
LATEX2ε font selection

© Copyright 1995–2025, LATEX Project Team.∗
All rights reserved.†

Sep 2025

Contents
1 Introduction 2

1.1 LATEX2ε fonts . 2
1.2 Overview . 3
1.3 Further information . 3

2 Text fonts 4
2.1 Text font attributes . 4
2.2 Selection commands . 7
2.3 Internals . 8
2.4 Parameters for author commands 8
2.5 Special font declaration commands 10

3 Math fonts 11
3.1 Math font attributes . 11
3.2 Selection commands . 12
3.3 Declaring math versions . 13
3.4 Declaring math alphabets . 13
3.5 Declaring symbol fonts . 14
3.6 Declaring math symbols . 15
3.7 Declaring math sizes . 16
3.8 Declaring math script fonts . 17

4 Font installation 17
4.1 Font definition files . 17
4.2 Font definition file commands . 18
4.3 Font file loading information . 20
4.4 Size functions . 21

∗Thanks to Arash Esbati for documenting the newer NFSS features of 2020
†This file may be distributed and/or modified under the conditions of the LATEX Project

Public License, either version 1.3c of this license or (at your option) any later version. See
the source fntguide.tex for full details.

1

5 Encodings 22
5.1 The fontenc package . 22
5.2 Encoding definition file commands 23
5.3 Default definitions . 26
5.4 Encoding defaults . 27
5.5 Case changing . 28

6 Miscellanea 28
6.1 Font substitution . 28
6.2 Preloading . 29
6.3 Accented characters . 29
6.4 Naming conventions . 30
6.5 The order of declaration . 31
6.6 Document font metafamilies . 32
6.7 Font series defaults per document metafamily 33
6.8 Handling of current and requested font series and shape 33
6.9 Handling of nested emphasis . 34
6.10 Providing font family substitutions 35

7 Additional text symbols – textcomp 35

8 If you need to know more . . . 40

1 Introduction

This document describes the new font selection features of the LATEX Document
Preparation System. It is intended for package writers who want to write font-
loading packages similar to times or latexsym.

This document is only a brief introduction to the new facilities and is intended
for package writers who are familiar with TEX fonts and LATEX packages. It is
neither a user-guide nor a reference manual for fonts in LATEX2ε.

1.1 LATEX2ε fonts

The most important difference between LATEX 2.09 and LATEX2ε is the way that
fonts are selected. In LATEX 2.09, the Computer Modern fonts were built into
the LATEX format, and so customizing LATEX to use other fonts was a major
effort.

In LATEX2ε, very few fonts are built into the format, and there are commands
to load new text and math fonts. Packages such as times or latexsym allow
authors to access these fonts. This document describes how to write similar
font-loading packages.

The LATEX2ε font selection system was first released as the ‘New Font Selection
Scheme’ (NFSS) in 1989, and then in release 2 in 1993. LATEX2ε includes NFSS
release 2 as standard.

2

1.2 Overview

This document contains an overview of the new font commands of LATEX.

Section 2 describes the commands for selecting fonts in classes and packages.
It lists the five LATEX font attributes, and lists the commands for selecting
fonts. It also describes how to customize the author commands such as
\textrm and \textit to suit your document design.

Section 3 explains the commands for controlling LATEX math fonts. It de-
scribes how to specify new math fonts and new math symbols.

Section 4 explains how to install new fonts into LATEX. It shows how LATEX
font attributes are turned into TEX font names, and how to specify your
own fonts using font definition files.

Section 5 discusses text font encodings. It describes how to declare a new
encoding and how to define commands, such as \AE or \", which have
different definitions in different encodings, depending on whether ligatures,
etc. are available in the encoding.

Section 6 covers font miscellanea. It describes how LATEX performs font sub-
stitution, how to customize fonts that are preloaded in the LATEX format,
and the naming conventions used in LATEX font selection.

1.3 Further information

For a general introduction to LATEX, including the new features of LATEX2ε, you
should read LATEX: A Document Preparation System, Leslie Lamport, Addison
Wesley, 2nd ed, 1994.

A more detailed description of the LATEX font selection scheme is to be found in
The LATEX Companion, 2nd ed, by Mittelbach and Goossens, Addison Wesley,
2004.

The LATEX font selection scheme is based on TEX, which is described by its
developer in The TEXbook, Donald E. Knuth, Addison Wesley, 1986, revised in
1991 to include the features of TEX 3.

Sebastian Rahtz’s psnfss software contains the software for using a large num-
ber of Type 1 fonts (including the Adobe Laser Writer 35 and the Monotype
CD-ROM fonts) in LATEX. It should be available from the same source as your
copy of LATEX.

The psnfss software uses fonts generated by Alan Jeffrey’s fontinst software.
This can convert fonts from Adobe Font Metric format into a format readable by
LATEX, including the generation of the font definition files described in Section 4.
The fontinst software should be available from the same source as your copy
of LATEX.

Whenever practical, LATEX uses the font naming scheme called ‘fontname’; this
was described in Filenames for fonts,1 TUGboat 11(4), 1990.

1An up-to-date electronic version of this document can be found on any CTAN server, in
the directory info/fontname.

3

The class-writer’s guide LATEX2ε for Class and Package Writers describes the
new LATEX features for writers of document classes and packages and is kept
in clsguide.tex. Configuring LATEX is covered by the guide Configuration
options for LATEX2ε in cfgguide.tex whilst the philosophy behind our policy
on modifying LATEX is described in Modifying LATEX in modguide.tex.

The documented source code (from the files used to produce the kernel for-
mat via latex.ltx) is now available as The LATEX2ε Sources. This very large
document also includes an index of LATEX commands. It can be typeset from
the LATEX file source2e.tex in the base directory; this uses the class file
ltxdoc.cls.

For more information about TEX and LATEX, please contact your local TEX Users
Group, or the international TEX Users Group. Addresses and other details can
be found at:

https://www.tug.org/lugs.html

2 Text fonts

This section describes the commands available to class and package writers for
specifying and selecting fonts.

2.1 Text font attributes

Every text font in LATEX has five attributes:

encoding This specifies the order that characters appear in the font. The
two most common text encodings used in LATEX are Knuth’s ‘TEX text’
encoding, and the ‘TEX text extended’ encoding developed by the TEX
Users Group members during a TEX Conference at Cork in 1990 (hence
its informal name ‘Cork encoding’).

family The name for a collection of fonts, usually grouped under a common
name by the font foundry. For example, ‘Adobe Times’, ‘ITC Garamond’,
and Knuth’s ‘Computer Modern Roman’ are all font families.

series How heavy and/or expanded a font is. For example, ‘medium weight’,
‘narrow’ and ‘bold extended’ are all series.

shape The form of the letters within a font family. For example, ‘italic’,
‘oblique’ and ‘upright’ (sometimes called ‘roman’) are all font shapes.

size The design size of the font, for example ‘10pt’. If no dimension is specified,
‘pt’ is assumed.

The possible values for these attributes are given short acronyms by LATEX. The
most common values for the font encoding are:

4

OT1 TEX text
T1 TEX extended text

OML TEX math italic
OMS TEX math symbols
OMX TEX math large symbols

U Unknown
L⟨xx ⟩ A local encoding

The ‘local’ encodings are intended for font encodings which are only locally
available, for example a font containing an organization’s logo in various sizes.

There are far too many font families to list them all, but some common ones
are:

cmr Computer Modern Roman
cmss Computer Modern Sans
cmtt Computer Modern Typewriter
cmm Computer Modern Math Italic

cmsy Computer Modern Math Symbols
cmex Computer Modern Math Extensions
ptm Adobe Times
phv Adobe Helvetica
pcr Adobe Courier

The font series is denoting a combination of the weight (boldness) and the width New
description
2019/07/10

(amount of expansion). The standard supported for weights and widths are:

ul Ultra Light
el Extra Light
l Light

sl Semi Light
m Medium (normal)

sb Semi Bold
b Bold

eb Extra Bold
ub Ultra Bold

uc Ultra Condensed 50%
ec Extra Condensed 62.5%
c Condensed 75%

sc Semi Condensed 87.5%
m Medium 100%

sx Semi Expanded 112.5%
x Expanded 125%

ex Extra Expanded 150%
ux Ultra Expanded 200%

These are concatenated to a single series value except that m is dropped unless
both weight and width are medium in which case a single m is used.

Examples for series values are then:

m Medium weight and width
b Bold weight, medium width

bx Bold extended
sb Semi-bold, medium width

sbx Semi-bold extended
c Medium weight, condensed width

Note, that there are a large variety of names floating around like “regular”, New
description
2019/07/10

“black”, “demi-bold”, “thin”, “heavy” and many more. If at all possible they

5

should be matched into the standard naming scheme to allow for sensible default
substitutions if necessary, e.g., “demi-bold” is normally just another name for
“semi-bold”, so should get sb assigned, etc.

The most common values for the font shape are: New
description
2020/02/02n Normal (that is ‘upright’ or ‘roman’)

it Italic
sl Slanted (or ‘oblique’)
sc Caps and small caps

scit Caps and small caps italic
scsl Caps and small caps slanted

sw Swash

A less common value for font shape is:

ssc Spaced caps and small caps

and there is also ui for upright italic, i.e., an italic shape but artificially turned
upright. This is sometimes useful and available in some fonts.

The font size is specified as a dimension, for example 10pt or 1.5in or 3mm; if
no unit is specified, pt is assumed. These five parameters specify every LATEX
font, for example:

LATEX specification Font TEX font name
OT1 cmr m n 10 Computer Modern Roman 10 point cmr10
OT1 cmss m sl 1pc Computer Modern Sans Oblique 1 pica cmssi12
OML cmm m it 10pt Computer Modern Math Italic 10 point cmmi10
T1 ptm b it 1in Adobe Times Bold Italic 1 inch ptmb8t at 1in

These five parameters are displayed whenever LATEX gives an overfull box warn-
ing, for example:

Overfull \hbox (3.80855pt too wide) in paragraph at lines 314--318
[]\OT1/cmr/m/n/10 Normally [] and [] will be iden-ti-cal,

The author commands for fonts set the five attributes as shown in table 1 on
the following page. The values used by these commands are determined by the
document class, using the parameters defined in Section 2.4.

Note that there are no author commands for selecting new encodings. These
should be provided by packages, such as the fontenc package.

This section does not explain how LATEX font specifications are turned into TEX
font names. This is described in Section 4.

6

Author command Attribute Value in article class

\textnormal{..} or \normalfont family cmr
series m
shape n

\textrm{..} or \rmfamily family cmr
\textsf{..} or \sffamily family cmss
\texttt{..} or \ttfamily family cmtt
\textmd{..} or \mdseries series m
\textbf{..} or \bfseries series bx

\textit{..} or \itshape shape it
\textsl{..} or \slshape shape sl
\textsc{..} or \scshape shape sc

\textssc{..} or \sscshape shape ssc
\textsw{..} or \swshape shape sw

\textulc{..} or \ulcshape shape ulc (virtual) → n, it, sl or ssc
\textup{..} or \upshape shape up (virtual) → n or sc

\tiny size 5pt
\scriptsize size 7pt

\footnotesize size 8pt
\small size 9pt

\normalsize size 10pt
\large size 12pt
\Large size 14.4pt
\LARGE size 17.28pt
\huge size 20.74pt
\Huge size 24.88pt

Table 1: Author font commands and their effects (article class)

2.2 Selection commands

The low-level commands used to select a text font are as follows.

\fontencoding {⟨encoding⟩}
\fontfamily {⟨family⟩} \fontseries {⟨series⟩} \fontshape {⟨shape⟩}
\fontsize {⟨size⟩} {⟨baselineskip⟩} \linespread {⟨factor⟩}

Each of the commands starting with \font... sets one of the font attributes; New
description
1998/12/01

\fontsize also sets \baselineskip. The \linespread command prepares
to multiply the current (or newly defined) \baselineskip with ⟨factor⟩ (e.g.,
spreads the lines apart for values greater one).

The actual font in use is not altered by these commands, but the current at-
tributes are used to determine which font and baseline skip to use after the next
\selectfont command.

7

\selectfont

Selects a text font, based on the current values of the font attributes.

Warning : There must be a \selectfont command immediately after any set-
tings of the font parameters by (some of) the six commands above, before any
following text. For example, it is legal to say:

\fontfamily{ptm}\fontseries{b}\selectfont Some text.

but it is not legal to say:

\fontfamily{ptm} Some \fontseries{b}\selectfont text.

You may get unexpected results if you put text between a \font⟨parameter⟩
command (or \linespread) and a \selectfont.

\usefont {⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩}

A short hand for the equivalent \font... commands followed by a call to
\selectfont.

2.3 Internals

The current values of the font attributes are held in internal macros.

\f@encoding \f@family \f@series \f@shape \f@size \f@baselineskip
\tf@size \sf@size \ssf@size

These hold the current values of the encoding, the family, the series, the shape,
the size, the baseline skip, the main math size, the ‘script’ math size and the
‘scriptscript’ math size. The last three are accessible only within a formula;
outside of math they may contain arbitrary values.

For example, to set the size to 12 without changing the baseline skip:

\fontsize{12}{\f@baselineskip}

However, you should never alter the values of the internal commands directly;
they must only be modified using the low-level commands like \fontfamily,
\fontseries, etc. If you disobey this warning you might produce code that
loops.

2.4 Parameters for author commands

The parameter values set by author commands such as \textrm and \rmfamily,
etc. are not hard-wired into LATEX; instead these commands use the values of
a number of parameters set by the document class and packages. For exam-
ple, \rmdefault is the name of the default family selected by \textrm and
\rmfamily. Thus to set a document in Adobe Times, Helvetica and Courier,
the document designer specifies:

8

\renewcommand{\rmdefault}{ptm}
\renewcommand{\sfdefault}{phv}
\renewcommand{\ttdefault}{pcr}

\encodingdefault \familydefault \seriesdefault \shapedefault

The encoding, family, series and shape of the main body font. By default these
are OT1, \rmdefault, m and n. Note that since the default family is \rmdefault,
this means that changing \rmdefault will change the main body font of the
document.

\rmdefault \sfdefault \ttdefault

The families selected by \textrm, \rmfamily, \textsf, \sffamily, \texttt
and \ttfamily. By default these are cmr, cmss and cmtt.

\bfdefault \mddefault

The series selected by \textbf, \bfseries, \textmd and \mdseries. By default
these are bx and m. These values are suitable for the default families used. If
other fonts are used as standard document fonts (for example, certain PostScript
fonts) it might be necessary to adjust the value of \bfdefault to b since only
a few such families have a ‘bold extended’ series. An alternative (taken for the
fonts provided by psnfss) is to define silent substitutions from bx series to b
series with special \DeclareFontShape declarations and the ssub size function,
see Section 4.4.

\itdefault \sldefault \scdefault \sscdefault \swdefault
\ulcdefault \updefault

The shapes selected by \textit, \itshape, \textsl, \slshape, \textsc, New feature
2020/02/02\scshape, \textssc, \sscshape, \textsw, \swshape, \textulc, \ulcshape,

\textup and \upshape. By default these are it, sl, sc, ssc, sw, ulc and
up. Note that ulc and up are special here because they are virtual shapes;
they don’t exist as real shape values. Instead they alter the existing shape
value based on rules, i.e., the result depends on context. The respective macros
\textulc or \ulcshape change small capitals back to upper/lower case but
will not change the font with respect to italics, slanted or swash. \upshape or
\textup in contrast will switch italics or slanted back to upright but not alter
the state of upper/lower case, e.g., keep small capitals if present. Finally, the
command \normalshape is provided to reset the shape back to normal which is
a shorthand for \upshape\ulcshape.

Note that there are no parameters for the size commands. These should be
defined directly in class files, for example:

\renewcommand{\normalsize}{\fontsize{10}{12}\selectfont}

More elaborate examples (setting additional parameters when the text size is
changed) can be found in classes.dtx the source documentation for the classes
article, report, and book.

9

2.5 Special font declaration commands

\DeclareFixedFont {⟨cmd⟩} {⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩} {⟨size⟩}

Declares command ⟨cmd⟩ to be a font switch which selects the font that is
specified by the attributes ⟨encoding⟩, ⟨family⟩, ⟨series⟩, ⟨shape⟩, and ⟨size⟩.

The font is selected without any adjustments to baselineskip and other sur-
rounding conditions.

This example makes {\picturechar .} select a small dot very quickly:

\DeclareFixedFont{\picturechar}{OT1}{cmr}{m}{n}{5}

\DeclareTextFontCommand {⟨cmd⟩} {⟨font-switches⟩}

Declares command ⟨cmd⟩ to be a font command with one argument. The current
font attributes are locally modified by ⟨font-switches⟩ and then the argument
of ⟨cmd⟩ is typeset in the resulting new font.

Commands defined by \DeclareTextFontCommand automatically take care of
any necessary italic correction (on either side).

The following example shows how \textrm is defined by the kernel.

\DeclareTextFontCommand{\textrm}{\rmfamily}

To define a command that always typeset its argument in the italic shape of the
main document font you could declare:

\DeclareTextFontCommand{\normalit}{\normalfont\itshape}

This declaration can be used to change the meaning of a command; if ⟨cmd⟩ is
already defined, a log that it has been redefined is put in the transcript file.

\DeclareOldFontCommand {⟨cmd⟩} {⟨text-switch⟩} {⟨math-switch⟩}

Declares command ⟨cmd⟩ to be a font switch (i.e. used with the syntax
{⟨cmd⟩...}) having the definition ⟨text-switch⟩ when used in text and the def-
inition ⟨math-switch⟩ when used in a formula. Math alphabet commands, like
\mathit, when used within ⟨math-switch⟩ should not have an argument. Their
use in this argument causes their semantics to change so that they here act as
a font switch, as required by the usage of the ⟨cmd⟩.

This declaration is useful for setting up commands like \rm to behave as they
did in LATEX 2.09. We strongly urge you not to misuse this declaration to invent
new font commands.

10

The following example defines \it to produce the italic shape of the main doc-
ument font if used in text and to switch to the font that would normally be
produced by the math alphabet \mathit if used in a formula.

\DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit}

This declaration can be used to change the meaning of a command; if ⟨cmd⟩ is
already defined, a log that it has been redefined is put in the transcript file.

3 Math fonts

This section describes the commands available to class and package writers for
specifying math fonts and math commands.

3.1 Math font attributes

The selection of fonts within math mode is quite different to that of text fonts.

Some math fonts are selected explicitly by one-argument commands such as
\mathsf{max} or \mathbf{vec}; such fonts are called math alphabets. These
math alphabet commands affect only the font used for letters and symbols of
type \mathalpha (see Section 3.6); other symbols within the argument will be
left unchanged. The predefined math alphabets are:

Alphabet Description Example
\mathnormal default abcXY Z

\mathrm roman abcXYZ
\mathbf bold roman abcXYZ
\mathsf sans serif abcXYZ
\mathit text italic abcXYZ
\mathtt typewriter abcXYZ

\mathcal calligraphic XYZ

Other math fonts are selected implicitly by TEX for symbols, with commands
such as \oplus (producing ⊕) or with straight characters like > or +. Fonts
containing such math symbols are called math symbol fonts. The predefined
math symbol fonts are:

Symbol font Description Example
operators symbols from \mathrm [+]
letters symbols from \mathnormal << ⋆ >>
symbols most LATEX symbols ≤ ∗ ≥

largesymbols large symbols
∑∏∫

Some math fonts are both math alphabets and math symbol fonts, for example
\mathrm and operators are the same font, and \mathnormal and letters are
the same font.

11

Math fonts in LATEX have the same five attributes as text fonts: encoding,
family, series, shape and size. However, there are no commands that allow the
attributes to be individually changed. Instead, the conversion from math fonts
to these five attributes is controlled by the math version. For example, the
normal math version maps:

Math font External font
Alphabets Symbol fonts Attributes

\mathnormal letters OML cmm m it
\mathrm operators OT1 cmr m n

\mathcal symbols OMS cmsy m n
largesymbols OMX cmex m n

\mathbf OT1 cmr bx n
\mathsf OT1 cmss m n
\mathit OT1 cmr m it
\mathtt OT1 cmtt m n

The bold math version is similar except that it contains bold fonts. The com-
mand \boldmath selects the bold math version.

Math versions can only be changed outside of math mode.

The two predefined math versions are:

normal the default math version
bold the bold math version

Packages may define new math alphabets, math symbol fonts, and math ver-
sions. This section describes the commands for writing such packages.

3.2 Selection commands

There are no commands for selecting symbol fonts. Instead, these are selected
indirectly through symbol commands like \oplus. Section 3.6 explains how to
define symbol commands.

\mathnormal{⟨math⟩} \mathcal{⟨math⟩} \mathbf{⟨math⟩} \mathit{⟨math⟩}
\mathrm{⟨math⟩} \mathsf{⟨math⟩} \mathtt{⟨math⟩}

Each math alphabet is a command which can only be used inside math mode.
For example, $x + \mathsf{y} + \mathcal{Z}$ produces x+ y + Z.

\mathversion{⟨version⟩}

This command selects a math version; it can only be used outside math mode.
For example, \boldmath is defined to be \mathversion{bold}.

12

3.3 Declaring math versions

\DeclareMathVersion {⟨version⟩}

Defines ⟨version⟩ to be a math version.

The newly declared version is initialized with the defaults for all symbol fonts
and math alphabets declared so far (see the commands \DeclareSymbolFont
and \DeclareMathAlphabet).

If used on an already existing version, an information message is written to the
transcript file and all previous \SetSymbolFont or \SetMathAlphabet decla-
rations for this version are overwritten by the math alphabet and symbol font
defaults, i.e. one ends up with a virgin math version.

Example:

\DeclareMathVersion{normal}

3.4 Declaring math alphabets

\DeclareMathAlphabet {⟨math-alph⟩} {⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩}

If this is the first declaration for ⟨math-alph⟩ then a new math alphabet with New
description
1997/12/01

this as its command name is created.

The arguments ⟨encoding⟩ ⟨family⟩ ⟨series⟩ ⟨shape⟩ are used to set, or reset,
the default values for this math alphabet in all math versions; if required, these
must be further reset later for a particular math version by a \SetMathAlphabet
command.

If ⟨shape⟩ is empty then this ⟨math-alph⟩ is declared to be invalid in all versions,
unless it is set by a later \SetMathAlphabet command for a particular math
version.

Checks that the command ⟨math-alph⟩ is either already a math alphabet com-
mand or is undefined; and that ⟨encoding⟩ is a known encoding scheme, i.e., has
been previously declared.

In these examples, \foo is defined for all math versions but \baz, by default, is
defined nowhere.

\DeclareMathAlphabet{\foo}{OT1}{cmtt}{m}{n}
\DeclareMathAlphabet{\baz}{OT1}{}{}{}

\SetMathAlphabet {⟨math-alph⟩} {⟨version⟩}
{⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩}

Changes, or sets, the font for the math alphabet ⟨math-alph⟩ in math version
⟨version⟩ to ⟨encoding⟩⟨family⟩⟨series⟩⟨shape⟩.

Checks that ⟨math-alph⟩ has been declared as a math alphabet, ⟨version⟩ is a
known math version and ⟨encoding⟩ is a known encoding scheme.

13

This example defines \baz for the ‘normal’ math version only:

\SetMathAlphabet{\baz}{normal}{OT1}{cmss}{m}{n}

Note that this declaration is not used for all math alphabets: Section 3.5 de-
scribes \DeclareSymbolFontAlphabet, which is used to set up math alphabets
contained in fonts which have been declared as symbol fonts.

3.5 Declaring symbol fonts

\DeclareSymbolFont {⟨sym-font⟩} {⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩}

If this is the first declaration for ⟨sym-font⟩ then a new symbol font with this New
description
1997/12/01

name is created (i.e. this identifier is assigned to a new TEX math group).

The arguments ⟨encoding⟩ ⟨family⟩ ⟨series⟩ ⟨shape⟩ are used to set, or reset.
the default values for this symbol font in all math versions; if required, these
must be further reset later for a particular math version by a \SetSymbolFont
command.

Checks that ⟨encoding⟩ is a declared encoding scheme.

For example, the following sets up the first four standard math symbol fonts:

\DeclareSymbolFont{operators}{OT1}{cmr}{m}{n}
\DeclareSymbolFont{letters}{OML}{cmm}{m}{it}
\DeclareSymbolFont{symbols}{OMS}{cmsy}{m}{n}
\DeclareSymbolFont{largesymbols}{OMX}{cmex}{m}{n}

\SetSymbolFont {⟨sym-font⟩} {⟨version⟩}
{⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩}

Changes the symbol font ⟨sym-font⟩ for math version ⟨version⟩ to ⟨encoding⟩
⟨family⟩ ⟨series⟩ ⟨shape⟩.

Checks that ⟨sym-font⟩ has been declared as a symbol font, ⟨version⟩ is a known
math version and ⟨encoding⟩ is a declared encoding scheme.

For example, the following come from the set up of the ‘bold’ math version:

\SetSymbolFont{operators}{bold}{OT1}{cmr}{bx}{n}
\SetSymbolFont{letters}{bold}{OML}{cmm}{b}{it}

\DeclareSymbolFontAlphabet {⟨math-alph⟩} {⟨sym-font⟩}

Allows the previously declared symbol font ⟨sym-font⟩ to be the math alphabet New
description
1997/12/01

with command ⟨math-alph⟩ in all math versions.

Checks that the command ⟨math-alph⟩ is either already a math alphabet com-
mand or is undefined; and that ⟨sym-font⟩ is a symbol font.

14

Example:

\DeclareSymbolFontAlphabet{\mathrm}{operators}
\DeclareSymbolFontAlphabet{\mathcal}{symbols}

This declaration should be used in preference to \DeclareMathAlphabet and
\SetMathAlphabet when a math alphabet is the same as a symbol font; this
is because it makes better use of the limited number (only 16) of TEX’s math
groups.

Note that, whereas a TEX math group is allocated to each symbol font when it is New
description
1997/12/01

first declared, a math alphabet uses a TEX math group only when its command
is used within a math formula.

3.6 Declaring math symbols

\DeclareMathSymbol {⟨symbol⟩} {⟨type⟩} {⟨sym-font⟩} {⟨slot⟩}

The ⟨symbol⟩ can be either a single character such as ‘>’, or a macro name, such
as \sum.

Defines the ⟨symbol⟩ to be a math symbol of type ⟨type⟩ in slot ⟨slot⟩ of symbol
font ⟨sym-font⟩. The ⟨type⟩ can be given as a number or as a command:

Type Meaning Example
0 or \mathord Ordinary α
1 or \mathop Large operator

∑
2 or \mathbin Binary operation ×
3 or \mathrel Relation ≤
4 or \mathopen Opening ⟨
5 or \mathclose Closing ⟩
6 or \mathpunct Punctuation ;
7 or \mathalpha Alphabet character A

Only symbols of type \mathalpha will be affected by math alphabet commands:
within the argument of a math alphabet command they will produce the char-
acter in slot ⟨slot⟩ of that math alphabet’s font. Symbols of other types will
always produce the same symbol (within one math version).

\DeclareMathSymbol allows a macro ⟨symbol⟩ to be redefined only if it was
previously defined to be a math symbol. It also checks that the ⟨sym-font⟩ is a
declared symbol font.

Example:

\DeclareMathSymbol{\alpha}{0}{letters}{"0B}
\DeclareMathSymbol{\lessdot}{\mathbin}{AMSb}{"0C}
\DeclareMathSymbol{\alphld}{\mathalpha}{AMSb}{"0C}

15

\DeclareMathDelimiter {⟨cmd⟩} {⟨type⟩} {⟨sym-font-1 ⟩} {⟨slot-1 ⟩}
{⟨sym-font-2 ⟩} {⟨slot-2 ⟩}

Defines ⟨cmd⟩ to be a math delimiter where the small variant is in slot ⟨slot-1 ⟩
of symbol font ⟨sym-font-1 ⟩ and the large variant is in slot ⟨slot-2 ⟩ of symbol
font ⟨sym-font-2 ⟩. Both symbol fonts must have been declared previously.

Checks that ⟨sym-font-i⟩ are both declared symbol fonts.

If TEX is not looking for a delimiter, ⟨cmd⟩ is treated just as if it had been
defined with \DeclareMathSymbol using ⟨type⟩, ⟨sym-font-1 ⟩ and ⟨slot-1 ⟩. In
other words, if a command is defined as a delimiter then this automatically
defines it as a math symbol.

In case ⟨cmd⟩ is a single character such as ‘[’, the same syntax is used. Previ- New
description
1998/06/01

ously the {⟨type⟩} argument was not present (and thus the corresponding math
symbol declaration had to be provided separately).

Example:

\DeclareMathDelimiter{\langle}{\mathopen}{symbols}{"68}
{largesymbols}{"0A}

\DeclareMathDelimiter{(} {\mathopen}{operators}{"28}
{largesymbols}{"00}

\DeclareMathAccent {⟨cmd⟩} {⟨type⟩} {⟨sym-font⟩} {⟨slot⟩}

Defines ⟨cmd⟩ to act as a math accent.

The accent character comes from slot ⟨slot⟩ in ⟨sym-font⟩. The ⟨type⟩ can be
either \mathord or \mathalpha; in the latter case the accent character changes
font when used in a math alphabet.

Example:

\DeclareMathAccent{\acute}{\mathalpha}{operators}{"13}
\DeclareMathAccent{\vec}{\mathord}{letters}{"7E}

\DeclareMathRadical {⟨cmd⟩} {⟨sym-font-1 ⟩} {⟨slot-1 ⟩}
{⟨sym-font-2 ⟩} {⟨slot-2 ⟩}

Defines ⟨cmd⟩ to be a radical where the small variant is in slot ⟨slot-1 ⟩ of
symbol font ⟨sym-font-1 ⟩ and the large variant is in slot ⟨slot-2 ⟩ of symbol font
⟨sym-font-2 ⟩. Both symbol fonts must have been declared previously.

Example (probably the only use for it!):

\DeclareMathRadical{\sqrt}{symbols}{"70}{largesymbols}{"70}

3.7 Declaring math sizes

\DeclareMathSizes {⟨t-size⟩} {⟨mt-size⟩} {⟨s-size⟩} {⟨ss-size⟩}

Declares that ⟨mt-size⟩ is the (main) math text size, ⟨s-size⟩ is the ‘script’
size and ⟨ss-size⟩ the ‘scriptscript’ size to be used in math, when ⟨t-size⟩ is

16

the current text size. For text sizes for which no such declaration is given the
‘script’ and ‘scriptscript’ size will be calculated and then fonts are loaded for
the calculated sizes or the best approximation (this may result in a warning
message).

Normally, ⟨t-size⟩ and ⟨mt-size⟩ will be identical; however, if, for example,
PostScript text fonts are mixed with bit-map math fonts then you may not
have available a ⟨mt-size⟩ for every ⟨t-size⟩.

Example:

\DeclareMathSizes{13.82}{14.4}{10}{7}

3.8 Declaring math script fonts

\DeclareMathScriptfontMapping {⟨t-enc⟩} {⟨t-family⟩} {⟨s-enc⟩} {⟨s-family⟩} {⟨ss-enc⟩} {⟨ss-family⟩}

Declares that the font family ⟨s-family⟩ in encoding ⟨s-enc⟩ should be used in
‘script’ position and ⟨ss-family⟩ in encoding ⟨ss-enc⟩ in ‘scriptscript’ encoding
should be used in ‘scriptscript’ positions whenever {⟨t-family⟩} is selected in
encoding ⟨t-enc⟩ as a math font.

If no such declaration is given for a {⟨t-enc⟩}/{⟨t-family⟩} pair then different
sizes of the same font are used in all ‘text’, ‘script’, and ‘scriptscript’ positions.
In either case, the sizes are specified through a \DeclareMathSizes declaration.

Example:

\DeclareMathScriptfontMapping{OML}{cmm}{OML}{cmm-script}{OML}{cmm-scriptscript}

4 Font installation

This section explains how LATEX’s font attributes are turned into TEX font spec-
ifications.

4.1 Font definition files

The description of how LATEX font attributes are turned into TEX fonts is usually New
description
1997/12/01

kept in a font definition file (.fd). The file for family ⟨family⟩ in encoding
⟨ENC ⟩ must be called ⟨enc⟩⟨family⟩.fd: for example, ot1cmr.fd for Computer
Modern Roman with encoding OT1 or t1ptm.fd for Adobe Times with encoding
T1. Note that encoding names are converted to lowercase when used as part of
file names.

Whenever LATEX encounters an encoding/family combination that it does not
know (e.g. if the document designer says \fontfamily{ptm}\selectfont) then
LATEX attempts to load the appropriate .fd file. “Not known” means: there was

17

no \DeclareFontFamily declaration issued for this encoding/family combina-
tion. If the .fd file could not be found, a warning is issued and font substitutions
are made.

The declarations in the font definition file are responsible for telling LATEX how
to load fonts for that encoding/family combination.

4.2 Font definition file commands

Note: A font definition file should contain only commands from this subsection.

Note that these commands can also be used outside a font definition file: they
can be put in package or class files, or even in the preamble of a document.

\ProvidesFile{⟨file-name⟩}[⟨release-info⟩]

The file should announce itself with a \ProvidesFile command, as described
in LATEX2ε for Class and Package Writers.

18

For example:

\ProvidesFile{t1ptm.fd}[1994/06/01 Adobe Times font definitions]

Spaces within the arguments specific to font definition files are ignored to avoid
surplus spaces in the document. If a real space is necessary use \space. How- New

description
2004/02/10

ever, note that this is only true if the declaration is made at top level! If used
within the definition of another command, within \AtBeginDocument, option
code or in similar places, then spaces within the argument will remain and may
result in incorrect table entries.

\DeclareFontFamily {⟨encoding⟩} {⟨family⟩} {⟨loading-settings⟩}

Declares a font family ⟨family⟩ to be available in encoding scheme ⟨encoding⟩.

The ⟨loading-settings⟩ are executed immediately after loading any font with this
encoding and family.

Checks that ⟨encoding⟩ was previously declared.

This example refers to the Computer Modern Typewriter font family in the
Cork encoding:

\DeclareFontFamily{T1}{cmtt}{\hyphenchar\font=-1}

Each .fd file should contain exactly one \DeclareFontFamily command, and
it should be for the appropriate encoding/family combination.

\DeclareFontShape {⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩}
{⟨loading-info⟩} {⟨loading-settings⟩}

Declares a font shape combination; here ⟨loading-info⟩ contains the information
that combines sizes with external fonts. The syntax is complex and is described
in Section 4.3 below.

The ⟨loading-settings⟩ are executed after loading any font with this font shape.
They are executed immediately after the ‘loading-settings’ which were declared
by \DeclareFontFamily and so they can be used to overwrite the settings made
at the family level.

Checks that the combination ⟨encoding⟩⟨family⟩ was previously declared via
\DeclareFontFamily.

Example:

\DeclareFontShape{OT1}{cmr}{m}{sl}{%
<5-8> sub * cmr/m/n
<8> cmsl8
<9> cmsl9
<10> <10.95> cmsl10
<12> <14.4> <17.28> <20.74> <24.88> cmsl12
}{}

19

The file can contain any number of \DeclareFontShape commands, which
should be for the appropriate ⟨encoding⟩ and ⟨family⟩.

The font family declarations for the OT1-encoded fonts now all contain: New feature
1996/06/01

\hyphenchar\font=‘\-

This enables the use of an alternative \hyphenchar in other encodings whilst
maintaining the correct value for all fonts.

According to NFSS conventions the series value should be a combination of New feature
2020/02/02weight and width abbreviated each with one or two letters as described on

page 5. In particular it should not contain an “m” unless it consists of just
one character. In the past incorrect values such as “cm” were simply accepted,
but since this now leads to problems with the extended mechanism, the correct
syntax is now enforced.

More exactly, if the series values is a member of a specific set of values (ulm,
elm, lm, slm, mm, sbm, bm, ebm, ubm, muc, mec, mc, msc, msx, mx, mex or mux) it
is assumed to be in incorrect NFSS notation and so a warning is given and a
surplus “m” is dropped. Other values are not touched to allow for the usage of
values like “semibold” or “medium” as used by the autoinst program.

4.3 Font file loading information

The information which tells LATEX exactly which font (.tfm) files to load is
contained in the ⟨loading-info⟩ part of a \DeclareFontShape declaration. This
part consists of one or more ⟨fontshape-decl⟩s, each of which has the following
form:

⟨fontshape-decl⟩ ::= ⟨size-infos⟩ ⟨font-info⟩
⟨size-infos⟩ ::= ⟨size-infos⟩ ⟨size-info⟩ | ⟨size-info⟩
⟨size-info⟩ ::= “<” ⟨number-or-range⟩ “>”
⟨font-info⟩ ::= [⟨size-function⟩ “*”] [“[” ⟨optarg⟩ “]”] ⟨fontarg⟩

The ⟨number-or-range⟩ denotes the size or size-range for which this entry ap-
plies.

If it contains a hyphen it is a range: lower bound on the left (if missing, zero
implied), upper bound on the right (if missing, ∞ implied). For ranges, the
upper bound is not included in the range and the lower bound is.

Examples:

<10> simple size 10pt only
<-8> range all sizes less than 8pt
<8-14.4> range all sizes greater than or equal to 8pt

but less than 14.4pt
<14.4-> range all sizes greater than or equal 14.4pt

20

If more than one ⟨size-info⟩ entry follows without any intervening ⟨font-info⟩,
they all share the next ⟨font-info⟩.

The ⟨size-function⟩, if present, handles the use of ⟨font-info⟩. If not present,
the ‘empty’ ⟨size-function⟩ is assumed.

All the ⟨size-info⟩s are inspected in the order in which they appear in the font
shape declaration. If a ⟨size-info⟩ matches the requested size, its ⟨size-function⟩
is executed. If \external@font is non-empty afterwards this process stops,
otherwise the next ⟨size-info⟩ is inspected. (See also \DeclareSizeFunction.)

If this process does not lead to a non-empty \external@font, LATEX tries the
nearest simple size. If the entry contains only ranges an error is returned.

4.4 Size functions

LATEX provides the following size functions, whose ‘inputs’ are ⟨fontarg⟩ and
⟨optarg⟩ (when present).

‘’ (empty) Load the external font ⟨fontarg⟩ at the user-requested size. If
⟨optarg⟩ is present, it is used as the scale-factor.

s Like the empty function but without terminal warnings, only loggings.

gen Generates the external font from ⟨fontarg⟩ followed by the user-requested
size, e.g. <8> <9> <10> gen * cmtt

sgen Like the ‘gen’ function but without terminal warnings, only loggings.

genb Generates the external font from ⟨fontarg⟩ followed by the user-requested New feature
1995/12/01size, using the conventions of the ‘ec’ fonts. e.g. <10.98> genb * dctt

produces dctt1098.

sgenb Like the ‘genb’ function but without terminal warnings, only loggings. New feature
1995/12/01

sub Tries to load a font from a different font shape declaration given by
⟨fontarg⟩ in the form ⟨family⟩/⟨series⟩/⟨shape⟩.

ssub Silent variant of ‘sub’, only loggings.

alias Same as ‘ssub’ but with a different logging message. Intended for cases New feature
2019/10/15where the substitution is only done to change the name, e.g., going from

regular series to the official name m. In that case given a warning that
some shape is not found is not correct.

subf Like the empty function but issues a warning that it has to substitute the
external font ⟨fontarg⟩ because the desired font shape was not available
in the requested size.

ssubf Silent variant of ‘subf’, only loggings.

fixed Load font ⟨fontarg⟩ as is, disregarding the user-requested size. If present,
⟨optarg⟩ gives the “at . . . pt” size to be used.

sfixed Silent variant of ‘fixed’, only loggings.

21

Examples for the use of most of the above size functions can be found in the file
cmfonts.fdd—the source for the standard .fd files describing the Computer
Modern fonts by Donald Knuth.

\DeclareSizeFunction {⟨name⟩} {⟨code⟩}

Declares a size-function ⟨name⟩ for use in \DeclareFontShape commands. The
interface is still under development but there should be no real need to a define
new size functions.

The ⟨code⟩ is executed when the size or size-range in \DeclareFontShape
matches the user-requested size.

The arguments of the size-function are automatically parsed and placed into
\mandatory@arg and \optional@arg for use in ⟨code⟩. Also available, of course,
is \f@size, which is the user-requested size.

To signal success ⟨code⟩ must define the command \external@font to contain
the external name and any scaling options (if present) for the font to be loaded.

This example sets up the ‘empty’ size function (simplified):

\DeclareSizeFunction{}
{\edef\external@font{\mandatory@arg\space at\f@size}

5 Encodings

This section explains how to declare and use new font encodings and how to
declare commands for use with particular encodings.

5.1 The fontenc package

Users can select new font encodings using the fontenc package. The fontenc
package has options for encodings; the last option becomes the default encoding.
For example, to use the OT2 (Washington University Cyrillic encoding) and T1
encodings, with T1 as the default, an author types:

\usepackage[OT2,T1]{fontenc}

For each font encoding ⟨ENC ⟩ given as an option, this package loads the en- New
description
1997/12/01

coding definition (⟨enc⟩enc.def, with an all lower-case name) file; it also sets
\encodingdefault to be the last encoding in the option list.

The declarations in the encoding definition file ⟨enc⟩enc.def for encoding
⟨ENC ⟩ are responsible for declaring this encoding and telling LATEX how to
produce characters in this encoding; this file should contain nothing else (see
Section 5.2.

The standard LATEX format declares the OT1 and T1 text encodings by inputting
the files ot1enc.def and t1enc.def; it also sets up various defaults which

22

require that OT1-encoded fonts are available. Other encoding set-ups might be
added to the distribution at a later stage.

Thus the example above loads the files ot2enc.def and t1enc.def and sets
\encodingdefault to T1.

Warning : If you wish to use T1-encoded fonts other than the ‘cmr’ family then
you may need to load the package (e.g. times) that selects the fonts before
loading fontenc (this prevents the system from attempting to load any T1-
encoded fonts from the ‘cmr’ family).

5.2 Encoding definition file commands

Note: An encoding definition file should contain only commands from this sub-
section.

As an exception it may also contain a \DeclareFontSubstitution declaration New
description
2019/07/10

(described in 5.4) to specify how font substitution for this encoding should be
handled. In that case it is important that the values used point to a font that
is guaranteed to be available on all LATEX installations.2

As with the font definition file commands, it is also possible (although normally New
description
1997/12/01

not necessary) to use these declarations directly within a class or package file.

Warning : Some aspects of the contents of font definition files are still un-
der development. Therefore, the current versions of the files ot1enc.def and
t1enc.def are temporary versions and should not be used as models for pro-
ducing further such files. For further information you should read the documen-
tation in ltoutenc.dtx.

\ProvidesFile{⟨file-name⟩}[⟨release-info⟩]

The file should announce itself with a \ProvidesFile command, described in
LATEX2ε for Class and Package Writers. For example:

\ProvidesFile{ot2enc.def}
[1994/06/01 Washington University Cyrillic encoding]

\DeclareFontEncoding {⟨encoding⟩} {⟨text-settings⟩} {⟨math-settings⟩}

Declares a new encoding scheme ⟨encoding⟩.

The ⟨text-settings⟩ are declarations which are executed every time \selectfont
changes the encoding to be ⟨encoding⟩.

The ⟨math-settings⟩ are similar but are for math alphabets. They are executed
whenever a math alphabet with this encoding is called.

It also saves the value of ⟨encoding⟩ in the macro \LastDeclaredEncoding. New feature
1998/12/01

2If the font encoding file is made available as part of a CTAN bundle, that could be a font
that is provided together with that bundle, but it should not point to font which requires
further installation steps and therefore may or may not be installed.

23

Example:

\DeclareFontEncoding{OT1}{}{}

Fonts in encoding TS1 are usually not implementing the full encoding but only New feature
2021/06/01a subset. This subset should be declared with a \DeclareEncodingSubset

declaration:

\DeclareEncodingSubset {⟨encoding⟩} {⟨font family⟩} {⟨subset number⟩}

This should even be done if the font is implementing the full TS1 encoding; see
page 36 for further details.

Some author commands need to change their definition depending on which
encoding is currently in use. For example, in the OT1 encoding, the letter ‘Æ’
is in slot "1D, whereas in the T1 encoding it is in slot "C6. So the definition
of \AE has to change depending on whether the current encoding is OT1 or T1.
The following commands allow this to happen.

\DeclareTextCommand {⟨cmd⟩} {⟨encoding⟩} [⟨num⟩] [⟨default⟩] {⟨definition⟩}

This command is like \newcommand, except that it defines a command which is
specific to one encoding. For example, the definition of \k in the T1 encoding
is:

\DeclareTextCommand{\k}{T1}[1]
{\hmode@bgroup\ooalign{\null#1\crcr\hidewidth\char12}\egroup}

\DeclareTextCommand takes the same optional arguments as \newcommand.

The resulting command is robust, even if the code in ⟨definition⟩ is fragile.

It does not produce an error if the command has already been defined but logs
the redefinition in the transcript file.

\ProvideTextCommand {⟨cmd⟩} {⟨encoding⟩} [⟨num⟩] [⟨default⟩] {⟨definition⟩} New feature
1994/12/01

This command is the same as \DeclareTextCommand, except that if ⟨cmd⟩ is
already defined in encoding ⟨encoding⟩, then the definition is ignored.

\DeclareTextSymbol {⟨cmd⟩} {⟨encoding⟩} {⟨slot⟩}

This command defines a text symbol with slot ⟨slot⟩ in the encoding. For
example, the definition of \ss in the OT1 encoding is:

\DeclareTextSymbol{\ss}{OT1}{25}

It does not produce an error if the command has already been defined but logs
the redefinition in the transcript file.

24

\DeclareTextAccent {⟨cmd⟩} {⟨encoding⟩} {⟨slot⟩}

This command declares a text accent, with the accent taken from slot ⟨slot⟩ in
the encoding. For example, the definition of \" in the OT1 encoding is:

\DeclareTextAccent{\"}{OT1}{127}

It does not produce an error if the command has already been defined but logs
the redefinition in the transcript file.

\DeclareTextComposite {⟨cmd⟩} {⟨encoding⟩} {⟨letter⟩} {⟨slot⟩}

This command declares that the composite letter formed from applying ⟨cmd⟩
to ⟨letter⟩ is defined to be simply slot ⟨slot⟩ in the encoding. The ⟨letter⟩ should
be a single letter (such as a) or a single command (such as \i).

For example, the definition of \’{a} in the T1 encoding could be declared like
this:

\DeclareTextComposite{\’}{T1}{a}{225}

The ⟨cmd⟩ will normally have been previously declared for this encoding, either
by using \DeclareTextAccent, or as a one-argument \DeclareTextCommand.

\DeclareTextCompositeCommand {⟨cmd⟩} {⟨encoding⟩} {⟨letter⟩} {⟨definition⟩} New feature
1994/12/01

This is a more general form of \DeclareTextComposite, which allows for an
arbitrary ⟨definition⟩, not just a ⟨slot⟩. The main use for this is to allow accents
on i to act like accents on \i, for example:

\DeclareTextCompositeCommand{\’}{OT1}{i}{\’\i}

It has the same restrictions as \DeclareTextComposite.

\LastDeclaredEncoding New feature
1998/12/01

This holds the name of the last encoding declared via \DeclareFontEncoding
(this should also be the currently most efficient encoding). It can be used in the
⟨encoding⟩ argument of the above declarations in place of explicitly mentioning
the encoding, e.g.

\DeclareFontEncoding{T1}{}{}
\DeclareTextAccent{\‘}{\LastDeclaredEncoding}{0}
\DeclareTextAccent{\’}{\LastDeclaredEncoding}{1}

This can be useful in cases where encoding files sharing common code are gen-
erated from one source.

25

5.3 Default definitions

The declarations used in encoding definition files define encoding-specific com- New
description
1997/12/01

mands but they do not allow those commands to be used without explicitly
changing the encoding. For some commands, such as symbols, this is not
enough. For example, the OMS encoding contains the symbol ‘§’, but we need to
be able to use the command \S whatever the current encoding may be, without
explicitly selecting the encoding OMS.

To allow this, LATEX has commands that declare default definitions for com- New
description
1997/12/01

mands; these defaults are used when the command is not defined in the current
encoding. For example, the default encoding for \S is OMS, and so in an encoding
(such as OT1) which does not contain \S, the OMS encoding is selected in order
to access this glyph. But in an encoding (such as T1) which does contain \S, the
glyph in that encoding is used. The standard LATEX2ε format sets up several
such defaults using the following encodings: OT1, OMS and OML.

Warning : These commands should not occur in encoding definition files, since
those files should declare only commands for use when that encoding has been
selected. They should instead be placed in packages; they must, of course,
always refer to encodings that are known to be available.

\DeclareTextCommandDefault {⟨cmd⟩} {⟨definition⟩} New feature
1994/12/01

This command allows an encoding-specific command to be given a default defi-
nition. For example, the default definition for \copyright is defined be a circled
‘c’ with:

\DeclareTextCommandDefault{\copyright}{\textcircled{c}}

\DeclareTextAccentDefault {⟨cmd⟩} {⟨encoding⟩}
\DeclareTextSymbolDefault {⟨cmd⟩} {⟨encoding⟩} New feature

1994/12/01

These commands allow an encoding-specific command to be given a default
encoding. For example, the default encoding for \" and \ae is set to be OT1 by:

\DeclareTextAccentDefault{\"}{OT1}
\DeclareTextSymbolDefault{\ae}{OT1}

Note that \DeclareTextAccentDefault can be used on any one-argument
encoding-specific command, not just those defined with \DeclareTextAccent.
Similarly, \DeclareTextSymbolDefault can be used on any encoding-specific
command with no arguments, not just those defined with \DeclareTextSymbol.

For more examples of these definitions, see ltoutenc.dtx.

26

\ProvideTextCommandDefault {⟨cmd⟩} {⟨definition⟩} New feature
1994/12/01

This command is the same as \DeclareTextCommandDefault, except that if the
command already has a default definition, then the definition is ignored. This is
useful to give ‘faked’ definitions of symbols which may be given ‘real’ definitions
by other packages. For example, a package might give a fake definition of
\textonequarter by saying:

\ProvideTextCommandDefault{\textonequarter}{$\m@th\frac14$}

5.4 Encoding defaults

\DeclareFontEncodingDefaults {⟨text-settings⟩} {⟨math-settings⟩}

Declares ⟨text-settings⟩ and ⟨math-settings⟩ for all encoding schemes. These are
executed before the encoding scheme dependent ones are executed so that one
can use the defaults for the major cases and overwrite them if necessary using
\DeclareFontEncoding.

If \relax is used as an argument, the current setting of this default is left
unchanged.

This example is used by amsfonts.sty for accent positioning; it changes only the
math settings:

\DeclareFontEncodingDefaults{\relax}{\def\accentclass@{7}}

\DeclareFontSubstitution {⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩}

Declares the default values for font substitution which will be used when a font
with encoding ⟨encoding⟩ should be loaded but no font can be found with the
current attributes.

These substitutions are local to the encoding scheme because the encoding
scheme is never substituted! They are tried in the order ⟨shape⟩ then ⟨series⟩
and finally ⟨family⟩.

This declaration is normally done in an encoding definition file (see 5.2), but New
description
2019/07/10

can also be used in a class file or the document preamble to alter the default for
a specific encoding.

If no defaults are set up for an encoding, the values given by \DeclareErrorFont
are used.

The font specification for ⟨encoding⟩⟨family⟩⟨series⟩⟨shape⟩ must have been de-
fined by \DeclareFontShape before the \begin{document} is reached.

Example:

\DeclareFontSubstitution{T1}{cmr}{m}{n}

27

5.5 Case changing

\MakeUppercase {⟨text⟩}
\MakeLowercase {⟨text⟩}

TEX provides the two primitives \uppercase and \lowercase for changing the New feature
1995/06/01case of text. Unfortunately, these TEX primitives do not change the case of

characters accessed by commands like \ae or \aa. To overcome this problem,
LATEX provides these two commands.

In the long run, we would like to use all-caps fonts rather than any command
like \MakeUppercase but this is not possible at the moment because such fonts
do not exist.

For further details, see clsguide.tex.

In order that upper/lower-casing will work reasonably well, and in order to New
description
1999/04/23

provide any correct hyphenation, LATEX2ε must use, throughout a document,
the same fixed table for changing case. The table used is designed for the font
encoding T1; this works well with the standard TEX fonts for all Latin alphabets
but will cause problems when using other alphabets. As an experiment, it has
now been extended for use with some Cyrillic encodings.

6 Miscellanea

This section covers the remaining font commands in LATEX and some other
issues.

6.1 Font substitution

\DeclareErrorFont {⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩} {⟨size⟩}

Declares ⟨encoding⟩⟨family⟩⟨series⟩⟨shape⟩ to be the font shape used in cases
where the standard substitution mechanism fails (i.e. would loop). For the
standard mechanism see the command \DeclareFontSubstitution above.

The font specification for ⟨encoding⟩⟨family⟩⟨series⟩⟨shape⟩ must have been de-
fined by \DeclareFontShape before the \begin{document} is reached.

Example:

\DeclareErrorFont{OT1}{cmr}{m}{n}{10}

This declaration is a system wide fallback and it should normally not be changed, New
description
2019/07/10

in particular it does not belong into font encoding definition files but rather into
the LATEX format. It is normally set up in fonttext.cfg. Adjustments on a per
encoding base should be made through \DeclareFontSubstitution instead!

28

\fontsubfuzz

This parameter is used to decide whether or not to produce a terminal warning
if a font size substitution takes place. If the difference between the requested
and the chosen size is less than \fontsubfuzz the warning is only written to
the transcript file. The default value is 0.4pt. This can be redefined with
\renewcommand, for example:

\renewcommand{\fontsubfuzz}{0pt} % always warn

6.2 Preloading

\DeclarePreloadSizes {⟨encoding⟩} {⟨family⟩} {⟨series⟩} {⟨shape⟩} {⟨size-list⟩}

Specifies the fonts that should be preloaded by the format. These commands
should be put in a preload.cfg file, which is read in when the LATEX format
is being built. Read preload.dtx for more information on how to built such a
configuration file.

Example:

\DeclarePreloadSizes{OT1}{cmr}{m}{sl}{10,10.95,12}

Preloading is really an artifact of the days when loading fonts while processing New
description
2019/07/10

a document contributed substantially to the processing time. These days it is
usually best not to use this mechanism any more.

6.3 Accented characters

Accented characters in LATEX can be produced using commands such as \"a etc. New
description
1996/06/01

The precise effect of such commands depends on the font encoding being used.
When using a font encoding that contains the accented characters as individual
glyphs (such as the T1 encoding, in the case of \"a) words that contain such
accented characters can be automatically hyphenated. For font encodings that
do not contain the requested individual glyph (such as the OT1 encoding) such a
command invokes typesetting instructions that produce the accented character
as a combination of character glyphs and diacritical marks in the font. In most
cases this involves a call to the TEX primitive \accent. Glyphs constructed
as composites in this way inhibit hyphenation of the current word; this is one
reason why the T1 encoding is preferable to the original TEX font encoding OT1.

It is important to understand that commands like \"a in LATEX2ε represent just
a name for a single glyph (in this case ‘umlaut a’) and contain no information
about how to typeset that glyph—thus it does not mean ‘put two dots on top of
the character a’. The decision as to what typesetting routine to use will depend
on the encoding of the current font and so this decision is taken at the last
minute. Indeed, it is possible that the same input will be typeset in more than
one way in the same document; for example, text in section headings may also

29

appear in table of contents and in running heads; and each of these may use a
font with a different encoding.

For this reason the notation \"a is not equivalent to:

\newcommand \chara {a} \"\chara

In the latter case, LATEX does not expand the macro \chara but simply compares
the notation (the string \"\chara) to its list of known composite notations in
the current encoding; when it fails to find \"\chara it does the best it can and
invokes the typesetting instructions that put the umlaut accent on top of the
expansion of \chara. Thus, even if the font actually contains ‘ä’ as an individual
glyph, it will not be used.

The low-level accent commands in LATEX are defined in such a way that it is
possible to combine a diacritical mark from one font with a glyph from another
font; for example, \"\textparagraph will produce ¶̈. The umlaut here is taken
from the OT1 encoded font cmr10 whilst the paragraph sign is from the OMS
encoded font cmsy10. (This example may be typographically silly but better
ones would involve font encodings like OT2 (Cyrillic) that might not be available
at every site.)

There are, however, restrictions on the font-changing commands that will work
within the argument to such an accent command. These are TEXnical in the
sense that they follow from the way that TEX’s \accent primitive works, al-
lowing only a special class of commands between the accent and the accented
character.

The following are examples of commands that will not work correctly as
the accent will appear above a space: the font commands with text argu-
ments (\textbf{...} and friends); all the font size declarations (\fontsize
and \Large, etc.); \usefont and declarations that depend on it, such as
\normalfont; box commands (e.g. \mbox{...}).

The lower-level font declarations that set the attributes family, series and shape
(such as \fontshape{sl}\selectfont) will produce correct typesetting, as will
the default declarations such as \bfseries.

6.4 Naming conventions

• Math alphabet commands all start with \math...: examples are \mathbf,
\mathcal, etc.

• The text font changing commands with arguments all start with \text...:
e.g. \textbf and \textrm. The exception to this is \emph, since it occurs
very commonly in author documents and so deserves a shorter name.

• Names for encoding schemes are strings of up to three letters (all upper
case) plus digits.

The LATEX Project reserves the use of encodings starting with the follow-
ing letters: T (standard 256-long text encodings), TS (symbols that are
designed to extend a corresponding T encoding), X (text encodings that

30

do not conform to the strict requirements for T encodings), M (standard
256-long math encodings), S (other symbol encodings), A (other special
applications), OT (standard 128-long text encodings) and OM (standard
128-long math encodings).

Please do not use the above starting letters for non-portable encodings. If
new standard encodings emerge then we shall add them in a later release
of LATEX.

Encoding schemes which are local to a site or a system should start with
L, experimental encodings intended for wide distribution will start with E,
whilst U is for Unknown or Unclassified encodings.

• Font family names should contain only upper and lower case letters and New
description
2019/10/15

hyphen characters. Where possible, these should conform to the Filenames
for fonts font naming scheme of the scheme implemented by autoinst
with suffixes such as -LF, -OsF, etc. to indicate different figure styles.

• Font series names should contain up to four lower case letters. If at all New
description
2019/10/15

possible standard names as suggested in Section 2.1 should be used. Font
specific names such as regular or black, etc. should be at least aliased
to a corresponding standard name.

• Font shapes should contain up to four letters lower case. Use the names New
description
2019/10/15

suggested in Section 2.1.

• Names for symbol fonts are built from lower and upper case letters with
no restriction.

Whenever possible, you should use the series and shape names suggested in
The LATEX Companion since this will make it easier to combine new fonts with
existing fonts.

Where possible, text symbols should be named as \text followed by the Adobe New
description
1994/12/01

glyph name: for example \textonequarter or \textsterling. Similarly, math
symbols should be named as \math followed by the glyph name, for example
\mathonequarter or \mathsterling. Commands which can be used in text or
math can then be defined using \ifmmode, for example:

\DeclareRobustCommand{\pounds}{%
\ifmmode \mathsterling \else \textsterling \fi

}

Note that commands defined in this way must be robust, in case they get put
into a section title or other moving argument.

6.5 The order of declaration

NFSS forces you to give all declarations in a specific order so that it can check New
description
2019/10/15

whether you have specified all necessary information. If you declare objects in
the wrong order, it will complain. Here are the dependencies that you have to
obey:

31

• \DeclareFontFamily checks that the encoding scheme was previously de-
clared with \DeclareFontEncoding.

• \DeclareFontShape checks that the font family was declared to be avail-
able in the requested encoding (\DeclareFontFamily).

• \DeclareSymbolFont checks that the encoding scheme is valid.

• \SetSymbolFont additionally ensures that the requested math version was
declared (\DeclareMathVersion) and that the requested symbol font was
declared (\DeclareSymbolFont).

• \DeclareSymbolFontAlphabet checks that the command name for the
alphabet identifier can be used and that the symbol font was declared.

• \DeclareMathAlphabet checks that the chosen command name can be
used and that the encoding scheme was declared.

• \SetMathAlphabet checks that the alphabet identifier was previously
declared with \DeclareMathAlphabet or \DeclareSymbolFontAlphabet
and that the math version and the encoding scheme are known.

• \DeclareMathSymbol makes sure that the command name can be used
(i.e., is undefined or was previously declared to be a math symbol) and
that the symbol font was previously declared.

• When the \begin{document} command is reached, NFSS makes some
additional checks—for example, verifying that substitution defaults for
every encoding scheme point to known font shape group declarations.

6.6 Document font metafamilies

LATEX knows three font families accessible through \rmfamily (the serifed font
family of the document), \sffamily (the sans serif family), and \ttfamily (the
documents mono-spaced/typewriter family). These abstract families, i.e., rm,
sf, and tt, are called “metafamilies”. The concrete font families selected for
them depend on the settings of \rmdefault, \sfdefault, and \ttdefault.

Besides these metafamilies it is, of course, possible to access further font families
by selecting them through \fontfamily{⟨name⟩}\selectfont.

In some cases it is helpful to know which of the three metafamilies (if any) is New feature
2025/11/01currently used for typesetting, and this information is available for programmers

in \@currentmetafamily. The command returns either rm, sf, tt, or ?? (in
case none of the metafamilies but some other font family is currently used).

As one application of this there is \@restoremetafamily. If the current
metafamily is 〈name〉 it executes \〈name〉family, e.g., \sffamily, and that
then executes the hook 〈name〉family besides other re-initializations. This can
be useful if that hook contains conditional code and the condition has changed
and therefore requires re-initialization.

32

6.7 Font series defaults per document metafamily

With additional weights and widths being available in many font families nowa- New feature
2020/02/02days, it is more likely that somebody will want to match, say, a medium weight

serif family with a semi-light sans serif family, or that with one family one
wants to use the bold-extended face when \textbf is used, while with another
it should be bold (not extended) or semi-bold, etc. The default values can
be altered using the \DeclareFontSeriesDefault declaration in packages or
document preambles:

\DeclareFontSeriesDefault [⟨metafamily⟩] {⟨metaseries⟩} {⟨series value⟩}

This declaration takes three arguments:

Metafamily interface: Can be either rm, sf or tt. This is optional and if not
present the next two arguments apply to the overall default.

Metaseries interface: Can be md or bf.

Series value: This is the value that is going to be used when the combination
of ⟨metafamily⟩ and ⟨metaseries⟩ is requested.

For example,

\DeclareFontSeriesDefault[rm]{bf}{sb}

would use sb (semi-bold) when \rmfamily\bfseries is requested in the docu-
ment.

6.8 Handling of current and requested font series and
shape

In the original NFSS implementation, the series was a single attribute stored in
\f@series and so one always had to specify both weight and width together.
Hence, it was impossible to typeset a paragraph in a condensed font and in-
side have a few words in bold weight (but still condensed) without doing this
manually by requesting \fontseries{bc}\selectfont.

The new implementation now works differently by looking both at the current New feature
2020/02/02value of \f@series and the requested new series and out of that combination

selects a resulting series value. Thus, if the current series is c and we ask for b,
we now get bc. This is done by consulting a simple lookup table where entries
can be added or changed with \DeclareFontSeriesChangeRule:

\DeclareFontSeriesChangeRule {⟨current series⟩} {⟨requested series⟩}
{⟨result⟩} {⟨alternative result⟩}

The ⟨current series⟩ is the value currently stored in \f@series, ⟨requested series⟩
is the new series requested, ⟨result⟩ is the combined value if it exists for the given
font family, and ⟨alternative result⟩ is a fallback in case ⟨result⟩ doesn’t exist.
The example above now looks like this:

33

\DeclareFontSeriesChangeRule{c}{b}{bc}{}

which means: switch to the bc series if c is current and b is (additionally)
requested, and if the current font doesn’t have the combination, start the normal
font substitution, i.e., switch back shape to n and if this combination doesn’t
succeed, switch back series to m as well, ending up with m/n.

Another example is:

\DeclareFontSeriesChangeRule{bc}{sc}{bsc}{bc}

which means: if the current series is bold condensed (bc) and semi-condensed
(sc) is requested (additionally), try bold semi-condensed (bsc) if available but
stay with bold condensed if not.

A special value is m which is used to reset both weight and width. In order to
reset only one of them, the special values ?m (reset width) and m? (reset weight)
are provided, e.g.:

\DeclareFontSeriesChangeRule{bc}{m?}{c}{}

The corresponding macro \DeclareFontShapeChangeRule is also provided for
setting database entries for font shapes:

\DeclareFontShapeChangeRule {⟨current shape⟩} {⟨requested shape⟩}
{⟨result⟩} {⟨alternative result⟩}

An example would be:

\DeclareFontShapeChangeRule{it}{sc}{scit}{scsl}

If italics is the current shape and small caps is requested, switch to scit (small
caps italics) and if that doesn’t exist, try scsl (small caps slanted).

Finally, it is also possible to overrule the entries in the lookup tables and forcibly
select a series or shape with:

\fontseriesforce {⟨series⟩} \fontshapeforce {⟨shape⟩}

With the example above for the c series, issuing \fontseriesforce{b} means
that the series switches to b and not to bc. Same applies to \fontshapeforce.

6.9 Handling of nested emphasis

\DeclareEmphSequence {⟨list of font declarations⟩}

This declaration takes a comma separated list of font declarations each specify- New feature
2020/02/02ing how increasing levels of emphasis should be handled. For example:

34

\DeclareEmphSequence{\itshape,%
\upshape\scshape,%
\itshape}

uses italics for the first, small capitals for the second, and italic small capitals
for the third level. If there are more nesting levels than provided, declarations
stored in \emreset (by default \ulcshape\upshape) are used for the next level
and then the list restarts.

6.10 Providing font family substitutions

\DeclareFontFamilySubstitution {⟨encoding⟩} {⟨family⟩} {⟨new-family⟩}

This declaration selects the font family ⟨new-family⟩ as replacement for ⟨family⟩ New feature
2020/02/02in the font encoding ⟨encoding⟩. For example,

\DeclareFontFamilySubstitution{LGR}
{Montserrat-LF}{IBMPlexSans-TLF}

tells LATEX to substitute the sans serif font Montserrat-LF in the Greek encod-
ing LGR with IBMPlexSans-TLF once requested in a document.

7 Additional text symbols – textcomp

For a long time the interface to additional text symbols and the text companion New feature
2020/02/02encoding TS1 in general was the textcomp package. All the symbols provided

by the textcomp package are now available in LATEX kernel. Furthermore, an
intelligent substitution mechanism has been implemented so that glyphs missing
in some fonts are automatically substituted with default glyphs that are sans
serif if you typeset in \textsf and monospaced if you typeset using \texttt. In
the past they were always taken from Computer Modern Roman if substitution
was necessary.

This is most noticeable with \oldstylenums which are now taken from TS1 so
that you no longer get 1234 but 1234 when typesetting in sans serif fonts and
1234 when using typewriter fonts.

\legacyoldstylenums {⟨nums⟩}
\UseLegacyTextSymbols

If there ever is a need to use the original (inferior) definition, then that remains
available as \legacyoldstylenums; and to fully revert to the old behavior there
is also \UseLegacyTextSymbols. The latter declaration reverts \oldstylenums
and also changes the footnote symbols, such as \textdagger, \textparagraph,
etc., to pick up their glyphs from the math fonts instead of the current text font
(this means they always keep the same shape and do not nicely blend in with
the text font).

35

The following tables show the macros available. The next commands are ‘con-
structed’ accents and are built via TEX macros:

\capitalcedilla␣A A̧
\capitalogonek␣A Ą

\textcircled␣a a○

These accents are available via font encoding. The numbers in third row show
the slot number:

\capitalgrave ` 0
\capitalacute ´ 1
\capitalcircumflex � 2
\capitaltilde � 3
\capitaldieresis ¨ 4
\capitalhungarumlaut ˝ 5
\capitalring � 6
\capitalcaron ˇ 7

\capitalbreve � 8
\capitalmacron ¯ 9
\capitaldotaccent
 10
\t � 26
\capitaltie � 27
\newtie � 28
\capitalnewtie � 29

Table 2 on the next page contains the full list of commands to access the text
symbols. Again, the numbers are the slots in the encoding.

The TS1 encoding contains a rich set of symbols which means that several sym-
bols are only available in a few TEX fonts and some, such as the capital accents,
not available at all but developed as part of the reference font implementa-
tion. In reality, many existing fonts don’t provide a full set of glyphs defined in
TS1 encoding and the question arises: “Which glyphs of the TS1 encoding are
implemented by which font?”

Fonts can be ordered in sub-encodings with the \DeclareEncodingSubset New feature
2021/06/01macro:

\DeclareEncodingSubset {⟨encoding⟩} {⟨font family⟩} {⟨subset number⟩}

The macro takes 3 mandatory arguments: An ⟨encoding⟩ for which a subsetting
is wanted (currently only TS1), the ⟨font family⟩ for which we declare the subset
and finally the ⟨subset number⟩ between 0 (all of the encoding is supported)
and 9 (many glyphs are missing). Hence, it is assumed that some symbols
are always available by all fonts and each sub-encoding defines macros which
become unavailable (i.e., they are not provided in the sub-encoding with that
number and all sub-encodings with higher numbers.)

Thus, the symbols that are available in sub-encoding x are the symbols in ta-
ble 3 (always available) and the symbols that only become unavailable in sub-
encodings > x. The tables 4 to 12 on pages 38–39 show the symbols that become
unavailable in the different sub-encodings. Again, the numbers are the slots in
the TS1 encoding, acc indicates a ‘constructed’ accent.

As an example, \DeclareEncodingSubset{TS1}{foo}{5} indicates that the
font family foo contains the always available symbols (table 3 on page 38) and
the ones disabled in sub-encodings 6–9, i.e., tables 9 to 12 on page 39.

As these days many font families are set up to end in -LF (lining figures), -OsF
(oldstyle figures), etc. the declaration supports a shortcut: if the ⟨font family⟩
name ends in -* then the star gets replaced by these common ending, e.g.,

36

\textcapitalcompwordmark ‌ 23
\textascendercompwordmark ‌ 31
\textquotestraightbase ‚ 13
\textquotestraightdblbase „ 18
\texttwelveudash � 21
\textthreequartersemdash  22
\textleftarrow ← 24
\textrightarrow → 25
\textblank ␢ 32
\textdollar $ 36
\textquotesingle ' 39
\textasteriskcentered ∗ 42
\textdblhyphen - 45
\textfractionsolidus ⁄ 47
\textzerooldstyle 0 48
\textoneoldstyle 1 49
\texttwooldstyle 2 50
\textthreeoldstyle 3 51
\textfouroldstyle 4 52
\textfiveoldstyle 5 53
\textsixoldstyle 6 54
\textsevenoldstyle 7 55
\texteightoldstyle 8 56
\textnineoldstyle 9 57
\textlangle 〈 60
\textminus − 61
\textrangle 〉 62
\textmho ℧ 77
\textbigcircle ○ 79
\textohm Ω 87
\textlbrackdbl 〚 91
\textrbrackdbl 〛 93
\textuparrow ↑ 94
\textdownarrow ↓ 95
\textasciigrave ` 96
\textborn b 98
\textdivorced c 99
\textdied d 100
\textleaf l 108
\textmarried m 109
\textmusicalnote ♪ 110
\texttildelow ~ 126
\textdblhyphenchar � 127
\textasciibreve ˘ 128
\textasciicaron ˇ 129
\textacutedbl ˝ 130
\textgravedbl ̏ 131
\textdagger † 132
\textdaggerdbl ‡ 133
\textbardbl ‖ 134
\textperthousand ‰ 135
\textbullet • 136
\textcelsius ℃ 137
\textdollaroldstyle $ 138
\textcentoldstyle ¢ 139

\textflorin ƒ 140
\textcolonmonetary ₡ 141
\textwon ₩ 142
\textnaira ₦ 143
\textguarani � 144
\textpeso � 145
\textlira ₤ 146
\textrecipe � 147
\textinterrobang ‽ 148
\textinterrobangdown � 149
\textdong ₫ 150
\texttrademark ™ 151
\textpertenthousand ‱ 152
\textpilcrow ¶ 153
\textbaht ฿ 154
\textnumero № 155
\textdiscount � 156
\textestimated ℮ 157
\textopenbullet ◦ 158
\textservicemark ℠ 159
\textlquill ⁅ 160
\textrquill ⁆ 161
\textcent ¢ 162
\textsterling £ 163
\textcurrency ¤ 164
\textyen ¥ 165
\textbrokenbar ¦ 166
\textsection § 167
\textasciidieresis ¨ 168
\textcopyright © 169
\textordfeminine ª 170
\textcopyleft « 171
\textlnot ¬ 172
\textcircledP ℗ 173
\textregistered ® 174
\textasciimacron ¯ 175
\textdegree ° 176
\textpm ± 177
\texttwosuperior ² 178
\textthreesuperior ³ 179
\textasciiacute ´ 180
\textmu µ 181
\textparagraph ¶ 182
\textperiodcentered · 183
\textreferencemark ※ 184
\textonesuperior ¹ 185
\textordmasculine º 186
\textsurd √ 187
\textonequarter ¼ 188
\textonehalf ½ 189
\textthreequarters ¾ 190
\texteuro € 191
\texttimes × 214
\textdiv ÷ 246

Table 2: Text symbols formerly from the textcomp package

37

\textquotestraightbase ‚ 13
\textquotestraightdblbase „ 18
\textcapitalcompwordmark ‌ 23
\textascendercompwordmark ‌ 31
\textdollar $ 36
\textquotesingle ' 39
\textasteriskcentered ∗ 42
\textdagger † 132
\textdaggerdbl ‡ 133
\textperthousand ‰ 135
\textbullet • 136
\texttrademark ™ 151
\textcent ¢ 162
\textsterling £ 163
\textyen ¥ 165
\textbrokenbar ¦ 166

\textsection § 167
\textcopyright © 169
\textordfeminine ª 170
\textlnot ¬ 172
\textregistered ® 174
\textdegree ° 176
\textpm ± 177
\textparagraph ¶ 182
\textperiodcentered · 183
\textordmasculine º 186
\textonequarter ¼ 188
\textonehalf ½ 189
\textthreequarters ¾ 190
\texttimes × 214
\textdiv ÷ 246

Table 3: Symbols available in all TS1 sub-encodings

\textcircled ○ acc

Table 4: Symbol unavailable in TS1 sub-encoding 1 and higher

\capitalcedilla ¸ acc
\capitalogonek ˛ acc
\capitalgrave ` 0
\capitalacute ´ 1
\capitalcircumflex � 2
\capitaltilde � 3
\capitaldieresis ¨ 4
\capitalhungarumlaut ˝ 5
\capitalring � 6
\capitalcaron ˇ 7
\capitalbreve � 8
\capitalmacron ¯ 9
\capitaldotaccent
 10
\capitaltie � 27
\newtie � 28
\capitalnewtie{} � 29
\textdblhyphen - 45
\textzerooldstyle 0 48
\textoneoldstyle 1 49
\texttwooldstyle 2 50
\textthreeoldstyle 3 51
\textfouroldstyle 4 52
\textfiveoldstyle 5 53
\textsixoldstyle 6 54
\textsevenoldstyle 7 55
\texteightoldstyle 8 56
\textnineoldstyle 9 57
\textmho ℧ 77
\textbigcircle ○ 79
\textlbrackdbl 〚 91
\textrbrackdbl 〛 93
\textasciigrave ` 96
\textborn b 98

\textdivorced c 99
\textdied d 100
\textleaf l 108
\textmarried m 109
\textmusicalnote ♪ 110
\texttildelow ~ 126
\textdblhyphenchar � 127
\textasciibreve ˘ 128
\textasciicaron ˇ 129
\textacutedbl ˝ 130
\textgravedbl ̏ 131
\textdollaroldstyle $ 138
\textcentoldstyle ¢ 139
\textnaira ₦ 143
\textguarani � 144
\textpeso � 145
\textrecipe � 147
\textpertenthousand ‱ 152
\textpilcrow ¶ 153
\textbaht ฿ 154
\textdiscount � 156
\textopenbullet ◦ 158
\textservicemark ℠ 159
\textlquill ⁅ 160
\textrquill ⁆ 161
\textasciidieresis ¨ 168
\textcopyleft « 171
\textcircledP ℗ 173
\textasciimacron ¯ 175
\textasciiacute ´ 180
\textreferencemark ※ 184
\textsurd √ 187

Table 5: Symbols unavailable in TS1 sub-encoding 2 and higher

38

textlangle 〈 60 \textrangle 〉 62

Table 6: Symbols unavailable in TS1 sub-encoding 3 and higher

\textleftarrow ← 24
\textrightarrow → 25
\textuparrow ↑ 94
\textdownarrow ↓ 95

\textcolonmonetary ₡ 141
\textwon ₩ 142
\textlira ₤ 146
\textdong ₫ 150

Table 7: Symbols unavailable in TS1 sub-encoding 4 and higher

\textnumero № 155 \textestimated ℮ 157

Table 8: Symbols unavailable in TS1 sub-encoding 5 and higher

\textflorin ƒ 140 \textcurrency ¤ 164

Table 9: Symbols unavailable in TS1 sub-encoding 6 and higher

\textfractionsolidus ⁄ 47
\textminus − 61

\textohm Ω 87
\textmu µ 181

Table 10: Symbols unavailable in TS1 sub-encoding 7 and higher

\textblank ␢ 32
\textinterrobang ‽ 148

\textinterrobangdown � 149

Table 11: Symbols unavailable in TS1 sub-encoding 8 and higher

\texttwelveudash � 21
\textthreequartersemdash  22
\textbardbl ‖ 134
\textcelsius ℃ 137

\texttwosuperior ² 178
\textthreesuperior ³ 179
\textonesuperior ¹ 185

Table 12: Symbols unavailable in TS1 sub-encoding 9

39

\DeclareEncodingSubset{TS1}{Alegreya-*}{2}

is the same as writing

\DeclareEncodingSubset{TS1}{Alegreya-LF} {2}
\DeclareEncodingSubset{TS1}{Alegreya-OsF} {2}
\DeclareEncodingSubset{TS1}{Alegreya-TLF} {2}
\DeclareEncodingSubset{TS1}{Alegreya-TOsF}{2}

If only some are needed then one can define them individually but in many cases
all four are wanted, hence the shortcut.

Maintainers of font bundles that include TS1 encoded font files should add an
appropriate declaration into the corresponding ts1family.fd file, because other-
wise the default subencoding is assumed, which is probably disabling too many
glyphs that are actually available in the font.3

8 If you need to know more . . .

The tracefnt package provides for tracing the actions concerned with loading, New
description
1996/06/01

substituting and using fonts. The package accepts the following options:

errorshow Write all information about font changes, etc. but only to the tran-
script file unless an error occurs. This means that information about font
substitution will not be shown on the terminal.

warningshow Show all font warnings on the terminal. This setting corre-
sponds to the default behavior when this tracefnt package is not used!

infoshow Show all font warnings and all font info messages (that are normally
only written to the transcript file) also on the terminal. This is the default
when this tracefnt package is loaded.

debugshow In addition to what is shown by infoshow, show also changes of
math fonts (as far as possible): beware, this option can produce a large
amount of output.

loading Show the names of external font files when they are loaded. This
option shows only ‘newly loaded’ fonts, not those already preloaded in the
format or the class file before this tracefnt package becomes active.

pausing Turn all font warnings into errors so that LATEX will stop.

Warning : The actions of this package can change the layout of a document and
even, in rare cases, produce clearly wrong output, so it should not be used in
the final formatting of ‘real documents’.

3The LATEX format contains declarations for many font families already, but this is really
the wrong place for the declarations. Thus for new fonts they should be placed into the
corresponding .fd file.

40

References

[1] Frank Mittelbach and Michel Goossens. The LATEX Companion second edi-
tion. With Johannes Braams, David Carlisle, and Chris Rowley. Addison-
Wesley, Reading, Massachusetts, 2004.

[2] Donald E. Knuth. Typesetting concrete mathematics. TUGboat, 10(1):31–
36, April 1989.

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley,
Reading, Massachusetts, second edition, 1994.

41

	Contents
	1 Introduction
	1.1 LaTeX2ε fonts
	1.2 Overview
	1.3 Further information

	2 Text fonts
	2.1 Text font attributes
	2.2 Selection commands
	2.3 Internals
	2.4 Parameters for author commands
	2.5 Special font declaration commands

	3 Math fonts
	3.1 Math font attributes
	3.2 Selection commands
	3.3 Declaring math versions
	3.4 Declaring math alphabets
	3.5 Declaring symbol fonts
	3.6 Declaring math symbols
	3.7 Declaring math sizes
	3.8 Declaring math script fonts

	4 Font installation
	4.1 Font definition files
	4.2 Font definition file commands
	4.3 Font file loading information
	4.4 Size functions

	5 Encodings
	5.1 The fontenc package
	5.2 Encoding definition file commands
	5.3 Default definitions
	5.4 Encoding defaults
	5.5 Case changing

	6 Miscellanea
	6.1 Font substitution
	6.2 Preloading
	6.3 Accented characters
	6.4 Naming conventions
	6.5 The order of declaration
	6.6 Document font metafamilies
	6.7 Font series defaults per document metafamily
	6.8 Handling of current and requested font series and shape
	6.9 Handling of nested emphasis
	6.10 Providing font family substitutions

	7 Additional text symbols – textcomp
	8 If you need to know more …
	References

