
Internet Engineering Task Force (IETF) R. Alimi, Ed.
Request for Comments: 6392 Google
Category: Informational A. Rahman, Ed.
ISSN: 2070-1721 InterDigital Communications, LLC
 Y. Yang, Ed.
 Yale University
 October 2011

 A Survey of In-Network Storage Systems

Abstract

 This document surveys deployed and experimental in-network storage
 systems and describes their applicability for the DECADE (DECoupled
 Application Data Enroute) architecture.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6392.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Alimi, et al. Informational [Page 1]

RFC 6392 DECADE Survey October 2011

Table of Contents

 1. Introduction ..3
 2. Survey Overview ...3
 2.1. Terminology and Concepts3
 2.2. Historical Context ...3
 3. In-Network Storage System Components5
 3.1. Data Access Interface5
 3.2. Data Management Operations5
 3.3. Data Search Capability6
 3.4. Access Control Authorization6
 3.5. Resource Control Interface6
 3.6. Discovery Mechanism ..7
 3.7. Storage Mode ...7
 4. In-Network Storage Systems7
 4.1. Amazon S3 ..7
 4.2. BranchCache ..9
 4.3. Cache-and-Forward Architecture11
 4.4. Cloud Data Management Interface12
 4.5. Content Delivery Network14
 4.6. Delay-Tolerant Network16
 4.7. Named Data Networking18
 4.8. Network of Information19
 4.9. Network Traffic Redundancy Elimination22
 4.10. OceanStore ...23
 4.11. P2P Cache ..24
 4.12. Photo Sharing ..26
 4.13. Usenet ...28
 4.14. Web Cache ..29
 4.15. Observations Regarding In-Network Storage Systems31
 5. Storage and Other Related Protocols32
 5.1. HTTP ..32
 5.2. iSCSI ...33
 5.3. NFS ...34
 5.4. OAuth ...36
 5.5. WebDAV ..37
 5.6. Observations Regarding Storage and Related Protocols39
 6. Conclusions ..40
 7. Security Considerations ..40
 8. Contributors ...40
 9. Acknowledgments ..41
 10. Informative References ..41

Alimi, et al. Informational [Page 2]

RFC 6392 DECADE Survey October 2011

1. Introduction

 DECADE (DECoupled Application Data Enroute) is an architecture that
 provides applications with access to provider-based in-network
 storage for content distribution (hereafter referred to as only
 "in-network storage" in this document). With access to in-network
 storage, content distribution applications can be designed to place
 less load on network infrastructure. As a simple example, a peer of
 a Peer-to-Peer (P2P) application may upload to other peers through
 its in-network storage, saving its usage of last-mile uplink
 bandwidth. See [1] for further discussion.

 A major motivation for DECADE is the substantial increase in capacity
 and reduction in cost offered by storage systems. For example, over
 the last two decades, there has been at least a 30-fold increase in
 the amount of storage that a customer can get for a given price (for
 flash memory and hard disk drives) [2] [3] [4].

 High-capacity and low-cost in-network storage devices introduce
 substantial opportunities. One example of in-network storage is
 content caches supporting Web and P2P content. DECADE differs from
 existing content caches whose control fully resides with the owners
 of the caching devices in that DECADE also allows applications to
 control access to their allocated in-network storage, as well as the
 resources consumed while accessing that storage (bandwidth,
 connections, storage space). While designed in the context of P2P
 applications, DECADE may be useful to other applications as well.
 This document provides details on deployed and experimental
 in-network storage solutions, and evaluates their suitability for
 DECADE.

 We note that the survey presented in this document is only
 representative of the research in this area. Rather than trying to
 enumerate an exhaustive list, we have chosen some typical techniques
 that lead to derivative works.

2. Survey Overview

2.1. Terminology and Concepts

 This document uses terms defined in [1].

2.2. Historical Context

 In-network storage has been used previously in numerous scenarios to
 reduce network traffic and enable more efficient content
 distribution. This section presents a brief history of content
 distribution techniques and illustrates how DECADE relates to past

Alimi, et al. Informational [Page 3]

RFC 6392 DECADE Survey October 2011

 approaches. Systems have been developed with particular use cases in
 mind. Thus, this survey is not meant to point out shortcomings of
 existing solutions, but rather to indicate where certain capabilities
 required in DECADE [5] are not provided by existing systems.

 In the early stage of Internet development, most Web content was
 stored at a central server, and clients requested Web content from
 the central server. In this architecture, the central server was
 required to provide a large amount of bandwidth. As more and more
 users access Web content, a central server can become overloaded.
 The use of Web caches is one technique to reduce load on a central
 server. Web caches store frequently requested content and provide
 bandwidth for serving the content to clients.

 The ongoing growth of broadband technology in the worldwide market
 has been driven by the hunger of customers for new multimedia
 services as well as Web content. In particular, the use of audio and
 video streaming formats has become common for delivery of rich
 information to the public, both residential and business.

 To overcome this challenge of massive multimedia consumption, just
 installing more Web caches will not be enough. Moving content closer
 to the consumer results in greater network efficiency, improved
 Quality of Service (QoS), and lower latency, while facilitating
 personalization of content through broadband content applications.
 In these edge technologies, Content Delivery Networks (CDNs) are a
 representative technique. CDNs are based on a large-scale
 distributed network of servers located closer to customers for
 efficient delivery of digital content, including various forms of
 multimedia content.

 Although CDNs are an effective means of information access and
 delivery, there are two barriers to making CDNs a more common
 service: cost and replication integrity. Deploying a CDN with its
 associated infrastructure is expensive. A CDN also requires
 administrative control over nodes with large storage capacity at
 geographically dispersed locations with adequate connectivity. CDNs
 can be scalable, but due to this administrative and cost overhead,
 they are not rapidly deployable for the common user.

 The emergence and maturation of P2P has allowed improvements to many
 network applications. P2P allows the use of client resources, such
 as CPU, memory, storage, and bandwidth, for serving content. This
 can reduce the amount of resources required by a content provider.
 Multimedia content delivery using various P2P or peer-assisted
 frameworks has been shown to greatly reduce the dependence on CDNs
 and central content servers. However, the popularity of P2P
 applications has resulted in increased traffic on ISP networks. P2P

Alimi, et al. Informational [Page 4]

RFC 6392 DECADE Survey October 2011

 caches (both transparent and non-transparent) have been introduced as
 a way to reduce the burden. Though they can be effective in reducing
 traffic in certain areas of ISP networks, P2P caches have their
 shortcomings. In particular, they are application-dependent and thus
 difficult to keep up to date with new and evolving P2P application
 protocols. Second, applications may benefit from explicit control of
 in-network storage, which P2P caches do not provide. See [1] for
 further discussion.

 DECADE aims to provide a standard protocol allowing P2P applications
 (including content providers) to make use of in-network storage to
 reduce the traffic burden on ISP networks, while enabling P2P
 applications to control access to content they have placed in
 in-network storage.

3. In-Network Storage System Components

 Before surveying individual technologies, we describe the basic
 components of in-network storage. For consistency and for ease of
 comparison, we use the same model to evaluate each storage technology
 in this document.

 Note that the network protocol(s) used by a given storage system are
 also an important part of the design. We omit details of particular
 protocol choices in this document.

3.1. Data Access Interface

 A set of operations is made available to a user for accessing data in
 the in-network storage system. Solutions typically allow both read
 and write operations, though the mechanisms for doing so can differ
 drastically.

3.2. Data Management Operations

 Storage systems may provide users the ability to manage stored
 content. For example, operations such as delete and move may be
 provided to users. In this survey, we focus on data management
 operations that are provided to users and omit those provided to
 system administrators.

Alimi, et al. Informational [Page 5]

RFC 6392 DECADE Survey October 2011

3.3. Data Search Capability

 Some storage systems may provide the capability to search or
 enumerate content that has been stored. In this survey, we focus on
 search capabilities that are provided to users and omit those
 provided to system administrators. An example of a search would be
 to find the list of items stored by a given user over a given period
 of time.

3.4. Access Control Authorization

 Storage systems typically allow a user, content owner, or some other
 entity to define the access policies for the in-network storage
 system. The in-network storage system then checks the authorization
 of a user before it stores or retrieves content. We define three
 types of access control authorization: public-unrestricted, public-
 restricted, and private.

 "Public-unrestricted" refers to content on an in-network storage
 system that is widely available to all clients (i.e., without
 restrictions). An example is accessing Wikipedia on the Web, or
 anonymous access to FTP sites.

 "Public-restricted" refers to content on an in-network storage system
 that is available to a restricted (though still potentially large)
 set of clients, but that does not require any confidential
 credentials from the client. An example is some content (e.g., a TV
 show episode) on the Internet that can only be viewable in selected
 countries or networks (i.e., white/black lists or black-out areas).

 "Private" refers to content on an in-network storage system that is
 only made available to one or more clients presenting the required
 confidential credentials (e.g., password or key). This content is
 not available to anyone without the proper confidential access
 credentials.

 Note that a combination of access control types may be applicable for
 a given scenario. For example, the retrieval (read) of content from
 an in-network storage system may be public-unrestricted, but the
 storage (write) to the same system may be private.

3.5. Resource Control Interface

 This is the interface through which users manage the resources on
 in-network storage systems that can be used by other peers, e.g., the
 bandwidth or connections. The storage system may also allow users to
 indicate a time for which resources are granted.

Alimi, et al. Informational [Page 6]

RFC 6392 DECADE Survey October 2011

3.6. Discovery Mechanism

 Users use the discovery mechanism to find the location of in-network
 storage, find an access interface or resource control interface, or
 find other interfaces of in-network storage.

3.7. Storage Mode

 Storage systems may use the following modes of storage: file system,
 object-based, or block-based.

 A file system typically organizes files into a hierarchical tree
 structure. Each level of the hierarchy normally contains zero or
 more directories, each with zero or more files. A file system may
 also be flat or use some other organizing principle.

 We define an object-based storage mode as one that stores discrete
 chunks of data (e.g., IP datagrams or another type of aggregation
 useful to an application) without a pre-defined hierarchy or
 meta-structure.

 We define a block-based storage mode as one that stores a raw
 sequence of bytes, with a client being able to read and/or write data
 at offsets within that sequence. Data is typically accessed in
 blocks for efficiency. A common example for this storage mode is raw
 access to a hard disk.

 In this survey, we define "storage mode" to refer to how data is
 structured within the system, which may not be the same as how it is
 accessed by a client. For example, a caching system may cache
 objects with hierarchical names, but may internally use an object-
 based storage mode.

4. In-Network Storage Systems

 This section surveys in-network storage systems using the methodology
 defined above. The survey includes some systems that are widely
 deployed today, some systems that are just being deployed, and some
 experimental systems. The survey covers both traditional client-
 server architectures and P2P architectures. The surveyed systems are
 listed in alphabetical order. Also, for each system, a brief
 explanation of the relevance to DECADE is given.

4.1. Amazon S3

 Amazon S3 (Simple Storage Service) [6] provides an online storage
 service using Web (HTTP) interfaces. Users create buckets, and each
 bucket can contain stored objects. Users are provided an interface

Alimi, et al. Informational [Page 7]

RFC 6392 DECADE Survey October 2011

 through which they can manage their buckets. Amazon S3 is a popular
 backend storage service for other services. Other related storage
 services are the Blob Service provided by Windows Azure [7], Google
 Storage for Developers [8], and Dropbox [9].

4.1.1. Applicability to DECADE

 Amazon S3 is a very widely used (deployed) example of in-network
 storage. Amazon S3 leases the storage to third-party companies for
 disparate services. In particular, Amazon S3 has a rich model for
 authorization (using signed queries) to integrate with a wide variety
 of use cases. A focus for Amazon S3 is scalability. Particular
 simplifications that were made are the absence of a general,
 hierarchical namespace and the inability to update the contents of
 existing data.

4.1.2. Data Access Interface

 Users can read and write objects.

4.1.3. Data Management Operations

 Users can delete previously stored objects.

4.1.4. Data Search Capability

 Users can list contents of buckets to find objects matching desired
 criteria.

4.1.5. Access Control Authorization

 All methods of access control are supported for clients: public-
 unrestricted, public-restricted, and private.

 For example, access to stored objects can be restricted by an owner,
 a list of other Amazon S3 Web Service users, or all Amazon S3 Web
 Service users; or can be open to all users (anonymous access).
 Another option is for the owner to generate and sign a query (e.g., a
 query to read an object) that can be used by any user until an owner-
 defined expiration time.

4.1.6. Resource Control Interface

 Not provided.

Alimi, et al. Informational [Page 8]

RFC 6392 DECADE Survey October 2011

4.1.7. Discovery Mechanism

 Users are provided a well-known DNS name (either a default provided
 by Amazon S3, or one customized by a particular user). Users
 accessing S3 storage use DNS to discover an IP address where S3
 requests can be sent.

4.1.8. Storage Mode

 Object-based, with the extension that objects can be organized into
 user-defined buckets.

4.2. BranchCache

 BranchCache [10] is a feature integrated into Windows (Windows 7 and
 Windows Server 2008R2) that aims to optimize enterprise branch office
 file access over WAN links. The main goals are to reduce WAN link
 utilization and improve application responsiveness by caching and
 sharing content within a branch while still maintaining end-to-end
 security. BranchCache allows files retrieved from the Web servers
 and file servers located in headquarters or data centers to be cached
 in remote branch offices, and shared among users in the same branch
 accessing the same content. BranchCache operates transparently by
 instrumenting the HTTP and Server Message Block (SMB) components of
 the networking stack. It provides two modes of operation:
 Distributed Cache and Hosted Cache.

 In both modes, a client always contacts a BranchCache-enabled content
 server first to get the content identifiers for local search. If the
 content is cached locally, the client then retrieves the content
 within the branch. Otherwise, the client will go back to the
 original content server to request the content. The two modes differ
 in how the content is shared.

 In the Hosted Cache mode, a locally provisioned server acts as a
 cache for files retrieved from the servers. After getting the
 content identifiers, the client first consults the cache for the
 desired file. If it is not present in the cache, the client
 retrieves it from the content server and sends it to the cache for
 storage.

 In the Distributed Cache mode, a client first queries other clients
 in the same network using the Web Services Discovery multicast
 protocol [11]. As in the Hosted Cache mode, the client retrieves the
 file from the content server if it is not available locally. After
 retrieving the file (either from another client or the content
 server), the client stores the file locally.

Alimi, et al. Informational [Page 9]

RFC 6392 DECADE Survey October 2011

 The original content server always authorizes requests from clients.
 Cached content is encrypted such that clients can decrypt the data
 only using keys derived from metadata returned by the content server.
 In addition to instrumenting the networking stack at clients, content
 servers must also support BranchCache.

4.2.1. Applicability to DECADE

 BranchCache is an example of an in-network storage system primarily
 targeted at enterprise networks. It supports a P2P-like mode
 (Distributed Cache) as well as a client-server mode (Hosted Cache).
 Integration into the Microsoft OS will ensure wide distribution of
 this in-network storage technology.

4.2.2. Data Access Interface

 Clients transparently retrieve (read) data from a cache (on a client
 or a Hosted Cache), since BranchCache operates by instrumenting the
 networking stack. In the Hosted Cache mode, clients write data to
 the Hosted Cache once it is retrieved from the content server.

4.2.3. Data Management Operations

 Not provided.

4.2.4. Data Search Capability

 Not provided.

4.2.5. Access Control Authorization

 The access control method for clients is private. For example,
 transferred content is encrypted, and can only be decrypted by keys
 derived from data received from the original content server. Though
 data may be transferred to unauthorized clients, end-to-end security
 is maintained by only allowing authorized clients to decrypt the
 data.

4.2.6. Resource Control Interface

 The storage capacity of caches on the clients and Hosted Caches is
 configurable by system administrators. The Hosted Cache further
 allows configuration of the maximum number of simultaneous client
 accesses. In the Distributed Cache mode, exponential back-off and
 throttling mechanisms are utilized to prevent reply storms of popular
 content requests. The client will also spread data-block access
 among multiple serving clients that have the content (complete or
 partial) to improve latency and provide some load balancing.

Alimi, et al. Informational [Page 10]

RFC 6392 DECADE Survey October 2011

4.2.7. Discovery Mechanism

 The Distributed Cache mode uses multicast for discovery of other
 clients and content within a local network. Currently, the Hosted
 Cache mode uses policy provisioning or manual configuration of the
 server used as the Hosted Cache. In this mode, the address of the
 server may be found via DNS.

4.2.8. Storage Mode

 Object-based.

4.3. Cache-and-Forward Architecture

 Cache-and-Forward (CNF) [12] is an architecture for content delivery
 services for the future Internet. In this architecture, storage can
 be exploited on nodes within the network, either directly on routers
 or deployed near the routers. CNF is based on the concept of store-
 and-forward routers with large storage, providing for opportunistic
 delivery to occasionally disconnected mobile users and for in-network
 caching of content. The proposed CNF protocol uses reliable hop-by-
 hop transfer of large data files between CNF routers in place of an
 end-to-end transport protocol such as TCP.

4.3.1. Applicability to DECADE

 CNF is an example of an experimental in-network storage system that
 would require storage space on (or near) a large number of routers in
 the Internet if it was deployed. As the name of the system implies,
 it would provide short-term caching and not long-term network
 storage.

4.3.2. Data Access Interface

 Users implicitly store content at CNF routers by requesting files.
 End hosts read content from in-network storage by submitting queries
 for content.

4.3.3. Data Management Operations

 Not provided.

4.3.4. Data Search Capability

 Not provided.

Alimi, et al. Informational [Page 11]

RFC 6392 DECADE Survey October 2011

4.3.5. Access Control Authorization

 The access control method is public-restricted (to any client that is
 part of the CNF network).

4.3.6. Resource Control Interface

 Not provided.

4.3.7. Discovery Mechanism

 A query including a location-independent content ID is sent to the
 network and routed to a CNF router, which handles retrieval of the
 data and forwarding to the end host.

4.3.8. Storage Mode

 Object-based, with objects representing individual files. The
 architecture proposes to cache large files in storage within the
 network, though objects could be made to represent smaller chunks of
 larger files.

4.4. Cloud Data Management Interface

 The Cloud Data Management Interface (CDMI) is a specification to
 access and manage cloud storage. CDMI is specified by the Storage
 Networking Industry Association (SNIA).

 CDMI is a functional interface that applications can use to create,
 retrieve, update, and delete data elements from the cloud. As part
 of this interface, the client will be able to discover the
 capabilities of the cloud storage offering and use this interface to
 manage containers and the data that is placed in them. In addition,
 metadata can be set on containers and their contained data elements
 through this interface [13].

 CDMI follows a traditional client-server model, and operates over an
 HTTP interface using the Representational State Transfer (REST)
 model. Similar to Amazon S3 buckets (see Section 4.1), users may
 create containers in which data objects may be stored. Even though
 data objects may be accessed via a user-defined name within a
 container, it is also possible to access data objects via a storage-
 defined Object ID, which is provided in the response upon creation of
 a data object.

Alimi, et al. Informational [Page 12]

RFC 6392 DECADE Survey October 2011

4.4.1. Applicability to DECADE

 CDMI is an important initiative to standardize storage interfaces for
 cloud services, which are rapidly becoming an important type of
 storage service. In particular, it specifies a set of operations for
 creating, reading, writing, and managing data objects at a remote
 server (or set of servers) via HTTP.

4.4.2. Data Access Interface

 Users can read and write data objects, and also update data in
 existing data objects. CDMI data objects are sent on the wire
 embedded as a field in a JavaScript Object Notation (JSON) object.
 The protocol also defines interfaces in which the contents of data
 objects can be written via simple HTTP GET/PUT operations.

4.4.3. Data Management Operations

 Users can delete already-existing data objects. The create operation
 also supports modes in which the created object is copied or moved
 from an existing data object.

 Data system metadata also allows users to configure policies
 regarding time-to-live, after which a data object is automatically
 deleted, as well as the redundancy with which a data object is
 stored.

4.4.4. Data Search Capability

 Users may list the contents of containers to locate data objects
 matching any desired criteria.

4.4.5. Access Control Authorization

 All methods of access control for clients are supported: public-
 unrestricted, public-restricted, and private.

 In particular, CDMI allows access to data objects to be protected by
 Access Control Lists (ACLs) that can allow or restrict access based
 on user name, group, administrative status, or whether a user is
 authenticated or anonymous.

4.4.6. Resource Control Interface

 CDMI supports attributes ’cdmi_max_latency’ and ’cdmi_max_throughput’
 (set at either the level of containers, or a specific data object),
 which control the level of service offered to any users accessing a
 particular data object.

Alimi, et al. Informational [Page 13]

RFC 6392 DECADE Survey October 2011

4.4.7. Discovery Mechanism

 Users are provided a well-known DNS name. The DNS name is resolved
 to determine the IP address to which requests may be sent.

4.4.8. Storage Mode

 Object-based, with the extension that objects can be organized into
 user-defined containers.

4.5. Content Delivery Network

 A CDN provides services that improve performance by minimizing the
 amount of data transmitted through the network, improving
 accessibility, and maintaining correctness through content
 replication. CDNs offer fast and reliable applications and services
 by distributing content to cache or edge servers located close to
 users. See [14] for an additional taxonomy and survey.

 A CDN has some combination of content delivery, request routing,
 distribution, and accounting infrastructures. The content-delivery
 infrastructure consists of a set of edge servers (also called
 surrogates) that deliver copies of content to end users. The
 request-routing infrastructure is responsible for directing client
 requests to appropriate edge servers. It also interacts with the
 distribution infrastructure to keep an up-to-date view of the content
 stored in the CDN caches. The distribution infrastructure moves
 content from the origin server to the CDN edge servers and ensures
 consistency of content in the caches. The accounting infrastructure
 maintains logs of client accesses and records the usage of the CDN
 servers. This information is used for traffic reporting and usage-
 based billing.

 In practice, a CDN typically hosts static content including images,
 video, media clips, advertisements, and other embedded objects for
 Web viewing. A focus for CDNs is the ability to publish and deliver
 content to end users in a reliable and timely manner. A CDN focuses
 on building its network infrastructure to provide the following
 services and functionalities: storage and management of content;
 distribution of content among surrogates; cache management; delivery
 of static, dynamic, and streaming content; backup and disaster
 recovery solutions; and monitoring, performance measurement, and
 reporting.

 Examples of existing CDNs are Akamai, Limelight, and CloudFront.

Alimi, et al. Informational [Page 14]

RFC 6392 DECADE Survey October 2011

 The following description uses the term "content provider" to refer
 to the entity purchasing a CDN service, and the term "client" to
 refer to the subscriber requesting content via the CDN from the
 content provider.

4.5.1. Applicability to DECADE

 CDNs are a very widely used (deployed) example of in-network storage
 for multimedia content. The existence and operation of the storage
 system are totally transparent to the end user. CDNs typically
 require a strong business relationship between the content providers
 and content distributors, and often the business relationship extends
 to the ISPs.

4.5.2. Data Access Interface

 A CDN is typically a closed system, and generally provides only a
 read (retrieve) access interface to clients. A CDN typically does
 not provide a write (store) access interface to clients. The content
 provider can access network edge servers and store content on them,
 or edge servers can retrieve content from content providers. Client
 nodes can only retrieve content from edge servers.

4.5.3. Data Management Operations

 A content provider can manage the data distributed in different cache
 nodes, such as moving popular data objects from one cache node to
 another cache node, or deleting rarely accessed data objects in cache
 nodes. User nodes, however, have no right to perform these
 operations.

4.5.4. Data Search Capability

 A content provider can search or enumerate the data each cache node
 stores. User nodes cannot perform search operations.

4.5.5. Access Control Authorization

 All methods of access control (for reading) are supported for
 clients: public-unrestricted, public-restricted, and private. Some
 CDN edge servers allow usage of HTTP basic authentication with the
 origin server or restrictions by IP address, or they can use a token-
 based technique to allow the origin server to apply its own
 authorization criteria.

 As mentioned previously, clients typically cannot write to the CDN.
 Writing is typically a private operation for the content providers.

Alimi, et al. Informational [Page 15]

RFC 6392 DECADE Survey October 2011

4.5.6. Resource Control Interface

 Not provided.

4.5.7. Discovery Mechanism

 Content providers can directly find internal CDN cache nodes to store
 content, since they typically have an explicit business relationship.
 Clients can locate CDN nodes through DNS or other redirection
 mechanisms.

4.5.8. Storage Mode

 Though the addressing of objects uses URLs that typically refer to
 objects in a hierarchical fashion, the storage mode is typically
 object-based.

4.6. Delay-Tolerant Network

 The Delay-Tolerant Network (DTN) [15] is an evolution of an
 architecture originally designed for the Interplanetary Internet.
 The Interplanetary Internet is a communication system envisioned to
 provide Internet-like services across interplanetary distances in
 support of deep space exploration. The DTN architecture can be
 utilized in various operational environments characterized by severe
 communication disruptions, disconnections, and high delays (e.g., a
 month-long loss of connectivity between two planetary networks
 because of high solar radiation due to sun spots). The DTN
 architecture is thus suitable for environments including deep space
 networks, sensor-based networks, certain satellite networks, and
 underwater acoustic networks.

 A key aspect of the DTN is a store-and-forward overlay layer called
 the "Bundle Protocol" or "Bundle Layer", which exists between the
 transport and application layers [16]. The Bundle Layer forms a
 logical overlay that employs persistent storage to help combat long-
 term network interruptions by providing a store-and-forward service.
 While traditional IP networks are also based on store-and-forward
 principles, the amount of time of a packet being kept in "storage" at
 a traditional IP router is typically on the order of milliseconds (or
 less). In contrast, the DTN architecture assumes that most Bundle
 Layer nodes will use some form of persistent storage (e.g., hard
 disk, flash memory, etc.) for DTN packets because of the nature of
 the DTN environment.

Alimi, et al. Informational [Page 16]

RFC 6392 DECADE Survey October 2011

4.6.1. Applicability to DECADE

 The DTN is an example of an experimental in-network storage system
 that would require fundamental changes to the Internet protocols.

4.6.2. Data Access Interface

 Users implicitly cause content to be stored (until successfully
 forwarded) at Bundle Layer nodes by initiating/terminating any
 transaction that traverses the DTN.

4.6.3. Data Management Operations

 Users can implicitly cause deletion of content stored at Bundle Layer
 nodes via a "time-to-live" type of parameter that the user can
 control (for transactions originating from the user).

4.6.4. Data Search Capability

 Not provided.

4.6.5. Access Control Authorization

 The access control method is public-restricted (to any client that is
 part of the DTN) or private.

4.6.6. Resource Control Interface

 Not provided.

4.6.7. Discovery Mechanism

 A Uniform Resource Identifier (URI) approach is used as the basis of
 the addressing scheme for DTN transactions (and subsequent store-and-
 forward routing through the DTN network).

4.6.8. Storage Mode

 Object-based. DTN applications send data to the Bundle Layer, which
 then breaks the data into segments. These segments are then routed
 through the DTN network, and stored in Bundle Layer nodes as required
 (before being forwarded).

Alimi, et al. Informational [Page 17]

RFC 6392 DECADE Survey October 2011

4.7. Named Data Networking

 Named Data Networking (NDN) [17] is a research initiative that
 proposes to move to a new model of addressing and routing for the
 Internet. NDN uses "named data"-based routing and forwarding, to
 replace the current IP-address-based model. NDN also uses name-based
 data caching in the routers.

 Each NDN Data packet will be assigned a content name and will be
 cryptographically signed. Data delivery is driven by the requesting
 end. Routers disseminate name-based prefix announcements by using
 routing protocols such as Intermediate System to Intermediate System
 (IS-IS) or the Border Gateway Protocol (BGP). The requester will
 send out an "Interest" packet, which identifies the name of the data
 that it wants. Routers that receive this Interest packet will
 remember the interface it came from and will then forward it on a
 name-based routing protocol. Once an Interest packet reaches a node
 that has the desired data, a named Data packet is sent back, which
 carries both the name and content of the data, along with a digital
 signature of the producer. This named Data packet is then forwarded
 back to the original requester on the reverse path of the Interest
 packet [18].

 A key aspect of NDN is that routers have the capability to cache the
 named data. If a request for the same data (i.e., same name) comes
 to the router, then the NDN router will forward the named data stored
 locally to fulfill the request. The proponents of NDN believe that
 the network can be designed naturally, matching data delivery
 characteristics instead of communication between endpoints, because
 data delivery has become the primary use of the network.

4.7.1. Applicability to DECADE

 NDN is an example of an experimental in-network storage system that
 would require storage space on a large number of routers in the
 Internet. Named Data packets would be kept in storage in the NDN
 routers and provided to new requesters of the same data.

4.7.2. Data Access Interface

 Users implicitly store content at NDN routers by requesting content
 (the named Data packets) from the network. Subsequent requests by
 different users for the same content will cause the named Data
 packets to be read from the NDN routers’ in-network storage.

Alimi, et al. Informational [Page 18]

RFC 6392 DECADE Survey October 2011

4.7.3. Data Management Operations

 Users do not have the direct ability to delete content stored in the
 NDN routers. However, there will be some type of time-to-live
 parameter associated with the named Data packets, though this has not
 yet been specified.

4.7.4. Data Search Capability

 Not provided.

4.7.5. Access Control Authorization

 All methods of access control for clients are supported: public-
 unrestricted, public-restricted, and private.

 The basic security mechanism in NDN is for the sender to digitally
 sign the content (the named Data packets) that it sends. It is
 envisioned that a complete access control system can be built on top
 of NDN, though this has not yet been specified.

4.7.6. Resource Control Interface

 Not provided.

4.7.7. Discovery Mechanism

 Names are used as the basis of the addressing and discovery scheme
 for NDN (and subsequent store-and-forward routing through the NDN
 network). NDN names are assumed to be hierarchical and to be able to
 be deterministically constructed. This is still an active area of
 research.

4.7.8. Storage Mode

 Object-based. NDN sends named Data packets through the network.
 These Data packets are routed through the NDN network and stored in
 NDN routers.

4.8. Network of Information

 Similar to NDN (see Section 4.7), Network of Information (NetInf)
 [19] is another information-centric approach in which the named data
 objects are the basic component of the networking architecture.
 NetInf is thus moving away from today’s host-centric networking

Alimi, et al. Informational [Page 19]

RFC 6392 DECADE Survey October 2011

 architecture where the nodes in the network are the primary objects.
 In today’s network, the information objects are named relative to the
 hosts they are stored on (e.g.,
 http://www.example.com/information-object.txt).

 The NetInf naming and security framework builds the foundation for an
 information-centric security model that integrates security deeply
 into the architecture. In this model, trust is based on the
 information itself. Information objects (IOs) are given a unique
 name with cryptographic properties. Together with additional
 metadata, the name can be used to verify the data integrity as well
 as several other security properties, such as self-certification,
 name persistency, and owner authentication and identification. The
 approach also gives some benefits over the security model in today’s
 host-centric networks, as it minimizes the need for trust in the
 infrastructure, including the hosts providing the data, the channel,
 or the resolution service.

 In NetInf, the information objects are published into the network.
 They are registered with a Name Resolution Service (NRS). The NRS is
 also used to register network locators that can be used to retrieve
 data objects that represent the published IOs. When a receiver wants
 to retrieve an IO, the request for the IO is resolved by the NRS into
 a set of locators. These locators are then used to retrieve a copy
 of the data object from the "best" available source(s). NetInf is
 open to use any type of underlying transport network. The locators
 can thus be a heterogeneous set, e.g., IPv4, IPv6, Medium Access
 Control (MAC), etc.

 NetInf will make extensive use of caching of information objects in
 the network and will provide network functionality that is similar to
 what overlay solutions such as CDNs and P2P distribution networks
 (e.g., BitTorrent) provide today.

4.8.1. Applicability to DECADE

 NetInf is an example of an experimental information-centric network
 architecture that will require storage space for storage and caching
 of information objects on a large number of NetInf nodes in the
 Internet.

Alimi, et al. Informational [Page 20]

RFC 6392 DECADE Survey October 2011

4.8.2. Data Access Interface

 Users will publish IOs with specific IDs into the network. This is
 done by the client sending a register message to the NRS stating that
 the IO with the specific ID is available. When another user wishes
 to retrieve the IO, they will use the given ID to make a request for
 the IO. The ID is then resolved by the NRS, and the IO is delivered
 from a nearby in-network storage location.

4.8.3. Data Management Operations

 Users do not have the direct ability to delete content stored in the
 NetInf nodes. However, there can be some type of time-to-live
 parameter associated with the information objects, though this has
 not yet been specified.

4.8.4. Data Search Capability

 Not provided.

4.8.5. Access Control Authorization

 All methods of access control for clients are supported: public-
 unrestricted, public-restricted, and private. The basic security
 mechanism in NetInf is for the publisher to digitally sign the
 content of the information object that it publishes. It is
 envisioned that a complete access control system can be built on top
 of NetInf, though this has not yet been specified.

4.8.6. Resource Control Interface

 Not provided.

4.8.7. Discovery Mechanism

 NetInf IDs are used for naming and accessing information objects.
 The IDs are resolved by the NRS into locators that are used for
 routing and transport of data through the transport networks. This
 is still an active area of research.

4.8.8. Storage Mode

 Object-based. From an application perspective, NetInf can be used
 for publishing entire files or chunks of files. NetInf is agnostic
 to the application perspective and treats everything as information
 objects.

Alimi, et al. Informational [Page 21]

RFC 6392 DECADE Survey October 2011

4.9. Network Traffic Redundancy Elimination

 Redundancy Elimination (RE) is used for identifying and removing
 repeated content from network transfers. This technique has been
 proposed to improve network performance in many types of networks,
 such as ISP backbones and enterprise access links. One example of an
 RE proposal is SmartRE [20], proposed by Anand et al., which focuses
 on network-wide RE. In packet-level RE, forwarding elements are
 equipped with additional storage that can be used to cache data from
 forwarded packets. Upstream routers may replace packet data with a
 fingerprint that tells a downstream router how to decode and
 reconstruct the packet based on cached data.

4.9.1. Applicability to DECADE

 RE is an example of an experimental in-network storage system that
 would require a large amount of associated packet processing at
 routers if it was ever deployed.

4.9.2. Data Access Interface

 RE is typically transparent to the user. Writing into storage is
 done by transferring data that has not already been cached. Storage
 is read when users transmit data identical to previously transmitted
 data.

4.9.3. Data Management Operations

 Not provided.

4.9.4. Data Search Capability

 Not provided.

4.9.5. Access Control Authorization

 The access control method is public-restricted (to any client that is
 part of the RE network). Note that the content provider still
 retains control over which peers receive the requested data. The
 returned data is "compressed" as it is transferred within the
 network.

4.9.6. Resource Control Interface

 Not provided. The content provider still retains control over the
 rate at which packets are sent to a peer. The packet size within the
 network may be reduced.

Alimi, et al. Informational [Page 22]

RFC 6392 DECADE Survey October 2011

4.9.7. Discovery Mechanism

 No discovery mechanism is necessary. Routers can use RE without the
 users’ knowledge.

4.9.8. Storage Mode

 Object-based, with "objects" being data from packets transmitted
 within the network.

4.10. OceanStore

 OceanStore [21] is a storage platform developed at the University of
 California, Berkeley, that provides globally distributed storage.
 OceanStore implements a model where multiple storage providers can
 pool resources together. Thus, a major focus is on resiliency, self-
 organization, and self-maintenance.

 The protocol is resilient to some storage nodes being compromised by
 utilizing Byzantine agreement and erasure codes to store data at
 primary replicas.

4.10.1. Applicability to DECADE

 OceanStore is an example of an experimental in-network storage system
 that provides a high degree of network resilience to failure
 scenarios.

4.10.2. Data Access Interface

 Users may read and write objects.

4.10.3. Data Management Operations

 Objects may be replaced by newer versions, and multiple versions of
 an object may be maintained.

4.10.4. Data Search Capability

 Not provided.

4.10.5. Access Control Authorization

 Provided, but specifics for clients are unclear from the available
 references.

Alimi, et al. Informational [Page 23]

RFC 6392 DECADE Survey October 2011

4.10.6. Resource Control Interface

 Not provided.

4.10.7. Discovery Mechanism

 Users require an entry point into the system in the form of one
 storage node that is part of OceanStore. If a hostname is provided,
 the address of a storage node may be determined via DNS.

4.10.8. Storage Mode

 Object-based.

4.11. P2P Cache

 Caching of P2P traffic is a useful approach to reduce P2P network
 traffic, because objects in P2P systems are mostly immutable and the
 traffic is highly repetitive. In addition, making use of P2P caches
 does not require changes to P2P protocols and can be deployed
 transparently from clients.

 P2P caches operate similarly to Web caches (Section 4.14) in that
 they temporarily store frequently requested content. Requests for
 content already stored in the cache can be served from local storage
 instead of requiring the data to be transmitted over expensive
 network links.

 Two types of P2P caches exist: transparent P2P caches and
 non-transparent P2P caches.

 For a transparent cache, once a P2P cache is established, the network
 will transparently redirect P2P traffic to the cache, which either
 serves the file directly or passes the request on to a remote P2P
 user and simultaneously caches that data. Transparency is typically
 implemented using Deep Packet Inspection (DPI). DPI products
 identify and pass P2P packets to the P2P caching system so it can
 cache and accelerate the traffic.

 A non-transparent cache appears as a super peer; it explicitly peers
 with other P2P clients.

 To enable operation with existing P2P software, P2P caches directly
 support P2P application protocols. A large number of P2P protocols
 are used by P2P software and hence are supported by caches, leading
 to higher complexity. Additionally, these protocols evolve over
 time, and new protocols are introduced.

Alimi, et al. Informational [Page 24]

RFC 6392 DECADE Survey October 2011

4.11.1. Applicability to DECADE

 A P2P cache is an example of in-network storage for P2P systems.
 However, unlike DECADE, the existence and operation of the storage
 system are totally transparent to the end user.

4.11.2. Transparent P2P Caches

4.11.2.1. Data Access Interface

 The data access interface allows P2P content to be cached (stored)
 and supplied (retrieved) locally such that network traffic is
 reduced, but it is transparent to P2P users, and P2P users implicitly
 use the data access interface (in the form of their native P2P
 application protocol) to store or retrieve content.

4.11.2.2. Data Management Operations

 Not provided.

4.11.2.3. Data Search Capability

 Not provided.

4.11.2.4. Access Control Authorization

 The access control method is typically public-restricted (to any
 client that is part of the P2P channel or swarm).

4.11.2.5. Resource Control Interface

 Not provided.

4.11.2.6. Discovery Mechanism

 The use of DPI means that no discovery mechanism is provided to P2P
 users; it is transparent to P2P users. Since DPI is used to
 recognize P2P applications’ private protocols, P2P cache
 implementations must be updated as new applications are added and
 existing protocols evolve.

4.11.2.7. Storage Mode

 Object-based. Chunks (typically, the unit of transfer among P2P
 clients) of content are stored in the cache.

Alimi, et al. Informational [Page 25]

RFC 6392 DECADE Survey October 2011

4.11.3. Non-Transparent P2P Caches

4.11.3.1. Data Access Interface

 The data access interface allows P2P content to be cached (stored)
 and supplied (retrieved) locally such that network traffic is
 reduced. P2P users implicitly store and retrieve from the cache
 using the P2P application’s native protocol.

4.11.3.2. Data Management Operations

 Not provided.

4.11.3.3. Data Search Capability

 Not provided.

4.11.3.4. Access Control Authorization

 The access control method is typically public-restricted (to any
 client that is part of the P2P channel or swarm).

4.11.3.5. Resource Control Interface

 Not provided.

4.11.3.6. Discovery Mechanism

 A P2P cache node behaves as if it were a normal peer in order to join
 the P2P overlay network. Other P2P users can find such a cache node
 through an overlay routing mechanism and can interact with it as if
 it were a normal neighbor node.

4.11.3.7. Storage Mode

 Object-based. Chunks (typically, the unit of transfer among P2P
 clients) of content are stored in the cache.

4.12. Photo Sharing

 There are a growing number of popular online photo-sharing (storing)
 systems. For example, the Kodak Gallery system [22] serves over
 60 million users and stores billions of images [23]. Other well-
 known examples of photo-sharing systems include Flickr [24] and
 ImageShack [25]. There are also a number of popular blogging

Alimi, et al. Informational [Page 26]

RFC 6392 DECADE Survey October 2011

 services, such as Tumblr [26], that specialize in sharing large
 numbers of photos as well as other multimedia content (e.g., video,
 text, audio, etc.) as part of their service. All of these in-network
 storage systems utilize both free and paid subscription models.

 Most photo-sharing systems are based on a traditional client-server
 architecture. However, a minority of systems also offer a P2P mode
 of operation. The client-server architecture is typically based on
 HTTP, with a browser client and a Web server.

4.12.1. Applicability to DECADE

 Photo sharing is a very widely used (deployed) example of in-network
 storage where the end user has direct visibility and extensive
 control of the system. The typical end-user interface is through an
 HTTP-based Web browser.

4.12.2. Data Access Interface

 Users can read (view) and write (store) photos.

4.12.3. Data Management Operations

 Users can delete previously stored photos.

4.12.4. Data Search Capability

 Users can tag photos and/or organize them using sophisticated Web
 photo album generators. Users can then search for objects (photos)
 matching desired criteria.

4.12.5. Access Control Authorization

 The access control method for clients is typically either private or
 public-unrestricted. For example, writing (storing) to a photo blog
 is typically private to the owner of the account. However, all other
 clients can view (read) the contents of the blog (i.e., public-
 unrestricted). Some photo-sharing Websites provide private access to
 read photos to allow sharing with a limited set of friends.

4.12.6. Resource Control Interface

 Not provided.

Alimi, et al. Informational [Page 27]

RFC 6392 DECADE Survey October 2011

4.12.7. Discovery Mechanism

 Clients usually log on manually to a central Web page for the service
 and enter the appropriate information to access the desired
 information. The address to which the client connects is usually
 determined by DNS using the hostname from the provided URL.

4.12.8. Storage Mode

 File system (file-based). Photos are usually stored as files. They
 can then be organized into meta-structures (e.g., albums, galleries,
 etc.) using sophisticated Web photo album generators.

4.13. Usenet

 Usenet is a distributed Internet-based discussion (message) system.
 The Usenet messages are arranged as a set of "newsgroups" that are
 classified hierarchically by subject. Usenet information is
 distributed and stored among a large conglomeration of servers that
 store and forward messages to one another in so-called news feeds.
 Individual users may read messages from, and post messages to, a
 local news server typically operated by an ISP. This local server
 communicates with other servers and exchanges articles with them. In
 this fashion, the message is copied from server to server and
 eventually reaches every server in the network [27].

 Traditional Usenet as described above operates as a P2P network
 between the servers, and in a client-server architecture between the
 user and their local news server. The user requires a Usenet client
 to be installed on their computer and a Usenet server account
 (through their ISP). However, with the rise of Web browsers, the
 Usenet architecture is evolving to be Web-based. The most popular
 example of this is Google Groups, where Google hosts all the
 newsgroups and client access is via a standard HTTP-based Web
 browser [28].

4.13.1. Applicability to DECADE

 Usenet is a historically very important and widely used (deployed)
 example of in-network storage in the Internet. The use of this
 system is rapidly declining, but efforts have been made to preserve
 the stored content for historical purposes.

4.13.2. Data Access Interface

 Users can read and post (store) messages.

Alimi, et al. Informational [Page 28]

RFC 6392 DECADE Survey October 2011

4.13.3. Data Management Operations

 Users sometimes have limited ability to delete messages that they
 previously posted.

4.13.4. Data Search Capability

 Traditionally, users could manually search through the newsgroups, as
 they are classified hierarchically by subject. In the newer Web-
 based systems, there is also an automatic search capability based on
 key-word matches.

4.13.5. Access Control Authorization

 The access control method is either public-unrestricted or private
 (to client members of that newsgroup).

4.13.6. Resource Control Interface

 Not provided.

4.13.7. Discovery Mechanism

 Clients usually log on manually to their Usenet accounts. DNS may be
 used to resolve hostnames to their corresponding addresses.

4.13.8. Storage Mode

 File system. Messages are usually stored as files that are then
 organized hierarchically by subject into newsgroups.

4.14. Web Cache

 Web cache [29] has been widely deployed by many ISPs to reduce
 bandwidth consumption and Web access latency since the late 1990s. A
 Web cache can cache the Web documents (e.g., HTML pages, images)
 between server and client to reduce bandwidth usage, server load, and
 perceived lag. A Web cache server is typically shared by many
 clients, and stores copies of documents passing through it;
 subsequent requests may be satisfied from the cache if certain
 conditions are met.

 Another form of cache is a client-side cache, typically implemented
 in Web browsers. A client-side cache can keep a local copy of all
 pages recently displayed by a browser, and when the user returns to
 one of these Web pages, the local cached copy is reused.

Alimi, et al. Informational [Page 29]

RFC 6392 DECADE Survey October 2011

 A related protocol for P2P applications to use Web cache is HPTP
 (HTTP-based Peer to Peer) [30]. It proposes sharing chunks of P2P
 files/streams using HTTP with cache-control headers.

4.14.1. Applicability to DECADE

 Web cache is a very widely used (deployed) example of in-network
 storage for the key Internet application of Web browsing. The
 existence and operation of the storage system are transparent to the
 end user in most cases. The content caching time is controlled by
 time-to-live parameters associated with the original content. The
 principle of Web caching is to speed up Web page reading by using
 (the same) content previously requested by another user to service a
 new user.

4.14.2. Data Access Interface

 Users explicitly read from a Web cache by making requests, but they
 cannot explicitly write data into it. Data is implicitly stored in
 the Web cache by requesting content that is not already cached and
 meets policy restrictions of the cache provider.

4.14.3. Data Management Operations

 Not provided.

4.14.4. Data Search Capability

 Not provided.

4.14.5. Access Control Authorization

 The access control method for clients is public-unrestricted. It is
 important to note that if content is authenticated or encrypted
 (e.g., HTTPS, Secure Socket Layer (SSL)), it will not be cached.
 Also, if the content is flagged as private (vs. public) at the HTTP
 level by the origin server, it will not be cached.

4.14.6. Resource Control Interface

 Not provided.

4.14.7. Discovery Mechanism

 Web caches can be transparently deployed between a Web server and Web
 clients, employing DPI for discovery. Alternatively, Web caches
 could be explicitly discovered by clients using techniques such as
 DNS or manual configuration.

Alimi, et al. Informational [Page 30]

RFC 6392 DECADE Survey October 2011

4.14.8. Storage Mode

 Object-based. Web content is keyed within the cache by HTTP Request
 fields, such as Method, URI, and Headers.

4.15. Observations Regarding In-Network Storage Systems

 The following observations about the surveyed in-network storage
 systems are made in the context of DECADE as defined by [1].

 The majority of the surveyed systems were designed for client-server
 architectures and do not support P2P. However, there are some
 important exceptions, especially for some of the newer technologies
 such as BranchCache and P2P cache, that do support a P2P mode of
 operation.

 The P2P cache systems are interesting, since they do not require
 changes to the P2P applications themselves. However, this is also a
 limitation in that they are required to support each application
 protocol.

 Many of the surveyed systems were designed for caching as opposed to
 long-term network storage. Thus, during DECADE protocol design, it
 should be carefully considered whether a caching mode should be
 supported in addition to a long-term network storage mode. There is
 typically a trade-off between providing a caching mode and long-term
 (and usually also reliable) storage with regards to some performance
 metrics. Note that [1] identifies issues with classical caching from
 a DECADE perspective, such as the fact that P2P caches typically do
 not allow users to explicitly control content stored in the cache.

 Certain components of the surveyed systems are outside of the scope
 of DECADE. For example, a protocol used for searching across
 multiple DECADE servers is out of scope. However, applications may
 still be able to implement such functionality if DECADE exposes the
 appropriate primitives. This has the benefit of keeping the core
 in-network storage systems simple, while permitting diverse
 applications to design mechanisms that meet their own requirements.

 Today, most in-network storage systems follow some variant of the
 authorization model of public-unrestricted, public-restricted, and
 private. For DECADE, we may need to evolve the authorization model
 to support a resource owner (e.g., end user) authorization, in
 addition to the network authorization.

Alimi, et al. Informational [Page 31]

RFC 6392 DECADE Survey October 2011

5. Storage and Other Related Protocols

 This section surveys existing storage and other related protocols, as
 well as comments on the usage of these protocols to satisfy DECADE’s
 use cases. The surveyed protocols are listed alphabetically.

5.1. HTTP

 HTTP [31] is a key protocol for the World Wide Web. It is a
 stateless client-server protocol that allows applications to be
 designed using the REST model. HTTP is often associated with
 downloading (reading) content from Web servers to Web browsers, but
 it also has support for uploading (writing) content to Web servers.
 It has been used as the underlying protocol for other protocols, such
 as Web Distributed Authoring and Versioning (WebDAV).

 HTTP is used in some of the most popular in-network storage systems
 surveyed previously, including CDNs, photo sharing, and Web cache.
 Usage of HTTP by a storage protocol implies that no extra software is
 required in the client (i.e., Web-based client), as all standard Web
 browsers are based on HTTP.

5.1.1. Data Access Interface

 Basic read and write operations are supported (using HTTP GET, PUT,
 and POST methods).

5.1.2. Data Management Operations

 Not provided.

5.1.3. Data Search Capability

 Not provided.

5.1.4. Access Control Authorization

 All methods of access control for clients are supported: public-
 unrestricted, public-restricted, and private.

 The majority of Web pages are public-unrestricted in terms of reading
 but do not allow any uploading of content. In-network storage
 systems range from private or public-unrestricted for photo sharing
 (described in Section 4.12.5) to public-unrestricted for Web caching
 (described in Section 4.14.5).

Alimi, et al. Informational [Page 32]

RFC 6392 DECADE Survey October 2011

5.1.5. Resource Control Interface

 Not provided.

5.1.6. Discovery Mechanism

 Manual configuration is typically used. Clients typically address
 HTTP servers by providing a hostname, which is resolved to an address
 using DNS.

5.1.7. Storage Mode

 HTTP is a protocol; it thus does not define a storage mode. However,
 a non-collection resource can typically be thought of as a "file".
 These files may be organized into collections, which typically map
 onto the HTTP path hierarchy, creating the illusion of a file system.

5.1.8. Comments

 HTTP is based on a client-server architecture and thus is not
 directly applicable for the DECADE focus on P2P. Also, HTTP offers
 only a rudimentary toolset for storage operations compared to some of
 the other storage protocols.

5.2. iSCSI

 Small Computer System Interface (SCSI) is a set of protocols enabling
 communication with storage devices such as disk drives and tapes;
 Internet SCSI (iSCSI) [32] is a protocol enabling SCSI commands to be
 sent over TCP. As in SCSI, iSCSI allows an Initiator to send
 commands to a Target. These commands operate on the device level as
 opposed to individual data objects stored on the device.

5.2.1. Data Access Interface

 Read and write commands indicate which data is to be read or written
 by specifying the offset (using Logical Block Addressing) into the
 storage device. The size of data to be read or written is an
 additional parameter in the command.

5.2.2. Data Management Operations

 Since commands operate at the device level, management operations are
 different than with traditional file systems. Management commands
 for SCSI/iSCSI include explicit device control commands, such as
 starting, stopping, and formatting the device.

Alimi, et al. Informational [Page 33]

RFC 6392 DECADE Survey October 2011

5.2.3. Data Search Capability

 SCSI/iSCSI does not provide the ability to search for particular data
 within a device. Note that such capabilities can be implemented
 outside of iSCSI.

5.2.4. Access Control Authorization

 With respect to access to devices, the access control method is
 private. iSCSI uses the Challenge Handshake Authentication Protocol
 (CHAP) [33] to authenticate Initiators and Targets when accessing
 storage devices. However, since SCSI/iSCSI operates at the device
 level, neither authentication nor authorization is provided for
 individual data objects. Note that such capabilities can be
 implemented outside of iSCSI.

5.2.5. Resource Control Interface

 Not provided.

5.2.6. Discovery Mechanism

 Manual configuration may be used. An alternative is the Internet
 Storage Name Service (iSNS) [34], which provides the ability to
 discover available storage resources.

5.2.7. Storage Mode

 As a protocol, iSCSI does not explicitly have a storage mode.
 However, it provides block-based access to clients. SCSI/iSCSI
 provides an Initiator with block-level access to the storage device.

5.3. NFS

 The Network File System (NFS) is designed to allow users to access
 files over a network in a manner similar to how local storage is
 accessed. NFS is typically used in local area networks or in
 enterprise settings, though changes made in later versions of NFS
 (e.g., [35]) make it easier to operate over the Internet.

5.3.1. Data Access Interface

 Traditional file-system operations such as read, write, and update
 (overwrite) are provided. Locking is provided to support concurrent
 access by multiple clients.

Alimi, et al. Informational [Page 34]

RFC 6392 DECADE Survey October 2011

5.3.2. Data Management Operations

 Traditional file-system operations such as move and delete are
 provided.

5.3.3. Data Search Capability

 The user has the ability to list contents of directories to find
 filenames matching desired criteria.

5.3.4. Access Control Authorization

 All methods of access control for clients are supported: public-
 unrestricted, public-restricted, and private. For example, files and
 directories can be protected using read, write, and execute
 permissions for the files’ owner and group, and for the public
 (others). Also, NFSv4.1 has a rich ACL model allowing a list of
 Access Control Entries (ACEs) to be configured for each file or
 directory. The ACEs can specify per-user read/write access to file
 data, file/directory attributes, creation/deletion of files in a
 directory, etc.

5.3.5. Resource Control Interface

 While disk space quotas can be configured, administrative policy
 typically limits the total amount of storage allocated to a
 particular user. User control of bandwidth and connections used by
 remote peers is not provided.

5.3.6. Discovery Mechanism

 Manual configuration is typically used. Clients address NFS servers
 by providing a hostname and a directory that should be mounted. DNS
 may be used to look up an address for the provided hostname.

5.3.7. Storage Mode

 As a protocol, there is no defined internal storage mode. However,
 implementations typically use the underlying file-system storage.
 Note that extensions have been defined for alternate storage modes
 (e.g., block-based [36] and object-based [37]).

Alimi, et al. Informational [Page 35]

RFC 6392 DECADE Survey October 2011

5.3.8. Comments

 The efficiency and scalability of the NFS access control method are
 concerns in the context of DECADE. In particular, Section 6.2.1 of
 [35] states that:

 Only ACEs that have a "who" that matches the requester
 are considered.

 Thus, in the context of DECADE, to specify per-peer access control
 policies for an object, a client would need to explicitly configure
 the ACL for the object for each individual peer. A concern with this
 approach is scalability when a client’s peers may change frequently,
 and ACLs for many small objects need to be updated constantly during
 participation in a swarm.

 Note that NFSv4.1’s usage of RPCSEC_GSS provides support for multiple
 security mechanisms. Kerberos V5 is required, but others, such as
 X.509 certificates, are also supported by way of the Generic Security
 Service Application Program Interface (GSS-API). Note, however, that
 NFSv4.1’s usage of such security mechanisms is limited to linking a
 requesting user to a particular account maintained by the NFS server.

5.4. OAuth

 Open Authorization (OAuth) [38] is a protocol that enriches the
 traditional client-server authentication model for Web resources. In
 particular, OAuth distinguishes the "client" from the "resource
 owner", thus enabling a resource owner to authorize a particular
 client for access (e.g., for a particular lifetime) to private
 resources.

 We include OAuth in this survey so that its authentication model can
 be evaluated in the context of DECADE. OAuth itself, however, is not
 a network storage protocol.

5.4.1. Data Access Interface

 Not provided.

5.4.2. Data Management Operations

 Not provided.

5.4.3. Data Search Capability

 Not provided.

Alimi, et al. Informational [Page 36]

RFC 6392 DECADE Survey October 2011

5.4.4. Access Control Authorization

 Not provided. While similar in spirit to the WebDAV ticketing
 extensions [39], OAuth instead uses the following process: (1) a
 client constructs a delegation request, (2) the client forwards the
 request to the resource owner for authorization, (3) the resource
 owner authorizes the request, and finally (4) a callback is made to
 the client indicating that its request has been authorized.

 Once the process is complete, the client has a set of token
 credentials that grant it access to the protected resource. The
 token credentials may have an expiration time, and they can also be
 revoked by the resource owner at any time.

5.4.5. Resource Control Interface

 Not provided.

5.4.6. Discovery Mechanism

 Not provided.

5.4.7. Storage Mode

 Not provided.

5.4.8. Comments

 The ticketing mechanism requires server involvement, and the
 discussion relating to WebDAV’s proposed ticketing mechanism (see
 Section 5.5.8) applies here as well.

5.5. WebDAV

 WebDAV [40] is a protocol designed for Web content authoring. It is
 developed as an extension to HTTP (described in Section 5.1), meaning
 that it can be simpler to integrate into existing software. WebDAV
 supports traditional operations for reading/writing from storage, as
 well as other constructs, such as locking and collections, that are
 important when multiple users collaborate to author or edit a set of
 documents.

5.5.1. Data Access Interface

 Traditional read and write operations are supported (using HTTP GET
 and PUT methods, respectively). Locking is provided to support
 concurrent access by multiple clients.

Alimi, et al. Informational [Page 37]

RFC 6392 DECADE Survey October 2011

5.5.2. Data Management Operations

 WebDAV supports traditional file-system operations, such as move,
 delete, and copy. Objects are organized into collections, and these
 operations can also be performed on collections. WebDAV also allows
 objects to have user-defined properties.

5.5.3. Data Search Capability

 The user has the ability to list contents of collections to find
 objects matching desired criteria. A SEARCH extension [41] has also
 been specified allowing listing of objects matching client-defined
 criteria.

5.5.4. Access Control Authorization

 All methods of access control for clients are supported: public-
 unrestricted, public-restricted, and private.

 For example, an ACL extension [42] is provided for WebDAV. ACLs
 allow both user-based and group-based access control policies
 (relating to reading, writing, properties, locking, etc.) to be
 defined for objects and collections.

 A ticketing extension [39] has also been proposed, but has not
 progressed since 2001. This extension allows a client to request the
 WebDAV server to create a "ticket" (e.g., for reading an object) that
 can be distributed to other clients. Tickets may be given expiration
 times, or may only allow for a fixed number of uses. The proposed
 extension requires the server to generate tickets and maintain state
 for outstanding tickets.

5.5.5. Resource Control Interface

 An extension [43] allows disk space quotas to be configured for
 collections. The extension also allows WebDAV clients to query
 current disk space usage. User control of bandwidth and connections
 used by remote peers is not provided.

5.5.6. Discovery Mechanism

 Manual configuration is typically used. Clients address WebDAV
 servers by providing a hostname, which can be resolved to an address
 using DNS.

Alimi, et al. Informational [Page 38]

RFC 6392 DECADE Survey October 2011

5.5.7. Storage Mode

 Though no storage mode is explicitly defined, WebDAV can be thought
 of as providing file system (file-based) storage to a client. A
 non-collection resource can typically be thought of as a "file".
 Files may be organized into collections, which typically map onto the
 HTTP path hierarchy.

5.5.8. Comments

 The efficiency and scalability of the WebDAV access control method
 are concerns in the context of DECADE, for reasons similar to those
 stated in Section 5.3.8 for NFS. The proposed WebDAV ticketing
 extension partially alleviates these concerns, but the particular
 technique may need further evaluation before being applied to DECADE.
 In particular, since DECADE clients may continuously upload/download
 a large number of small-size objects, and a single DECADE server may
 need to scale to many concurrent DECADE clients, requiring the server
 to maintain ticket state and generate tickets may not be the best
 design choice. Server-generated tickets can also increase latency
 for data transport operations, depending on the message flow used by
 DECADE.

5.6. Observations Regarding Storage and Related Protocols

 The following observations about the surveyed storage and related
 protocols are made in the context of DECADE as defined by [1].

 All of the surveyed protocols were primarily designed for client-
 server architectures and not for P2P. However, it is conceivable
 that some of the protocols could be adapted to work in a P2P
 architecture.

 Several popular in-network storage systems today use HTTP as their
 key protocol, even though it is not classically considered as a
 storage protocol. HTTP is a stateless protocol that is used to
 design RESTful applications. HTTP is a well-supported and widely
 implemented protocol that can provide important insights for DECADE.

 The majority of the surveyed protocols do not support low-latency
 access for applications such as live streaming. This was one of the
 key general requirements for DECADE.

 The majority of the surveyed protocols do not support any form of
 resource control interface. Resource control is required for users
 to manage the resources on in-network storage systems, e.g., the
 bandwidth or connections, that can be used by other peers. Resource
 control is a key capability required for DECADE.

Alimi, et al. Informational [Page 39]

RFC 6392 DECADE Survey October 2011

 Nearly all surveyed protocols did, however, support the following
 capabilities required for DECADE: ability of the user to read/write
 content, some form of access control, some form of error indication,
 and the ability to traverse firewalls and NATs.

6. Conclusions

 Though there have been many successful in-network storage systems,
 they have been designed for use cases different from those defined in
 DECADE. For example, many of the surveyed in-network storage systems
 and protocols were designed for client-server architectures and not
 P2P. No surveyed system or protocol has the functionality and
 features to fully meet the set of requirements defined for DECADE.
 DECADE aims to provide a standard protocol for P2P applications and
 content providers to access and control in-network storage, resulting
 in increased network efficiency while retaining control over content
 shared with peers. Additionally, defining a standard protocol can
 reduce the complexity of in-network storage, since multiple P2P
 application protocols no longer need to be implemented by in-network
 storage systems.

7. Security Considerations

 This document is a survey of existing in-network storage systems, and
 does not introduce any security considerations beyond those of the
 surveyed systems.

 For more information on security considerations of DECADE, see [1].

8. Contributors

 The editors would like to thank the following people for contributing
 to the development of this document:

 - ZhiHui Lv

 - Borje Ohlman

 - Pang Tao

 - Lucy Yong

 - Juan Carlos Zuniga

Alimi, et al. Informational [Page 40]

RFC 6392 DECADE Survey October 2011

9. Acknowledgments

 The editors would like to thank the following people for providing
 valuable comments to various draft versions of this document: David
 Bryan, Tao Mao, Haibin Song, Ove Strandberg, Yu-Shun Wang, Richard
 Woundy, Yunfei Zhang, and Ning Zong.

10. Informative References

 [1] Song, H., Zong, N., Yang, Y., and R. Alimi, "DECoupled
 Application Data Enroute (DECADE) Problem Statement", Work
 in Progress, October 2011.

 [2] Storage Search, "Flash Memory vs. Hard Disk Drives -- Which
 Will Win?", <http://www.storagesearch.com/semico-art1.html>.

 [3] Brisken, W., "Hard Drive Price Trends", US VLBI Technical
 Meeting, May 2008.

 [4] Woundy, R., "TSV P2P Efforts -- From an ISP’s Perspective",
 IETF 81, Quebec, Canada, July 2011,
 <http://www.ietf.org/proceedings/81/slides/tsvarea-3.pdf>.

 [5] Gu, Y., Bryan, D., Yang, Y., and R. Alimi, "DECADE
 Requirements", Work in Progress, September 2011.

 [6] Amazon Web Services, "Amazon Simple Storage Service
 (Amazon S3)", <http://aws.amazon.com/s3/>.

 [7] Calder, B., Wang, T., Mainali, S., and J. Wu, "Windows Azure
 Blob -- Programming Blob Storage", May 2009,
 <http://www.microsoft.com/windowsazure/whitepapers/>.

 [8] Google, "Google Storage for Developers",
 <http://code.google.com/apis/storage>.

 [9] Dropbox, "Dropbox Features", <http://www.dropbox.com/features>.

 [10] Microsoft Corporation, "BranchCache",
 <http://technet.microsoft.com/en-us/network/dd425028.aspx>.

 [11] Microsoft Corporation, "Web Services Dynamic Discovery
 (WS-Discovery)", April 2005, <http://specs.xmlsoap.org/
 ws/2005/04/discovery/ws-discovery.pdf>.

Alimi, et al. Informational [Page 41]

RFC 6392 DECADE Survey October 2011

 [12] Paul, S., Yates, R., Raychaudhuri, D., and J. Kurose, "The
 Cache-and-Forward Network Architecture for Efficient Mobile
 Content Delivery Services in the Future Internet", Innovations
 in NGN: Future Network and Services, 2008.

 [13] SNIA, "Cloud Data Management Interface (CDMI)",
 <http://www.snia.org/cdmi>.

 [14] Pathan, A.K. and Buyya, R., "A Taxonomy and Survey of Content
 Delivery Networks", Grid Computing and Distributed Systems
 Laboratory, University of Melbourne, Technical Report,
 February 2007.

 [15] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R.,
 Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant Networking
 Architecture", RFC 4838, April 2007.

 [16] Scott, K. and S. Burleigh, "Bundle Protocol Specification",
 RFC 5050, November 2007.

 [17] Named Data Networking, "Named Data Networking Home Page",
 <http://www.named-data.net/>.

 [18] Named Data Networking, "Named Data Networking (NDN) Project",
 <http://www.named-data.net/ndn-proj.pdf>.

 [19] Network of Information, "NetInf Overview",
 <http://www.netinf.org/home/overview/>.

 [20] Anand, A., Sekar, V., and A. Akella, "SmartRE: An Architecture
 for Coordinated Network-wide Redundancy Elimination",
 SIGCOMM 2009.

 [21] Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., and
 J. Kubiatowicz, "Pond: the OceanStore Prototype", FAST 2003.

 [22] Kodak, "Kodak Gallery Home Page",
 <http://www.kodakgallery.com/gallery/welcome.jsp>.

 [23] Wikipedia, "Kodak Gallery",
 <http://en.wikipedia.org/wiki/Kodak_Gallery>.

 [24] Flickr, "Flickr Home Page", <http://www.flickr.com>.

 [25] ImageShack, "ImageShack Home Page", <http://imageshack.us>.

 [26] Tumblr, "Tumblr Home Page", <http://www.tumblr.com>.

Alimi, et al. Informational [Page 42]

RFC 6392 DECADE Survey October 2011

 [27] Wikipedia, "Usenet", <http://en.wikipedia.org/wiki/Usenet>.

 [28] Google, "Google Groups", <http://groups.google.com>.

 [29] Huston, G., Telstra, "Web Caching", The Internet Protocol
 Journal Volume 2, No. 3.

 [30] Shen, G., Wang, Y., Xiong, Y., Zhao, B., and Z-L. Zhang, "HPTP:
 Relieving the Tension between ISPs and P2P", 6th International
 Workshop on Peer-To-Peer Systems (IPTPS2007).

 [31] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [32] Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., and E.
 Zeidner, "Internet Small Computer Systems Interface (iSCSI)",
 RFC 3720, April 2004.

 [33] Simpson, W., "PPP Challenge Handshake Authentication Protocol
 (CHAP)", RFC 1994, August 1996.

 [34] Tseng, J., Gibbons, K., Travostino, F., Du Laney, C., and J.
 Souza, "Internet Storage Name Service (iSNS)", RFC 4171,
 September 2005.

 [35] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed., "Network
 File System (NFS) Version 4 Minor Version 1 Protocol",
 RFC 5661, January 2010.

 [36] Black, D., Fridella, S., and J. Glasgow, "Parallel NFS (pNFS)
 Block/Volume Layout", RFC 5663, January 2010.

 [37] Halevy, B., Welch, B., and J. Zelenka, "Object-Based Parallel
 NFS (pNFS) Operations", RFC 5664, January 2010.

 [38] Hammer-Lahav, E., Ed., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [39] Ito, K., "Ticket-Based Access Control Extension to WebDAV",
 Work in Progress, October 2001.

 [40] Dusseault, L., Ed., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918, June 2007.

 [41] Reschke, J., Ed., Reddy, S., Davis, J., and A. Babich, "Web
 Distributed Authoring and Versioning (WebDAV) SEARCH",
 RFC 5323, November 2008.

Alimi, et al. Informational [Page 43]

RFC 6392 DECADE Survey October 2011

 [42] Clemm, G., Reschke, J., Sedlar, E., and J. Whitehead, "Web
 Distributed Authoring and Versioning (WebDAV)
 Access Control Protocol", RFC 3744, May 2004.

 [43] Korver, B. and L. Dusseault, "Quota and Size Properties
 for Distributed Authoring and Versioning (DAV) Collections",
 RFC 4331, February 2006.

Authors’ Addresses

 Richard Alimi (editor)
 Google

 EMail: ralimi@google.com

 Akbar Rahman (editor)
 InterDigital Communications, LLC

 EMail: Akbar.Rahman@InterDigital.com

 Yang Richard Yang (editor)
 Yale University

 EMail: yry@cs.yale.edu

Alimi, et al. Informational [Page 44]

