Cc397 60 RTS
kkkkkkkhhhkkhkkehhbhdhkkkhbhkdrhthkikk
Cc398 A0 00 LDY #S00
C39A AD 77 02 LDA $0277
Cc39D Cb 78 02 CMP $0278
C3A0 FO 16 BEQ S$C3B8
C3A2 CE 78 02 DEC $0278
C3A5 AC 78 02 LDY $0278
C3A8 B9 7A 02 LDA $027A,Y
C3AB A8 TAY

C3AC Bl A3 LDA (SA3),Y
C3AE A0 04 LDY #$04
C3B0O D9 RB FE CMP SFEBB.Y
C3BR3 FO 03 REO SC3B8
C3B5 88 DEY

C3B6 p0 F8 BNE $C3BO
C3B8 98 TYA

C3B9 8D 96 02 STA $0296
C3BC 60 RTS

Fekdkokkdk kkdkokkh ok kdk ko d ok ododed ok odokodokkod ok
C3BD c9 30 CMP #$30
C3BF FO 06 BEQ $C3C7
c3Cl c9 31 CMP #$31
c3C3 FO 02 BEQ $C3C7
C3C5 09 80 ORA #3580
c3¢C7 29 81 AND #$81
C3C9 60 RTS

124

erase syntax flag

position in command line

get chars from command buffer
get drive number

certain number?

increment pointer

line end?
yes

search line for drive no.

drive number
turn LED on

reverse drive number

drive number
switch bit 0

establish file type

'=' found?

no
get pointer

set pointer to character

behind '=?

pointer to buffer
compare with marker for

file type
lSl’ IPI, lul’
agreement

note file type

(1-4)

check drive number

o
Tt

no zero or one,

then set bit 7

Anatomy of the 1541 Dbisk Drive

kkkkRR R AR AR AR Ak ARk kkkkdkhkkkkk Verify drive number

C3CA A9 00 LDA #$00
C3cCc 85 6F STA $6F
C3CE 8D 8D 02 STA $028D
C3p1 48 PHA

C3D2 AE 78 02 LDX $0278 number of drive numbers
C3D5 68 PLA

C3D6 05 6F ORA $6F
C3D8 48 PHA

C3p9 A9 01 LDA #$01
C3DB 85 6F STA S6F
C3DbD CA DEX

C3DE 30 OF BMI S$C3EF
C3E0 BS E2 LDA $E2,X
C3E2 10 04 BPL $C3ES8
C3E4 06 6F ASL S6F
C3E6 06 6F ASL $6F
C3E8 4A LSR A
C3E9 90 EA BCC $C3DS
C3EB 06 6F ASL $6F
C3ED DO E6 BNE $C3D5
C3EF 68 PLA

C3F0 AA TAX

C3F1 BD 3F C4 LDA S$SCA43F,X get syntax flag
C3F4 48 PHA

C3F5 29 03 AND #$03

C3F7 8D 8C 02 STA $028C

C3FA 68 PLA

C3FB OA ASL A

C3FC 10 3E BPL $C43C

C3FE A5 E2 LDA SE2

Cc400 29 01 AND #S01 1solate drive number
C402 85 TF STA $7F

C404 AD 8C 02 LDA $028C

c407 FO 28 BEQ $C434

c409 20 3D Cé6 JSR $C63D initialze drive

Cc40C FO 12 BEQ sc42¢0 error?

C40E 20 8F C3 JSR $C38F switch to other drive
c41ll A9 00 LDA #$00

C413 8D 8C 02 STA $028C

C4le 20 3D Cé JSR $C63D initialize drive

C419 FO 1E BEQ $C439 no error?

C41B A9 74 LDA #$74

C41D 20 C8 C1 JSR $C1cCs8 74, 'drive not ready'
Cc420 20 8F C3 JSR $C38F

c423 20 3D Cé JSR $C63D initialize drive

C426 08 PHP

c427 20 8F C3 JSR S$SC38F switch to other drive
C42A 28 PLP

C42B FO OC BEQ SC439 no error?

C42D A9 00 LDA #$00

C42F 8D 8C 02 STA $028C number of drives
Cc432 FO 05 BEOQ $C439

C434 20 3D C6 JSR S$C63D initialize draive

125

Anatomy of the 1541 Disk Drive

C437
C439
C43C
C43D

D0

E2

4C 00 C1

2A

4C 00 C4

BNE
JMP
ROL
JMP

$C41B
$C100
A

$C400

Rk hhkhkRNhhkNkhkkkhkkhkkhhkhkhkhkhkhkhkkx

00 80 41 01 01 01 01 81
81 81 81 42 42 42 42

C440
c448

khkkhhkhkhhhhhkkkkhbhkkkkkhkkkkx

C44F
C452
C454
C457
C45A
Cc45C
C4SF
C461

C462
C464
C467
C46A
C46D

C470
C473
Ca75
C478
C47B
C47D

C47E
c481
C483
Cc485
cags
C48A

C48B
C48E
C490

Cc492
C494
Cc497
C49A
C49D
C49F
C4A2
C4A5
C4A7
C4AA
C4AD
C4AF

20
A9
8D
20
D0
CE
10
60

A9
8D
20
20
4C

20
FO
20
AD
FO
60

AD
30
10
AD
FO
60

20
FO
Do

A9
8D
20
20
A9
8D
20
DO
8D
AD
DO
CE

CAa
00
92
AC
19
8C
01

01
8D
8F
00
52

17
10
D8
8F
01l

53
ED
FO
8F
D2

04
1A
28

01
8D
8F
00
00
92
AC
13
8F
8F
28
8C

c3

02
c5

02

02
Cc3
Cl
C4
cé

c4
02

02

02

cé

02
c3
Cl

02
c5

02
02

02

JSR
LbA
STA
JSR
BNE
DEC
BPL
RTS

LDA
STA
JSR
JSR
JMP

JSR
BEQ
JSR
LDA
BEQ
RTS

LDA
BMI
BPL
LDA
BEO
RTS

JSR
BEQ
BNE

LDA
STA
JSR
JSR
LDA
STA
JSR
BNE
STA
[.DA
BNE
DEC

$C3Ca
#800

$0292
SCSAC
$C475
$028C
$C462

#S01

$028D
SC38F
$cCl100
$C452

$C617
$C485
$C4D8
$028F
SC47E

$0253
$C470
$C475
$028F
$C45¢C

$Co04
SC4AA
SC4BA

#501

$028D
SC38F
$C100
#3800

$0292
SC5AC
SC4BA
$028F
S028F
$C4D7
$028C

126

error?
Turn LED on
draive # from carry after bit 0

flags for drive check

search for file in directory
1nitialize drive

pointer

read first directory block
entry present?

drive number clear?

no

change drive
Turn LED on
and search

search next file in directory
not found?
verify directory entry

more files?

file not found?
yes

search next directory block
not found?

change drive

turn LFD on

read directory block
found?

C4B2
C4B4

C4BS5
C4B8
C4BA
C4ABD
c4co
Cc4c2
C4Cs
(o2 Toy)

[oF Yoi)
C4ccC
CACE
C4D0
C4p2
C4D5
C4D7

Cc4p8
C4DaA
C4DD
C4DE
C4E]
CAE4
C4E6

C4E7
C4EA
C4EC
CAEE
CAF0
C4Fl
C4F3
C4F5
C4F7
C4F9
C4FC
C4FE
C501
C502
Cc505
c507

c50A
C50D
C50F
Cc511
C513
C515
C517
C519
C51B
c51C

FF
53

8A
89
06

94
FA
7F
E2

0B
40
FO

8C
E9
7A

A6
03
1D

00
94
0A
3F
D2
94
A0
cc

cé

c4
02

02

02

02

02

02
c5

Cc5

02
02
cé
c5
02

BPL
RTS

JSR
BEO
JSR
LbX
BPL
LDA
BEO
BNE

LDA
BEO
LDA
AND
CMP
BNE
RTS

LbX
STX
INX
STX
JSR
BEO
RTS

JSR
BNE
LDA
EOR
LSR
BCC
AND
BEO
LDA
CMP
BEQ
LDA
TAX
JSR
LDY
JMP

LDA
CMP
BEO
CMP
BNE
LDA
CMP
BEOQ
INX
INY

$C492

$C617
$C4AA
$c4ap8
$0253
$C4ac9
$028F
$C4B5
S$C4p7

$0296
$c467
$E7,X
#507

$0296
$C4B5

#SFF
$0253

$028A
$C589
$C4EC

$C594
SC4E6
$TF
SE2,X
A
SCAFE
$540
SCAE7
#5502
$028C
SC4E7

Anatomy of the 1541 bisk Drive

$027A,X

SC6A6
#$03
$C51D

$0200,X

(s94),

$C51B
#S3F
SC4E7

(s94),

#$A0
SC4E7

Y

Y

127

next entry 1in directory
not found?
check entry

file found?

yes
no, then done

file type

same as desired file type?
no

flag for data found

set pointer to data

pointer to next file
end, then done
drive number

search both'drives?
yes

get length of filename

get chars out of command line
same character in directory?
yes

l?l

no

shift blank, end of name?

yes
increment pointer

Anatomy of the 1541 Disk Drive

C51D EC 76 02 CPX $0276
C520 BO 09 BCS $C52B
Cc522 BD 00 02 LDA $0200,X
C525 C9 2Aa CMP #$2A
Cc527 FO OC BEQ $C535
C529 DO DF BNE $C50A
C52B co 13 CPY #$13
C52D B0 06 BCS $C535
C52F Bl 94 LDA ($94),Y
Cc531 C9 a0 CMP #SA0
C533 D0 B2 BNE S$C4E7
C535 AE 79 02 LDX $0279
C538 8E 53 02 STX $0253
C53B B5 E7 LDbA SE7,X
C53D 29 80 AND #$80
C53F 8D 8A 02 STA $028A
Cc542 AD 94 02 LDA $0294
C545 95 DD STA $DD,X
C547 A5 81 LDA S$81
Cc549 95 D8 STA $D8,X
C548 A0 00 LDY #$00
C54D Bl 94 LDA (S$94),Y
C54F ol } INY

C550 48 PHA

Cc551 29 40 AND #$40
C553 85 6F STA $6F
C555 68 PLA

C556 29 DF AND #SDF
C558 30 02 BMI $C55C
C55A 09 20 ORA #$20
C55C 29 27 AND #$27
C55E 05 6F ORA $6F
C560 85 6F STA $6F
C562 A9 80 LDA #$80
C564 35 E7 AND $E7,X
C566 05 6F ORA $6F,X
C568 95 E7 STA $E7,X
C56A B5 E2 LDA $E2.X
C56C 29 80 AND #$80
C56E 05 7F ORA $7F
C570 95 E2 STA SE2,X
C572 Bl 94 LDA ($94),Y
C574 9p 80 02 STA $0280,X
c577 c8 INY

c578 Bl 94 LDA ($94),Y
C57A 9D 85 02 STA $0285,X
C57D AD 58 02 LDA $0258
Cc580 po0 07 BNE $C589
c582 A0 15 LDY #$15
C584 Bl 94 LDA (S94),Y
C586 8D 58 02 STA $0258
Cc589 A9 FF LDA #SFF
Cc58B 8D 8F 02 STA $028F
CS8FE AD 78 02 LDA $0278

128

end of the name in the command?
yes

next character
1%

yes, file found
continue search

19
reached end of name

shift blank, end of name

not found

sector number of the directory
enter in table

file type

isolate scratch-protect bit
(6) and save

erase bit 7

set bit 5

erase bits 3 and 4

get bit 6 again

isolate flag for wildcard

write in table

drive number

first track of file

get sector from directory
record length

record length
get from directory

Anatomy of the 1541 Disk Drive

C591 8D 79 02 STA $0279
C594 CE 79 02 DEC $0279

C597 10 01 BPL $C59A

C599 60 RTS

C59A AE 79 02 LDX $0279

C59D BS E7 LDA SE7,X wildcard flag set?

C59F 30 05 BMI $C5A6 yes

C5A1 BD 80 02 LDA $0280,X track number already set
C5A4 DO EE BNE $C594 yes

C5A6 A9 00 LDA #$00

C5a8 8D 8F 02 STA $028F

C5AB 60 RTS

C5AC A0 00 LDY #$00

CSAE 8C 91 02 STY $0291

C5B1 88 DEY

C5B2 8C 53 02 STY 50253

C5B5 AD 85 FE LDA $FE85 18, directory track

C5B8 85 80 STA $80

C5BA A9 01 LDA #$01

C5BC 85 81 STA $81 sector 1

C4BE 8D 93 02 STA $0293

C5C1 20 75 D4 JSR $D475 read sector

c5C4 AD 93 02 LDA $0293

C5C7 Do Q1 BNE $C5CA

c5C9 60 RTS

C5CA A9 07 LDA #$07

cs5cC 8D 95 02 STA $0295 number of directory entries (-1)
C5CF A9 00 LDA #$00

C5D1 20 F6 D4 JSR $D4Fr6 get pointer from buffer
C5D4 8D 93 02 STA $0293 save as track number
C5D7 20 E8 D4 JSR SD4ES8 set buffer pointer

C5DA CE 95 02 DEC $0295 decrement counter

C5DD A0 00 LDY #S00

CSDF Bl 94 LDA ($94),Y first byte from directory
C5E1 po 18 BNE $C5FB

C5E3 AD 91 02 LDA $0291

C5E6 D0 2F BNE S$C617

CSES 20 3B DE JSR $DE3B get track and sector number
C5EB AS 81 LDA $81

CSED 8D 91 02 STA $0291 sector number

C5F0 A5 94 LDA $94

CS5F2 AE 92 02 LDX $0292

C5F5 8D 92 02 STA $0292 buffer pointer

C5F8 FO 1p BED SC617

C5FA 60 RTS

CS5FB A2 01 LDX #$01

CSFD EC 92 02 CPX $0292 buffer pointer to one?
c600 DO 2D BNE $C62F

c602 FO 13 BEQ $C617

c604 AD 85 FE LDA $FEB85 18, track number of BAM,

129

Anatomy of the 1541 Disk Drive

c607 85 80 STA
C609 AD 90 02 LDA
c60c 85 81 STA
C60E 20 75 D4 JSR
C611 AD 94 02 LDA
C614 20 c8 D4 JSR
c617 AD FF LDA
C619 8D 53 02 STA
C61C AD 95 02 LDA
C61F 30 08 BMI
C621 A9 20 LDA
€623 20 €6 Dl JSR
C626 4C D7 C5 JMP
€629 20 4D D& JSR
C62C 4C C4 C5 JMP
C62F A5 94 LDA
C631 8D 94 02 STA
C634 20 3B DE JSR
C637 A5 81 LDA
C639 8D 90 02 STA
c63c 60 RTS
hdhhdhhhkhkkhhdkdhhkdddhkhhhhhhkhkk
C63D A5 68 LDA
C63F DO 28 BNE
C641 A6 7F LDX
€643 56 1C LSR
c645 90 22 BCC
C647 A9 FF LDA
€649 8D 98 02 STA
c64C 20 OE DO JSR
C64F AQ FF LDY
c651 €9 02 CMP
C653 FO OA BEQ
c655 C9 03 CMP
C657 FO 06 BEQ
C659 C9 OF CcMP
C65B FO 02 BEQ
C65D A0 00 LDY
C65F A6 7F LDX
c661 [98 TYA
C662 95 FF STA
C664 DO 03 BNE
C666 20 42 DO JSR
C669 A6 7F LDX
C66B B5 FF LDA
C66D 60 RTS
khkkkhkhkdkhkhhkhhkkdkhhhkhhhkkhkhhkk
C66E 48 PHA
C66F 20 A6 C6 JSR
C672 20 88 C6 JSR
C675 68 PLA

$80
$0290
$81
$D475
$0294
$D4cCs
#SFF
$0253
$0295
$C629
#520
$D1C6
$C567

$D44D
$C5C4

$94
$0294
SDE3B
$81
$0290

$68
$C669
$7F
$1C,X
$C66A9
SFF
$0298
$DOOE
#SFF
#$02
$C65F
#$03
$C65F
#$OF
$C65F
#S00
$TF

SFF,X
$C669
$D042
$7F

$FF,X

SC6A6
$C688

track number

sector number
read block

set buffer pointer
erase-file found flag
all directory entries checked?

inc buffer ptr by 32, next entry
and continue

set buffer pointer
read next block

get track & sector no. from buffer

save sector number

test and initialize drive

drive number
disk changed?
no, then done

set error flag
read directory track

20, 'read error'?

yes
21, 'read error'?

yes

74, 'drive not ready'?
yes

drive number

save error flag
error?

load BAM

drive number
transmit error code

name of file in directory buffer

get end of the name
write filename in buffer

C676 38 SEC
Cc677 ED 4B 02 SBC
c67a AA TAX
C67B FO 0A BEQ
C67D 90 08 BCC
C67F A9 A0 LDA
Cc681 91 94 STA
Cc683 cs8 INY
C684 CA DEX
C685 DO FA BNE
c687 60 RTS
R Y R Y S S LA L]
Cc688 98 TYA
C689 OA ASL
C68A A8 TAY
C68B B9 99 00 LDA
C68E 85 94 STA
C690 B9 9A 00 LDA
C693 85 95 STA
C695 AG 00 LDY
C697 BD 00 02 LDA
C69A 91 94 STA
C69C cs INY
C69D FO 06 BEQ
C69F E8 INX
C6A0 EC 76 02 CPX
C6A3 90 F2 BCC
C6AS 60 RTS
ARRARKRRRARARRRIN RN R AR ARk k ke ko
C6A6 A9 00 LDA
C6A8 8D 4B 02 STA
C6AB 8a TXA
C6AC 48 PHA
C6AD BD 00 02 LDA
C6B0 Cc9 2C CMP
Cé6B2 FO 14 BEQ
C6B4 c9 3D CMP
C6B6 FO 10 BEO
C6B8 EE 4B 02 INC
C6BB E8 INX
C6BC A9 OF LDA
C6 BE CD 4B 02 CMP
C6Cl1 90 05 BCC
C6C3 EC 74 02 CPX
C6C6 90 E5 BCC
cecs 8E 76 02 STX
C6CB 68 PLA
cé6CC AA TAX
C6CD 60 RTS
hhh kR kAR R AR AR Rk R Rk hhhkhhdk
C6CE A5 83 LDA
C6D0 48 PHA

$024B

$C687
$C687
#SA0
(s94),Y

$C681

A

$0099,Y
$94
$009A
$95
#$00
$0200,X
(894) ,Y

$C6A5

$0276
$C697

#S00
$024B

$0200,X
#$2C
$c6C8
#$3D
$cé6cs
$024B

#SOF

$024B
$C6C8
$0274
SC6AD
$0276

$83

Anatomy of the 1541 Disk Drive

compare len with max length

pad with 'shift blank'

buffer number

times 2 as pointer

buffer pointer after $94/$95

transmit characters in buffer

buffer already full?

search for end of name in command

get characters out of buffer
L] 1
r

[)
increment length of name
15

greater?
end of input line?

pointer to end of name

secondary address and channel no.

131

Anatomy of the 1541 Disk Drive

Cc6D1 A5 82 LDA $82

C6D3 48 PHA

C6D4 20 DE C6 JSR $C6DE create file entry for directory
C6D7 68 PLA

C6D8 85 B2 STA $82

C6DA 68 PLA get data back

C6DB 85 83 STA $83

C6DD 60 RTS
kkkkhhkkhhhkhkkhkkhhhhhkhkkhkkkhkkdhx

C6DE A9 11 LDA #$11 17

C6EQ 85 83 STA $83 secondary address
C6E2 20 EB DO JSR S$DOEB open channel to read
C6E5 20 E8 D4 JSR $D4ES8 set buffer pointer
C6E8 AD 53 02 LDA $0253

C6EB 10 0OA BPL SC6F7 not yet last entry?
C6ED AD 8D 02 LDA $028D

C6F0 DO 0A BNE $C6FC

C6F2 20 06 C8 JSR $C806 write 'blocks free.'
C6F5S 18 CLC

C6F6 60 RTS

C6F7 AD 8D 02 LDA $028D

C6FA FO 1F BEO $C71B

C6FC CE 8D 02 DEC $028D

C6FF DO 0D BNE S$SC70E

c701 CE 8D 02 DEC $028D

c704 20 8F C3 JSR SC38F change drive

c707 20 06 c8 JSR $C806 write 'blocks free.'
C70A 38 SEC

c708 4C 8F C3 JMP S$C38F change drive

C70E A9 00 LDA #$00

Cc710 8D 73 02 STA $0273 drive no. for header, hi-byte
C713 8D 8D 02 STA $028D

C716 20 B7 C7 JSR SC7B7 write header

C719 38 SEC

C71A 60 RTS

C71B A2 18 LDX #$18

C71D A0 1D LDY #S1D

C71F Bl 94 LDA ($94),Y number of blocks hi
c721 8p 73 02 STA $0273 in buffer

C724 FO 02 BEQ $C728 zero?

C726 A2 16 LDX #$16

C728 88 DEY

Cc729 Bl 94 LDA ($94),Y number of blocks lo
C72B 8D 72 02 STA $0272 1in buffer

C72E EO0 16 CPX #$16

C730 FO 0A BEQ $C73C

Cc732 c9 0A CMP #S0A 10

C734 90 06 BCC $C73C

C736 CA DEX

Cc737 C9 64 CMP #$64 100

C739 90 01 BCC sC73C

C73B CA DEX

Anatomy of the 1541 Disk Drive

C73C 20 AC C7 JSR SC7AC erase buffer

C73F Bl 94 LDA ($94),Y file type

C741 48 PHA

C742 0A ASL A bit 7 in carry

C743 10 05 BPL SC74A bit 6 not set?

C745 A9 3C LDA #$3C '<' for protected file

C747 9D B2 02 STA $02B2,X write behind file type
C74A 68 PLA

C74B 29 OF AND #$0OF isolate bits 0-3

C74D A8 TAY as file type marker
C74E B9 C5 FE LDA $FEC5,Y 3rd letter of the file type
C751 9D Bl 02 STA $02B1,X in buffer

C754 CA DEX

C755 B9 CO FE LDA $FECO,Y 2nd letter of file type
C758 9D Bl 02 STA $02B1,X in buffer

C75B ca DEX

C75C B9 BB FE LDA SFEBB,Y lst letter of file type
C75F 9D Bl 02 STA $02B1,X in buffer

C762 CA DEX

C763 CA DEX

C764 BO 05 BCS $SC76B file not closed?

C766 A9 2A LDA #$2A Ve

C768 9D B2 02 STA $02B2,X before file type in buffer
C768 A9 AQ LDA #SA0 pad with 'shift blank'
676D 9D Bl 02 STA $02B1,X in buffer

c770 CA DEX

C771 A0 12 LDY #$12

Cc773 Bl 94 LDA ($94),Y filenames

C775 9D B1 02 STA $02Bl,X write in buffer

C778 CA DEX

C779 88 DEY

C77Aa Co 03 CPY #$03

Cc77C B0 F5 BCS $C773

C77E A9 22 LDA #§22 =t

C780 9D Bl 02 STA $02B1,X write before file type
Cc783 E8 INX

C784 E0 20 CPX #$20

C786 BO OB BCS SC793

Cc788 BD Bl 02 LDA $02B1,X character from buffer
C78B c9 22 CMP #$22 =12

C78D FO 04 BEQ $C793

C7BF C9 A0 CMP #SA0 'shift blank' at end of name
Cc791 DO FO BNE $C783

C793 A9 22 LDA #$22 f111 through '='

C795 9D B1 02 STA S$02Bl,X

Cc798 E8 INX

C799 E0 20 CPX #%20

c898 BO 0A BCS SC7A7

C79D A9 7F LDA #S7F bit 7

C79F 3D Bl 02 AND $02B1,X
C7A2 9D Bl 02 STA $02B1,X erase in the remaining chars
C7A5 10 Fl BPL $C798

C7A7 20 B5 C4 JSR $C4BS search for next directory entry
C7AA 38 SEC
C7AB 60 RTS

Anatomy of the 1541 Disk Drive

krkkkhkhkkkhkhhhkkhkkkhkhhhhhhkddhh

C7AC A0 1B LDY #S1B
C7AE A9 20 LDA #$20
C7B0 99 B0 02 STA $02BO,Y
C7B3 88 DEY

C7B4 DO FA BNE $C7B0
C7B6 60 RTS

I 32 2222322323322 X222 2 2 2 2 X
C7B7 20 19 F1 JSR $F119
C7BA 20 DF FO JSR $FODF
C7BD 20 AC C7 JSR $C7AC
c7c0 A9 FF LDA #SFF
c7C2 85 6F STA S$6F
c7c4 A6 7F LDX S$7F
C7C6 8E 72 02 STX $0272
c7C9 A9 00 LDA #$00
C7CB 8D 73 02 STA $0273
C7CE A6 F9 LDX S$F9
C7D0 BD E0O FE LDA SFEEO,X
C7D3 85 95 STA $95
Cc7D5 AD 88 FE LDA SFE88
C7D8 85 94 STA $94
C7DA A0 16 LDY #$16
c7DC Bl 94 LDA ($94),Y
C7DE C9 A0 CMP #SA0
C7EQ D0 OB BNE SC7ED
C7E2 A9 31 LDA #$31
C7E4 2C .BYTE $2C
C7E5 Bl 94 LDA ($94),Y
C7E7 c9 A0 CMP #SA0
C7E9 DO 02 BNE SC7ED
C7EB A9 20 LDA #$20
C7ED 99 B3 02 STA $02B3
C7FO0 88 DEY

C7F1 10 F2 BPL $C7ES5
C7F3 A9 12 LDA #$12
C7F5 8D Bl 02 STA $02B1
C7F8 A9 22 LDA #$22
C7FA 8D B2 02 STA $02B2
C7FD 8D C3 02 STA $02C3
€800 A9 20 LDA #$20
Cc802 8D C4 02 STA $02C4
c805 60 RTS

Ak kXA RRRXXA KKK KAXXRKRXRAXRXR XXX
Cc806 20 AC C7 JSR $C7AC
c809 A0 OB LDY #$0B
Cc80B B9 17 C8 LDA $C817,Y
C80E 99 Bl 02 STA $02Bl,Y
CBl1 88 DEY

c812 10 F7 BPL $C80B
c814 4C 4D EF JMP SEF4D

134

erase directory buffer
' ' blank
write in buffer

create header with disk name
initialize if needed

read disk name

erase buffer

drive number
as block no. lo in buffer
block number lo

buffer number

hi-byte of the buffer address

$90, position of disk name
save

pad buffer with 'shift blank'

rye

character from buffer

compare with 'shift blank'
' ' blank
1n buffer

'RVS ON'

in buffer

Tt

write before

and after disk name
' ' blank

behind it

create last line
erase buffer

12 characters
'blocks free.'
write in buffer

number of free blocks in front

Anatomy of the 1541 Disk prive

LR R R R Y Y Y SR LRI

c817 42 4C 4AF 43 4B 53 20 46 ‘'blocks f'

C81F 52 45 45 2E 'ree,’
KhhkhkkhhkhkhkxhhXxkkhkhrxdkddeddhdhrhk S command 'scratch'

c823 20 98 C3 JSR $C398 ascertain file type

C826 20 20 c3 JSR $C320 get drive number

Cc829 20 CA C3 JSR $C3CA initialize drive if needed
c82c A9 00 LDA #$00

C82E 85 86 STA $86 counter for erased files
C830 20 9D C4 JSR $C49D search for file in directory
c833 30 3p BMI $C872 not found?

C835 20 B7 DD JSR $DDB7 is file open

c838 90 33 BCC $C86D yes

Cc83A A0 00 LDY #$00

Cc83¢C Bl 94 LDA ($94),Y file type

C83E 29 40 AND #S40 scratch protect

€840 DO 2B BNE S$C86D yes

c842 20 B6 C8 JSR SC8B6 erase file and note in directory
C845 A0 13 LDY #S$13

c847 Bl 94 LDA ($94),Y track no. of the first side-sector
Cc849 FO OA BEQ $C855 none present?

C84B 85 80 STA $80 note track number

C84D c8 INY

C84F Bl 94 LDA (S94),Y and sector number

c850 85 81 STA $81

c852 20 7D C8 JSR $C87D erase side-sector

C855 AE 53 02 LDX $0253 file number

c858 A9 20 LDA #$20

Cc85A 35 E7 AND $E7,X bit 5 set?

c85¢C D0 0D BNE $C86B yes, file not closed

C85E BD 80 02 LDA $0280,X get track

C861 85 80 STA $80

C863 BD 85 02 LDA $0285,X and sector

C866 85 81 STA $81

Cc868 20 7D C8 JSR $CB87D erase file

C86B E6 86 INC $86 increment number of erased files
C86D 20 8B C4 JSR $C48B search for next file

c870 10 C3 BPL $C835 if present, erase

c872 AS 86 LDA $86 number of erased files
Cc874 85 80 STA $80 save as 'track!'

Cc876 A9 01 LDA #S$01 1 as disk status

c878 A0 00 LDY #$00 0 as 'sector'

C87A 4C A3 Cl JMP S$C1A3 message 'files scratched®
hhkkdkkkdkh Rk hkhkhhkhhhdhhdhk erase file

C87D 20 5F EF JSR SEFSF free block in BAM

c880 20 75 D4 JSR $D475

Cc883 20 19 F1 JSR $F119 get buffer number in BAM
€886 BS A7 LDA $A7,X

[64:3:3:1 C9 FF CMP #SFF

C88A FO 08 BEQ $C894

c88c AD F9 02 LDA $02F9

C88F 09 40 ORA #$40

Cc891 8D F9 02 STA $02F9

135

Anatomy of the 1541 Disk Drive

C894 A9 00 LDA #$00

C896 20 C8 D4 JSR $DACS8 buffer pointer to zero
c899 20 56 D1 JSR $D156 get track

c89C 85 80 STA $80

C89E 20 56 D1 JSR $D156 get sector

Cc8al 85 81 STA $81

C8A3 A5 80 LDA $80 track number

C8AS5 DO 06 BNE $C8AD not equal to zero
c8a7 20 F4 EE JSR S$EEF4 write BAM

C8AA 4C 27 D2 JMP $D227. close channel
C8AD 20 S5F EF JSR $EFSF free block in BaM
[63:3:14] 20 4D D4 JSR $D44D read next block
C8B3 4C 94 C8 JMP $C894 and continue

Ahkhkhkhkkkhhkhkkkkhhkkkkkkkkkrhkh ki erase direCtOry entry

C8B6 A0 00 LDY #$00

CBB8 98 TYA

C8R9 91 94 STA ($94),Y set file type to zero
C8BR 20 S5E DE JSR $DESE write block

C8BE 4C 99 D5 JMP $D599 and check
'k*************‘k*********** D_Command ‘backup‘

Cc8Cl1 A9 31 LDA #$31 ,

Cc8C3 4C C8 Cl JMp $CI1C8 31, 'syntax error
****************************** format diskette

Cc8Cé A9 4C LDA #$4C JMp-command

C8C8 8D 00 06 STA $0600

C8CB A9 C7 LDA #$C7

C8CD 8D 01 06 STA $0601 JMP SFAC7 in $600 to $602
C8D0 A9 FA LDA #SFA

C8D2 8D 02 06 STA $0602

C8D5 A9 03 LDA #$03

c8D7 20 D3 D6 JSR $D6D3 set track and sector number
C8DA A5 7F LDA $7F drive number

C8DC 09 EO ORA #SEO command code for formatting
C8DE 85 03 STA $03 transmit

C8EO A5 03 LDA $03

C8E2 30 FC BMI SC8EO walt until formatting done
C8E4 c9 02 CMP #502

C8E6 90 07 BCC $C8EF smaller than two, then ok
C8ES8 A9 03 LDA #$03

C8EA A2 00 LDX #$00

C8EC AC OA E6 JMP $SE60A 21, 'read error'

C8EF 60 RTS

hhkhkkhkkkhkhhkkdhkhhkkkhkikhdhkkhhkdkik C—Command 'Copy'

C8F0 A9 EO LDA #SEO

C8F2 8D 4F 02 STA S$024F

C8FS 20 D1 FO JSR $FOD1

C8F8 20 19 F1 JSR SF119 get buffer number of BAM
C8FB A9 FF LDA #SFF

C8FD 95 A7 STA $A7,X

C8FF A9 OF LDA #S$SOF

136

C901
C904
C907
Cc909

c90C
C90F
c912
Cc915
€917
C919
c91C
C91F
€921
Cc923
€925

c928
C92B
C92D
C92F
€932
C934
c937
C93A
C93D
C940
C942
C944
C946
c948
C94B
C94E
C951

C952
C955
C958
C95A
C9s5C
C95E
€960
C962
C964
C966
C968
C96A
C96C
Coé6E
Cc971
C973
C976
C979
c97cC
C97E

56
ES
03
Cl

F8
8B

55
OF

. 7A

00
2A
05
30

8B
D9
Fa
52
00
58
8C
80
81
E3
01
7F
01
91

7A

02
Cl

c8
Cl

Cc3
02

02
02

Cl1

02

c9
02
02

02
02

02

02

ca
02

CA

02
[o2°]
D1

STA
JSR
BNE
JMP

JSR
JSR
LDA
AND
BNE
LDX
LDA
CcMP
BNE
LDA
JMP

LDA
AND
BNE
JMP
LDA
STA
STA
STA
STA
LDA
AND
STA
ORA
STA
LDA
STA
RTS

JSR
LDA
CMP
BCC
LDA
CMP
BNE
LDA
CcMP
BNE
LDA
CcMp
BNE
JSR
LDA
STA
JSR
JSP
BEQ
CMp

$0256
$C1ES
$c90C
$c8Cl

SC1F8
$C320
$028B
#$55

$C928
S027A

Anatomy of the 1541 Disk Drive

$0200,X

#S2A
$C928
#$30
$C1C8

$028B
#$D9
$C923
$C952
#$00
$0258
$028C
$0280
$0281
SE3
#S01
STF
#$01
$0291
$027R
$027A

SC44F
$0278
#$03
$C9A1
SE2
SE3
$C9Aal
$DD
$DE
$C9A1
s$D8
$D9
$C9Al
$CACC
#$01
$0279
SCOFA
$D125
$C982
#502

137

check input line
31, 'syntax error'

check 1nput
test drive number
flag for syntax check

character of the command
Ttk

30, 'syntax error'
syntax flag

30, 'syntax error'

number of drives
track number 1in directory

drive number

search for file in directory
number of filenames in command
smaller than three?

yes

first drive number

second drive number

not on same drive?

directory block of the 1lst file
same dir block as second file?
no

directory sector of first file
same dir sector as second file?
no

is file present

get data type
rel-file?
prg-file

Anatomy of the 1541 Disk Drive

Cc980
c982
c984
co87
co89
C98B
C98E
c991
C993
C996
C999
C99B
C99E

C9al
Con4

C9Aa7
C9AA
CI9AC
C9AE
C9BO
CI9B3
C9B6
C9B9
C9BC
CI9BF
C9Cl1
Cc9c3
CaCeé
CcocCo
cocCB
C9CE
C9D0
C9D2

C9D5
Cc9Dp8
C9DB
C9DD
C9ED
C9E2
CI9E5
C9E7
C9EA
C9ED
CI9FE
C9F1
C9F3
C9F5
C9F7

C9FA
C9FD
C9FF

DO
A9
20
A9
85
AD
8D
A9
8D
20
A2
20
4C

20
4C

20
A4
29
85
20
20
AE
8E
20
A9
85
20
20
DO
20
A9
85
4C

20
20
A9
20

05
64
c8
12
83
3C
3D
FF
3C
2A
02
B9
94

A7
94

E7
E2
01
7F
86
E4
77
79
FA
11
83
EB
25
03
53
08
F8
D8

9B
35
80
A6
F3
25
03
98
79

78
Ccé
12
83
02

79
E2
01

Cl
02
02

02
DA

[o3°]
Cl

c9
Ccl

CA

D4
D6
02
02
c9

DO
D1

Ca

C9

CF
CA

DD
D1

CF
02

02

DB

02

BNE
LDA
JSR
LDA
STA
LDA
STA
LDA
STA
JSR
LDX
JSR
JMP

JSR
JMp

JSR
LDA
AND
STA
JSR
JSR
LDX
STX
JSR
LDA
STA
JSR
JSR
BNE
JSR
LDA
STA
JMp

JSR
JSR
LDA
JSR
BEQ
JSR
BEQ
JSR
LDX
INX
cpX
BCC
LDA
STA
JMP

LDX
LDA
AND

$C987
#$64
$clcs
#S12
$83
$023C
$023D
#SFF
$023C
SDA2A
#$02
$C9B9
$C194

SC9A7
$C194

SCAE7
SE2
#$01
STF
$DAa86
SD6E4
$0277
$0279
$C9FA
#$11
$83
SDOEB
$D125
$SC9CE
$CAS3
#$08
S$F8
$C9D8

$CF9B
SCA35
#$80

SDDA6
$C9D5
$D125
$CY9EA
SCF9B
$0279

$0278
$C9B9
#$12
$83
$DB02

$0279
SE2,X
#$01

138

no
64, 'file type mismatch’

18
secondary address

prepare append

copy file
done

copy file

done

drive no. of first file
drive number

enter file 1in directory

17

get data type
no rel-file?

write byte in buffer
and get byte

test bit 7

not set?

check file type
rel-file?

get data byte in buffer

18

close channel

drive number

Anatomy of the 1541 Disk Drive

CA01 85 7F STA $7F save

CA03 AD 85 FE LDA $FE85 18, directory track
CA06 85 80 STA $80 save

CA08 BS D8 LDA $D8,X directory sector
CAQA 85 81 STA $81

CAOC 20 75 D4 JSR $D475 read block

CAOF AE 79 02 LDX $0279

Cal2 BS DD LDA $DD,X pointer in block
CAl4 20 C8 D4 JSR $D4C8 set buffer pointer
CAl7 AE 79 02 LDX $0279

CAlA B5 E7 LDA $E7,X file type

CalC 29 07 AND #$07 1solate

CAlE 8D 4A 02 STA $024A and save

CA21 A9 00 LDA #$00

Ca23 8D 58 02 STA $0258

CA26 20 A0 D9 JSR $DYAO get parameters for rel-file
CA29 A0 01 LDY #$01

CA2B 20 25 D1 JSR $D125 get file type

CA2E F0 01 BEQ S$CA3l rel-file?

CA30 c8 INY

CA31 98 TYA

CA32 4C C8 D4 JMP SDACS8 set buffer pointer
CA35 A9 11 LDA #$11 17

CA37 85 83 STA $83

CA39 20 9B D3 JSR $D39B open channel and get byte
Ca3C 85 85 STA $85

CA3E A6 82 LDX $82 channel number
CA40 BS F2 LDA $F2,X

CA42 29 08 AND #$08 1solate end marker
Ca44 85 F8 STA $F8

CA46 DO 0A BNE S$CAS52 not set?

CA48 20 25 D1 JSR $D125 get data type

CA4B F0 05 BEQ $CA52 rel-file?

CA4D A9 80 LDA #$S80

CA4F 20 97 DD JSR $DD97 set bit 7

CA52 60 RTS

CAS3 20 D3 D1 JSR $D1D3 set drive number
CAS56 20 CB El JSR SEICB

CAS59 A5 D6 LDA $D6

CAS5B 48 PHA

CAsC A5 D5 LDA $D5

CASE 48 PHA

CASF A9 12 LDA #$12 18

Ca61 85 83 STA $83

CA63 20 07 D1 JSR $D107 open write channel
CA66 20 D3 D1 JSR $D1D3 set drive number

CA69 20 CB El JSR SEICB
CA6C 20 9C E2 JSR SE29C

CA6F A5 D6 LDA $D6
CA71 85 87 STA $87
CA73 A5 D5 LDA $DS
CA75 85 86 STA $86
CA77 A9 00 LDA #$00
CA79 85 88 STA $88

139

Anatomy of the 1541 Disk Drive

CA7B 85 D4 STA $D4
CA7D 85 D7 STA $D7
CA7F 68 PLA

CA80 85 D5 STA $DS
CA82 68 PLA

CAB83 85 D6 STA $D6
CA8S 4C 3B E3 JMP $E33B

e de dr de ok ke e ke ok ke e ke K ok ok ke ok ok Kok e ok ke ok ok ok

CA88 20 20 C3 JSR $C320
CA8B A5 E3 LDA SE3
CA8D 29 01 AND #$01
CABF 85 E3 STA $E3
CA91 C5 E2 CMP S$E2
CA93 FO 02 BEQ S$SCA97
Ca95 09 80 ORA #$80
CA97 85 E2 STA $SE2
CA99 20 AF Ca JSR $CA4F
CaA9C 20 E7 CA JSR $CAE7
CA9F A5 E3 LDA SE3
CAAl 29 01 AND #$01
CAA3 85 7F STA STF
CAAS A5 D9 LDA $D9
CAA7 85 81 STA $81
CAA9 20 57 DE JSR SDE57
CAAC 20 99 D5 JSR $D599
CAAF AS DE LDA $DE
CaBl 18 CLC

CAB2 69 03 ADC #$03
CAB4 20 C8 D4 JSR $D4C8
CAB7 20 93 DF JSR $DF93
CABA A8 TAY

CARB AE 7A 02 LDX $027A
CABE A9 10 LDA #$10
CACO 20 6E C6 JSR $C66E
CAC3 20 SE DE JSR $DESE
CAC6 20 99 DS JSR $D599
CAC9 4C 94 C1 JMP $C194
kkhkkhkkkkkhkhkhkdhkhkhhkhkhkkkkkhkkhkkd
CACC AS E8 LDA SES8
CACE 29 07 AND #$07
CADO 8D 4A 02 STA $024A
CAD3 AE 78 02 LDX $0278
CAD6 CA DEX

CAD7 EC 77 02 CPX $0277
CADA 90 0A BCC SCAE6
CADC BD 80 02 LDA $0280,X
CADF DO FS BNE $CAD6
CAElL A9 62 LDA #$62
CAE3 AC C8 Cl1 JMP $ClcC8
CAE6 60 RTS

CAE7 20 CC CA JSR SCACC
CAEA 8D 80 02 LDA $0280,X

140

'rename’
from command line

R-command,
get draive no,

2nd drive number
compare with 1lst drive number
same?

search for file in directory
does name exist?

drive number

sector number

read block from directory
ok?

pointer to directory entry

pointer plus 3 to file name
set buffer pointer
get buffer number

16 characters

write name in buffer
write block to directory
ok?

done, prepare disk status

check if file present
file type

save

track number
not zero?

62, 'file not found'

does file exist with old neme?
track number of new file

CAED FO 05 BEQ $SCAF4
CAEF A9 63 LDA #$63
CAFl 4C C8 C1 JMP $C1C8
CAF4 CA DEX

CAFS 10 F3 BPL $CAEA
CAF7 60 RTS
Khkkhkdhkkhkkrhhkhhkhkhkkrhhhhkhkhdhk
CAF8 AD 01 02 LDA $0201
CAFB C9 2D CMP #$2D
CAFD D0 4C BNE $CB4B
CAFF AD 03 02 LDA $0203
CB02 85 6F STA $6F
CBO4 AD 04 02 LDA $0204
CBO7 85 70 STA $70
CB09 A0 00 LDY #$00
CBOB AD 02 02 LDA $0202
CBOE Cc9 52 CMP #852
CB10 FO OE BEQ $CB20
CB12 20 58 F2 JSR $F258
CB15 c9 57 CMP #$57
CB17 FO 37 BEQ $CB50
CB19 C9 45 CMP #$45
CB1B D0 2E BNE $CB4B
CB1D 6C 6F 00 JMP (S$006F)
Khkhhkkhkhkhkhhhbkhhhhhkhhhkkdkdkkkk
CB20 Bl 6F LDA ($6F),¥
CB22 85 85 STA $85
CB24 AD 74 02 LDA $0274
CB27 C9 06 CMP #$06
CB29 90 1A BCC $CB45
CB2B AE 05 02 LDX $0205
CB2E ca DEX

CB2F FO 14 BEQ S$CR45
CB31 8A TXA

CB32 18 CLC

CB33 65 6F ADC $6F
CB35 E6 6F INC $6F
CB37 8D 49 02 STA $0249
CB3A A5 6F LDA $6F
CB3C 85 A5 STA $AS
CB3E A5 70 LDA $70
CB40 85 A6 STA $A6
CB42 4C 43 p4 JMP $D443
CB45 20 EB DO JSR $DOEB
CB48 4C 3A D4 JMP $D43A
CB4B A9 31 LDA #$31
CB4D 4C C8 C1 JMP $C1cC8
khkkhhRhkkhAhhhkhkhkhhhhhkkhkhhkhhkhk
CB50 B9 06 02 LDA $0206,Y
CB53 91 6F STA ($6F),Y

Anatomy of the 1541 Disk Drive

file erased?

63, 'file exists’

M-command, 'memory’

2nd character from buffer
1] 1]

address 1n $6F/S$70

3rd character from buffer
IRI

to memory read

(RTS)

lwl

to memory write

lEl

memory-execute

M-R, ‘'Memory-Read’
read byte

length of command line
less than 6?2

yes

number

only one byte?
number of bytes

plus start address
end polnter

buffer pointer for error message
set to start address for 'M-R'

byte out

open read channel
byte out

31, 'syntax error'
M-W, 'memory-write'

read character
and save

141

Anatomy of the 1541 Disk Drive

CB55 cs8 INY

CB56 CC 05 02 CPY $0205
CB59 90 F5 BCC $CB50
CBSB 60 RTS
fhhkhkhkkkhhhhdhhhkhhhkhhhkhhdhhkihdhk
CB5C AC 01 02 LDY $0201
CBSF CO 30 CPY #$30
CB61 D0 09 BNE $CB6C
CB63 A9 EA LDA #SEA
CB65 85 6B STA $6B
CB67 A9 FF LDA #SFF
CB69 85 6C STA $6C
CB6B 60 RTS

CB6C 20 72 CB JSR S$CB72
CB6F 4C 94 C1 JMP $C194
CB72 88 DEY

CB73 98 TYA

CB74 29 OF AND #$OF
CB76 0a ASL A

CB77 A8 TAY

CB78 Bl 6B LDA (S$6B),Y
CB7A 85 75 STA $75
c87C cs INY

CB7D Bl 6B LbA ($6B),Y
CB7F 85 76 STA $76
CB81 6C 75 00 JMP ($0075)
kkkhkhhkhhhkkkhhhhkkhkkhkhhhkkkkhhkdk
CB84 AD 8E 02 LDA $028E
CcB87 85 7F STA $7F
CB89 AS 83 LDA $83
CB8B 48 PHA

CB8C 20 3D C6 JSR $C63D
CB8F 68 PLA

CB90 85 83 STA $83
CB92 AE 74 02 LDX $0274
CB95 CA DEX

CB96 D0 0D BNE $CBAS
CR98 A9 01 LDA #$01
CB9A 20 E2 D1 JSR $D1E2
CB9D 4C F1 CB JMP $CBF1
CBAQ A9 70 LDA #$70
CBA2 4C €8 C1 JMP $C1C8
CBAS A0 01 LDY #$01
CBA7 20 7C CC JSR $CC7C
CBAA AE 85 02 LDX $0285
CBAD EO 05 CPX #S05
CBAF B0 EF BCS S$CBAO
CBB1 A9 00 LDA #$00
CBR3 85 6F STA S6F
CBBS 85 70 STA S$70

142

number of characters
all characters?

U-command, 'user'
second char

Iol

no

ptr to table of user-addresses

SFFEA

done, prepare error message

number
times 2

as polnter in table

address at $75/876

execute function

open direct access channel,
last drive number

drive number

channel number

cneck drive and initialize

length of filename
greater than one?

layout buffer and channel
set flags, done

70, 'no channel'’

get buffer number

buffer number

bigger than 572
70, 'no channel'

Anatomy of the 1541 Disk Drive

CBR7 38 SEC

CBBS 26 6F ROL S6F
CBBA 26 70 ROL $70
CBBC CA DEX

CBBD 10 F9 BPL SCBB8
CBBF A5 6F LDA $6F
CBC1 2D 4F 02 AND $024F
CBC4 DO DA BNE $CBAO
CBC6 A5 70 LDA $70
CBC8 2D 50 02 AND $0250
CBCB D0 D3 BNE $CBAQ
CBCD A5 6F LDA $6F

CBCF 0D 4F 02 ORA $024F
CBD2 8D 4F 02 STA $024F
CBD5S A5 70 LDA $70

CBD7 0D 50 02 ORA $0250
CBDA 8D 50 02 STA $0250

CBDD A9 00 LDA #$00

CBDF 20 E2 D1 JSR $D1E2 search channel
CBE2 A6 82 LDX $82 channel number
CBE4 AD 85 02 LDA $0285 buffer number
CBE7 95 A7 STA $A7,X

CBE9 AA TAX

CBEA A5 7F LbA S$TF drive number

CBEC 95 00 STA $00,X

CBEE 9D 5B 02 STA $025B,X

CBF1 A6 83 LDX $83 secondary address
CBF3 BD 2B 02 LDA $022B,X

CBF6 09 40 ORA #$40 set READ and WRITE flags
CBF8 9D 2B 02 STA $022B,X

CBFB A4 82 LDY $82 channel number
CBFD A9 FF LDA #SFF

CBFF 99 44 02 STA $0244,Y end pointer

CC02 A9 89 LDA #$89

CC04 99 F2 00 STA $00F2,Y set READ and WRITE flags
CCo7 B9 A7 00 LDA SO00A7,Y buffer number
CCoAa 99 3E 02 STA $023E,Y

CCOD 0a ASL A times 2

CCOE AA TAX

CCOF A9 01 LDA #5801

CCll1 95 99 STA $99,X buffer pointer to one
CCl13 A9 OE LDA #S$SOE

CC15 99 EC 00 STA S$00EC,Y flag for direct access
CC18 4C 94 C1 JMP $C194 done
dkddhhkhdhkkhkhkkhkhhhdhhkdhdkkkhdhdkki B—Command, IBlockl
CC1B A0 00 LDY #$00

CClb a0 00 LDX #$00

CC1lF A9 2P LDA #$2D t-t

cc21 20 68 C2 JSR $C268 search for minus sign
CC24 DO OA BNE $CC30 found?

CC26 a9 31 LDA #$31

ccas 4C C8 Cl1 JMP $ClcC8 31, 'syntax error'

143

Anatomy of the 1541 Disk Drive

CC2B A9 30 LDA #$30
CC2b 4C C8 Cl JMP $Cl1C8
cc30 8A TXA

CC31 D0 F8 BNE $CC2B
CC33 A2 05 LDX #8805
CC35 B9 00 02 LDA $0200,Y
CC38 bb 5D CC CMP $CC5D,X
CC3B F0 05 BEQ $CC42
CC3D Ca DEX

CC3E 10 F8 BPL $CC38
CC40 30 E4 BMI $CC26
CC42 8A TXA

CC43 09 80 ORA #$80
CC45 8D 2A 02 STA $022A
CC48 20 6F CC JSR SCC6F
CC4B AD 2A 02 LDA $022A
CC4E 0A ASL A

CC4F AA TAX

CC50 BD 64 CC LDA $CC64,X
CC53 85 70 STA $70
CC55 BD 63 CC LDA SCC63,X
CC58 85 6F STA $6F
CC5A 6C 6F 00 JMP (SO006F)
IR R T T T T T ey
CC5D 41 46 52 57 45 50
dkdkkhkk ke kkkkhhkkkhkhkhkhkhk ko
CC63 03 Cp

CC65 F5 CC

CCé67 56 CD

CC69 73 Cb

CCéB A3 CD

CCéD BD CD

Kk kkkk kR RRARKRRAR Rk hkhhkhrkx
CC6F AQ 00 LDY #8800
CCc71 A2 00 LDX #$00
CC73 A9 3A LDA #S$3A
CC75 20 68 C2 JSR $C268
CC78 D0 02 BNE $CC7C
CC7A AQ 03 LDY #3503
ccic B9 00 02 LDA $0200,Y
CC7F c9 20 CMP #$20
ccsl FO 08 BEQ $CC8B
CCc83 Cc9 1p CMP #S1D
CcC85 FO 04 BEQ $CC8B
cecs?7 Cc9 2C CMP #S$2C
cCc89 Do 07 BNE $CC92
CCc8B c8 INY

cesc CcC 74 02 CPY $0274
CC8F 90 EB BCC $CC7C
Cccal 60 RTS

144

30, 'syntax error'

comma, then error

char from buffer
compare with 'AFRWEP'
found?

compare with all characters
not found, error

command number, set bit 7
get parameters

number times 2
as index
address of command hi

address lo
jump to command

names of the various block cmds
' AFRWEP'

addresses of block commands
$Cp03, B-A
$CCFS, B-F
$CD56, B-R
$CDh73, B=-W
SCDA3, B-E
$CDBD, B-P

get parameters for block commands

1,0

test line to colon

found?

no, begin at 4th character
search for separating char
' ' blank

cursor right

',' comma

line end?

Anatomy of the 1541 Disk Drive

CC92 20 Al CC JSR $CCAl preserve next parameter
CC95 EE 77 02 INC 80277 increment parameter counter
ccos AC 79 02 LDY $0279

CC9B EO 04 CPX #504 compare with maximum number
CC9p 90 EC BCC $CC8B

CCOF BO 8A BCS $CC2B 30, 'syntax error'

CCAl A9 00 LDA #$00

CCa3 85 6F STA $6F

CCAS 85 70 STA $70 erase storage area for decimal #s
CCA7 85 72 STA $72

CCA9 A2 FF LDX #SFF

CCAB B9 00 02 LbA $0200,Y get characters from input buffer
CCAE C9 40 CMP #$40

CCBO BO 18 BCS $CCCA no digits?

CCB2 Cc9 30 CMP #S30 ‘o’

CCB4 90 14 BCC $CCCA no digits?

CCB6 29 OF AND #S$SOF convert ASCII digits to hex
CCB8 48 PHA and save

CCB9 A5 70 LDA $70

CCBB 85 71 STA $71 move digits one further
CCBD A4 6F LDA $6F

CCBF 85 70 STA $70

CCCl1 68 PLA

CCC2 85 6F STA $6F note read number

CCC4 cs INY increment pointer in input buffer
CCCS CC 74 02 CPY $0274 line end reached

cce? 90 E1l BCC $CCAB no

ccea 8C 79 02 STY $0279 save pointer

CCcp 18 CLC

CCCE A9 00 LDA #$00

CCDb0 E8 INX

CCpl E0 03 CPX #S03

CcCDp3 BO OF BCS $CCE4 convert hex digits to one byte
CCD5 B4 6F LDY $6F,X

CCD7 88 DEY

CCD8 30 F6 BMI $CCDO

CCDA 7D F2 CC ADC $CCF2,X add decimal value

CCpbb 90 F8 BCC $CCD7

CCDF 18 CLC

CCEOQ E6 72 INC $72

CCE2 DO F3 BNE $CCD7

CCE4 48 PHA

CCES AE 77 02 LDX $0277 counter for parameters

CCES8 A5 72 LDA S72

CCEA 9p 80 02 STA $0280,X hi-byte

CCED 68 PLA

CCEE 9D 85 02 STA $0285,X lo-byte

CCF1 60 RTS

dedededede g dedededkddedo bk d dokdkhdkokkdhkk decimal VaerS

CCF2 01 OA 64 1, 10, 100
khkkhhdkhdhhkdhkhhhkhkhdhhhkhdhhkhdkkdkk B-F command, 'Block—Free'
CCF5 20 F5 CD JSR S$CDF5 get track, sector and drive no.
CCF8 20 5F EF JSR SEF5F free block

145

Anatomy of the 1541 Disk Drive

CCFB 4C 94 C1 JMP $C194
kkkkkk ke khkhkhhhhhhhkhhhhhkhhhs
CCFE A9 01 LDA #$01
CD00 8D F9 02 STA $02F9
dkdkkkkkkkkkkkkkkkkhhkkhhhkhkhd
CDO03 20 F5 CD JSR $CDF5
CD06 A5 81 LDA $81
CD08 48 PHA

Cb09 20 FA F1 JSR SF1FA
cpocC FO OB BEQ $CD19
CDOE 68 PLA

CDOF C5 81 CMP $81
Ch1l1 D0 19 BNE $CD2C
CD13 20 90 EF JSR SEF90
CD16 4C 94 C1 JMP $C194
Cp19 68 PLA

CD1A A9 00 LDA #800
CplC 85 81 STA $81
CD1E E6 80 INC $80
Cb20 A5 80 LDA $80
CD22 CDh D7 FE CMP SFED7
CD25 BO 0A BCS $CD31
CD27 20 FA Fl1 JSR SF1FA
CD2A FO EE BEO SCD1A
cp2C A9 65 LDA #S$65
CD2E 20 45 E6 JSR $E645
CD31 A9 65 LDA #$65
CD33 20 C8 Cl JSR $C1C8

de e Jo de de de de de dede de de dede dode dode ke e ode ke ok ko ok kde ke kK

CD36 20 F2 CD JSR $CDF2
CD39 4C 60 D4 JMP $D460

dc de o de g de K KKk d Jo de g do de de do de de e K dededkode g kodok ok

CD3C 20 2F D1 JSR S$D12F
CD3F Al 99 LDA ($99,X)
Cp41l 60 RTS

kkkhdkddkhhdhhhkhkhkdhkdhhhdkhkhdkkkdkk

CD42 20 36 CD JSR $CD36
CD45 A9 00 LDA #5800
CD47 20 C8 D4 JSR $D4C8
CD4A 20 3C Cp JSR $CD3C
CD4D 99 44 02 STA $0244,Y
Cb50 A9 89 LDA $89
CD52 99 F2 00 STA SQ00F2,Y
CD55 60 RTS

de de Jo Je de o g d de o de Kk de ek g ke d ke dek dde ko kk K

CD56 20 42 CD JSR $CD42
CD59 20 EC D3 JSR $D3EC
CD5C 4C 94 C1 JMP $C194

146

done, prepare error message

B-A command, 'Block-Allocate'
get track, sector and drive no.
sector

save

find block in BAM

block allocated?

desired sector

= next free sector?

no

allocate block in BAM

done

sector 0

next track

track number

36, last track number + 1

>=, then 'no block'

find free block in next track
not found, check next track
65,

'no block' next free block

65,'no block' no more free blocks

open channel, set parameters
read block from disk

get byte from buffer
set pointer to buffer
get byte

read block from disk
open channel, read block

set buffer pointer to zero
get a byte from the buffer

set read and write flag

B-R command, ‘Block-Read'
read block from disk
prepare byte from pbuffer
prepare error message

Anatomy of the 1541 Disk Drive

dkdkkdkdkhhkhkhhkdhkkdhhhhhdhkkkkk Ul command, sub. for 'BloCK-Read'
CD5F 20 6F CC JSR SCC6F get parameters of the command
Cp62 20 42 CD JSR $CD42 read block from disk

CDb65S B9 44 02 LDA $0244,Y end pointer

CD68 99 3E 02 STA $023E,Y save as data byte

CDh6B A9 FF LDA #SFF

Cbé6D 99 44 02 STA $0244,Y end pointer to $FF

CD70 4C 94 Cl1 JMP $C194 done, prepare error message
khkkkkhkkhhhhhkhhkkhhhhhhhdkhhkr ik B~-W Cornmand, lBlock_writel
CD73 20 F2 CD JSR SCDF2 open channel

CD76 20 E8 D4 JSR SD4ES set buffer pointer

Cb79 A8 TAY

CD7Aa 88 DEY

CD78B c9 02 CMP #502 buffer pointer lo less than 2?
CD7D B0 02 BCS $CD81 no

CD7F A0 01 LDY #$01

Cp8l A9 00 LDA #$00

CD83 20 C8 D4 JSR $D4C8 buffer pointer to zero

CD86 98 TYA

cp87 20 F1 CF JSR S$CFF1 write byte in buffer

CD8A 8A TXA

CD8B 48 PHA

Ccp8cC 20 64 D4 JSR $D464 write block to disk

CD8F 68 PLA

CD90 AA TAX

Cb91 20 EE D3 JSR $D3EE get byte from buffer

CD94 4C 94 Cl JMP $C194 done, error message
****************************** U2, Sub for lBlOCk-wrlte'
CD97 20 6F CC JSR SCC6F get command parameters

Cp9Aa 20 F2 CD JSR $CDF2 open channel

CD9D 20 64 D4 JSR $D464 and write block to disk
CDAO 4C 94 C1 JMP $C194 done
khkkkkhkhkhhhhhkhhkhhhkhkdkhhkhdhk lB_El command, IBlock_Executel
CDA3 20 58 F2 JSR $F258 (RTS)

CDA6 20 36 CD JSR $CD36 open channel and read block
CDA9 A9 00 LDA #S00

CDAB 85 6F STA $6F address low

CDAD A6 F9 LDX $F9 buffer number

CDAF BD EQ FE LDA S$FEEO,X buffer address high
CDB2 85 70 STA $70

CDhB4 20 BA CD JSR $CDBA execute routine

CDR7 4C 94 C1 JMP $C194 done

CDBA 6C 6F 00 JMP (S$006F) jump to routine
****************************** lB_Pl command, 'Block-Pointerl
CbBD 20 p2 Cp JSR $CDD2 open channel, get buffer number
CbCo AS F9 LDA SF9 buffer number

CDC2 (07 ASL A * 2

CDC3 AA TAX as 1ndex

CbC4 AD 86 02 LDA $0286 pointer value

CDC7 95 99 STA $99,X save as buffer pointer

147

Anatomy of the 1541 bisk Drive

CDC9 20 2F D1 JSR $D12F
cbce 20 EE D3 JSR $D3EE
CDCF 4C 94 C1 JMP $C194
khhkhkhkhhkhkhkhkrkhhhhhhkhkhkhkhhhhhkhhhk
CDbD2 A6 D3 LDX $D3
CDbb4 E6 D3 INC $D3
CDD6 BD 85 02 LDA $0285,X
Cbp9 A8 TAY

CDDA 88 DEY

CDDB 88 DEY

chbC Cco ocC CPY #$0C
CDDE 90 05 BCC $CDE5
CDEQ A9 70 LDA #$70
CDE2 4C C8 Cl JMP $C1C8
CDE5 85 83 STA $83
CDE7 20 EB DO JSR $DOEB
CDEA B0 F4 BCS SCDEO
CDEC 20 93 DF JSR $DF93
CDEF 85 F9 STA $F9
CDF1 60 RTS

khkhkhkkhkkkhkhhhhhkhhhhkhhkkkhhdhkk

CDF2 20 b2 CO JSR $CDD2
CDF5S A6 D3 LDX $D3
CDF7 BD 85 02 LDA $0285,X
CDFA 29 01 AND #$01
CDFC 85 7F STA STF
CDFE BD 87 02 LDA $0287,X
CEO01 85 81 STA $81
CEO3 BD 86 02 LDA $0286,X
CE06 85 80 STA $80
CEO8 20 5F D5 JSR S$DS5F
CEOB 4C 00 Cl JMP $C100

khkkkkkkhhhhhhkhhkhhhhkhhhhhhk

CEQOE 20 2C CE JSR $CE2C
CEll 20 6E CE JSR SCE6E
CEl4 A5 90 LDA $90
CEl6 85 D7 STA $D7
CE1l8 20 71 CE JSR $CE71
CE1B E6 D7 INC $D7
CE1D E6 D7 INC $D7
CELlF AS 8B LDA $8B
CE21 85 D5 STA $D5
CE23 A5 90 LbAa $90
CE25 0A ASL A
CE26 18 CLC

CE27 69 10 ADC #$10
CE29 85 D6 STA $Dé
CE2B 60 RTS

KRARKARKKKRKRARRR KR AR Rk Kk kkkkk
CE2C 20 D9 CE JSR SCED9

148

prepare a byte in buffer
for output
done

open channel

buffer number

buffer number smaller than 142
yes
70, 'no channel'
secondary address
open channel
already allocated,70 "no channe
buffer number X
set

check buffer no.
channel number
buffer address

and open channg

drive number
sector

track
track and sector ok?
turn LED on

set pointer for rel-file
record number * record length
divide by 254

remainder = polnter 1n data blo
data pointer
divide by 120 = side-sector #
data ptr + 2 (track/sector ptr!|
result of division

equals side-sector number
remainder

times 2

plus 16
=ptr in side-sector to data blo

erase work storage

Anatomy of the 1541 Disk Drive

CE2F 85 92 STA $92
CE31 A6 82 LDX $82
CE33 B5 B5 LDA $BS,X
CE35 85 90 STA $90
CE37 B5 BB LDA $BB,X
CE39 85 91 STA $91
CE3B D0 04 BNE $CE41
CE3D A5 90 LDA $90
CE3F FO 0B BEQ SCE4C
CE41 A5 90 LDA $90
CE43 38 SEC

CE44 E9 01 SBC #801
CE46 85 90 STA $90
CE48 BO 02 BCS SCE4C
CE4A Cé6 91 DEC $91
CE4C BS C7 LDA $C7,X
CE4E 85 6F STA S$6F
CESO 46 6F LSR $6F
CES2 90 03 BCC SCES7
CE54 20 ED CE JSR $CEED
CE57 20 E5 CE JSR SCEE5
CESA A5 6F LDA $6F
CE5C D0 F2 BNE $CE50
CESE A5 D4 LDA $D4
CE60 18 CLC

CE61 65 8B ASC $8B
CE63 85 8B STA $8B
CE65 90 06 BCC $CE6D
CE67 E6 8C INC $8C
CE69 D0 02 BNE S$DE6D
CE6B E6 8D INC $8D
CE6D 60 RTS
Kdkddkodkhdodeskd kdede kdeddhhdkodkhkdhdkokkKk
CE6E A9 FE LDA #SFE
CE70 2C .BYTE $2C
LA AR RS RS EREE R EE R B R
CE71 A9 78 LDA #$78
CE73 85 6F STA S6F
CE7S A2 03 LDX #$03
CE77 BS 8F LDA $8F,X
CE79 48 PHA

CE7A B5 8A LDA $8A,X
CE7C 95 8F STA $8F,X
CE7E 68 PLA

CE7F 95 8A STA $8A,X
CE81 ca DEX

CE82 D0 F3 BNE SCE77
CEB4 20 D9 CE JSR $CED9
CE87 A2 00 LDX #$00
CE89 B5 90 LDA $90,X
CE8B 95 8F STA S$8F,X
CE8D ES INX

CEBE EO 04 CPX #$04

149

channel number
record number lo

record number hi

record number not zero?

then subtract one

record length

record number * record length

shift register left

result in $8B/$8C/$8D

divide by 254, calculate block #
254

divide by 120, calculate
side-sector number
divisor

erase work storage

Anatomy of the 1541 Disk Drive

CE90 90 F7 BCC SCE89
CE92 A9 00 LDA #$00
CE94 85 92 STA $92
CE96 24 6F BIT S$6F
CE98 30 09 BMI $CEA3
CE9A 06 8F ASL $8F
CE9C 08 PHP

CE9D 46 8F LSR $8F
CE9F 28 PLP

CEAQ 20 E6 CE JSR $CEE6
CEA3 20 ED CE JSR $CEED
CEA6 20 E5 CE JSR $CEES5
CEA9 24 6F BIT $6F
CEAB 30 03 BMI SCEBO
CEAD 20 E2 CE JSR $CEE2
CEBO A5 8F LDA $8F
CEB2 18 CLC

CEB3 65 90 ADC $90
CEB5 85 90 STA $90
CER7 90 06 BCC S$CEBF
CEB9 E6 91 INC $91
CEBB DO 02 BNE S$CEBF
CEBD E6 92 INC $92
CEBF A5 92 LDbA $92
CEC1 05 91 ORA $91
CEC3 p0 C2 BNE $CE87
CEC5 A5 90 LDA $90
CEC7 38 SEC

CEC8 ES 6F SBC $6F
CECA 90 0C BCC S$CED8
CECC E6 8B INC $8R
CECE D0 06 BNE $CED6
CEDO E6 8C INC $8C
CED2 D0 02 BNE $CED6
CED4 85 90 STA $90
CEDS8 60 RTS
khdkhkhhhhhkhhhhhhhkkhkhhhkhkhkhhkdk
CED9 A9 00 LDA #$00
CEDB 85 8B STA $8B
CEDD 85 8C STA $8C
CEDF 85 8D STA $8D
CEE1 60 RTS
hhkhkhkkhkhkhkhkhkdhkdkdkhkhkhkhhhkhhkdhdhdhkkkhkk
CEE2 20 E5 CE JSR $CEE5
do ok Je Je e J de de de Je de de ok ke g g de e de ok e de de ok ke ko ke Ok
CEES5 18 CLC

CEE®6 29 90 ROL $90
CEES 26 91 ROL $91
CEEA 26 92 ROL $92
CEEC 60 RTS

kkdkkhkhkhkhdkhhhkhkhhk ke xkhkkkkxkxx

150

shift register 1 left
add register 0 to register 1
shift register 1 left

left-shift register 1 twice

quotient in $8B/$8C/$S8D

remainder in $90

erase work storage

left-shift 3-byte register twic

left-shift 3-byte register once

Anatomy of the 1541 Disk Drive

CEED 18 CLC

CEEE A2 FD LDX #SFD

CEFO BS 8E LDA $8E,X register $90/$91/$92
CEF2 75 93 ADC $93,X add to register $8B/$8C/$8D
CEF4 95 8E STA $8E,X

CEF6 E8 INX

CEF7 DO F7 BNE S$CEFQ

CEF9 60 RTS

CEFA A2 00 LDX #S00

CEFC 8A TXA

CEFD 95 FA STA $FA,X

CEFF E8 INX

CF00 EO 04 CPX #$04

CF02 DO F8 BNE S$CEFC

CF04 A9 06 LDA #$06

CF06 95 FA STA S$FA,X

CF08 60 RTS

CF09 A0 04 LDY #$04

CFOB A6 82 LDX $82 channel number
CFOD B9 FA 00 LDA SO0OFA,Y

CF10 96 FA STX SFA,Y

CF12 C5 82 CMP $82 channel number
CFl4 FO 07 BEQ S$CF1D

CF1l6 88 DEY

Cr17 30 El BMI SCEFA

CF19 AA TAX

CFlA 4C 0D CF JMP S$CFOD

CF1D 60 RTS

CF1E 20 09 CF JSR SCF09
CF21 20 B7 DF JSR $DFB7

CF24 DO 46 BNE S$CF6C

CK26 20 D3 D1 JSR $D1D3 set drive number

CF29 20 8E D2 JSR $D28E

CF2C 30 48 BMI S$CF76

CF2E 20 C2 DF JSR $DFC2

CF31 A5 80 LDA $80 track

CF33 48 PHA

CF34 A5 81 LDA $81 sector

CF36 48 PHA

CF37 A9 01 LDA #$01

CF39 20 F6 D4 JSR $D4F6 get byte 1 from buffer
CF3C 85 81 STA $81 sector

CF3E A9 00 LDA #$00

CF40 20 F6 D4 JSR $D4F6 get byte 0 from buffer
CF43 85 80 STA $80 track

CF45 FO 1F BEQ SCF66

CF47 20 25 DI JSR SD125 check file type

CF4A FO OB BEQ $CF57 rel-file?

CF4C 20 AB DD JSR $DDAR

CF4F D0 06 BNE S$CF57

CF51 20 8C CF JSR $CF8C
CF54 4C 5D CF JMP SCF5D

151

Anatomy of the 1541 Disk Drive

$CF8C
$DES7

$81

$80
SCF6F

$81

$80
$CF8C
$DF93

$D599

#570
$cics

$CF09
$SDFB7
SCF8B
$D28E
SCF76
$DFC2

$82
SA7,X
#$80
SA7,X
SAE,X
#$80
SAE,X

#$12
$83
$D107
$C100
$D125
S$CFAF
#$20
$DD9D
$83
#SOF
SCFD8
SCFBF

$84

CF57 20 8C CF JSR
CFSA 20 57 DE JSR
CFSD 68 PLA
CF5E 85 81 STA
CF60 68 PLA
CF61 85 80 STA
CF63 4C 6F CF JMP
CF66 68 PLA
CF67 85 81 STA
CF69 68 PLA
CF6A 85 80 STA
CF6C 20 8C CF JSR
CFé6F 20 93 DF JSR
CF72 AA TAX
CF73 4C 99 D5 JMP
CF76 A9 70 LDA
CF78 4C C8 Cl1 JMP
CF7B 20 09 CF JSR
CKF7E 20 B7 DF JSR
CF81 DO 08 BNE
CF83 20 BE D2 JSR
CF86 30 EE BMI
Crgs 20 C2 DF JSR
CF8B 60 RTS
Kk hkhkhkkde ek rkhRhkhkhkhkkkhhhkkk
CF8C A6 82 LDX
CFBE B5 A7 LDA
CF90 49 80 EOR
CF92 95 A7 STA
CF94 B5 AE LDA
CF96 49 80 EOR
CF98 95 AE STA
CF9A 60 RTS
ARk RARARKARKRRRRAR AKX RN NT N Rh k
CF9B A2 12 LDX
CF9D 86 83 STX
CFOF 20 07 D1 JSR
CFA2 20 00 C1 JSR
CFAS 20 25 D1 JSR
CFAS8 90 05 BRCC
CFAA A9 20 LDA
CFAC 20 9D DD JSR
CFAF AS 83 LDA
CFB1 c9 OF CMP
CFB3 FO 23 BEO
CFB5 DO 08 BNE
CFB7 A5 84 LDA
CFB9 29 BF AND

$S8F

152

get sector

and track number

get back sector

and track number

and verify

70, 'no channel'’

change buffer
channel number

rotate bit 7 in table

write data byte in buffer
channel 18

open write channel
turn LED on

check file type

no rel-file

change buffer
secondary address
152

yes

no

secondary address

CFBB Cc9 OF CMP #SOF
CFBD B0 19 BCS $CFD8
CFBF 20 25 D1 JSR $D125
CFC2 B0 05 BCS $CFC9
CFC4 AS 85 LDA $85
CFC6 4C 9D D1 JMP $D19D
CFC9 DO 03 BNE SCFCE
CFCB 4C AB EO JMP SEOAB
CFCE A5 85 LDA $85
CFDO 20 F1 CF JSR $CFF1
CFD3 A4 82 LDY $82
CFD5 4C EE D3 JMP $D3EE
CFD8 A9 04 LDA #$04
CFDA 85 82 STA $82
CFDC 20 E8 D4 JSR $DAES
CFDF Cc9 2A CMP #$2A
CFEl FO 05 BEQ $CFES8
CFE3 A5 85 LDA $85
CFES 20 F1 CF JSR $CFF1
CFES8 AS F8 LDA $F8
CFEA FO 01 BEQ SCFED
CFEC 60 RTS

CFED EE 55 02 INC $0255
CFF0 60 RTS

khkhkhhkhkhhhkkkhhhhkkkhkhhhhhkkkk

CFF1 48 PHA

CFF2 20 93 DF JSR $DF93
CFF5 10 06 BPL SCFFD
CFF? 68 PLA

CFF8 A9 61 LDA #$61
CFFA 4C C8 C1 JMP $C1C8
CFFD 0A ASL A

CFFE AA TAX

CFFF 68 PLA

D000 81 99 STA (S899,X)
D002 Fé6 99 INC $99,X
D004 60 RTS
hkkkhhhkhhkhhhhkhhhhhhhkhhkhkxkx
D005 20 D1 C1 JSR $C1D1
D008 20 42 DO JSR $D042
DOOB 4C 94 C1 JMP $C194
Rkkhhhkkkhkkhhhkkhhhhkkkhkkkhx*
DOOE 20 OF Fl JSR S$F10F
D011 A8 TAY

D012 B6 A7 LDX SA7,Y
D014 EO FF CPX #SFF
D016 48 PHA

D019 20 8E D2 JSR $D28E

153

Anatomy of the 1541 Disk Drive

greater than 157

then input buffer

check file type

rel-file or direct access?
data byte

write in buffer

direct access file?
write data byte in rel-file

write data byte in buffer
channel number
prepare next byte for output

channel 4

corresponding input buffer
set buffer pointer

40

buffer end?

write data byte in buffer
end flag set?
yes

set command flag

write data byte in buffer
save data byte

get buffer number
associated buffer?

61, 'file not open'
buffer number times 2

as index

data byte

write in buffer
increment buffer pointer

I-command, Initialize
find drive number
load BAM

prepare disk status

Anatomy of the 1541 Disk Drive

DO1C AA TAX

DO1D A9 70 LDA #$70
D021 {720 48 E6 JSR $E648
D024 68 PLA

D025 A8 TAY

D026 8A TXA

D027 09 80 ORA #$80
D029 99 A7 00 STA $00A7,Y
D02C 8A TXA

D02D 29 OF AND #S$SOF

DO 2F 85 F9 STA $F9
D031 A2 00 LDA #$00
D033 86 81 STX $81
D035 AE 85 FE LDX S$FE85
D038 86 80 STX $80
DO3A 20 D3 D6 JSR $D6D3
DO3D A9 BO LDA #S$BO
DO3F 4C 8C D5 JMP $D58C
khkhkkhkhhkhkhkhkhhhhkhkhhhhhkhkhkhkkkkk
D042 20 D1 FO JSR $FOD1
D045 20 13 D3 JSR $D313
D048 20 0E DO JSR $DOOE
DO4B A6 TF LDX S$7F
D04D A9 00 LDA #$00
DO4F 9D 51 02 STA $0251,X
D052 8A TXA

D053 OA ASL A

D054 AA TAX

D055 AS 16 LDA $16
D057 95 12 STA $12,X
D059 A4 17 LDA $17
DO5B 95 13 STA $13,X
DO5SD 20 86 D5 JSR SD586
D060 A5 F9 LDA $F9
D062 0A ASL A

D063 AA TAX

D064 A9 02 LDA #$02
D066 95 99 STA $99,X
D068 Al 99 LDA ($99,X)
DO6A A6 TF LDX S$7F
DO6C 9D 01 01 STA $0101,X
DO6F A9 00 LDA #500
D071 95 1C STA S$1C,X
D073 95 FF STA S$FF,X
kkkkkhkkhkkkhkkhhhhkkhhkkhkkhhhkkhkk
D075 20 3A EF JSR $EF3A
D078 A0 04 LDY #$04
DO7A A9 00 LDA #$00
po7C AA TAX

DO7D 18 CLC

DO7E 71 6D ADC (S6D),Y
D080 90 01 BCC $D083
D082 E8 INX

154

70, 'no channel'

sector 0
18
track 18

transmit param to disk controller
command code 'read block header'
transmit to disk controller

load BAM

read block

drive number

reset flag for 'BAM changed'

save ID

buffer number

buffer pointer to $200
get character from buffer
drive number

flag for write protect
flag for read error
calculate blocks free

buffer address to S6D/S6E
begin at position 4

add no. of free blocks per track

X as hi-byte

Anatomy of the 1541 Disk Drive

D083 c8 INY

D084 C8 INY

D085 Cc8 INY

D086 (o] INY

D087 co 48° CPY #$48
D089 FO F8 BEOQ $D083
DO8B co0 90 CPY #$90
D08D DO EE BNE $D07D
DO8F 48 PHA

D090 8A TXA

D091 A6 7F LDX $7F
D093 9D FC 02 STA S02FC,X
D096 68 PLA

D097 9D FA 02 STA $02FA,X
DO9A 60 RTS
khkkkhkhkkkhkhkhhkkhkkkhkhkkkhkhkkkhkkhkkkk
DO9B 20 DO D6 JSR $D6DO
DO9E 20 C3 DO JSR $SDOC3
D0Al 20 99 D5 JSR $D599
D0A4 20 37 pl JSR $D137
DOA7 85 80 STA $80
DOA9 20 37 D1 JSR $D137
DOAC 85 81 STA $81
DOAE 60 RTS

DOAF 20 9B DO JSR $D0O9B
DOB2 A5 80 LDA $80
DOR4 DO 01 BNE SDOB7
DOB6 60 RTS

DOB7 20 1E CF JSR $CF1lE
DOBA 20 DO D6 JSR $D6D0
DOBD 20 C3 DO JSR $D0C3
DOCO 4C 1E CF JMP S$SCF1E
kkhkhkkkkhkhkhhkkkhkhkhkkhkkrkhkkkhhhkkk
D0OC3 A9 80 LDA #$80
DOCS DO 02 BNE $D0C9
kkkkkhkkkhkhkhkhkhkhhhhhkkkkhhkkhhk k&
DoC7 A9 90 LDA #$90
D0C9 8D 4D 02 STA $024D
DOCC 20 93 DF JSR SDF93
DOCF AA TAX

DODO 20 06 D5 JSR $D506
DOD3 8A TXA

DOD4 48 PHA

DOD5 0A ASL A
DOD6 AA TAX

DOD7 A9 00 LDA #$00
DOD9 95 99 STA $99,X
DODB 20 25 Dl JSR $D125
DODE Cc9 04 CMP #S04
DOEO BO 06 BCS SDOES
DOE2 F6 BS INC $B5,X

155

plus 4

track 18?2

then skip

last track number?
no

lo-byte

hi-byte

drive number
hi-pyte to $2FC
lo-byte

to $2FA

parameters to disk controller
read block

ok?

get byte from buffer

track

next byte from buffer

sector

track

change buffer

parameters to disk controller
read block

change buffer

read block
code for 'read'

write block

code for 'write'
save

get buffer number

get track/sector, read/write blk

buffer pointer times 2

pointer 1in buffer to zero
get file type

rel-file or direct access?
yes

Anatomy of the 1541 Disk Drive

DOE4 DO 02 BNE $DOEB increment block counter
DOE6 F6 BB INC $BB,X

DOE8 68 PLA

DOE9 AA TAX

DOEA 60 RTS
kkkkhkhkAkRRkhkhhkkhhhkkhhhkkhkhhhhhkx kk open channel for readlng
DOEB A5 83 LDA $83 secondary address
DOED c9 13 CMP #$13 19

DOEF 90 02 BCC $DOF3 smaller?

DOF1 29 OF AND #SOF

DOF3 c9 OF CMP #SOF

DOF5S D0 02 BNE S$SDOF9

DOF7 A9 10 LDA #$10 16

DOF9 AA TAX

DOFA 38 SEC

DOFB BD 2B 02 LDA $022R,X

DOFE 30 06 BMI $D106

D100 29 OF AND #SOF

D102 85 82 STA $82

D104 AA TAX

D105 18 CLC flag for ok

D106 60 RTS

REXAKKXRNRKXXKXXKNRRXRERR XXX hhkkhkdhk open cnannel for wrlting
D107 A4 83 LDA $83 secondary address
D109 c9 13 CMP #$13 19

D10B 90 02 BCC $DI1OF smaller?

D1OD 29 OF AND #SOF

D10F AA TAX

D110 BD 2B 02 LDA $022B,X channel number
D113 A8 TAY

D114 0A ASL A

D115 90 0A BCC $D121

D117 30 0A BMI $D123

D119 98 TYA

Dl1A 29 OF AND #SOF

Dl1cC 85 82 STA $82

D11E AA TAX

D11F 18 CLC flag for ok

D120 60 RTS

D121 30 F6 BMI $D119

D123 38 SEC flag for channel allocated
D124 60 RTS

KRXXXXXKKKXK K KA I KR KR KRRk XAX** check for file type 'REL'
D125 A6 82 LDX $82

D127 BS EC LDA SEC,X

D129 4A LSR &

Dl2A 29 07 AND #8507

Dl2C C9 04 CMP #504 'REL'?
D12E 60 RTS

khkhdkhkkhkdhAkkhkhhrhhkrhhkhkdkxkki get buffer and Channel numbers

156

$DF93
A

$82

$D12F

Anatomy of the 1541 Disk Drive

$0244,Y

$D151

($99,X)

$99,X

$0244,Y

$D14D
#SFF
$99,X

$99,X

($99,X)

$99,Y

$D137
$D191
$85

$0244,Y

$SD16A
#$80

$00F2,Y

$85

$CF1E
#$00
$D4C8
$D137
#$00
$D192
$80
$D137
$81
SCF1E
$D1D3
$D6DO
$DOC3
SCF1E
$85

$D137
$82

D12F 20 93 DF JSR
D132 0A ASL
D133 AA TAX
D134 A4 82 LDY
D136 60 RTS
Kk khkhhhhhhhhhkhhkhhhhhhhhhkkhk
D137 20 2F D1 JSR
D13A B9 44 02 LDA
D13D FO 12 BEO
D13F Al 99 LDA
D141 48 PHA
D142 B5 99 LDA
D144 D9 44 02 CMP
D147 DO 04 BNE
D149 A9 FF LDA
D14B 95 99 STA
D14D 68 PLA
D14E F6 99 INC
D150 60 RTS
D151 Al 99 LDA
D153 F6 99 INC
D155 60 RTS
Ahkkkhkhh Rk hkkhhhhhhhohhkhhkrhk
D156 20 37 D1 JSR
D159 DO 36 BNE
D15B 85 85 STA
D15D B9 44 02 LDA
D160 FO 08 BEQ
D162 A9 80 LDA
D164 99 F2 00 STA
D167 A5 85 LDA
D169 60 RTS
D16A 20 1E CF JSR
D16D A9 00 LDA
D16F 20 C8 D4 JSR
D172 20 37 D1 JSR
D175 c9 00 CMP
D177 FO 19 BEOD
D179 85 80 STA
D17B 20 37 D1 JSR
D17E 85 81 STA
D180 20 1E CF JSR
D183 20 D3 D1 JSR
D186 20 DO D6 JSR
D189 20 C3 DO JSR
D18C 20 lE CF JSR
D18F A5 85 LDA
D191 60 RTS
D192 20 37 D1 JSR
D195 A4 82 LDY
D197 99 44 02 STA

$0244,Y

157

get buffer number

get a byte from buffer
get buffer and channel number
end pointer

get byte from buffer

buffer pointer
equal end pointer?
no

buffer pointer to -1
data byte
increment buffer pointer

get character from buffer
increment buffer pointer

get byte and read next block
get byte from buffer

not last character?

save data byte

end pointer

yes

READ-flag
data byte

change buffer and read next block

set buffer pointer to zero
get first byte from buffer
track number zero

yes, then last block

save last track number

get next byte

save as following track
change buffer and read next block
save drive number

param to disk controller
transmit read command

change buffer and read block
get data byte

get next byte from buffer

save as end pointer

Anatomy of the 1541 Disk Drive

D19A A5 85 LDA $85
D18cC 60 RTS

Rk khkhkhkhhhhkhhhh Nk ok kkhkkk
D19D 20 F1 CF JSR SCFF1
D1A0O FO0 01 BEQ $D1A3
D1A2 60 RTS

D1A3 20 D3 D1 JSR $D1D3
D1A6 20 1E Fl JSR S$F11E
D1A9 A9 00 LDA #500
D1AB 20 C8 D4 JSR $DACS8
D1AE AS 80 LDA $80
D1BO 20 F1 CF JSR $CFF1
D1B3 A5 81 LDA $81
D1B5 20 F1 CF JSR $CFF1
D1B8 20 C7 DO JSR $DOC7
D1BB 20 1E CF JSR $CFlE
D1BE 20 DO D6 JSR $D6DO
D1C1 A9 02 LDA #S02
D1C3 4C C8 D4 JMP $D4C8

J de gk do gk d gk de K kK ek ok ok ok ko gk ok ok ok koK ok ok kR

D1C6 85 6F STA S6F

D1cC8 20 E8 D4 JSR $D4ES8
D1CB 18 CLC

DlccC 65 6F ADC $6F
DICE 95 99 STA $99,X
D1DO 85 94 STA $94

D1D2 60 RTS

KKK KRRXRRR KA XK Kk dkodkdd kdddhdhkdkdiix
D1D3 20 93 DF JSR $DF93
D1Dé6 AA TAX

D1D7 BD 5B 02 LDA $025B,X
D1DA 29 01 AND #S01
D1DC 85 7F STA $7F

D1DE 60 RTS
hkkhkhkhkhkhkhhkhkkkhkhhhkhkkhkhkhhhdkhkkk
D1DF 38 SEC

D1EO BO 01 BCS $D1E3
hkhkhhkhhkhkhkhkkhkkhkhhkhkkhhhkhkkkk
D1E2 18 CLC

D1E3 08 PHP

D1lE4 85 6F STA $6F

D1E6 20 27 D2 JSR $D227
D1E9 20 7F D3 JSR S$D37F
D1EC 85 82 STA $82

D1EE A6 83 LDX $83

D1FO0 28 PLP

D1F1 90 02 BCC $DI1F5
D1F3 09 80 ORA #580
D1F5 9D 2B 02 STA $022B,X
D1F8 29 3¥ AND #S3F

158

get data byte back
byte in buffer and write block

byte in buffer
buffer full?

get drive number

find free block in BAM
buffer pointer to zero
track number as first byte
sector number as second byte
write block

change buffer

param to disk controller
buffer pointer to 2

increment buffer pointer

get buffer pointer

and increment

get drive number
get drive number

isolate drive number
and save

find
flag

write channel and buffer
for writing

find
flag
save
buffer number

close channel
allccate free channel
channel number
secondary address

read channel and buffer
for reading

read channel?
flag for writing
set

Anatomy of the 1541 Disk Drive

D1FA A8 TAY

D1FB A9 FF LDA #SFF default value

D1FD 99 A7 00 STA $00A7,Y

D200 99 AE 00 STA S$00AE,Y write in associated table
D203 99 Cb 00 STA $00CD,Y

D206 C6 6F DEC $6F decrement buffer number
D208 30 1cC BMI $D226 done already?

D20A 20 8E D2 JSR $D28E find buffer

D20D 10 08 BPL $D217 found?

D20F 20 5A D2 JSR $D25A erase flags in table
D212 A9 70 LDA #$70

D214 4C C8 Cl JMP $C1C8 70, 'no channel'’

D217 99 A7 00 STA $00A7,Y buffer number in table
D21A Cé 6F DEC $6F buffer number

Dp21C 30 08 BMI $D226 already done?

D21E 20 8E D2 JSR $D28E find buffer

D221 30 EC BMI S$D20F not found?

D223 99 AE 00 STA $O00AE,Y buffer number in table
D226 60 RTS

hdkhkhhkhkhhhhkkhkhkhkdhkhkkdhkhkkhkikki close channel

D227 A5 83 LDA $83 secondary address

D229 C9 OF CMP #SOF 15?2

D22B DO 01 BNE $D22E no

D22D 60 RTS else done already

D22E A6 83 LDX $83

D230 BD 2B 02 LDA $022B,X channel number

D233 C9 FF CMP #SFF not associlated?

D235 FO 22 BEQ $D259 then done

D237 29 3F AND #$3F

D239 85 82 STA $82 channel number

D23B A9 FF LDA #SFF

D23D 9D 2B 02 STA $022B,X erase association in table
D240 A6 82 LDX $82

D242 A9 00 LDA #$00

D244 95 F2 STA $F2,X erase READ and WRITE flag
D246 20 5A D2 JSR $D25A free buffer

D249 A6 82 LDX $82 channel number

D24B A9 01 LDA #$01 set bit 0

D24D CA DEX

D24E 30 03 BMI $D253 shift to correct position
D250 0A ASL A

D251 DO FA BNE $D24D

D253 0D 56 02 ORA $0256 free 1n allocation register
D256 8D 56 02 STA $0256

D259 60 RTS

hhkhhkkkkhkhkhkhkhkkhkkhkhhkkhrrkkrhkhk free buffer

D25A a6 82 LDX $82 channel number

D25C B5 A7 LDA $A7,X buffer number

D25E C9 FF CMP #SFF

D260 FO 09 BEQ $D26B not associated?

D262 48 PHA

D263 A9 FF LDA #SFF

159

Anatomy of the 1541 Disk Drive

D265 95 A7 STA $A7,X
D267 68 PLA

D268 20 F3 D2 JSR $D2F3
D26B A6 82 LDX $82
D26D B5 AE LDA SAE,X
D26F C9 FF CMP #SFF
D271 FO 09 BEQ $D27C
D273 48 PHA

D274 A9 FF LDA #SFF
D276 95 AE STA S$AE,X
D278 68 PLA

D279 20 F3 D2 JSR $D2F3
D27C A6 82 LDX $82
D27E B5 CD LDA $CD,X
D280 C9 FF CMP #SFF
D282 FO 09 BEQ $D28D
D284 48 PHA

D285 A9 FF LDA #SFF
D287 95 CD STA SCD,X
D289 68 PLA

D28A 20 F3 D2 JSR $D2F3
D28D 60 RTS
Rhkdkhhhhhhrkkhh RARAR KRR RR KR K Kh &
D28E 98 TYA

D28F 48 PHA

D290 A0 01 LDY #8501
D292 20 BA D2 JSR $D2Ba
D295 10 oC BPL $D2A3
D297 88 DEY

D298 20 BA D2 JSR $D2BA
D29B 10 06 BPL $D2A3
D29D 20 39 D3 JSR $D339
D2A0 AA TAX

D2Al 30 13 BMI $D2B6
D2A3 B5 00 LDA S00,X
D2A5 30 FC BMI $D2A3
D2A7 A5 TF LDA $7F
D2A9 95 00 STA $00,X
D2AB 9D 5B 02 STA $025B,X
D2AE 8A TXA

D2AF 0A ASL A
D2B0 A8 TAY

D2B1 A9 02 LDA #$02
D2B3 99 99 00 STA $0099,Y
D2B6 68 PLA

D2B7 A8 TAY

D2B8 8A TXA

D2B9 60 RTS

D2BA A2 07 LDX #$07
D2BC B9 4F 02 LDA $024F,Y
D2BF 3D E9 EF AND SEFE9,Y
D2C2 FO 04 BEQ $D2C8
D2C4 ca DEX

160

erase buffer association

erase buffer allocation register
channel number

associated in second table?
no
erase assoclation

erase buffer in allocation reg.
channel number

associated in 3rd table?
no

erase association

erase buffer in allocation reg

find buffer

erase bit

Anatomy of the 1541 Disk Drive

D2C5 10 F5 BPL $D2BC
D2C7 60 RTS

D2C8 B9 4F 02 LDA $024F,Y
D2CB 5D E9 EF EOR $EFE9,X rotate bit
D2CE 99 4F 02 STA $024F,Y

D2D1 8A TXA buffer number

D2D2 88 DEY

D2D3 30 03 BMI $D2D8

D2D5 18 CLC

D2D6 69 08 ADC #S508

D2D8 AA TAX buffer number

D2D9 60 RTS

D2DA A6 82 1LDX $82

D2DC B5 A7 LDA $A7,X

D2DE 30 09 BMI $D2E9

D2EQ 8A TXA

D2E1 18 CLC

D2E2 69 07 ADC #$07

D2E4 AA TAX

D2ES B5 A7 LDA $A7,X

D2E7 10 FO BPL $D2D9

D2E9 C9 FF CMP #$FF

D2EB FO EC BEQ $D2D9

D2ED 48 PHA

D2EE A9 FF LDA #SFF

D2F0 95 A7 STA $A7,X

D2F2 68 PLA

D2F3 29 OF AND #SOF

D2F5 A8 TAY buffer number

D2F6 Cc8 INY

D2F7 A2 10 LDX #$10 16

D2F9 6E 50 02 ROR $0250

D2FC 6E 4F 02 ROR $024F rotate 16~bit allocation reg.
D2FF 88 DEY

D300 DO 01 BNE $D303

D302 18 CLC erase bit for buffer
D303 CA DEX

D304 10 F3 BPL $D2F9

D306 60 RTS

d ko k& ok ok ok ok ok kA kb ok Kk o ok ok b ok ok ok ok ok Close all channels
D307 A9 0OE LDA #S$S0E 14

D309 85 83 STA $83 secondary address
D30B 20 27 D2 JSR §D227 close channel

D30E cé6 83 DEC $83 next secondary address
D310 DO F9 BNE $D30B

D312 60 RTS

(2 A S22 R aRES R RRERRERE NS close channels Of other drives
D313 A9 OE LDA #S$0OE 14

D315 85 83 STA $83 secondary address
D317 A6 83 LDX $83

D319 BD 2B 02 LDA $022B,X association table
D31C CY9 FF CMP #SFF channel associated?

161

Anatomy of the 1541 Disk Drive

SD334
#$3F
$82
$DF93

$025B,X

#3501
S7F
$D334
$D227
$83
$D317

S6F

#500
SFA,Y
$A7,X
$D348
#SFF
$D35E

#$07

$a7,X
$D355
#SFF

$D35E

#505
$D33E
$SFF
$D37A
S6F
#$3F

$00,X
$D363
#502
SD373
S6F
#3$07
$D348
$D355

S6F
#SFF

$00A7,

$6F

Y

D31E FO 14 BEQ
D320 29 3F AND
D322 85 82 STA
D324 20 93 DF JSR
D327 AA TAX
D328 BD 5B 02 LDA
D32B 29 01 AND
D32D C5 7F CcMP
D32F DO 03 BNE
D331 20 27 D2 JSR
D334 C6 83 DEC
D336 10 DF BPL
D338 60 RTS
AhkkRkhkkhkRkkhkkkA kXA X AXRR TR ARk k&
D339 A5 6F LDA
D33B 48 PHA
D33C A0 00 LDY
D33E B6 FA LDX
D340 BS A7 LDA
D342 10 04 BPL
D344 C9 FF CcMP
D346 DO 16 BNE
D348 8A TXA
D349 18 cLc
D34A 69 07 ADC
D34C AA TAX
D34D B5 A7 LDA
D34F 10 04 BPL
D351 C9 FF cMp
D353 DO 09 BNE
D355 CB INY
D356 €O 05 CPY
D358 90 E4 BCC
D35A A2 FF LDX
D35C DO 1C BNE
D35E B6 6F STX
D360 29 3F AND
D362 AA TAX
D363 B5 00 LDA
D365 30 FC BMI
D367 €9 02 cmp
D369 90 08 BCC
D36B {A6 6F LDX
D36D ' E0 07 CPX
D36F 90 D7 BCC
D371 B0 E2 BCS
D373 A4 6F LDY
D375 AS FF LDA
D377 99 A7 00 STA
D37A 68 PLA
D37B 85 6F STA
D37D 8aA TXA
D37E 60 RTS

162

no

channel number
get buffer number

drive number

isolate

egual to actual drive number
no

close channel

next channel

Anatomy of the 1541 Disk Drive

KhkhkkkhhARhkkAkrkkrkhkkkkhkkrhkhkdk ki find Channel and a110cate

D37F A0 00 LDY #$00

D381 A9 01 LDA #$01 set bit 0

D383 2C 56 02 BIT $0256

D386 DO 09 BNE $D391 channel free?

D388 c8 INY

D389 0A ASL A rotate bit to left

D38A D0 F7 BNE $D383 all channels checked?
D38C A9 70 LDA #$70

D38E 4C Cc8 cCl JMP $C1C8 70, 'no channel'’

D391 49 FF EOR #SFF rotate bit model

D393 2D 56 02 AND $0256 erase bit

D396 8D 56 02 STA $0256 allocate channel

D399 98 TYA

D39A 60 RTS

LA SRR RS ERS R RSREs R R RE S get byte for output
D39B 20 EB DO JSR $DOEB open channel for reading
D39E 20 00 C1 JSR $C100 turn LED on

D3Al 20 AA D3 JSR S$D3AA get byte in output register
D3A4 A6 82 LDX $82 channel number

D3A6 BD 3E 02 LDA $023E,X get byte

D3A9 60 RTS

D3AA A6 82 LDX $82 channel number

D3AC 20 25 D1 JSR $D125 check file type

D3AF DO 03 BNE $D3B4 no rel-file?

D3B1 4C 20 El JMP $E120 get byte from rel-file
D3B4 A5 83 LDA $83 secondary address

D3B6 C9 OF CMP #S$SOF 15

D3B8 FO 5A BEQ $D414 yes, read error channel
D3BA B5 F2 LDA $F2,X

D3BC 29 08 AND #$08 end flag set?

D3BE DO 13 BNE $D3D3 no

D3CO 20 25 D1 JSR $D125 check file type

D3C3 c9 07 CMP #$07 direct access file?

D3C5 DO 07 BNE S$D3CE no

D3C7 A9 89 LDA #S89 set READ and WRITE flag
D3C9 95 F2 STA $F2,X

D3CB 4C DE D3 JMP SD3DE

D3CE A9 00 LDA #$00

D3DO 85 F2 STA $F2,X erase READ and WRITE flag
D3D2 60 RTS

D3D3 A5 83 LDA $83 secondary address

D3D5 FO 32 BEQ $D409 zero, LOAD?

D3D7 20 25 D1 JSR $D125 check file type

D3DA C9 04 CMP #S04 rel-file or direct access?
D3DC 90 22 BCC $D400 no

D3DE 20 2F D1 JSR $D12F get buffer and channel number
D3E1 B5 99 LDA $99,X buffer pointer

163

Anatomy of the 1541 Disk Drive

D3E3 D9 44 02 CMP $0244,Y
D3E6 DO 04 BNE $D3EC
D3ES8 A% 00 LDA #$00
D3EA 95 99 STA $99,X
D3EC Fé6 99 INC $99,X
D3EE Al 99 LDA ($99,X)
D3F0 99 3E 02 STA $023E,Y
D3F3 B5 99 LDA $99,X
D3F5 D9 44 02 CMP $0244,Y
D3F8 DO 05 BNE $D3FF
D3FA A9 81 LDA #$81
D3FC 99 rF2 00 STA $00F2,Y
D3FF 60 RTS

D400 20 S6 D1 JSR SD156
D403 A6 82 LDX §$82
D405 9D 3E 02 STA $023E,X
D408 60 RTS

D409 AD 54 02 LDA $0254
D40C FO F2 BEQ $D400
D40E 20 67 ED JSR SED67
D411 4C 03 D4 JMP $D403
D414 20 E8 D4 JSR S$SD4ES
D417 C9 D4 CMP #$D4
D419 D0 18 BNE S$D433
D41B AS 95 LDA $95
D41D Cc9 02 CMP #$02
D41F DO 12 BNE $D433
D421 A9 0D LDA #S0D
D423 85 85 STA $85
D425 20 23 C1 JSR $cCl23
D428 A9 00 LDA #S00
D42A 20 Cl E6 JSR $E6C1
D42D C6 A5 DEC SAS
D42F A9 80 LDA #$80
D431 DO 12 BNE $D445
D433 20 37 D1 JSR §$D137
D436 85 85 STA $85
D438 DO 09 BNE $D443
D43A A9 D4 LDA #$D4
D43C 20 C8 D4 JSR $D4C8
D4 3F A9 02 LDA #$02
D441 95 9A STA $9A,X
D443 A9 88 LDA #$88
D445 85 F7 STA S$F7
D447 AS 85 LDA $85
D449 8D 43 02 STA $0243
D44cC 60 RTS

J ok ko ok ok K de dek ok oKk gk Kook e kok Kok ok e ok ok ok

D44D 20 93 DF JSR $DF93
D450 0a ASL A

164

eqgual end pointer?
no

buffer pointer to zero
increment buffer pointer
get byte from buffer
into output register
buffer pointer

equal end pointer?

no

set flags

get byte from buffer
channel number
byte in output register

flag for directory?
no
create directory line

set buffer pointer

CR
in output register
erase error flags

create 'ok' message
set buffer pointer back
set READ flag

get byte from buffer
1nto output register

set buf ptr in front of error ptr

hi-address
set READ flag

data byte
1into output register

read next block
get buffer number
times 2

Anatomy of the 1541 Disk Drive

D451 AA TAX

D452 A9 00 LDA #S00
D454 85 99 STA $99,X
D456 Al 99 LDA ($99,X)
D458 FO 05 BEQ S$DA4SF
D45A D6 99 DEC $99,X
D45C 4C 56 D1 JMP $D156
D45F 60 RTS

dddkkhkhkdkdddkkdedddddddkdbddbbdthikdhi

D460 A9 80 LDA #$80
D462 DO 02 BNE $D466

AAKRAE AL A RRX IR AKX A XA RARRERRRRRS

D464 A9 90 LDA #$90
D466 05 7F ORA $7F
D468 8D 4D 02 STA $024D
D46B A5 F9 LDA $F9
D46D 20 D3 Dé JSR $D6D3
D470 A6 F9 LDX S$F9
D472 4C 93 DS JMP S$D593
Jedk t e de ke kg gk g d ok k& koo ek Rk gk ok ok k
D475 A9 01 LDA #$01
D477 8D 4A 02 STA $024A
D47A A% 11 LDA #$11
D47C 85 83 STA $83
D47E 20 46 DC JSR $DC46
D481 A9 02 LDA #$02
D483 4C C8 D4 JMP $DA4ACS8

kkhhkkhhkhkhhhhhhkrhkhhhhkhhkhkhhhrhk

D486 A9 12 LDA #$12
D488 85 83 STA $83
D48A 4C DA DC JMP $DCDA

LEREEEEEEEEEE AR RSN EESRREREE S

D48D 20 3B DE JSR SDE3B
D490 A9 01 LDA #$01
D492 85 6F STA $6F
D494 A5 69 LDA $69
D496 48 PHA

D497 A9 03 LDA #$03
D499 85 69 STA $69
D49B 20 2D F1 JSR $F12D
D49E 68 PLA

D49F 85 69 STA $69
D4Al A9 00 LDA #$00
D4A3 20 C8 D4 JSR $D4cC8
D4 A6 A5 80 LDA $80
D4A8 20 F1 CF JSR SCFF1
D4AB A5 81 LDA $81
D4AD 20 F1 CF JSR SCFF1
D4 B0 20 C7 DO JSR $DOC7
D4B3 20 99 DS JSR $D599

165

buffer pointer to zero

get first byte from buffer
no block following?

buffer pointer to ~1

read next block

read block
command code for reading

write block

command code for writing
drive number

save code

param to disk controller
execute command

allocate buffer and read block
file type to seguential
;Zcondary address

allocate buffer and read block
buffer pointer to 2

allocate new block

igcondary address

allocate new block

write directory block
get track and sector number

a block

save step width 10 for block
allocation

find free block in BAM

get step width back

buffer pointer to zero

track number in buffer
sector number in buffer

write block to disk
and verify

Anatomy of the 1541 Disk Drive

D4B6 A9 00 LDA #S00

D4B8 20 c8 D4 JSR $D4C8
D4BB 20 F1 CF JSR $CFF1
D4BE D0 FB BNE S$SD4BB
D4CO 20 F1 CF JSR $CFF1
D4C3 A9 FF LDA #SFF

D4C5 4C F1 CF JMP SCFF1

kfkkkhkhhkhkhhhhkkhkhkhkdhrkihhk

D4CS8 85 6F STA S6F
DA4CA 20 93 DF JSR $DF93
D4CD 0A ASL A
DACE AA TAX

DACF B5 9A LDA $9A,X
DaDl 85 95 STA $95
D4D3 A5 6F LDA $6F
D4DS 95 99 STA $99,X
D4D7 85 94 STA $94
D4D9 60 RTS
REXAAARARAAKXRAARKA AR XXX RRRRRXRX
D4DA A9 11 LDA #$11
D4DC 85 83 STA §83
D4DE 20 27 D2 JSR $D227
D4E1 A% 12 LDA #$12
D4E3 85 83 STA $83
D4ES 4C 27 D2 JMP $D227

Je Je J de de ok K Kk o de g de Kk ok Kok ok ek gk ko ok ok ok ok ke k

D4ES 20 93 DF JSR $DF93
D4EB 0A ASL A
D4EC AA TAX

D4ED BS 9A LDA $93,X
D4EF 85 95 STA $95
D4F1 B5 99 LDA $99,X
DA4F3 85 94 STA $94
D4FS5 60 RTS

J Je K de Je ke Kk Kk K de X ok gk ke de o kK e ke ok Kok e

D4F6 85 71 STA $71
DAF8 20 93 DF JSR S$DF93
D4FB AA TAX

D4FC BD EO FE LDA SFEEOQ,X
D4FF 85 72 STA $72
D501 A0 00 LDY #500
D503 Bl 71 LDA ($71),Y
D505 60 RTS

d % d A dk Kk &k K e g ok dd kg ke de K g ke ke ko ko ok ok k

D506 BD SB 02 LDA $025B,X
D509 29 01 AND #501
D50B 0D 4D 02 ORA $024D
D50FE A8 PHA

D50F 86 F9 STX S$F9
D511 8A TXA

166

buffer pointer to zero
£i11 buffer with zeroes

zero as following track
SFF as number of bytes
set buffer pointer

save pointer

get buffer number

times 2

buffer pointer hi

buffer pointer lo, new value

close internal channel
17

close channel
18

close channel

set buffer pointer
get buffer number

buffer pointer hi

buffer pointer lo

get byte from buffer
pointer lo
get buffer number

hi-byte buffer address
pointer hi

get byte from buffer

check track and sector numbers
command code for disk controller
draive number

plus command code

save

buffer number

D512 oA ASL A
D513 AR TAX

D514 BS 07 LDA $07,X
D516 8D 4D 02 STA $024D
D519 B5 06 LDA $06,X
D51B FO 2D BEQ $D54A
D51D CD D7 FE CMP SFED7
D520 BO 28 BCS $D54A
D522 AA TAX

D523 68 PLA

D524 48 PHA

D525 29 FO AND #SFO
D527 c9 90 CMP #$90
D529 DO 4F BNE $D57A
D52B 68 PLA

D52C 48 PHA

D52D 4A LSR A
D52E BO 05 BCS $D535
D530 AD 01 01 LDA S0101
D533 90 03 BCC $D538
D535 AD 02 01 LDA $0102
D538 FO 05 BEQ $D53F
D532 CD D5 FE CMP SFEDS5
D53D DO 33 BNE $D572
D53F 8A TXA

D540 20 4B F2 JSR $F24B
D543 CD 4D 02 CMP $024D
D546 FO 02 BEQ $SD54A
D548 BO 30 BCS $D57A
D54A 20 52 DS JSR $D552
D54D A9 66 LDA #$66
D54F 4C 45 E6 JMP $SE645
RARKKKIKKRRRRR KA RRKRR KRR RRAN KR
D552 AS F9 LDA $F9
D554 0Aa ASL A
D555 AA TAX

D556 B5 06 LDA $06,X
D558 85 80 STA S$80
D55A BS 07 LDA $07,X
D55C 85 81 STA $81
D55E 60 RTS

DSSF AS 80 LDA $80
D561 FO EA BEQ $D54D
D563 CDh D7 FE CMP SFED7?
D566 BO E5 BCS $D54D
D568 20 4B F2 JSR $F24B
D56B C5 81 CMP $81
D56D FO DE BEQ $D54D
D56F 80 DC BCC $D54D
D571 60 RTS

D572 20 52 D5 JSR $D552
D575 A9 73 LDA #8873

167

Anatomy of the 1541 Disk Drive

times 2

sector

save

track

66, 'illegal track or sector'
36, highest track number + 1
66, 'illegal track or sector'

command code

code for writing?

no
'A', format marker
73, 'cbm dos v2,6 1541'

track number

get maximum sector number
compare with sector number
equal, then error

smaller?

get track and sector number
66, 'illegal track or sector'
get track and sector numbcr
buffer number

*x2

as 1index

track

sector

track

zero, then error

36, maximum track number + 1
66, 'illegal track or sector'
get maximum sector number

sector

error

get track and sector numbe:t

Anatomy of the 1541 Disk Drive

D577 4C 45 E6 JMP $E645 73, 'cbm dos v2.6 1541'
DSTA A6 F9 LDX SF9 buffer number

D57C 68 PLA

D57D 8D 4D 02 STA $024D command code for disk controller
D580 95 00 STA $00,X in command register
D582 9D 5B 02 STA $025B,X and write in table
D585 60 RTS

Rk Xk kA khkhkhkhkhkkhhkhbkkkhhkhrk read block

D586 A% 80 LDA #$80 code for read

D588 DO 02 BNE $D58C

kkkhRkkRARRNARAR Ak kkhhhhhrhk Write blOCk

D584 A9 90 LDA #590 code for write

D58C 05 7F ORA S$7F drive number

D5S8E A6 F9 LDX S$FS buffer number

D590 8D 4D 02 STA $024D

D593 AD 4D 02 LDA $024D command code

D596 20 OE D5 JSR S$D50E check track and sector
hkhkhkhhhhkhkhhkhkhhhkhkhkhkhhkkhkkdhkd Verify execution

D599 20 A6 D5 JSR $D5A6 verify execution

D59C BO FB BCS $D599 wait for end

D59E 48 PHA

DS9F A% 00 LDA #5500

DSAl 8D 98 02 STA $0298 erase error flag

D5A4 68 PLA

DSAS 60 RTS

D5A6 R5 00 LDA $00.X cmd code (bit 7) still in reg?
D5A8 30 1A BMI $D5C4 yes

D5AA c9 02 CMP #S02

D5AC 90 14 BCC $D5C2 error-free execution
DSAE c9 08 CMP #S$08 8

D5BO FO 08 BEQ $DS5BA write protect

D5B2 c9 OB CMP #$S0B 11

D5B4 FO 04 BEQ SD5BA ID mismatch

D5B6 C9 OF CMP #SOF 15

D5B8 DO OC BNE SD5C6

D5BA 2C 98 02 BIT $0298

D5BD 30 03 BMI S$D5C2

DSBF 4C 3F D6 JMP S$D63F create error message
DS5C2 18 CLC execution ended

D5C3 60 RTS

D5C4 38 SEC execution not yet ended
D5C5 60 RTS

D5C6 98 TYA

D5C7 48 PHA

D5C8 A5 TF LDA STF drive number

D5CA 48 PHA

DSCB BD 5B 02 LDA $025B,X

168

DSCE
D5D0
D5D2
D5D3
D5D6
D5D9
D5DC
DSDE
DSEO
D5E3
DSE6
D5E8
D5E9
D5EB
D5SED
DSEF
D5F1
D5F4
D5F6
D5F8
DSFA
DSFD
D600
D603
D606
D607
D60A
D60D
D610
D613
D616
D619
D61B
D61D
D620
D623
D625
D628
D62B
D62D
D6 2F
D631
D633
D635
D636
D638
D63A
D63C
D63F
D641
D644
D645
D648
D64A
D64B

01
7F

CA

L.
02
03
6D
5B
FO

90
07
7F
B8
5B
6A
39
00
99
gA
99
9A

DB
9a
DB
76
99
A6
02
08
99
DB
DB
9A
76
00
02
2B
6A
OF

90
05
7F
5B
00
0a

98
23

co

FE
02
D6

D6
02

02

02
02
02
02

FE
02
FE
D6
02
D6

02
FE

02
D6

02
E6

02

AND
STA
TAY
LDA
STA
JSR

STA

JSR
PLA
BIT
BMI
PHA
LDA

#501
STF

Anatomy of the 1541 Disk Drive

SFECA,Y

$026D
$D6A6
#$02

$DSE3
SD66D

$025B,X

#SFO

#$90
$D5F4
STF
#$B8

S025B.X

$6A
$D631
#$00
$0299
$029A
$0299
$029A

SFEDB, Y

$029A

SFEDB, Y

SD676
$0299
$D6A6
#502

$D625
$0299

SFEDB,Y

$D60C
$029A
$D676
$00,X
#s02
$D65C
S6A
$D644

#%90
SD63F
$7F

$025B,X

$00,X
SE60A

50298
$D66D

#5C0

169

drive number

bit model for drive
read attempt

not ok?

done

command code
1solate

code for write
no
drive number

cntr for searches next to track

counter

constants for read attempts

position head next to track
increment counter

read atempt

return message

smaller than 2, ok?

load counter

get constants

not yet zero (table end)?

position head

return message
ok?

command code

for writing?

no

drive number

command code in table
return message

set error message

command code for head positioning

Anatomy of the 1541 Disk Drive

D64D
D64F
D651
D653
D655
D658
D6 SA
D65C
D65D
D6 5F
D661
D663
D666
D669
D66B
D66D
D66E
D670
D671
D672
D674
D675

D676
D678
D67A
D67C
D67E
D681
D682
D684
D686

D688
D68A
D68D
D6BE
D690
D692

D693
D694
D695
D697
D69A
D69D
D69F
D6A1
D6A4
D6AS

D6A6
D6 A8
D6 AA
D6AB

05
95
B5
30
20
c9
BO
68
Cc9
DO
05
9D
20
c9
BO
68
85
68
A8
B5
18
60

[63°]
FO
30
AD
20
38
E9
DO
FO

AD
20
18
69
DO
60

48
98
A4
99
D9
FO
A9
99
68
60

A5
29
A8
AD

7F
00
00
FC
.1
02
D9

90
ocC
7F
5B
A6
02
D2

7F

00

00
18
aoc
01
93

01
F6
0A

FF
93

01
F6

6A
3F

6D

D6

02
D6

D6

D6

02
02

02

02

ORA
STA
LDA
BMI
JSR
CMP
BCS
PLA
CMP
BNE
ORA
STA
JSR
CMP
BCS
PLA
STA
PLA
TAY
LDA
CLC
RTS

CMP
BEQ
BMI
LDY
JSR
SEC
SBC
BNE
BEQ

LDY
JSR
CLC
ADC
BNE
RTS

PHA
TYA
LDY
STA
CMP
BEQ
LDA
STA
PLA
RTS

LDA
AND
TAY
LDA

$TF

$00,X
$00,X
$D651
$D6 A6
#$02

$D635

#590
$D66D
S7F

$025B,X

SD6A6
#$02
SD63F

$7F

$00,X

#3500
$D692
$D688
#501
SD693

#S01
$D67C
$D692

#SFF
$D693

#$01
$D688

S7F

$02FE,Y
$SO2FE, Y

$D69A
#$00

SO2FE,Y

$6A
#$3F

$026D

170

drive number
1n command register

wait for execution

attempt command execution again
return message

incorrect?

command code for writing

no ’
drive number

in table

attempt execution again

return message

error?

get drive number back

error code
end~-of-execution flag

transmit data for head position

transmit data for head position

drive number
wait for return message from

disk controller

maximum number of repetitions

bit for LED

$1C00
$1C00

Anatomy of the 1541 Disk Drive

$025B,X

$00,X
$00,X
$D6B9Y
#$02

$D6C4

$D6AB
$026D

$1C00
$1C00

$DF93
A

$80

$0006,Y

$81

$0007,Y

$TF

$83
$82
$81
$80

$#511
$83
$DE3B
$0242

$E2
#5501
$TF
SF9

$025B,X

A
$D715
#5501

$0292
$C5AC

D6AE 4D 00 1C EOR
D6B1 8D 00 1C STA
D6 B4 BD 5B 02 LDA
D6B7 95 00 STA
D6B9 BS 00 LDA
D6BB 30 FC BMI
D6BD c9 02 CMP
D6BF 90 03 BCC
D6C1 88 DEY
D6C2 D0 E7 BNE
D6C4 48 PHA
D6C5 AD 6D 02 LDA
D6C8 0D 00 1C ORA
D6CB 8D 00 1cC STA
D6CE 68 PLA
D6CF 60 RTS
KRR RKRRRRRKRRRRK RN AR AR R R AR R AR
D6D0 20 93 DF JSR
D6D3 0A ASL
D6D4 A8 TAY
D6D5 A5 80 LDA
D6D7 99 06 00 STA
D6 DA A5 81 LDA
D6DC 99 07 00 STA
D6 DF A5 TF LDA
D6E1 0A ASL
D6E2 AA TAX
D6E3 60 RTS
RARIKRRRRRR N RN R e Tk kb h ke bk
D6E4 A5 83 LDA
D6E6 48 PHA
D6E7 AS 82 LDA
D6E9 48 PHA
D6EA A5 81 LDA
D6EC 48 PHA
D6ED A5 80 LDA
D6EF 48 PHA
D6F0 A9 11 LDA
D6F2 85 83 STA
D6F4 20 3B DE JSR
D6F7 AD 4A 02 LDA
D6FA 48 PHA
D6 FB A4 E2 LDA
D6FD 29 01 AND
D6FF 85 7F STA
D701 A6 F9 LDX
D703 5D 5B 02 EOR
D706 4A LSR
D707 90 0C BCC
D709 A2 01 LDX
D70B 8E 92 02 STX
D70E 20 AC C5 JSR
D711 FO 1D BEQ

$D730

171

command

transmit to disk controller
and return message

wait

ok?

yes

decrement counter

attempt agaln

LED off

transmit param to disk controller
get buffer number

track number
transmit
sector number
transmit
drive number
times 2

enter file in directory
secondary address

channel number
sector number

track number
save

secondary address 17

get track and sector number
file type

save

drive number

set

buffer number

equal drive number?
pointer in directory

load dir and find first entry
not found?

Anatomy of the 1541 Disk Drive

D713 DO 28 BNE $D73D
D715 AD 91 02 LDA $0291
D718 FO 0C BEQ $D726
D71A C5 81 CMP $81
D71cC FO 1F BEQ $D73D
D71E 85 81 STA $81
D720 20 60 D4 JSR $D460
D723 4C 3D D7 JMP $D73D
D726 A9 01 LDA #$01
D728 8D 92 02 STA $0292
D72B 20 17 C6 JSR $C617
D72E DO OD BNE $D73D
D730 20 8D D4 JSR $D48D
D733 A5 81 LDA $81
D735 8D 91 02 STA $0291
D738 A9 02 LDA #S$02
D73A 8D 92 02 STA $0292
D73D AD 92 02 LDA $0292
D740 20 C8 D4 JSR $D4C8
D743 68 PLA

D744 8D 4A 02 STA $024A
D747 C9 04 CMP #$04
D749 D0 02 BNE $D74D
D74B 09 80 ORA #5$80
D74D 20 F1 CF JSR $CFF1
D750 68 PLA

D751 8D 80 02 STA $0280
D754 20 F1 CF JSR S$CFF1
D757 68 PLA

D758 8D 85 02 STA $0285
D75B 20 F1 CF JSR $CFF1
D75E 20 93 DF JSR $DF93
D761 A8 TAY

D762 AD 7A 02 LDA $027A
D765 AA TAX

D766 A9 10 LDA #$10
D768 20 6E C6 JSR SC66E
D76B A0 10 LDY #$10
D76D A9 00 LDA #$00
D76F 91 94 STA ($94),Y
D771 c8 INY

D772 c0 1B CPY #S$1B
D774 90 F9 BCC $D76F
D776 AD 4A 02 LDA $024A
D779 Cc9 04 CMP #$04
D77B po0 13 BNE $D790
D77D A0 10 LDY #$10
D77F AD 59 02 LDA $0259
D782 91 94 STA ($94),Y
D784 (of:] INY

D785 AD 5A 02 LDA $025A
D788 91 94 STA ($94),Y
D78A C8 INY

172

found?

sector number in directory
egual zero

equal sector number?

yes

save sector number

read block

pointer to one

find next entry in directory
found?

write directory block

sector number

pointer to 2
set buffer pointer

file type
rel-file?
no

set bit 7
and write in buffer
following track
in buffer
following sector
in buffer

get buffer number

pointer to drive number
16. length of filename
write filename 1in buffer
fill with zerces at pos 16
position 27 already?

no

file type

rel-file

no

track

and sector
the side-sectors in dir entry

Anatomy of the 1541 Disk Drive

D78B AD 58 02 LDA $0258 record length
D78E 91 94 STA ($94),Y in directory

D790 20 64 D4 JSR $D464 write block

D793 68 PLA

D794 85 82 STA $82 channel number
D796 AA TAX

D797 68 PLA

D798 85 83 STA $83 secondary address
D79A AD 91 02 LDA $0291

D79D 85 D8 STA $SD8

D79F 9D 60 02 STA $0260,X
D7A2 AD 92 02 LDA $0292

D7A5 85 DD STA $DD

D7A7 9D 66 02 STA $0266,X

D7RA AD 4A 02 LDA $024A file type

D7AD 85 E7 STA SE7

D7AF A5 TF LDA S$7F drive number

D7B1 85 E2 STA $E2

D7B3 60 RTS

hhkhkhkhkkkhkhkhkikhhhkhhkkhkhkhhhkhkhhkkkk OPEN command, secondary adr <>
D7B4 A5 83 LDA $83 secondary address

D7B6 8D 4C 02 STA $024C

D7B9 20 B3 C2 JSR $C283 get line length, erase flags
D7BC 8E 2A 02 STX $022A

D7BF AE 00 02 LDX $0200 first character from buffer
D7C2 AD 4C 02 LDA $024C secondary address

p7C5 D0 2C BNE S$D7F3 not equal 0 (LOAD)?

p7C7 E0 2A CPX #$2A YR

p7C9 DO 28 BNE $D7F3

D7CB A5 7E LDA S7E last track number

p7CD FO 4D BE(Q $D81C

D7CF 85 80 STA $80 track number

D7D1 AD 6E 02 LDA S$026E last drive number

D7D4 85 7F STA $7TF drive number

D7D6 85 E2 STA SE2

D7D8 A9 02 LDA #$02

D7DA 85 E7 STA SE7 set data type to program
D7DC AD 6F 02 LDA $026F last sector number

D7DF 85 81 STA $81 sector

D7El 20 00 C1 JSR $C100 turn LED on

D7E4 20 46 DC JSR $DC46 allocate buffer, read block
D7E7 A9 04 LDA #3504 file type

D7E9 05 7F ORA $§7F drive number

D7EB A6 82 LDX $82 channel number

D7ED 99 EC 00 STA SOOEC,Y set flag

D7F0 4C 94 C1 JMP S$C194 done

D7F3 EO 24 CPX #3524 'St

D7F5 DO 1E BNE $D815 no

D7F7 AD 4C 02 LDA $024C secondary address

D7FA DO 03 BNFE S$D7FF not egual to zero?

D7FC 4C 55 DA JMP $DAS5 OPEN $§

D7FF 20 D1 C1 JSR $C1D1 analyze line to end

173

Anatomy of the 1541 Disk Drive

D802 AD 85 FE LDA SFE85
D805 85 80 STA $80
D807 A9 00 LDA #500
D809 85 81 STA $81
D8OB 20 46 DC JSR $DC46
DSOE A5 TF LDA S7F
D810 09 02 ORA #$02
D812 4C EB D7 JMP $D7EB
D815 EO0 23 CPX #$23
D817 Do 12 BNE $D82B
D819 4C 84 CB JMP S$CB84
Dp81cC A9 02 LDA #S$02
D81E 8D 96 02 STA $0296
D821 A9 00 LDA #$00
D823 85 7F STA $7F
D825 8D 8E 02 STA $028E
D828 20 42 DO JSR $D042
D8 2B 20 E5 C1 JSR SC1E5
D82E DO 04 BNE $D834
D830 A2 00 LDX #$00
D832 FO OC BEQ $D840
D834 8A TXA

D835 FO 05 BEQ $D83C
D837 A9 30 LDA #$30
D839 4C C8 Cl JMP $C1C8
D83C 88 DEY

D8 3D FO 01 BEQ $D840
D83F 88 DEY

D840 8C 7a 02 STY $027A
D843 A9 8D LDA #$8D
D845 20 68 C2 JSR $C268
D848 E8 INX

D849 8E 78 02 STX $0278
D84C 20 12 C3 JSR $C312
D84F 20 CA C3 JSR $C3CA
D852 20 9D C4 JSR $C49D
D855 A2 00 LDX #$00
D857 8E 58 02 STX $0258
D85A 8E 97 02 STX $0297
D85D 8E 4A 02 STX $024A
D860 E8 INX

D861 EC 77 02 CPX $0277
D864 BO 10 BCS $D876
D866 20 09 DnA JSR $DA09
D869 E8 INX

D86A EC 77 02 CPX $0277
D86D BO 07 BCS $D876
D86F Cco 04 CPY #$04
D871 FO 3E BEQ $D8B1
D873 20 09 DA JSR $DA0O9
D876 AE 4C 02 LDX $024C
D879 86 83 STX $83

174

18, directory track
track

sector 0
allocate buffer,
drive number

read block

continue as above
I#I

open direct access file

file type program
drive 0

load BAM
analyze line
colon found?

comma found?
no

30, 'syntax error'

pointer to drive number
shift CR
analyze line to end

comma counter

get drive number

check drive number

find file entry in directory
default values

record length

file type
comma before equal sign?

no

get file type and control mode

additional comma?

no

get file type and control method

secondary address

D87B
D87D
D87F
D882
D884
D887
D88A
D88C
D88E
D891
D894
D896
D898
D89A
D89D
D8AOQ
D8A2
D8A4
D8A7
DBAA
DBAC
DSAE

D8B1
D8B4
D8B7
D8BA
D8BD
D8BF
D8C1
D8C4

D8C6
D8C8
D8CA
D8CB
D8CD
D8CF
D8D1
D8D3
D8D6

D8 D9
D8DC
D8DE
D8ElL
D8 E4
D8E6
D8E8
D8E9
D8EB
DBED
D8FO0
D8F2

02
12
97
490
F9
4A
1B
02
4A
4A
11
E7
07
4A
80
05
01
aa
97
01
18
40

7A
00
5B
80
B7
01
97
BO

02
02
02

02
02

02
02

02
02
D9
02
02

02
02

02

c8
D9

02

D9

C1

Cl

LDY

BNE

LDA
AND
TAX
BNE
LDA
BIT
BEQ
JSR
JMP

LDA
BNE
JMP
LDA
CMP
BEQ
TXA
BNE
LDA
JMP
LDA
JMP

#502
$D891
$0297
#$40
$02F9
$024A
$D8A7
#3502
$024A
$024A
$SD8A7
SE7
$#$07
$024A
$0280
SD8A7
#$01
$024A
$0297
$#$01
$D8C6
$D940

Anatomy of the 1541 Disk Drive

$027A,X
$0200,Y

$025B
$0280
$D876
#5501

$0297
$SD876

SE7
#$80

$D8E1
#$20
SE7
$D8D9
SC8B6
$DIE3

$0280
$D8E1
$SD9E3
$0200
#5540

$D8F5

SD8FO0
#563
scics
#$33
sclcs

175

greater than 2?
yes
0 or 1 (LOAD or SAVE)

file type
not deleted
PRG

as file type

get file type and command line

track number
not egual zero?

file type sequential
control method

IWI

yes

pointer behind second comma
get value

record length

track number

le

as control method
file type

1solate wildcard flag
wildcard in name

was file closed?

yes
byte 0 in buffer and write block

track number of the first block
already existing

fifft character from input buffer
ygs.

wildcard set?

63, 'file exists'

33, 'syntax error'

Anatomy of the 1541 Disk Drive

khkhkhkhkhkdkdkhkkhkrkdkhkhkhkkhkhhkdhk

D8F5 A5 E7 LDA $E7
D8F7 29 07 AND #$07
D8F9 CD 4A 02 CMP $024A
D8FC D0 67 BNE $D965
D8FE Cc9 04 CMP #3504
D900 FO 63 BEQ $D965
D902 20 DA DC JSR $DCDA
D905 A5 82 LDA $82
D907 8D 70 02 STA $0270
D90A A9 11 LDA #$11
D90C 20 EB DO JSR $DOEB
D911 AD 94 02 LDA $0294
D914 20 C8 D4 JSR $D4C8
D917 A0 00 LDY #$00
D919 Bl 94 LDA ($94),Y
D91B 09 20 ORA #3520
D91D 91 94 STA ($94),Y
D91F A0 1A LDY #$1A
D921 A5 80 ILDA S80
D923 91 94 STA ($94),Y
D925 [of: INY

D926 A5 81 LDA $81
D928 91 94 STA ($94),Y
D92A AE 70 02 LDX $0270
D92D A5 D8 LDA $D8

D9 2F 9D 60 02 STA $0260,X
D932 A5 DD LDA $DD
D934 9D 66 02 STA $0266,X
D937 20 3B DE JSR $DE3B
D93A 20 64 D4 JSR $D464
D93D 4C EF D9 JMP $D9EF
D940 AD 80 02 LDA $0280
D943 D0 05 BNE $D94A
D945 A9 62 LDA #$62
D947 4C C8 C1 JMP $C1C8
D94A AD 97 02 LDA $0297
D94D c9 03 CMP #$03
D94F FO OB BEQ $D95C
D951 A9 20 LDA #520
D953 24 E7 BIT $E7
D955 FO 05 BEQ $D95C
DY57 A9 60 LDA #$60
D959 4C €8 C1 JMP #SC1C8
D95C A5 E7 LDA SE7
D95E 29 07 AND #$07
D960 CD 4A 02 CMP $024A
D963 FO 05 BEQ $D96A
D965 A9 64 LDA #5564
D967 4C C8 C1 JMP $C1C8
D9 6A AD 00 LDY #$00
D96C 8C 79 02 STY $0279
D96F AE 97 02 LDX $0297
D972 E0 02 CPX #$02

176

open a file with overwriting
file type
isolate

file type different?
rel-file?
64, 'file type mismatch’

save channel number
open read channel
set buffer pointer for directory

file type

set bit 5, open file

track

and sector
for open with at-sign
channel number

pointer to directory block

get track and sector number
write block
prepare trk, sector, and drive #
first track number

file not erased?

62, 'file not found'

control mode

IMI

yes,then no test of unclosed file
bit 5

test 1n file type

not set, ok

60, 'write file open’

1solate file type

64, 'file type mismatch’

control mode
'aA', append

Anatomy of the 1541 Disk Drive

D974 DO 1A BNE $D990 no

D976 C9 04 CMP #$04 rel-file?

D978 FO EB BEQ $D965

D97A Bl 94 LDA ($94),Y

D97C 29 4F AND #S4F

D97E 91 94 STA ($94),Y

D980 A5 83 LDA $83

D982 48 PHA

D983 A9 11 LDA #$11

D985 85 83 STA $83 channel 17

D987 20 3B DE JSR $DE3B get track and sector number
D98a 20 64 D4 JSR $D464 write block
D98D 68 PLA

D98E 85 83 STA $83 get channel # back
D990 20 A0 D9 JSR $D9A0

D993 AD 97 02 LDA $0297 control mode
D996 C9 02 CMP #3502

D998 DO 55 BNE $D9EF

D99A 20 2A DA JSR $DA2A

D99D 4C 94 C1 JMP $C194 done

D9AOD A0 13 LDA #$13

D9A2 Bl 94 LDA ($94),Y track

D9A4 8D 59 02 STA $0259

D9A7 ca INY

D9A8 B1 94 LDA ($94),Y

D9 AA 8D 5A 02 STA $025A

DY9AD c8 INY

DI9AE Bl 94 LDA ($894),Y record length
D9 B0 AE 58 02 LDX $0258 last record len
D9B3 8D 58 02 STA $0258

DIB6 8A TXA

D9B7 FO 0A BEQ SD9C3

D9B9 CD 58 02 CMP #50258

D9BC FO 05 BEQ $D9C3

DI9BE A9 50 LDA #$50

DICO 20 C8 C1 JSR $C1C8 50, 'record not present'

D9C3 AE 79 02 LDX $0279
D9C6 BD 80 02 LDA §$0280,X

D9C9 85 80 STA $80 track
DICB BD 85 02 LDA $0285,X

D9CE 85 81 STA §$81 sector
D9DO 20 46 DC JSR $DC46

D9D3 A4 82 LDY $82

DI9D5 AE 79 02 LDX $0279

D9D8 B5 D8 LDA $D8,X

D9DA 99 60 02 STA $0260,Y

DI9DD B5 DD LDA SDD,X

D9DF 99 66 02 STA $0266,Y

D9E2 60 RTS

DI9E3 A5 E2 LDA SE2 drive #
D9ES 29 01 AND #$01

D9F7 85 7F STA S7F

D9 E9 20 DA DC JSR $DCDA

177

Anatomy of the 1541 Disk Drive

D9EC 20 E4 D6 JSR $D6E4
D9EF A5 83 LDA $83
D9F1 c9 02 CMP #$02
D9F3 BO 11 BCS $DA06
DI9F5 20 3E DE JSR SDE3E
D9F8 A5 80 LDA $80
D9FA 85 7E STA S7TE
DI9FC A5 7F LDA $7F
D9FE 8D 6E 02 STA $026E
DAQ1 A5 81 LDA $81
DAO3 8D 6F 02 STA $026F
DAO6 4C 99 C1 JMP $C199

ek ko ko ok ok gk ok & Kk de ok ok ko ke koo ok ok Rk ok ok

DAO9 BC 7a 02 LDY $027A,X
DAOC B9 00 02 LDA $0200,Y
DAOF A0 04 LDY #$04
DAll 88 DEY

DAl2 30 08 BMI SDAIC
DAl4 D9 B2 FE CMP SFEB2,Y
DAl7 DO F8 BNE S$DAll
DAl9 8C 97 02 STY $0297
DALC A0 05 LDY #$05
DAlE 88 DEY

DALF 30 08 BMI $DA29
DA21 D9 B6 FE CMP SFEB6,Y
DA24 DO F8 BNE $DALE
DA26 8C 4A 02 STY $024A
DA29 60 RTS

hkdkdhkkhkhkhhhkhXkhkhkhkhhhkkhk ki

DA2A 20 39 Ca JSR $CA39
DA2D A9 80 LDA #%80
DA2F 20 A6 DD JSR $DDA6
DA32 FO F6 BEQ $DA 2A
DA34 20 95 DE JSR $DE95
DA37 A6 Bl LDX $81
DA39 E8 INX

DA3A 8Aa TXA

DA3B D0 05 BNE $DA42
DA3D 20 A3 D1 JSR $D1A3
DA40 A9 02 LDA #$02
DA42 20 C8 D4 JSR $D4C8
DA45S A6 82 LDX $82
DA47 A9 01 LDA #501
DA49 95 F2 STA $F2,X
DA4B A9 80 LDA #$80
DA4D 05 82 ORA $82
DA4F A6 83 LDX $83
DAS1 9D 2B 02 STA $022B,X
DA54 60 RTS
Ahhkhkhhkhkkhkhdkhhkhkhddbhkkhkrhdhkikd
DASS5 A% 0C LDA #$0C
DAS7 8D 2A 02 STA $022A

channel #

check file type and control mode
pointer in command line
get characters from line

control modes 'R', 'W',

save

file types 'D','s','P','U','L’
save
preparation for Append
open channel to read, get byte
last byte?
no

get track and sector number
sector number

not SFF?

close buffer, write block

buffer pointer to 2
channel number

set flag for WRITE

channel number in table

OPEN "§"
command number 12

Anatomy of the 1541 Disk Drive

DASA A9 00 LDA #$00

DASC AE 74 02 LDX $0274

DASF CA DEX

DA60 FO OB BEQ $DA6D

DA62 CA DEX

DA63 DO 21 BNE $DA86

DA65 AD 01 02 LDA $0201 second character
DA68 20 BD C3 JSR $C3BD get drive number
DA6B 30 19 BMI $DAS§6 not a plain number?
DA6D 85 E2 STA SE2

DAGF EE 77 02 INC $0277
DA72 EE 78 02 INC $0278
DA7S EE 7A 02 INC $027A

DA78 A9 80 LDA #$80

DA7A 85 E7 STA SE7 set wildcard flag

DA7C A9 2A LDA #$2A bl

DATE 8D 00 02 STA $0200 as file name in command buffer
DA81 8D 01 02 STA $0201

DA84 D0 18 BNE SDAYE absolute jump

DA86 20 E5 Cl JSR $C1lES test input line to ';'

DAB9 D0 05 RNE $DA90 found?

DA8B 20 DC C2 JSR $C2DC erase flags

DASE A0 03 LDY #$03

DA90 88 DEY

ba9l 88 DEY

DA92 8C 7A 02 STY $027A pointer to drive no. 1n command
DA9S 20 00 c2 JSR $C200 analyze line

DA98 20 98 C3 JSR $C398 ascertain file type

DA9B 20 20 C3 JSR $C320 get drive number

DAYE 20 cA C3 JSR $C3CA initialize drive if necessary
DAAlL 20 B7 C7 JSR S$C7B7 prepare disk title

DAA4 20 9D C4 JSR $C49D load directory

DAA7 20 9E EC JSR SEC9E create and prepare directory
DAAA 20 37 D1 JSR $D137 get byte from buffer

DAAD A6 82 LDX $82 channel number

DAAF 9D 3E 02 STA $023E byte in output register

DAB2 A4 TF LDA S$7F drive number

DAB4 8D 8E 02 STA S028E save as last drive number

DAB7 09 04 ORA #$04

DAB9 95 EC STA $EC,X PRG-flag

DABB A9 00 LDA #$00

DABD 85 A3 STA $A3 set pointer back in input buffer
DABF 60 RTS

khkkkthkRkhhkkhkhkkkkhkhkhkrthhhhkhkhkkk CLOSE'rOutlne

DACO A9 00 LDA #8$00

DAC2 8D F9 02 STA $02F9

DACS A5 83 LDA $83 secondary address

DAC7 DO 08 BNE $DAD4 not zero?

DAC9Y A9 00 LDA #$00 secondary address 0, LOAD
DACB 8D 54 02 STA $0254

DACE 20 27 D2 JSR $D227 close channel

DADL 4C DA D4 JMP $D4DA close 1internal channels 17 & 18
DAD4 C9 OF CMP #SOF 15

179

Anatomy of the 1541 Disk Drive

DAD6 FO 14 BEQ $DAEC yes, close all channels
DADS 20 02 DB JSR SDBO2 close file

DADB A5 83 LDA $83 secondary address

DADD c9 02 CMP #$02

DADF 90 FO BCC $DAD1 smaller than 2?

DAE1l AD 6C 02 LDA $026C

DAE4 DO 03 BNE $DAE9

DAE6 4C 94 C1 JMP $C194 termination

DAE9 4C AD C1 JMP $C1AD

DAEC A9 OE LDA #S$S0OE 14

DAEE 85 83 STA $83 secondary address

DAFO 20 02 DB JSR $DBO2 close file

DAF3 Cé6 83 DEC $83 next secondary address
DAFS 10 F9 BPL $DAFO

DAF7 AD 6C 02 LDA $026C

DAFA D0 03 BNE SDAFF

DAFC 4C 94 C1 JMP $C194 termination

DAFF 4C AD Cl JMP SC1lAD

khkkhkhkhkkkhhkkhhhkhdhkhkkhkdkdkkhkkkdk close file

DBO2 A6 83 LDX $83 secondary address

DB04 BD 2B 02 LDA $022B,X get channel number

DBO7 C9 FF CMP #SFF no channel associated?
DBO9 DO 01 BNE $DBOC

DBOB 60 RTS no, then done

DBOC 29 OF AND #SOF isolate channel number
DBOE 85 82 STA $82

DB10 20 25 D1 JSR $D125 check data type

DB13 c9 07 CMP #507 direct access?

DB15 FQ OF BEQ $DB26 yes

DB17 c9 04 CMP #S04 rel-file?

DB19 FO 11 BEQ S$DB2C yes

DB1B 20 07 pl JSR $D107 channel for writing open
DBI1E BO 09 BCS $DB29 no file for writing?
DB20 20 62 DB JSR $DB62 write last block

DB23 20 A5 DB JSR $DBAS write entry in dir and block
DB26 20 ¥4 EE JSR SEEF4 write BAM

DB29 4C 27 D2 JMP $D227 close channel

DR2C 20 F1 DD JSR $DDF1 get buffer number, write block
DB2F 20 1E CF JSR SCFI1E change buffer

DB32 20 CB El JSR $E1CB get last side-sector
DB35 A6 DS LDX $DS si1de-sector number

DB37 86 73 STX $73

DB39 E6 73 INC $73

DB3B A9 00 LDA #500

DB3D 85 70 STA §70

DR3F 85 71

DB41 A5 D6 LDA $D6

DB43 38 SEC

DB44 E9 OE SBC #S0E minus 14 for pointer
CB46 85 72 STA $72

DB48 20 51 DF JSR SDF51 calculate block number of file

180

Anatomy of the 1541 Disk Drive

DB4B A6 82 LDX $82
DB4D A5 70 LDA $70
DB4F 95 B5 STA $B5,X
DB51 A5 71 LDA $71
DB53 95 BB STA $BB,X
DB55 A9 40 LDA #$540
DB57 20 A6 DD JSR $DDA6
DB5A FO 03 BEO SDB5SF
DB5C 20 A5 DB JSR $DBAS
DB5F AC 27 D2 JMP $D227
RRhRRRRRRRARRA R R RAR AR RAR R KAk Ak
DB6 2 A6 82 LDX $82
DB64 B5 B5 LDA $B5,X
DB66 15 BB ORA $BB,X
DB68 D0 0C BNE $DB76
DB6A 20 E8 D4 JSR $D4ES8
DB6D Cc9 02 CMP #502
DB6F DO 05 BNE $DB76
DB71 A9 0D LDA #S0D
DB73 20 F1 CF JSR SCFF1
DB76 20 E8 D4 JSR S$D4ES
DB79 C9 02 CMP #3$02
DB7B DO OF BNE $DB8C
DB7D 20 1E CF JSR $CF1E
DB80 A6 82 LDX $82
DB82 B5 B5 LDA $B5,X
DB84 DO 02 BNE $SDB88
DB86 D6 BB DEC $BB,X
DB88 D6 BS DEC $B5,X
DB8A A9 00 LDA #S00
DB8C 38 SEC

DB8D E9 01 SBC #$01
DB8F 48 PHA

DB90 A9 00 LDA #$00
DB92 20 C8 D4 JSR $D4C8
DB95 20 F1 CF JSR S$CFF1
DB98 68 PLA

DB99 20 F1 CF JSR SCFF1
DB9C 20 C7 DO JSR $DOC7
DB9F 20 99 DS JSR $D599
DBA2 4C 1E CF JMP SCF1lE
Rk RARKRARRRAR RS R kA hhhkhhhhhk
DBAS A6 82 LDX $82
DBA7 8E 70 02 STX $0270
DBAA AS5 83 LDA $83
DBAC 48 PHA

DBAD BD 60 02 LDA $0260,X
DBBO 85 81 STA s$81
DBB2 BD 66 02 LDA $0266,X
DBB5 8D 94 02 STA $0294
DBR8 B5 EC LDA SEC,X
DBBA 29 01 AND #S01
DBBC 85 7F STA S$T7F

181

channel number
record number 1lo
record number hi

bit 6 set?

no

enter in dirctory
close channel

write last block
channel number
record number 1lo
record number hi
not zero?

set buffer pointer

not 2
CR
in buffer

set buffer pointer
now equal to 27

no

change buffer
channel number
record number 1lo

decrement block number hi
and block number lo

set poilnter to end

buffer pointer to zero

write zero in buffer

second byte = pointer to end
write 1n buffer

write block to disk

and verify

change buffer

directory entry

channel number

save

secondary address

save

sector number in directory
set

polnter 1in directory

drive number

Anatomy of the 1541 Disk Drive

DBBE
DBC1
DBC3
DBC6
DBC7
DBC9
DBCC
DBCE
DBD1
DBD3
DBD6
DBD8
DBDA
DBDC
DBDE
DBE1
DBE3
DBES
DBE7
DBE9
DBEB
DBEC
DBEE
DBFO
DBF2
DBF4
DBF6
DBF7
DBF8
DBFA
DBFC
DBFE
DBFF
DCO1
DCO03
DCO6
DCO7
DCO9
DCOB
DCOC
DCOE
DCOF
DC11
DC13
DC14
DC16
DC18
DC19
DC1B
DC1E

DC21
DC23
DC25
DC27

AD
85
20
48
85
20
A0
BD
85
AD
85
Bl
29
FO
20
C9
FO
Bl
29
91
c8
Bl
85
84
A0
Bl
48
88
Bl
DO
85
68
85
A9
20
48
A9
91
c8
91
68
A4
91
c8
Bl
85
68
91
20
4C

Bl
29
09
91

85
80
93

F9
60
00
EQ
87
94
86
86
20
43
25
04
44
86
8F
86

86
80
71
1B
86

86
0A
80

81
67
45

00
86

86

71
86

86
81

86
7D
29

86
OF
80
86

FE

DF

D4

FE

02

D1

E6

C8
DC

LDA
STA
JSR
PHA
STA

SFE85
$80
$DF93

SF9
$D460
#$00
SFEEO,X
$87
$0294
$86
(S86),Y
#$20
s$DC21
$D125
#504
$DC29
($86) ,Y
#S8F
($86),Y

($86),Y
$80

$71
#S1B
($86),Y

($86),Y
$DCO6
$80

$81
#567
SE645

#3500
($86),Y

($86),Y

$71
($86),Y

($86),Y
$81

($86),Y
$C87D
$DC29

($86),Y
#SOF
#$80
($86),Y

182

18, directory track
set

increment buffer number
read directory block
buffer address
buffer pointer

file type

file closed?

yes

check file type
rel-file?

yes

erase bits 4,5, and 6
in file type

track number

sector # of the file for
overwriting

track # for overwriting
set?
set track number

sector number

67, 'i1llegal track or sector’
erase track number

and sector number of the

substitute file

set track & sec # of the new file

erase all files

get file type
1solate bits 0-3
set hit 7 for closed file

Anatomy of the 1541 Disk Drive

DC29 AE 70 02 LDX $0270
DC2C A0 1C LDY #$1C
DC2E B5 B5 LDA $B5,X
DC30 91 86 STA ($86),Y
DC32 c8 INY

DC33 B5 BB LDA $BH,Y
DC35 91 86 STA ($86),Y
DC37 68 PLA

DC38 AA TAX

DC39 A9 90 LDA #$90
DC3B 20 90 D5 JSR $D590
DC40 68 PLA

DC41 85 83 STA $83
DC43 4C 07 D1 JMP $D107
khkhkhkhkkhkhkhkkhhhhkkhhhkhhhhkhhhkhhk ki
DC46 A9 01 LDA #$01
DC48 20 E2 D1 JSR $D1E2
DC4B 20 B6 DC JSR $DCB6
DC4E AD 4A 02 LDA $024A
DC51 48 PHA

DC52 0A ASL A

DC53 05 7F ORA S7F
DC55 95 EC STA $EC,X
DC57 20 98B DO JSR $DO9B
DCSA A6 82 LDX $82
DC5C A5 80 LDA $80
DCSE DO 05 BNE $DC65
DC60 A5 81 LDA $81
DC62 9D 44 02 STA $0244,X
DC65 68 PLA

DC66 C9 04 CMP #$04
DC68 DO 3F BNE $DCA9
DC6A A4 83 LDA $83
DC6C B9 2B 02 LDA $022B,Y
DC6F 09 40 ORA #S540
DC71 99 2B 02 STA $022B,Y
DC74 AD 58 02 LDA $0258
DC77 95 C7 STA $C7,X
DC79 20 8E D2 JSR $D28E
DC7C 10 03 BPL $DC81
DC7E 4C OF D2 JMP $D20F
DC81 A6 82 LDX $82
DC83 95 CD STA $CD,X
DC85 AC 59 02 LDY $0259
DC88 84 80 STY $80
DC8A AC 5A 02 LDA $025A
DC8D 84 81 STY $81
DC8F 20 D3 D6 JSR $D6D3
DC92 20 73 DE JSR S$DE73
DC95 20 99 D5 JSR $D599
DCY8 A6 82 LDX $82
DC9A A9 02 LDA #$02
DCYC 95 C1 STA SC1,X

183

channel number

block number 1lo
in directory encry

and block number hi
write
buffer number

code for 'writing'
write block

secondary address
open channel for writing

read block, layout buffer

find channel and buffer for read
set pointer

file type

save

drive number

read block in puffer
channel number
track

following track?
sector

as end pointer
file type
rel-file?

no

secondary address
channel number

set flag for READ and WRITFE
record length

find buffer for side-sector
found?
70, 'no channel®

channel number

track for side-sector

sector for side-sector

transmit parameters to disk cont.
read block

and verify

channel number

polnter for writing

Anatomy of the 1541 Disk Drive

#$00

$D4C8
$E153
$DE3E

$D156
$82

$023E,X

#$88
$F2,X

$82
$A7,X
A

#$02

$0099,

$AE,X
#580
SAE ,X
A

#S02

$0099,

#$00
$B5,X
S$SBB,X
#500

Y

Y

$0244,X

SF1A9
#S01
$DIDF
$D6D0
$DCB6
$82
$024A

A
S7F
$EC,X

#504
$DCFD
#S01
$F2,X

$83

$0228B,

Y

DC9E A9 00 LDA
DCAO 20 C8 D4 JSR
DCA3 20 53 E1 JSR
DCA6 4C 3E DE JMP
DCA9 20 56 D1 JSR
DCAC A6 82 LDX
DCAE 9D 3E 02 STA
DCB1 A9 88 LDA
DCB3 95 F2 STA
DCB5 60 RTS
khkhkhhkhkkkhhhhkkhkhhkhkhkkhkkhkhhhhddhx
DCB6 A6 82 LDX
DCBS _B5 A7 LDA
pcBa T0a ASL
DCBB fAe TAY
DCBC | A9 02 LDA
DCBE | 99 99 00 STA
DCCl ! B5 AE LDA
DCC3 . 09 80 ORA
DCC5 95 AE STA
DCC7 OA ASL
DCC8 A8 TAY
DCCY | A9 02 LDA
DCCB 99 99 00 STA
DCCE 29 00 LDA
DCDO 95 BS STA
DCD2 95 BB STA
DCD4 A9 00 LDA
DCD6 9D 44 02 STA
DCD9 60 RTS
khkRRkkhkhkkhhhhkhk Rk Axhkhhkrkhkhkhkk ki
DCDA 20 A9 F1 JSR
DCDD A9 01 L.DA
DCDF 20 DF DI JSR
DCE2 20 DO D6 JSR
DCES 20 B6 DC JSR
DCES A6 82 LDX
DCEA AD 4A 02 LDA
DCED 48 PHA
DCEE 0A ASL
DCEF 05 7F ORA
DCFl 95 EC STA
DCKF3 68 PLA
DCF4 C9 04 CcMP
DCF6 FO 05 BEQ
DCF8 A9 01 LDA
DCFA 95 F2 STA
DCFC 60 RTS
DCFD A4 83 LDY
DCFF BY 2B 02 LDA
pD02 29 3F AND

#S3F

184

buffer pointer to zero
find next record
get track and sector number

get byte from puffer
channel number

byte in output register
set flag for READ

reset pointer
channel number
buffer number
times 2

buffer pointer 1lo

set bit 7

buffer pointer lo

block number 1lo
block number hi

end pointer

construct a new block
find free sector in BAM

open channel

transmit param to disk controller
reset pointer

channel number

file type

drive number
save as flag

rel-file?
yes

set WRITE flag
secondary address

channel number 1n table
erase the top two bits

DD04
DD06
DD09
DDOC
DDOE
DD11
DD13

DD16
DD18
DD1A
DD1D
DD20
DD22
DD25
DD27
DD2A
DD2C
DD2E
DD31
DD33
DD36
DD38
DD3B
DD3D
DD40
DD42
DD45
DD48
DD4B
DD4D
DD50
DD52
DD55
DD57
DD5A
DD5D
DD5F
DD6 2
DD64
DD67
DD6A
DD6D
DD6F
DD72
DD74
DD75
DD77
DD79
DD7B
DD7E
DD8 1
DD84
pD8 7
DD8A

40
2B
58
c7
8E
03
OF

82
CcD
Cl
1E
80
59
81
5A
82
CD

00
E9
00
8D
11
8D
00
8D
58
8D
80
8D

8D
10
E9
3E
80
8D

&D
6C
99
02
c8
82

00
c7
cl
E2
19
SE
99
Fa4
28

02
02

D2

D2

DE
F1

02

02

D6
DE
DD
DD
DD
02
DD
DD
DD

DE
DE

DD
DD
DE
D5

D4

E2
DE
DE

FE
bC

ORA
STA
LDA
STA
JSR
BPL
JMP

LDX
STA
JSR
JSR
LDA
STA
LDA
STA
LDX
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR

JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
JSR
LDA
JSR
LDA
JSR
JSR
JSR
LDA
JSR
LDX
SEC
LDA
SBC
STA
JSR
JSR
JSR
JSR
JSR
JMP

#S40

$022B,

$0258
$C7,X
$D28E
$DD16
$D20F

$82
$CD,X
$DEC1
SF11E
$80
$0259
$81
$025A
$82
$CD,X
$D6D3
#S00
S$SDFE9
#$S00
SDD8D
#S11
$DD8D
#S00
$DD8D
$0258
$DD8D
$80
$DD8D
$81
$DD8D
#$10
SDEE9
$DE3E
$80
$SDD8D
$81
$DD8D
SDE6C
$D599
#502
$DACS
$82

#S00

$C7,X
$C1,X
SE2E2
$DE19
$DESE
$D599
SEEF4
$DC98

Anatomy of the 1541 Disk Drive

Y

185

set bit 6

READ and WRITE flag
record length

in table

find buffer

found?

70, 'no channel’

channel number

puffer number for side-~sector
erase buffer

find free block 1n BAM

track

for side~sector

sector

for side-sector

channel number

buffer number

transmit param to disk controller

buffer pointer to zero

17

as end pointer 1n buffer

zero

as side~sector number 1n buffer
record length

in buffer

track number of this block

in puffer

sector number

in buffer

16

buffer pointer to 16

get track and sector number
track # of the first data block
in buffer

sector # of the first data block
in buffer

write block to disk

and check

buffer pointer to 2
channel number

record length

pointer for writing

erase buffer

write link bytes in buffer
write block to disk

and check

write BAM

and done

Anatomy of the 1541 Disk Drive

hkkdkkkhhkhkkkdhkhkhohkhkhohkkkhhkrdkxd

DD8D 48 PHA

DD8E A6 82 LDX $82
DD90 B5 CD LDA $CD,X
DD9 2 4C FD CF JMP SCFFD
LR T T Y
DD95 90 06 BCC $DDI9D
DD97 A6 82 LDX $82
DD99 15 EC ORA S$EC,X
DD9B DO 06 BNE S$DDA3
DD9D A6 82 LDX $82
DD9F 49 FF EOR #SFF
DDAl 35 EC AND S$EC,X
DDA3 95 EC STA S$EC,X
DDAS 60 RTS

DDA6 A6 82 LDX $82
DDA8 35 EC AND SEC,X
DDAA 60 RTS

kkkdkkhhkhkakkhhkkkhkkkrxhkkhkrkhk ¥

DDAB 20 93 DF JSR $DF93
DDAE AA TAX

DDAF BD 5B 02 LDA $025B,X
DDB2 29 FO AND #SFO0
DDB4 Cc9 90 CMP #S$90
DDB6 60 RTS

R R e T T Y T
DDB7 A2 00 LDX #S00
DDB9 86 71 STX $71
DDBB BD 2B 02 LDA S022B,X
DDBE C9 FF CMP #SFF
DDCO DO 08 BNE $DDCA
DDC2 A6 71 LDX $71
DDC4 E8 INX

DDC5 E0 10 CPX #$10
DDC7 90 FO BCC $DDB9Y
DDC9 60 RTS

DDCA 86 71 STX $71
DDCC 29 3F AND #S$3F
DDCE A8 TAY

DDCF B9 EC 00 LDA $0OEC,Y
DDD2 29 01 AND #S01
DDD4 85 70 STA $70
DDD6 AE 53 02 LDX $0253
DDD9 B5 E2 LDA $E2,X
DDDB 29 M1 AND #S01
DDDD c5 70 CMP $70
DDDF DO El BNE $DDC2
DDE1 B9 60 02 LDA $0260,Y
DDE4 D5 D8 CMP S$SD8,X
DDE6 DO DA BNE $DDC2

186

write byte in side~sector block
save byte

channel number

buffer # of the side-sector
write byte in buffer

manipulate flags

channel number
set flag

channel number
erase flag

channel number
test flag

check command code for writing
get buffer number

isolate command code
code for writing?

counter for secondary address
get channel number from table

file open?

increment counter
smaller than 16?

1solate channel number

isolate drive number

1solate drive number

same drive?

no

sector number in directory
same as file?

no

Anatomy of the 1541 Disk Drive

LDA $0266,Y
CMP $DD,X
BNE $DDC2
CLC

RTS

bk kkkkkhkhkkhkhhkrkhkhkkhkkkk

JSR $DFYE
BVC $DDFC
JSR $SDESE
JSR $D599
RTS

de ke ok ok vk ok gk ok ok ke vk ok e e ok ok e ok e o ol e o

JSR $DE2B
LDA $80

STA ($94),Y
INY

LDA $81

STA ($94),Y
JMP $E105

kkkhkkkkhhkhhkhhdhkkkkhhkkhkhkikk

JSR $DE2B
LDA ($94).Y
STA $80

INY

LDA ($94),Y
STA $81

kkkhkkkkkhhkdkdkhhdkkdkhhddkkkkkk

JSR $DE2B
LDA #S00
STA ($94),Y
INY

LDX $82
LDA $C1,X
TAX

DEX

TXA

STA (594),Y
RTS

kkkhkokkkhkkhkkhkddhdkkrkkkkkkkkkk

DDES8 B9 66 02
DDEB D5 DD
DDED DO D3
DDEF 18

DDF0 60

DDF1 20 9E DF
DDF4 50 06
DDF6 20 5E DE
DDF9 20 99 D5
DDFC 60

DDFD 20 2B DE
DEOO A5 80
DEO2 91 94
DEO4 cs

DEOS A5 81
DEO?7 91 94
DE0S 4C 05 El
DEOC 20 2B DE
DEOF Bl 94
DEl1l 85 80
DE13 cs8

DEl4 Bl 94
DE16 85 81
DE18 RTS

DE19 20 2B DE
DE1C A9 00
DELlE 91 94
DE20 c8

DE21 A6 82
DE23 BS Cl
DE25 AA

DE26 CA

DE27 8A

DE28 91 94
DE2A 60

DE2B 20 93 DF
DE2E 0A

DE2F AR

DE30 BS5 9A
DE32 85 95
DE34 A9 00
DE36 85 94
DE38 AD 00
DE3A 60

JSR SDF93
ASL A
TAX

LDA $93,X
STA $95
LDA #500
STA $94
LDY #$00
RTS

187

pointer same?
no

write a block of a rel-file
get buffer number

no rel-file?

write block

and verify

write bytes for following track
set buffer pointer

track number

in buffer

sector number

in buffer

set rel-flag

get following track and sector #

set buffer pointer
following track number

and get sector number

following track for last block
set buffer pointer

zero

as track number

channel number
pointer in block

minus 1

as pointer in block

buffer pointer to zero
get buffer number
times 2

buffer pointer hi

buffer pointer 1lo

Anatomy of the 1541 Disk Drive

e e de e ek de e ok doode e e e ek ke ak de ke ok kb ke Kk ok ke

DE3B 20 EB DO JSR $DOEB
DE3E 20 93 DF JSR $DF93
DEAl 85 F9 STA S$F9
DE43 0A ASL A

DE44 A8 TAY

DEA45 B9 06 00 LDA $0006,Y
DE48 85 80 STA $80
DE4A B9 07 00 LDA $0007,Y
DE4AD 85 81 STA $81
DE4F 60 RTS
khkhhkkkhkhkhbhkhkxhknrmhkhkhkhk ik
DE50 A9 90 LDA #$90
DE52 8D 4D 02 STA $024D
DE55 DO 28 BNE $DET7F
DE57 A9 80 LDA #$80
DE59 8D 4D 02 STA $024D
DE5C DO 21 BNE S$SDE7F
DESE A9 90 LDA #$90
DE60 8D 4D 02 STA $024D
DE63 DO 26 BNE SDESB
DE65 A9 80 LDA #$80
DE67 8D 4D 02 STA $024D
DE6A DO 1F BNE SDESB
DE6C A9 90 LDA #S$90
DE6E 8D 4D 02 STA $024D
DE71 DO 02 BNE $DE75
DE73 A9 80 LDA #$80
DE75 8D 4D 02 STA $024D
DE78 A6 82 LDX $82
DE7A B5 CD LDA $CD,X
DE7C AA TAX

DE7D 10 13 BPL S$DE92
DE7F 20 DO D6 JSR $D6D0
DES 2 20 93 DF JSR $DF93
DE85 AA TAX

DE86 A5 TF LDA $7F
DE88 9p 5B 02 STA $025B,X
DE8B 20 15 El JSR $E115
DESE 20 93 DF JSR $DF93
DE91 AA TAX

DE92 4C 06 D5 JMP $D506
dededdede kg Kk KK Kk kK oo gk K %k gk ok g ok e ok ok ok ok
DE95 A9 00 LDA #S00
DE97 20 C8 D4 JSR $D4CS8
DE9A 20 37 Dl JSR $D137
DE9D 85 80 STA $80
DE9F 20 37 D1 JSR $D137
DEA2 85 81 STA $81

188

get track and sector
get channel number
get buffer number
save

times 2

get track

and sector # from disk controller

command code for writing

command code for reading

command code for writing

command code for reading

command code for writing

command code for reading

channel number
s1de-sector buffer number

buffer associatved?
generate header for disk cont.
get buffer number

drive number

buffer number
get buffer number

write block

get following track & sector from
buffer

buffer pointer to zero

get byte

save as track

get byte

as sector

Anatomy of the 1541 Disk Drive

#$00
S6F

$71
$FEEO,Y
$70
SFEEO,X
$72

SDEB9

SFEEO,Y
$70
#3500
S6F

($6F),Y

SDECC

#$00
SDEDC
#502
($94),Y

$94
$82
$CD,X

$FEED, X
$95

$DEDC

A

DEA4 60 RTS
ARk Rk kkkkk kR kAR kkkkXkhkkh k&
DEAS 48 PHA
DEA6 A9 00 LDA
DEA8 85 6F STA
DEAA 85 71 STA
DEAC B9 EO FE LDA
DEAF 85 70 STA
DFB1 BD EO FE LDA
DEB4 85 72 STA
DER6 68 PLA
DEB7 A8 TAY
DEB8 88 DEY
DEB9 Bl 6F LDA
DEBB 91 71 STA
DEBD 88 DEY
DEBE 10 F9 BPL
DECO 60 RTS
Khkk Rk R ARk Rk kkkhkhhkkkkkk kK k&
DEC1 A8 TAY
DEC2 B9 EO0 FE LDA
DECS 85 70 STA
DEC7 A9 00 ipA
DEC9 85 6F STA
DECB A8 TAY
DECC 91 6F STA
DECE [&:] INY
DECF DO FB BNE
DED1 60 RTS
Ik kkk Rk kkk kR kX kX kk kX kR kkk ok
DED2 A9 00 LDA
DED4 20 DC DE JSR
DED7 A0 02 LDY
DED9 Bl 94 LDA
DEDB 60 RTS
ARk kRRI KRR AR Rk ke kkkkkkkkkkkkk
DEDC 85 94 STA
DEDE A6 82 LDX
DEEO B5 CD LDA
DEE2 AA TAX
DEE3 BD EO FE LDA
DEE6 85 95 STA
DEES8 60 RTS
Kk hhkkhhRhhhhdkhkkhhkkkkhkhk*
DEE9 48 PHA
DEEA 20 DC DE JSR
DEED 48 PHA
DEEE 8A TXA
DEEF 0A ASL
DEFO AA TAX

189

copy buffer contents

buffer address Y, hi

buffer address X, hi

copy contents of buffer Y
to buffer X

erase buffer Y
buffer number
get hi-~address

lo-address

erase buffer

get side-sector number
buffer pointer to zero

byte 2 contains the side-sector

set buffer ptr to side-sector
pointer lo

channel number

buf fer number

buffer address hi
set

buffer pointer for side-sector
pointer in side-sector
set buffer pointer

buffer number
times 2

Anatomy of the 1541 Disk Drive

DEF1 68 PLA
DEF2 95 9A STA $9A,X
DEF4 68 PLA
DEF5 95 99 STA $99,X
DEF7 60 RTS

de de de g g ok deode ok ko ok ke ke ok e ok ke ok kb ke ok ok ke

DEF8 20 66 DF JSR SDF66
DEFB 30 OE BMI $DFOB
DEFD 50 13 BVC $DFl2
DEFF A6 82 LDX $82
DFO1 B5 CD LDA $CD,X
DFO03 20 1B DF JSR $DF1B
DF06 20 66 DF JSR $DF66
DF09 10 07 BPL $DF12
DFO0B 20 CB El JSR SEI1CB
DFOE 2C CE FE BIT SFECE
DF11 60 RTS

DF12 A5 D6 LDA $Db6
DF14 20 E9 DE JSR $DEE9
DF17 2C CD DE BIT SFECD
DFlA 60 RTS

khkkkdkkhkhbhdhhkhdhhh bbbk xnk &

DF1B 85 F9 STA $F9
DF1D A9 80 LDA #S$80
DF1F DO 04 BNE SDF25

kkkhxrmnhkhkhhhkdhhhhkhhkkddhkhk kkk

DF21 85 F9 STA $F9
DF23 A9 90 LDA #$90
DF25 48 PHA

DF26 B5 EC LDA $EC,X
DF28 29 01 AND #$01
DF2A 85 TF STA $7F
DF2C 68 PLA

DF2D 05 7F ORA $7F
DF2F 8D 4D 02 STA $024D
DF32 Bl 94 LDA ($94),Y
DF34 85 80 STA $80
DF36 c8 INY

DF37 Bl 94 LDA ($94),Y
DF39 85 81 STA $81
DF3B A5 F9 LDA $F9
DF3D 20 D3 D6 JSR $D6D3
DF40 A6 F9 LDX $F9
DF42 4C 93 DS JMP $D593
Ekkhkkkkkhhkhkhhx ok khhhkkRhkkhkdkk
DF45 A6 82 LDX $82
DF47 B5 CD LDA $CD,X
DF49 4C EB D4 JMP S$SD4EB

Ry I R SR AT I I
DF4C A9 78 LDA #$78

190

buffer pointer hi

buffer pointer lo

get side-sector and buffer ptr
is side-sector in buffer
no

ok

channel number

buffer number

read side-sector

and check if in buffer
yes?

get last side-sector

set V bit

side-sector end pointer
set pointer in side-sector
erase V bit

read side-sector
buffer number
command code for reading

write side-sector
buffer number
command code for writing

isolate drive number

command code plus drive number
save
track number

sector number

buffer number

transmit param to disk controller
buffer number

tranmit cmd to disk controller

set buffer pointer in side-sector
channel number

buffer number

set buffer pointer

calculate block # of a rel-file
120 block ptrs per side-sector

Anatomy of the 1541 Disk Drive

DF4E 20 5C DF JSR $DF5C
DF51 CA DEX

DF52 10 F8 BPL $DF4C
DF54 A5 72 LDA $72
DF56 43 LSR A
DF57 20 5C DF JSR SDF5C
DF5A A5 73 LDA 873
DF5C 18 CLC

DF5D 65 70 ADC $70
DF5F 85 70 STA $70
DF61 90 02 BCC S$DF65
DF63 E6 71 INC $71
DF65 60 RTS

de e e dc &k ok gk ok ke ok Je ok Kk ok gk ek e gk ok ok Kk

DF66 20 D2 DE JSR $DED2
DF69 C5 D5 CMP $DS
DF6B DO OE BNE $DF7B
DF6D A4 D6 LDY $D6
DF6F Bl 94 LDA ($94),Y
DF71 FO 04 BEQ $DF77
DF73 2C CD FE BIT $FECD
DF76 60 RTS

DF77 2C CF FE BIT SFECF
DF7A 60 RTS

DF7B A5 D5 LDA $D5
DF7D Cc9 06 CMP #$06
DF7F BO 0A BCS SDF8B
DF81 0A ASL A
DF82 A8 TAY

DF83 A9 04 LDA #3504
DF85 85 94 STA $94
DF87 Bl 94 LDA ($94),Y
DF89 DO 04 BNE $DF8F
DF8B 2C DO FE BIT $FEDO
DF8E 60 RTS

DF8F 2C CE FE BIT $FECE
DF92 60 RTS

% e g v o d e ok J kg kg Kk ok e ok e ok ke ke ok ok ok ok ok ok ok ok

DF93 A6 82 LDX $82
DF95 B5 A7 LDA $A7,X
DF97 10 02 BPL S$SDF9B
DF99 B5 AE LDA $AE,X
DF9B 29 BF AND #$BF
DF9D 60 RTS

DF9E A6 82 LDX $82
DFAOQ 8E 57 02 STX $0257
DFA3 B5 A7 LDA SA7,X
DFAS 10 09 BPL $DFBO
DFA7 8A TXA

DF A8 18 CLC

191

add to $70/$71

side~sector number

next side-sector?

pointer value in last block
divided by 2

add to previous sum

number of the side-sector block

add

verify side-sector in buffer
get side-sector number

= number of necessary block?
no

pointer in side-sector

track number

erase bits
set N-bit
side-sector number

6 or greater?
yes

track number

set N and V bits

set V bit

get buffer number
channel number
buffer number

buffer number from second table
erase V bit

channel number
save

get buffer number
buffer allocated

Anatomy of the 1541 Disk Drive

#8507
$0257
SAE,X
$70
#S1F
$70

$82
$A7,X
SDFBF
$AE,X
#SFF

$82
#$80
$A7,X
$DFCD
$A7,X

SAE,X

#$20
$DD9D
#$80
$DDA6
$SEQLD
$82
$B5,X
$SDFE4
$BB,X
$82
$C1,X
$E018
SD4ES8
$82
$C1,X
$DFF6
SE03C
$82
$C1,X
$D4C8

($99),x

$85
#$20
$DD9D
SE304

SE034
#3500
SD4F6

DFA9 69 07 ADC
DFAB 8D 57 02 STA
DFAE B5 AE LDA
DFBO 85 70 STA
DFB2 29 1F AND
DFB4 24 70 BIT
DFB6 60 RTS
DFB7 AD 82 LDX
DFB9 B5 A7 LDA
DFBB 30 02 BMI
DFBD BS5 AE LDA
DFBF C9 FF CMP
DFC1 60 RTS
DFC2 A6 82 LDX
DFC4 09 80 ORA
DFC6é B4 A7 LDY
DFC8 10 03 BPL
DFCA 95 A7 STA
DFCC 60 RTS
DFCD 95 AE STA
DFCF 60 RTS
dAkr R KRR A AR AR Rk kR khk k&
DFDO A9 20 LDA
DFD2 20 9D DD JSR
DFD5 A9 80 LDA
DFD7 20 A6 DD JSR
DFDA DO 41 BNE
DFDC A6 82 LDX
DFDE F6 BS INC
DFEQ DO 02 BNE
DFE2 F6 BB INC
DFE4 A6 82 LDX
DFE6 BS C1 LDA
DFES FO 2E BEOQ
DFEA 20 E8 D4 JSR
DFED A6 82 LDX
DFEF D5 C1 CcMp
DFF1 90 03 BCC
DFF3 20 3C EO JSR
DFF6 A6 82 LDX
DFF8 B5 C1 LDA
DFFA 20 C8 D4 JSR
DFFD Al 99 LDA
DFFF 85 85 STA
E001 A9 20 LDA
E003 20 9D DD JSR
E006 20 04 E3 JSR
E0O9 48 PHA
EOOA 90 28 RCC
EOOC A9 00 LDA
EOOE 20 F6 D4 JSR
EO011 DO 21 BNE

$E034

192

increment number by 7
and save
buffer number from table 2

erase the highest 3 bits

channel number

buf fer number

buffer free?

buffer number from table 2
free?

get next record in rel-file
erase bit 5

test bit 7

set?

channel number
increment record number

record number h1i

channel number

write pointer

zero?

set buffer pointer

channel number

buffer ptr smaller than write ptr
yes

write block, read next block
channel number

write pointer

set buffer pointer = write ptr
byte from buffer

put 1n output register

erase bit 5

add record length to write ptr
and save

not yet in last block?

get track number
does block exist?

Anatomy of the 1541 Disk Drive

E013 68 PLA pointer

E014 c9 02 CMP #3502 = 2

E016 FO 12 BEQ $E02A yes

E018 A9 80 LDA #$80

EO1A 20 97 DD JSR $DD97 set bit 7

EO1D 20 2F D1 JSR $D12F get byte from buffer
E020 B5 99 LDA $99,X buffer pointer

E022 99 44 02 STA $0244,Y as end pointer

E025 A9 0D LDA #$0D CR

E027 85 85 STA $85 in output register
E029 60 RTS

E02A 20 35 EO JSR $E035

E02D A6 82 LDX $82 channel number

EO2F A9 00 LDA #5500

E031 95 C1 STA $C1,X write pointer to zero
E033 60 RTS

E034 68 PLA

E035 A6 82 LDX $82 channel number

E037 95 C1 STA $C1,X set write pointer

E039 4C 6E El JMP $E16E

ARk Rk AXXAAA XA Ak kh khkkkhkhkkhkkik write block and read next block

E03C 20 D3 D1 JSR $D1D3 get drive number

EO3F 20 95 DE JSR SDE95 get track and sector number
E042 20 9E DF JSR $DF9E get buffer number

E045 50 16 BVC SEOS5D no rel-file?

E047 20 5E DE JSR SDESE write block

E04A 20 1E CF JSR SCF1E change buffer

E04D A9 02 LDA #$02

EQ4F 20 C8 D4 JSR $D4C8 buffer pointer to 2

E052 20 AB DD JSR S$DDAB command code for writing?
EO55 DO 24 BNE SE078 no

E0S57 20 57 DE JSR $DES7 read block

EOSA 4C 99 D5 JMP $D599 and verify

EOSD 20 1E CF JSR SCF1E change buffer

E060 20 AB DD JSR $DDAB command code for writing?
E063 DO 06 BNE $E068 no

E065 20 57 DE JSR $DE57 read block

E068 20 99 D5 JSR $D599 and verify

EO6B 20 95 DE JSR $DE95 get track and sector number
EO6E A5 80 LDA $80 track

E070 FO 09 BEQ SEQO7B no following track

E072 20 1E CF JSR S$CF1E change buffer

EQ075 20 57 DE JSR $DES57 read block

E078 20 1E CF JSR S$CF1E change buffer

E07B 60 RTS

HRRAKKKR KKK KRR KKXRRRKKRNRX urite a byte 1n a record
EQ7C 20 05 E1 JSR $E105

EO7F 20 93 DF JSR S$DF93 get buffer number
E082 0a ASL A times 2
E083 AA TAX

193

Anatomy of the 1541 Disk Drive

E084 A5 85 LDA $85 data byte

EO86 81 99 STA (S$99,X) write in buffer

E088 B4 99 LDY $99,X buf fer pointer

E0O8A c8 INY increment

EO8B DO 09 BNE SE096 not equal zero?

E08D A4 82 LDY $82 channel number

EO8F B9 C1 00 LDA $00C1,Y write pointer

E092 FO 0A BEQ SEOQO9E equal zero?

E094 A0 02 LDY #$02 buffer pointer to 2

E096 98 TYA

E097 A5 82 LDY $82 channel number

E099 D9 C1 00 CMP $00C1,Y buffer pointer = write pointer?
E09C DO 05 BNE $E043 no

EO9E A9 20 LDA #8520

EOAQ 4C 97 DD JMP $DD97 set bit 5

EOA3 F6 99 INC $99,X increment buffer pointer
EQAS DO 03 BNE SEOAA not zero?

E0OA7 20 3C EO JSR $E03C else write block, read next one
EOAA 60 RTS

Khkhkkhhkkhhkhkhkrkhkhkkhkrhkihkhhhkdkhrhik write byte in rel_file
EOQAB A9 A0 LDA #$A0

EQAD 20 A6 DD JSR $DDA6 test bits 6 & 7

EOBO D0 27 BNE SEOD9 set?

E0B2 A5 85 LDA $85 data byte

EQB4 20 7C EO JSR SEO7C write 1n record

EOB7 A5 F8 LDA S$F8 end?

EOB9 F0 OD BEC SEQOC8 yes

EOBB 60 RTS

EORC A9 20 LDA #$20

EOBE 20 A6 DD JSR S$DDA6 test bit 5

EOC1 FO 05 REQ SEQOCS8 not set

EOC3 A9 51 LDA #$51 51, 'overflow in record'
EOCS 8D 6C 02 STA $026C set error flag

EOC8 20 F3 EO JSR S$EOF3 fill remainder with zeroes
EOCB 20 53 El JSR $E153

EOCE AD 6C 02 LDA $026C error flag set?

EOD1 FO 03 BEQ SEOD6 no

EOD3 4C C8 C1 JMP $C1C8 set error message

FOD6 4C BC E6 JMP $F6BC error free execution
EO0D9 29 80 AND #$80 bit 7 set?

EODB DO 05 BNE SEOE2 yes

EODD A5 F8 LDA S$F8

EODF FO DB BEQ SEOBC end?

EOEL 60 RTS

EOE2 A5 85 LDA $85 data byte

EOE4 48 PHA

EOES5 20 1C E3 JSR $E31C expand side-sector

EOES8 68 PLA

EOE9 85 85 STA $85

EOEB A9 80 LDA #$80

194

Anatomy of the 1541 Disk Drive

EQED 20 9D DD JSR $DD9D erase bit 7

EOF0 4C B2 EO JMP SEOB2 write byte in file
FhEkrA Ak kkk ke kA bbb bk ks kkkkk kX £3]] record with zeroes
EOF3 A9 20 LDA #$20

EOFS 20 A6 DD JSR $DDA6 test bit 5

EOF8 DO 0A BNE $E104 set?

EOFA A9 00 LDA #$00

EQOFC 85 85 STA $85 zero as data byte
EOFE 20 7C EO JSR $EO07C write in record
E101 4C F3 EO JMP SEOF3 until record full
E104 60 RTS

K de gk de ok ke K Kk ok ok g de ok de gk ok ok ok g ok gk Xk Kk ok ok ok ok ok write buffer number in tab]e
E105 A9 40 LDA #$40

E107 20 97 DD JSR $DD97 set bit 6

E10A 20 9E DF JSR $DF9E get buffer number
E10D 09 40 ORA #$40 set bit 6

E10F AE 57 02 LDX $0257 channel number + 7
E112 95 A7 STA S$A7,X write in table
E114 60 RTS

E115 20 9E DF JSR $DF9E get buffer number
E118 29 BF AND #$BF erase bit 6

EllA AE 57 02 LDX $0257 channel number
E11D 95 A7 STA SA7,X write in table
E11F 60 RTS

KRKKKKKKKKKK RS NARRKKRRAFR**hR* oot byte from rel-file
E120 A9 80 LDA #S80

E122 20 A6 DD JSR $DDA6 test bit 7

E125 DO 37 BNE SE15E set?

E127 20 2F D1 JSR $DI12F get byte from buffer
E12A B5 99 LDA $99,X buffer pointer

El2C D9 44 02 CMP $0244,Y compare to end pointer
E12F FO 22 BEO $E135 equal?

E131 F6 99 INC $99,X increment buffer pointer
E133 DO 06 BNE S$E13B not zero?

E135 20 3C EO JSR $E03C write block, read next one
E138 20 2F D1 JSR $D12F get byte from buffer
E13B Al 99 LDA ($99,X)

E13D 99 3E 02 STA $023E,Y in output register

E140 A9 89 LDA #$89

E142 99 F2 00 STA $00F2,Y set READ and WRITE flag
E145 B5 99 LDA $99,Y buffer pointer

E147 D9 44 02 CMP $0244,Y compare to end pointer
E14A FO 01 BEQ $E14D same?

El4C 60 RTS

E14D A9 81 LDA #$81

E14F 99 F2 00 STA $00F2,Y set flag for end
E152 60 RTS

E153 20 DO DF JSR $SDFDO find next record

195

Anatomy of the 1541 Disk Drive

E156
E159
E15B

E15E
E160
E162
E165
E167
E169
E16B

E16E
E170
E172
E174
E176
E178
E17A
E17¢C
E17E
E180
E182
E185
E187
E189
E18B
E18D
E190
E193
E195
E197
E19A

E19D
E1A0
E1A2
ElA4
E1A7
E1A9
E1AC
E1AE
E1B1

E1B2
E1BS
E1B7
E1B9
E1BB
E1BC
E1BE
E1CO
E1C2
E1C4
E1C6

20
A5
4C

A6
A9
9D
A9
95
A9
20

A6
B5
85
Cé
Cc9
DO
A9
85
B5
85
20
A6
C5
90
FO
20
20
90
A6
9D
4C

20
A9
85
20
BO
20
Ab
9D
60

20
A4
Bl
DO
88
co
90
Cé
DO
Cé
18

2F
85
3D

82
oD
3E
81
F2
50
Cc8

82
C1
87
87
02
04
FF
87
c7
88
E8
82
87
19
17
1E
B2
08
82
44
1E

1E
FF
87
B2
03
E8
82
44

28
87
94
0D

02
04
88
F3
88

D1

El

02

c1

D4

CF
El

02
CF

CF

El
D4

02

DE

JSR
LDA
JMP

LDX
LDA
STA
LDA
STA
LDA
JSR

LDX
LDA
STA
DEC
CMP
BNE
LDA
STA
LDA
STA
JSR
LDX
cMp
BCC
BEQ
JSR
JSR
BCC
LDX
STA
JMP

JSR
LDA
STA
JSR
BCS
JSR
LDX
STA
RTS

JSR
LDY
LDA

DEY
CcPY
BCC
DEC
BNE
DEC
CLC

$D12F
$85
SE13D

$82
#S0D

$023E,X

#$81
$F2,X
#$50
scics

$82
$Cl,Xx
$87
$87
#502
SE17E
$#SFF
$87
$C7,X
$88
$D4ES8
$82
$87
SE1A4
SE1a4
SCF1E
SE1B2
SE19D
$82

$0244,X

SCF1E

SCF1E
#SFF
$87
SE1B2
SE1AC
$D4ES8
$82

$0244,X

$DE2B
$87

($94),

SE1C8

#$02
SE1C4
$88
SE1B7
$88

Y

196

get buffer and channel number
data byte

into output register

channel number

CR

into output register

set flag for end

50, ‘record not present’
channel number

write pointer

save

equal 2?

no

record length

set buffer pointer

channel number

buffer pointer > write pointer?
no

change buffer

channel number

change buffer

change buffer

set buffer pointer
channel number
end pointer

buffer pointer to zero

byte from buffer
not zero?

Anatomy of the 1541 Disk Drive

E1C7 60 RTS

E1C8 98 TYA

E1C9 38 SEC

E1CA 60 RTS

hkkkhkhkhkhkhkhkhkkkkhkkhkhkkhkhkkhhkhkkkxk get last side—sector

E1CB 20 D2 DE JSR $DED2 get number of the side-sector
E1CE 85 D5 STA $D5 save

E1DO A9 04 LDA #$04

E1D2 85 94 STA $94 pointer to side-sectors
E1D4 A0 0A LDY #$0A

E1D6 DO 04 BNE $E1DC

E1D8 88 DEY

E1D9 88 DEY

E1DA 30 26 BMI $E202

E1DC Bl 94 LDA ($94),Y track # of the previous bleck
E1DE FO F8 BEQ SE1D8

E1EQ 98 TYA

E1El 4A LSR A divide by 2

E1E2 C5 D5 CMP $D5 = number of the actual block?
E1E4 FO 09 BEQ SFE1EF yes

E1E6 85 D5 STA $D5 else save all numbers

E1E8 A6 82 LDX $82 channel number

E1EA B5 CD LDA $CD,X buf fer number

E1EC 20 1B DF JSR $DF1B read block

E1EF A0 00 LDY #$00

E1F1 84 94 STY $94 buffer pointer

E1F3 Bl 94 LDA ($94),Y track number

E1F5 DO OB BNE $E202 another block?

E1F7 c8 INY

E1F8 Bl 94 LDA ($94),Y sector number = end pointer
E1FA A8 TAY

E1FB 88 DEY

E1FC 84 D6 STY $D6 save end pointer

E1FE 98 TYA

E1FF 4C E9 DE JMP SDEE9 set buffer pointer

E202 A9 67 #3567

E204 20 45 E6 JSR $E645 67, 'i1llegal track or sector!
khkkdkkkkhhkkhhhkhkkhkhkhhkhhkkhkkx P-—command, IRecordl

E207 20 B3 C2 JSR $C2B3 verify lines

E20A AD 01 02 LDA $0201 secondary address

E20D 85 83 STA $83

E20F 20 EB DO JSR $DOEB f£ind channel number

E212 90 05 BCC $E219 found?

E214 A9 70 LDA #$70

E216 20 C8 C1 JSR $C1C8 70, 'no block®

E219 A9 A0 LDA #S$AQ

E21B 20 9D DD JSR $DD9D erase bits 6 & 7

E21F 20 25 D1 JSR $D125 verify 1f 'REL'-file

E221 FO 05 BEQ S$SE228 yes

197

Anatomy of the 1541 Disk Drive

E223
E225

E228
E22A
E22C
E22E
E231
E233
E236
E238
E23A
E23C
E23E
E241
E243
E244
E246
E248
E24A
E24C
E24E
E251
E253
E255
E258
E25B
E25D
E25F
E262

E265
E268
E26A
E26D
E26F
E272

E275
E278
E27A
E27D
E27F
E281
E282
E284
E286

E289
E28A
E28C
E28E
E290
E291
E294

A9
20

BS
29
85
AD
95
AD
95
A6
A9
95
AD
FO
38
E9
FO
D5
90
A9
8D
A9
85
20
20
50
A9
20
4C

20
A9
20
FO
4Cc
4C

20
A5
20
A6
B5
38
ES
BO
4c

18
65
90
69
38
20
4C

64
cs

EC
01
TF
02
BS
03
BB
B2
89
F2
04
10

01
0B
c7
07
51
6C
00
D4
0E
F8
08
80
97
5E

75
80
A6
03
S5E
94

9C
D7
c8
82
c7

D4
03
02

D7
03
01

09
38

c1

02

02

02

02

CE
DE

DD
El
E2
DD

El
Cl

E2

D4

E2

EO
El

LDA
JSR

LDA
AND
STA
LDA
STA
LDA
STA
LDA
LDA
STA
LDA
BEQ
SEC
SBC
BEQ
CMP
BCC
LDA
STA
LDA
STA
JSR
JSR
BVC
LDA
JSR
JMP

JSR
LDA
JSR
BEQ
JMP
JMP

JSR

CLC

JMP

#$64
sclcs

S$EC,X
#S01
S$S7F
$0202
$B5,X
$0203
SBB,X
$82
#589
$F2,X
$0204
SE253

#3501
$SE253
$C7,X
$E253
#$51
$026C
#$00
$D4
$CEOE
SDEF8
$E265
#$80
$DD97
SE15E

SE275
$#580

$DDA6
$E272
SE15E
$C194

$SE29C
$D7
$D4C8
$82
$C7,X

$D4
SE289
$E202

$D7
$E291
#301

SE009
$F138

198

64, 'file type mismatch'

drive number
record number lo

record number hi
channel number
READ and WRITE flag

byte-pointer
zero?

compare with record length

51, 'overflow in record'

calculate pointer in rel-file
and read appropriate side-sector
does block exist?

set bit 7
and 50, 'record not present'

test bit 7

not set
50, 'record not present'

done
pointer in rel-file

set buffer pointer

channel number

record length

minus position

positive?

67, '1llegal track or sector'

add pointer 1in data block
no overflow
plus 2

set pointer
get byte from buffer

E297 A9 51 LDA #$51
E299 20 C8 C1 JSR $C1C8
E29C A5 94 LDA $94
E29E 85 89 STA $89
E2A0 A5 95 LDA $95
E2A2 85 8A STA $8A
E2A4 20 DO E2 JSR SE2D0
E2A7 DO 01 BNE SE2AA
E2A9 60 RTS

E2AA 20 F1 DD JSR $DDF1
E2AD 20 0C DE JSR $DEOC
E2B0 A5 80 LDA $80
E2B2 FO OE BEOQ $E2C2
E2B4 20 D3 E2 JSR SE2D3
E2B7 D0 06 BNE $E2BF
E2B9 20 1E CF JSR SCF1E
E2BC 4C DA D2 JMP $D2DA
E2BF 20 DA D2 JSR $D2DA
E2C2 A0 00 LDY #3500
E2C4 Bl 89 LDA (%89),Y
E2C6 85 80 STA $80
E2C8 c8 INY

E2C9 Bl 89 LDA ($89),Y
E2CB 85 81 STA $81
E2CD 4C AF DO JMP SDOAF
E2D0 20 3E DE JSR S$DE3E
E2D3 A0 00 LDY #S00
E2D5 Bl 89 LDA ($89),Y
E2D7 c5 80 CMP $80
E2D9 FO 01 BEQ $E2DC
E2DB 60 RTS

E2DC c8 INY

E2DD Bl 89 LDA ($89),Y
E2DF C5 81 CMP $81
E2E1 60 RTS
hkhkkkhAkhhkhhkhkhkhhkkhkhhkhkhkhkhxkdhkhk
E2E2 20 2B DE JSR $DE2B
E2ES A0 02 LDY #$02
E2E7 A9 00 LDA #$00
E2E9 91 94 STA ($94),Y
E2EB c8 INY

E2EC DO FB BNE $E2E9
E2EE 20 04 E3 JSR SE304
E2F1 95 C1 STA $C1,X
E2F3 A8 TAY

E2F4 A9 FF LDA #SFF
E2F6 91 94 STA ($94),Y
E2F8 20 04 E3 JSR $E304
E2FB 90 F4 BCC $E2F1
E2FD DO 04 BNE $E303

199

Anatomy of the 1541 Disk Drive

51, ‘overflow in record’
buffer pointer 1lo
buf fer pointer hi

compare track and sector
not equal?

track

no block following?

compare track and sector number
not equal?

change buffer

track
and sector of the next block

read block

track number
compare

sector number
compare

subdivide records in data block
set buffer pointer

erase buffer

set pointer to next record

SFF as 1lst character in record
set pointer to next record
done in this block?

block full?

Anatomy of the 1541 Disk Drive

#500
$C1,Xx

$82
SC1,X

$E318

$C7,X
SE31B
$E318
#3502

SFECC

#s01

$D1D3
SE1CB
$E29C
SCF7B
$D6
$87
$D5
$86
#$00
$88
#3500
$D4
SCEOE
SEF4D
$82
$C7,Y

$D7
$SE355
$D6
$D6
SE355
$D5S
#$10
#D6
$87

#502
SDEE9
$N5

E2FF A9 00 LDA
E301 95 C1 STA
E303 60 RTS
2 R R T T T T Y
E304 A6 82 LDX
E306 B5 Cl1 LDA
E308 38 SEC
E309 F0O 0D BEQ
E30B 18 CLC
E30C 75 C7 ADC
E30E 90 OB BCC
E310 DO 06 BNE
E312 A9 02 LDA
E314 2C CC FE BIT
E317 60 RTS
E318 69 01 ADC
E31A 38 SEC
E31B 60 RTS
AE Rk AR kR AR RKRARAR AR R IR R ARk A ko
E31C 20 D3 DI JSR
E31F 20 CB El JSR
E322 20 9C E2 JSR
E325 20 7R CF JSR
E328 A5 D6 LDA
E32A 85 87 STA
E32C A5 D5 LDA
E32E 85 86 STA
E330 A9 00 LDA
E332 85 88 STA
E334 A9 00 LDA
E336 85 D4 STA
E338 20 OE CE JSR
E33B 20 4D EF JSR
E33E A4 82 LDY
E340 B6 C7 LDX
E342 Ca DEX
E343 8A TXA
E344 18 CLC
E345 65 D7 ADC
E347 90 0C RCC
E349 E6 D6 INC
E34B E6 D6 INC
E34D DO 06 BNE
E34F E6 D5 INC
E351 A9 10 LDA
E353 85 D6 STA
E355 A5 87 L.DA
E357 18 CLC
E358 69 02 ADC
E35A 20 E9 DE JSR
E35D A5 D5 LDA
E35F C9 06 CMP

#306

200

write polnter to zero

set pointer to next record
channel number
write pointer

equal zero?
add record length

smaller than 2562
equal 2567

add two

expand side-sector
get drive number
get last side-sector

s1de-sector number

calculate side-sector no. and ptr

number of free blocks
channel number
record length

plus pointer 1in data block

increment ptr to end by 2
increment side-sector number

set pointer to 16

set buffer ptr for side-sector
side-sector number

E361
E363
E365
E368
E36A
E36B
E36D
E36F
E371
E372
E374
E376
E378
E37A
E37C
E37E
E380
E381
E384
E386
E388
E38A
E38B
E38D
E38F
E392
E394
E396
E399
E39B
E39D
E39F
E3A2
E3A3
E3A5
E3A7
E3A9
E3AC
E3AF
E3Bl1
E3B3
E3B6
E3B9
E3BC
E3BF
E3C2
E3C5

E3C8
E3CB
E3CE
E3D1
E3D4
E3D7
E3DA

90
A9
20
AS
38
ES
BO
E9
18
85
AS
ES
85
A2
86
86

20
AS
Do
A6
CA
DO
E6
CD
90
Do
AD
cs
90
AS

18
69
A6
95
20
20
AS
Do
20
20
20
20
20
20
4C

20
20
20
20
20
20
AS

05
52
c8
D6

87
03
OF

72
DS
86
73
00
70
71

51
71
07
70

02
88
73
09
CcD
72
70
Cé
01
F6é

01
82
Cl
1E
FD
88
15
SE
1E
DO
1E
FD
E2
D4

1E
DO
E2
19
5E
oc
80

Ccl

DF

02

02

D4

BCC
LDA
JSR
LDA
SEC
SBC
BCS
SBC
CLC
STA
LDA
SBC
STA
LDX
STX
STX
TAX
JSR
LDA
BNE
LDX
DEX
BNE
INC
CcMP
BCC
BNE
LDA
CMP
BCC
LDA
JSR
CLC
ADC
LDX
STA
JSR
JSR

BNE
JSR
JSR
JSR
JSR
JSR
JSR
JMP

JSR
JSR
JSR
JSR
JSR

LDA

$SE368
#552
$Clcs
$D6

$87
$E372
#SOF

$72
$D5
$86
$73
#s00
$70
$71

$DF51
$71
SE38F
$70

SE38F
s$88
$0273
SE39D
$E363
$0272
$70
SE363
#501
$D4F6

#501
$82
$C1,X
SF11E
$DDFD
$88
$E3C8
$DESE
SCF1E
$D6DO
$F11E
$DDFD
$E2E2
SE3D4

SCF1E
$D6D0
SE2E2
SDE19
SDESE
SDEOC
$80

Anatomy of the 1541 Disk Drive

201

smaller than 6?

52, 'file too large'
end pointer

minus last end pointer

minus 16

side-sector number
minus last side-sector number
save

erase sum for calculation

calculate block # of rel-file

block number of rel-file
greater than free blocks on disk?
52, 'file too large'

52, 'file too large'
get byte from buffer
plus 1

as write pointer
find free block 1n BAM
track and sector in buffer

only one block needed?

write block

change buffer

transmit param to disk controller
find free block 1n BAM

track and sector in buffer

erase buffer

change buffer

transmit param to disk controller
erase buffer

zero byte and end ptr 1in buffer
write block

get track and sector

track

Anatomy of the 1541 Disk Drive

E3DC 48 PHA

E3DD A4 81 LDA §81
E3DF 48 PHA

E3EQD 20 3E DE JSR $DE3E
F3E3 AS 81 LDA $81
E3E5 48 PHA

E3E6 A5 80 LDA $80
E3ES8 48 PHA

E3E9 20 45 DF JSR $DF45
E3EC AA TAX

E3ED DO OA BNE SE3F9
E3EF 20 4E E4 JSR SE44E
E3F2 A9 10 LDA #S10
E3F4 20 E9 DE JSR $DEE9
E3F7 E6 86 INC $86
E3F9 68 PLA

E3FA 20 8D DD JSR $DD8D
E3FD 68 PLA

E3FE 20 8D DD JSR SDD8D
E401 68 PLA

E402 85 81 STA $81
E404 68 PLA

E405 85 80 STA $80
E407 FO OF BEQ SE418
£409 A5 86 LDA $86
E40B C5 D5 CMP $D5
E40D DO A7 BNE $E3B6
E40F 20 45 DF JSR SDF45
E412 C5 D6 CMP S$D6
E414 90 AC BCC SE3B6
F416 FO RO BEQ SE3C8
E418 20 45 DF JSR $DF45
E41B 48 PHA

E41C AS 00 LDA #$00
E41E 20 DC DE JSR $DEDC
E421 A9 00 LDA #$00
E423 A8 TAY

E424 91 94 STA ($94),Y
E426 c8 INY

F427 68 PLA

E428 38 SEC

E429 E9 01 SBC #$01
E42B 91 94 STA ($94),Y
E42D 20 6C DE JSR $DE6C
E430 20 99 D5 JSR $D599
E433 20 F4 EE JSR $EEF4
E436 20 OE CE JSR SCEOE
E439 20 1E CF JSR $CF1E
E43C 20 F8 DE JSR SDEF8
E43F 70 03 BVS S$E444
E441 4C 75 E2 JMP SE275
E444 A9 80 LDA #$80
E446 20 97 DD JSR $DD97
E449 A9 50 LDA #$50

202

and sector

save

get track and sector from disk
controller

save track and sector
set buffer ptr for side-sector

pointer not zero?
write side-sector

buffer pointer to 16
increment side~gsector number

track 1in side sector
sector 1in side-sector
sector

and get track back

no more blocks?

side-sector number

changed?

yes

set buffer ptr in side-sector
end polnter

smaller?

same

set buffer ptr in side-sector

buffer pointer to zero

zero as track number
end pointer

minus one

as sector

write block

and verify

update BAM

update pointer for rel-file
change buffer

right side-sector?

no

set bit 7

E44B

20 €8 C1

JSR

$cics

Anatomy of the 1541 Disk Drive

KRR T kX kkkkkkkrhkkkhkxk

E44E
E451
E454
E457
E45A
E45B
E45E
E460
E462
E463
E464
E465
E467
E46A
E46C
E46F
E471
E473
E474
E476
E479
E47A
E47B
E47D
E47F
E480
E482
E£484
E485
E486
E488
E48A
E48C
E48E
E490
E491
E493
E£495
E497
£499
E49A
E49C
E49D
E49F
E4A1l
E4A3
E4A6
E4A9
E4AC
E4AE
E4B0

20
20
20
20
48
20
A6
BS
A8
68
AA
A9
20
A9
20
A0
Bl
48
AS
20
68
18
69
91
0A
69
85
A8
38
ES
85
AS
85
91
(@]
AS
85
91
AD
28
91
c8
A9
91
A9
20
20
20
A6
B5
48

1E
1E
Fl
93

Ccl
82
CD

10
A5
00

02
94

00
Cc8

01
94

04
89

02
8A
80
87
94

81

94
00

94

11
94
10
cs
50
99
82
CD

Fl
CF
DD
DF

DE

DE

DE

D4

D4

D5

JSR
JSR
JSR
JSR
PHA
JSR
LDX
LDA
TAY
PLA
TAX
LDA
JSR
LDA
JSR
LDY
LDA
PHA
LDA
JSR
PLA
CLC
ADC
STA
ASL
ADC
STA
TAY
SEC
SBC
STA
LDA
STA
STA
INY
LDA
STA
STA
LDY
TYA
STA
INY
LDA
STA
LDA
JSR
JSR
JSR
LDX
LDA
PHA

SF11E
SCF1E
$DDF1
SDF93

SDEC1
$82
$CD,X

#$10
$DEAS
#$00
$DEDC
#$02

($94),

#S00
$D4cCs

#s01

(s94),
A

#504
$89

#8502
S8A
$80
$87

($94),

$81
$88

(s94),

#$00

(s94),

#$11

(s$94),

#$10
$D4C8
SDESO
$D599
$82
$CD,X

Y

Y

Y

Y

Y

Y

203

50, 'record not present?

write side-sector and allocate
new one

find free block in BAM

change buffer

write block

get buffer number

erase buffer
channel number
buf fer number

16 bytes of the side-sector
copy in buffer

buffer ptr to 0, old side-sector

side~gsector number

buffer ptr to 0, new side-sector

increment side-sector number
and 1n buffer

times 2

plus 4

minus 2
same pointer to old side-sector
track

in buffer
sector

in buffer

zero in buffer

17

number of bytes in block

16

buffer pointer to 14

write block

and verify

channel number

buffer number of the side-sector

Anatomy of the 1541 Disk Drive

E4Bl 20 9E DF JSR $DF9E
E4B4 A6 82 LDX $82
E4B6 95 CD STA $CD,X
E4B8 68 PLA

E4B9 AE 57 02 LDX $0257
E4BC 95 A7 STA $A7,X
E4BE A9 00 LDA #$00
E4CO 20 C8 D4 JSR $D4C8
E4C3 A0 00 LDY #$00
E4C5 A5 80 LDA $80
E4C7 91 94 STA ($94),Y
E4C9 c8 INY

E4CA AS5 81 LDA $81
E4CC 91 94 STA ($94),Y
EACE 4C DE E4 JMP $E4DE
E4D]1 20 93 DF JSR $DF93
E4D4 A6 82 LDX $82
E4D6 20 1B DF JSR $DF1B
E4D9 AS 00 LDA #$00
E4DB 20 C8 D4 JSR $D4C8
EFDE C6 8A DEC $8A
E4EOQ C6 8A DEC $8A
E4E2 A4 89 LDY $89
E4E4 A5 87 LDA $87
E4E6 91 94 STA ($94),Y
E4ES8 c8 INY

E4E9 A5 88 LDA $88
E4EB 91 94 STA ($94),Y
E4ED 20 5E DE JSR $DESE
E4F0 20 99 D5 JSR $D599
E4F3 A4 8A LDY $8A
E4F5 co 03 CPY #$03
E4F7 BO D8 BCS $E4Dl
E4F9 4C 1E CF JMP S$CFIlE
khkkkhkdkkhkhkhkhkkhkhkhkhkkhkhkhkhhhkkikhkkkik
E4FC 00

E4FD A0 4F CB

E500 20 21 22 23 24 27

ES06 D2 45 41 44

E50A 89

E50B 52

ES50C 83

ES50D 20 54 4F 4F 20 AC 4A 52 47
E517 50

ES18 8B 06

E51A 20 50 52 45 53 45 4E D4
E522 51

E523 CF 56 45 52 46 4C 4F 57 20
ES2E 8B

E52F 25 28

ES31 8A 89

E533 26

E534 8A

204

get buffer number
channel number
write in table

channel number + 7
in table

buffer pointer to zero

track
in buffer

sector
in buffer

get buffer number
channel number
read block

buffer pointer to zero
counter for side-sector blocks

track number
in buffer

sector number

in buffer

write block

and verify

counter for side~sector blocks

greater than or equal to 3?
change buffer

table of error messages
00

1 OKI
error numbers of 'read error'
'Read’
pointer to 'error'
52
pointer to 'file'’
c5 ' too largk’'
50
pointer to 'record ' and 'not
' presenT’
51

foverflow in'
pointer to 'record'
error numbers of 'write error'

pointer to 'write' and ‘error !
26
pointer to 'write'

Anatomy of the 1541 Disk Drive

E535 20 50 52 4F 54 45 43 54 20 4F CE ' protect oN’

E540 29 29

E541 88 peinter to ‘'disk’

ES542 20 49 85 ' iagr

E545 85 pointer to ' mismatch’
ES546 30 31 32 33 34 error numbers for ‘syntax error'
ES54B D3 59 4E 54 41 58 'Syntax’'

E551 89 pointer to ' error'

E552 60 60

ES553 8A 03 84 ptrs to ‘write', 'file' & 'open'
E556 63 63

E557 83 pointer to ‘'file!

E558 20 45 58 49 53 54 D3 ' exists'

ESSF 64 64

E560 83 pointer to 'file'

ES61 20 54 59 50 45 ' type'

E566 85 peinter to 'mismatch’
E567 65 65

E568 CE 4F 20 42 4C 4F 43 CB 'No block'

ES570 66 67 'illegal track or sector
ES572 C9 4C 4C 45 47 41 4C 20 ‘Illegal '

ES7A 54 52 41 43 4B 20 4F 52 'track or'

E582 20 53 45 43 54 4F D2 'sectoR’'

E589 61 61

ES8A 83 06 84 pointer to 'file', 'not' & ‘'open'
E58D 39 62 error nos., for 'file not found'
E590 83 06 87 ptrs to 'file', 'not' & 'found’
E593 01 01

E594 83 peinter to ‘file’

E594 53 20 53 43 52 41 54 43 48 45 C4 's scratcheD’
ES9F 70 70

E5A0 CE 4F 20 43 48 41 4E 4E 45 CC 'No channeL'

E5AA 71 71

ESAB C4 49 52 'Dir!

ESAE 89 polnter to ‘error'

ESAF 72 72

ESBO 88 pointer to ‘'disk’

E5B1 20 46 55 4C CC ' full’

E5B6 73 73

E5B7|C3 42 4D 20 44 4F 53 20 ‘Cbm dos '

E5BF {56 32 2B 36 20 31 35 34 Bl 'v2.6 1541'

E5C4 74 74

E5C5 C4 42 49 56 45 'Drive’

ESCA 06 pointer to 'not’

E5CB 20 52 45 41 44 D9 ' ready!

E5D5 09

E5D6 C5 52 52 4F D2 'ErroR'

ESDB 0OA

ESDC D7 52 49 54 C5 'Writg'

E5E1 03

ES5E2 C6 49 4C C5 'FilE®

ES5E6 04

E6E7 CF 50 45 CE 'OpeN’

E5SEB 05

ESEC CD 49 53 4D 41 54 43 C8 'MismatcH’

205

Anatomy

of

the 1541 Disk Drive

$F9
A

$06,X
$80
$07,X
$81

#SOF
SE625
#SOF
$E627
#§74
$SE62D
#5306
#520

$022A
#$00
SE644
#SFF
$022A

SE6C7
$D042
SE648

$E6CT
SC1BD
#sS00
$02F9
scilac
$D4DA
#3500
$A3
#$45

ESF4 06

ESF5 CE 4F D4

ES5F8 07

ESF9 C6 4F 55 4E C4
ESFE 08

ESFF C4 49 53 CB

E603 OB

E604 D2 45 43 4F 52 C4
L Y Y Y]
E60A 48 PHA
E60B 86 F9 STX
E60D 8A TXA
E60E 0A ASL
E60F AA TAX
E610 B5 06 LDA
E612 85 80 STA
E614 B5 07 LDA
E616 85 81 STA
E618 68 PLA
E619 29 OF AND
E61B FO 08 BEQ
E61D Cc9 OF CMP
E61F DO 06 BNE
E621 A9 74 LDA
E623 DO 08 BNE
E625 A9 06 LDA
£627 09 20 ORA
E629 AA TAX
E62A CA DEX
E62B CA DEX
E6 2C 8A TXA
E62D 48 PHA
E62E AD 2A 02 LDA
E631 c9 00 CMP
E633 DO OF BNE
E635 A9 FF LDA
E637 8D 2A 02 STA
E63A 68 PLA
E6 3B 20 C7 E6 JSR
E63E 20 42 DO JSR
E641 4C 48 E6 JMP
E644 68 PLA
E645 20 C7 E6 JSR
E648 20 BD C1 JSR
E64B A9 00 LDA
E64D 8D F9 02 STA
E650 20 2¢ ¢l JSR
E653 20 DA D4 JSR
E656 A9 00 LDA
E658 85 A3 STA
E65A A2 45 LDX
E65C 9A TXS
E65D A5 84 LDA

$84

206

'NoT'
' FounD'
'DiskK’
'RecorD’

prepare error number and message
save error code
drive number

times 2
as pointer

get track

and sector number

get error code back

isolate bits 0-3

zero, then 24, 'read error’
1572

74, 'drive not ready'
6

add $20

subtract two

save error number

number of the disk command
OPEN or VALIDATE?

no

get error number back
generate error Message
load BAM

set error message

set error message

erase input buffer

erase error flag

turn LED off

close channels 17 and 18

input buffer pointer to zero

initialize stack pointer
secondary address

Anatomy of the 1541 Disk Drive

E65F 29 OF AND #SOF
E661 85 83 STA $83
E663 Cc9 OF CMP #SOF
E665 FO 31 BEQ SE698
E667 78 SEI

E668 A5 79 LDA $79
E66A DO 1C BNE $E688
E66C A5 7A LDA S7TA
E66E DO 10 BNE SE680
E670 A6 83 LDX $83
E672 BD 2B 02 LDA $022B,X
E675 CS FF CMP #SFF
E677 FO 1F BEQ SE698
E679 29 OF AND #SOF
E67B 85 82 STA $82
E67D 4C B8E E6 JMP SE68E
I Y e T TS L T 2]
E680 20 EB DO JSR SDOEB
E683 20 4AE EA JSR SEAAE
E686 DO 06 BNE SE68E
kkhhkkkhkhhhkhkhkhkdekhhhhdhkhkdddkdhkk
E688 20 07 D1 JSR $D107
E68B 20 4E EA JSR SEAAE
E68E 20 25 D1 JSR $D125
E691 C9 04 CMP #$04
E693 BO 03 BCS $E698
E695 20 27 D2 JSR sD227
E698 4C E7 EB JMP SEBE7
[Y YT e
E69B AA TAX

E69C A9 00 LDA #S00
E69E F8 SED

E69F E0O 00 CPX #3500
F6A1 FO 07 BEQ SE6AA
E6A3 18 CLC

E6A4 69 01 ADC #S501
A6A6 CA DEX

E6A7 4C 9F E6 JMP SE69F
E6AA D8 CLD
Y Y Y A A e L
E6AB AA TAX

E6AC 4A LSR A

E6AD 4A LSR A

E6AE 4A LSR A

E6AF 4A LSR A

E6BO 20 B4 E6 JSR SE6B4
E6B3 8A TXA

E6B4 29 OF AND #SOF
E6B6 09 30 ORA #$30
E6B8 91 A5 STA (S$A5),Y
E6BA Cc8 INY

207

152
yes, command channel

LISTEN active?

yes

TALK active?

yes

channel number

open channel to this second.

no

channel number

TALK
open channel for reading
accept byte

LISTEN

open channel for writing
accept byte

verify file type

file type REL?

yes

close channel

addr

convert hex to decimal (2 bytes)

convert hex to BCD

divide BCD number into two bytes

shift hi-nibble down

convert to ASCII

erase top 4 bits

add '0"

write 1in buffer
increment buffer pointer

Anatomy of the 1541 Disk Drive

E6BB 60 RTS

Kkh Rk Rk Khxhhkkkhkkhhkh kR xRk k&
E6BC 20 23 C1 JSR $C123
E6BF A9 00 LDA #$S00
E6C1 A0 00 LDY #S00
E6C3 84 80 STY $80

E6C5 84 81 STY $81

khkkhkkhkhkkhkhdhkhkhkhkhhhhhhkhhkkkkdk

E6C7 A0 00 LDY #$S00
E6C9 A2 D5 LDX #$D5
E6C8 86 AS STX $AS5
E6CD A2 02 LDX #$02
E6CF 86 A6 STX $A6
E6DI1 20 AB E6 JSR SE6AB
E6D4 A9 2C LDA #$2C
E6D6 9A A5 STA ($SA5),Y
ED68 c8 INY

E6D9 AD D5 02 LDA $02D5
E6DC 8D 43 02 STA $0243
E6DF 8A TXA

E6EOQ 20 06 E7 JSR $E706
E6E3 A9 2C LDA #$2C
E6E5 91 A5 STA ($A5),Y
E6E7 c8 INY

E6F8 A5 80 LDA S$80
E6 EA 20 92 E6 JSR SE69B
E6ED A9 2C LDA #$2C
E6EF 91 A5 STA ($A5),Y
E6F1 c8 INY

E6F2 A5 81 LDA $81
E6F4 20 9B E6 JSR $E69B
E6F7 88 DEY

E6F8 98 TYA

F6F9 18 CLC

E6FA 69 D5 ADC #S$D5
E6FC 8D 49 02 STA $0249
E6FF E6 AS INC $AS5
E701 A9 88 LDA #$88
E703 85 F7 STA SF7
E705 60 RTS

kKAKkKARKANKAKRKRA KRR Rk R Ak dhhkkhkkk*

E706 AA TAX

E707 A5 86 LDA $86
E709 48 PHA

E70A A5 87 LDA $87
E70C 48 PHA

E70D A9 FC LDA #SFC
F70F 85 86 STA #SE4
E713 85 87 STA $87
E715 8A TXA

E716 A2 00 LDX #S00
E718 Cl 86 CMP ($86,X)

208

'ok' in buffer
error flag
number 0

write
erase
error

track 0
sector O

error message in buffer
buffer pointer

pointer $AS5/SA6 TO $2D5

error # to ASCII and in buffer
'y' comma

write in buffer

increment buffer pointer
first digit of the disk status
in output register

error number 1n accumulator
error message in buffer

',' comma

write in buffer

and increment buffer pointer
track number

to ASCII and in buffer

',' comma

write 1n buffer

increment buffer pointer
sector

convert to ASCII and in buffer

end pointer

set READ flag

write error message to buffer
error code to X

preserve pointer $86/$87

start of the error messages
error number 1n accumulator

compare with error no 1in table

Anatomy of the 1541 Disk Drive

E71A FO 21 BEQ $E73D

E71C 48 PHA

E71D 20 75 E7 JSR $E775 bit 7 into carry and erase
E720 90 05 BCC S$E727 not set?

E722 20 75 E7 JSR $E775 bit 7 into carry

E725 90 FB BCC S$E722 walt for character with bit 7 set
E727 AS 87 LDA $87

E729 C9 E6 CMP #SE6

E72B 90 08 BCC SE735 SE60A, check to end of table
E72D DO 0A BNE SE739

E72F A0 OA LDA #SOA

E731 C5 86 CMP $86

E733 90 04 BCC $E739%

E735 68 PLA

E736 AC 18 E7 JMP $E718 no, continue

E739 68 PLA

E73A AC 4D E7 JMP $SE74D done

E73D 20 67 E7 JSR SE767 get a character, bit 7 in carry
E740 90 FB BCC $E73D wait for character with bit 7 set
E742 20 54 E7 JSR SE754 and write in buffer

E745 20 67 E7 JST $E767 get next character

E748 90 F8 BCC S$SE742 wait for character with bit 7 set
E742 20 54 E7 JSR SE754 put character in buffer

E74D 68 PLA

E74E 85 87 STA $87

E750 68 PLA get pointer $86/$87 back

E751 85 86 STA $86

E753 60 RTS

A S A SRR R R R R R R RERRREREEREREEES] get character and 1n buffer
E754 c9 20 CMP #$20 ' ' blank

E756 B0 OB BCS SE763 greater, then write 1in buffer
E758 AA TAX save code

E759 A9 20 LDA #820 blank

E75B 91 A5 STA ($A5),Y write in buffer

E75D c8 INY increment buffer pointer

E75E 8A TXA code 1n accumulator

E75F 20 06 E7 JSR $E706 output previous text

E762 60 RTS

E763 91 A5 STA (SAS5),Y write character in buffer
E765 c8 INY and increment pointer

E766 60 RTS

KRKRAXKKKKKXKKAKKKRRKKRRKRR®KX* ot 3 char of the error message
E767 E6 86 INC $86

E769 DO 02 BNE SE76D increment pointer
E76B E6 87 INC $87

E76D Al 86 LDA (586,X) get character
E76F 0A ASL A bit 7 i1nto carry
E770 Al 86 LDA ($86,X) get character
E772 29 TF AND #S$7F erase bit 7

E774 60 RTS

khkhkkkhhkkhkkhkhkkhhkhhhhkkhkhxkhkhkhkhkxkx 1increment pOll’lter

209

Anatomy of the 1541 Disk Drive

E775 20 6D E7 JSR $SE76D bit 7 into carry

E778 E6 86 INC $86

E77A DO 02 BNE $E77E increment pointer

E77C E6 87 INC $87

E77E 60 RTS

kkkhkhkkhkhhhkkhkhkkhkhkhkhkhkhkhkhkaxhhkkk

E77F 60 RTS

dod de ke ek K ok dokok kokok K ok ok gk ok ok ok ok okok ok ok ok ok ok Check for AUTO-start
E780 AD 00 18 LDA $1800 read IEEE port

E783 AA TAX

E784 29 04 AND #S04 1solate 'CLOCK IN' bit
E786 FO F7 BEQ SE77F not set, then done

E788 8Aa TXA

E789 29 01 AND #$01 isolate 'DATA IN' bit
E78B FO F2 BEQ SE77F not set, then done

E78D 58 CLI

E78E AD 00 18 LDA $1800 load IEEE port

E791 29 05 AND #$05 test 'DATA IN' and 'CLOCK IN'
E793 FO F9 BNE SE78E wait until both set

E795 EE 78 02 INC $0278 file name

E798 EE 74 02 INC $0274 character in the input line
E79B A9 2A LDA #$2A 't*t as filename

E79D 8D 00 02 STA $0200 write in puffer

E7AQ 4C A8 E7 JMP SE7A8

hkkhkhkkhhk kAR hkkkrhkhkhkhkhkhkkikk l&l - Command

E7A3 A9 8D LDA #$8D

E7AS 20 68 C2 JSR $C268 check command line to end
E7A8 20 58 F2 JSR $F258 (RTS)

E7AB AD 78 02 LDA $0278 number of file names
E7AE 48 PHA save

E7AF A9 01 LDA #$01

E7B1 8D 78 02 STA $0278 file name

E7B4 A9 FF LDA #SFF

E7B6 85 86 STA $86

E7B8 20 4F C4 JSR $C44F find file

E7BB AD 80 02 LDA $0280

E7BE DO 05 BNE SE7CS found?

E7CO A9 39 LDA #$39

E7C2 20 C8 C1 JSR $C1C8 39, 'file not found'
E7C5 68 PLA

E7Cé 8D 78 02 STA $0278 get number of file names back
E7C9 AD 80 02 LDA $0280

E7CC 85 80 STA $80 track

E7CE AD 85 02 LDA $0285

E7D1 85 81 STA $81 and sector

E7D3 A9 03 LDA #$03 file type 'USR'

E7DS 20 77 D4 JSR $D477 buffer allocated, read lst block
E7D8 A9 00 LDA #S00

E7DA 85 87 STA $87 erase checksum

E7DC 20 39 E8 JSR $EB39 get byte from file

E7DF 85 88 STA $88 save as start address lo
E7E1l 20 4B E8 JSR SE84B form checksum

210

SE839
$89
SE84B
$86
SETFA
$88

$89

#500
$86
SEB39
$8A
$E84B
SE839
#500

Anatomy of the 1541 Disk Drive

($88),Y

$SE84B
$88

#501
$88
SE817
$89
$8A
SE802
$Ca35
$85
$87
$E82C
$DE3E
#850
$E645
SF8
SE7D8

$89
$88

($0088)

$CA35
SF8
SE848
$SDE3E
#851
SE645
$85

$87
#$00
$87

E7E4 20 39 E8 JSR
E7E7 85 89 STA
E7E9 20 4B EB8 JSR
E7EC A5 86 LDA
E7EE FO 0A BEQ
E7F0 A5 88 LDA
ETF2 48 PHA
E7F3 A5 89 LDA
E7F5 48 PHA
E7F6 A9 00 LDA
E7F8 85 86 STA
ETFA 20 39 E8 JSR
E7FD 85 8A STA
E7FF 20 4B E8 JSR
E802 20 39 E8 JSR
EB05 A0 00 LDY
E807 91 88 STA
E809 20 4B E8 JSR
E80C A5 88 LDA
ES8OE 18 CLC
E8OF 69 01 ADC
E811 85 88 STA
E813 90 02 BCC
E815 E6 89 INC
E817 Ccé6 8A DEC
E819 DO E7 BNE
E81B 20 35 Ca JSR
ES81E A5 85 LDA
E820 c5 87 CMP
EB22 FO 08 BEQ
E824 20 3E DE JSR
E827 A9 50 LDA
E829 20 45 E6 JSR
E82C A5 F8 LDA
E82E DO A8 BNE
E830 68 PLA
E831 85 89 STA
E833 68 PLA
EB34 85 88 STA
EB36 6C 88 00 JMP
E839 20 35 cA JSR
E83C A5 F8 LDA
E83E DO 08 BNE
E840 20 3E DE JSR
E843 A9 51 LDA
E845 20 45 E6 JSR
E8 48 A5 85 LDA
E84A 60 RTS
khkkkkhkhkkRhkkkhhhkhkkkhkhhkkhkxhkkkk
E84B A8 CLC
E84C 65 87 ADC
E84E 69 00 ADC
E850 85 87 STA
E852 60 RTS

get byte from file
as start address hi
form checksum

save program start address

get byte from file
save as counter
form checksum

get byte from file

save as program bytes
form checksum

increment $88/$89

decrement pointer

get next byte

data byte
equal to checksum?
yes

transmit param to disk controller

50, 'record not present'
end?
no, next data block

get program start address back

and execute program

get byte from file

end?

no

transmit param to disk controller

51, 'overflow in record'
data byte

generate checksum

Anatomy of the 1541 Disk Drive

dkkkkkkhkkhkdkhkhhhhkdddddbhkhhkhd

$1801
#$01
$7C

#500
$7¢C
$79
$7A
$$45

#$80
SF8
$7D
SE9B7
$E9AS
$1800
#8510
$1800
$1800
$E8D7
#S04
SE87B
$SE9CY
#S3F
SE891
#S00
$79
$E902
#SS5F
SE89B
#$00
$7A
SE902
$78
SE8A9
#5011
$7A
$#$00
$79
SE8D2
$77
SE8B7
#$01
$79
#$00
$7A
$E8D2

#560

E853 AD 01 18 LDA
E856 A9 01 LDA
E858 85 7C STA
E854 60 RTS
KR KKK KRA KRR AR RRRXRXRAR TR K
E85B 78 SEI
E85C A9 00 LDA
E8SE 85 7C STA
E860 85 79 STA
E862 85 7A STA
E864 A2 45 LDX
EB66 9A TXS
E867 A9 80 LDA
E869 85 F8 STA
E86B 85 7D STA
E86D 20 B7 E9 JSR
E870 20 A5 E9 JSR
E873 AD 00 18 LDA
E876 09 10 ORA
E878 8D 00 18 STA
E87B AD 00 18 LDA
E87E 10 57 BPL
E880 29 04 AND
E882 DO F7 BNE
E884 20 C9 E9 JSR
E887 Cc9 3F CMP
E889 DO 06 BNE
E88B A9 00 LDA
E88D 85 79 STA
E88F FO 71 BEQ
E891 C9 5F CMP
E893 DO 06 BNE
E895 A9 00 LDA
EB897 85 7A STA
E899 FO 67 BEO
E89B cS5 78 CMP
E89D DO 0A BNE
E89F A9 01 LDA
E8Al 85 7A STA
E8A3 A9 00 LDA
E8AS5 85 79 STA
E8A7 FO 29 BEQ
E8A9 cs 77 CMP
ESAB DO 0A BNE
E8AD A9 01 LDA
E8AF 85 79 STA
E8BL A9 00 LDA
E8B3 85 7A STA
E8BS FO 1B BEQ
E8B7 AA TAX
E8B8 29 60 AND
ES8BA C9 60 CMP

#3560

212

IRO routine for serial bus
read port A, erase IRQ flag

set flag for 'ATN received'

servicing the serial bus

erase flag for 'ATN received’
erase flag for LISTEN
erase flag for TAILK
initialize stack pointer
erase end flag

erase EOI flag

CLOCK OUT 1lo

DATA OUT, bit '0', hi
switch data lines to input
read IEEE port

EOI?

CLOCK IN?

no

get byte from bus
unlisten?

no

reset flag for LISTEN

untalk?
no

reset flag for TALK

TALK address?
no

set flag for TALK
reset flag for LISTEN

LISTEN address?
no

set flag for LISTEN

reset flag for TALK

set bit 5 and 6

SESFD

$84
#SOF
$83
$84
#SFO
#SEO
SE902

$DACO

$1800
$E884
#500
$7D
$1800
#SEF
$1800
$79
SESED
SEA2E
SEBE7

S$7TA
SE8FA
$E99C
$E9AE
$E909
$SEALE
#$10
$1800
$1800
$E8D7
$E902

SDOEB
SE915
$82

SF2,X
SE916

$EAS9
$SE9CO
#$01

SE9B7

SE937
SEA59
SE9CO
#501

Anatomy of the 1541 Disk Drive

E8SBC DO 3F BNE
E8BE 8A TXA
E8BF 85 84 STA
E8C1 29 OF AND
E8C3 85 83 STA
E8CS A5 84 LDA
E8C7 29 FO AND
E8C9 C9 EO CMP
E8CB DO 35 BNE
ESCD 58 CLI
E8CE 20 CO DA JSR
E8D1 78 SEI
E8D2 2C 00 18 BIT
E8DS 30 AD BMI
E8D7 A9 00 LDA
E8D9 85 7D STA
E8DB AD 00 18 LDA
E8DE 29 EF AND
EBEOQ 8D 00 18 STA
E8E3 A5 79 LDA
E8ES5 FO 06 BEQ
ESE7 20 2E EA JSR
EB8EA 4C E7 EB JMP
E8ED AS TA LDA
ESEF FO 09 BREQ
E8F1 20 9C E9 JSR
E8F4 20 AE E9 JSR
EBF7 20 09 E9 JSR
E8FA 4C 4E EA JMp
E8FD A9 10 LDA
ESFF 8D 00 18 STA
E902 2C 00 18 BIT
E905 10 DO BPL
E907 30 F9 BMI
KA KKK R KKK K KA K AR Rk Rk Rk kR
E909 78 SEI
E90A 20 EB DO JSR
E90D BO 06 BCS
ESOF A6 82 LDX
E911 BS F2 LDA
E913 30 01 BMI
E915 60 RTS
E916 20 59 FA JSR
E919 20 CO E9 JSR
E91C 29 01 AND
E91E 08 PHP
E91F 20 B7 E9 JSR
E922 28 PLP
E923 FO 12 BEQ
E925 20 59 EA JSR
E928 20 CO E9 JSR
E9 2B 29 01 AND
E92D DO Fé BNE

SE925

213

no
byte is secondary address

channel number

CLOSE?

CLOSE routine

set EOI
IEEE port
switch data lines to output

LISTEN active?
no

receive data
to delay loop

TALK active?

no

DATA oOuUT, bit 'l1', 1lo

CLOCK OUT hi

send data

to delay loop

either TALK or LISTEN,ignore byte
switch data lines to input

wait for handshake
send data

open channel for read
channel active
channel number

set READ flag?

yes

check EOI

read IEEF port
isolate data bit
and save

CLOCK OUT lo

check EOI
read IEEE port
1solate data bit

Anatomy of the 1541 Disk Drive

E92F A6 82 LDX $82
E931 BS F2 LDA $F2,X
E933 29 08 AND #$08
E935 DO 14 BNE SE94B
E937 20 59 EA JSR SEA59
E93A 20 CO E9 JSR SE9CO
E93D 29 01 AND #$01
E93F DO F6 BNE $SE937
ES41 20 59 EA JSR SEA59
E944 20 CO E9 JSR SE9CO
E947 29 01 AND #$01
E949 FO F6 BEQ SE941
E84B 20 AE E9 JSR SE9AE
ES4E 20 59 EA JSR $EAS59
E951 20 CO E9 JSR SE9CO
E954 29 01 AND #$01
E956 DO F3 BNE SE94B
E958 A9 08 LDA #508
E95A 85 98 STA $98
E95C 20 CO0 E9 JSR $E9CO
E95F 29 01 AND #$01
E961 DO 36 BNE SE999
E963 A6 82 LDX $82
E965 BD 3E 02 LDA $023E,X
E968 6A ROR A
E969 9D 3E 02 STA $023E,X
E96C BO 0S BCS SE973
E96E 20 AS E9 JSR SE9AS5
E971 DO 03 BNE S$E976
E973 20 9c E9 JSR SE99C
E976 20 B7 E9 JSR $E9B7
E979 A5 23 LDA §$23
E97B DO 03 BNE SE980
E97D 20 F3 FE JSR SFEF3
E980 20 FB FE JSR SFEFB
E983 C6 98 DEC s$98
E985 DO DS BNE $E95C
E987 20 59 EA JSR SEA59
E98A 20 CO0 E9 JSR SE9CO
E98D 29 01 AND #S01
E98F FO F6 BEQ $E987
E991 58 CLI

F992 20 AA D3 JSR $D3AA
E995 78 SEI

E996 4C OF E9 JMP SE90F
E999 4C 4E EA JMP SEAJE
kbR kA khkkodkok ko dkodkodkh ok kokobodkdtkohk
E99C AD 00 18 LDA $1800
E99F 29 FD AND #SFD
E9Al 8D 00 18 STA $1800
E9A4 60 RTS

KhkAkkkhkthkhkhhhkhhhk khkhRhkhkxdkik

214

channel number

check EOI
read IEEE port
isolate data bit

check EOI
read IEEE port
isolate data bit

CLOCK OUT hi
check EOI

read IEEE port
isolate data bit

counter to 8 pits for serial
transmission

read IEEE port

isolate data bit

lowest bit in carry

set bit

DATA OUT, output bit '0°
absolute jump

DATA OUT, output bit '1°
set CLOCK OuT

delay for serial bus

set DATA OUT and CLOCK OUT
all bits output?

no

check EOI

read IEEE port

isolate data bit

get next data byte
and output
to delay loop

DATA OUT lo

output bit '1°

DATA OUT hi

Anatomy of the 1541 Disk Drive

E9AS AD 00 18 LDA $1800
E9AS8 09 02 ORA #8502
E9AA 8D 00 18 STA $1800
ESAD 60 RTS

L L R S R R L
ESAE AD 00 18 LDA $1800
E9B1 09 08 ORA #8508
E9B3 8D 00 18 STA $1800
E9B6 60 RTS

EEE R Y T X T L]
E9B7 AD 00 18 LDA $1800
E9BA 29 F7 AND #SF7
E9BC 8D 00 18 STA $1800
E9BF 60 RTS
HEKRKARRRRRRIAK KRR A Kk kR kAt k kK
E9CO AD 00 18 LDA $1800
E9C3 CD 00 18 CMP $1800
E9C6 DO F8 BNE SESCO
E9C8 60 RTS

Kk R dkkhd Rk kkok kokkkokdekhkokkkk
E9C9 A9 08 LDA #S08
E9CB 85 98 STA $98
E9CD 20 59 EA JSR $EASS
E9DO 20 C0 E9 JSR S$SESCO
ESD3 29 04 AND #$04
E9D5 DO F6 BNE SES9CD
E9D7 20 9C E9 JSR $E99C
E9DA A9 01 LDA #$01
E9DC 8D 05 18 STA $1805
E9DF 20 59 EA JSR SEA59
ESE2 AD 0D 18 LDA $180D
E9ES 29 40 AND #$40
E9E7 po 09 BNE SE9F2
E9E9 20 CO E9 JSR $E9CO
E9EC 29 04 AND #$04
ESEE F0 EF BEQ SE9DF
E9FO0 DO 19 BNE SEAOB
E9F2 20 A5 E9 JSR SE9A5
E9F5 A2 0A LDY #S$0A
E9F7 Ca DEX

E9F8 DO FD BNE $E9F7
E9FA 20 9C E9 JSR SE99C
E9FD 20 59 EA JSR $SEAS9
EAQO 20 cO E9 JSR $E9CO
EAO3 29 04 AND #504
EAO5 FO F6 BEQ SESFD
EAO07 A9 00 LDA #S$00
EAOS 85 F8 STA $F8
EAOB AD 00 18 LDA $1800
EAOE 49 01 EOR #501
EA10 4A LSR A

215

output bit '0Q'

CLOCK OUT hi

set bit 3

CLOCK OUT lo

erase bit 3

read IEEE port
read port
wait for constants

bit counter for serial output
check EOI

read IEEE port

CLOCK IN?

no, wait

DATA OUT, bit '1°

set timer
check EOI

timer run down?
yes, EOI

read IEEE port
CLOCK IN?

no, wait

DATA OUT bit '0' hi
10
delay loop, approx 50 micro sec.

DATA OUT, bat '1', 1lo
check EOI

read IEEE

CLOCK IN?

no, wait

set EOI flag
IEEE port
invert data byte

Anatomy of the 1541 Disk Drive

EAll 29 02 AND #$02
EAl13 DO Fé BNE SEAOB
EAlS EA NOP

EAL®6 EA NOP

EAl17 EA NOP

EAl8 66 85 ROR $85
EAlA 20 59 EA JSR SEAS59
EA1D 20 CO E9 JSR S$E9CO
EA20 29 04 AND #5504
EA22 FO F6 BEQ SEAlA
EA24 cé 98 DEC $98
EA26 DO E3 BNE SEAOB
EA28 20 A5 E9 JSR SE9AS
EA2B A5 85 LDA $85
EA2D 60 RTS
LR T T
EA2E 78 SEI

EA2F 20 07 Dl JSR $D107
EA32 BO 05 BCS SEA39
EA34 B5 F2 LDA $F2,X
EA36 6A ROR A
EA37 BO 0B BCS SEA44
EA39 A5 84 LDA $84
EA3B 29 FO AND #SFO0
EA3D c9 FO CMP #S$F0
EA3F FO 03 BEQ SEA44
EA41 4C 4E EA JMP SEA4E
EA44 20 C9 E9 JSR $E9CY
EA47 58 CLI

EA48 20 B7 CF JSR $CFB7
EA4B 4C 2E EA JMP SEA2E
EA4E A9 00 LDA #$00
EA50 8D 00 18 STA $1800
EAS53 4C E7 EB JMP SEBE7
EA56 4C 5B E8 JMP SEBS58

TdkkkkhhhkhhkhkXkhhXkdhhhkokkkhkdhkkkk

EAS9 A5 7D LDA $7D
EASB FO0 06 BEO SEA63
EASD AD 00 18 LDA $1800
EA60 10 09 BPL SEA6B
EA62 60 RTS

EA63 AD 00 18 LDA $1800
EA66 10 FA BPL SEA62
EA68 4C D7 E8 JMP SE8D7

Kkkhkkkkhkhkrhkhkhhhhkdhxtkhkhhth ki

EAGE A2 00 LDX #S00
EA70 2C .BYTE S2C

216

CLOCK IN?

prepare next bit
check EOI

read IEEE port

CLOCK IN?

no

decrement bit counter
all bits output?

DATA OUT, bit '0', hi
load data byte again

accept data from serial bus
open channel for writing
channel not active?

WRITE flag

not set?
secondary address

OPEN command?

yes

to wait loop

get data byte from bus
and write in buffer

to loop beginning

reset IEEE port

to wait loop

to serial bus main loop
EOI received?

yes
IEEE port

IEEE port
set EOI, serve serial bus

blink LED for hardware defects
blink once, zero page

S6F

#508
$1C00
SFEEA

#$01
SEATF

SEATE
$1c00
#SF7

$1C00

#801
SEA90

SEA8F

SEA75
#SFC

SEASE
SEA74

#SFF
$1803

#5800
#$00

$00,X
SEAAC

$00,X
SEAGE
$00,X

$SEAB7
$00,X
SEAGE
$00,X
$00,X
SEAGE

SEAB2
S6F
$76
#500

Anatomy of the 1541 Disk Drive

EA71 A5 6F LDX
ER73 9A TXS
EA74 BA TSX
EA75 A9 08 LDA
EA77 0D 00 1C ORA
EA7A 4C EA FE JMP
EATD 98 TYA
EATE 18 CLC
EATF 69 01 ADC
EA81 DO FC BNE
EA83 88 DEY
EAS4 DO F8 BNE
EA86 AD 00 1C LDA
EA89 29 F7 AND
EA8B 8D 00 1C STA
EASE 98 TYA
EASF 18 cLC
EAS0 69 Ol ADC
EA92 DO FC BNE
EA94 88 DEY
EAS5 DO F8 BNE
EA97 CA DEX
EA98 10 DB BPL
EA9A EO FC CPX
FA9C DO FO BNE
EA9E FO D4 BEO
ek de A ok Kk ok ok sk ok kg ke kook Kok ok ki k kok ko
ERAO 78 SEI
EAAlL D8 cLD
FAA2 A2 FF LDX
EAA4 8E 03 18 STX
EAA7 ES INX
EAA8 A0 00 LDY
EAAA A2 00 LDX
EAAC 8A TXA
EAAD 95 00 STA
EAAF EB INX
EABO DO FA BNE
EAB2 BA TXA
EAB3 D5 00 cMP
EABS DO B7 BNE
EAB7 F6 00 INC
EAB9 C8 INY
EABA DO FB BNE
EABC D5 00 CMP
EABE DO AE BNE
EACO 94 00 STY
EACZ B5 00 LDA
EAC4 DO A8 BNE
EAC6 E8 INX
EAC7 DO E9 BNE
EACY9 E6 6F INC
EACB 86 76 STX
EACD A9 00 LDA

217

blink X+l times for RAM/ROM err

select LED bit in the port

turn LED on, back to $EA7D

turn LED off

delay loop

wait for delay
turn LED on again

RESET routine

port A to output

erase zero page

is byte erased?
no, then to error display (blink)

error

error

Anatomy of the 1541 Disk Drive

EACF
EADL
EAD2
EAD4
EADS5
EAD7
EAD9
EADA
EADC
EADD
EADF
EAE]
EAE2
EAE4
EAE6
EAES
EAEA
EAEC
EAEE
EAFO
EAF2
EAF3
EAF4
EAF6
EAF8
EAF9
EAFB
EAFD
EAFE
EBOO
EBO2
EBO4
EBOS
EBO6
EBO7
EBO9Y
EBOB
EBOD
EBOF
EB11
EB13
EB15
EB17
EB18
EB1A
EB1B
EB1D
EBLF

EB22
EB24
EB25
EB28
EB2A
EB2D

85
A8
A2
18
cé
71
c8
DO
CA
)
69
BA
cs

bo
EO

{D0
A9
85
E6
A2
98
18
65
91

75
20

76
75

FB

F6
00

76
39
co
DF
01
76
6F
07

76
75

F7
76

F2
07
76

76
75
12
FF
75
75
75
08

EA

E5
03
71 EA

45

00 1cC
F7
00 1C
01

STA
TAY
LDX
CLC
DEC
ADC
INY
BNE
DEX
BNE
ADC
TAX
CMP
BNE
CPX
BNE
LDA
STA
INC
LDX
TYA
CLC
ADC

JMP

LDX
TXS
LDA
AND
STA
LDA

$75
#520
$76

(875),

SEAD7

SEADS
#S00

$76
SEBI1F
#sco
$EACY
#501
$76
S6F
#s07

$76

Y

($75),Y

SEAF2
$76

SEAF2

$#$07
$76

$76

(875),

SEB1F
#SFF

($75),
($75),
($75),

SEBLF
$EBO4

SEB02
SEB22
SEA71

#545

$1c00
#SF7
$1c00
#801

Y

Y
Y
Y

218

test 32 pages

test ROM

ROM error

test RAM, beginning at page 7

RAM error

RAM error

continue test
ok
to error display

1nitialize stack pointer

turn LED off

EB2F
EB32
EB34
EB37
EB3A
EB3D
EB3F
EB40
EB41
EB42
EB43
EB45
EB47
EB49
EB4B
EB4D
EB4F
EBS1
EB53
EB54
EB57
EB59
EBS5A
EB5B
EB5D
EBSF
EB61
EB63
EB64
EB66
EB68
EB69
E86B
EB6D
EB6E
EB70
EB72
EB74
EB76
EB79
EB7A
EB7C
EB7E
EB80
EB82
EB84
EB85
EB87
EB89
EBSB
EB8D
EB8F
EB91
EB93
EBY5

8D

8D
8D
AD
29
0A
2A
2A
2A
09
85
49
85
A2
A0
A9
95
E8
B9
95
E8
c8
co
DO
A9
95
E8
A9
95
E8
A9
95
E8
A9
95
A9
A2
9D
Cca
10
A2
95
95
95
CA
10
A9
85
A9
85
A9
85
85
A9

0ocC
82
oD
OE
00
60

48
78
60
77
00
00
00
99

EO
99

05
FO
00
99

02
99

DS
99

02
99
FF
12
2B

FA
05
A7
AE
Cp

F7
05
AB
06
AC
FF
AD
B4
05

18

18
18
18

FE

02

STA
LDA
STA
STA
LDA

ASL
ROL
ROL
ROL
ORA
STA
EOR
STA
LDX
LDY
LDA
STA
INX
LDA
STA

INY
CPY
BNE
LDA
STA
INX
LDA
STA
INX
LDA

INX
LDA
STA
LDA
LDX
STA
DEX
BPL
LDX
STA
STA
STA
DEX
BPL
LDA
STA
LDA
STA
LDA
STA
STA
LDA

1548
$78
$560
$77
#$00
#S00
$500
$99,X

SFEEO,Y
$99,X

#3505
$EB4F
#$00
$99,X

#$02
$99,X

#$D5
$99,X

#502
$99,X
#SFF
#$12
$022B,X

SEB76
#505

SA7,X
$AE,X
$CD, X

SEB7E
#505
SAB
#506
SAC
#SFF
SAD
SB4
#S05

Anatomy of the 1541 Disk Drive

CAl (ATN IN) trigger on pos edge
interrupt possible through ATN IN
read port B

isolate bits 5 & 6 (device #)
rotate to bit positions 0 & 1
add offset from 8 + $40 for TALK
device number for TALK (send)

erase bit 6, set bit 5
device number + $20 for LISTEN

low-byte of buffer address

high byte of address from table
save

ptr $A3/$A4 to $200, 1input buffer

pointer $A5/$A6 to $2D5, error
message pointer

£fill channel table with S$FF

erase buffer table

erase side-sector table

buffer 5
associate with channel 4
buffer 6
associate with channel 5

219

Anatomy of the 1541 Disk Drive

EB97 8D 3B 02 STA $023B
EB9A A9 84 LDA #584
EB9C 8D 3A 02 STA $023A
EBOF A9 OF LDA #SO0F
EBAl 8D 56 02 STA $0256
EBAd A9 01 LDA #$01
EBA6 85 F6 STA $F6
EBA8 A9 88 LDA #$88
EBAA 85 F7 STA $F7
EBAC A9 FO LDA #$EO
EBAE 8D 4F 02 STA $024F
EBBl A9 FF LDA #S$FF
EBB3 8D 50 02 STA $0250
EBB6 A9 01 LDA #$01
EBB8 85 1C STA $1C
EBBA 85 1D STA $1D
EBBC 20 63 CB JSR $CB63
EBBF 20 FA CE JSR $SCEFA
EBC2 20 59 F2 JSR $F259
EBC5 A9 22 LDA #$22
EBC7 85 €5 STA $65
EBC9 A9 EB LDA #SEB
EBCB 85 66 STA $66
EBCD A9 OA LDA #$0A
EBCF 85 69 STA $69
EBDl A9 05 LDA #$05
EBD3 85 6A STA $6A
EBDS A9 73 LDA #$73
EBD7 20 Cl E6 JSR $E6CL
EBDA A9 1A LDA #$1A
EBDC 8D 02 18. STA $1802
EBDF A9 00 LDA $$00
EBEl 8D 00 18 STA $1800
EBE4 20 80 E7 JSR SE780
EBE7 58 CLI

EBES AD 00 18 LDA $1800
EBEB 29 ES AND #$ES
EBED 8D 00 18 STA $1800
EBFO AD 55 02 LDA $0255
EBF3 FO 0A BEQ SEBFF
EBF5 A9 00 LDA #$00
EBF7 8D 55 02 STA $0255
EBFA 85 67 STA $67
EBFC 20 46 Cl1 JSR $Cl46
KEXRRRRRR kR AR kkhkhkxkhhhkhkhhhhhk
EBFF 58 CLI

ECO0 A5 7C LDA $7C
EC0Z FO 03 BEO $ECO7
EC04 (iC 5B E8 JMP SE85B
EC07 58 cLI

EC08 A9 OE LDA #$0E
ECOA 85 72 STA $72
ECOC A9 00 LDA #$00
ECOE 85 6F STA $6F

220

channel 5 WRITE flag erased

channel 4 WRITE flag set
initialize channel allocation reg
bit '1' equals channel free

WRITE flag

READ flag

5 buffers free

initialize buffer allocation reg
$24F/$250, 16 bit

flags for WRITE protect
set vector for U0

initialize channel table
intialization for disk controller

pointer $65/$66 to SEB22

step width 10

for sector assignment

5 read attempts

prepare power-up message
73, 'cbm dos v2.6 1541"
bit 1, 3 & 4 to exit
data direction of port B

erase data register
check for auto-start
reset serial port

command flag set?
no

reset command flag

analyze and execute command
wait loop

ATN signal discovered?

no

to IEEE routine

14
as secondary address

job counter

EC10
ECl2
ECl4
EC17
EC19
EC1B
EC1D
EC1F
EC22
EC23
EC26
EC28
EC29
EC2B
EC2D
EC2F
EC31
EC34
EC36
EC38
EC39
EC3B
EC3C
EC3E
EC3F
EC42
EC44
EC45
EC47
-EC49
EC4B
EC4D
EC4F
EC51
EC53
EC55
EC58
EC59
EC5B
EC5C
EC5E
EC60
EC62
EC64
EC66
EC69
EC6A
EC6C
EC6D
EC6F
EC71
EC72
EC75
EC77
EC7A

6F
72
E3
04
00
05
01

6F
F3

00
F7

7F
86
00

6F
0B
1C
03
13

08
7F
70
0B
1D
13
00
86
6C
21

00
80

02

DF

02

00

1C

D3

D3

02

1C

STA
LDX
LDA
CMP
BEQ
AND
STA
JSR
TAX
LDA
AND
TAX
INC
DEC
BPL
LDY
LDA
BPL
AND
TAX
INC
DEY
BPL
SEI
1.Da
AND
PHA
LDa
STA
LDA
STA
LDa
BEQ
LDa
BEQ
JSR
PLA

PHA
INC
LDA
BEQ
LDa
BEQ
JSR
PLA
ORA
PHA
LDAa
STA

LDX
BEQ
LDA
CPX

$70
$72

Anatomy of the 1541 Disk Drive

$022B,X

#SFF
SEC2B
#S3F
$82
$DF93

$025B,X

#3501

$6F,X
$72
$EC12
#504

$0000,Y

SEC3B
#$01

$6F,X
SEC31

$1C00
#SF7

$7F
$86
#5500
$TF
$6F
$ECS5C
$1cC
SEC58
$D313

#3508

STF
$70
$EC6D
$1D
SEC69
$D313

#S00

586
$7F

$026C
SEC98
$1C00
#580

221

secondary address
channel associated?
no

channel number
get buffer number

drive number

increment job counter

lo address

continue search

buffer counter

disk controller in action?
no

isolate drive number

increment job counter

next buffer

erase LED bit

drive number

drive 0

job for drive 02

no ¢

wrlte protect for drive 0?

no

close all channels to drive 0

set LED bit

increment drive number

job for drive 1?

no

write protect for drive 1?

no

close all channels to drive 1

get drive number back
bit for LED

interrupt counter

to zero?

Anatomy of the 1541 Disk Drive

EC7C DO 03 BNE $EC81
EC7E 4C 8B EC JMP $EC8B
EC81 AE 05 18 LDX $1805
EC84 30 12 BMI $EC98
EC86 A2 A0 LDX #Sa0
EC88 8E 05 18 STX $1805
EC8B CE 6C 02 DEC $026C
EC8E DO 08 BNE $EC98
EC90 4D 6D 02 EOR $026D
EC93 A2 10 LDX #$10
EC95 8E 6C 02 STX $026C
EC98 8D 00 1C STA $1C00
EC9B 4C FF EB JMP SEBFF
wxwwwhhkkhhhkhhkhhhhkdkkhhkddihkk
EC9E A9 00 LDA #500
ECAQ 85 83 STA $83
ECA2 A9 01 LDA #501
ECA4 20 E2 D1 JSR $D1E2
ECA7 a9 00 LDA #$00
ECA9 20 C8 D4 JSR $D4C8
ECAC A6 82 LDX $82
ECAE A9 00 LDA #$00
ECBO 9D 44 02 STA $0244,X
ECB3 20 93 DF JSR $DF93
ECB6 AA TAX

ECB7 A5 7F LDA $T7F
ECB9 9D 5B 02 STA $025B,X
ECBC A9 01 LDA #$01
ECBE 20 F1 CF JSR S$CFF1
ECC1 A9 04 LDA #$04
ECC3 20 F1 CF JSR $CFF1
ECC6 A9 01 LDA #$01
ECC8 20 F1 CF JSR $CFF1
ECCR 20 Fl1 CF JSR $CFF1
ECCE AD 72 02 LDA $0272
ECD1 20 F1 CF JSR $CFF1
ECD4 a9 00 LDA #$00
ECD6 20 F1 CF JSR $CFF1
ECD9 20 59 ED JSR $ED59
ECDC 20 93 DF JSR $DF93
ECDF 0a ASL A
ECEQ AA TAX

ECEl D6 99 DEC $99,X
ECE3 DA 99 DEC $99,X
ECES A9 00 LDA #$00
ECE7 20 F1 CF JSR S$CFF1
ECEA A9 01 LDA #S01
ECEC 20 F1 CF JSR S$CFF1
ECEF 20 F1 CF JSR S$CFF1
ECF2 20 CE Cé6 JSR $C6CE
ECF5 90 2C BCC $ED23
ECF7 AD 72 02 LDA $0272
ECFA 20 F1 CF JSR S$CFF1
ECFD AD 73 02 LDA $0273

222

erase tlmer 1nterrupt

set timer
decrement counter
not yet zero?

reset counter
turn LED on/off
back to wait loop

LOAD "S$"
secondary address 0
find channel and buffer

1initialize buffer pointer
channel number

polnter to end = zero
get buffer number

drive number

bring in table

1

write in buffer

4, start address $0401
write in buffer

2 times 1

write in buffer as link address
drive number

write in buffer as line number
line number hi

in buffer

directory entry in buffer

get buffer number

decrement buffer pointer

0 as line end in buffer
2 times 1 as link address

directory entry in buffer
another entry?

block number lo

in buffer

block number hi

ED0O 20 F1 CF JSR S$CFF1
ED03 20 59 ED JSR $ED59
EDO6 A9 00 LDA #$00
EDO8 20 Fl1 CF JSR $CFFl
EDOB DO DD BNE S$ECEA
EDOD 20 93 DF JSR $DF93
ED10 0a ASL A
ED11 AA TAX

ED12 A9 00 LDA #$00
ED14 95 99 STA $99,X
ED16 A9 88 LDA #$88
ED18 A4 82 LDY $82
ED1A 8D 54 02 STA $0254
EDID 99 F2 00 STA $O00F2,Y
ED20 A5 85 LDA $85
ED22 60 RTS

khkkkhkhhhkhhhkhrkhhkhhhkkhhkhkkdhdkxk

ED23 AD 72 02 LDA $0272
ED26 20 F1 CF JSR S$CFFl
ED29 aD 73 02 LDa $0273
ED2C 20 F1 CF JSR $CFF1
ED2F 20 59 ED JSR $SED59
ED32 20 93 DF JSR $DF93
ED35 0A ASL A

ED36 AA TAX

ED37 D6 99 DEC $99,X
ED39 D6 99 DEC $99,X
ED3R A9 00 LDA #$00
ED3D 20 F1 CF JSR S$CFFl
ED40 20 F1 CF JSR $CFF1
ED43 20 F1 CF JSR $CFF1l
ED46 20 93 DF JSR $DF93
ED49 0a ASL A

ED4A A8 TAY

ED4B B9 99 02 LDA $0099,Y
ED4E A6 82 LDX $82
ED50 9D 44 02 STA $0244,X
ED53 DE 44 02 DEC $0244,X
ED56 4C OD ED JMP SEDOD

khkkhhkhhhhhkhhkhhhhhhhhdhhdhhdhkiix

ED59 A0 00 LDY #S00
ED5B B9 Bl 02 LDA $02B1,Y
ED5SE 20 F1 CF JSR $CFF1
ED61 c8 INY

ED62 C0 1B CPY #S$1B
ED64 DO F5 BNE $SED5B
ED66 60 RTS

RAkkkkhR Rk hkhhRhkhhrhhhhh b hn
ED67 20 37 D1 JSR $D137
ED6A FO 01 BEQ SED6D
ED6C 60 RTS

223

Anatomy of the 1541 Disk Drive

in buffer
directory entry in buffer

zero as end marker in buffer
buffer full? no
get buffer number

buffer pointer to zero
set READ flag
channel number

flag for channel
data byte

block number lo

write in buffer

block number hi

in buffer

'Blocks free.' in buffer
get buffer number

buffer pointer minus 2

three zeroes as program end

get buffer number
times 2

buffer pointer

as end marker

transmit directory line

character from bhuffer
write in output buffer

27 characters?

get byte from buffer
get byte
buffer pointer zero?

Anatomy of the 1541 Disk Drive

ED6D 85 85 STA $85
ED6F A4 82 LDY $82
ED71 B9 44 02 LDA $0244,Y
ED74 FO 08 BEQ $ED7E
ED76 A9 80 LDA #$80
ED78 99 F2 00 STA $S00F2,Y
ED7B A5 85 LDA $85
ED7D 60 RTS

ED7E 48 PHA

ED7F 20 EA EC JSR SECEA
ED82 68 PLA

ED83 60 RTS

(22 R RS ERERSRE RS Z RS R R Y]

ED84 20 pl1 C1 JSR $CID1
ED87 20 42 DO JSR $D042
ED8A A9 40 LDA #$40
ED8C 8D F9 02 STA $02F9
ED8F 20 B7 EE JSR $EEB7
ED92 A9 00 LDA #S00
ED94 8D 92 02 STA $0292
ED97 20 AC C5 JSR $C5AC
ED9A DO 3D BNE $EDD9
ED9C A9 00 LDA #$00
ED9E 85 81 STA $81
EDAO AD 8E FE LDA SFE85
EDA3 85 80 STA $80
EDAS 20 E5 ED JSR $EDES
EDAS8 A9 00 LDA #S00
EDAA 8D F9 02 STA $02F9
EDAD 20 FF EE JSR $EEFF
EDBO 4C 94 Cl JMP $C194
Ak kkkAkhhkkhkhkrAkhkhkhkhkhkhhkkkkhx
EDB3 [of:] INY

EDB4 Bl 94 LbA ($94),Y
ED86 48 PHA

EDB7 cs8 INY

EDB8 Bl 94 LDA ($94),Y
EDBA 48 PHA

EDBB A0 13 LDA #$13
EDBD Bl 94 LDA (§94),Y
EDBF FO 0A BEQ SEDCB
EDC1 85 80 STA $80
EDC3 c8 INY

EDC4 Bl 94 LDA ($94),Y
EDCé6 85 81 STA $81
EDC8 20 E5 ED JSR SEDES
EDCB 68 PLA

EDCC 85 81 STA $81
EDCE 68 PLA

EDCF 85 80 STA $80
EDD1 20 E5 ED JSR $EDES
EDD4 20 04 Cé6 JSR $C604

224

save data byte
channel number
set end marker
zero (LOAD $)?

set READ flag
data byte

create directory line in buffer

V command, ‘collect'
find drive number in input line
load BAM

create new BAM in buffer

load directory,
found?

find 1st flag

sector 0

18

track 18 for BAM

mark dir blocks as allocated

write BAM back to disk
done, prepare disk status

save track

and sector
pointer to side-sector block
no track following?

track and

sector of 1st side-~sector block
mark side-sector blocks as
allocated

get track and sector back

mark blocks of file as allocated
read next entry in directory

Anatomy of the 1541 Disk Drive

EDD7 FO C3 BEQ $EDYC
EDD9 A0 00 LDY #$00
EDDB Bl 94 LDA ($94),Y
EDDD 30 D4 BMI S$EDB3
EDDF 20 B6 C8 JSR $C8B6
EDE2 4C D4 ED JMP S$SEDD4
khkkhkhkhhhhhkrhhrhkkkhkhkekkkhkkkk
EDES 20 5F D5 JSR $D55F
EDES 20 90 EF JSR $EF90
EDEB 20 75 D4 JSR $D475
EDEE A9 00 LDA #$00
EDF0 20 C8 D4 JSR $D4AC8
EDF3 20 37 D1 JSR $D137
EDF6 85 80 STA $80
EDF8 20 37 D1 JSR $D137
EDFB 85 81 STA $81
EDFD A5 80 LDA $80
EDFF DO 03 BNE SEE04
EEO1 4C 27 D2 JMP §D227
EE04 20 90 EF JSR SEF90
EEO07 20 4D D4 JSR $D44D
EEOA 4C EE ED JMP SEDEE
kAR AIXRKRAAKR KRR IR AKRK KRR A Xk
EEOD 20 12 C3 JSR §C312
EE10 AS E2 LDA $E2
EE12 10 05 BPL SEE19
EEl4 A9 33 LDA #$33
EEl6 4C C8 C1 JMP s$C1C8
EE19 29 01 AND #501
EEIB 85 TF STA $T7F
EE1D 20 00 Cl JSR $C100
EE20 A5 TF LbA $7F
EE22 OA ASL A

EE23 AA TAX

EE24 AC 78 02 LDY $0278
EE27 CC 74 02 CPY $0274
EE2A FO 1A BEQ SFE46
EE2C B9 00 02 LDA $0200,Y
EE2F 95 12 STA $12,X
EE31 B9 01 02 LDba $0201,Y
EE34 95 13 sTA $13,X
EE36 20 07 D3 JSR $D307
EE39 A9 01 LDA #501
EE3B 85 80 STA $80
EE3D 20 C6 C8 JSR $C8C6
EE40 20 05 FO JSR $F005
EE43 4C 56 EE JMP SEE56
EE46 20 42 DO JSR $D042
EE49 A6 TF LDX S$7F
EE4B BD 01 01 LDA $0101,X
EE4E CD D5 FE CMP SFEDS

225

end of directory?

file type
bit 7 set, file closed?
file type to zero and write BAM

allocate file blocks 1in BAM
check track and sector number
allocate block in BAM

read next block

buffer pointer zero
get byte from buffer

track

get byte from buffer
sector

another block?

yes

close channel

allocate block in BAM
read next block
cont inue

N command, ‘'header'
get drive number
drive number

not clear?

33, ‘'syntax error'
drive number

turn LED on

drive number
times 2

comma position
compare with end name
format without ID
first character of ID
save

second character

close all channels
track 1
format disk

erase buffer
continue as below

load BAM
drive number

'A', marker for 1541 format

Anatowmy of the 1541 Disk Drive

EE51 FO 03 BEQ $EES56
EE53 4C 72 D5 JMP $D572
EE56 20 R7 EE JSR SEER7
EES9 A5 F9 LDA SF9
EESB a8 TAY

EESC 0a ASL A

EESD AA TAX

EE5E AD 88 FE LDA $FE88
EE61 95 99 STA $99,X
EE63 AE 7A 02 LDX $027a
EE66 A9 1R LDA #S1B
EE68 20 6E C6 JSR $C6FE
EE6B A0 12 LDY #$12
EE6D A6 7F LDX $7F
EE6F AD D5 FE LDA SFEDS
EE72 9D 01 01 STA $0101,X
EE75 8A TXA

EE76 0a ASL A

EE77 AA TAX

EE78 B5 12 LDA $12,X
EE7A 91 94 STA ($94),Y
EE7C c8 INY

EE7D B5 13 LDA §813,X
EE7F 91 94 STA ($94),Y
EE81 c8 INY

EE82 C8 INY

EE83 A9 32 LDA #$32
EE85 9] 94 STA ($94),Y
EE87 cs8 INY

EE88 AD D5 FE LDA SFEDS
EE8B 91 94 STA ($94),Y
EE8D A0 02 LDY #3502
EESF 91 6D STA (S6D),Y
EE91 AD 85 FE LDA SFE85
EE94 85 80 STA $80
EE96 20 93 EF JSR SEF93
EE99 A9 01 LDA #$01
EE9R 85 8l STA $81
EE9D 20 93 FF JSR S$FEFO3
EEAQ 20 FF EE JSR SEEFF
EEA3 20 05 FO JSR $F005
EEA6 A0 01 LDY #$01
EEAS8 A9 FF LDA #SFF
EEAA 9A 6D STA (S6D),Y
EEAC 20 64 D4 JSR $D464
EEAF cé 81 DEC $81
EEB1 20 60 D4 JSR $D460
EER4 4C 94 C1 JMP $C194
khkkkAhkdkhdhkhhkhhkhkdbdhkkkhkkhhkik ki
EEB7 20 Dl FO JSR SFODI1
EEBA A0 00 LDY #S00
EFRC A9 12 LDA #$12
EEBE 91 6D STA ($6D),Y

226

ok
73, 'cbm dos v2.6 1541'

create BAM
buffer number

$90, start of disk name
buffer pointer to name

27

write filenames in buffer
position 18

drive number

'A', 1541 format

times 2

IpD, first character
in buffer

and second character
1n buffer

|2|
1n buffer

'A' 154) format
in buffer

and at position 2

18

track number

mark block as allocated

1

sector number

mark block as allocated

write BAM

pointer $6D/S6E to buffer,
buffer

track following is zero
write BAM

decrement sector number, 0
read block

prepare disk status

create BAM

18
pointer to direcctory track

erase

Anatomy of the 1541 Disk Drive

($6D),Y

#8500
S6F
$70
$71

A

A

SF24B
($6D),Y

S6F
$70
$71

SEED9
S6F,X
($6D),Y

#503
SEEE3
#S90
SEEC7
$D075

SDF93

$025B,X
#$01
$7F

$7F
$0251,Y
SEF07

#500
$0251,Y
SEF3A
$7F

A

SFOAS

#S01

EECO c8 INY
EEC1 98 TYA
EEC2 91 6D STA
EEC4 Cc8 INY
EEC5 Cc8 INY
EEC6 Cc8 INY
EEC? A9 00 LDA
EEC9 85 6F STA
EECB 85 70 STA
EECD 85 71 STA
EECF 98 TYA
EEDO 4A LSR
EED1 4A LSR
EED2 20 4B F2 JSR
EEDS 91 6D STA
EED? c8 INY
EED8 AA TAX
EED9 38 SEC
EEDA 26 6F ROL
EEDC 26 70 ROL
EEDE 26 71 ROL
EEEQ CA DEX
EEEl DO F6 BNE
EEE3 B5 6F LDA
EEES 91 6D STA
EEE? c8 INY
EEES8 E8 INX
EEE9 EO 03 CPX
EEEB 90 Fé BCC
EEED co 90 CPY
EEEF 90 D6 BCC
EEF1 4C 75 DO JIMP
Akkwkk Ak hkk bRk hRhhkhkhhhxhkxhk
EEF4 20 93 DF JSR
EEF7 AA TAX
EEF8 BD 5B 02 LDA
EEFB 29 01 AND
EEFD 85 TF STA
EEFF A4 TF LDY
EF01 R9 51 02 LDA
EF04 DO 01 BNE
EF06 60 RTS
EF07 A9 00 LDA
EF09 99 51 02 STA
EF0C 20 3A EF JSR
EFOF A5 TF LDA
EF11l 0a ASL
EF12 48 PHA
EF13 20 A5 FO JSR
EF16 68 PLA
EF17 18 CLC
EF18 69 01 ADC
EFla 20 A5 FO JSR

SFOAS

227

1
polnter to directory sector

3 bytes = 24 bits for sectors
byte position
divided by 4 = track number

get number of sectors
and in BAM

create bit model

3 bytes
the BAM 1n buffer

position 1447
no, next track
calculate number of free blocks

write BAM if needed
get buffer number

command for disk controller
1solate drive number

BAM-changed flag set?
yes

reset BAM-changed flag

set buffer pointer for RAM
drive number

times 2

verify BAM entry

increment track number
verify BAM entry

Anatomy of the 1541 Disk Drive

EF1D A5 80 LDA $80
EF1F 48 PHA

EF20 A9 01 LDA #$01
EF22 85 80 STA $80
EF24 0A ASL A

EF25 0A ASL A

EF26 85 6D STA $6D
EF28 20 20 F2 JSR $F220
EF2B E6 80 INC S$80
EF2D A5 80 LDA $80
EF2F CD D7 FE CMP SFED7
EF32 90 FO BCC SEF24
EF34 68 PLA

EF35 85 80 STA $80
EF37 4C 8A D5 JMP SD58A
hhkkhkhkhkhkhkhkhkkhhhhhkkkhhkhkhkkkkkkkkk
EF3A 20 OF F1 JSR S$F10F
EF3D AA TAX

EF3E 20 DF FO JSR $SFODF
EF4l A6 F9 LDX S$F9
EF43 BD EO FE LDA SFEEO,X
EF46 85 6E STA S6E
EF48 A9 00 LDA #$00
EF4A 85 6D STA $6D
EF4C 60 RTS
khkhkkhkkhkhkhhkhkhkkkhkhhkhkhhkhkhkkkkkhkkk
EF4D A6 TF LDX $7F
EF4F BD FA 02 LDA S02FA,X
EF52 8D 72 02 STA $0272
EF55 BD FC 02 LDA $02FC,X
EF58 8D 73 02 STA $0273
EF5R 60 RTS
khhkhkhhkhkhkhkhkkkhkkhhkhkhkhkkhkkkhkkkhk
EF5C 20 Fl1 EF JSR SEFF1
EFSF 20 CF EF JSR SEFCF
EF62 38 SEC

EF63 DO 22 BNF SEF87
EF65 Bl 6D LDA ($6D),Y
EF67 1D F9 EF ORA SEFE9
EF6A 91 6D STA ($6D),Y
EF6C 20 88 EF JSR $SEF88
EF6F A4 6F LDY $6F
EF71 18 CLC

EF72 Bl 6D LDY ($6D),Y
EF74 69 01 ADC #$01
EF76 91 6D STA ($6D),Y
EF78 A5 80 LDA $80
EF7A CD 85 FE CMP $FE85
EF7D FO 3B BEQ SEFBA
EF7F FE FA 02 INC $02FA,X
EF82 po 03 BNE SEF87
EF84 FE FC 02 INC S02FC.X

228

track

track 1
times 4

veri1fy BAM
increment track number

and compare with max val + 1 = 36
ok, next track

get track number back
write BAM to disk

set buffer pointer for BAM
get 6 for drive 0

allocate buffer
buffer number
buffer address, hi byte

1o byte
pointer to $6D/$6E

get # of free blocks for dir
drive number
number of blocks, lo

number of blocks, hi
in buffer for directory

mark block as free
set buffer pointer
erase bit for sector in BAM

block already free, then done
bit model of BAM
set bit X, marker for free

set flag for BAM changed

increment # of free blocks/track

track

equal to 187

then skip

inc # of free blocks in disk

increment number of blocks hi

EF87 60 RTS
khkkhkhkhkkhkhhhhkhkkkhkhkhhkhikhkkkikn
EF88 A6 TF LDX S7F
EF8A A9 01 LDA #$01
EF8C 9D 51 02 STA $0251,X
EF8F 60 RTS
khkkkhkhkkkkkkkhhkhhhkhhkhhkhkkkkhkkk
EF90 20 F1 EF JSR $EFF1
EF93 20 CF EF JSR SEFCF
EF96 FO 36 BEQ SEFCE
EF98 Bl 6D LDA ($6D),Y
EF9A 5D E9 EF EOR $EFE9,X
EF9D 91 6D STA ($6D),Y
EF9F 20 88 EF JSR SEF88
EFA2 A4 6F LDA S6F
EFA4 Bl 6D LDA ($6D),Y
EFA6 38 SEC

EFA7 E9 01 SBC #$01
EFA9 91 6D STA (S6D).Y
EFAB A5 80 LDA $80
EFAD CD 85 FE CMP SFE85
EFBO FO OB BEO S$EFBD
EFB2 BD FA 02 LDA $02FA,X
EFB5S DO 03 BNE SEFBA
EFB?7 DE FC 02 DEC $02FC,X
EFBA DE FA 02 DEC $02FA,X
EFBD BD FC 02 LDA S$O2FC,X
EFCO DO 0C BNE SEFCE
EFC2 BD FA 02 LDA $02FA,X
EFC5 c9 03 CMP #$03
EFC7 BO 05 BCS $EFCE
EFC9 A9 72 LDA #872
EFCB 20 C7 E6 JSR SE6C7
EFCE 60 RTS
Ahkkhkkkkrhknkhkrhkhkhkhkkhkhhhhkhhkkxhkhk
EFCF 20 11 FO JSR SFO11
EFD2 98 TYA

EFD3 85 6F STA S6F
EFD5 A5 81 LDA s$81
EFD7 4A LSR A

EFDR 4A LSR A

EFD9 4aa LSR A

EFDA 38 SEC

EFDB 65 6F ADC S6F
EFDD A8 TAY

EFDE A5 81 LDa s$81
EFEQ 29 07 AND #$07
EFE2 AA TAX

EFE3 Bl 6D LDA ($S6D),Y
EFE5 3D E9 EF AND S$EFE9,X
EFE8 60 RTS

229

Anatomy of the 1541 Disk Drive

set flag for
drive pumber

'BAM changed'

flag = 1

mark block as allocated

set buffer poincer

erase bit for sector in BAM
already allocated, then done
erase bit for block

set flag for BAM changed

decrement # of blocks per track

track
182

number of free blocks lo
decrement number of free blocks
number of free blocks hi

more than 255 blocks free?

free blocks lo

smaller than 3?

72, 'disk full'

erase bit for sector in BAM entry
find RAM field for this track

sector

divide by @&

byte number in BAM entry
sector number

bit number in BAM entry

byte 1n BAM

erase bit for corresponding
sector

Anatomy of the 1541 Disk Drive

dhkkhhhhkkdkhkihkhkkkhokhdhhhkkokkhkx

#SFF

$02F9
SF004
$F004
SF004
4#$00

S02F9
SD58A

SEF3A
#500

STA (S6D),Y

SFO0B

$S6F
$70

S$SIF
SFF,X
SF022
$#$74
SE648
$F10F
S6F

A
$70

$80

$029D,

$FO3E

$70

$029D,

SFO3E
SFO5B
$70
STF

$0298B,

A
A

#SAl

X

X

X

EFE9 01 02 04 08 10 20 40 80
Thhkhhhkbdkdddbdhkhhhhkrdhhhhhdhkx
EFF1 A9 FF LDA
EFF3 2C F9 02 BIT
EFF6 FO 0C BEQ
EFF8 10 0A BPL
EFFA 70 08 BVS
EFFC A9 00 LDA
EFFE 8D F9 02 STA
FOO1 4C 8A D5 JIMP
F004 60 RTS
Khhkdhkhhkhhkrhkhkakerkhhhhkkhkkhkk
FO05 20 3A EF JSR
F008 A0 00 L.DY
FOOA 98 TYA
FOOB 91 €D

FOOD ca INY
FOOE DO FB BNE
FO010 60 RTS
khhhkhhkkRkkhkhhhkkhkhkahkhdhkhhkdhhkkhk
FO11 A5 6F LDA
FO13 48 PHA
FO14 A5 70 LDA
FO01l6 8 PHA
FO17 FAE 3 LDX
FO19 B5 FF Lba
FO1B FO 05 BEQ
FO1D A9 74 LDA
FOLF 20 48 E6 JSR
F022 20 OF F1 JSR
F025 85 6F STA
FO27 8A TXA
F028 0A ASL
F029 85 70 STA
FO02B AA TAX
F02C A5 80 LDa
FO2F DD 9D 02 CMP
F031 FO OB BED
F033 E8 INX
F034 86 70 STX
F036 DD 9D 02 CMP
F039 FO 03 BEQ
FO3B 20 5B FO JSR
FO3E A5 70 LDA
F040 A6 TF LDX
F042 9D 9B 02 STA
F045 OA ASL
F046 0Aa ASL
FO47 18 CLC
F048 69 Al ADC
FO4a 85 6D STA

$6D

230

powers of 2

write BAM after change

reset flag
write block

erase BAM buffer
pointer $6D/$6E to BAM buffer

erase BAM buffer

drive number
drive zero?

'drive not ready'
get buffer number for BAM

track

drive number

times ¢

Anatomy of the 1541 Disk Drive

FO4C A9 02 LDA #$02

FO4E 69 00 ADC #S00

FO50 85 6E STA $6E

F052 A0 00 LDY #$00

F054 58 PLA

F055 85 70 STA $70

F0S57 68 PLA

F058 85 6F STA $6F

FO5A 60 RTS
hhkkkkhkhkhhhkkhkkkhkhkkkhkkkhkkxhkkx

FOS5B A6 6F LDX S$6F

FO5D 20 DF FO JSR S$FODF

FO060 A5 7F LDA $§7F drive number
F062 AA TAX

F063 0A ASL A

F064 1D 9B 02 ORA $029B,X

F067 49 01 EOR #$01

F069 29 03 AND #$03

FO6B 85 70 STA $70

FO6D 20 A5 FO JSR SFOAS

F070 A5 F9 LDA SF9 buffer number
F072 OA ASL A

F073 AA TAX

F074 A5 80 LDA $80 track

F076 0A ASL A

FO077 0A ASL A times 4

F078 95 99 STA $99,X equal pointer in BAM field
FO7A A5 70 LDA $70

FO7C 0A ASL A

FO7D 0A ASL A

FOTE A8 TAY

FO7F Al 99 LDA ($99,X)

F081 99 Al 02 STA S02A1,X

F084 A9 00 LDA #$00

F086 81 99 STA ($99,X) zero 1n buffer
F088 F6 99 INC $99,X increment buffer pointer
FO8A c8 INY

FO8B 98 TYA

F08C 29 03 AND #S03

FO8SE DO EF BNE $FO7F

F090 A6 70 LDX $70

F092 A5 80 LDA $80 track

F094 9D 9D 02 STA $029D,X
F097 AD F9 02 LDA $02F9

FO9A DO 03 BNE SFO9F

F09C 4C 8A DS JMP SD58A wrlte block
FO9F 09 80 ORA #580

FOAl 8D F9 02 STA S$02F9

FOA4 60 RTS

FOAS A8 TAY

FOA6 B9 9D 02 LDA $029D,Y

FOA9 FO 25 BEO SFODO

231

Anatomy of the 1541 Disk Drive

FOAB 48 PHA

FOAC A9 00 LDA #$00

FOAE 99 9p 02 STA $029D,Y

FOB1 A5 F9 LDA $F9 puffer number
FOB3 0A ASL A times 2

FOB4 AA TAX

FOB5 68 PLA

FOB6 0A ASL A

FOB7 0A ASL A

FOBB 95 99 STA $99,X%

FOBA 98 TYA

FOBB 0A ASL A

FOBC oA ASL A

FOBD AB TAY

FOBE B9 Al 02 LDA S02Al,Y

FOC1 81 99 STA (5$99,%) write in buffer
FOC3 A9 00 LDA #$00

FOCS 99 Al 02 STA S02Al1,Y

FOC8 F6 99 INC $99,X increment buffer pointer
FOCA c8 INY

FOCB 9B TYA

FOCC 29 03 AND #S03

FOCE DO EE BNE SFOBE

FODO 60 RTS

FOD1 AS 7F LDA $7F drive number
FOD3 0A ASL A

FOD4 AA TAX

FODS A9 00 LDA #$00

FOD7 9D 9D 02 STA $029D,X

FODA E8 INX

FODB 9D 9D 02 STA $029D,X

FODE 60 RTS

FODF BS A7 LDA SA7,X

FOEl C9 FF CMP #SFF

FOE3 DO 25 BNE SF10A

FOES 8A TXA

FOF6 48 PHA

FOE7 20 8E D2 JSR $D28E

FOEA AA TAX

FOEB 10 05 BPL SFOF2

FOED A9 70 LDA #S$70

FOEF 20 C8 C1 JSR $C1C8 70, 'no channel!’
FOF2 86 F9 STX $F9

FOF4 68 PLA

FOFS A8 TAY

FOF6 8A TXA

FOF7 09 80 ORA #$80

FOF9 99 A7 00 STA S00A7,Y

FOFC 0A ASL A

FOFD AA TAX

FOFE AD 85 FE LDA SFE85 18, directory track
F101 95 06 STA $06,X save

F103 A9 00 LDA #S00 0

232

$07,X
$D586

#SOF
SF9

#506
STF
SF118

#507

SF10F

SDE3E
#$03
S6F
#5501
$02F9
$02F9
S6F

SFO11

S6F

Anatomy of the 1541 Disk Drive

(S6D),Y

SF173
$80

SFE85
$F15A
SF15F
$80

$80

SFED7
SF12D
SFES85

$80
#$00
$81
S6F
SF12D
#5872
$Clcs
$80
SF12D
SFE85

F105 95 07 STA
107 4C 86 DS JMP
F10A 29 OF AND
f10C 85 F9 STA
*10E 60 RTS
thkk Ak Rk Rk kR khkhkk Rk knnnaR AR AR
"10F A9 06 LDA
111 A6 7F LDX
113 DO 03 BNE
"115 18 CLC
'116 69 07 ADC
"118 60 RTS
B N L R R k]
'119 20 OF F1 JSR
'11C AA TAX
‘11D 60 RTS
23 I R P
'11E 20 3E DE JSR
121 A9 03 LDA
'123 85 6F STA
125 A9 01 LDA
127 0D F9 02 ORA
12A 8D F9 02 STA
12D A5 6F LDA
12F 48 PHA
130 20 11 FO JSR
133 68 PLA
134 85 6F STA
136 Bl 6D LDA
138 DO 39 BNE
13A A5 80 LDA
13¢C CD 85 FE CMP
13F FO 19 REO
141 90 1C BCC
143 E6 80 INC
F145 A5 80 LDA
F147 CD D7 FE cMp
F14A DO El1 BNE
F14C AE 85 FE LDX
F14F CA DEX
F150 86 80 STX
F152 A9 00 LDA
F154 85 81 STA
F156 C6 6F DEC
F158 D0 D3 BNE
F15A A9 72 LDA
F15C 20 ¢c8 C1 JSR
F15F Cé6 80 DEC
F161 DO CA BNE
F163 AE 85 FE LDX
F166 E8 INX

233

as sector
write block

buffer number

get huffer number for BAM

drive number

gives 13 for drive 0

buffer number for BAM
get buffer number

find and allocate free block
get track and sector number

counter

save counter

find BAM field for this track

get counter back

number of free blocks in track
blocks sti1ll free?

track

18, directory track?

yes, 'disk full'

smaller, then next lower track
increment track number

36, highest track number plus one
no, continue searching this track
18, directory track

decrement

save as track number

begin with sector number zero
decrement counter
not yet zero, then continue

72, ‘disk full'

decrement track number

not yet 0. continue in this track
18, directory track

increment

Anatomy of the 1541 Disk Drive

F167 86 80 STX $80
F169 A9 00 LDA #$00
F16B 85 81 STA $81
F16D C6 6F DEC S6F
F16F D0 BC BNE SF12D
F171 FO E7 BEQ SF15A
F173 A5 81 LDA $81
F175 18 CLC

F176 65 69 ADC $69
F178 85 81 STA $81
F17A A5 80 LDA $80
F17C 20 4B F2 JSR SF24B
F17F 8D 4E 02 STA $024E
F182 8D 4D 02 STA $024D
F185 Cc5 81 CMP $81
F187 BO OC BCS S$F195
F189 38 SEC

F18A A5 81 LDA $81
F1BC ED 4E 02 SBC S024E
F18F 85 81 STA $81
F191 FO 02 BFO SF195
F193 Cc6 81 DEC $81
F195 20 FA F1 JSR SF1FA
F198 FO 03 BEQ $F19D
F19A 4C 90 EF JIMP SEF90
F19D A9 00 LDA #S00
F19F 85 81 STA $81
F1Al 20 FA F1 JSR SF1FA
F1A4 no F4 BNE S$F19A
F1A6 4C FS F1 JMP SF1F5
Kk A gk kok ok ok odkod ok deodde ok kodkodek e dok ok ok ok k&
F1A9 A9 01 LDA #$01
F1AB 0D F9 02 ORA $02F9
F1B1 A5 86 LDA $86
F1B3 48 PHA

F1B4 49 01 LDA #$01
F1Bé6 85 86 STA $86
F1B8 AD 85 FE LDA SFE85
F1BB 38 SEC

F1BC E5 86 SBC $86
F1BE 85 80 STA $80
F1CO 90 09 BCC SF1CB
F1C2 FO 07 BEQ SF1CB
F1C4 20 11 FO JSR SFO011
F1C7 Bl 6D LDA ($S6D),Y
F1C9 n0 1B BNE SF1E6
F1CB AD 85 FF LDA SFES85
FI1CE 18 cLC

F1CF 65 86 ADC $86
F1D1 85 80 STA $80
¥1D3 E6 86 INC S86
F1D5 CD D7 FE CMP SFED7
F1D8 90 05 BCC SF1DF

234

begin with sector zero
decrement counter
not yet zero, then continue

‘*disk full'

save as track number |
|

|

|

|

|

else I
|

sector number

plus step width (10)

as new number

track number

get maximum sector number

and save .
greater than selected sector *?;
yes |
else ;
sector number

minus maximum sector number
save as new sector number
zero?

else decrement sector no,
check BAM,
not found?

allocate block in BAM

by on¢,
find free sector

sector zero

find free sector
found?

no, 'dir sector'

find free sector and allocate

track counter

18, directory track

minus counter

save as track number

result <= zero?

then try top half of dir

find BAM field for this track
no. of free blocks in this tracl
free blocks exist

18, directory track

plus counter

save as track number
increment counter

36, max track number plus one
smaller, then ok

Anatomy of the 1541 Disk Drive

S6F

$#S71
SE645

SFED6

SFED6,X

SF24E

SFED1,X

#S6F
$1C02
#SFO
$1C00
$1coc
#SFE
#SOE
#SEO
$icoc
#541
S1COB
#S00
$1C06
#S3A
$1C07
$1C05
#$7F
S$1COE
#SCO
$1COD
S1COE
#SFF
$3E
$51
#$08
$39
#$07
$47
#$05
$62
#SFA
$63
#SC8
$64
#504
$SE
#504

F242 68 PLA
F243 85 6F STA
F245 60 RTS
F246 A9 71 LDA
F248 20 45 E6 JSR
R e s 2 R E Ty
F24B AE D6 FE LDX
F24E DD D6 FE CMP
F251 ca DEX
F252 BO FA BCS
F254 BD D1 FE LDA
F257 60 RTS
F258 60 RTS
Kk khkhhhkhhhhhhhhhhhkhhkhhdhihk
F259 A9 6F LDA
F25B 8D 02 1cC STA
F25E 29 FO AND
F260 8D 00 1C STA
F263 AD OC 1C LDA
F266 29 FE AND
F268 09 OE ORA
F26A 09 EO ORA
F26C 8p 0C 1C STA
F26F A9 41 LDA
F271 8D 0B 1C STA
F274 A9 00 LDA
F276 8D 06 1C STA
F279 A9 3A LDA
F27B 8D 07 1C STA
F27E 8D 05 1C STA
F281 A9 7F LDA
F283 8D OE 1C STA
F286 A9 CO LDA
F288 8D 0D 1C STA
F28B 8D 0F 1C STA
F28E A9 FF LDA
F290 85 3E STA
F292 85 51 STA
F294 A9 08 LDA
F296 85 39 STA
F298 A9 07 LDA
F29A 85 47 STA
F29C A9 05 LDA
F29E 85 62 STA
F2A0 A9 FA LDA
F2A2 85 63 STA
F2A4 A9 c8 LDA
F2A6 85 64 STA
F2A8 A9 04 LDA
F2AA 85 5E STA
F2AC A9 04 LDA
F2AE 85 6F STA

S6F

236

71, ‘dir error'

establish # of sectors per track
4 different values
track number

not greater?
get number of sectors

initialize disk controller
bit 4 (write prot) & 7 (S¥YNC)
data direction register port B

port B, control port
PCR, control register

timer 1 free running, enable
port A latch
timer 1 lo latch

timer 1 h1 latch
timer 1 h:

erase IROS

IER, allow 1interrupts

track counter for formatting
8

constants for block header

7

constants for data block

pointer $62/S63 to SFAO05

200

Anatomy of the 1541 Disk Drive

Rkkkhhkhhhkkhkhhkkhhkhkhhkhhkhkhhk

F2B0 BA TSX

F2B1 86 49 STX $49
F2B3 AD 04 1C LDA $1C04
F2B6 AD OC 1C LDA s1C0C

F2B9 09 OE ORA #S0OE
F2BB 8D 0C 1C STA $1COC
F2BE AD 05 LDY #S05
F2C0 B9 00 00 LDA $0000,Y
F2C3 10 2E BPL $F2F3
F2C5 Cc9 DO CMP #SDO
F2C7 DO 04 BNE SF2CD
F2C9 98 TYA

F2CA 4C 70 F3 JMP S$F370
F2CD 29 01 AND #$01
F2CF F0 07 BEQ SF2D8
F2D1 84 3F STY $3F
F2D3 A9 OF LDA #SOF
F2D5 4C 69 F9 JMP $F969
F2D8 AA TAX

F2D9 85 3D STA $3D
F2DB C5 3E CMP $3E
F2DD FO 0A BEQ $F2E9
F2DF 20 7 F9 JSR SF97E
F2E2 AS 3D LDA $3D
F2E4 85 3E STA S3E
F2E6 4C 9C F9 JMP S$F99C
F2E9 A5 20 LDA $20
F2EB 30 03 BMI S$F2F0
F2ED oA ASL A
F2EE 10 09 BPL SF2F9
F2F0 4C 9C F9 JMP SF99C
F2F3 88 DEY

F2F4 10 ca BPL $F2C0
F2F6 4C 9C F9 JMP SF99C
F2F9 A9 20 LDA #$20
F2FB 85 20 STA $20
F2FD A0 05 LDY #S$05
F2FF 84 3F STY S3F
F301 20 93 F3 JSR $F393
F304 30 1A BMI $F320
F306 Cé6 3F DEC $3F
F308 10 F7 BPL SF301
F30A A4 41 LDY S$41
F30C 20 95 F3 JSR $F395
F30F A5 42 LDA $42
F311 85 4A STA S4A
F313 06 4A ASL S$4A
F315 A9 60 LDA #S60
F317 85 20 STA $20

237

IRO routine for disk controller
save stack pointer

erase interrupt flag from timer

command for buffer Y?

no

exec, code for program in buffer
no

execute program in buffer
1solate drive number
drive zero?

else
74, 'drive not ready'

motor running?
yes
turn drive motor on

set flag
to job loop

head transport programmed?

to job loop

check next huffer
to job loop

program head transport

initialize buffer counter

set pointer in bhuffer

command for buffer?

decrement counter

check next buffer

buffer number

set pointer 1n buffer

track difference for last job
as counter for head transport

set flag for head transport

Anatomy of the 1541 Disk Drive

F1DA A9 67 LDA #$67
F1DC 20 45 E6 JSR $E645
F1DF 20 11 FO JSR $F011
F1E2 Bl 6D LDA ($6D),Y
F1E4 FO D2 BEQ S$F1BB
F1E6 68 PLA

F1E7 85 86 STA $86
F1E9 A9 00 LDA #S00
F1EB 85 81 STA $81
F1ED 20 FA F1 JSR SF1FA
F1F0 FO 03 BEQ SFI1F5S
F1F2 4C 90 EF JMP $SEF90
F1F5 A9 71 LDA #S71
F1F7 20 45 E6 JSR SE645
LE 2RSSR RS ESR RS RREREREEER]
F1FA 20 11 FO JSR SFO011
F1FD 98 TYA

F1FE 48 PHA

F1FF 20 20 F2 JSR $F220
F202 A5 80 LDA $80
F204 20 4B F2 JSR $F24B
F207 8D 4E 02 STA SO024E
F20A 68 PLA

F20B 85 6F STA $6F
F20D A5 81 LDA $81
F20F CD 4E 02 CMP S024E
F212 BO 09 BCS $F21D
F214 20 D5 EF JSR SEFD5
F217 DO 06 BNE $F21F
F219 E6 81 INC $81
F21B DO FO BNE SF20D
F21D A9 00 LDA #$00
F21F 60 RTS
Khkknmkhkkrnhknkknaxkkhkxkhknkxkkkkk
F220 A5 6F LDA $6F
F222 48 PHA

F223 A9 00 LDA #S$00
F225 85 6F STA S6F
F227 AC 86 FE LDY SFE86
F22A 88 DEY

F22B A2 07 LDX #$07
F22D Bl 6D LDA ($6D),Y
F22F 3D E9 EF AND SEFE9,X
F232 FO 02 BEQ SF236
F234 E6 6F INC $6F
F236 ca DEX

F237 10 F4 BPL S$F22D
F239 88 DEY

F23A DO EF BNE SF22B
F23C Bl 6D LDA (S6D),Y
F23E C5 6F CMP S$6F
F240 DO 04 BNE S$F246

235

67, 'illegal track or sector’
find BAM field for this track
no. of free blocks in this track
no more free blocks?

sector 0

find free sector

not found?

allocate block in BAM

71, 'dir error’

find free sectors in actual track
find BAM field for this treack
points to # of free blocks

verify BAM

track

get max # of sectors of the track
save

save pointer

compare sector

wlth maximum number
greater than or equal to?
get bit number of sector
sector free?

increment sector number
and check if free

no sectors free

verify no, of free blocks 1in BAM

counter to zero
4, no. of bytes per track in BAM

1solate bit

increment counter of free sectors

compare with number on diskette

not equal, then error

Anatomy of the 1541 Disk Drive

F319 Bl 32 LDA ($32),Y
F31B 85 22 STA $22
F31D 4C 9C F9 JMP SF99C
F320 29 01 AND #S01
F322 C5 3D CMP $3D
F324 DO EO BNE S$SF306
F326 A5 22 LDA S22
F328 FO 12 BEQ SF33C
F32A 38 SEC

F32B F1 32 SBC ($32),Y
F32D FO OD BEO SF33C
F32F 49 FF EOR #SFF
F331 85 42 STA $42
F333 E6 42 INC $42
F335 A5 3F LDA $3F
F337 85 41 STA $41
F339 4C 06 F3 JMP $F306
E33C A2 04 LDX #$04
F33E Bl 32 LDA ($32),Y
F340 85 40 STA $40
F342 DD D6 FE CMP SFED6,X
F345 ca DEX

F34¢€ BO FA BCS S$F342
F348 8D D1 FE LDA SFEDI,X
F34B 85 43 STA S43
F34D 8A TXA

F34F (17:3 ASL A

F34F 0A ASL A

F350 0A ASL A

F351 oA ASL A

F352 0A ASL A

F353 85 44 STA S44
F355 AD 00 1C LDA $1C00
F358 29 9F AND #S9F
F35A 05 44 ORA $44
F35C 8p 00 1C STA $1C00
F35F A6 3D LDX $3D
F361 A5 45 LDA $45
F363 c9 40 CMP #$40
F365 FO 15 BEQ S$F37C
F367 C9 60 CMP #3860
F369 FO 03 BEQ SF36E
F36B 4C Bl F3 JMP $F3B1
L]
F36E A5 3F LDA S3F
F370 18 CLC

F371 69 03 ADC #S03
F373 85 31 STA $31
F375 A9 00 LDA #$00
F377 85 30 STA $30
F379 6C 30 00 JMP ($0030)

kX hkkhkhkhkhhkkhkhkhdkdkkkdhhkkkdkdddi

238

get track number from buffer

to job loop

isolate drive number

equal drive number of last job?
no

last track number

equal zero?

equal track number of this job?
yes

drive number

track number of the job
save
compare with max track number

greater?

get # of sectors per track
and save

gives 0, 32, 64, 96

generate control byte for notor

command code

position head?

yes

command code for prg execution?
yes

read block header

execute program in buffer
buffer number

plus 3
equals address of buffer
execute program in buffer

position head

Anatomy of the 1541 Disk Drive

F37C A9 60 LDA #$60
F37E 85 20 STA $20
F380 AD 00 1C LDA $1C00
F383 29 FC AND #SFC
F385 8D 00 1C STA $1cC00
F388 A9 A4 LDA #SA4
F38A 85 4A STA $4A
F38C A9 01 LDA #S01
F38E 85 22 STA $22
F390 4C 69 F9 JMP $F969
khkANR kA kA hkkhkrkkhhrhhhkkhdhkhrdhd
F393 A4 3F LDY $3F
F395 B9 00 00 LDA $0000,Y
F398 48 PHA

F399 10 10 BPL $F3AB
F39B 29 78 AND #$78
F39D 85 45 STA $45
F39F 98 TYA

F3A0 0A ASL A
F3Al1 69 06 ADC #506
F3A3 85 32 STA $32
F3AS 98 TYA

F3A6 18 CLC

F3A7 69 03 ADC #$03
F3a9 85 31 STA $31
F3AB A0 00 LDY #S$00
F3AD 84 30 STY $30
F3AF 68 PLA

F3B0 60 RTS
khkkkhkkhkkhkhkhkhkhkihkhhkkkxhhdhikin
F3B1 A2 5A LDX #S5A
F3B3 86 4B STX S4B
F3B5 A2 00 LDX #S$S00
F3B7 A9 52 LDA #$52
F3B9 85 24 STA $24s
F3BB 20 56 F5 JSR $F556
F3BE 50 FE BVC $F3BE
F3CO0 B8 CLV

F3C1 AD 01 1C LDA $1C01
F3Ca C5 24 CMP $24
F3C6 DO 3F BNE $F407
F3C8 50 FE BVC $F3C8
F3CA B8 CLV

F3CB Ap 01 1C LDA $1C01
F3CE 95 25 STA $25,X
F3DO E8 INX

F3D1 EO 07 CPX #$07
F3D3 DO F3 BNE SF3C8
F3D5 20 97 F4 JSR $F497
F3D8 A0 04 LDY #504
F3DA A9 00 LDA #S00
F3DC 59 16 00 FOR $0016,Y
F3DF 88 DEY

239

set flag for head transport
turn stepper motors on

164
step counter for head transport

track number
ok

initialize pointer in buffer
buffer number
command code

save

erase bits 0,1,2. and 7
buf fer number

times two

plus 6

equals pointer to actual buffer
buffer number

plus 3

equals buffer address hi

buffer address lo
get command code back

read block header, verify ID
90

counter

82

wait for SYNC
byte ready?

data from read head

20, 'read error'
byte ready?

data byte from disk(block header)
save 7 bytes

continue reading

4 bytes plus parity

form checksum for header

Anatomy of the 1541 Disk Drive

F3ED 10 FA RPL $F3DC
F3E2 9 00 CMP #$00
F3E4 DO 38 BNE $F41E
F3E6 AR 3E LDX $3E
F3E8 A4 18 LDA $18
F3EA 95 22 STA $22,X
F3EC AS 45 LDA $45
F3EE c9 30 CMP #$30
F3F0 FO 1E BEQ $F410
F3F2 AS 3E LDA $3E
F3F4 oA ASL A
F3F5 A8 TAY

F3F6 B9 12 00 LDA $0012,Y
F3F9 c5 16 CMP S16
F3FB DO 1E BNE $F41B
F3FD B9 13 00 LDA $0013,Y
F400 cs 17 CMP $17
F402 DO 17 BNE S$F41B
F404 4C 23 F4 JMP $F423
F407 C6 4B DEC $4B
F409 DO BO BNE $F3BB
F40B A9 02 LDA #$02
F40D 20 69 F9 JSR $F969
KAKAKAKRKKXKAKA KK ARXKRN XX A RF Kk k kk X
F410 AS 16 LDA 516
F412 85 12 STA $12
Fal4 A5 17 LDA $17
F416 85 13 STA $13
F418 A9 01 LDA #$01
F41A 2¢C .BYTE $2C
FAlR A9 0B LDA #SOB
F41D 2C LBYTE $2C
F41E A9 09 LDA #509
F420 4C 69 F9 JMP SF969
AKKIXKAX Xk Rk hkhkwrhkdhhhhdhdnhkik
F423 AS TF LDA #S7TF
F425 85 4AC STA $4C
F427 A5 19 LDA $19
F429 18 CLC

F42A 69 02 ADC #502
F4a2C c5 43 CMP $43
F42E 90 02 BCC S$F432
F430 E5 43 SBC $43
F432 85 4D STA S$4D
F434 A2 05 LDX #$05
F436 86 3F STX $3F
F438 A2 FF LDX #S$FF
FA3A 20 93 F3 JSR $F393
F43D 10 44 BPL $F483
F43F 85 44 STA $44
F441 29 01 AND #S501
F443 Cc5 3E CMP $3E

240

parity ok?

27, ‘read error'

drive number

track number of header

use as actual track number

code for 'preserve header'

preserve header

compare with ID1

compare with ID2
<>, then 29, 'disk id mismatch’

decrement counter for attempts
and try again

else

20, 'read error’
preserve block header
ID1

and ID2

preserve

ok

29, ‘disk 1d mismatch'
27, 'write error’

done

set buffer ptr for disk control.

Anatomy of the 1541 Disk Drive

F4A9 20 E6 F7 JSR SF7F6
F4AC A5 55 LDA $55
F4AE 85 18 STA $18
F4BO A5 54 LDA $54
F4B2 85 19 STA $19
F4B4 A5 53 LDA $53
F4B6 85 1A STA S1A
F4B8 20 F6 F7 JSR SF7E6
F4BB A5 52 LDA $52
F4BD 85 17 STA $17
F4BF AS 53 LDA $53
F4Cl 85 16 STA S16
F4C3 68 PLA

F4C4 85 31 STA $31
F4C6 68 PLA

F4C? 85 30 STA $30
F4C9 60 RTS

KhkkkhkkhkRhkhkkhkhhhkkrxrnkhhhhdhddd

F4CA c9 00 CMP #$00
F4CC FO 03 BEOQ $F4D1
F4CE 4C 6E F5S JMP SF56E
F4D1 20 OA FS JSR SF50A
F4D4 50 FE BVC $F4D4
F4D6 B8 CLV

F4D7 AD 01 1C LDA $1C01
F4DA 91 30 STA (530),Y
F4DC Cc8 INY

F4DD DO FS BNE SF4D4
F4DF AD BA LDY #SBA
F4E] 50 FE BVC S$F4El
F4E3 B8 CLV

F4E4 AD 01 1C LDA $1C01
F4E7 99 00 01 STA $0100,Y
F4EA c8 INY

F4EB DO F4 BNE S$F4Fl
F4ED 20 EO F8 JSR S$F8EO
F4FO A5 38 LDA $38
F4F2 Cc5 47 CMP $47
F4F4 F0 05 BEQ SF4FB
FAF6 A9 04 LDA #S04
F4F8 4C 69 F9 JMP $F969
F4FR 20 E9 F5 JSR SF5E9
F4FE C5 3A CMP S3A
F500 FO 03 BEOQ SF505
F502 A% 05 LDA #$05
F504 2C «RYTE $2C
F505 A9 01 LDA #3501
F507 4C 69 F9 JMP $F969

LEEEEEEEEEESRERRRTESESEESE SR 2

F50A 20 10 F5 JSR SF510
F50D AC 56 FS JMP $F556

242

get pointer $30/$31 back

command code for 'read'?
yes

continue checking command code

find beginning of data block
byte ready?

get data byte

and write in buffer
256 times

byte ready?

read bytes
from $1BA to $1FF

equal 7, beginning of data bloc
yes
22, 'read error'

error termination

calculate parity of data block

agreement?
yes
23, ‘read error'

ok
prepare erxror message

find start of data block
read block header
wait for SYNC

Anatomy of the 1541 Disk Drive

Kk dkdkdkdkkkkkdkddedededrdeddededdedddddhd read block header

F510 A5 3D LDA $3D drive number

F512 0A ASL A

F513 AA TAX

F514 B5 12 LDA $12,X ID1

F516 85 16 STA $16 save

F518 B5 13 LDA §$13,X ID2

F51A 85 17 STA $17 save

F51C AD 00 LDY #S00

F51E Bl 32 LDA (832),Y get track and

F520 85 18 STA $18

F522 c8 INY

F523 Bl 32 LDA ($32),Y sector number from buffer
F525 85 19 STA S19

F527 A9 00 LDA #$00

F529 45 16 FOR S16

F52B 45 17 EOR $17 calculate parity for block header
F52D 45 18 EOR $18

F52F 45 19 EOR $19

F531 85 1A STA $1A and save

F533 20 34 F9 JSR S$F934

F536 A2 5A LDX #S$5A 90 attempts

F538 20 56 F5 JSR $F556 wait for SYNC

F53B A0 00 LDY #$S00

F53D 50 FE BVC S$F35D byte ready?

FS3F B8 CLV

F540 AD 01 1C LDA §$1C01 read data from block header
F543 D9 24 00 CMP $0024,Y compare with saved data
F546 DO 06 BNE SFS4E not the same, try again
F548 c8 INY

F549 Cco 08 CPY #S08 8 bytes read?

F54B DO FO BNE $F53D no

F54D 60 RTS

FS4E CA DEX decrement counter

FS54F DO E7 BNE $F538 not yet zero?

F551 A9 02 LDA #$02

F553 4C 69 F9 JMP SF969 20, fread error'

LA R RS RS RS R SR RS R 2 2 R R SR X T wait for SYNC

F556 A9 DO LDA #$DO 208

F558 8D 05 18 STA $1805 start timer

F55B A9 03 LDA #$03 error code

F55D 2C 05 18 BIT $1805

F560 10 F1 BPL $F553 timer run down, then 'read error!
F562 2C 00 1cC BIT $1C00 SYNC signal

F565 30 F6 BMI SFS55D not yet found?

F567 AD 10 1C LDA $1cCO01 read byte

FS6A B8 CLV

F56B A0 00 LDY #$00

F56D 60 RTS

Khkhkhkhhkhkk bkt hhhkkrkdkhkkhk ki
F56E c9 10 CMP #$10 command code for ‘write’

243

Anatomy of the 1541 Disk Drive

F445 DO 3C BNE $F483

F447 A0 00 LDY #S00

F449 Bl 32 LDA ($32),Y

F44B C5 40 CMP $40

F44D DO 34 BNE $F483

F44F AS 45 LDA $45 command code
F451 C9 60 CMP #860

F453 FO oOC BEO SF461

F455 AO 01 LDY #$01

F457 38 SEC

F458 Bl 32 LDA ($32),Y

F45A E5 4D SBC $4D

F45C 10 03 BPL S$F461

F45E 18 CLC

F45F 65 43 ADC $43

F461 C4 4C CMP $4C

F463 BO 1lE BCS $F483

F465 48 PHA

F466 AS 45 LDA $45

F468 FO 14 BEQ SF47E

F46A 68 PLA

F46B c9 09 CMP #S09

F46D 90 14 RCC S$F483

F46F c9 0cC CMP #S0C

F471 BO 10 BCS $F483

F473 85 4C STA S$4C

F475 A5 3F LDA S$3F

Fa77 AA TAX

F478 69 03 ADC #8$03

F47A 85 31 STA $31

F47C DO 05 BNE $F483

F47E 68 PLA

F47F C9 06 CMP #$06

F481 90 FO BCC SF473

F483 c6 3F DEC S3F

F485 10 B3 BPL SF43A

F487 8A TXA

F488 10 03 BPL S$F48D

F48A 4C 9C F9 JMP SF99C to job loop
F48D 86 3F STX S3F

F48F 20 93 F3 JSR S$F393 get buffer number
F492 A5 45 LDA $45 command code
F494 4C CA F4 JMP SF4CA continue checking
F497 AS 30 LDA $30

F499 48 PLA save pointer $30/$31
F49A A5 31 LDA $31

F49C 43 PHA

F49D A9 24 LDA #S24

F49F 85 30 STA $30

F4Al A9 00 LDA #$00 pointer $30/%$31 to $24
F4A3 85 31 STA $31

F4A5 A9 00 LDA #500

F4A7 85 34 STA $34

241

Anatomy of the 1541 Disk Drive

F570
F572

FO 03
4C 91 F6

BEQ $F575
JMP SF691

X2 222X 222X RS R2 2SR SR RE S

F575 20 E9 F5 JSR SF5E9
F57B 85 3A STA $3A
FS7A AD 00 1C LDA $1C00
F57D 29 10 AND #$10
F57F D0 05 BNE $F586
F581 A9 08 LDA #$08
F583 4C 69 F9 JMP SF969
F586 20 8F F7 JSR $F78F
F589 20 10 F5 JSR S$F510
F58C A2 09 LDX #$09
FS8E 50 FE BVC SFS8E
F590 B8 CLV

F591 CA DEX

F592 DO FA BNE $F58E
F594 A9 FF LDA #SFF
F596 8D 03 1C STA $1C03
F599 AD 0OC 1C LDA $1CO0C
FS59C 29 1F AND #S$1F
F59E 09 CO ORA #8C0O
F5A0 8D 0C 1C STA $1COC
F5A3 A9 FF LDA #SFF
F5A5 A2 05 LDX #S05
FS5A7 8D 01 1C STA $1C01
F5AA B8 CLV

F5AB 50 FF BVC SF5AB
F5AD B8 CcLV

FSAE ca DEX

F5AF DO FA BNE S$F5AB
FSB1 A0 RB LDY #SBB
F5B3 B9 00 01 LDA $0100,Y
F5B6 50 FE BVC $F5B6
F5B8 B8 CLV

F5BSY 8D 01 1C STA $1C01
F5BC c8 INY

F5BD DO F4 BNE $F5B3
FSBF B1 30 LDA ($30),Y
F5C1 50 FE BVC $FS5C1
F5C3 B8 cLV

F5C4 8D 01 1C STA $1C01
F5C7 [of:] INY

F5C8 D0 F5 BNE S$F5BF
FS5CA 50 FE BVC $SFSCA
F5CC AD 0C 1C LDA $1COC
F5CF 09 EO ORA #SEO
F5D1 8D 0OC 1C STA $1coC
F5D4 A9 00 LDA #500
F5D6 8D 03 1C LDA $1C03
FSD9 20 F2 F5 JSR SFSF2
F5DC A4 3F LDY $3F
FSDE BS 00 00 LDA $0000,Y

244

yes .
continue checking command code
write data block to disk
calculate parity for buffer
and save

read port B

isolate bit for 'write protect’
not set, ok

26, ‘write protect'

£find block header

byte ready?

port A (write/read head) to
to output

change PCR to output

write SFF to disk 5 times

as SYNC characters

bytes $1BB to $1FF to disk

write data buffer (256 bytes)

byte ready?

PCR to 1input again

port A (read/write head) to 1in

Anatomy of the 1541 Disk Drive

FSE1 49 30 EOR #$30 convert command code ‘write'
FSE3 99 00 00 STA $0000,Y to ‘verify!
F5E6 4C Bl F3 JMP SF3B1

RRIRARKKAKI AR KKK RK AR KR RNRKENRX coloylate parity for data tuffer
F5E9 A9 00 LDA #S00

F5EB A8 TAY

F5EC 51 30 EOR ($30),Y
F5EE c8 INY

FSEF DO FB BNE SFS5EC
F5F1 60 RTS

F5F2 A9 00 LDA #S00
F5F4 85 2E STA S$2E
FS5F6 85 30 STA $30
F5F8 85 4F STA $4F
F5FA A5 31 LDA $31
F5FC 85 4E STA S4E
F5FE A9 01 LDA #$01
F600 85 31 STA $31
F602 85 2F STA S2F
F604 A9 BB LDA #S$BB
F606 85 34 STA $34
F608 85 36 STA $36
F60A 20 E6 F7 JSP SF7E6
F60D A5 52 LDA §52
F60F 85 38 STA $38
F6ll A4 36 LDY $36
F613 A5 53 LDA $53
F615 91 2E STA (S$2E),Y
F617 c8 INY

F618 A5 54 LDA $54
F61A 91 2E STA ($2E),Y
F61C c8 INY

F61D A5 55 LDA $55
F61F 91 2F STA ($2F),Y
F621 [of:] INY

F622 84 36 STY $36
F624 20 E6 F7 JSR SF7E6
F627 Ad 36 LDY $36
F629 AS 52 LDA $52
F62B 91 2E STA (S2E),Y
F62D c8 INY

F62E AS 53 LDA $53
F630 91 2E STA ($2E),Y
F632 [of:] INY

F633 FO OE BEOQ SF643
F635 AS 54 LDA $54
F637 91 2E STA (S2E),Y
F639 c8 INY

F63A AS 55 LDA $55
F63C 91 2FE STA (S2E),Y
F63E c8 INY

F63F 84 36 STY $36
F641 DO El BNE $F624

245

Anatomy of the 1541 Disk Drive

$54
($30),Y

$55
($30),Y

$36
SF7E6
$36

$52
($30}),Y

$53
($30),Y

$54
($30),Y

855
($30),Y

$36
#SBB
SF64F
#$45
S2E

$31

$2F
#SBA
($30),Y
($2E),Y

SF678
($30),Y
#SBB
$0100,X
($30),Y

SF6BS
$50

#5820
SF698
SF6CA

$F5E9
$3A
SF78F
SF50A
#SBB

F643 AS 54 LDA
F645 91 30 STA
F647 c8 INY
F648 A5 55 LDA
F64A 91 30 STA
F64C cs8 INY
F64D 84 36 STY
F64F 20 E6 F7 JSR
F652 A4 36 LDY
F654 A5 52 LDA
F656 91 30 STA
F658 c8 INY
F659 A5 53 LDA
F65B 91 30 STA
F65D c8 INY
F65E A5 54 LDA
F660 91 30 STA
F662 c8 INY
F663 A5 55 LDA
F665 91 30 STA
F667 c8 INY
F668 84 36 STY
F66A CO0 BB CPY
F66C 90 El BCC
F66E A9 45 LDA
F670 85 2E STA
F672 A5 31 LDA
F674 85 2F STA
F676 A0 BA LDY
F678 B1 30 LDA
F67A 91 2E STA
F67C 88 DEY
F67D DO F9 BNE
F67F Bl 30 LDA
F681 91 2E STA
F683 A2 BB LDX
F685 BD 00 01 LDA
F688 91 30 STA
F68A CcB8 INY
F68B F8 INX
F68C DO F7 BNE
F6BE 86 50 STX
F690 60 RTS
RAAK KRR K AKX KRR AR KAk kR AR RN kAR A &
F691 c9 20 CMP
F693 F0O 03 BED
F695 4C CA F6 JMp
F698 20 E9 F5 JSR
F69R 85 3A STA
F69D 20 8F F7 JSR
F6AD 20 OA ¥F5 JSR
F6A3 A0 BB LbY
F6AS B9 00 01 LDA

$0100,Y

246

command code for ‘verify'?
yes
continue checking command code

calculate parity for data buffer
and save

find start of data block

data from buffer

Anatomy of the 1541 Disk Drive

F6A8 50 FE BVC SF6AS8 byte ready?

F6AA B8 CLV

F6AB 4D 01 1C EOR $1C01 compare with data from disk
F6AE DO 15 BNE S$F6C5 not equal, then error
F6B0 c8 INY

F6Bl DO F2 BNE $F6A5

F6B3 Bl 30 LDA ($30),Y data from buffer

F6B5 50 FE BVC $F6B5

F6B7 B8 cLV

F6B8 4D 01 1C EOR $1C01 compare with data from disk
F6BB DO 08 BNE $F6C5 not equal, then error
F6BD c8 INY

F6BE Cc0 FD CPY #S$FD

F6CO DO Fl BNE $F6B3

F6C2 4C 18 F4 JMP SF418 error free termination
F6C5 A9 07 LDA #$07

F6C7 4C 69 F9 JMP $F969 25, 'write error!'
khkhkkkkhkhhdkhhrkkh b khk khhddhikk

F6CA 20 10 F5 JSR S$F510 read block header
F6CD 4C 18 F4 JMP $F418 done

LR R RSS2SR R ETRE T ITTRIR Y

F6D0 A9 00 LDA #$00

F6D2 85 57 STA $57

F6D4 85 5A STA $5A

F6D6 A4 34 LDY $34

F6D8 AS 52 LDA §$52

F6DA 29 FO AND #SFO isolate hi-nibble
F6DC 4A LSR A

F6DD 4A LSR A and rotate to lower nibble
F6DE 47 LSR A

F6DF 4A LSR A

FEED AA TAX as index 1in table
F6E1 BD 7F F7 LDA $F77F,X

F6E4 OA ASL A

F6ES OA ASL A times 8

F6E6 0a ASL A

F6E7 85 56 STA $56

F6E9 A5 52 LDA §52

F6EB 29 OF AND #$OF isolate lower nibble
F6ED AR TAX as index in table
F6EE BD 7F F7 LDA $F77F,X

F6F1 6A ROR A

F6F2 66 57 ROR §57

F6F4 6A ROR A

F6F5 66 57 ROR $57

F6F7 29 07 AND #8507

F6F9 05 56 ORA $56

F6FB 91 30 STA ($30),Y in buffer

F6FD c8 INY increment buffer

F6FE A5 53 LDA §53

F700 29 FO AND #SFO 1solate upper nibble
F702 47 LSR A

247

Anatomy of the 1541 Disk Drive

F703
F704
F705
F706
F707
F70A
F70B
F70D
F70F
F711
F713
F714
F717
F718
F719
F71A
F71B
F71D
F71E
F720
F722
F724
F725
F727
F729
F72A
F72B
F72C
F72D
F72E
F731
F732
F733
F735
F737
F738
F739
F73B
F73D
F73F
F741
F742
F745
F746
F747
F749
F74B
F74D
F74F
F751
F752
F753
F754
F755
F756

TF F7

57
57
53
OF

7F F7

58

01
57
30

54
FO

TF F7

58
30

80
59
54
OF

TF F7

7c
59
59
55
FO

7F F7

LSR
LSR
LSR
TAX
LDA
ASL
ORA
STA
LDA
AND
TAX
LDA
ROL
ROL
ROL
ROL
STA
ROL
AND
ORA
STA
INY
LDA
AND
LSR
LSR
LSR
LSR
TAX
LDA
CLC
ROR
ORA
STA
INY
ROR
AND
STA
LDA
AND
TAX
LDA
ASL
ASL
AND
ORA
STA
LDA
AND
LSR
LSR
LSR
LSR
TAX
LDA

A
A
A

SF77F,X
A

$57

$57

$53
#SOF

SF77F,X
A
A
A
A

$58
A

#$.01
$57
(830),¥

$54
#SFO
A

A

A

A

SFT17F,X

A
$58
($30),Y

A
#580
$59
$54
#S0OF

SF77F,X
A

A
#$7C
$59
$59
$55
#SFO
A

A

A

A

$SF77F,X

248

shift to upper nibble

as index in table

lower nibble
as 1ndex

in buffer
increment buffer

i1solate hi-nibble

in buffer
increment buffer pointer

lower nibble
as 1index

isolate hi-nibble

shift to lower nibble

as index 1in table

Anatomy of the 1541 Disk Drive

F759 6A ROR A

F75A 66 S5A ROR $5A

F75C 6A ROR A

F75D 66 S5A ROR $5A

F75F 6A ROR A

F760 66 S5A ROR $5A

F762 29 03 AND #S03

F764 05 59 ORA $59

F766 91 30 STA (S30),Y in buffer
F768 cs8 INY increment buffer pointer
F769 DO 04 BNE SF76F

F76B A5 2F LDA $2F

F76D 85 31 STA $31

F76F A5 55 LDA $55

F771 29 OF AND #SOF lower nibble
F773 AA TAX as index
F7174 BD 7F F7 LDA SF77F,X

F777 05 5A ORA S5A

F779 91 30 STA ($30),Y in buffer
F77B cs8 INY increment buffer pointer
F77C 84 34 STY $34 and save
F77E 60 RTS

Wk e e ok ok ok de e g e kb ok de ok e e g de ok ek ok ke ek ke o

F77F OA OB 12 13 OE OF 16 17
F787 09 19 1A 1B OD 1D 1lE 15

% e de ok gk ok ok bk ke gk ok kg ok ok ok ok kb ok ke

F78F A9 00 LDA #S00
F791 85 30 STA $30
F793 85 2E STA $2E
F795 85 36 STA $36
F797 A9 BB LDA #SBB
F799 85 34 STA $34
F79B 85 50 STA $50
F79D A5 31 LDA $31
F79F 85 2F STA $2F
F7Al A9 01 LDA #S01
F7A3 85 31 STA $31
F7AS AS 47 LDA $47
F7A7 85 52 STA 852
F7AS A4 36 LDY $36
F7AB Bl 2E LDA ($2E),Y
F7AD 85 53 STA $53
F7AF c8 INY

F7BO Bl 2E LDA (S2E),Y
F7B2 85 54 STA $54
F7B4 c8 INY

F7B5 Bl 2E LDA (S2E),Y
F7B7 85 55 STA $55
F7B9 c8 INY

F7BA 84 36 STY $36
F7BC 20 DO F6 JSR $F6DO
F7BF A4 36 LDY $36
F7C1 Bl 2E LDA (S$2E).Y

249

Anatomy of the 1541 Disk Drive

F7C3
F7C5
F7C6
F7C8
F7CA
F7CC
F7CD
FICF
F7D1
F7D2
F7D4
F7D6
F7D7
F7D9
F7DB
F7DD
F7DF
F7E1
F7E3

F7E6
F7E8
F7EA
F7EC
F7ED
F7EE
F7EF
F7F1
F7F3
F7F5
F7F6
F7F7
F7F9
F7FA
F7FC
F7FE
F800
F802
F804
F806
F807
F808
F809
F80B
F80D
FBOF
F811
F812
F814
F816
F818
F819
F81A
F81B
F81C

85
c8
FO
Bl
85
c8
Bl
85
c8
Bl
85
c8
DO
A5
85
A9
85
85
4c

52

11
2B
53

2E
54

2E
55

El
3A
53
00
54
55
DO

34
30
F8

56
30
07

57

06
4E
31
4F
30
co

57
57
30
3B

58

30
01

59

Fé

STA
INY
BED
LDA
STA
INY
LDA
STA
INY
LDA
STA
INY
BNE
LDA
STA
LDA
STA
STA
JMP

LDY
LDA
AND
LSR
LSR
LSR
STA
LDA
AND
ASL
ASL
STA
INY

ASL
STA

$52

SF7D9
($2E),¥Y
$53

($2E) ,Y
$54

(S2E),Y
$55

SF7BA
$3A
$53
#5500
$54
$55
SF6DO0

$34

($30),y
#SF8

250

F81E
F81F
F821
F823
F824
F825
F826
F827
F829
F82B
F82D
F82F
F830
F832
F833
F835
F837
F838
F839
F83A
F83C
F83E
F840
F842
F844
F845
F846
F848
F84A
F84C
F84D
F84E
F84F
F851
F852
F854
F856
F858
F85A
F85C
F85E
F85F
F860
F861
F862
F864
F866
F868
F86A
F86C
F86D
F86F
F871
F874
F876

c8
Bl
29
4A

4A
4A
05
85
Bl
29
oA
85
c8
B1
29
18
2a
2A
29
05
85
Bl
29
4A
4A
85
Bl
29
0A
0A
0A
85
c8
Do
AS
85
A4
B1
29
2A
2A
2A
2A
05
85
Bl
29
85
cs8
84
A6
BD
A6
1D

30
FO

59
59
30
OF

5A

30
80

01
5a
5A
30
7C

5B
30
03

5C
5C
30
1F
5D

34
56
A0 F8
57
Co F8

INY
LDA
AND
LSR
LSR
LSR
LSR

STA
LDA
AND
ASL
STA
INY
LDA
AND
CLC
ROL
ROL
AND
ORA
STA
LDA
AND
LSR

STA
LDA
AND
ASL
ASL
ASL
STA
INY
BNE
LDA
STA
LDY
LDA
AND
ROL
ROL
ROL
ROL
ORA
STA
LDA
AND
STA
INY
STY
LDX
LDA
LDX
ORA

Anatomy of the 1541 Disk Drive

($30),Y
#SFO

gl i i g

$59

$59
($30),Y
#SOF

A

$5A
($30),Y
¥s80

A

A

#$01
55A

$5a
($30),Y
#S7C

$5B
($30),Y
#503

$5C

SFB85A
S4E
$31
S4F
($30),Y
#SEO
A

A

A

A

$5C
$5C
#S1F
$5D

$34
556
SF8A0,X
$57
SF8CO0,X

251

Anatomy of the 1541 Disk Drive

F879 85 52 STA $52
F87B A6 58 LDX $58
F87D BD A0 F8 LDA $F8A0,X
F880 A6 59 LDX $59
F882 1D CO F8 ORA SF8C0.X
F885 85 53 STA $53
F887 A6 SA LDX $5A
F889 BD A0 F8 LDA $F8A0,X
F88C A6 SB LDX $5B
F88E 1D CO F8 ORA $F8CO,X
Fg891 85 54 STA $54
F893 A6 5C LDX $5C
F895 BD A0 F8 LDA SF8A0,X
F898 A6 5D LDX $5D
F89A 1D CO F8 ORA S$F8CO0,X
F89D 85 55 STA $55
F89F 60 RTS

KR EARKAT KRR AR A RRKR R RAXR A ARRKRRE KN
F8A0 FF FF FF FF FF FF FF FF
F8A8 FF 80 00 10 FF CO 40 50
F8BO FF FF 20 30 FF FO 60 70
F8B8 FF 90 A0 BO FF DO EO FF
F8CO FF FF FF FF FF FF FF FF
F8C8 FF 08 00 01 FF 0C 04 05
F8DO FF FF 02 03 FF OF 06 07
F8D8 FF 09 0A 0B FF 0D OE FF
Kkkdkh bk kk kA ARk A kR A kI R R KA kA IR
FBEO A9 00 LDA #$00
F8E2 85 34 STA $34
FBE4 85 2E STA $2E
FBE6 85 36 STA $36
F8ES8 A9 01 LDA #$01
F8EA 85 4E STA S$4E
F8EC A9 BA LDA #S$BA
F8EE 85 4F STA S$4F
F8FO0 A5 31 LDA §$31
F8F2 85 2F STA $2F
F8F4 20 E6 F7 JSR SF7E6
F8F7 A5 52 LDA §$52
F8F9 85 38 STA $38
F8FB A4 36 LDY $36
F8FD AS 53 LDA $53
F8FF 91 2E STA ($2E),Y
F901 c8 INY

F902 A5 54 LDA $54
F904 91 2E STA (S2E),Y
FO06 c8 INY

F907 A5 55 LDA $55
F909 91 2E STA (S2E).,Y
F90B cs INY

F90C 84 36 STY $36
FO90E 20 E6 F7 JSR SF7E6

252

Anatomy of the 1541 Disk Drive

Fo1l A4 36 LDY $36
F913 A5 52 LDA $52
F915 91 2E STA ($2EB),Y
F917 csg INY

F918 FO 11 BEQ $F92B
Fo91lA A5 53 LDA $53
F91C 91 2E STA (S2E).,Y
FIlE cs8 INY

FI1F A5 54 LDA $54
F921 91 2E STA ($2E),Y
F923 C8 INY

F924 AS 55 LDA $55
F926 91 2E STA (S2R),Y
F928 o} INY

F929 DO El1 BNE SF90C
F92B A5 53 LDA $53
F92D 85 3Aa STA S3A
F92F A5 2F LDA $2F
F931 85 31 STA §$31
F933 60 RTS

F934 A5 31 LDA $31
F936 85 2F STA $2F
F938 a9 00 LDA #$00
F93A 85 31 STA $31
F93C A% 24 LDA #524
F93E 85 34 STA $34
F940 A5 39 LDA $39
F942 85 52 STA $52
F944 AS 1A LDA S1A
F946 85 53 STA $53
F948 A5 19 LDA $19
F94A 85 54 STA $54
F94C A5 18 LDA $18
F94E 85 55 STA $55
F950 20 DO Fé JSR $F6D0
F853 AS 17 LDA $17
F955 85 52 STA $52
F957 A5 16 LDA $16
F959 85 53 STA $53
F95B a9 00 LDA #500
F95D 85 54 STA $54
F95F 85 55 STA $55
F961 20 DO F6 JSR SF6D0
Fo64 A5 2F LDA $2F
F966 85 31 STA $31
F968 60 RTS

F969 A4 3F LDY $3F
FO6B 9% 00 00 STA $0000,Y
F96E A5 50 LDA $50
F970 FO 03 BEQ SF975

F972 20 F2 F5 JSR SF5F2
F9175 20 8F F9 JSR SF98F
Fg78 A6 49 LDX $49 get stack pointer back

253

Anatomy of the 1541 Disk Drive

F97A 9A TXS

F978B 4C BE F2 JMP SF2BE
F37E A9 A LDA #$A0
F980 85 20 STA S20
F982 AD 00 1C LDA $1C00
F985 09 04 ORA #504 turn drive motor off
F987 8D 00 1C STA $1C00
F98A A9 3C LDA $3C
F98C 85 48 STA $48
F98E 60 RTS

FI98F A6 3E LDX S3E
F991 A5 20 LDA $20
F993 09 10 ORA #$10
F995 85 20 STA §20
F997 A9 FF LDA #SFF
F999 85 48 STA $48
F99B 60 RTS

F99C AD 07 1C LDA $1C07
F99F 8D 05 1C STA $1C05
F9A2 AD 00 1C LDA $1C00

F9AS5 29 10 AND #510 write protect?
F9A7 C5 1E CMP S1E
F9A9 85 1E STA S1E
F9AB FO 04 REQ $F9B1
F9AD A9 01 LDA #$01
FOAF 85 1C STA $1C
F9B1 AD FE 02 LDA SO2FE
F9B4 FO 15 BEQ S$FICB
F9B6 Cc9 02 CMP #S02
FI9BB DO 07 BNE $F9C1
FOBA A9 00 LDA #$00
F9BC 8D FE 02 STA SO2FE
F9BF FO 0A BEQ $FICB
FIC1 85 4A STA $4A
F9C3 A9 02 LDA #$02

F9C5 8D FE 02 STA $02FE
FoC8 4C 2E FA JMP SFA2E

F9CB A6 3E LDX $3E
F9CD 30 07 BMI SF9D6
F9CF A5 20 LDA $20
F9D1 A8 TAY

F9D2 c9 20 CMP #$20
F9D4 DO 03 BNE $F9D9
F9D6 4C BE FA JMP SFABE
F9D9 Cé6 48 DEC $48
F9DB DO 1D BNE SF9FA
F9DD 98 TYA

F9DE 10 04 BPL SF9E4
F9EO 29 7F AND #S$7F
FI9E2 85 20 STA $20

254

Anatomy of the 1541 Disk Drive

F9E4 29 10 AND #$10

FI9E6 FO 12 BEQ SF9FA

F9E8 AD 00 1cC LDA $1C00

F9EB 29 FB AND #SFB drive motor on
FYED 8D 00 1C STA $1C00

FI9F0 A9 FF LDA #SFF

FOF2 85 3E STA $3E

F9F4 A9 00 LDA #$00

F9F6 85 20 STA $20

FIF8 FO DC BEQ $F9D6

FI9FA 98 TYA

F9FB 29 40 AND #5140

F9FD D6 03 BNE SFA02

FOFF 4C BE FA JMP SFABE

FAO2 6C 62 00 JMP ($0062)

FAQS A5 4A LDA #S$4A

FAO7 10 05 BPL $FAOF

FAO09 49 FF EOR #S$FF

FAOB 18 CLC

FAOC 69 01 ADC #$01

FAOE C5 64 CMP $64

FAlO BO 0A BCS SFaAlC

FAl2 A9 3B LDA #$S3B

FAl4 85 62 STA $62

FAl6 A9 FA LDA #SFA pointer $62/$63 to SFA3B
FAlS 85 63 STA $63

FALlA DO 12 BNE $FAZ2E

FAlLC E5 5E SBC S5E

FAlE E5 S5E SBC $5E

FA20 85 61 STA $61

FA22 A5 5E LDA $5E

FA24 85 60 STA $60

FA26 A9 7B LDA #$7B

FA28 85 62 STA $62

FA2A A9 FA LDA #SFA pointer $62/$63 to $FA7B
FA2C 85 63 STA $63

FA2E A5 4A LDA $4A step counter for head transport
FA30 10 31 BPL $FA63

FA32 E6 4A INC $4A increment

FA34 AE 00 1C LDX $1C00

FA37 CA DEX

FA38 4C 69 FA JMP S$FA69
ERAKRRAXRXERNRRRARR AR A A kA kXA khk &

FA3B A5 4A LDA S$S4A step counter for head transport
FA3D DO EF BNE $FA2E not yet zero?
FA3F A9 4E LDA #S$S4E

FAa4l 85 62 STA $62

FA43 A9 FA LDA #SFA pointer $62/$63 to SFA4E
FA45 85 63 STA $63

FA47 A9 05 LDA #$05

FA49 85 60 STA $60 counter to 5
FA4B 4C BE FA JMP SFABE

255

Anatomy of the 1541 Disk Drive

AXkdkdehkdddhddhkdrhkhkdbhhprbdbhkkhkddk

FA4E C6 60 DEC $60
FAS0 DO 6C BNE S$FARE
FA52 A5 20 LDA $20
FAS4 29 BF AND #SBF
FAS56 85 20 STA $20
FA58 A9 05 LDA #S$05
FASA 85 62 STA $62
FASC A9 FA LDA #S$SFA
FASE 85 63 STA $63
FA60 4C BE FA JMP SFABE
hkkhkkhhkhkhkhhkhkkhkhhkkhkkkkrhhdhkkk
FA63 Cé 4a DEC S4A
FA65 AE 00 1C LDX $1C00
FA68 E8 INX

FA69 8A TXA

FAGA 29 03 AND #503
FA6C 85 4B STA $4B
FAGE AD 00 1C LDA $1C00
FA71 29 FC AND #SFC
FA73 05 4B ORA $4B
FA75 8D 00 1C STA $1C00
FA78 4C BE FaA JMP SFABE
KRERKKKERRRERR KRR AR R AR AR R AR A XK
FATB 38 SEC

FATC AD 07 1C LDA $1C07
FA7F E5 5F SBC S5F
FA81 8D 05 1C STA $1C05
FA84 Cé 60 DEC $60
FAB6 DO 0C RNE SFA94
FAB8 A5 5E LDA S5F
FABA 85 €0 STA $60
FABC A9 97 STA #$97
FASE 85 62 STA $62
FA90 A9 FA LDA #SFA
FA92 85 63 STA $63
FA94 4C 2E FA JMP SFA2E
dddkkkkdkkk kb kb kkbdhkhkF kb hkhk kkhk
FA97 Cé 61 DEC $61
FA99 DO F9 BNE S$FA9%4
FA9B A9 A5 LDA #SAS5
FA9D 85 62 STA $62
FA9F A9 FA LDA #SFA
FAA]L 85 63 STA 563
FAA3 DO EF BNE SFA94
khkkhkhkkhhkhdhhkhkhkkrhhkkhkhhkkkk
FAAS AD 07 1C LDA $1C07
FAA8 18 CLC

FAAQ 65 SF ADC S$5F
FAAR 8D 05 1C STA S1CO05

256

decrement counter
not yet zero?

erase bit 6

pointer $62/$63 to FAQS

step counter for head transport

stepper motor off

decrement counter
not yet zero?

pointer $62/$63 to SFA97

pointer $62/$63 to SFAAS

Anatomy of the 1541 Disk Drive

FAAE C6 60 DEC $60
FABO DO E2 BNE SFA94
FAB2 A9 4E LDA #S4E
FAB4 85 62 STA $62
FAB6 A9 FA LDA #SFA
FABS 85 63 STA $63
FABA A9 05 LDA #S05
FABC 85 60 STA $60
FABE AD OC 1C LDA sS1cCOC
FAC1 29 FD AND #SFD
FAC3 8D 0C 1IcC STA s1cCoC
FAC6 60 RTS

Khkkhhkhhhkhkkhkhkkkkhkhkhkhkkkhkhkkkkkk

FAC7 A5 51 LDA $51
FAC9 10 2aA BPL SFAF5
FACB A6 3D LDX $3D
FACD A9 €0 LDA #$60
FACF 95 20 STA $20,X
FAD1 A9 01 LDA #$01
FAD3 95 22 STA $22,X
FADS 85 51 STA $51
FAD7 A9 A4 LDA #$A4
FAD9 85 4A STA $4A
FADB AD 00 1C LDA $1C00
FADE 29 FC AND #SFC
FAEOD 8D 00 1C STA $1C00
FAE3 A9 0A LDA #S0A
FAES 8D 20 06 STA $0620
FAES A9 AQ LDA 4$40
FAEA 8D 21 06 STA $0621
FAED A9 OF LDA #SOF
FAEF 8D 22 06 STA $0622
FAF2 4C 9C F9 JMP S$F99C
FAFS5 A0 00 LDY #$00
FAF7 Dl 32 CMP ($32),Y
FAF9 FO 05 BEQ $FBOO
FAFB 91 32 STA ($32),Y
FAFD 4C 9C F9 JMP $F99C
FBOO AD 00 1C LDA $1C00
FBO3 29 10 AND #$10
FBO5 DO 05 BNE S$FBOC
FBO7 A9 08 LDA #$08
FB09Y 4C D3 FD JMP SFDD3
FBOC 20 A3 FD JSR $FDA3
FBOF 20 C3 FD JSR SFDC3
FB12 A9 55 LDA #$55
FB14 8D 01 1C STA $1CO01
FB17 20 C3 FD JSR SFDC3
FB1A 20 00 FE JSR S$FE0O
FB1D 20 56 FS JSR $F556
FB20 A9 40 LDA #$40

257

decrement counter
not yet zero?

pointer $62/$63 to $FAAE

counter to 5

erase bit 1

formatting

track number

fomatting already in progress
drive number

flag for head transport

set

set destination track

running track # for format

164

step counter for head tran:sport

stepper motor on

10
error counter
$621/$622 = 4000

initialize track capacity
4000 < capacity < 2*4000 bytes

back in job loop

to job loop

write protect?
no
26, 'write protect on'

write SFF to disk 10240 times
code (S621/$622) times to disk
$55

to write head
and ($621/$622)
switch to read
set timer, find SFF (SYNC)

times to disk

Anatomy of the 1541 Disk Drive

FB22 0D 0B 18 ORA $180B
FB2S 8D 0B 18 STA $180B
FB28 A% 62 LDA #5562
FB2A 8D 06 18 STA $1806
FB2D A9 00 LDA #$00
FB2F 8D 07 18 STA $1807
FB32 8D 05 18 STA $S1805
FB35 A0 00 LDY #$00
FB37 A2 00 LDX #$00
FB39 2C 06 1cC BIT $1C00
FB3C 30 FB BMI SFB39
FB3E 2C 00 1C BIT $1C00
FB41 10 FB BPL $FB3E
FB43 AD 04 18 LDA $1804
FB46 2C 00 1C BIT $1C00
FB49 10 11 BPL $FBSC
FB4B AD 0D 18 LDA $180D
FBAE 0A ASL A
FB4F 10 F5 BPL $FB46
FB51 E8 INX

FB52 DO EF BNE S$FB43
FB54 C8 INY

FB55 D0 EC BNE $FB43
FB57 A9 02 LDA #$02
FB59 4C D3 FD JMP $FDD3
FB5C 86 71 STX $71
FBSE 84 72 STY $72
FB60 A2 00 LDX #$00
FB62 A0 00 LDY #$00
FB64 AD 04 18 LDA $1804
FB67 2C 00 1C BIT $1C00
FB6A 30 11 BMI SFB7D
FB6C AD 0D 18 LDA $180D
FB6F 0A ASL A
FB70 10 F5 BPL SFB67
FB72 E8 INX

FB73 DO EF BNE SFB64
FB75 Cc8 INY

FB76 DO EC BNE $FB64
FB78 A9 02 LDA #$S02
FB7A 4C D3 FD JMP $FDD3
FB7D 38 SEC

FB7E 8A TXA

FB7F ES 71 SBC $71
FB81 AA TAX

FB82 85 70 STA $70
FB84 98 TYA

FB85 ES5 72 SBC $72
FB87 A8 TAY

FB88 85 71 STA 571
FBSA 10 0B BPL SFBY%7
FBSC 49 FF EOR #SFF
FBSE A8 TAY

258

timer 1 free running

98 cycles, about 0.1 ms

start timer
counter to zero

SYNC found?

no, wait

SYNC found?

wait for SYNC

reset interrupt flag timer
SYNC found?

not SYNC ($55)?

interrupt flag register
shift timer flag

timer not run down yet?
increment counter
increment hi-byte of counter
then error

error'

overflow,
20, 'read

counter to zero again

reset timer 1 interrupt flag
SYNC found?

yes

interrupt-flag register

timer flag to bit 7

no, wait until timer run down

increment counter

overflow, then error
20, 'read error’

difference between counter

and value for $FF-storage
bring to $70/$71

difference positive?

Anatomy of the 1541 Disk Drive

FB8F 8A TXA

FB90 49 FF EOR #SFF calculate abs., val of difference
FB92 AA TAX

FB93 E8 INX

FB94 DO 01 BNE S$FB97

FB96 C8 INY

FB97 98 TYA

FB98 D0 04 BNE S$FBY9E

FB9A EO0 04 CPX #$04 difference less than 4 * 0.1 ms
FBOC 90 18 BCC SFBB6 yes

FBY9E 06 70 ASL $70

FBAO 26 71 ROL $71 double difference

FBA2 18 CLC

FBA3 A5 70 LDA $70

FBAS 6D 21 06 ADC $0621

F8AS 8D 21 06 STA $0621 add to 4000

FBAB A5 71 LDA $71

FBAD 6D 22 06 ADC $0622
FBBO 8D 22 06 STA $0622

FBB3 4C 0C FB JMP SFBOC repeat until diff < 4 * 0.1 ms
FBB6 A2 00 LDX #S00

FBBS A0 00 LDY #$00 counter to zero

FBBA B8 CLV

FBBB AD 00 1C LDA $1C00 SYNC?

FBBE 10 OE BPL SFBCE no

FBCO 50 59 BVC SFBBB byte ready?

FBC2 B8 CLV

FBC3 E8 INX

FBC4 DO F5 BNE SFBBB increment counter
FBC6 c8 INY

FBC7 D0 F2 BNE S$FBBB

FBC9 A9 03 LDA #S03 overflow, then error
FBCB 4C D3 FD JMP SFDD3 21, read error

FBCE 8A TXA

FBCF 0Aa ASL A double counter

FBDO 8D 25 06 STA $0625

FBD3 98 TYA

FBD4 2A ROL A and to $624/$625 as track cap.
FBD5 8D 24 06 STA S0624

FBD8 A9 BF LDA #S$SBF

FBDA 2D 0B 18 AND $180B
FBDD 8D 0B 18 STA $180B

FBEO A9 66 LDA #S66 102
FBE2 8D 26 06 STA $0626

FBES A6 43 LDX $43 number of sectors 1n this track
FBE7 A0 00 LDY #$00

FBE9 98 TYA

FBEA 18 CLC

FBEB 6D 26 06 ADC $0626

FBEE 90 01 BCC SFBF1

FBFO c8 INY

FBF1 Cc8 INY

FBF2 CA DEX

259

Anatomy of the 1541 Disk Drive

FBF3 DO F5 BNE S$FBEA calculate # of bytes
FBF5 49 FF EOR #S$FF

FBF7 38 SEC

FBF8 69 00 ADC #$00

FBFA 18 CLC

FBFB 6D 25 06 ADC $0625

FBFE BO 03 BCS S$FCO3

FCO00 CE 24 06 DEC $0624

FCO03 AA TAX

FCc04 98 TYA

FC05 49 FF EOR #SFF

FCO7 38 SEC

FCO08 69 00 ADC #S00

FCOA 18 CLC

FCOB 6D 24 06 ADC $0624 result in A/X

FCOE 10 05 BPL SFC15

FC10 a9 04 LDA #S04

FCl2 4C D3 FD JMP $FDD3 22, 'read error’
FC15 A8 TAY

FCl6 8A TXA

FC17 A2 00 LDX #$00

FC19 38 SEC total divided by number
FCla E5 43 SBC $43 of sectors ($43)
FClcC BO 03 BCS $FC21

FC1E 88 DEY

FCI1F 30 03 BMI SFC24

FC21 E8 INX

FC22 DO F5 BNE S$FC19

FC24 8E 26 06 STX $0626 compare no. of bytes per interval
FC27 EO 04 CPX #504 with minimum value
FC29 B0 05 BCS S$FC30 ok

FC2B A9 05 LDA #$05

FC2D 4C D3 FD JMP SFDD3 23, ‘read error'
FC30 18 CLC remainder of division
FC31 65 43 ADC $43 plus number of sectors
FC33 8D 27 06 &TA $0627 save

FC36 A9 00 LDA #S00

FC38 8D 28 06 STA $0628 counter for sectors
FC3B A0 00 LDY #S00 counter lo

FC3D A6 3D LDX $3D drive number

FC3F A5 39 LDA $39 constant 8, marker for heacer
FC41 99 00 03 STA $0300,Y in buffer

FC44 c8 INY

FC45 c8 INY

FC46 AD 28 06 LDA $0628 sector number

FC49 99 00 03 STA $0300,Y in buffer

FC4C c8 INY

FC4D AS 51 LDA $51 track number

FC4F 99 00 03 STA $0300,Y in buffer

FC52 c8 INY

FC53 B5 13 LDA $13,X ID 2

FC55 99 00 03 STA $0300,Y in buffer

FC58 c8 INY

FC59 B5 12 LDA $12,X ID 1

260

FC5B
FCSE
FCSF
FCé61
FC64
FC65
FC68
FC69
FC6B
FC6E
FC71
FC74
FC77
FC7A
FC7D
FC80
FC82
FC84
FC85
FC86
FC87
FC88
FC8B
FC8C
FC8E
FC90
FC92
FC95
FC96
FC97
FC98
FC9B
FC9E
FCAQ
FCA2
FCAS
FCA?
FCAA
FCAC
FCAE
FCB1
FCB3
FCB6
FCB8
FCBA
FCBB
FCBC
FCBE
FCCO
FCC2
FCCé4
FCC5
FCC8
FCCB
FCCC

99
Cc8
A9
99
c8
99
c8
A9
59
59
59
59
99
EE
AD
Cc5
90
98
48
E8
8A
9D
E8
DO
A9
85
20
68
A
88
20
20
A9
85
20
85
20
A9
85
20
A9
8D
A2
50
B8
CA
DO
A2
A4
50
B8
B9
8D
Cc8
CA

00 03

OF
00 03

00 03

00

FA 02
FB 02
FC 02
FD 02
F9 02
28 06
28 06
43

BB

00 05

FA
03
31
30 FE

E5 FD
F5 FD
05
31
E9 FS
3A
8F F7
00
32
OE FE
FF
01l 1c
05
FE

FA
0A
32
FE

00 03
01 1c

STA
INY
LDA
STA
INY
STA
INY
LDA
EOR
EOR
EOR
EOR
STA
INC
LDA
CMP
BCC
TYA
PHA
INX
TXA

$0300,

#SOF

$0300,

$0300,

#$00

SO2FA,
S$02FB,

Anatomy of the 1541 Disk Drive

Y

Y

Y

Y
Y

SO2FC,Y
SO2FD,Y

$02F9,

$0628
$0628
$43

SFC3F

Y

$0500,X

SFC88
#3503
$31
SFE30

SFDES
SFDF5
#5805
$31
SFSE9
S$3A
SF78F
#$00
$32
SFEOE
#SFF
$1c01
#$05
SFCBS

SFCB8
#S0A
$32
$FCC2

$0300,

$1C01

Y

261

in buffer

15
in buffer

15 1n buffer

generate checksum

increment counter

counter

compare with no. of sectors
smaller, then continue

buffer pointer to $300

copy buffer data
copy data in bhuffer

buffer pointer to $500

calculate parity for data buffe:
and save

to write head
write $FF 5 times
byte ready

10 times
buffer pointer
byte ready?

data from buffer
write

10 data written?

Anatomy of the 1541 Disk Drive

FCCD DO F3 BNE SFCC2

FCCF A2 09 LDX #$09 9 times

FCD1 50 FE BVC SFCD1 byte ready?

FCD3 B8 CLV

FCD4 A9 55 LDA #$55 $55

FCD6 8D 01 1C STA $1C01 write

FCD9 CA DEX

FCDA DO F5 BNE $FCD1 9 times?

FCDC A9 FF LDA #S$FF SFF

FCDE A2 05 LDX #S05 S times

FCEO 50 FE BVC S$FCEO byte ready?

FCE2 B8 CLV

FCE3 8D 01 1cC STA $1C01 to write head
FCE6 Ca DEX

FCE7 DO F7 BNE SFCEOQO

FCE9 A2 BB LDX #$BB

FCEB 50 FE BVC SFCEB

FCED B8 CLv

FCEE BD 00 01 LDA $0100,X area $1BB to S1FF
FCF1 8D 01 1C STA $1C01 save

FCF4 E8 INX

FCFS DO F4 BNE S$FCEB

FCF7 A0 00 LDY #$00

FCF9 50 FE BVC SFCF9 byte ready?

FCFB B8 CLV

FCFC Bl 30 Lba ($30),Y 256 bytes of data
FCFE 8D 01 1cC STA $1C01 write byte to disk
FDO1 c8 INY

FDO2 DO F5 BNE S$FCF9

FDO4 A% 55 LDA #$55 $55

FDOS6 AE 26 06 LDX $0626 ($626) times

FD0O9 50 FE BVC SFDO9

FDOB B8 CLv

FDOC 8D 01 1C STA $1c01 write

FDOF CA DEX

FD10 DO F7 BNE S$FDO9

FD12 A5 32 LDA $32

FD14 18 CLC

FD1S 69 0A ADC #$0A plus 10

FD17 85 32 STA $32

FD19 CE 28 06 DEC $0628 decrement sector number
FDIC DO 93 BNE SFCB1

FDIE 50 FE BVC SFD1E byte ready?

FD20 B8 CLV

FD21 50 FE RVC SFD21 byte ready?

FD23 B8 CLV

FD24 20 00 FE JSR SFEOO switch to reading
FD27 A9 C8 LDA #$C8 200

FD29 8D 23 06 STA $0623

FD2C A9 00 LDA #$S00

FD2E 85 30 STA $30

FD30 A9 03 LDA #sS03 buffer pointer to $200
FD32 85 31 STA $31

FD34 A5 43 LDA $43 number of sectors per track

FD36 8D 28 06 STA $0628

262

Anatomy of the 1541 Disk Drive

FD39 20 56 F5 JSR $F556 wait for SYNC

FD3C A2 0A LDX #$0A 10 data

FD3E A0 00 LDY #S00

FD40 50 FE BVC $FD40 byte ready?

FD42 B8 CLV

FD43 AD 01 1IC LDA $1cC01 read byte

FD46 D1 30 CMP ($30),Y compare with data 1n buffer
FD48 DO OE BNE $FD58 not equal, error

FD4A Cc8 INY

FD4B CA DEX

FD4C DO F2 BNE $FD40

FD4E 18 CLC

FD4F A5 30 LDA $30

FD51 69 OA ADC #S$S0A increment pointer by 10
FD53 85 30 STA $30

FD55 4C 62 FD JMP S$FD62

FD58 CE 23 06 DEC $0623 decrement counter for attempts
FD5B DO CF BNE $FD2C not yet zero?

FD5D A9 06 LDA #$06 else error

FD5F 4C D3 FD JMP SFDD3 24, 'read error’

FD62 20 56 F5 JSR $F556 walt for SYNC

FD65 A0 BB LDY #SBB

FD67 50 FE BVC S$FD67 byte ready?

FD69 B8 CLV

FD6A AD 01 1C LDA $1C01 read byte

FD6D D9 00 Q1 CMP $0100,Y compare with buffer contents
FD70 DO E6 BNE $FD58 not equal, error

FD72 c8 INY

FD73 DO F2 BNE $FD67 next byte

FD75 A2 FC LDX #SFC

FD77 50 FE BVC $FD77 byte ready?

FD79 B8 CLV

FD7A AD 01 1IC LDA $1C01 read byte

FD7D D9 00 05 CMP $0500,Y compare with buffer contents
FD80 DO D6 BNE S$FD58 not equal, then error

FD82 c8 INY

FD83 CA DEX next byte

FD84 D0 Fl BNE $FD77

FD86 CE 28 06 DEC $0628 decrement sector counter
FD89 DO AE BNE $FD39 not yet zero?

FD8B E6 51 INC $51 increment track number

FD8D A5 51 LDA $51

FD8F c9 24 CMP #$24 compare with 36, nignest trk# +1
FD91 BO 03 BCS SFDY96 greater, then formatting done
FD93 4C 9C F9 JMP S$F99C continue

FD96 A9 FF LDA #$FF

FD98 85 51 STA $51 track number to S$FF

FD9A A9 00 LDA #$00

FDI9C 85 50 STA $50

FDIE A9 01 LDA #S01

FDAO 4C 69 F9 JMP SF969 ok

263

Anatomy of the 1541 Disk Drive

Kkkkkhkkkbkkkkkhkkhhk kR RhRXRRAK® Lrite SFF 10240 times
FDA3 AD 0C 1C LDA sl1cCoC

FDA6 29 1F AND #S1F switch PCR to writing
FDAS8 09 co ORA #3$CO

FDAA 8D 0C 1C STA $1C0C

FDAD A9 FF LDA #SFF

FDAF 8D 03 1C STA $1C03 port A(read/write head) to output
FDB2 8D 01 1C STA $1C01 write SFF to disk
FDB5 A2 28 LDX #$28 40

FDB7 a0 00 LDY #$00

FDB9 50 FE BVC $FDRY byte ready?

FDBB B8 CLv

FDBC 88 DEY

FDBD DO FA BNE SFD89

FDBF CA DEX

FDCO DO F7 BNE $FD89

FDC2 60 RTS

HRKKIKKRKKKIRRK RN RAIARKRRKRRAX poad/yrite ($621/$622) times
FDC3 AE 21 06 LDX $0621
FDC6 AC 22 06 LDY $0622

FDC9 50 FE BVC $FDC9Y byte ready?

FDCB B8 CLV

FDCC Ca DEX

FDCD DO FA BNE $FDCY

FDCF 88 DEY

FDDO 10 F7 BPL $FDC9

FDD2 60 RTS

Kk kkkhkkdhhkkkhRkhhhhhhkhRRXRRR attempt counter for formatting
FDD3 CE 20 06 DEC $0620 decrement number of attempts
FDD6 FO 03 BEQ SFDDB zero, then error

FDD8 4C 9C F9 JMP $F99C continue

FDDB A0 FF LDY #SFF

FDDD 84 51 STY $51 flag for end of formatting
FDDF c8 INY

FDEO 84 50 STY $50

FDE2 AC 69 F9 JMP $F969 error termination

KKk hkkk bbbk dhhhkkbhbhhr kb Akik

FDES B9 00 03 LDA $0300,Y

FDE8 99 45 03 STA $0345,Y

FDEB 88 DEY copy buffer contents
FDEC D0 F7 BNE S$FDES5

FDEE AD 00 03 LDA $0300

FDF1 8D 45 03 STA $0345

FDF4 60 RTS

R A ARt i

FDF5 AD 44 LDY #$44

FDFE7 B9 BB 01 LDA $01BB,Y $IBB to S1FF

FDFA 91 30 STA ($30),Y write in buffer $30/$31
FDFC 88 DEY

FDFD 10 F8 BPL SFDF7

264

Anatomy of the 1541 Disk Drive

s$1cocC
#SEQ
$1coc
#$00
$1C03

$1C0C
#S1F
#$CO0
$1coc
#SFF
$1C03
#S55
$1C01
$#528
#3500
SFE26

$FE26

$FE26

#3500
$30
$2E
$36
#$BB
$34
$31
$2F
#s01
§31
$36
(S2E),¥Y
$52

($2E).,Y
$53

($2E),Y
$54

($2E),Y
$55

SFE64

FDFF 60 RTS
L I T T Y
FEOO AD 0C 1C LDA
FEO3 09 EO ORA
FEO5 8D 0C 1C STA
FEO8 A9 00 LDA
FEOA 8D 03 1C STA
FEOD 60 RTS
Kkkkkhkkhhhhhhkdhhkdhkohhhhhkns
FEOE AD 0C 1C LDA
FE11 29 1F AND
FE13 09 co ORA
FE15 8D 0C 1C STA
FE18 A9 FF LDA
FE1A 8D 03 1cC STA
FE1D A9 55 LDA
FE1F 8D 01 1C 5TA
FE22 A2 28 LDX
FE24 AD 00 LDY
FE26 50 FE BVC
FE28 B8 CLvV
FE29 88 DEY
FE2A DO FA BNE
FE2C Ca DEX
FE2D DO F7 BNE
FE2F 60 RTS
Rk kkRR KX IR kRRR R AN kdhhkhd kb d*
FE30 A9 00 LDA
FE32 85 30 STA
FE34 85 2E STA
FE36 85 36 STA
FE38 A9 BB LDA
FE3A 85 34 STA
FE3C A5 31 LDA
FE3E 85 2F STA
FE40 A% 01 LDA
FE42 85 31 STA
FE44 A4 36 LDY
FE46 Bl 2E LDA
FE48 85 52 STA
FE4A c8 INY
FE4B Bl 2E LDA
FE4D 85 53 STA
FE4F c8 INY
FE50 Bl 2E LDA
FE52 85 54 STA
FE54 c8 INY
FE55 Bl 2E LDA
FE57 85 55 STA
FE59 c8 INY
FE5A FO 08 BEO
FESC 84 36 STY

$36

265

switch to reading

switch PCR to reading

port A to input

write $55 10240 times

switch PCR to writing

port A to output (write head)
$01010101
to port A (write head)

byte ready for write electronics

10240 times

Anatomy of the 1541 Disk Drive

FESE 02 DO F6 JSR $F6D0O
FE61 4C 44 FE

FE64 4C DO F6 JMP $F6D0
Khkkhkxhhhhdhkhkhahhhkhahhhdnhdn
FE67 48 PHA

FE68 8A TXA

FE69 48 PHA

FE6A 98 TYA

FE6B 48 PHA

FE6C AD 0D 18 LDA $180D
FEG6F 29 02 AND #502
FE71 FO 03 BEQ SFE76
FE73 20 53 E8 JSR SE853
FE76 AD 0D 1C LDA $1COD
FE79 0A ASL A
FETA 10 03 BPL S$FE7F
FE7C 20 BO F2 JSR SF2RO
FETF 68 PLA

FE80 A8 TAY

FE81 68 PLA

FE82 AA TAX

FE83 68 PLA

FE84 40 RTI

ARIR KKK KK KK RkhhRdhrhhd k& x
FE85 12

FE86 04

FE87 04

FE88 90

Fhkkdekkhk e kd ok kh kdodk ke kkdkhdokod ko
FE89 56 49 44 4D 42 55

FESF 50 26 43 52 53 4E

Hkkkk Rk ko kkhhhhRhhkrkrkkhdkhkk
FE95 84 05 C1 F8 1B 5C

FE9F 07 A3 FO 88 23 0D
R Yy S Y Py T T T R AT]
FEAl ED DO C8 CA CC CB

FEA? E2 E7 C8 CA C8 EE

LR R Y Y Y SR LR B]
FEAD 51 DD 1C 9E 1C

L R Y S R TS Bk L]
FEB2 52 57 41 4D

dhkhkdkhkhkhhdkhdhhhhkhhkdhkkhrkks

FEB6 44 53 50 55 4C

kA kR AR KRNIk R rk kR hd ko hddd
FEBB 44 53 50 55 52 Ist

266

interrupt routine

save registera

interrupt from serial bus

no
serve serial bus
interrupt from timer 1?

no
IRQ routine for disk controller

get register back

constants for disk format

18, track for BAM and directory
start of BAM at position 4

4 bytes in BAM for each track

$90 = 144, end of BAM, disk name
table of command words

lVl' IIII/IDI' IMI’ IBI' ‘Ul
IPI' l&l’ ICI' lRl, ISI’ INI

lo-bytes of command addresses

hi-bytes of command addresses

bytes for syntax check

fi1le control methods
'P'y lwl' 'A'y IMI

file types

iDl’ lsl’ 'P'y 'U" DA

names of file types

lecters 'D', 'S, 'P', ‘U', 'R'

Anatomy of the 1541 Disk Drive

FFOD 85 23 STA $23

FFOF 60 RTS

KAk kRN R A AR AR KRR RN IR AR R AR,
FF10 AA ...

FFEl ... AA
ARARRIRI KRR ARk Rk k kR kA RN R IKR R K&
FFE2 52 53 52 AA

FFE6 C6 C8 8F F9

khkkhhhkhhkhkhkhhkhhkhhkhhkkhkhknkkk USER vectors

FFEA 5F CD UA, Ul, SCDSF
FFEC 97 CD UB, U2, $CD97
FFEE 00 05 uc, U3, $0500
FFFO 03 05 uD, u4, $0503
FFF2 06 05 UE, U5, $0506
FFF4 09 05 UF, U6, $0509
FFF6 0C 05 uG, U7, s$o050C
FFF8 OF 0S5 UH, U8, $050F
FFFA 01 FF ul, U%, $FFO1

(NMI vector not used)

khkkkhhkhkhkkhhkhhkhhkhhhhhkikkk hardware vectors

FFFC OA EA $EAAD RESET and UJ (U:) vector
FFFE 67 FE SFE67 IRO vector

268

Anatomy of the 1541 Disk Drive

FECO 45 45 52 53 45
FEC5 4C 51 47 52 4C

Akkkrkkkhkdhhkdhkkhdhhhkhkhhdhkh

FECA 08 00 00

RARRRR AR IR KKKk R RRR N RN AN AN RN R AR
FECD 3F 7F BF FF

Akkhhkhkhdhhkhhhhhxkhkhhhhhekhhhdk

FED1 11 12 13 15

ISR 2L222 22222 222222 sl

FED5 4A
FED6 04
FED7 24
FED8 1F 19 12

ERRARRKRR R RR AR AR RN RRRRARRR
FEDB 01 FF FF 0! 00

KRk hdhhhkhhkkodhkrkrkkxhhrk

FEEQ 03 04 05 06 07

HAKKANRKRRKA NI KR A RRR R R KRR A KR
FEES 07 OE

dhkhdhhkk kR bk khrkhhxxhdhhkkhkin

FEE? 6C 65 00 JMP ($0065)

WAk kdhhhhkhrkh kb khkhdhk

FEEA 8D 00 1C STA $1C00
FEED 8D 02 1C STA $1C02
FEFO 4C 7D EA JMP SEA7D

KA KRR AR IR AR IR R XA h R kR R
FEF3 8A TXA

FEF4 A2 05 LDX #$05
FEF6 CA DEX

FEF7 DO FD BNE S$FEF6
FEF9 AA TAX

FEFA 60 RTS

dc 9 e e Je g d e dr e e e de e ok e gk de ke K de dk ke ke k ok e ok

FEFB 20 AE E® JSR $E9AE
FEFE 4C 9C F9 JMP $E99C

hkkkkhkhhkhkkhkhkk Rk bk ki

FFO1 AD 02 02 LDA $0202
FFO04 c9 2D CMP #$2D

FF06 FO 05 BEO $FFOD
FFO8 38 SEC

FF09 E9 2B SBC #$2B

FFOB DO DA BNE SFEE7

267

2nd letters
3rd letters

IEI
ILI

IEI'
ILI'

IEI'
IOI'

'RY,
IGI'

lsl'
IRI'

masks for bit command

number of sectors per track
17, 18, 19, 21

contants for disk format

*A' marker for 1541 format

4 track numbers

36, highest track number + 1

31, 25, 18 tracks with change of
number of sectors

control bytes for head position

addresses of buffers
high bytes

for UI command

for diagnostic routine
turn LED on

port to output

back to diagnostic routine

delay loop for serial bus

about 40 microseconds

data output to serial bus
CLOCK OUT hi
DATA OUT lo

UI vector

|+l
indirect jump over ($65)

Anatomy of the 1541 Disk Drive

FFOD 85 23 STA $23

FFOF 60 RTS
HARRARIXRR KR RKARRARRR AR ARk d kK
FF10 AA ...

FFEl ... AA

KAk kd Rk hh Rk Rk Rk kdkh kR hkdkhkkhd®
FFE2 52 53 52 AA

FFE6 C6 C8 8F F9

kdhkhkkkhkhdhkhhhdbhdhbodthkhkhhihkthdk USER vectors

FFEA S5F CD UA, Ul, SCD5F
FFEC 97 CD UB, U2, $CD97
FFEE 00 05 uc, u3, $0500
FFFO 03 05 uD, U4, $0503
FFF2 06 05 UE, U5, $0506
FFF4 09 05 UF, U6, $0509
FFF6 0C 05 uG, U7, $050C
FFF8 OF 05 UH, U8, $O50F
FFFA 01 FF ul, U9, SFFO1

(NMI vector not used)

hdkhkhhhkkhrhhkdkdhkhhkkhkhhkkhkk hardware vectors

FFFC OA EA $EAAQ RESET and UJ (U:) vector
FFFE 67 FE SFE67 IRQ vector

268

Anatomy of the 1541 Disk Drive

Chapter 4: Programs and Tips for the 1541 Disk Drive

4.1 Utility Programs

4.1.1 Displaying all FPile Parameters

The directory contains several 1mportant pieces of
information about each file. Some information is not kept 1in
the directory, such as the starting address of a program.

These and other file parameters can be easily found ard
displayed by the following program, The number and kind of
file parameters are naturally dependent on the file type. A
relative file, for instance, has no starting address. The
following table presents the parameters displayed by thais
program,

: File closed? H
: File protected? B
¢ Allocated blocks H
¢ Side-sector blocks :
: Data blocks H
t Records H
¢ Start address :
: Free blocks, disk : X : X : X : X : X :
: Allocated bl., disk : : : : X

This program 1s documented in detail so that the serious
programmer can get a good overview of the file parameters.
In addition, the variables used by the program are
explained.

Variables used in the program:

Numerical Variables

T -~ Track of the actual block of the file entry 1in the
directory
S - Sector of the actual block of the file entry 1in the

directory

FL - Flag, set 1f the file name read from the diskette does
not agree with the searched-for file

TY - File type of the given file (byte 0 of the entry)

269

Anatomy of the 1541 Disk Drive

nybble of the file type (bits 0~3), contains the
actual file type
Low byte of the starting address

High

byte of the starting address

Number of allocated blocks in the file

Record length of a relative file

Track of the first data block of a program file, which
contains the starting address

Sector of the first data block of a program file
Starting address of a program file

Number of free blocks on a disk

Number of allocated blocks on a disk

Number of side-sector blocks in a relative file

Number of records in a relative file

String variables

Name

of the file to search for

Contains the actual file name from the directory

File

type

Indicates whether the file is closed or not
(contains "YES" or "NO")

Indicates whether the file is protected or not
(contains "YES" or “NO")

contains CHRS(18), REVERSE ON

contains CHR$(146), REVERSE OFF

Program Documentation:

110
120
210
250

280

500

540
600
620

640

200
230

270

490

530

590

630

690

Set the color code of the screen

Program heading

Asks if the names should be listed out.

Sets flag FL to 1 and executes the routine at
280-490,

Input the filename. Asks for new input if the
filename if greater than 16 characters.

Reads the file name from the directory and eitner
displays it (FL=1) or compares it to the desired
filename,

Reads byte 0 (file type) of the file entry of the
desired file and stores it in TY. Also, the right
half-byte is stored in FT.

Checks the file type and saves the text in FTS,
and checks for invalid file type.

Checks bit 7 of the file type byte (file closed?)
and saves the result in CLS.

Checks bit 6 of the file type byte (file
protected?) and saves the result in PRS,

Reads the number of allocated blocks in the file
from bytes 28 and 29 of the file entry and saves
it i1n BL.

270

700

740

890

990

Anatomy of the 1541 Disk Drive

- 730 If it is relative file, the record length is read
from byte 21 and saved in RL

- 880 If it is a program file, the starting address of
the file is taken from the first data block and
stored in SA.

—- 980 Free blocks on the disk are calculated by reading
the first byte of the track-marked BAM section
and added to BF. The allocated blocks are calcu~-
lated by BA = 664 - BF

-1020 Here the number of side-sector blocks (BS) of a
relative file is calculated with the help of the
record length (RL) and the number of allocated
blocks in the file (RC).

1040-1230 Here the data can be sent to the screen or the

printer as one chooses., The file parameters are
shown in REVERSE.

1240-1280 The parameters of another file can be output.

The program 1s written for a CBM 64, In spite of this, it

can

be run without major changes on a VIC 20. Only line 110,

where the color of the screen is set, need be changed for

the

vIiC 20,

BASIC Listing of the Program:

100
110
120
130
140
150
160
170
180
200
210
220
230
240
250
260
270
280
290
300
310
320
325

330°

340
350
360
370
380
390

CLR

POKE 53280,2:POKE53281,2:PRINTCHRS(158) ;CHRS$(147) ;
PRINT TAB(G)‘"===========================
PRINT TAB(6);"DISPLAY ALL FILE PARAMETERS"
PRINT TAB(G), Smemssssscssscsssszssszzeoc !
PRINT:PRINT

PRINT"WITH THIS PROGRAM, ALL PARAMETERS OF A"
PRINT"FILE CAN BE OUTPUT TO THE SCREEN OR TO"
PRINT"A PRINTER AT YOUR OPTION."

PRINT:PRINT

PRINT"LIST FILENAMES (Y/N)?2"

GETXS$:IFXS$<>"Y"ANDXS<>"N"THEN 220

IF X$="Y"THENFL=1:GOSUB280

FL=0

INPUT"NAME OF THF FILE: ";F$
IFLEN(F$)<=16THEN280

PRINT"FILENAME TOO LONG!":GOT0250

OPEN 15,8,15,"I0":OPEN2,8,2,"#"

T=18:5S=1

PRINT#15,"B~-R";2;0;7T:S

PRINT#15,"B-P";2;0
GET#2,XS : IFX$=""THENXS=CHRS(0)

T=ASC(XS$)

GETXS : IFX$=""THENX$=CHRS$ (0)

S=ASC(XS$)

FORX=0TO7

PRINT#15,"B~P";2;X*32+5

FFg§=""

FORY=0TO15

GET#2,X$:IFXS=""THENX$=CHRS$(0)

271

Anatomy of the 1541 Disk Drive

400
410
420
430
440
450
460
470
480
485
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
9210
920
930

IF ASC(X$)=160THEN430
FFS=FF$+X$

NEXT Y

IFF$=FFSTHEN490
IFFLTHENPRINTFF$

NEXT X

IF T=0 THEN 480

GOTO 300

CLOSE2:CLOSELS
IFFL=0THENPRINT"FILENAME NOT FOUND!":GOT0210
IFFLTHENRETURN
PRINT#15,"B~P";2;X*32+2
GET#2,X$:IFXS=""THENX$=CHRS(0)
TY=ASC(XS)

FT=TYANDIS
IFFT=0THENFTS="DELETED"
IFFT=1THENFTS="SEQUENTIAL"
IFFT=2THENFTS="PROGRAM"
IFFT=3THENFTS="USER"
IFFT=4THENFT$S="RELATIVE"
IFFT>4THENPRINT" INVALID FILE TYPE!":GOT0200
IFTYAND128THENCLS="YES" : GOTO620

CL$="NO"
IFTYAND64 THENPRS=" YES" : GOTO6 40
PRS="NO"

PRINT#15,"B~P";2;X*32+30
GET#2,XS:IFX$=""THENXS=CHRS(0)
LB=ASC(X$)
GET#2,X$:IFXS=""THENX$=CHRS (0)
HB=ASC(X$)*256

RL=LB+HB

IFFT<>4THEN740
PRINT#15,"B~P";2;X*32+23
GET#2,XS:IFXS=""THENXS=CHRS(0)
RL=ASC(XS)

IFFT<>2THEN890
PRINT#15,"B~P";2;X*32+3
GET#2,X$:1IFX$=""THENX$=CHRS(0)
DT=ASC(XS)
GET#2,X$:IFXS=""THENX$=CHRS(0)
DS=ASC(XS)

OPEN3,8,3,"#"
PRINT#15,"B-R";3;0;DT;DS
PRINT#15,"B~P";3;2

GET#3 ,X$:IFX$S=""THENXS=CHRS(0)
LB=ASC(XS)
GET#3,X$:IFX$=""THENXS$S=CHRS(0)
HB=ASC(X$)*256

SA=LR+HB

CLOSE3

PRINT#15,"B-R";2;0;18:0

BF=0

FORI=4TO140STEP4

IFI=72THEN960
PRINT#15,"B~P";2;1

272

Anatomy of the 1541 Disk Drive

940 GET#2 ,X$:IFX$=""THENX$=CHRS(0)

950 BF=ASC(X$)+BF

960 NEXT

980 BA=664~BF

990 IFFT<>4THEN1040

1010 BS=BL/121:IFBS<>INT(BS) THENBS=INT(BS+1)
1020 RC=INT(((BL~BS)*254)/RL)

1040 PRINTCHRS(147);"SCREEN OR PRINTER (S/P)?"
1050 GETXS$:IFXS$<>"S"ANDXS<>"P"THEN1050

1060 RES=CHRS$(18) :RAS=CHRS (146)

1070 IFX$="S"THENOPEN1,3:PRINT#1,CHRS(147)
1080 IFX$="P"THENOPENI,4

1090 PRINT#1,"FILE PARAMETERS ";RES ; FS ; ROS

1100 PRINT#1,"~—==- ———————————— "

1110 PRINT#1,"FILE TYPE: ";RES ; FTS ; RAS : PRINT#1
1120 PRINT#1,"FILE CLOSED: "sRES;CLS ;RAS:PRINT#1
1130 PRINT#1,"FILE PROTECTED: " ;s RES ; PRS ; RAS : PRINT# 1
1140 PRINT#1,"ALLOCATED BLOCKS: " ;RES;BL;RAS :PRINT#1
1150 IFFT<>4THEN1200

1160 PRINT#1,"RECORD LENGTH: ";RES :RL:RAS : PRINT#1
1170 PRINT#1,"SIDE~-SECTOR BLOCKS: ";RES;BS;RAS:PRINT#1
1180 PRINT#1,"DATA BLOCKS: ":RES ; BL-BS;RAS : PRINT#1
1190 PRINT#1,"RECORDS: ":;RES;RC; RAS s PRINT#1

1200 IFFT=2THENPRINT#1.,"START ADDRFSS: "
RE$; SA;RAS : PRINT#1

1210 PRINT#1,"FREE BLOCKS (DISK): ";RES;BF;RAS$:PRINT#1

1220 PRINT#1,"ALLOCATED BLOCKS (D) :";RES;BA;RAS:PRINT#1

1230 CLOSE1

1240 PRINT"MORE (Y/N)?2"

1250 CLOSE2:CLOSELS

1260 GETXS$:IFX$<>"Y"ANDXS$<>"N"THEN1260

1270 IFX$="Y"THEN100

4.,1.2 Scratch-protect Files - File Protect

As already mentioned, 1t is possible to protect files on the
VIC-1541 diskette and save this information 1n the
directory. A file's type 1s contained i1n byte 0 of the file
entry. Bit 6 denotes a protected file. If this bit is set to
1, the file can no longer be deleted with the SCRATCH
command. But because the DOS has no command to set this bit
an alternative way must be used to protect a file.

With the following program, you can:

display all files on the disk
protect files

unprotect files

erase files

* * * %

This program can delete protected files as well as
unprotected files. If you wish to delete a protected file,

273

Anatomy of the 1541 Disk Drive

you must confirm it. This program is also documented with a
variable usage and descriptions so that you can use these
techniques in your own programs.

List of variables:

DF

FL

FFS
F$

Flag, set in the routine "read/search file" if the
desired filename is found

Set 1f the routine "read/search file" is only to be
used for listing files

Variable for storing the filetype

Track of the actual block of the file entry

Sector of the actual block of the file entry

Track, in which the file entry block of the desired
fi1le is found

Sector, in which the file entry block of the desired
file is found

last filename read from the directory

filename to search for

Program Documentation:

100
110
240

270
280

360

410
460
490

570
610

660
710
740

770

Set the screen color

230 Program header and option menu

260 Read the menu choice and call the appropriate
subroutine
Back to the option menu

350 Subprogram "list all files"

310 Erase screen

320 Set flag FL to list files in the subroutine
"read/search file"

350 Reset the flag and jump back

600 Subroutine "protect file"

390 Call subroutine "input filename"

400 Call the subroutine "read/search file"

450 Test if the file is found

480 Read file type and store in FT

500 Test if the file is already protected

510 Protect file (bit 6 to 1)

550 Trarsfer the file type to the buffer and write the
block to disk

560 Close the channel

600 Message "File protected" and jump back

850 Subroutine "unprotect file"

640 Call subroutine "input filename"

650 Call subroutine "read/search file"

700 Test if file is found

730 Read file type and store in FT

750 Test if the file is already unprotected

760 Unprotect the file (bit 6 to 0)

800 Transfer the file type to the buffer and write
the block to the disk

810 Close the file

850 End the subroutine

274

860

910
960

Anatomy of the 1541 Disk Drive

~1170 Subroutine "erase a file"
890 Call the subroutine "input filename"
900 Call the subroutine "read/search file"
- 950 Test 1f the file 1s found
~ 980 Read the file type and save in FT
990 Test if the file is protected

1000-1030 Indicate that the file is protected, with the

possibility to erase it anyway

1040-1060 Ask if the file should really be erased

1070 Bit 6 set back, if protected

1080-1110 Transfer the file type to the buffer and write

the block to the disk
1120 Initialize the diskette
1130 Erase the file

1140-1170 End the subroutine
1190-1560 Subroutine "read/search file"

1220 Open the command and data channels

1230-1240 Read directory and set buffer pointer
1250-1320 Test if the disk contains a write protect. For

this purpose, the directory is written back to the
disk unchanged (line 1250). If the disk has a
write protect tab on it, the error message 26,
WRITE PROTECT ON will occur,

1330 Initial values for the track and sector variables
are set

1340-1350 Read the file entry block and position the buffer

pointer to the first byte

1360-1390 Read the address of the next file entry block
1400-1530 Loop to read filenames. The names are then either

1540~

listed on the screen or compared to the desired
filename, based on the value of flag FL

1560 If the variable T (track) contains zero, no more
file entry blocks follow and the subroutine ends,

BASIC Listing of the Program:

100
110
120
130
140
150
160
180
190
200
210
220
230
240
250
260
270
280
290

POKE 53280,2:POKE53281,2: PRINTCHRS(ISB),CHR$(147),

PRINTTAB(8) ;"=====xz==s==c==s=cs=s=z=="
PRINTTAB(8) ; "ERASE AND PROTECT FILES"
PRINTTAB(8) ;"======x=s=z==z==z=s==s==sz=="
PRINT:PRINT

PRINT"WITH THIS PROGRAM, FILES CAN BE"
PRINT"PROTECTED, ERASED, AND UNPROTECTED"
PRINT :PRINT

PRINTTAB(6);" ~-1- LIST ALL FILES":PRINT
PRINTTAB(6);" ~2- PROTECT A FILE":PRINT
PRINTTAB(6);" ~3- UNPROTECT A FILE":PRINT
PRINTTAB(6);" -4- ERASE A FILE":PRINT
PRINTTAB(6);" ~5- END THE PROGRAM":PRINT
GETXS$:IFXS$S=""ORVAL(X$)<1ORVAL({XS$)>S5THEN240
IFVAL(X$)=5THENEND
ONVAL(X$)GOSUB280,360,610,860

GOTO 100

REM ~cmovcm e

REM LIST ALL FILES

275

Anatomy of the 1541 Disk Drive

300 REM ~mm—c———mem——e

310 PRINTCHRS (147)

320 FL=1:GOSUB1190

330 PRINT:PRINT"RETURN FOR MORE"
340 INPUTXS

350 FL=0:RETURN

360 REM —mm——meeoa————

370 REM PROTECT A FILE

380 REM —=——mme—meme—m

390 GOSUB1580

400 GOSUB1190

410 IFDF=1THEN460

420 PRINT"FILE NOT FOUND!":PRINT
430 PRINT"RETURN FOR MORE"

440 INPUTXS:CLOSE2:CLOSELS

450 RETURN

460 PRINT#15,"B-P";2;X*32+2

470 GET#2,X$:IFX$=""THENXS=CHRS$(0)
480 FT=ASC(XS)

490 IF(FT AND 64)=0 THEN 510

500 PRINT"FILE 1S ALREADY PROTECTED!":PRINT:GOTO430
510 FT=(FT OR 64)

520 PRINT#15,"B-P";2;:X*32+2
530 PRINT#2,CHRS(FT);
540 PRINT#15,"B~P";2;0

550 PRINT#15,"U2";2;0;TT;SS

560 CLOSE2:CLOSElS

570 PRINT"FILE PROTECTED."

580 PRINT"RETURN FOR MORE"

590 INPUTXS

600 CLOSE2:CLOSE15:RETURN

610 REM ~~~-mermcmme e

620 REM UNPROTECT A FILE

630 REM ~—=omemec e

640 GOSUB1580

650 GOSUB1190

660 IFDF=1THEN710

670 PRINT"FILE NOT FOUND!":PRINT
680 PRINT"RETURN FOR MORE"

690 INPUTXS:CLOSE2:CLOSE1S

700 RETURN

710 PRINT#15,"B-P";2;X*32+2

720 GET#2,X$:IFXS=""THENX$=CHRS$(0)
730 FT=ASC(XS$)

740 IF (FT AND 64)=64THEN760

750 PRINT"FILE IS ALREADY UNPROTECTED!":PRINT:GOTO680
760 FT=(FTAND255~64)

770 PRINT#15,"B-P";2;X*32+2

780 PRINT#2,CHRS(FT):

790 PRINT#15,"B-P";2;0

800 PRINT#15,"U2";2;0;TT:SS

810 CLOSE2:CLOSE1S

820 PRINT"FILE UNPROTECTED."

830 PRINT"RETURN FOR MORE"

840 INPUTXS

276

Anatomy of the 1541 Disk Drive

850 RETURN

860 REM ~=-—wee—ree——

870 REM ERASE A FILE

880 REM —=cmwmmmee

890 GOSUB1580

900 GOSUB1190

910 IFDF=1THEN960

920 PRINT"FILE NOT FOUND!":;PRINT

930 PRINT"RETURN FOR MORE"

940 INPUTX$:CLOSE2:CLOSELS

950 RETURN

960 PRINT#15,"B~P";2;X*32+2

970 GET#2,X$:IFX$=""THENX$=CHRS (0)

980 FT=ASC(XS$)

980 IF(FT AND 64)=0THEN1040

1000 PRINT"WARNING! FILE IS PROTECTED!"
1010 PRINT"UNPROTECT AND ERASE (Y/N)?"
1020 GETXS:IFXS<>"Y"ANDXS<>"N"THEN1020
1030 IFX$="N"THEN1170

1040 PRINT"ARE YOU SURE (Y/N)?"

1050 GETXS:IFXS<>"Y"ANDXS<>"N"THEN1050
1060 IFX$="N"THEN1170

1070 FT=(FT AND 255-64)

1080 PRINT#15,"B-P";2;X*32+2

1090 PRINT#2,CHRS(FT);

1100 PRINT#15,"B-P";2;0

1110 PRINT#15,"U2";2;0;TT;SS

1120 PRINT#15,"I1I0"

1130 PRINT#15,"S:"+F$

1140 PRINT"FILE ERASED."

1150 PRINT'RETURN FOR MORE"

1160 INPUTXS

1170 CLOSE2:CLOSELS5:RETURN

1180 REM

1190 REM ~~—m-mmmc e

1200 REM READ / SEARCH FILE

1210 REM —-=mcmmmm e

1220 OPEN15,8,15,"10":0PEN2,8,2,"8#"
1230 PRINT#15,"B-R";2:;0;18;0

1240 PRINT#15,"B-P";2;0

1250 PRINT#15,"U2";2;0;18;0

1260 INPUT#15,X1$

1270 IF VAL(X1$)<>26 THEN 1330

1280 PRINT"PLEASE REMOVE THE WRITE PROTECT TAB FROM"
1290 PRINT"THE DISKETTE BEFORE USING THIS PROGRAM."
1300 PRINT"RETURN FOR MORE"

1310 INPUTXS

1320 CLOSE2:CLOSE15 :RETURN

1330 T=18:S=1:TT=18:5S=1

1340 PRINT#15,"B-R";2;0;T;S

1345 TT=T:8S=S

1350 PRINT#15,"B~P";2;0

1360 GET#2,XS$:IFX$=""THENX$=CHRS(0)
1370 T=ASC(XS$)

1380 GET#2,X$:IFX$=""THENXS$S=CHRS$(0)

277

Anatomy of the 1541 Disk Drive

1390 S=ASC(X$)

1400 FORX=DTO7

1410 PRINT#15,"B-P":2:X*32+2

1420 GET#2,X$:IFXS=""THENXS=CHRS(0)

1430 IFASC(X$)=0THEN1530

1440 PRINT#15,"B~-P";2;X*32+5

1450 FF$=""

1460 FORY=0QTOl5

1470 GET#2,X$:IFXS=""THENXS$S=CHRS$(0)

1480 IFASC(X$)=160THEN1500

1490 FF$=FF$+X$

1500 NEXTY

1510 IFFLTHENPRINTFFS :GOT01530

1520 IFF$=FF$THENDF=1:GOTO1570

1530 NEXTX

1540 IFT<>QTHEN1340

1550 CLOSE2:CLOSE1S

1560 IFFL=0THENPRINT"FILENAME NOT FOUND!":FORI=1T02000:
NEXT

1570 RETURN

1580 REM ~=m——m—cmme e

1590 REM INPUT FILENAME

1600 REM —~-e—mecacemee

1610 PRINT:PRINT

1620 INPUT"FILENAME:";F$

1630 IFLEN(F$)<=16THEN1650

1640 PRINT"FILENAME TOO LONG!":GOT01620

1650 DF=0:FL=0

1660 RETURN

This utility program was written for the CBM 64, This
version can also be run on the VIC 20. Only line 100 which
sets the screen color on the CBM 64 need be changed or
ignored., If you value perfect video output, lines 110-230
can also be changed to accommodate the VIC 20's smaller
screen size,

4.1.3 Backup Program - Copying a Diskette

The VIC 1541 disk drive does not allow disks to be
duplicated since it is a single drive, as the double drives
permit with the COPY or BACKUP commands of BASIC 4.0. With
the 1541, each program to bhe copied must be transferred
through the computer,

Here's an example of how you might copy a diskette using a
single disk drive:

First, the BAM as well as the names and IDs of the disk to
be copied are read i1nto the computer, From the information
in the BAM, you can determine which blocks of the original
diskette are used. In order to save time, only the allocated

278

Anatomy of the 1541 Disk Drive

blocks are copied. Then a direct access file is opened and
the first 169 (as many as will fit i1n the memory of tte
Commodore 64) allocated blocks are read. Then the user is
asked to put a new diskette 1n the drive., The new diskette
is then formatted with the name and ID of the original
diskette. Now the previously read blocks are written to the
diskette. The next 169 blocks of the original diskette are
read into memory and written out to the destination
diskette, This ends after four disk swaps, at which time the
entire diskette will have been copied.

The program is written in BASIC except for the portion which
reads and writes the direct access file. This part is
written in machine language which is considerably faster
than a GET# loop in BASIC. Because of the nature of the
program, the number of diskette changes is dependent on the
free storage in the computer. A VIC 20 with a 16K expansion
requires 11 changes of original and destination diskettes.

Here is a time comparison between this program and
duplication on a double drive with the same capacity. Our
program requires about 20 minutes, while the CBM 4040 does
it in about 3 minutes.

Duplicating a diskette with this program is quite simple.
You need only follow the messages on the screen to insert
the original or destination diskette, The program does the
rest for you.

100 REM BACKUP PROGRAM C64 - VIC 1541
110 REM

120 POKES56,23:CLR:GOSUB640

130 OPEN1,8,15

140 DIM B%(35,23),S%(35),2(7),A$(1)

150 AS(0)="DESTINATION" :A$(1)="ORIGINAL" :R=1
160 AD=23*%256:GOSUB590

170 POKE250,0:POKE251,AD/256

180 GOSUBS530:GOSUB290

190 PRINTNS"BLOCKS TO COPY" :PRINT

200 T=1:5=0

210 FORI=1TO4:TT=T:S5=S:R=1:IFI=1THEN240
220 IFR=0ANDI=1THENGOSUB450:GOT0240

230 GOSUB590

240 POKE251,AD/256:FORJ=1T0169

250 IFB%(T,S)=0THENGOSUB570

260 S=S+1:IFS=S%(T)THENT=T+1:S=0:IFT=36THENJ=169
270 NEXT:IFRTHENR=0:T=TT:S=SS:G0T0220
280 NEXT:GOTOS510

290 T=18:5=0:GOSUB570

300 NS=0:FORT=1T0O35:S=0

310 NS=NS+S%(T)-PEEK(AD+4*T)

320 FORJ=17T03

330 B=PEEK(AD+4*T+J)

340 FORI=0TO7

279

Anatomy of the 1541 bisk Drive

340 FORI=0TO7

350 B%(T,S)=B AND Z(I):S=S+1

360 NEXT I,J

370 FOR S=S%(T)TO023

380 B%(T,S)=-1 : NEXT S,T

390 FOR I=QTOl5

400 A=PEEK(AD+144+1I)

410 IFA<>160THENNS$=N$S+CHRS(A)

420 NEXT

430 I$=CHRS$(PEEK(AD+162))+CHRS (PEEK(AD+163))

440 PRINTNS, IS :RETURN

450 PRINT"PLEASE INSERT NEW DISKETTE"

460 PRINT"AND PRESS RETURN":PRINT:POKE198,0:CLOSE2

470 GETAS:IFAS<>CHRS(13)THEN470

480 PRINT#1,"NO:"NS","I$

490 INPUT#1,A,BS$,C,D:IFATHENPRINTA","BS","C","D:END

500 GOTO630

510 CLOSE2:CLOSEl:END

520 REM SECTORS PER TRACK

530 FORT=1TO35

540 S%(T)=21:IFT>17THENS%(T)=19;IFT>24THENS%(T)=18:
IFT>30THENSS(T)=17

550 NEXT

560 FORI=0TO7:Z(I)=241:NEXT:RETURN

570 IFRTHENPRINT#1,"Ul 2 O0"T;S:SYSIN:RETURN

580 PRINT#1,"B-P 2 0":SYSOUT:PRINT#1,"U2 2 0"T;S:RETURN

590 CLOSE2:PRINT"PLEASE INSERT "AS(R)" DISKETTE."

600 PRINT"AND PRESS RETURN" :PRINT:POKE198,0

610 GETAS:IFAS<>CHRS$(13)THEN610

620 PRINT#1,"10"

630 OPEN2,8,2,"#":RETURN

640 FOR I = 828 TO 873 : REM READ MACHINE LANG. PROGRAM

650 READ X : POKE I,X : S=S+X : NEXT

660 DATA 162, 2, 32,198,255,160, 0, 32,207,255,145,250

670 DATA 200,208,248,230,251, 32,204,255, 96,198, 1,162

680 DATA 2, 32,201,255,16¢0, 0,177,250, 32,210,255,200

690 DATA 208,248,230,251, 32,204,255,230, 1, 96

700 IF S<>7312 THEN PRINT "ERROR IN DATA!!":END

710 IN=828:0UT=849:RETURN

4.1.4 Copying Individual Files to another Diskette

The following program permits you to copy individual files
from one diskette to another, The files can be programs
(PRG), sequential files (SEQ) or user files (USR). Relative
files cannot be copied with this program; these can be
copied with a BASIC program that reads all data records into
a string array and then writes them back again into a new
file.

In the first pass, the program reads the complete file into
the memory of the Commodore 64. Then the destination

280

Anatomy of the 1541 Disk Drive

Next the complete file is written on the second disk. The
computer has 49 Kbytes for data storage; you can nandle up
to 196 blocks on the diskette.

For reasons of speed, the reading and writing of the data is
performed by a machine language program, which is stored 1n
DATA statements,

The program is suited for copying sequential files as
already mentioned, as well as programs of all kinds; the
start address (of a machine language program) is not
relevant,

100 REM FILE COPIER PROGRAM (64

110 REM

120 POKE 56,12 : CLR

130 GOSUB 1000

140 INPUT"FILENAME “;N$

150 PRINT"FILE TYPE ";

160 GETTS$:IFTS<>"S"ANDTS<>"P"ANDTS<>"U"THEN160

170 PRINTTS :PRINT

180 PRINT"PLEASE INSERT ORIGINAL DISK"

190 PRINT"AND PRESS A KEY":PRINT

200 GETAS:IFAS=""THEN200

210 OPEN 2,8,2,NS$+","+T$

220 POKE 3,0:POKE 4,12:SYS 866

230 CLOSE 2

240 PRINT"PLEASE INSERT DESTINATION DISK"

250 PRINT"AND PRESS A KEY":PRINT

260 GETAS$:IFAS$S=""THEN260

270 OPEN 2,8,2,N$+".,"+TS+",W"

280 POKE 3,0:POKE 4,12:SYS 828

290 CLOSE 2 : END

1000 FOR I = 828 TO 898

1010 READ X : POKE I,X : S=S+X : NEXT -
1020 DATA 162, 2, 32,201,255,198, 1,160, 0, 56,165, 3
1030 DATA 229, 5,165, 4,229, 6,176, 13,177, 3, 32,210
1040 DATA 255,230, 3,208,236,230, 4,208,232,230, 1, 76
1050 DATA 204,255,162, 2, 32,198,255,160, O, 32,207,255
1060 DATA 145, 3,230, 3,208, 2,230, 4, 36,144, 80,241
1070 DATA 165, 3,133, 5,165, 4,133, 6, 76,204,255
1080 IF S<>8634 THEN PRINT “ERROR IN DATA !!":END

1090 RETURN

4.1.5 Reading the directory from within a program

Sometimes applications programs store user data 1n a file
under a desired name. If you want to use this file again,
but you cannot remember the file name, then you have a
problem, If this happens, you must ex1it the program, search
for the rame 1r the directory, reload the program and start

281

Anatomy of the 1541 Disk Drive

again. To avoid this, you can include a directory listing
routine 1n your program. If you forget the filename, you can
display the directory with a function key, for example,
without the need to leave the program. Here is a sample of
such a routine:

100 PRINTCHRS$(147);

110 OPEN15,8,15,"I0":0PEN2,8,2,"4"
120 T=18:8=1

130 PRINT#15,"B-R";2;0;T;S

140 PRINT#15,"B-P";2;:0

150 GET#2,X$:IFXS$=""THENXS=CHRS(0)
160 T=ASC(XS)

170 GET#2,X$:IFXS$=""THENXS=CHRS(0)
180 S=ASC(XS)

190 FORX=0TO7

200 PRINT#15,"B-P";2;X*32+5

210 FF§=""

220 FORY=0TO15S

230 GET#2,XS$:IFX$=""THENXS=CHRS(0)
240 IFASC(X$)=160THEN270

250 FFS=FF$+XS

260 NEXTY

270 IFA=0THENA=1:PRINTFFS;:GOT0290
280 A=0:PRINTTAB(20);FF$

290 NEXTX

300 IFT<>O0THEN130

310 CLOSEl:CLOSE2

320 PRINT"RETURN FOR MORE"

330 INPUTXS

340 END:REM IF SUBROUTINE, THEN RETURN HERE

In order to select the filename, the directory is printed on
the screen. Should this program be used as a subroutine
(called with GOSUB) line 340 must contain RETURN instead of
END.

We used this routine in the ut111ty programs 1n sections
4,1.1 and 4.1.2.

282

Anatomy of the 1541 Disk Drive

4.2 The Utility Programs on the TEST/DEMO Disk

There are many 1541 owners that know little about the
programs contained on the Test/Demo disk. The main reason is
that these programs are largely undocumented, The following
descriptions of these programs should help you:

4.2.1 DOS 5.1

The DOS 5.1 simplifies the operation of the VvIC-1541 DOS. It
can run on the VIC-20 or Commodore 64. To load DOS 5.1 on
the ViCc-20, give the commands

LOAD"VIC-20 WEDGE",8
RUN

This is the loader for DOS 5.1 for the VIC 20.

If you want to use it on the Commodore 64, give the
commands:

LOAD"C-64 WEDGE",8
RUN

This loads DOS 5.1 into the CBM 64.

What does this DOS 5.1 offer? It allows you to send
convenient commands to the 1541 disk drive, 1f, for example,
you want to display the directory on the screen, you use the
DOS 5.1 command @$ or >$. This does not erase the program in
memory.

The individual commands of the DOS 5.1

Command Function

@$ or >$ Display the directory

eV or >V Same funcction as "VALIDATE"
@Ct... Or >Ci... Copy files (COPY)

©file or /file Load program

@ or > Read and display error message
@N:... or >N:... Format a diskette

@I or >I Intitialize the disk

@R:... Or >R:... Rename a file (RENAME)
@S:... Or >S:... Erase a file (SCRATCH)

@é#n or >#n Change disk device to n

283

Anatomy of the 1541 Disk Drive

4.2.2 COPY/ALL

With the program COPY/ALL files can be copied between disk
drives with different addresses. A drive must be changed
from device address 8 with the program DISK ADDR CHANGE
before this can occur. After starting the program, the
message:

disk copy all jim butterfield
from unit? 8

appears on the screen. Here you give the device address of
the disk drive from which you wish to get the files, If this
address is 8, just press RETURN. After this you give the
corresponding drive number of this unit (always 0 for single
drives). In this manner you also give the device address of
the destination drive. Once this has occurred, the program
asks

want to new the output disk
?n

You are being asked if the destination diskette should ke
formatted., You answer with 'y' (yes) or 'n' (no).

Then you can choose the files you want to copy with the
wildcard (*)., If all files are supposed to be copied, just
give the asterisk.

Now the program gives the message

hold down 'y' or 'n' key to select

The program displays the files on the original disk, which
you can select with the 'y' key (yes) or ‘n' (no), The files

by which you pressed 'y' will be copied.

If, during the copying process, asterisks (***) appear behind
the files, it means that an error has occurred,

I1f there is not enough room on the destination disk, "***
output disk full" and "do you have a new one" appears. The
remaining files can be put on another formatted diskette. To

do this, answer 'y' when ready.

At the the conclusion of the copying process, the number of
free blocks on the destination disk is displayed.

4.12.3 DISK ADDR CHANGE

With this program, the device address of a disk drive can te
changed through software. After starting the program, turn
all drives off except for the one you wish to change. Now
enter the o0ld and new device addresses.

284

After this, the address is

be turned back on.

Anatomy of the 1541 Disk Drive

changed and the other drive can

The following drives can be changed with this program:

2031
2040
4040
4040
8050
8050
8250

4.2.4 DIR

DOS
DOS
DOS
DOS
DOS
DOS
DOS

V2.6
vi.l
v2.1
v2.7
V2.5
V2.7
v2.7

This is a small help program wilith the following

possibilites:

d - display the directory on the screen

> - With this character, a disk command can be given
1n shortened form (for example, >N:TEST,KN to

format a diskette)

q - ex1t the program

s - display the error channel

These possibilities are also found in DOS 5.1, along with

other commands.

4.2.5 VIEW BAM

With this utility program you can view the usage of diskette

blocks on the screen.

This table displays the sectors 1n

columns and the tracks in rows. Crosses indicate free blocks
and reverse crosses indicate allocated blocks. 'n/a' means
tnat tnese blocks do not exist on the track.

After outputting the table,
of free blocks is displayed.

4.2.6 CHECK DISK

the diskette name and the number

The utility program CHECK DISK tests every block on the
diskette by writing to and reading from 1t. The current

285

Anatomy of the 1541 Disk Drive

block and the total number of tested blocks is displayed on
the screen,

4.2.7 DISPLAY T&S

If you are interested in the construction of the individual
blocks of the disk and want to display these on the screen,
this utility program will help you. After starting the
program you give the desired track and sector. This will
then be sent to the printer or screen. The DISK-MONITOR
contained in this book is a easier to use, because it allows
you to change blocks and save them again.

4.2.8 PERFORMANCE TEST

This program makes it possible to test the mechanics of the
VIC-1541 disk drive, To accomplish this, all the access
commands are executed, 1n the following order:

1. Disk is formatted

2, A file is opened for reading
3. Data are written to this file
4. The file is closed again

5. This file is opened for reading
6, The data are read

7. The file is closed again

8. The file is erased

8. Track 35 is written

10. Track 1 is written

11, Track 35 is read

12, Track 1 1s read

After each access of the disk the error channel is
displayed. In this manner, it can be estaplished which
access of the disk is not executed properly.

When using this program, use only diskettes containing no

important data because the entire diskette is erased during
the testing.

286

Anatomy of the 1541 Disk Drive

4.3 BASIC-Expansion and Programs for easy Use of the 1541

4.3.1 Input strings of desired length from the disk

Reading data from the disk with the INPUT# statement has one
major disadvantage - only data items having fewer than 88
characters can be read. This is because the input buffer of
the computer 1s limited, In addition, not all characters can
be read with the INPUT# statement, If a record contains a
comma or colon, BASIC views it as a separating character and
the remainder of the input is assigned to the next variable.
If the INPUT# statement has only one variable, the remainder
is ignored and the next INPUT# statement continues reading
past the next carriage return (CHRS$(13)). Tne alternative,
to read the input with a GET# statement but results in much
slower input.

To avold these disadvantages, we can use a small machine
language routine.

We will change the INPUT# statement, so that we can specify
the number of characters to be read. To distinguish it from
the normal INPUT# statement, we name the command INPUT*. The
syntax looks like this:

INPUT* 1fn, len, var

Lfn is the logical file number of the previously OPENed
file, len 1s the number of characters to be read, and var is
the string variable into which the characters are to be
read. A program excerpt might look like this:

100 OPEN 2,8,2,"FILE"
110 INPUT* 2,100,AS

This reads a string of 100 characters from the opened file
into AS. This procedure 1s especlally suited for relative
files, because a complete record can be read with one
command after positioning the record pointer. The
partitioning of record into fields can be accomplished with
the MID$ function. An elegant method of creating records is
described in the next section.

With this procedure it is no longer necessary to end a
record with a carriage return. You can especially make use
of the maximum record length with relative files:

100 OPEN 1,8,15

110 OPFN 2,8,2, "REL-FILE,L,"+CHRS(20)
120 PRINT#1, "P"+CHRS(10)+CHRS$(0)+CHRS(1)
130 PRINT#2, "12345678901234567890";

140 PRINT#1, "P"+CHRS(10)+CHRS$(0)+CHRS(1)

287

Anatomy of the 1541 Disk Drive
150 INPUT* 2,20,AS$
160 PRINT AS
12345678901234567890
Here is the assembler listing for the machine language

program, It resides in the cassette buffer just 1like a
loader program in BASIC for the Commodore 64 and VIC 20.

110: 033C H

; INPUT* LFN,LEN,AS
150: 033cC INPUT EQU $85
160: 033C STAR EQU SAC
170: 033C BASVEC EQU $308
180: 033cC CHRGET EQU 873
190: 033C CHRGOT EQU CHRGET + 6
210: 033C ; C64 VERSION
220: 033C H
380: 033C CHKIN EQU SELlE
390: 033C BASIN EQU $El12
400: 033C CHKCOM EQU SAEFD
410: 033cC INTER EQU S$ATAE
420: 033C EXECOLD EQU S$ATE7
430: 033C INPUTOLD EQU S$ABBF
440: 033C FINDVAR EQU $BO8B
450: 033cC STRRES EQU S$B475
460: 033C FRESTR EQU $B6A3
470: 033C GETBYT EQU S$B79E

.

; VIC 20 VERSION

240: 033C CHKIN EQU SEI1B
250: 033C BASIN EQU SE10F
260: 033C CHKCOM EQU S$CEFD
270: 033C INTER EQU S$C7AE
280: 033C EXECOLD EQU S$CT7E7
290: 033C INPUTOLD EQU SCBBF
300: 033C FINDVAR EOU $DO8B
310: 033C STRRES EQU $D475
320: 033cC FRESTR EQU S$D6A3
330: 033C GETBYT EQU $D79E

i
; COMMON LABELS

490: 033cC VARADR EQU $49

500: 033C CLRCH EQU SFFCC
510: 033C PARA EQU $61

530: 033cC ORG 828

540: 033C A9 47 INIT LDA #<TEST
550: 033E A0 03 LDY #>TEST
560: 0340 8D 08 03 STA BASVEC
570: 0343 8C 09 03 STY BASVEC+1

288

Anatomy of the

1541 Disk Drive

580: 0346 60 RTS
’

600: 0347 20 73 CO TEST JSR CHRGET

610: 034A C9 85 CMP #INPUT

620: 034C FO 06 BEQ FOUND

630 034E 20 79 00 JSR CHRGOT

640: 0351 4C E7 A7 JMP EXECOLD ; TO THE OLD
ROUTINE

650: 0354 20 73 00 FOUND JSR CHRGET

660: 0357 C9 AC CMP #STAR ; NEW INPUT
ROUTINE

670: 0359 FO 06 BEQ OKSTAR

680 035B 20 BF AB JSR INPUTOLD

680: 03S5E 4C AE A7 JMP INTER

690: 0361 20 9B B7 OKSTAR JSR GETBYT-3 ; GET FILE
NUMBER

700: 0364 20 1E El JSR CHKIN

710: 0367 20 FD AE JSR CHKCOM

720: 036A 20 9E B7 JSR GETBYT : LENGTH

730: 036D 8A TXA

730: 036E 48 PHA ;s NOTICE

740: 036F 20 FD AE JSR CHKCOM

750: 0372 20 8B BO JSR FINDVAR ; SEARCH FOR
VARIABLE

760: 0375 85 49 STA VARADR

760: 0377 84 4A STY VARADR+1

770: 0379 20 A3 B6 JSR FRESTR

780: 037C 68 PLA ; LENGTH

790: 037D 20 75 B4 JSR STRRES ; RESERVE PLACE
FOR STRING

800: 0380 A0 02 LDY #2

810: 0382 B9 61 00 SIORE LDA PARA,Y

820: 0385 91 49 STA (VARADR),Y

830: 0387 88 DEY

840: 0388 10 F8 BPL STORE

850: 038A C8 INY : Y=0

860: 038B 20 12 El1 FETCH JSR BASIN

870: 038E 91 62 STA (PARA+1),Y

880 0390 C8 INY

890: 0391 C4 61 CPY PARA

900: 0393 DO F6 BNE FETCH

910: 0395 20 CC FF JSR CLRCH

910: 0398 4C AE A7 JMP INTER :TO INTERPRETER
LOOP

Here are the BASIC programs for entering the machine

language program for the INPUT* statement.

INPUT* , 64 Version

100 FOR I = 828 TO 922

110 READ X : POKE I,X : S$=S+X : NEXT

120 DATA 169, 71,160, 3,141, 8, 3,140,

289

9,

3, 96, 32

Anatomy of the 1541 Disk Drive

130 DATA 115, 0,201,133,240, 6, 32,121, O, 76,231,167
140 DATA 32,115, 0,201,172,240, 6, 32,191,171, 76,174
150 DATA 167, 32,155,183, 32, 30,225, 32,253,174, 32,158
160 DATA 183,138, 72, 32,253,174, 32,139,176,133, 73,132
170 pATA 74, 32,163,182,104, 32,117,180,160, 2,185, 97
180 DATA 0,145, 73,136, 16,248,200, 32, 18,225,145, 98
190 DATA 200,196, 97,208,246, 32,204,255, 76,174,167

200 IF S <> 11096 THEN PRINT "ERROR IN DATA !!" : END
210 SYS 828 : PRINT "OK."

INPUT* , VIC 20 VERSION

100 FOR I = 828 TO 922

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 169, 71,160, 3,141, 8, 3,140, 9, 3, 96, 32
130 DATA 115, 0,201,133,240, 6, 32,121, O, 76,231,199
140 paTA 32,115, 0,201,172,240, 6, 32,191,203, 76,174
150 DATA 199, 32,155,215, 32, 27,225, 32,253,206, 32,158
160 DATA 215,138, 72, 32,253,206, 32,139,208,133, 73,132
170 DATA 74, 32,163,214,104, 32,117,212,160, 2,185, 97
180 DATA 0,145, 73,136, 16,248,200, 32, 15,225,145, 98
190 DATA 200,196, 97,208,246, 32,204,255, 76,174,199

200 IF S <> 11442 THEN PRINT "ERROR IN DATA !!" : END
210 SYS 828 : PRINT "OK."

4.3.2 Easy Preparation of Data Records

If you have worked with relative files before, you know thet
a definite record length must be established. This record 1is
usually divided into several fields which likewise begin at
a definite position within the record, and have a set
length.

If you create a new record, for example, a separate INPUT
statement 1s generally used for each field, Before the
complete record can be written, 1t must be assembled
properly. Each field must be checked for proper length. If
it is longer than then the planned length of the
corresponding data field, the remainder must be truncated to
the proper length, Here are two new BASIC commands that are
excellently suited for this task. These new commands are
written in machine language and are initialized with a SYS
command, You can then use them as any other BASIC commands,

The first command has the name !STR$ and serves to create a
string with the length of the data record.

AsS = ISTR$(100," ")

290

Anatomy of the 1541 Disk Drive

creates a string with 100 blanks and puts it in the variable
AS.

The next command places our data field in the previously
created string. For example, if you want to assign the
variable N$ containing the last name as a field of 25
characters at position 1l in the string A$, our new command
looks like this:

MIDS (A$,1,25) = NS

Here the MID$ command is used as a so-called pseudo-variable
on the left side of the assignment statement. What happens
here is as follows:

The variable NS replaces the first 25 characters of AS§, If
the variable N$ is longer than 25 characters, only the first
25 characters are replaced and the rest are disregarded. If
N$ is shorter than 25 characters, only as many characters
are replaced as N$ contains., The original characters in 2A$
remain (blanks, in our case). That is exactly as we wanted,
Now we can program the following:

200 INPUT "LAST NAME "; LS
210 INPUT "FIRST NAME "; F$
220 INPUT "STREET "; 88
230 INPUT "CITY "; C$
240 INPUT “STATE “; TS
250 INPUT "ZIP CODE "; IS

260 A$ = ISTRS (92, " *)
270 MIDS$ (A$,1,25) = LS
280 MIDS (A$,26,20) = F$
290 MID$ (A$,46,20) = S$
300 MIDS (A$.66,15) = C$
310 MID$ (A$,81,2) = T$
320 MID$ (A$,83,9) = 7§

330 PRINT#2, AS

Here is the machine language program for the Commodore 64

135: Cc800 ORG $C800
140: C800 CHKOPEN EQU SAEFA
150: c800 CHKCLOSE EQU SAEF7
160: c800 CHKCOM EQU SAEFD
170: C800 FRMEVL EQU S$SAD9YE
180: C800 CHKSTR EQU SADSF
190: c800 FRESTR EQU SB6A3
200: c800 YFAC EQU S$SB3A2
205: c800 CHRGET EQU §$73
210: Cc800 CHRGOT EQU CHRGET+6
220: Cc800 GETBYT EQU $B79B
226: Cc800 INTEGER EOU $BlAA
229: c800 DESCRPT EQU $64
230: Cc800 STRADR EQU $62
231: €800 ADR2 EQU SFB

291

Anatomy of the 1541 Disk Drive

232: C800 ADR1 EQOU §$FB+2
233: Cc800 LEN1 EOU 3

234: c800 LEN2 EQU 4

235: €800 NUMBFR EQU 5

236: c800 START EQU 6

237: Cc800 TYPFLAG EOU 13

238: c800 STRCODE EOU $C4

240: Cc800 ILLOUAN EQU $B248
241: c800 SYNTAX EQU S$SAF08
242: c800 POSCODE EQU $B9

243: c800 VECTOR EOU $30A
245: c800 TEMP EQU LEN1
248: c800 A9 OD LDA #<TESTIN
248: C802 A0 C8 LDY #>TESTIN
248: C804 8D 0A 03 STA VECTOR
248: €807 8C 0B 03 STY VECTOR+1
248: C80A 4C 6B C8 JMP MIDSTR
250 c80Dp A9 00 TESTIN LDA 40

250: C80F 85 0D STA TYPFLAG
250: €811 20 73 00 JSR CHRGET
251: c8l4 C9 21 CMP §"1"
251: c8l6 FO 06 BEQD TEST2
251: csls 20 79 00 JSR CHRGOT
251: C81B 4C 8D AE JMP $AES8D
252: C81E 20 73 00 TEST2 JSR CHRGET
252: c821 C9 c4 CMP #STRCODE
252: c823 FO 03 BEQ STRING
253: C825 4C 08 AF JMP SYNTAX

STRINGS FUNCTION

. wo we

900: €828 20 73 00 STRING JSR CHRGET

900: C82B 20 FA AE JSR CHKOPEN ;OPEN PAREN

910: C82E 20 9E B7 JSR GETBYT+3

920: C831 8A TXA

920: c832 48 PHA ;s NOTICE LENGTH

930: C833 20 FD AE JSR CHKCOM

940; C836 20 9E AD JSR FRMEVL

950: €839 24 0D BIT TYPFLAG

960: C83B 30 0OC BMI STR i STRING

970: C83D 20 AA Bl JSR INTEGER

980: €840 A5 64 LDA DESCRPT ;HIGH BYTE

990: C842 DO 24 BNE ILL ;7 >255

1000: (€844 A5 65 LDA DESCRPT+1 ; LOW BYTE,

LENGTH

1010: CB46 4C 52 C8 JMP STR2

1020: €849 20 82 B7 STR JSR $B782 ;SETSTR
TYPFLAG TO
NUMERIC

1030: C84C FO 1A BEQO ILL ; LENGTH 0

1040: C84E A0 00 LDY 40

1050: (€850 Bl 22 LDA ($22),Y ;FIRST CHAR

1060: (€852 85 03 STR2 STA TEMP

1070: €854 €8 PLA ; LENGTH

1080: €855 20 7D B4 JSR $B47D ; FRESTR

292

1090:
1100:
1110:
1120:
1120:

1130:
1140:

1150:
1160:

200:
210:

240:
250
255:
260:
2702
280:
290:
325:
330:
355
360:
370:
372:
375:
378:

400:
410:
420:
430;
440:
450:
460:
4703
480:
490:

500:
505:
510:
520
530:
535:
535:
540:
545:
545:

c858
c859
C85B
Cc85D
C85E

€860
C862

C865
c868

C86B
C86B

C86B
C86B
C86B
C86B
C86B
C86B
C86B
C86B
C86B
0003
0004
0005
0007
0007
0007

C86B
c86D
C86F
€872
Cc875
C876
c879
c87B
C87D
c880

c883
c886
c889
c88cC
C88E
c890
c892
c894
c897
c899

A8
FO
A5
88
91

DO
20

4ac
4C

A9
A0
8D
8C
60
20
c9
FO
20
4C

20
20
20
85
84
85
84
20

Bl

07
03

62

FB
CA

F7
48

76
Cc8
08
09

73
CA
06
79
E7

73
FA
8B
64
65
49
4A
A3
00
64

B4

AE
B2

03
03

00
00
A7
00

AE
BO

B6

LOOP

STR3

ILL

R

’
MIDCODE
EXECUT

EXECOLD
VARNAM
VARADR
DESCRPT
TESTSTR
GETVAR
SETSTR
TEST
GETBYT

LENGTH
POSITIO
VARSTR
CoMp
POINT2

’
MIDSTR

MIDTEST

MID

Anatomy of the 1541 Disk Drive

N

293

TAY
BEO
LDA
DEY
STA

BNE
JSR

JMp
JMP

EOU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
ORG
DST
DST
DST
EQU
EQU

LDA
LDY
STA
STY
RTS
JSR
CcMP
BEO
JSR
JMP

JSR
JSR
JSR
STA
STY
STA
STY
JSP
LDY
LDA

STR3

TEMP

(STRADR) ,Y ; CREATE
STRING

LOOP

$B4CA ;BRING STRING

IN DESCRIPTOR STACK
CHKCLOSE
ILLOUAN

MID$ (STRINGVAR,POS,LEN) = STRING EXP
MID$ (STRINGVAR,POS) = STRING EXP

$CA

$308 ;VECTOR FOR
STATEMENT EXECUTE

SATE7

$45

$49

$64

SADSF

SBO8B

$SAAS2

SAEFF

$B79E

3

1

1

2

$SB2

$50

#<MIDTEST
#>MIDTEST
EXECUT
EXECUT+1

CHRGET

#MIDCODE ;CODE FOR MIDS

MID ;? YES

CHRGOT

EXECOLD :EXECUTE
NORMAL STATEMENT

CHRGET ;NEXT CHAR

CHKOPEN ;OPEN PAREN

GETVAR sGET VAR

DESCRPT

DESCRPT+1

VARADR

VARADR+1

FRESTR

#0

(DESCRPT) , Y

Anatomy of the

545:
545
550:

560¢:
560:
560
570
570
5703
600:
610
620
630:
650
650:
660:
660:

6652
665:
665:
670:
670:
680
690:
700
710:
715:
715:
715
717
717
717:
720:
730:
770¢
780:
790:
800:
800:
800:
800:
800:
800:
810:
810
820
840:
850:
860:
870:
880:
880:
910:

C89B
c89C
C89E

Cc8al
C8A3
C8AS
C8A7
C8A8
C8AA
C8AC
CBAF
C8B2
Cc8B3
C8B5
C8B6
C8B8
C8BB

C8BD
C8BF
C8Cl1
C8C3
C8Cé
C8C9
C8CA
c8cC
C8CF
C8D1
C8D2
C8D3
C8D5
C8D7
Cc8D9
C8DB
C8DE
C8EOQ
C8E3
C8E6
C8E9
C8EB
C8ED
CBEF
C8F0
C8F2
C8F4
C8&F5
C8F7
C8F9
C8FB
C8FD
C8FF
€901
€902
c904

48
FO
20

A0
Bl
85
cs
Bl
85
20
20
8A
FO
CA
86
20
c9

DO
A9
DO
20
20
8a
DO
4C
85
68
38
ES5
Cc5
BO
85
20
A9
20
20
20
A0
Bl
85
88
Rl
85
88
Rl
FO
C5
BO
85
A5
18
65
85

1541 Disk Drive

2E
52

01
49
05

49
06
FD
9E

17

04
79
29

04
FF
0c
FD
9E

03
48
03

04
03
02
03
F7
B2
FF
9E
A3
02
64
51

64
50

64
D3
03
02
03
05

04
05

AA

AE
B7

00

AE
B7

B2

AE

AE
AD
B6

NEXT

ILL
STORE

OK

OK1

PHA
BEO
JSR

LDY
LDA
STA
INY
LDA
STA
JSR
JSR
TXA
BEO
DEX
STX
JSR
CMP

BNE
LDA
BNE
JSR
JSR
TXA
BNE
JMP
STA
PLA
SEC
SBC
CMP
BCS
STA
JSR
LDA
JSR
JSR
JSR
LDY
LDA
STA
DEY
LDA
STA
DEY
LDA
BREO
CMP
BCS
STA
LDA
CLC
ADC
STA

294

ILL
SETSTR

#1
(VARADR) ,Y
VARSTR

(VARADR) , Y
VARSTR+1
CHKCOM
GETBYT

ILL
POSITION

CHRGOT
")

s LENGTH

s PUT STRING IN
RAM

:VAR ADDR

;GET POS

;s END OF

EXPRESSION?

NEXT
#SFF
STORE
CHKCOM
GETBYT

*+5
ILLOUAN
LENGTH

POSITION
LENGTH
OK
LENGTH
CHKCLOSE
#COMP
TEST
FRMEVL
FRESTR
#2

sMAX LENGTH

;GFT LEN

;CLOSE PAREN

;GET EXP

(DESCRPT) , Y

POINT2+1

(DESCRPT) , Y

POINT2

(DESCRPT)Y, Y

ILL
LENGTH
OK1
LENGTH
VARSTR

POSITION
VARSTR

;0 THEN ERROR

Anatomy of the 1

541 Disk Drive

910: €906 90 02 BCC *+4

920: €908 E6 06 INC VARSTR+1

940: C90A A4 03 LDY LENGTH

950 C90C 88 LOOP DEY

950: C90D Bl 50 LDA (POINT1),Y ;TRANSFER
CHARS FROM STRING

960: C90F 91 05 STA (VARSTR),Y ;EXP TO VAR

970: €911 Co0 00 CPY #0

970: €913 DO F7 BNE LOOP

980: C915 4C AE A7 JMP SATAE ;TO INTERPRETER

LOOP
For those who have no monitor or assembler for the Commodore

64, we have written a loader program in BASIC,

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

FOR I

READ X
DATA 169,
DATA 200,169,

51200 TO 51479

POKE I,X : S=S+X : NEXT
13,160,200,141, 10, 3,140,
0,133, 13, 32,115,
DATA 32,121, 0O, 76,141,174,
DATA 3, 76, 8,175, 32,115, O, 32,250,174, 32,158
DATA 183,138, 72, 32,253,174, 32,158,173, 36, 13, 48
DATA 12, 32,170,177,165,100,208, 36,165,101, 76, 82
DATA 200, 32,130,183,240, 26,160, 0,177, 34,133, 3
DATA 104, 32,125,180,168,240, 7,165, 3,136,145, 98
DATA 208,251, 32,202,180, 76,247,174, 76, 72,178,169
DATA 118,160,200,141, 8, 3,140, 9, 3, 96, 32,115
DATA 0,201,202,240, 6, 32,123, O, 76,231,167, 32
DATA 115, 0, 32,250,174, 32,139,176,133,100,132,101
DATA 133, 73,132, 74, 32,163,182,160, 0,177,100, 72
DATA 240, 46, 32, 82,170,160, 1,177, 73.133., 5,200
DATA 177, 73,133, 6, 32,253,174, 32,158,183,138,240
DATA 23,202,134, 4, 32,121, 0,201, 41,208, 4,169
DATA 255,208, 12, 32,253,174, 32,158,183,138,208, 3
DATA 76, 72,178,133, 3,104, 56,229, 4,197, 3,176
DATA 2,133, 3, 32,247,174,169,178, 32,255,174, 32
DATA 158,173, 32,163,182,160, 2,177,100,133, 81,136
DATA 177,100,133, 80,136,177,100,240,211,197, 3,176
DATA 2,133, 3,165, 5, 24,101, 4,133, 5,144, 2
DATA 230, 6,164, 3,136,177, 80,145, 5,192, 0,208
DATA 247, 76,174,167

IF S <> 31128 THEN PRINT
SYS 51200 PRINT "OK."

11, 3, 76,107
0,201, 33,240, 6
32,115, 0,201,196,240

"ERROR IN DATA !!"

END

4.3.3 Spooling - Printing Directly from the Disk

If you have a printer connected to your computer in addition
to the disk drive, you can use a special characteristic of
the the serial bus.

It is possible to send files directly from disk to the

295

Anatomy of the 1541 Disk Drive

printer, without the need to transfer it byte by byte with
the computer. For example, if you have text saved as a
sequential file, and you want to print it on the prainter,
the following program allows you to do sos

100 OPEN 1,4 : REM PRINTER

110 OPEN 2,8,2, "0:TEST" : REM TEXT FILE
120 GET#2, AS : IF ST = 64 THEN 140

130 PRINT#1, AS; : GOTO 120

140 CLOSE 1 : CLOSF 2

150 END

Characters are sent from the disk to the printer until the
end of file is recognized. Then the two files are closed ard
the program ended,

The following is done when spooling:

First both files are opened again, Then a command to receive
data (Listen) is sent to the printer, while the disk drive
receives the command to send data (Talk). Data are sent
automatically from the disk to the printer until the end of
file is reached. During this time, the computer can be used
without interferring with the transfer of data. Only the use
of peripheral devices 1s not possible during this time.

In practice, this is done with a small machine language
program. When you want to start printing, you call the
program and give the name of the file which you want to
send.

SYS 828, "TEXT"

OPENs the file TEXT on the diskette and sends it to the
printer. As soon as the transfer is begun, the computer
responds with READY. again and you can use it, as long as no
attempt is made to access the serial bus. You can prove that
the computer is no longer needed for transfer by pulling out
the bus cable to the disk, so that the diskette is connected
only to the printer. When the spooling 1s done, the disk
file is still open (the red LED is still lit). You can CLOLE
the file and turn the printer off and then back on, and give
the SYS command without a filename (the cable to the disk
must be attached, of course).

SYs 828
With same command you can stop a transfer in progress. The
machine language program in the form of a loader program for
the Commodore 64 and the VIC 20 is found at the end.
Here are some hints for use:
We have successfully used the printer spooling with a

Commodore 64 and a VIC 20 with a printer such as the the VIC

296

Anatomy of the 1541 Disk Drive

1525. Attempts using an Epson printer with a VIC interface
as well as the VIC 1526 di1d not succeed. The serial bus, 1n
contrast with the parallel IEEE bus, appears to be capable
of spooling only with limitations. This 1s why 1t 1s
necessary to turn the printer off after spooling, because it
still blocks the bus. We would be happy 1f you would inform
us of your experience with other printers.

H
H

1541 - 64 SPOOL

110: 033C CHRGOT EQU $79

1302 033C LISTEN EQU SFFB1

140 033C ATNRES EQU SEDBE ;ATN HI
142: 033C CLOCK EQU SEE85 ;s CLOCK HI
144: 033C DATA EQU SEE97 ;DATA HI
160: 033C CLOSE EQU SFFC3

170: 033C CLALL EQU SFFE7

175: 033C SETFIL EQU S$FFBA

180: 033C GETNAME EQU SE254 ;GET FILENAME
190: 033C OPEN EQU S$FECO

200: 033C CHKIN EQU SFFC6

202: 033C UNTALK EQU SFFAB

204: 033C UNLISTEN EQU SFFAE

230: 033C FNLEN EQU $B7

240: 033C INDEV EQU $99 ; INPUT DEVICE
260: 033C NMBFLS EQU $98 ;NO. OF FILES
280: 033C ERROR EQU S$AF08 ; SYNTAX ERROR
300: 033C ORG 828

310: 033C 20 79 00 JSR CHRGOT ;MORE CHARS
320: 033F FO 33 BEQ OFF 3 SPOOL DONE
330: 0341 20 E7 FF JSR CLALL

340: 0344 20 54 E2 JSR GETNAME

350: 0347 A6 B7 LDX FNLEN

360: 0349 FO 38 BEQ SYNTAX

370: 034B A9 02 LDA #2

380: 034D A2 08 LDX #8

390: 034F A0 02 LDY 42

400: 0351 20 BA FF JSR SETFIL

410: 0354 20 CO FF JSR OPEN ;OPEN FILE
411: 0357 A9 04 LDA #4

412: 0359 20 Bl FF JSR LISTEN s PRINTER
413: 035C 20 BE ED JSR ATNRES

420: 035F A2 02 LDX #2

430: 0361 20 C6 Fr JSR CHKIN ;DISK

435: 0364 20 BE ED JSR ATNRES

435: 0367 20 85 EE JSR CLOCK

435: 036A 20 97 EE JSR DATA

510: 036D A9 00 LDA #0

520: 036F 85 99 STA INDEV

530: 0371 85 98 STA NMBFLS

540: 0373 60 RTS

550 0374 A9 01 OFF LDA #1

560: 0376 85 98 STA NMBFLS

297

Anatomy of the 1541 Disk Drive

570:
580:
620:
630:
640:

Here

100
110
120
130
140
150
160
170
180
190
200

For

100
110
120
130
140
150
160
170
180
190
200

0378 20 AE FF JSR UNLISTEN
037B 20 AB FF JSR UNTALK
037E A9 02 LDA #2

0380 4C C3 FF JMP CLOSE

0383 4C 08 AF SYNTAX JMP ERROR

is the BASIC loader program for the Commodore 64.

FOR I = 828 TO 901

READ X :

DATA 32,

DATA 166,
DATA 186,
DATA 190,

DATA 133,
DATA 96,

DATA 169,

POKE I,X : S=S+X : NEXT

121, 0,240, 51, 32,231,255, 32, 84,226
183,240, 56,169, 2,162, 8,160, 2, 32
255, 32,192,255,169, 4, 32,177,255, 32
237,162, 2, 32,198,255, 32,190,237, 32
238, 32,151,238,169, 0,133,153,133,152
169, 1,133,152, 32,174,255, 32,171,255

2, 76,195,255, 76, 8,175

IF § <> 9598 THEN PRINT "ERROR IN DATA !!" : END
PRINT "OK."

the VIC 20, use the following program:

FOR I = 828 TO 901

READ X :
DATA 32,
DATA 166,
DATA 186,

DATA 197,

DATA 132,
DATA 96,
DATA 169,

POKE I,X 1 S=S+X : NEXT

121, 0,240, 51, 32,231,255, 32, 81,226
183,240, 56,169, 2,162, 8,160, 2, 32
255, 32,192,255,169, 4, 32,177,255, 32
238,162, 2, 32,198,255, 32,197,238, 32
239, 32,160,228,169, 0,133,153,133,152
169, 1,133,152, 32,174,255, 32,171,255

2, 76,195,255, 76, 8,207

IF S <> 9648 THEN PRINT "ERROR IN DATA !!" : END
PRINT "OK."

298

Anatomy of the 1541 Disk Drive

4.4 Overlay Technique and Chaining Machine Language Programs

A proven programming technique involves the creation of a
menu program which then loads and executes other programs
based on the user's choice. There are two variations:
preserving or clearing the o0ld variables in the chained
program.

It is possible to pass the old variables if the calling
program is as large or larger than the chained program. If a
program is chained from another program, the pointer to the
end of the previous program remains intact, and the new
program loads over the old.

In this example, we would get the following result:

100 REM PROGRAM 1

110 REM THIS PROGRAM IS LARGER THAN THE SECOND
120 A = 1000

130 LOAD "PROGRAM 2",8

100 REM PROGRAM 2
110 PRINT A

1000

If the chained program is larger than the original program,
part of the variables are overwritten and contain
meaningless values. Moreover, when the variables that the
program destroyed are assigned new values, part of the
program is also destroyed.

There are two characteristics of passing variables from the
previous program that should be noted - for strings and for
functions.

Any string variables that are defined as constants enclosed
in quotes in the first program, will have a problem. The
string variable pointer points to the actual text in the
program, If, for example, a string is defined in the first
program with the following assignment

100 AS = "TEXT"

the variable pointer points to the actual text within line
number 100. When chaining. the next program does not chance
this pointer. New text is now at the original location, so
the variable has unpredictable contents. We can easily work
around this, however. We need only ensure that the text is
copied from the program into string storage where text
variables are normally stored. You can do this as follows:

100 A$ = "TEXT" + ""

299

Anatomy of the 1541 Disk Drive

By concatenating an empty string, you force the contents of
the variable to bhe copied to the string storage area.

Similar considerations apply to function definitions,
because here also the pointer points to the definition
within the program., Here you must define the function again
in the second program, for example:

100 DEF FN A(X) = 0.5 * EXP (~-X*X)

If you want to chain a program, you can continue to use the
old variables provided the second program is not longer than
the first. If the chained program is longer, and we do not
want to preserve the old variables, there is a trick we can
use,

We need only set the end-of-program pointer to the end of
the new program i1mmediately after loading. This can be done
with two POKE commands:

POKE 45, PEEK(174) : POKE 46, PEEK (175) : CLR

The CLR command is absolutely necessary. This line should be
the first line in the chained program. This allows us to
chain a large program without transfer of variables.
Another, not so elegant method involves writing the load
command in the keyboard buffer so the program will
automatically be loaded in the direct mode. To do this, we
write the LOAD and RUN commands on the screen and fill the
keyboard buffer with 'HOME' and carriage returns. An END
statement must come after this in the program. The control
system then gets the contents of the keyboard buffer in the
direct mode and reads the LOAD and RUN commands that control
the loading and execution of the program. Because this
occurs in the direct mode, the end address of the program is
automatically set, the variables are erased and the program
is started with the RUN., The disadvantage of this method is
that since the LOAD command must appear on the video screen,
any display will be destroyed., In practice it looks like
this:

1000 PRINT CHR$(147)"LOAD"CHRS(34)"PROGRAM 2"CHRS$(34)",8"
1010 PRINT : PRINT : PRINT : PRINT

1020 PRINT "RUN"
1030 POKE 631,19
1040 POKE 634,13
1050 POKE 198,6

POKE 632,13 : POKE 633,13
POKE 635,13 : POKE 636,13
END

You can see that this procedure is more complicated than the
previous one; 1t 1s only mentioned for the sake of
completeness. With the first procedure, only the LOAD
command need be programmed in line 1000:

1000 LOAD "PROGRAM 2",8

300

Anatomy of the 1541 Disk Drive

There is another technique for chaining machine language
programs.

If a machine language program 1s to be used from a BASIC
program, 1t must usually be loaded at the beginning of the
BASIC program. You must take note of two things:

First of all, you must make sure that the machine language
program loads to a specific place in memory. If you load a
program without additional parameters, the control system
treats it as a BASIC program and loads it at the starting
address of the BASIC RAM, generally at 2049 (Commodore 64).
Machine language programs can only be run, however, when
they are loaded at the address for which they were written.
This absolute loading can be accomplished by adding the
secondary address 1:

LOAD "MACH-PRG",8,1

But remember that when loading a program from within another
program, BASIC attempts to RUN the program from the
beginning. This leads to an endless loop when 1loading
machine language programs, because the operating system
thinks that a new BASIC program has been chained:

100 LOAD "MACH-PRG",8,1

Here we can make use of the fact that the variables are
preserved when chaining, If we program the following, we
have reached our goal:

100 IF A=0 THEN A=1 : LOAD "MACH-PRG",8,1
110 ...

When the program is started with RUN. A has the value zero
and the assignment after the THEN is executed, A contains
the value 1 and the machine language program is then LOADed.
When the program begins again after LOADing the program
MACH-PRG, A has the value 1 so the next line is executed.

The procedure 1s similar if you have several machine
language programs to load.

100 IF A=0 THEN A=1 : LOAD "PROG 1",8,1
110 IF A=1 THEN A=2 : LOAD "PROG 2",8,1
120 IF A=2 THEN A=3 : LOAD "PROG 3",8,1
130

The first time through, PROG 1 will be loaded, the next

time, PROG 2, and so on. Once all the programs are loaded,
execution continues with line 130.

301

Anatomy of the 1541 Disk Drive

4.5 Merge - Appending BASIC Programs

Certainly you have thought about the possibility of
combining two separate BASIC programs into one. Without
further details this is not possible, because loading the
second program would overwrite the first., With the knowledge
of how BASIC programs are stored in memory and on the
diskette, you can develop a simple procedure to accomplish
this task,

BASIC programs are stored in memory as follows:

NL NH pointer to the next program line, lo hi
LL LH line number, 1o hi

XX YY 22 ess.. tokenized BASIC statements

00 end-of-line marker

At the end of the program are two additional zero bytes:
00 00 a total of 3 zero bytes

Programs are also saved 1n this format, Where the program
starts and ends lies in two pointers in page zero:

PRINT PEEK(43) + 256 * PEEK({44)
gives the start of BASIC, 2049 for the Commodore 64,
PRINT PEEK(45) + 256 * PEEK(46)
points to the byte behind the three zero bytes.
Because a program is always loaded at the start of BASIC,
contained in the pointer at 43/44, one can cause a second
program to load at the end of the first, In practice, we
must proceed as follows:
First we load the first program into memory.
LOAD “"PROGRAM 1",8
Now get the value of the ending address of the program.

A = PEEK(45) + 256 * PEEK(46)

This value is decremented by two so that the two zero bytes
at the end of the program are known,

A=A~ 2
Now, note the original value of the start of BASIC.
PRINT PEEK(43), PEEK(44)

Next, set the start of BASIC to this value.

302

Anatomy of the 1541 Disk Drive

POKE, A AND 255 : POKE 44, A / 256
Now, LOAD the second program.
LOAD "PROGRAM 2",8

If you set the start of BASIC back to the original value, 1
and 8 for the Commodore 64 (as shown above with the PRINT
commands), you have the complete program in memory and can
view it with LIST or save it with SAVE.

POKE 43,1 : POKE 44,8
The following should be noted when using this method:

The appended program may contain only line numbers that are
greater than the largest line number of the first program.
Otherwise these line numbers can never be accessed with GOTO
or GOSUB and the proper program order cannot be guaranteed.

This procedure is especilally well suited for constructing a
subroutine library for often used routines, so they need not
be typed in each time, It will work out best if you reserve
specific line numbers for the subroutines, such as 20000-
25000, 25000-30000, and so on. If you want to merge several
programs in this manner, you must first load the program
with smallest line numbers, and then the program with the
next highest numbers, etc.

303

Anatomy of the 1541 Disk Drive

4.6 Disk Monitor for the Commodore 64 and VIC 20

In this section we present a very useful tool for working
with your disk drive, allowing you to load, display, modify,
and save desired blocks on the diskette,

For reasons of speed, the program is written entirely in
machine language. The following commands are supported:

Read a block from the disk
Write a block to the disk
Display a block on the screen
Edit a block on the screen
Send disk commands

Display disk error messages
Return to BASIC

* % * X ¥ %

The program announces its execution (automatically by the
BASIC load program) with

DISK~MONITOR V1.0
>

and waits for your input. If you enter '@', the error
message from the disk will be displayed, for example

00, ok,00,00

If you want to send a command to the disk, enter an '@'
followed by the command,
You can initialize a diskette with

>R1

You can send complete disk commands in this manner, that you
would otherwise send with

OPEN 15,8,15
PRINT# 15,"command"
CLOSE 15

For example, you can erase files, format disks, and so on.

The most i1mportant function of the disk monitor is the
direct access of any block on the diskette. For this, you
use the commands R and W. R stands for READ and reads a
desired block, W stands for WRITE and writes a block to the
disk. You need only specify the track and sector you want to
read. These must be given in hexadecimal, exactly as the
output is given on the screen. 1f, for example, you want to
read track 18, sector 1 (the first directory block), enter
the following command:

>R 12 01

304

Anatomy of the 1541 Disk Drive

Each input must be given as a two-digit hex number,
separated from each other with a blank.

In order todisplay the block, use the command M. We receive
the following output:

DISK~MONITOR V1.0
>M
>:00 12 04 82 11 01 47 52 41GRA
>:08 46 49 4B 20 41 49 44 2E FIX AID.
>:10 53 52 43 A0 A0 00 00 00 SRC ...
>:18 00 00 00 00 00 00 15 00
>:20 00 00 82 13 00 48 50 4CHPL
>:28 4F 54 2E 53 52 43 A0 A0 OT.SRC
>:30 A0 A0 A0 A0 A0 00 00 00 o
>:38 00 00 00 00 00 00 05 00 ...cenee
>:40 00 00 82 13 03 56 50 4CVPL
>:48 4F 54 2E 53 52 43 A0 A0 OT.SRC
>:50 A0 A0 A0 A0 A0 00 00 00 “ee
>:58 00 00 00 00 00 00 09 00 ...ovess
>:60 00 00 82 13 09 4D 45 4DMEM
>:68 2E 53 52 43 A0 A0 A0 A0 .SRC
>:70 A0 A0 A0 A0 AQ 00 00 00 e
>:78 00 00 00 00 00 00 06 00 ..eceuna
>:80 00 00 82 13 08 4D 45 4DMEM
>:88 2E 4F 42 4A A0 A0 A0 A0 .OBJ
etc.

Let's take a closer look at the output. The first hex number
after the colon gives the address of the following 8 bytes
in the block, 00 indicates the first byte in the block (the
numbering goes from 00 to FF (0-255)), 8 bytes follow the
address (4 on the VIC 20). In the right half are the
corresponding ASCII characters. If the code is not praintable
($00 to $1F and $80 to $9F), a period is printed. When you
give the command M, as above, the entire block is displayed.
Because the block does not fit on the screen completely, 1t
is possible to display only part of 1t. You can give an
address range that you would like to display. If you only
want to see the first half, enter:

>M 00 7F

The second half with:

>M 80 FF

With the VIC 20, you can view quarters of the block. If you
now wish to change some data, you simply move the cursor to
the corresponding place, overwrite the appropriate byte, and
press RETURN. The new value 1s now stored and the right half
is updated with the proper ASCII character.

To write the modified block back to the diskette, you use
the command W, Here also you must give the track and sector

305

Anatomy of the 1541 Disk Drive

numbers in hexadecimal.
>W 12 01

writes the block back to track 18, sector 1, from where we
had read the block previously.

If you want to get back to BASIC, enter X and the computer
will respond with READY., If you then want to use the disk
monitor again, you need not load it again, Just type SYS
49152 for the C64 or SYS 6690 for the VIC 20,

A warning:

Be sure to make a copy of any diskette that you work with in
this way. Should you make an error when editing or writing a
block, you can destroy important information on the disk so
that it can no longer be used in the normal manner. You
should make it a rule to only work with a copy.

Here you find an assembler listing of the program, After

this are the BASIC loader programs for the Commodore 64 and
VvIC 20.

H
; disk monitor vic 20 / cbm 64

190: Cc000 PROMPT EQU ">"

200: co00 NCMDS EQU 6 ;NUMBER OF
COMMANDS

210: C0o00 INPUT EQU S$FFCF

220: Cc000 TALK EQU SFFB4

230: c000 SECTALK EQU S$FF96

240: C000 IEEEIN EQU SFFAS

250: c000 UNTALK EQU SFFAB

260: Cc000 LISTEN EQU S$FFB1

270: c000 SECLIST EQU $FF93

280: Cc000 IEEEOUT EQU SFFA8

290: Cc000 UNLIST EQU SFFAE

300: c000 WRITE EQU SFFD2

310: c000 OPEN EQU S$FFCO

320: c000 CLOSE EQU S$FFC3

330: c000 SETPAR EQU SFFBA

340: C000 SETNAM EQU SFFBD

350: c000 CHKIN EQU S$FFC6

360: Cco000 CKouT EQU S$FFC9

370: c000 CLRCH EQU SFFCC

380: Co00 CR EOU 13

390: C000 QUOTE EQU $22

400: c000 QUOTFLG EOU $D4

410: 0200 ORG $200 7 BASIC INPUT

BUFFER

420: 0201 SAVX BYT O

430: 0202 WRAP BYT O

440: 0203 BAD BYT O

306

450:
460
4702
480:

490:
500:
510:

520:
610:
620:
630:
640:
650
660:
670:
680:
690:
7002
710:
710:
710:
720:
730:
740:
750:
760:
770:

780
790:
800:
840:
850:

860:
870
880:
890:
900:
910:

960z
970:
980:

990:

1000:
1000:
1000:
1010:
1020:

0204
0205
0205
0205

0205
0205
0205

0205
c000
C000
Cc000
c002
C005
co08
Cc00%
CO0B
CcooD
COOF
co1ll
c0l4
Col6
c019
coilcC
CO1lE
€020
Cc022
C024

C026
Cc029
Cc02B
CO2F
C031

c032
C035
C036
Cc037
c038
co3Aa

Cc03D
CO3F
co42

Cc045
Cc048
C049
C04B
CO4E
Cc050

A2
BD
20
E8

DO
A2
A9
20
A9
8D
20
c9
Fo
c9
FO
A2

DD

8E
BD
48

BD
48
60
CA
10
4C

85
20
B9

20
c8
DO
EE
Cc6

00
85
D2

12
F5
0D
3E
EB
00
01
33
3E
F9
20
F5
05

6A
ocC
00
70

76

EC
op

97
62
EO

DC

03
01
97
ED

c2
FF

co

02
Cl

co
02
Cco

co

co

Cco
c2

co

02

Anatomy of the 1541 Disk Drive

FROM BYT O
TO BYT O
STATUS EQOU $90
SA EQU $B9 ; SECONDARY
ADDRESS
FA EQU $BA ;DEVICE #
FNADR EQU SBB ;FILENAME ADR
FNLEN EQU $B7 sLEN OF
FILENAME
TMPC EQOU $97
COUNT EQU 8 # OF BYTES PER LINE
READY EQU SE37B 3SE467 FOR VIC
INIT LDX #0
MSGOUT LDA MESSAGE,X
JSR WRITE
INX
CPX #ASCDMP-MESSAGE
BNE MSGOUT
START LDX #CR
LDA #PROMPT
JSR WRTWHR
LDA #0
STA WRAP
ST1 JSR RDOC ;READ INPUT LINE
CMP #PROMPT
BEOQ ST1
CMp #" " ;READ OVER BLANK
BEQ ST1
Y LDX #NCMDS-1 ;COMPARE WITH
COMMAND TABLE
sl CMP CMDS,X
BNE S2
STX SAVX ;# OF CMDS IN TABLE
LDA ADRH,X
PHA ;JUMP ADDR TO
STACK
LDA ADRL,X
PHA
RTS
S2 DEX
BPL Sl ;LOOP OF ALL CMDS
JMP START
’
+ SUBROUTINE TO DISPLAY
3 THE DISK CONTENTS
DM STA TMPC
DM1 JSR SPACE
LDA BUFFER,Y ;GET BYTE FROM
BUFFER
JSR WROB
INY
BNE DM2
INC WRAP
DM2 DEC TMPC
BNE DM1

307

Anatomy of the

1030:

1060:
1070:
1080:

1090:
1100
1110:
1120
1130:
1140:
1150:
1160

1190:
1200:
1210:
1220:
1230:
1240:
1250:
1260:
1270:
1280:
1290:
1300:
1310:
1320
1330:
1340:
1350:
1360:
1370:
1380:
1370
1370:
1370:
1370
1370:
1380:

1390:
1400«
1410:
1410:
1410:
1420:
1430:
1440:
1450:
1460+
1470:
1470:

C052

Cc053
C056
C058

CO5B
Co5¢C
COSE
COSF
C062
C064
C065
co67

C06A
Co6B
co6C
C06D
CO6E
CO6F
Cc070
Cc071
C072
C073
C074
C075
C076
co77
Cco78
c079
CO07A
C07B
co7¢C
CO7E
co81
Cc082
Cco85
co88
co8a
co8cC

CO8F
C091
Cc094
c097
c099
C09B
CO9E
COAO0
CO0A3
COA6
COAS
COAC

60

20
90
99

[of:]
(o3
60
20
A9
2C
A9
4C

3A
57
52
4D
40
58
co
Cl
Cl
co
Cl
E3
co
90
90
7B
3E
7A
A0
8C
88
8C
20
c9
FO
20

20
8D
20
c9
FO
20
90
8D
AC
20
20
98

1541 Disk Drive

RTS
; READ BYTES
FE CO BYT JSR
03 BCC
EO0 C2 STA
BY3 INY
97 DEC
RTS
62 CO SPAC2 JSR
20 SPACE LDA
BYT
0D CRLF LDA
D2 FF JIMP
’
; COMMAND AND
CMDS ASC
ASC
ASC
ASC
ASC
ASC
ADRH EQU
EQU
EQU
EQU
EQU
EQU
ADRL EQU
EQU
EQU
EQU
EQU
EQU
00 DSPLYM LDY
03 02 STY
DEY
04 02 STY
CF FF JSR
0D CMP
17 BEO
FE CO JSR
12 BCC
03 02 STA
CF FF JSR
0D CMp
08 BEO
FE CO JSR
03 BCC
04 02 STA
03 02 DSPl LDY
C6 C2 DSP2 JSR
D6 C2 JSR
TYA

308

AND WRITE TO MEMORY

RDOB

BY3 ; BLANK?

BUFFER,Y ;WRITE BYTE IN
BUFFER

TMPC

SPACE
* " "
$2C
#CR
WRITE

ADDRESS TABLE

Vet :EDIT MEM CONTENTS
'W' ;WRITE BLOCK
'R’ + READ BLOCK
'M? ;DISLPAY BYTES
'@' ;DISK COMMAND
& sEXIT

>ALTM-1

>DIRECT-1
>DIRECT-1
>DSPLYM-1

>DISK~-1

>READY-1

<ALTM-1

<DIRECT-1
<DIRECT-1
<DSPLYM-1

<DISK-1

<READY~-1

$#0

FROM

TO

INPUT

#CR

DSP1

RDOB ;READ START
ADDRESS

DSP1

FROM

INPUT

#CR

DSP1

RDOB ;READ END ADR

DSP1

TO

TO

TESTEND

ALTRIT

Anatomy of the 1541 Disk Drive

1480: COAD 20 DC CO JSR WROB s ADDRESS
1490: COBO 20 62 CO JSR SPACE jOMIT FOR VIC
1500: COB3 A9 08 LDA #COUNT ;8 OR 4
1510: COB5 20 3D CO JSR DM ; DISPLAY
1520: COB8 20 97 C2 JSR ASCDMP ;ASCII DUMP
1530: COBB 4C A6 CO JMP DSP2 ;ABS JUMP
1550: COBE 4C 0D CO0 BEOSI JMP START
;EDIT MEMORY; READ ADDRESS AND DATA
1570: COC1 20 FE CO ALTM JSR RDOB ; READ ADDR
1580: COC4 90 F8 BCC BEOQOS1
1590: COCé6 A8 TAY
1600: COC7 A9 08 LDA #COUNT % OF BYTES
1610: COC9 85 97 STA TMPC
1610: COCB 20 33 Cl1 JSR RDOC ;OMIT FOR VIC
1620: COCE 20 33 Cl1 A5 JSR RDOC
1620: COD1 20 53 Co JSR BYT
1630: COD4 DO F8 BNE AS
1640: COD6 20 97 C2 JSR ASCDMP
1650: COD9 4C 0D CO JMP START
;WRITE BYTE AS HEX NUMBER
1710: CODC 48 WROB PHA
1720: CODD 4A LSR A
1730: CODE 4A LSR A
1740: CODF 4A LSR A
1750: COEO 4A LSR A
1760: COEl 20 F4 CO JSR ASCII ; CONVERT TO
ASCII
1770: COE4 AA TAX
1780: COE5 68 PLA
1790: COE6 29 OF AND #SOF
1800: COE8 20 F4 CO JSR ASCII
; WRITE CHARACTERS IN X AND A
1820: COEB 48 WRTWHR PHA
1830: COEC 8A TXA
1840: COED 20 D2 FF JSR WRITE
1850: COF0 68 PLA
1860: COFl 4C D2 FF JMP WRITE
1870: COF4 18 ASCII CLC
1880: COF5 69 Fé ADC #SF6
1890: COF7 90 02 BCC ASCl
1900: COF9 69 06 ADC #6
1910: COFB 69 3A ASC1 ADC #S$3A
1920: COFD 60 RTS
; READ HEX BYTE AND PUT IN A
1950: COFE A9 00 RDOB LDA %0
1960: C100 8D 02 02 STA BAD ;READ NEXT CHAR
1970: C103 20 33 C1 JSR RDOC
1980: C1l06 C9 20 RDOB1 CMP 4
19%0: €108 DO 09 BNE RDOB2
2000: CIO0A 20 33 C1 JSR RDOC ;READ NEXT CHAR
2010: Cl0D C9 20 CMP #'
2020: CI10F DO OF BNE RDOB3
2030: CI111 18 CLC ;CY=0
2040: Cl12 60 RTS

309

Anatomy of the

2050
2060
2070:
2080:
2090:
2100:
2110:
2120
2130:
2140:
2150:
2160:
21702
2180:
2190:
2200:
2210:
2220:
2230:
2240:
2250
2260:
2270:
2280:

2320:
2330:
2340:
2350:
2350:
2360:
2370:
2380:
2390:
2400:
2410:
2420:
2430:
2440:
2440:
2450
2460:
2470:
2480:
2490
2500
2510:
2510:
2520:
2530:
2540:
2550:
2560

Cl13
Cll6
C117
Cl18
Cl19
CllA
Clip
Cl20
Ccl23
Cl2e
Cc127
Cl2s
claa
Cl2B
Cl2D
C12E
C130
Cl32
C133
Cl36
Ccl38
Cl3A
Cl3B
Ci3c

C13F
Cl42
Cl44
Cl146
Cc148
Cl4a
Cl4D
Cl4F
C151
Cl54
C156
Cl158
Cl5B
C15E
Cl60
Cl162
C165
Cl67
Cl6A
Cl6D
Cl6F
Cl171
Cl72
Cl74
Cl76
Cc179
Cl17B
Cl7D

20
0A
0A
0A
0A
8D
20
20
0D
38
60
c9
08
29
28
90
69
60
20
[o}°]
DO
68
68
4C

20
c9

A9
85
20
A9
85
20

85
20
20
24
70
20
DO
20
4C
Cc9
FO
48
A9
85
20
A9
85
20

1541 Disk Drive
28 Cl1 RDOB2 JSR
ASL
ASL
ASL
ASL
02 02 STA
33 C1 JSR
28 C1 RDOB3 JSR
02 02 ORA
* SEC
RTS
3a HEXIT CMP
PHP
OF AND
PLP
02 BCC
08 ADC
HEX09 RTS
CF FF RDOC JSR
0D CMpP
F8 BNE
PLA
PLA
0D Co JMP
H
1
:+ DOS SUPPORT
CF FF DISK JSR
0D CMP
27 BNE
00 LDA
90 STA
65 CO JSR
08 LDA
BA STA
B4 FF JSR
6F LDA
B9 STA
96 FF JSR
A5 FF ERRIN JSR
90 BIT
05 BVS
D2 FF JSR
F4 BNE
AB FF ENDDSK JSR
0D CO JMP
24 DSKCMD CMP
1D REQ
PHA
08 LDA
BA STA
Bl FF JSR
6F LDA
B9 STA
93 FF JSR

310

HEXIT
BAD

;CY

#S3A
#SOF

HEXO09
8

INPUT
#CR
HEX09

START

INPUT
#CR
DSKCMD
#0
STATUS
CRLF
#8

FA
TALK
$#15+S60
SA
SECTALK
IEEEIN
STATUS
ENDDSK
WRITE
ERRIN
UNTALK
START
#'S
ERR1

#8

FA
LISTEN
#15+$60
SA
SECLIST

:0-9
:PLUS 9 (cC~1)

s READ CHAR

3CR?

3NO, RETURN

3}DISK COMMAND

+ERASE STATUS

;DISK ADDR
1SA 15

; SEC ADDR

3 CATALOG

Anatomy of the 1541 Disk Drive

2560: €180 68 PLA

2570: Cl181 20 A8 FF CMDOUT JSR IEEEOQUT

2580: (184 20 CF FF JSR INPUT

2590: €187 €9 0D CMP #CR

2600: €189 DO F6 BNE CMDOUT

2610: C18B 20 AE FF JSR UNLIST

2630: Cl18E 4C 0D CO ERRIL JMP START

2640: C191 20 33 Cl DIRECT JSR RDOC

2640: €194 20 FE CO JSR RDOB ; READ TRACK

2650: €197 90 FS BCC ERR1

2660: €199 8D 27 C2 STA TRACK

2670: Cl9C 20 33 Cl JSR RDOC

2670: Cl9F 20 FE CO JSR RDOB

2680: ClA2 90 EA BCC ERRI

2690: ClA4 8D 2A C2 STA SECTOR

2690: ClA7 20 49 C2 JSR OPNDIR

2690: ClAA AD 00 02 LDA SAVX

2690: ClAD C9 01 CMP #1

2690: ClAF FO 1E BEQ DIRWRITE

2700: ClBl1 A9 31 LDA #'1

2710: Cl1B3 20 ED Cl JSR SENDCMD ; SEND BLOCK
READ COMMAND

2720: ClB6 A2 0D LDX #13

2730: ClB8 20 C6 FF JSR CHKIN

2740: C1BB A2 00 LDX #0

2750: ClBD 20 CF FF DIRIN JSR INPUT

2760: ClCO 9D EO C2 STA BUFFER,X

2770: ClC3 E8 INX

2770: C1lcC4 DO F7 BNE DIRIN

2780: Cl1C6 20 CC FF JSR CLRCH

2790: ClC9 20 6E C2 ENDDIR JSR CLSDIR

2790: ClCC 4C 0D CO JMP START

2800: CICF 20 2C C2 DIRWRITE JSR BUFPNT ;SET BUFFER
POINTER

2810: C1D2 A2 0D LDX #13

2820: Clp4 20 C9 FF JSR CKOUT

2830: C1D7 A2 00 LDX #0

2840: C1D9 BD E0 C2 DIROUT LDA BUFFER,X

2850: C1DC 20 D2 FF JSR WRITE

2860: C1DF E8 INX

2860: ClEO DO F7 BNE DIROUT

2870: ClE2 20 CC FF JSR CLRCH

2880: ClE5 A9 32 LDA #'2

2890: ClE7 20 ED Cl JSR SENDCMD ;SEND BLOCK

WRITE COMMAND

2900: ClEA 4C C9 Cl JMP ENDDIR

2910: Cl1ED 8D 20 C2 SENDCMD STA CMDSTR+1

2910: C1F0O A2 OF LDX #15

2920: Cl1F2 AD 27 C2 LDA TRACK

2920: C1F5 20 78 C2 JSR NUMBASC

2920: ClF8 B8E 27 C2 STX TRACK

2920: CI1FB 8D 28 C2 STA TRACK+1

2930: ClFE AD 2A C2 LDA SECTOR

2930: €201 20 78 C2 JSR NUMBASC

2930: €204 8E 2A C2 STX SECTOR

311

Anatomy of the 1541 Disk Drive

2930: €207 8D 2B C2 STA SECTOR+1
2940: C20A A2 OF LDX #15
2940: C€20C 20 €9 FF JSR CKOUT
2950: C20F A2 00 LDX #0
2960: (€211 BD 1F C1 COMDOUT LDA CMDSTR,X
2970: C214 20 D2 FF JSR WRITE
2980: C217 ES8 INX
2980: €218 EO 0D CPX #BUFPNT-CMDSTR
2990: C21A DO F5 BNE COMDOUT
3000: C21C 4C CC FF JMP CLRCH
3010: C21F 55 31 3A CMDSTR ASC 'Ul:13 0 '
31 33 20
30 20
3020: €227 00 00 20 TRACK BYT 0,0,$20
3030: C22A 00 00 SECTOR BYT 0,0
3040: C22C A2 OF BUFPNT LDX #15
3050: C22E 20 C9 FF JSR CKOUT
3060: €231 A2z 00 LDX #0
3070: €233 BD 41 €2 PNTOUT LDA BUFTXT,X
3080: C236 20 D2 FF JSR WRITE
3090: €239 E8 INX
3090: C23A EO 08 CPX #OPNDIR-BUFTXT
3100: C€23C DO F5 BNE PNTOUT
3110: C23E 4C CC FF JMP CLRCH
3120: C241 42 2D 50 BUFTXT ASC 'B-P 13 O
20 31 33
20 30
3130: €249 A9 OF OPNDIR LDA #15
3130: C24B A8 TAY
3140: C24C A2 08 LDX 48
3150: C24E 20 BA FF JSR SETPAR
3160: €251 A9 00 LDA #0
3170: (€253 20 BD FF JSR SETNAM
3180: €256 20 CO FF JSR OPEN
3190: €259 A9 0D LDA #13
3190: C25B A8 TAY
3200: C25C A2 08 LDX #8
3210: C25E 20 BA FF JSR SETPAR
3220: €261 A9 01 LDA %1
3230: (€263 A2 6D LDX #<DADR
3240: (€265 A0 C2 LDY #>DADR
3250: €267 20 BD FF JSR SETNAM
3260: C26A 4C CO FF JMP OPEN
3270: C26D 23 DADR .BYT '#
3280: C26E A9 0D CLSDIR LDA #13
3290: €270 20 C3 FF JSR CLOSE
3300: C273 A9 OF LDA #15
3310: €275 4C C3 FF JMP CLOSE
3230: €278 A2 30 NUMBASC LDX #'0 sHEX 4 TO AS/
3330: C27A 38 SEC
3340: C27B E9 0A NUMB1 SBC #10
3350: C€27D 90 03 BCC NUMB2
3360: C27F E8 INX
3370: €280 BO F9 BCS NUMB1
3380: (€282 69 3A NUMB2 ADC #S3B '9 + 1

312

Anatomy of the 1541 Disk Drive

3390: (€284 60 RTS
3400: (€285 OD MESSAGE EQU CR
3410: C286 44 49 53 ASC 'DISK-MONITOR V1.0'

4B 2D 4D

4F 4E 49

54 4F 52

20 56 31

2E 30
3430: C297 98 ASCDMP TYA
3440: (€298 38 SEC
3440: €299 E9 08 SBC #COUNT
3440: C29B A8 TAY
3450: C29C 20 62 CO JSR SPACE
3460: C29F A9 12 LDA #18 ;s RVS ON
3470: C2A1 20 D2 FF JSR WRITE
3480: C2A4 A2 08 LDX #COUNT
3490: C2A6 B9 EO C2 AC2 LDA BUFFER,Y
3500: C2A9 29 7F AND #S7F
3510: C2AB C9 20 CMP #°
3520: C2AD BO 04 BCS AC3
3530: C2AF A9 2E LDA #'.
3540: C2B1 DO 03 BNE AC4
3550: C2B3 B9 EO C2 AC3 LDA BUFFER,Y
3560: C2B6 20 D2 FF AC4 JSR WRITE
3570: C2B9 A9 00 LDA #0
3570: C2BB 85 D4 STA OQUOTFLG
3580: C3BD C8 INY
3580: C2BE CA DEX
3590: C2BF DO ES5 BNE AC2
3600: C2C1 A9 92 LDA #146 :RVS OFF
3610: C2C3 4C D2 FF JMP WRITE
3620: C2C6 AD 01 02 TESTEND LDA WRAP
3620: C2C9 DO 06 BNE ENDEND
3630: C2CB CC 04 02 CPY TO
3640: C2CE BO 01 BCS ENDEND
3650: C2D0 60 RTS
3660: C2Dl1 68 ENDEND PLA
3660: C2D2 68 PLA
3660: C€2D3 4C 0D CO JMP START
3670: C2D6 20 65 CO ALTRIT JSR CRLF
3680: C2D9 A9 3A LDA #':
3690: C2DB A2 3E LDX #PROMPT
3700: C2DD 4C EB CO JMP WRTWHR
3730: C2E0 BUFFER DST 256 ;256 BYTE BUFFER

FOR BLOCK

Here is the BASIC program for entering the disk monitor if
you do not have an assembler.

313

Anatomy of the 1541 Disk Drive

DISK-MONITOR, CA4 VERSION

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

FOR I

= 49152 TO 49887

READ X : POKE I,X : S=S+X : NEXT

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

l62, 0,189,133,194, 32,210,255,232,224, 18,208
245,162, 13,169, 62, 32,235,192,169. 0,141, 1
2, 32, 51,193,201, 62,240,249,201, 32,240,245
162, 5,221,106,192,208, 12,142, 0, 2,189,112
192, 72,189,118,192, 72, 96,202, 16,236, 76, 13
192,133,151, 32, 98,192,185,224,194, 32,220,192
200,208, 3,238, 1, 2,198,151,208,237, 96, 32
254,192,144, 3,153,224,194,200,198,151, 96, 32
98,192,169, 32, 44,169, 13, 76,210,255, 58, 87
82, 77, 64, 88,192,193,193,192,193,227,192,144
144,123, 62,122,160, 0,140, 3, 2,136,140, 4
2, 32,207,255,201, 13,240, 23, 32,254,192,144
18,141, 3, 2, 32,207,255,201, 13,240, 8, 32
254,192,144, 3,141, 4, 2,172, 3, 2, 32,198
194, 32,214,194,152, 32,220,192, 32, 98,192,169
8, 32, 61,192, 32,151,194, 76,166,192, 76, 13
192, 32,254,192,144,248,168,169, 8,133,151, 32
51,193, 32, 51,193, 32, 83,192,208,248, 32,151
194, 76, 13,192, 72, 74, 74, 74, 74, 32,244,192
170,104, 41, 15, 32,244,192, 72,138, 32,210,255
104, 76,210,255, 24,105,246,144, 2,105, 6,105
58, 96,169, 0,141, 2, 2, 32, 51,193,201, 32
208, 9, 32, 51,193,201, 32,208, 15, 24, 96, 32
40,193, 10, 10, 10, 10,141, 2, 2, 32, 51,193
32, 40,193, 13, 2, 2, 56, 96,201, 58, 8, 41
15, 40,144, 2,105, 8, 96, 32,207,255,201, 13
208,248,104,104, 76, 13,192, 32,207,255,201, 13
208, 39,169, 0,133,144, 32,101,192,169, 8,133
186, 32,180,255,169,111,133,185, 32,150,255, 32
165,255, 36,144,112, 5, 32,210,255,208,244, 32
171,255, 76, 13,192,201, 36,240, 29, 72,169, 8
133,186, 32,177,255,169,111,133,185, 32,147,255
104, 32,168,255, 32,207,255,201, 13,208,246, 32
174,255, 76, 13,192, 32, 51,193, 32,254,192,144
245,141, 39,194, 32, 51,193, 32,254,192,144,234
141, 42,194, 32, 73,194,173, 0, 2,201, 1,240
30,169, 49, 32,237,193,162, 13, 32,198,255,162
0, 32,207,255,157,224,194,232,208,247, 32,204
255, 32,110,194, 76, 13,192, 32, 44,194,162, 13
32,201,255,162, 0,189,224,194, 32,210,255,232
208,247, 32,204,255,169, 50, 32,237,193, 76,201
193,141, 32,194,162, 15,173, 39,194, 32,120,194
142, 39,194,141, 40,194,173, 42,194, 32,120,194
142, 42,194,141, 43,194,162, 15, 32,201,255,162
0,189, 31,194, 32,210,255,232,224, 13,208,245
76,204,255, 85, 49, 58, 49, S1, 32, 48, 32, O
6, 32, o, 0,162, 15, 32,201,255,162, 0,189
65,194, 32,210,255,232,224, 8,208,245, 76,204
255, 66, 45, 80, 32, 49, 51, 32, 48,169, 15,168
162, 8, 32,186,255,169, 0, 32,189,255, 32,192

314

Anatomy of the 1541 Disk Drive

620 DATA 255,169, 13,168,162, 8, 32,186,255,169, 1,162
630 DATA 109,160,194, 32,189,255, 76,192,255, 35,169, 13
640 DATA 32,195,255,169, 15, 76,195,255,162, 48, 56,233
650 DATA 10,144, 3,232,176,249,105, 58, 96, 13, 68, 73
660 DATA 83, 75, 45, 77, 79, 78, 73, 84, 79, 82, 32, 86
670 DATA 49, 46, 48,152, 56,233, 8,168, 32, 98,192,169
680 DATA 18, 32,210,255,162, 8,185,224,194, 41,127,201
690 DATA 32,176, 4,169, 46,208, 3,185,224,194, 32,210
700 DATA 255,169, 0,133,212,200,202,208,229,169,146, 76
710 DATA 210,255,173, 1, 2,208, 6,204, 4, 2,176, 1
720 DATA 96,104,104, 76, 13,192, 32,101,192,169, 58,162
730 DATA 62, 76,235,192

740 IF S <> 90444 THEN PRINT "ERROR IN DATA !!" : END
750 SYS 49152

DISK-MONITOR, VIC 20 VERSION

In order to allow this program to be run on the VIC 20, it was
split into two parts. Enter each program separately, saving the
first under the name "DOS LOADER.1" and second under "DOS
LOADER.2". To load the disk monitor, load the first program and
start it with RUN. If all data are correct, the second program
will automatically be loaded and the disk monitor started.

100 POKE 55, 6690 AND 255 : POKE 56, 6690 / 256 : CLR
105 FOR I = 6690 TO 7056 : REM DOS LOADER.1

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 162, 0,189,164, 28, 32,210,255,232,224, 18,208
130 DATA 245,162, 13,169, 62, 32, 7, 27,169, 0,141, 1
140 DATA 2, 32, 79, 27,201, 62,240,249,201, 32,240,245
150 DATA 162, 5,221,140, 26,208, 12,142, 0, 2,189,146
160 DATA 26, 72,189,152, 26, 72, 96,202, 16,236, 76, 47
170 DATA 26,133,151, 32,132, 26,185, 0, 29, 32,248, 26
180 DATA 200,208, 3,238, 1, 2,198,151,208,237, 96, 32
190 DATA 26, 27,144, 3,153, 0, 29,200,198,151, 96, 32
200 DATA 132, 26,169, 32, 44,169, 13, 76,210,255, 58, 87
210 DATA 82, 77, 64, 88, 26, 27, 27, 26, 27,228,223,175
220 DATA 175,157, 90,102,160, ©0,140, 3, 2,136,140, 4
230 DATA 2, 32,207,255,201, 13,240, 23, 32, 26, 27,144
240 DATA 18,141, 3, 2, 32,207,255,201, 13,240, 8, 32
250 DATA 26, 27,144, 3,141, 4, 2,172, 3, 2, 32,229
260 DATA 28, 32,245, 28,152, 32,248, 26,169, 4, 32, 95
270 DATA 26, 32,182, 28, 76,200, 26, 76, 47, 26, 32, 26
280 DATA 27,144,248,168,169, 4,133,151, 32, 79, 27, 32
290 DATA 117, 26,208,248, 32,182, 28, 76, 47, 26, 72, 74
300 DATA 74, 74, 74, 32, 16, 27,170,104, 41, 15, 32, 16
310 pATA 27, 72,138, 32,210,255,104, 76,210,255, 24,105
320 DATA 246,144, 2,105, 6,105, 58, 96,169, 0,141, 2
330 DATA 2, 32, 79, 27,201, 32,208, 9, 32, 79, 27,201
340 DATA 32,208, 15, 24, 96, 32, 68, 27, 10, 10, 10, 10
350 DATA 141, 2, 2, 32, 79, 27, 32, €8, 27, 13, 2, 2
360 DATA 56, 96,201, 58, 8, 41, 15, 40,144, 2,105, 8

315

Anatomy of the 1541 Disk Drive

370
380
390
400
410
420
430
440

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

DATA
DATA
DATA

DATA 133,185, 32,150,255,

DATA
DATA

IF S <> 35614 THEN PRINT

LOAD "

CLR :
READ X
DATA 1
DATA
DATA 2
DATA
DATA 1
DATA
DATA 2
DATA
DATA 1
DATA 2
DATA
DATA 1

96, 32,207,255,
26, 32,207,255,
32,135, 26,169,

32,210,255,208,
36,240, 29, 72,

DOS LOADER.2",8

FOR I

¢+ POKE I,X :
86,
32,168,255, 32,
5%, 76, 47, 26,
27.144,245,141,
44,234,141, 73,

1,240, 30,169,
55,162, 0, 32,
32,204,255, 32,
62, 13, 32,201,
55,232,208,247,
76,232, 27,141,
51, 28,142, 70,

7057 TO 7422 :
S=S+X :
32,177,255,169,111,133,185, 32,147,255,104

201,
201, 13,208,
8,133,186,

13,208,248,104,104, 76,

47
39,169, 0,133,144
32,180,255,169,111

32,165,255, 36,144,112, 5

244, 32,171,255, 76, 47, 26,201
169, 8,133
"ERROR IN DATA !{!" : END

NEXT

207,255,201,
76, 47, 26,
70, 28, 32,
28, 32,104,
49, 32, 12,

207,255,157,

141. 28, 76,

255,162,

63, 28,162,
28,141, 71.

DATA 151, 28,142, 73, 28,141, 74,

DATA 2
DATA 2
DATA
DATA
DATA
DATA
DATA
DATA
DATA 1
DATA
DATA
DATA
DATA
DATA 1
DATA
DATA 1
DATA 1
DATA

IF S <> 39496 THEN PRINT

SYS 66

55,162,
08,245, 76,204,
32, 0, 0, 32,
0,189, 96, 28,
76,204,255, 66,
15,168,162, 8,
32,192,255,169,

1,162,140,160,
69, 13, 32,195,
56,233, 10,144,
68, 73, 83, 75,
32. 86, 49, 46,
26,169, 18, 32,
27,201, 32,176,
32,210,255,169,
46, 76,210,255,
76, 1, 96,104,
58,162, 62, 16,

0,189,

90

62, 28,
255, 85, 49,
0, 0,162,

32,210,255,232,224,

45, 80, 32,

32,186,255,169,

13,168,162,

0,189,
32,204,255,169,

32,210,255,232,224,

REM DOS LOADER.2

13,208,246,
32, 79, 27, 32, 26
79, 27, 32, 26, 27
28,173, 0, 2,201
28,162, 13, 32,198
0, 29,232,208,247
47, 26, 32, 75, 28
0, 29, 32,210
50, 32, 12, 28
15,173, 70, 28, 32
28,173, 73, 28, 32
28,162, 15, 32,201
13
58, 49, 51, 32, 48
15, 32,201,255,162
8,208,245
49, 51, 32, 48,169
0, 32,189,255
32,186,255,169

32,174

8,

28, 32,189,255, 76,192,255, 35

255,169, 15,

3,232,176,249,105,

A5, 77, 79,
48,152,
210,255,162,

4,169, 46,208,

56,233,

76,195,255,162, 48
58, 96, 13
73, 84, 79, 82

4,168, 32,132
4,185, 0, 29, 41
3,185, 0, 29

78,

0,133,212,200,202,208,229,169

173, 1,
104, 76,
7, 27

47,

316

2,208,

"ERROR IN DATA {!" :

6,204,
32,135,

4, 2

26, 26,169

END

Anatomy of the 1541 Disk Drive

Chapter 5: The Larger CBM Disks

5.1 IEEE-Bus and Serial Bus

Standard Commodore 64's and VIC 20's have a serial bus over
which they communicate with peripheral devices such as the
VIC 1541 disk drive as well as printers and plotters.

The principle of the bus makes it possible to chain
peripherals. Each device has its own device address over
which one can communicate with it. The standard address of
the disk is 8, a printer is usually 4. The device address is
identical to the primary address 1n the OPEN command, For
instance,

OPEN 1,4

opens a channel to the printer, In order to open several
disk files at once, another address, the secondary address,
serves to distinguish them, The disk has 16 secondary
addresses at its disposal, from 0 to 15. Three secondary
addresses are reserved, while the other 13 can be freely
used:

Secondary address 0 1s used for loading programs,
Secondary address 1 is used for saving programs,
Secondary address 15 is the command and error channel,

The secondary addresses from 2 to 14 can be used for opening
files as desired.

The transfer of information between the Commodore 64 and the
VIC 1541 occurs serially over this bus, Serial means that
the the data is sent a bit at a time over just one wire,
Data within the computer and disk drive are stored and
manipulated in 8 bit groups called bytes. When a byte is
sent serially, each individual bit must be sent over the
data line. In order that the sender and receiver can stay in
step, a so-called 'handshake' line is needed. If we look at
the pin-out of the serial bus, we find 6 wires:

Pin Function
SRO IN
ground
ATN
CLCK
DATA
RESET

AU BN

If the computer wants to send data to the disk drive, the

317

Anatomy of the 1541 Disk Drive

ATN (attention) line is set. When this signal is high, all
peripherals on the bus stop their work and read the next
byte. The data is sent bit-wise over the DATA line, So that
the receivers know when the next bit comes, a signal is also
sent along the CLCK (clock) line., This transmitted byte is
the device address., If this value does not correspond with
the device address of a receiving peripheral, the rest of
the data is ignored. If, however, the device is addressed, a
secondary address may be transmitted. Along with the device
address (0 to 31), the device is informed by means of the
other three bits whether it is supposed to receive data
(LISTEN) or send data (TALK). Following this, data is sent
from the computer or from the addressed device,

The RESET line resets all attached devices when the computer
is turned on. Over the SRO IN (service request) 1line,
peripheral devices can inform the bus controller (in our
case, the computer), if data is ready, for example, However,
this line is not checked by the control system in the
Ccommodore computers,

If one wants to attach several disk drives to the same
computer, each must have a different peripheral address., If
this is done only occasionally, the program DISK ADDR CHANGE
can be used, as described in section 4.2.3. The new address
(9 for example), remains only until the device is turned
off, If the change should be permanent, it can be changed
with DIP switches in the drive.

The principle of transfer of data over the IEEE 488 bus is
similar to the serial bus function. The important difference
is that the data is transmitted over 8 data lines in
parallel, not serial. In addition, more handshake lines are
needed, so the IEEE bus requires a 24-line cable. The main
advantage of the IEEE 488 bus is its ability to transmit a
byte at a time, resulting in a higher rate of transfer,
Measurements indicate that the IEEE-bus is about 5 times
faster than the serial bus: 1.8 Kbyte/second vs. 0.4
Kbyte/second. Loading a 10K program with the VIC 1541 takes
about 25 seconds; on the identical 2031, it takes less than
6. This reason alone is enough to warrant outfitting your
computer with an IEEE bus.

At the same time, it is possible to use all the other
peripherals that the large CBM computers can access,

318

Anatomy of the 1541 Disk Drive
5.2 Comparison of all CBM Disk Drives
In the following table you find the technical data of all

CBM disk drives compared.

The Technical Data of all Commodore Disk Drives

Model 1541 2031 4040 8050 8250
DOS version(s) 2.6 2.6 2.1/ 2.5/ 2.7
2.7 2.7
Drives 1 1 2 2 2
Heads per drive 1 1 1 1 2
Storage capacity 170 K 170 K 340 KX 1.05 M 2,12 M
Sequential files 168 K 168 K 168 K 521 K 1.05 M
Relative files 167 X 167 X 167 K 183 K/ 1,04 M
518 K
Buffer storage (KB) 2 2 4 4 4
Tracks 35 35 35 77 77
Sectors per track 17-21 17-21 17-21 23-29 23-29
Bytes per block 256 256 256 256 256
Free blocks 664 664 1328 4104 8266
Directory and BAM 18 18 18 38/39 38/39
(track)
Directory entries 144 144 144 224 224
Transfer rate (KB/s)
internal 40 40 40 40 40
over ser,/IEEE bus 0.4 1.8 1.8 1.8 1.8
Access time (ms)
Track to track 30 30 30 5 5
Average time 360 360 360 125 125
Revolutions/minute 300 300 300 300 300

Overview of the "large" CBM drives

The VIC 1541 disk drive has the smallest storage capacity of
the CBM disks, but it is also the only drive that can be
connected directly to the Commodore 64 and VIC 20 over the
serial bus.

The functions, construction, and operation are identical to

those of the CBM 2031 drive, The only difference from the
VIC 1541 is the parallel IEEE bus instead of the serial bus.

319

Anatomy of the 1541 Disk Drive

This results in an increase in the transfer rate to the
computer of a factor of 5. To connect a Commodore 64 or VIC
20, one needs an IEEE interface, as with all other CBM
drives, The storage format of the 2031 is compatible to the
1541; both have 170K per disk. Diskettes can pe written with
one device and read with the other. This is true for the
next drive in the line, the CBM 4040, The 4040 is a double
drive with 170K per drive,

The advantage of a double drive lies not only in the
increased storage capacity, but also in the ability to
transfer data from drive to drive. It is possible to copy
complete programs and files using the existing 1541 command.

OPEN 1,8,15, "Cl:TEST=0:TEST" or
COPY "TEST",DO TO "TEST",D1

copies the file TEST from drive 0 to drive 1 with the same
name. In this manner one can concatenate several files on
different drives., The most important capability of double
drives 1s the ability to duplicate entire diskettes. Thuis
is accomplished by a command from the computer; the drive
automatically formats the disk and then makes a track Lty
track copy from one drive to the other. The command to do
this is worded:

OPEN 1,8,15, "D1=0" or
BACKUP DO TO D1

The process takes less than 3 minutes on the 4040; during
this time the computer may be used since the disk drive
performs the entire operation by itself,

The two other CBM drives, the CBM 8050 and the CBM 8250
operate in double density (77 tracks), Disks written with
the 1541 or 4040 are not compatible with the 8050/8250.
Programs and data can be copied with the COPY/ALL program,
which transfers from one format to another. This 1s the
reason these drives have greater storage capacity: 1 MB for
che 8050 and 2 MB for the 8250. The doubled capacity of the
8250 comes about because both sides of the disk are used
(douple-sided); it has two reads/write heads per drive. In
order to be able to use the whole capacity for relative
files (see section 3.4), a so-called 'super side-sector' was
introduced, which contains pointers to 127 groups of 6 side-
sector blocks each. Through this, a relative file can
(theoretically) hold 23 MB of data. These draives can be
connected to a Commodore 64 or VIC 20 over an IEEE bus, to
that these computers can also access several megabytes.

An additional advantage of the large CBM drives is their

larger buffer storage. It 1s possible to have more files
open simultaneously than on the VIC 1541. Up to 5 seqguential

320

Anatomy of the 1541 Disk Drive

files or 3 relative files may be open at any one time, as
well as combinations of the two, of course.

With the 8050/8250 format, tracks 38 and 39 are used for the
BAM and directory. The disk name and format marker are in
track 39 sector 0.

>:00 26 00 43 00 00 00 43 42 &.C...CB
>:08 4E 20 38 30 35 30 A0 AO M 8050
>:10 A0 A0 A0 A0 AD A0 A0 AO

>:18 30 31 A0 32 43 A0 A0 A0 01 2C

The track/sector pointer to the first BAM block (track 38
sector 0) is in bytes 0 and 1. Byte 2 contains the format
marker 'C'. Bytes 3 through 5 are unused. The disk name 1s
in 6 to 21, filled with shifted spaces, 1n our case CBM
8050, Bytes 24 and 25 contain the 1d '01', while bytes 26
and 27 contain the DOS format 2C.

The BAM no longer occupies just one block, but is dispersed
over track 38; sectors 0 and 3 are used in the 8050, the
8250 used sectors 6 and 9 1n addition. Because more sectors
are use per track, the BAM entry for each track has been
enlarged to 5 bytes., The first byte still contains the
number of free sectors per track and the following bytes
contain the bit model of the free and allocated sectors (0 =
sector allocated, 1 = sector free). Here we have the
contents of track 38 sector 0

>:00 26 03 43 00 01 33 1D FF
>:08 FF FF 1F 1D FF FF FF 1F
>:10 1D FF FF FF 1F 1D FF FF
>:18 FF 1F 1D FF FF FF 1F 1D
>:20 FF FF FF 1F 1D FF FF FF
>:28 1F 1D FF FF FF 1F 1D FF
>:30 FF FF 1F 1D FF FF FF 1F
>:38 1D FF FF FF 1F 1D FF FF
>:40 FF 1F 1D FF FF FF 1F 1D
>:48 FF FF FF 1F 1D FF FF FF
>:50 1F 1D FF FF FF 1F 1D FF
>:58 FF FF 1F 1D FF FF FF 1F
>:60 1D FF FF FF 1F 1D FF FF
>:68 FF 1F 1D FF FF FF 1F 1D
>:70 FF FF FF 1F 1D FF FF FF
>:78 1F 1D FF FF FF 1F 1D FF
>:80 FF FF 1F 1D FF FF FF 1F
>:88 1D FF FF FF 1F 1D FF FF
>:90 FF 1F 1D FF FF FF 1F 1D
>:98 FF FF FF 1F 1D FF FF FF
>:A0 1F 1D FF FF FF 1F 1D FF
>:A8 FF FF 1F 18 FC F3 EF 1F
>:B0 00 00 00 00 00 00 0O 0O
>:B8 00 00 00 00 00 00 00 OF
>:C0 F4 93 46 1A 18 6C FB FF
>:C8 1F 00 00 00 00 00O 00 0O

Anatomy of the 1541 Disk Drive

>:DO 00 00 00 00 00 00 00 0O
>:D8 05 00 00 4D 04 1B FF FF
>:E0 FF 07 1B FF FF FF 07 1B
>:E8 FF FF FF 07 1B FF FF FF
>:F0 07 1B FF FF FF 07 1B FF
>:F8 FF FF 07 1B FF FF FF 07

Bytes 0 and 1 point to the next BAM block, track 38 sector
3. Byte 2 contains the format marker 'C' again. The track
numbers belonging to this BAM section are 1in bytes 4 and 5;
here tracks 1 through 51. At position 6 we find the 5 byte
entry for each track. The next BAM block is constructed
similarly. The last BAM block always points to the first
directory block: track 39 sector 1.

Four BAM blocks are needed for the 8250: track 38 sector 0
contains the tracks 1 to 51, track 38 sector 3 contains 52
to 100, track 38 sector 6 contains track 101 through 150 and
track 38 sector 9 pertains to tracks 151 to 154.

The directory track, track 39, contains 28 free blocks; up
to 28*8=224 directory entries can be stored, in contrast to
144 for the 1541/4040. The construction of the directory is
alike for all formats. The following table illustrates the
track/sector layout:

Tracks 1 - 17 0 - 28 sectors

-
o
!
N
>
e e we e

0
25~ 30 0 - 17 54 - 64 0 - 24
31~ 35 0 - 16 65 - 77 0 - 22
8250 only

78 -116 : 0 - 28
117 =130 : 0 ~ 26
131 -141 : 0 - 24
142 -154 : 0 - 22

Blocks 683 2083 : 4186

Free blocks 664 2052 : 4133

322

Anatomy of the 1541 Disk Drive

OTHER BOOKS AVAILABLE:

The Anatomy of the Commodore 64 - is our insider's guide to
your favorite computer. This book is a must for those of you
who want to delve deep into your micro. This 300+ page book
is full of information covering all aspects of the '64.
Includes fully commented listing of the ROMs so you can
investigate the mysteries of the BASIC interpreter,
kernal and operating system. It offers numerous examples of
machine language programming and several samples that make
your programming sessions more enjoyable and useful.

ISBN# 0-916439-00-3 Available now: $19.95

The Anatomy of the 1541 Disk Drive - unravels the mysteries
of working the the Commodore 1541 disk drive. This 320+ page
book starts by explaining program, sequential and relative
files. It covers the direct access commands, diskette
structure, DOS operation and utilties. The fully commented
ROM listings are presented for the real "hackers". Includes
listings for several useful utilities including BACKUP,
COPY, FILE PROTECTOR, DIRECTORY., This is the authoritive
source for 1541 disk drive information.

ISBN% 0-916439-01-1 Available now: $19.95

Tricks & Tips for the Commodore 64 - presents a collection
of easy~-to-use programming techniques and hints. Chapters
cover advanced graphics, easy data entry, enhancements for
advanced BASIC, CP/M, connecting to the outside world and
more. Other tips include sorting, variable dumps, and POKEs
that do tricks. All-in-all a solid set of useful features.

ISBN# 0-916439-03-8 Available June 29th: $19.95

Machine Language Book of the Commodore 64 - is aimed at the
owner who wants to progress beyond BASIC and write faster,
more memory efficient programs in machine language. The book
is specifically geared to the Commodore 64. Learn all of the
6510 instructions as they apply to the '64. Access RCM
routines, 1/0, extend BASIC, more. Included are listings of
three full length programs: an ASSEMBLER; a DISASSEMBLER;
and an amazing 6510 SIMULATOR so the reader can "see"the
operation of the '64.

ISBN# 0-916439-02-X Availlable now: $14.95
Optional program diskette: $14.95

OTBER TITLES COMING SOON11!

323

THE
ANATOMY

OF THE
1541 DISK DRIVE

This in depth guide for the Commodore 1541 disk drive
owner unravels the mysteries of using the 1541 for pro-
grams, sequential and relative files with plenty of
working examples. This book includes several useful
utilities — DISK MONITOR, FILE PROTECTOR,
BACKUP, MERGE and more. The Anatomy also
discusses the internals of the Disk Operating System
with the complete fully commented ROM listings.

ISBN 0-91k439-01-1

YOU CAN COUNT ON '

SO e
Software

P.O. Box 7211 Grand Rapids, Ml 49510 616/241-5510

