
Internet Engineering Task Force (IETF) V. Roca
Request for Comments: 5776 A. Francillon
Category: Experimental S. Faurite
ISSN: 2070-1721 INRIA
 April 2010

 Use of Timed Efficient Stream Loss-Tolerant Authentication (TESLA) in
 the Asynchronous Layered Coding (ALC) and
 NACK-Oriented Reliable Multicast (NORM) Protocols

Abstract

 This document details the Timed Efficient Stream Loss-Tolerant
 Authentication (TESLA) packet source authentication and packet
 integrity verification protocol and its integration within the
 Asynchronous Layered Coding (ALC) and NACK-Oriented Reliable
 Multicast (NORM) content delivery protocols. This document only
 considers the authentication/integrity verification of the packets
 generated by the session’s sender. The authentication and integrity
 verification of the packets sent by receivers, if any, is out of the
 scope of this document.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5776.

Roca, et al. Experimental [Page 1]

RFC 5776 TESLA in ALC and NORM April 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Roca, et al. Experimental [Page 2]

RFC 5776 TESLA in ALC and NORM April 2010

Table of Contents

 1. Introduction . 5
 1.1. Scope of This Document 6
 1.2. Conventions Used in This Document 7
 1.3. Terminology and Notations 7
 1.3.1. Notations and Definitions Related to Cryptographic
 Functions . 7
 1.3.2. Notations and Definitions Related to Time 8
 2. Using TESLA with ALC and NORM: General Operations 9
 2.1. ALC and NORM Specificities That Impact TESLA 9
 2.2. Bootstrapping TESLA 10
 2.2.1. Bootstrapping TESLA with an Out-Of-Band Mechanism . . 10
 2.2.2. Bootstrapping TESLA with an In-Band Mechanism 11
 2.3. Setting Up a Secure Time Synchronization 11
 2.3.1. Direct Time Synchronization 12
 2.3.2. Indirect Time Synchronization 12
 2.4. Determining the Delay Bounds 13
 2.4.1. Delay Bound Calculation in Direct Time
 Synchronization Mode 14
 2.4.2. Delay Bound Calculation in Indirect Time
 Synchronization Mode 14
 2.5. Cryptographic Parameter Values 15
 3. Sender Operations . 16
 3.1. TESLA Parameters . 16
 3.1.1. Time Intervals . 16
 3.1.2. Key Chains . 16
 3.1.3. Time Interval Schedule 20
 3.1.4. Timing Parameters 20
 3.2. TESLA Signaling Messages 21
 3.2.1. Bootstrap Information 21
 3.2.2. Direct Time Synchronization Response 22
 3.3. TESLA Authentication Information 22
 3.3.1. Authentication Tags 23
 3.3.2. Digital Signatures 23
 3.3.3. Group MAC Tags . 24
 3.4. Format of TESLA Messages and Authentication Tags 25
 3.4.1. Format of a Bootstrap Information Message 26
 3.4.2. Format of a Direct Time Synchronization Response . . . 31
 3.4.3. Format of a Standard Authentication Tag 32
 3.4.4. Format of an Authentication Tag without Key
 Disclosure . 33
 3.4.5. Format of an Authentication Tag with a "New Key
 Chain" Commitment 34
 3.4.6. Format of an Authentication Tag with a "Last Key
 of Old Chain" Disclosure 35
 4. Receiver Operations . 36
 4.1. Verification of the Authentication Information 36

Roca, et al. Experimental [Page 3]

RFC 5776 TESLA in ALC and NORM April 2010

 4.1.1. Processing the Group MAC Tag 36
 4.1.2. Processing the Digital Signature 37
 4.1.3. Processing the Authentication Tag 37
 4.2. Initialization of a Receiver 38
 4.2.1. Processing the Bootstrap Information Message 38
 4.2.2. Performing Time Synchronization 38
 4.3. Authentication of Received Packets 40
 4.3.1. Discarding Unnecessary Packets Earlier 43
 4.4. Flushing the Non-Authenticated Packets of a Previous
 Key Chain . 43
 5. Integration in the ALC and NORM Protocols 44
 5.1. Authentication Header Extension Format 44
 5.2. Use of Authentication Header Extensions 45
 5.2.1. EXT_AUTH Header Extension of Type Bootstrap
 Information . 45
 5.2.2. EXT_AUTH Header Extension of Type Authentication
 Tag . 48
 5.2.3. EXT_AUTH Header Extension of Type Direct Time
 Synchronization Request 49
 5.2.4. EXT_AUTH Header Extension of Type Direct Time
 Synchronization Response 49
 6. Security Considerations 50
 6.1. Dealing with DoS Attacks 50
 6.2. Dealing With Replay Attacks 51
 6.2.1. Impacts of Replay Attacks on TESLA 51
 6.2.2. Impacts of Replay Attacks on NORM 52
 6.2.3. Impacts of Replay Attacks on ALC 53
 6.3. Security of the Back Channel 53
 7. IANA Considerations . 54
 8. Acknowledgments . 55
 9. References . 55
 9.1. Normative References 55
 9.2. Informative References 56

Roca, et al. Experimental [Page 4]

RFC 5776 TESLA in ALC and NORM April 2010

1. Introduction

 Many applications using multicast and broadcast communications
 require that each receiver be able to authenticate the source of any
 packet it receives as well as the integrity of these packets. This
 is the case with ALC [RFC5775] and NORM [RFC5740], two Content
 Delivery Protocols (CDPs) designed to transfer objects (e.g., files)
 reliably between a session’s sender and several receivers. The NORM
 protocol is based on bidirectional transmissions. Each receiver
 acknowledges data received or, in case of packet erasures, asks for
 retransmissions. On the opposite, the ALC protocol is based on
 purely unidirectional transmissions. Reliability is achieved by
 means of the cyclic transmission of the content within a carousel
 and/or by the use of proactive Forward Error Correction (FEC) codes.
 Both protocols have in common the fact that they operate at the
 application level, on top of an erasure channel (e.g., the Internet)
 where packets can be lost (erased) during the transmission.

 The goal of this document is to counter attacks where an attacker
 impersonates the ALC or NORM session’s sender and injects forged
 packets to the receivers, thereby corrupting the objects
 reconstructed by the receivers.

 Preventing this attack is much more complex in the case of group
 communications than it is with unicast communications. Indeed, with
 unicast communications, a simple solution exists: the sender and the
 receiver share a secret key to compute a Message Authentication Code
 (MAC) of all messages exchanged. This is no longer feasible in the
 case of multicast and broadcast communications since sharing a group
 key between the sender and all receivers implies that any group
 member can impersonate the sender and send forged messages to other
 receivers.

 The usual solution to provide the source authentication and message
 integrity services in the case of multicast and broadcast
 communications consists of relying on asymmetric cryptography and
 using digital signatures. Yet, this solution is limited by high
 computational costs and high transmission overheads. The Timed
 Efficient Stream Loss-tolerant Authentication (TESLA) protocol is an
 alternative solution that provides the two required services, while
 being compatible with high-rate transmissions over lossy channels.

 This document explains how to integrate the TESLA source
 authentication and packet integrity protocol to the ALC and NORM CDP.
 Any application built on top of ALC and NORM will directly benefit
 from the services offered by TESLA at the transport layer. In
 particular, this is the case of File Delivery over Unidirectional
 Transport (FLUTE).

Roca, et al. Experimental [Page 5]

RFC 5776 TESLA in ALC and NORM April 2010

 For more information on the TESLA protocol and its principles, please
 refer to [RFC4082] and [Perrig04]. For more information on ALC and
 NORM, please refer to [RFC5775], [RFC5651], and [RFC5740],
 respectively. For more information on FLUTE, please refer to
 [RMT-FLUTE].

1.1. Scope of This Document

 This specification only considers the authentication and integrity
 verification of the packets generated by the session’s sender. This
 specification does not consider the packets that may be sent by
 receivers, for instance, NORM’s feedback packets. [RMT-SIMPLE-AUTH]
 describes several techniques that can be used to that purpose. Since
 this is usually a low-rate flow (unlike the downstream flow), using
 computing intensive techniques like digital signatures, possibly
 combined with a Group MAC scheme, is often acceptable. Finally,
 Section 5 explains how to use several authentication schemes in a
 given session thanks to the "ASID" (Authentication Scheme IDentifier)
 field.

 This specification relies on several external mechanisms, for
 instance:

 o to communicate securely the public key or a certificate for the
 session’s sender (Section 2.2.2);

 o to communicate securely and confidentially the group key, K_g,
 used by the Group MAC feature, when applicable (Section 3.3.3).
 In some situations, this group key will have to be periodically
 refreshed;

 o to perform secure time synchronization in indirect mode
 (Section 2.3.2) or in direct mode (Section 2.3.1) to carry the
 request/response messages with ALC, which is purely
 unidirectional;

 These mechanisms are required in order to bootstrap TESLA at a sender
 and at a receiver and must be deployed in parallel to TESLA.
 Besides, the randomness of the Primary Key of the key chain
 (Section 3.1.2) is vital to the security of TESLA. Therefore, the
 sender needs an appropriate mechanism to generate this random key.

 Several technical details of TESLA, like the most appropriate way to
 alternate between the transmission of a key disclosure and a
 commitment to a new key chain, or the transmission of a key
 disclosure and the last key of the previous key chain, or the
 disclosure of a key and the compact flavor that does not disclose any
 key, are specific to the target use case (Section 3.1.2). For

Roca, et al. Experimental [Page 6]

RFC 5776 TESLA in ALC and NORM April 2010

 instance, it depends on the number of packets sent per time interval,
 on the desired robustness and the acceptable transmission overhead,
 which can only be optimized after taking into account the use-case
 specificities.

1.2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Terminology and Notations

 The following notations and definitions are used throughout this
 document.

1.3.1. Notations and Definitions Related to Cryptographic Functions

 Notations and definitions related to cryptographic functions
 [RFC4082][RFC4383]:

 o PRF is the Pseudo Random Function;

 o MAC is the Message Authentication Code;

 o HMAC is the keyed-Hash Message Authentication Code;

 o F is the one-way function used to create the key chain
 (Section 3.1.2.1);

 o F’ is the one-way function used to derive the HMAC keys
 (Section 3.1.2.1);

 o n_p is the length, in bits, of the F function’s output. This is
 therefore the length of the keys in the key chain;

 o n_f is the length, in bits, of the F’ function’s output. This is
 therefore the length of the HMAC keys;

 o n_m is the length, in bits, of the truncated output of the MAC
 [RFC2104]. Only the n_m most significant bits of the MAC output
 are kept;

 o N is the length of a key chain. There are N+1 keys in a key
 chain: K_0, K_1, ..., K_N. When several chains are used, all the
 chains MUST have the same length and keys are numbered
 consecutively, following the time interval numbering;

Roca, et al. Experimental [Page 7]

RFC 5776 TESLA in ALC and NORM April 2010

 o n_c is the number of keys in a key chain. Therefore, n_c = N+1;

 o n_tx_lastkey is the number of additional intervals during which
 the last key of the old key chain SHOULD be sent, after switching
 to a new key chain and after waiting for the disclosure delay d.
 These extra transmissions take place after the interval during
 which the last key is normally disclosed. The n_tx_lastkey value
 is either 0 (no extra disclosure) or larger. This parameter is
 sender specific and is not communicated to the receiver;

 o n_tx_newkcc is the number of intervals during which the commitment
 to a new key chain SHOULD be sent, before switching to the new key
 chain. The n_tx_newkcc value is either 0 (no commitment sent
 within authentication tags) or larger. This parameter is sender
 specific and is not communicated to the receiver;

 o K_g is a shared group key, communicated to all group members,
 confidentially, during the TESLA bootstrapping (Section 2.2);

 o n_w is the length, in bits, of the truncated output of the MAC of
 the optional group authentication scheme: only the n_w most
 significant bits of the MAC output are kept. n_w is typically
 small, a multiple of 32 bits (e.g., 32 bits).

1.3.2. Notations and Definitions Related to Time

 Notations and definitions related to time:

 o i is the time interval index. Interval numbering starts at 0 and
 increases consecutively. Since the interval index is stored as a
 32-bit unsigned integer, wrapping to 0 might take place in long
 sessions.

 o t_s is the sender local time value at some absolute time (in NTP
 timestamp format);

 o t_r is the receiver local time value at the same absolute time (in
 NTP timestamp format);

 o T_0 is the start time corresponding to the beginning of the
 session, i.e., the beginning of time interval 0 (in NTP timestamp
 format);

 o T_int is the interval duration (in milliseconds);

 o d is the key disclosure delay (in number of intervals);

Roca, et al. Experimental [Page 8]

RFC 5776 TESLA in ALC and NORM April 2010

 o D_t is the upper bound of the lag of the receiver’s clock with
 respect to the clock of the sender;

 o S_sr is an estimated bound of the clock drift between the sender
 and a receiver throughout the duration of the session;

 o D^O_t is the upper bound of the lag of the sender’s clock with
 respect to the time reference in indirect time synchronization
 mode;

 o D^R_t is the upper bound of the lag of the receiver’s clock with
 respect to the time reference in indirect time synchronization
 mode;

 o D_err is an upper bound of the time error between all the time
 references, in indirect time synchronization mode;

 o NTP timestamp format consists in a 64-bit unsigned fixed-point
 number, in seconds relative to 0h on 1 January 1900. The integer
 part is in the first 32 bits, and the fraction part in the last 32
 bits [RFC1305].

2. Using TESLA with ALC and NORM: General Operations

2.1. ALC and NORM Specificities That Impact TESLA

 The ALC and NORM protocols have features and requirements that
 largely impact the way TESLA can be used.

 In the case of ALC:

 o ALC is massively scalable: nothing in the protocol specification
 limits the number of receivers that join a session. Therefore, an
 ALC session potentially includes a huge number (e.g., millions or
 more) of receivers;

 o ALC can work on top of purely unidirectional transport channels:
 this is one of the assets of ALC, and examples of unidirectional
 channels include satellite (even if a back channel might exist in
 some use cases) and broadcasting networks like Digital Video
 Broadcasting - Handhelds / Satellite services to Handhelds (DVB-
 H/SH);

 o ALC defines an on-demand content delivery model [RFC5775] where
 receivers can arrive at any time, at their own discretion,
 download the content and leave the session. Other models (e.g.,
 push or streaming) are also defined;

Roca, et al. Experimental [Page 9]

RFC 5776 TESLA in ALC and NORM April 2010

 o ALC sessions are potentially very long: a session can last several
 days or months during which the content is continuously
 transmitted within a carousel. The content can be either static
 (e.g., a software update) or dynamic (e.g., a web site).

 Depending on the use case, some of the above features may not apply.
 For instance, ALC can also be used over a bidirectional channel or
 with a limited number of receivers.

 In the case of NORM:

 o NORM has been designed for medium-size sessions: indeed, NORM
 relies on feedback messages and the sender may collapse if the
 feedback message rate is too high;

 o NORM requires a bidirectional transport channel: the back channel
 is not necessarily a high-data rate channel since the control
 traffic sent over it by a single receiver is an order of magnitude
 lower than the downstream traffic. Networks with an asymmetric
 connectivity (e.g., a high-rate satellite downlink and a low-rate
 return channel) are appropriate.

2.2. Bootstrapping TESLA

 In order to initialize the TESLA component at a receiver, the sender
 MUST communicate some key information in a secure way, so that the
 receiver can check the source of the information and its integrity.
 Two general methods are possible:

 o by using an out-of-band mechanism, or

 o by using an in-band mechanism.

 The current specification does not recommend any mechanism to
 bootstrap TESLA. Choosing between an in-band and out-of-band scheme
 is left to the implementer, depending on the target use case.
 However, it is RECOMMENDED that TESLA implementations support the use
 of the in-band mechanism for interoperability purposes.

2.2.1. Bootstrapping TESLA with an Out-Of-Band Mechanism

 For instance, [RFC4442] describes the use of the MIKEY (Multimedia
 Internet Keying) protocol to bootstrap TESLA. As a side effect,
 MIKEY also provides a loose time synchronization feature from which
 TESLA can benefit. Other solutions, for instance, based on an
 extended session description, are possible, on the condition that
 these solutions provide the required security level.

Roca, et al. Experimental [Page 10]

RFC 5776 TESLA in ALC and NORM April 2010

2.2.2. Bootstrapping TESLA with an In-Band Mechanism

 This specification describes an in-band mechanism. In some use
 cases, it might be desired that bootstrapping take place without
 requiring the use of an additional external mechanism. For instance,
 each device may feature a clock with a known time-drift that is
 negligible in front of the time accuracy required by TESLA, and each
 device may embed the public key of the sender. It is also possible
 that the use case does not feature a bidirectional channel that
 prevents the use of out-of-band protocols like MIKEY. For these two
 examples, the exchange of a bootstrap information message (described
 in Section 3.4.1) and the knowledge of a few additional parameters
 (listed below) are sufficient to bootstrap TESLA at a receiver.

 Some parameters cannot be communicated in-band. In particular:

 o the sender or group controller MUST either communicate the public
 key of the sender or a certificate (which also means that a PKI
 has been set up) to all receivers, so that each receiver be able
 to verify the signature of the bootstrap message and direct time
 synchronization response messages (when applicable).

 o when time synchronization is performed with NTP/SNTP (Simple
 Network Time Protocol), the sender or group controller MUST
 communicate the list of valid NTP/SNTP servers to all the session
 members (sender included), so that they are all able to
 synchronize themselves on the same NTP/SNTP servers.

 o when the Group MAC feature is used, the sender or group controller
 MUST communicate the K_g group key to all the session members
 (sender included). This group key may be periodically refreshed.

 The way these parameters are communicated is out of the scope of this
 document.

2.3. Setting Up a Secure Time Synchronization

 The security offered by TESLA heavily relies on time. Therefore, the
 session’s sender and each receiver need to be time synchronized in a
 secure way. To that purpose, two general methods exist:

 o direct time synchronization, and

 o indirect time synchronization.

 It is also possible that a given session includes receivers that use
 the direct time synchronization mode while others use the indirect
 time synchronization mode.

Roca, et al. Experimental [Page 11]

RFC 5776 TESLA in ALC and NORM April 2010

2.3.1. Direct Time Synchronization

 When direct time synchronization is used, each receiver asks the
 sender for a time synchronization. To that purpose, a receiver sends
 a direct time synchronization request (Section 4.2.2.1). The sender
 then directly answers each request with a direct time synchronization
 response (Section 3.4.2), signing this reply. Upon receiving this
 response, a receiver first verifies the signature, and then
 calculates an upper bound of the lag of his clock with respect to the
 clock of the sender, D_t. The details on how to calculate D_t are
 given in Section 2.4.1.

 This synchronization method is both simple and secure. Yet, there
 are two potential issues:

 o a bidirectional channel must exist between the sender and each
 receiver, and

 o the sender may collapse if the incoming request rate is too high.

 Relying on direct time synchronization is not expected to be an issue
 with NORM since (1) bidirectional communications already take place,
 and (2) NORM scalability is anyway limited. Yet, it can be required
 that a mechanism, that is out of the scope of this document, be used
 to spread the transmission of direct time synchronization request
 messages over time if there is a risk that the sender may collapse.

 But direct time synchronization is potentially incompatible with ALC
 since (1) there might not be a back channel, and (2) there are
 potentially a huge number of receivers and therefore a risk that the
 sender will collapse.

2.3.2. Indirect Time Synchronization

 When indirect time synchronization is used, the sender and each
 receiver must synchronize securely via an external time reference.
 Several possibilities exist:

 o sender and receivers can synchronize through an NTPv3 (Network
 Time Protocol version 3) [RFC1305] hierarchy of servers. The
 authentication mechanism of NTPv3 MUST be used in order to
 authenticate each NTP message individually. It prevents, for
 instance, an attacker from impersonating an NTP server;

 o they can synchronize through an NTPv4 (Network Time Protocol
 version 4) [NTP-NTPv4] hierarchy of servers. The Autokey security
 protocol of NTPv4 MUST be used in order to authenticate each NTP
 message individually;

Roca, et al. Experimental [Page 12]

RFC 5776 TESLA in ALC and NORM April 2010

 o they can synchronize through an SNTPv4 (Simple Network Time
 Protocol version 4) [RFC4330] hierarchy of servers. The
 authentication features of SNTPv4 must then be used. Note that
 TESLA only needs a loose (but secure) time synchronization, which
 is in line with the time synchronization service offered by SNTP;

 o they can synchronize through a GPS or Galileo (or similar) device
 that also provides a high precision time reference. Spoofing
 attacks on the GPS system have recently been reported. Depending
 on the use case, the security achieved will or will not be
 acceptable;

 o they can synchronize thanks to a dedicated hardware, embedded on
 each sender and receiver, that provides a clock with a time-drift
 that is negligible in front of the TESLA time accuracy
 requirements. This feature enables a device to synchronize its
 embedded clock with the official time reference from time to time
 (in an extreme case once, at manufacturing time), and then to
 remain autonomous for a duration that depends on the known maximum
 clock drift.

 A bidirectional channel is required by the NTP/SNTP schemes. On the
 opposite, with the GPS/Galileo and high precision clock schemes, no
 such assumption is made. In situations where ALC is used on purely
 unidirectional transport channels (Section 2.1), using the NTP/SNTP
 schemes is not possible. Another aspect is the scalability
 requirement of ALC, and to a lesser extent of NORM. From this point
 of view, the above mechanisms usually do not raise any problem,
 unlike the direct time synchronization schemes. Therefore, using
 indirect time synchronization can be a good choice. It should be
 noted that the NTP/SNTP schemes assume that each client trusts the
 sender and accepts aligning its NTP/SNTP configuration to that of the
 sender. If this assumption does not hold, the sender SHOULD offer an
 alternative solution.

 The details on how to calculate an upper bound of the lag of a
 receiver’s clock with respect to the clock of the sender, D_t, are
 given in Section 2.4.2.

2.4. Determining the Delay Bounds

 Let us assume that a secure time synchronization has been set up.
 This section explains how to define the various timing parameters
 that are used during the authentication of received packets.

Roca, et al. Experimental [Page 13]

RFC 5776 TESLA in ALC and NORM April 2010

2.4.1. Delay Bound Calculation in Direct Time Synchronization Mode

 In direct time synchronization mode, synchronization between a
 receiver and the sender follows the following protocol [RFC4082]:

 o The receiver sends a direct time synchronization request message
 to the sender, that includes t_r, the receiver local time at the
 moment of sending (Section 4.2.2.1).

 o Upon receipt of this message, the sender records its local time,
 t_s, and sends to the receiver a direct time synchronization
 response that includes t_r (taken from the request) and t_s,
 signing this reply (Section 3.4.2).

 o Upon receiving this response, the receiver first verifies that he
 actually sent a request with t_r and then checks the signature.
 Then he calculates D_t = t_s - t_r + S_sr, where S_sr is an
 estimated bound of the clock drift between the sender and the
 receiver throughout the duration of the session. This document
 does not specify how S_sr is estimated.

 After this initial synchronization, at any point throughout the
 session, the receiver knows that: T_s < T_r + D_t, where T_s is the
 current time at the sender and T_r is the current time at the
 receiver.

2.4.2. Delay Bound Calculation in Indirect Time Synchronization Mode

 In indirect time synchronization, the sender and the receivers must
 synchronize indirectly using one or several time references.

2.4.2.1. Single Time Reference

 Let us assume that there is a single time reference.

 1. The sender calculates D^O_t, the upper bound of the lag of the
 sender’s clock with respect to the time reference. This D^O_t
 value is then communicated to the receivers (Section 3.2.1).

 2. Similarly, a receiver R calculates D^R_t, the upper bound of the
 lag of the receiver’s clock with respect to the time reference.

 3. Then, for receiver R, the overall upper bound of the lag of the
 receiver’s clock with respect to the clock of the sender, D_t, is
 the sum: D_t = D^O_t + D^R_t.

Roca, et al. Experimental [Page 14]

RFC 5776 TESLA in ALC and NORM April 2010

 The D^O_t and D^R_t calculation depends on the time synchronization
 mechanism used (Section 2.3.2). In some cases, the synchronization
 scheme specifications provide these values. In other cases, these
 parameters can be calculated by means of a scheme similar to the one
 specified in Section 2.4.1, for instance, when synchronization is
 achieved via a group controller [RFC4082].

2.4.2.2. Multiple Time References

 Let us now assume that there are several time references (e.g.,
 several NTP/SNTP servers). The sender and receivers first
 synchronize with the various time references, independently. It
 results in D^O_t and D^R_t. Let D_err be an upper bound of the time
 error between all of the time references. Then, the overall value of
 D_t within receiver R is set to the sum: D_t = D^O_t + D^R_t + D_err.

 In some cases, the D_t value is part of the time synchronization
 scheme specifications. For instance, NTPv3 [RFC1305] defines
 algorithms that are "capable of accuracies in the order of a
 millisecond, even after extended periods when synchronization to
 primary reference sources has been lost". In practice, depending on
 the NTP server stratum, the accuracy might be a little bit worse. In
 that case, D_t = security_factor * (1ms + 1ms), where the
 security_factor is meant to compensate several sources of inaccuracy
 in NTP. The choice of the security_factor value is left to the
 implementer, depending on the target use case.

2.5. Cryptographic Parameter Values

 The F (resp. F’) function output length is given by the n_p (resp.
 n_f) parameter. The n_p and n_f values depend on the PRF function
 chosen, as specified below:

 +------------------------+---------------------+
 | PRF name | n_p and n_f |
 +------------------------+---------------------+
 | HMAC-SHA-1 | 160 bits (20 bytes) |
 | HMAC-SHA-224 | 224 bits (28 bytes) |
 | HMAC-SHA-256 (default) | 256 bits (32 bytes) |
 | HMAC-SHA-384 | 384 bits (48 bytes) |
 | HMAC-SHA-512 | 512 bits (64 bytes) |
 +------------------------+---------------------+

 The computing of regular MAC (resp. Group MAC) makes use of the n_m
 (resp. n_w) parameter, i.e., the length of the truncated output of
 the function. The n_m and n_w values depend on the MAC function
 chosen, as specified below:

Roca, et al. Experimental [Page 15]

RFC 5776 TESLA in ALC and NORM April 2010

 +------------------------+---------------------+-------------------+
 | MAC name | n_m (regular MAC) | n_w (Group MAC) |
 +------------------------+---------------------+-------------------+
HMAC-SHA-1	80 bits (10 bytes)	32 bits (4 bytes)
HMAC-SHA-224	112 bits (14 bytes)	32 bits (4 bytes)
HMAC-SHA-256 (default)	128 bits (16 bytes)	32 bits (4 bytes)
HMAC-SHA-384	192 bits (24 bytes)	32 bits (4 bytes)
HMAC-SHA-512	256 bits (32 bytes)	32 bits (4 bytes)
 +------------------------+---------------------+-------------------+

3. Sender Operations

 This section describes the TESLA operations at a sender. For more
 information on the TESLA protocol and its principles, please refer to
 [RFC4082][Perrig04].

3.1. TESLA Parameters

3.1.1. Time Intervals

 The sender divides the time into uniform intervals of duration T_int.
 Time interval numbering starts at 0 and is incremented consecutively.
 The interval index MUST be stored in an unsigned 32-bit integer so
 that wrapping to 0 takes place only after 2^^32 intervals. For
 instance, if T_int is equal to 0.5 seconds, then wrapping takes place
 after approximately 68 years.

3.1.2. Key Chains

3.1.2.1. Principles

 The sender computes a one-way key chain of n_c = N+1 keys, and
 assigns one key from the chain to each interval, consecutively but in
 reverse order. Key numbering starts at 0 and is incremented
 consecutively, following the time interval numbering: K_0, K_1, ...,
 K_N.

 In order to compute this chain, the sender must first select a
 Primary Key, K_N, and a PRF function, f (Section 7, TESLA-PRF). The
 randomness of the Primary Key, K_N, is vital to the security and no
 one should be able to guess it.

 The function F is a one-way function that is defined as: F(k) =
 f_k(0), where f_k(0) is the result of the application of the PRF f to
 k and 0. When f is an HMAC (Section 7), k is used as the key, and 0
 as the message, using the algorithm described in [RFC2104].

Roca, et al. Experimental [Page 16]

RFC 5776 TESLA in ALC and NORM April 2010

 Similarly, the function F’ is a one-way function that is defined as:
 F’(k) = f_k(1), where f_k(1) is the result of the application of the
 same PRF f to k and 1.

 The sender then computes all the keys of the chain, recursively,
 starting with K_N, using: K_{i-1} = F(K_i). Therefore, K_i = F^{N-
 i}(K_N), where F^i(x) is the execution of function F with the
 argument x, i times. The receiver can then compute any value in the
 key chain from K_N, even if it does not have intermediate values
 [RFC4082]. The key for MAC calculation can then be derived from the
 corresponding K_i key by K’_i = F’(K_i).

 The key chain has a finite length, N, which corresponds to a maximum
 time duration of (N + 1) * T_int. The content delivery session has a
 duration T_delivery, which may either be known in advance, or not. A
 first solution consists in having a single key chain of an
 appropriate length, so that the content delivery session finishes
 before the end of the key chain, i.e., T_delivery <= (N + 1) * T_int.
 But the longer the key chain, the higher the memory and computation
 required to cope with it. Another solution consists in switching to
 a new key chain, of the same length, when necessary [Perrig04].

3.1.2.2. Using Multiple Key Chains

 When several key chains are needed, all of them MUST be of the same
 length. Switching from the current key chain to the next one
 requires that a commitment to the new key chain be communicated in a
 secure way to the receiver. This can be done by using either an out-
 of-band mechanism or an in-band mechanism. This document only
 specifies the in-band mechanism.

 < -------- old key chain --------- >||< -------- new key chain --...
 +-----+-----+ .. +-----+-----+-----+||+-----+-----+-----+-----+-----+
 0 1 .. N-2 N-1 N || N+1 N+2 N+3 N+4 N+5
 ||
 Key disclosures: ||
 N/A N/A .. K_N-4 K_N-3 K_N-2 || K_N-1 K_N K_N+1 K_N+2 K_N+3
 | || | |
 |< -------------- >|| |< ------------- >|
 Additional key F(K_N+1) || K_N
 disclosures (commitment to || (last key of the
 (in parallel): the new chain) || old chain)

 Figure 1: Switching to the Second Key Chain with the In-Band
 Mechanism, Assuming That d=2, n_tx_newkcc=3, n_tx_lastkey=3

Roca, et al. Experimental [Page 17]

RFC 5776 TESLA in ALC and NORM April 2010

 Figure 1 illustrates the switch to the new key chain, using the in-
 band mechanism. Let us say that the old key chain stops at K_N and
 the new key chain starts at K_{N+1} (i.e., F(K_{N+1}) and K_N are two
 different keys). Then, the sender includes the commitment F(K_{N+1})
 to the new key chain into packets authenticated with the old key
 chain (see Section 3.4.5). This commitment SHOULD be sent during
 n_tx_newkcc time intervals before the end of the old key chain.
 Since several packets are usually sent during an interval, the sender
 SHOULD alternate between sending a disclosed key of the old key chain
 and the commitment to the new key chain. The details of how to
 alternate between the disclosure and commitment are out of the scope
 of this document.

 The receiver will keep the commitment until the key K_{N+1} is
 disclosed, at interval N+1+d. Then, the receiver will be able to
 test the validity of that key by computing F(K_{N+1}) and comparing
 it to the commitment.

 When the key chain is changed, it becomes impossible to recover a
 previous key from the old key chain. This is a problem if the
 receiver lost the packets disclosing the last key of the old key
 chain. A solution consists in re-sending the last key, K_N, of the
 old key chain (see Section 3.4.6). This SHOULD be done during
 n_tx_lastkey additional time intervals after the end of the time
 interval where K_N is disclosed. Since several packets are usually
 sent during an interval, the sender SHOULD alternate between sending
 a disclosed key of the new key chain, and the last key of the old key
 chain. The details of how to alternate between the two disclosures
 are out of the scope of this document.

 In some cases, a receiver having experienced a very long
 disconnection might have lost the commitment of the new chain.
 Therefore, this receiver will not be able to authenticate any packet
 related to the new chain or any of the following ones. The only
 solution for this receiver to catch up consists in receiving an
 additional bootstrap information message. This can happen by waiting
 for the next periodic transmission (if sent in-band) or through an
 external mechanism (Section 3.2.1).

3.1.2.3. Values of the n_tx_lastkey and n_tx_newkcc Parameters

 When several key chains and the in-band commitment mechanism are
 used, a sender MUST initialize the n_tx_lastkey and n_tx_newkcc
 parameters in such a way that no overlapping occurs. In other words,
 once a sender starts transmitting commitments for a new key chain, he
 MUST NOT send a disclosure for the last key of the old key chain any
 more. Therefore, the following property MUST be verified:

Roca, et al. Experimental [Page 18]

RFC 5776 TESLA in ALC and NORM April 2010

 d + n_tx_lastkey + n_tx_newkcc <= N + 1

 It is RECOMMENDED, for robustness purposes, that, once n_tx_lastkey
 has been chosen, then:

 n_tx_newkcc = N + 1 - n_tx_lastkey - d

 In other words, the sender starts transmitting a commitment to the
 following key chain immediately after having sent all the disclosures
 of the last key of the previous key chain. Doing so increases the
 probability that a receiver gets a commitment for the following key
 chain.

 In any case, these two parameters are sender specific and need not be
 transmitted to the receivers. Of course, as explained above, the
 sender alternates between the disclosure of a key of the current key
 chain and the commitment to the new key chain (or the last key of the
 old key chain).

3.1.2.4. The Particular Case of the Session Start

 Since a key cannot be disclosed before the disclosure delay, d, no
 key will be disclosed during the first d time intervals (intervals 0
 and 1 in Figure 1) of the session. To that purpose, the sender uses
 the Authentication Tag without Key Disclosure, Section 3.4.4. The
 following key chains, if any, are not concerned since they will
 disclose the last d keys of the previous chain.

3.1.2.5. Managing Silent Periods

 An ALC or NORM sender may stop transmitting packets for some time.
 For instance, it can be the end of the session and all packets have
 already been sent, or the use case may consist in a succession of
 busy periods (when fresh objects are available) followed by silent
 periods. In any case, this is an issue since the authentication of
 the packets sent during the last d intervals requires that the
 associated keys be disclosed, which will take place during d
 additional time intervals.

 To solve this problem, it is recommended that the sender transmit
 empty packets (i.e., without payload) containing the TESLA EXT_AUTH
 Header Extension along with a Standard Authentication Tag during at
 least d time intervals after the end of the regular ALC or NORM
 packet transmissions. The number of such packets and the duration
 during which they are sent must be sufficient for all receivers to
 receive, with a high probability, at least one packet disclosing the
 last useful key (i.e., the key used for the last non-empty packet
 sent).

Roca, et al. Experimental [Page 19]

RFC 5776 TESLA in ALC and NORM April 2010

3.1.3. Time Interval Schedule

 The sender must determine the following parameters:

 o T_0, the start time corresponding to the beginning of the session,
 i.e., the beginning of time interval 0 (in NTP timestamp format);

 o T_int, the interval duration (in milliseconds), usually ranging
 from 100 milliseconds to 1 second;

 o d, the key disclosure delay (in number of intervals). It is the
 time to wait before disclosing a key;

 o N, the length of a key chain.

 The correct choice of T_int, d, and N is crucial for the efficiency
 of the scheme. For instance, a T_int * d product that is too long
 will cause excessive delay in the authentication process. A T_int *
 d product that is too short prevents many receivers from verifying
 packets. An N * T_int product that is too small will cause the
 sender to switch too often to new key chains. An N that is too long
 with respect to the expected session duration (if known) will require
 the sender to compute too many useless keys. Sections 3.2 and 3.6 of
 [RFC4082] give general guidelines for initializing these parameters.

 The T_0, T_int, d, and N parameters MUST NOT be changed during the
 lifetime of the session. This restriction is meant to prevent
 introducing vulnerabilities. For instance, if a sender was
 authorized to change the key disclosure schedule, a receiver that did
 not receive the change notification would still believe in the old
 key disclosure schedule, thereby creating vulnerabilities [RFC4082].

3.1.4. Timing Parameters

 In indirect time synchronization mode, the sender must determine the
 following parameter:

 o D^O_t, the upper bound of the lag of the sender’s clock with
 respect to the time reference.

 The D^O_t parameter MUST NOT be changed during the lifetime of the
 session.

Roca, et al. Experimental [Page 20]

RFC 5776 TESLA in ALC and NORM April 2010

3.2. TESLA Signaling Messages

 At a sender, TESLA produces two types of signaling information:

 o The bootstrap information: it can be either sent out-of-band or
 in-band. In the latter case, a digitally signed packet contains
 all the information required to bootstrap TESLA at a receiver;

 o The direct time synchronization response, which enables a receiver
 to finish a direct time synchronization.

3.2.1. Bootstrap Information

 In order to initialize the TESLA component at a receiver, the sender
 must communicate some key information in a secure way. This
 information can be sent in-band or out-of-band, as discussed in
 Section 2.2. In this section, we only consider the in-band scheme.

 The TESLA bootstrap information message MUST be digitally signed
 (Section 3.3.2). The goal is to enable a receiver to check the
 packet source and packet integrity. Then, the bootstrap information
 can be:

 o unicast to a receiver during a direct time synchronization
 request/response exchange;

 o broadcast to all receivers. This is typically the case in
 indirect time synchronization mode. It can also be used in direct
 time synchronization mode, for instance, when a large number of
 clients arrive at the same time, in which case it is more
 efficient to answer globally.

 Let us consider situations where the bootstrap information is
 broadcast. This message should be broadcast at the beginning of the
 session, before data packets are actually sent. This is particularly
 important with ALC or NORM sessions in "push" mode, when all clients
 join the session in advance. For improved reliability, bootstrap
 information might be sent a certain number of times.

 A periodic broadcast of the bootstrap information message could also
 be useful when:

 o the ALC session uses an "on-demand" mode, clients arriving at
 their own discretion;

Roca, et al. Experimental [Page 21]

RFC 5776 TESLA in ALC and NORM April 2010

 o some clients experience an intermittent connectivity. This is
 particularly important when several key chains are used in an ALC
 or NORM session, since there is a risk that a receiver loses all
 the commitments to the new key chain.

 A balance must be found between the signaling overhead and the
 maximum initial waiting time at the receiver before starting the
 delayed authentication process. A period of a few seconds for the
 transmission of this bootstrap information is often a reasonable
 value.

3.2.2. Direct Time Synchronization Response

 In direct time synchronization, upon receipt of a synchronization
 request, the sender records its local time, t_s, and sends a response
 message that contains both t_r and t_s (Section 2.4.1). This message
 is unicast to the receiver. This direct time synchronization
 response message MUST be digitally signed in order to enable a
 receiver to check the packet source and packet integrity
 (Section 3.3.2). The receiver MUST also be able to associate this
 response and his request, which is the reason why t_r is included in
 the response message.

3.3. TESLA Authentication Information

 At a sender, TESLA produces three types of security tags:

 o an authentication tag, in case of data packets, and which contains
 the MAC of the packet;

 o a digital signature, in case of one of the two TESLA signaling
 packets, namely a bootstrap information message or a direct time
 synchronization response; and

 o an optional group authentication tag, that can be added to all the
 packets to mitigate attacks coming from outside of the group.

 Because of interdependencies, their computation MUST follow a strict
 order:

 o first of all, compute the authentication tag (with data packet) or
 the digital signature (with signaling packet);

 o finally, compute the Group Mac.

Roca, et al. Experimental [Page 22]

RFC 5776 TESLA in ALC and NORM April 2010

3.3.1. Authentication Tags

 All the data packets sent MUST have an authentication tag containing:

 o the interval index, i, which is also the index of the key used for
 computing the MAC of this packet;

 o the MAC of the message: MAC(K’_i, M), where K’_i=F’(K_i);

 o either a disclosed key (which belongs to the current key chain or
 the previous key chain), or a commitment to a new key chain, or no
 key at all.

 The computation of MAC(K’_i, M) MUST include the ALC or NORM header
 (with the various header extensions) and the payload (when
 applicable). The UDP/IP headers MUST NOT be included. During this
 computation, the "MAC(K’_i, M)" field of the authentication tag MUST
 be set to 0.

3.3.2. Digital Signatures

 The bootstrap information message (with the in-band bootstrap scheme)
 and direct time synchronization response message (with the indirect
 time synchronization scheme) both need to be signed by the sender.
 These two messages contain a "Signature" field to hold the digital
 signature. The bootstrap information message also contains the
 "Signature Encoding Algorithm", the "Signature Cryptographic
 Function", and the "Signature Length" fields that enable a receiver
 to process the "Signature" field. Note that there are no such
 "Signature Encoding Algorithm", "Signature Cryptographic Function",
 and "Signature Length" fields in the case of a direct time
 synchronization response message since it is assumed that these
 parameters are already known (i.e., the receiver either received a
 bootstrap information message before or these values have been
 communicated out-of-band).

 Several "Signature Encoding Algorithms" can be used, including
 RSASSA-PKCS1-v1_5, the default, and RSASSA-PSS (Section 7). With
 these encodings, SHA-256 is the default "Signature Cryptographic
 Function".

 The computation of the signature MUST include the ALC or NORM header
 (with the various header extensions) and the payload when applicable.
 The UDP/IP headers MUST NOT be included. During this computation,
 the "Signature" field MUST be set to 0 as well as the optional Group
 MAC, when present, since this Group MAC is calculated later.

Roca, et al. Experimental [Page 23]

RFC 5776 TESLA in ALC and NORM April 2010

 More specifically, from [RFC4359]: Digital signature generation is
 performed as described in [RFC3447], Section 8.2.1 for RSASSA-PKCS1-
 v1_5 and Section 8.1.1 for RSASSA-PSS. The authenticated portion of
 the packet is used as the message M, which is passed to the signature
 generation function. The signer’s RSA private key is passed as K.
 In summary, (when SHA-256 is used), the signature generation process
 computes a SHA-256 hash of the authenticated packet bytes, signs the
 SHA-256 hash using the private key, and encodes the result with the
 specified RSA encoding type. This process results in a value S,
 which is the digital signature to be included in the packet.

 With RSASSA-PKCS1-v1_5 and RSASSA-PSS signatures, the size of the
 signature is equal to the "RSA modulus", unless the "RSA modulus" is
 not a multiple of 8 bits. In that case, the signature MUST be
 prepended with between 1 and 7 bits set to zero such that the
 signature is a multiple of 8 bits [RFC4359]. The key size, which in
 practice is also equal to the "RSA modulus", has major security
 implications. [RFC4359] explains how to choose this value depending
 on the maximum expected lifetime of the session. This choice is out
 of the scope of this document.

3.3.3. Group MAC Tags

 An optional Group MAC can be used to mitigate Denial-of-Service (DoS)
 attacks coming from attackers that are not group members [RFC4082].
 This feature assumes that a group key, K_g, is shared by the sender
 and all receivers. When the attacker is not a group member, the
 benefits of adding a Group MAC to every packet sent are threefold:

 o a receiver can immediately drop faked packets, without having to
 wait for the disclosure delay, d;

 o a sender can immediately drop faked direct time synchronization
 requests, and avoid checking the digital signature, a computation
 intensive task;

 o a receiver can immediately drop faked direct time synchronization
 response and bootstrap messages, without having to verify the
 digital signature, a computation-intensive task.

 The computation of the Group MAC, MAC(K_g, M), MUST include the ALC
 or NORM header (with the various header extensions) and the payload
 when applicable. The UDP/IP headers MUST NOT be included. During
 this computation, the "Group MAC" field MUST be set to 0. However,
 the digital signature (e.g., of a bootstrap message) and the "MAC"
 fields (e.g., of an authentication tag), when present, MUST have been

Roca, et al. Experimental [Page 24]

RFC 5776 TESLA in ALC and NORM April 2010

 calculated since they are included in the Group MAC calculation
 itself. Then, the sender truncates the MAC output to keep the n_w
 most significant bits and stores the result in the "Group MAC" field.

 This scheme features a few limits:

 o it is of no help if a group member (who knows K_g) impersonates
 the sender and sends forged messages to other receivers;

 o it requires an additional MAC computing for each packet, both at
 the sender and receiver sides;

 o it increases the size of the TESLA authentication headers. In
 order to limit this problem, the length of the truncated output of
 the MAC, n_w, SHOULD be kept small (e.g., 32 bits) (see [RFC3711],
 Section 9.5). As a side effect, the authentication service is
 significantly weakened: the probability of any forged packet being
 successfully authenticated becomes one in 2^32. Since the Group
 MAC check is only a pre-check that must be followed by the
 standard TESLA authentication check, this is not considered to be
 an issue.

 For a given use case, the benefits brought by the Group MAC must be
 balanced against these limitations.

 Note that the Group MAC function can be different from the TESLA MAC
 function (e.g., it can use a weaker but faster MAC function). Note
 also that the mechanism by which the group key, K_g, is communicated
 to all group members, and perhaps periodically updated, is out of the
 scope of this document.

3.4. Format of TESLA Messages and Authentication Tags

 This section specifies the format of the various kinds of TESLA
 messages and authentication tags sent by the session’s sender.
 Because these TESLA messages are carried as EXT_AUTH Header
 Extensions of the ALC or NORM packets (Section 5), the following
 formats do not start on 32-bit word boundaries.

Roca, et al. Experimental [Page 25]

RFC 5776 TESLA in ALC and NORM April 2010

3.4.1. Format of a Bootstrap Information Message

 When bootstrap information is sent in-band, the following message is
 used:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+ ---
 | V |resvd|S|G|A| ^
 +-+ |
 | d | PRF Type | MAC Func Type |Gr MAC Fun Type| | f
 +-+ | i
 | SigEncAlgo | SigCryptoFunc | Signature Length | | x
 +-+ | e
 | Reserved | T_int | | d
 +-+ |
 | | | l
 + T_0 (NTP timestamp format) + | e
 | | | n
 +-+ | g
 | N (Key Chain Length) | | t
 +-+ | h
 | Current Interval Index i | v
 +-+ ---
 | |
 ˜ Current Key Chain Commitment +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 | |
 + +
 ˜ Signature ˜
 + +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 |P| |
 +-+ D^O_t Extension (optional, present if A==1) +
 | (NTP timestamp diff, positive if P==1, negative if P==0) |
 +-+
 ˜ Group MAC (optional) ˜
 +-+

 Figure 2: Bootstrap Information Format

Roca, et al. Experimental [Page 26]

RFC 5776 TESLA in ALC and NORM April 2010

 The format of the bootstrap information is depicted in Figure 2. The
 fields are:

 "V" (Version) field (2 bits):

 The "V" field contains the version number of the protocol. For
 this specification, the value of 0 MUST be used.

 "Reserved" field (3 bits):

 This is a reserved field that MUST be set to zero in this
 specification.

 "S" (Single Key Chain) flag (1 bit):

 The "S" flag indicates whether this TESLA session is restricted to
 a single key chain (S==1) or relies on one or multiple key chains
 (S==0).

 "G" (Group MAC Present) flag (1 bit):

 The "G" flag indicates whether the Group MAC feature is used
 (G==1) or not (G==0). When it is used, a "Group MAC" field is
 added to all the packets containing a TESLA EXT_AUTH Header
 Extension (including this bootstrap message).

 "A" flag (1 bit):

 The "A" flag indicates whether the "P" flag and "D^O_t" fields are
 present (A==1) or not (A==0). In indirect time synchronization
 mode, A MUST be equal to 1 since these fields are needed.

 "d" field (8 bits):

 "d" is an unsigned integer that defines the key disclosure delay
 (in number of intervals). d MUST be greater than or equal to 2.

 "PRF Type" field (8 bits):

 The "PRF Type" is the reference number of the f function used to
 derive the F (for key chain) and F’ (for MAC keys) functions
 (Section 7).

 "MAC Function Type" field (8 bits):

 The "MAC Function Type" is the reference number of the function
 used to compute the MAC of the packets (Section 7).

Roca, et al. Experimental [Page 27]

RFC 5776 TESLA in ALC and NORM April 2010

 "Group MAC Function Type" field (8 bits):

 When G==1, this field contains the reference number of the
 cryptographic MAC function used to compute the Group MAC
 (Section 7). When G==0, this field MUST be set to zero.

 "Signature Encoding Algorithm" field (8 bits):

 The "Signature Encoding Algorithm" is the reference number
 (Section 7) of the digital signature used to authenticate this
 bootstrap information and included in the "Signature" field.

 "Signature Cryptographic Function" field (8 bits):

 The "Signature Cryptographic Function" is the reference number
 (Section 7) of the cryptographic function used within the digital
 signature.

 "Signature Length" field (16 bits):

 The "Signature Length" is an unsigned integer that indicates the
 "Signature" field size in bytes in the "Signature Extension"
 field. This is also the signature key length, since both
 parameters are equal.

 "Reserved" fields (16 bits):

 This is a reserved field that MUST be set to zero in this
 specification.

 "T_int" field (16 bits):

 "T_int" is an unsigned 16-bit integer that defines the interval
 duration (in milliseconds).

 "T_0" field (64 bits):

 "T_0" is a timestamp in NTP timestamp format that indicates the
 beginning of the session, i.e., the beginning of time interval 0.

 "N" field (32 bits):

 "N" is an unsigned integer that indicates the key chain length.
 There are N + 1 keys per chain.

Roca, et al. Experimental [Page 28]

RFC 5776 TESLA in ALC and NORM April 2010

 "i" (Interval Index of K_i) field (32 bits):

 "i" is an unsigned integer that indicates the current interval
 index when this bootstrap information message is sent.

 "Current Key Chain Commitment" field (variable size, padded if
 necessary for 32-bit word alignment):

 "Key Chain Commitment" is the commitment to the current key chain,
 i.e., the key chain corresponding to interval i. For instance,
 with the first key chain, this commitment is equal to F(K_0), with
 the second key chain, this commitment is equal to F(K_{N+1}),
 etc.). If need be, this field is padded (with 0) up to a multiple
 of 32 bits.

 "Signature" field (variable size, padded if necessary for 32-bit word
 alignment):

 The "Signature" field is mandatory. It contains a digital
 signature of this message, as specified by the encoding algorithm,
 cryptographic function, and key length parameters. If the
 signature length is not a multiple of 32 bits, this field is
 padded with 0.

 "P" flag (optional, 1 bit if present):

 The "P" flag is optional and only present if the "A" flag is equal
 to 1. It is only used in indirect time synchronization mode.
 This flag indicates whether the D^O_t NTP timestamp difference is
 positive (P==1) or negative (P==0).

 "D^O_t" field (optional, 63 bits if present):

 The "D^O_t" field is optional and only present if the "A" flag is
 equal to 1. It is only used in indirect time synchronization
 mode. It is the upper bound of the lag of the sender’s clock with
 respect to the time reference. When several time references are
 specified (e.g., several NTP servers), then D^O_t is the maximum
 upper bound of the lag with each time reference. D^O_t is
 composed of two unsigned integers, as with NTP timestamps: the
 first 31 bits give the time difference in seconds and the
 remaining 32 bits give the sub-second time difference.

Roca, et al. Experimental [Page 29]

RFC 5776 TESLA in ALC and NORM April 2010

 "Group MAC" field (optional, variable length, multiple of 32 bits):

 This field contains the Group MAC, calculated with the group key,
 K_g, shared by all group members. The field length, in bits, is
 given by n_w, which is known once the Group MAC function type is
 known (Section 7).

 Note that the first byte and the following seven 32-bit words are
 mandatory fixed-length fields. The "Current Key Chain Commitment"
 and "Signature" fields are mandatory but variable-length fields. The
 remaining "D^O_t" and "Group MAC" fields are optional.

 In order to prevent attacks, some parameters MUST NOT be changed
 during the lifetime of the session (Sections 3.1.3 and 3.1.4). The
 following table summarizes the parameter’s status:

 +--------------------------+--+
 | Parameter | Status |
 +--------------------------+--+
V	set to 0 in this specification
S	static (during whole session)
G	static (during whole session)
A	static (during whole session)
T_O	static (during whole session)
T_int	static (during whole session)
d	static (during whole session)
N	static (during whole session)
D^O_t (if present)	static (during whole session)
PRF Type	static (during whole session)
MAC Function Type	static (during whole session)
Signature Encoding	static (during whole session)
Algorithm	
Signature Crypto.	static (during whole session)
Function	
Signature Length	static (during whole session)
Group MAC Func. Type	static (during whole session)
i	dynamic (related to current key chain)
K_i	dynamic (related to current key chain)
signature	dynamic, packet dependent
Group MAC (if present)	dynamic, packet dependent
 +--------------------------+--+

Roca, et al. Experimental [Page 30]

RFC 5776 TESLA in ALC and NORM April 2010

3.4.2. Format of a Direct Time Synchronization Response

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | Reserved |
 +-+
 | |
 + t_s (NTP timestamp) +
 | |
 +-+
 | |
 + t_r (NTP timestamp) +
 | |
 +-+
 | |
 + +
 ˜ Signature ˜
 + +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 ˜ Group MAC (optional) ˜
 +-+

 Figure 3: Format of a Direct Time Synchronization Response

 The response to a direct time synchronization request contains the
 following information:

 "Reserved" field (8 bits):

 This is a reserved field that MUST be set to zero in this
 specification.

 "t_s" (NTP timestamp, 64 bits):

 "t_s" is a timestamp in NTP timestamp format that corresponds to
 the sender local time value when receiving the direct time
 synchronization request message.

 "t_r" (NTP timestamp, 64 bits):

 "t_r" is a timestamp in NTP timestamp format that contains the
 receiver local time value received in the direct time
 synchronization request message.

Roca, et al. Experimental [Page 31]

RFC 5776 TESLA in ALC and NORM April 2010

 "Signature" field (variable size, padded if necessary for 32-bit word
 alignment):

 The "Signature" field is mandatory. It contains a digital
 signature of this message, as specified by the encoding algorithm,
 cryptographic function, and key length parameters communicated in
 the bootstrap information message (if applicable) or out-of-band.
 If the signature length is not a multiple of 32 bits, this field
 is padded with 0.

 "Group MAC" field (optional, variable length, multiple of 32 bits):

 This field contains the Group MAC, calculated with the group key,
 K_g, shared by all group members. The field length, in bits, is
 given by n_w, which is known once the Group MAC function type is
 known (Section 7).

3.4.3. Format of a Standard Authentication Tag

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | Reserved |
 +-+
 | i (Interval Index of K’_i) |
 +-+
 | |
 ˜ Disclosed Key K_{i-d} ˜
 | |
 +-+
 | |
 ˜ MAC(K’_i, M) +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 ˜ Group MAC (optional) ˜
 +-+

 Figure 4: Format of the Standard Authentication Tag

 A Standard Authentication Tag is composed of the following fields:

 "Reserved" field (8 bits):

 The "Reserved" field is not used in the current specification and
 MUST be set to zero by the sender.

Roca, et al. Experimental [Page 32]

RFC 5776 TESLA in ALC and NORM April 2010

 "i" (Interval Index) field (32 bits):

 "i" is the interval index associated with the key (K’_i) used to
 compute the MAC of this packet.

 "Disclosed Key" (variable size, non padded):

 The "Disclosed Key" is the key used for interval i-d: K_{i-d}.
 There is no padding between the "Disclosed Key" and "MAC(K’_i, M)"
 fields, and the latter MAY not start on a 32-bit boundary,
 depending on the n_p parameter.

 "MAC(K’_i, M)" (variable size, padded if necessary for 32-bit word
 alignment):

 "MAC(K’_i, M)" is the truncated message authentication code of the
 current packet. Only the n_m most significant bits of the MAC
 output are kept [RFC2104].

 "Group MAC" field (optional, variable length, multiple of 32 bits):

 This field contains the Group MAC, calculated with a group key,
 K_g, shared by all group members. The field length is given by
 n_w, in bits.

 Note that because a key cannot be disclosed before the disclosure
 delay, d, the sender MUST NOT use this tag during the first d
 intervals of the session: {0 .. d-1} (inclusive). Instead, the
 sender MUST use an Authentication Tag without Key Disclosure.

3.4.4. Format of an Authentication Tag without Key Disclosure

 The Authentication Tag without Key Disclosure is meant to be used in
 situations where a high number of packets are sent in a given time
 interval. In such a case, it can be advantageous to disclose the
 K_{i-d} key only in a subset of the packets sent, using a Standard
 Authentication Tag, and to use the shortened version that does not
 disclose the K_{i-d} key in the remaining packets. It is left to the
 implementer to decide how many packets should disclose the K_{i-d}
 key. This Authentication Tag without Key Disclosure MUST also be
 used during the first d intervals: {0 .. d-1} (inclusive).

Roca, et al. Experimental [Page 33]

RFC 5776 TESLA in ALC and NORM April 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | Reserved |
 +-+
 | i (Interval Index of K’_i) |
 +-+
 | |
 ˜ MAC(K’_i, M) +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 ˜ Group MAC (optional) ˜
 +-+

 Figure 5: Format of the Authentication Tag without Key Disclosure

3.4.5. Format of an Authentication Tag with a "New Key Chain"
 Commitment

 During the last n_tx_newkcc intervals of the current key chain, the
 sender SHOULD send commitments to the next key chain. This is done
 by replacing the disclosed key of the Authentication Tag with a New
 Key Chain Commitment, F(K_{N+1}) (or F(K_{2N+2}) in case of a switch
 between the second and third key chains, etc.) Figure 6 shows the
 corresponding format.

 Note that since there is no padding between the "F(K_{N+1})" and
 "MAC(K’_i, M)" fields, the latter MAY not start on a 32-bit boundary,
 depending on the n_p parameter.

Roca, et al. Experimental [Page 34]

RFC 5776 TESLA in ALC and NORM April 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | Reserved |
 +-+
 | i (Interval Index of K’_i) |
 +-+
 | |
 ˜ New Key Commitment F(K_{N+1}) ˜
 | |
 +-+
 | |
 ˜ MAC(K’_i, M) +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 ˜ Group MAC (optional) ˜
 +-+

 Figure 6: Format of the Authentication Tag
 with a New Key Chain Commitment

3.4.6. Format of an Authentication Tag with a "Last Key of Old Chain"
 Disclosure

 During the first n_tx_lastkey intervals of the new key chain after
 the disclosing interval, d, the sender SHOULD disclose the last key
 of the old key chain. This is done by replacing the disclosed key of
 the Authentication Tag with the Last Key of the Old Chain, K_N (or
 K_{2N+1} in case of a switch between the second and third key chains,
 etc.). Figure 7 shows the corresponding format.

 Note that since there is no padding between the "K_N" and "MAC(K’_i,
 M)" fields, the latter MAY not start on a 32-bit boundary, depending
 on the n_p parameter.

Roca, et al. Experimental [Page 35]

RFC 5776 TESLA in ALC and NORM April 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | Reserved |
 +-+
 | i (Interval Index of K’_i) |
 +-+
 | |
 ˜ Last Key of Old Chain, K_N ˜
 | |
 +-+
 | |
 ˜ MAC(K’_i, M) +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 ˜ Group MAC (optional) ˜
 +-+

 Figure 7: Format of the Authentication Tag
 with an Old Chain Last Key Disclosure

4. Receiver Operations

 This section describes the TESLA operations at a receiver.

4.1. Verification of the Authentication Information

 This section details the computation steps required to verify each of
 the three possible authentication information of an incoming packet.
 The verification MUST follow a strict order:

 o first of all, if the Group MAC is present and if the session uses
 this feature (e.g., if the G bit is set in the bootstrap
 information message), then verify the Group MAC. A packet that
 does not contain a Group MAC tag, whereas the session uses this
 feature, MUST be dropped immediately. On the opposite, if a
 packet contains a Group MAC tag whereas the session does not use
 this feature, this tag MUST be ignored;

 o then, verify the digital signature (with TESLA signaling packets)
 or enter the TESLA authentication process (with data packets).

4.1.1. Processing the Group MAC Tag

 Upon receiving a packet containing a Group MAC tag, the receiver
 recomputes the Group MAC and compares it to the value carried in the
 packet. If the check fails, the packet MUST be dropped immediately.

Roca, et al. Experimental [Page 36]

RFC 5776 TESLA in ALC and NORM April 2010

 More specifically, recomputing the Group MAC requires saving the
 value of the "Group MAC" field, setting this field to 0, and doing
 the same computation as a sender does (see Section 3.3.3).

4.1.2. Processing the Digital Signature

 Upon receiving a packet containing a digital signature, the receiver
 verifies the signature as follows.

 The computation of the signature MUST include the ALC or NORM header
 (with the various header extensions) and the payload when applicable.
 The UDP/IP headers MUST NOT be included. During this computation,
 the "Signature" field MUST be set to 0 as well as the optional Group
 MAC, when present.

 From [RFC4359]: Digital signature verification is performed as
 described in [RFC3447], Section 8.2.2 (RSASSA-PKCS1-v1_5) and
 [RFC3447], Section 8.1.2 (RSASSA-PSS). Upon receipt, the digital
 signature is passed to the verification function as S. The
 authenticated portion of the packet is used as the message M, and the
 RSA public key is passed as (n, e). In summary (when SHA-256 is
 used), the verification function computes a SHA-256 hash of the
 authenticated packet bytes, decrypts the SHA-256 hash in the packet,
 and validates that the appropriate encoding was applied. The two
 SHA-256 hashes are compared, and if they are identical the validation
 is successful.

 It is assumed that the receivers have the possibility to retrieve the
 sender’s public key required to check this digital signature
 (Section 2.2). This document does not specify how the public key of
 the sender is communicated reliably and in a secure way to all
 possible receivers.

4.1.3. Processing the Authentication Tag

 When a receiver wants to authenticate a packet using an
 authentication tag and when he has the key for the associated time
 interval (i.e., after the disclosing delay, d), the receiver
 recomputes the MAC and compares it to the value carried in the
 packet. If the check fails, the packet MUST be immediately dropped.

 More specifically, recomputing the MAC requires saving the value of
 the "MAC" field, setting this field to 0, and doing the same
 computation as a sender does (see Section 3.3.1).

Roca, et al. Experimental [Page 37]

RFC 5776 TESLA in ALC and NORM April 2010

4.2. Initialization of a Receiver

 A receiver MUST be initialized before being able to authenticate the
 source of incoming packets. This can be done by an out-of-band
 mechanism or an in-band mechanism (Section 2.2). Let us focus on the
 in-band mechanism. Two actions must be performed:

 o receive and process a bootstrap information message, and

 o calculate an upper bound of the sender’s local time. To that
 purpose, the receiver must perform time synchronization.

4.2.1. Processing the Bootstrap Information Message

 A receiver must first receive a packet containing the bootstrap
 information, digitally signed by the sender. Once the bootstrap
 information has been authenticated (see Section 4.1), the receiver
 can initialize its TESLA component. The receiver MUST then ignore
 the following bootstrap information messages, if any. There is an
 exception though: when a new key chain is used and if a receiver
 missed all the commitments for this new key chain, then this receiver
 MUST process one of the future bootstrap information messages (if
 any) in order to be able to authenticate the incoming packets
 associated to this new key chain.

 Before TESLA has been initialized, a receiver MUST discard incoming
 packets other than the bootstrap information message and direct time
 synchronization response.

4.2.2. Performing Time Synchronization

 First of all, the receiver must know whether the ALC or NORM session
 relies on direct or indirect time synchronization. This information
 is communicated by an out-of-band mechanism (for instance, when
 describing the various parameters of an ALC or NORM session). In
 some cases, both mechanisms might be available and the receiver can
 choose the preferred technique.

4.2.2.1. Direct Time Synchronization

 In the case of a direct time synchronization, a receiver MUST
 synchronize with the sender. To that purpose, the receiver sends a
 direct time synchronization request message. This message includes
 the local time (in NTP timestamp format) at the receiver when sending
 the message. This timestamp will be copied in the sender’s response
 for the receiver to associate the response to the request.

Roca, et al. Experimental [Page 38]

RFC 5776 TESLA in ALC and NORM April 2010

 The direct time synchronization request message format is the
 following:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + t_r (NTP timestamp) +
 | |
 +-+
 ˜ Group MAC (optional) ˜
 +-+

 Figure 8: Format of a Direct Time Synchronization Request

 The direct time synchronization request (Figure 8) contains the
 following information:

 "t_r" (NTP timestamp, 64 bits):

 "t_r" is a timestamp in NTP timestamp format that contains the
 receiver local time value when sending this direct time
 synchronization request message;

 "Group MAC" field (optional, variable length, multiple of 32 bits):

 This field contains the Group MAC, calculated with the group key,
 K_g, shared by all group members. The field length, in bits, is
 given by n_w, which is known once the Group MAC function type is
 known (Section 7).

 The receiver then awaits a response message (Section 3.4.2). Upon
 receiving this message, the receiver:

 checks that this response relates to the request, by comparing the
 "t_r" fields;

 checks the Group MAC if present;

 checks the signature;

 retrieves the t_s value and calculates D_t (Section 2.4.1).

 Note that in an ALC session, the direct time synchronization request
 message is sent to the sender by an out-of-band mechanism that is not
 specified by the current document.

Roca, et al. Experimental [Page 39]

RFC 5776 TESLA in ALC and NORM April 2010

4.2.2.2. Indirect Time Synchronization

 With the indirect time synchronization method, the sender MAY provide
 out-of-band the URL or IP address of the NTP server(s) he trusts
 along with an OPTIONAL certificate for each NTP server. When several
 NTP servers are specified, a receiver MUST choose one of them. This
 document does not specify how the choice is made, but for the sake of
 scalability, the clients SHOULD NOT use the same server if several
 possibilities are offered. The NTP synchronization between the NTP
 server and the receiver MUST be authenticated, either using the
 certificate provided by the server or another certificate the client
 may obtain for this NTP server.

 Then the receiver computes the time offset between itself and the NTP
 server chosen. Note that the receiver does not need to update the
 local time, (which often requires root privileges), computing the
 time offset is sufficient.

 Since the offset between the server and the time reference, D^O_t, is
 indicated in the bootstrap information message (or communicated out-
 of-band), the receiver can now calculate an upper bound of the
 sender’s local time (Section 2.4.2).

 Note that this scenario assumes that each client trusts the sender
 and accepts aligning its NTP configuration to that of the sender,
 using one of the NTP server(s) suggested. If this assumption does
 not hold, the client MUST NOT use the NTP indirect time
 synchronization method (Section 2.3.2).

4.3. Authentication of Received Packets

 The receiver can now authenticate incoming packets (other than
 bootstrap information and direct time synchronization response
 packets). To that purpose, he MUST follow different steps (see
 [RFC4082], Section 3.5):

 1. The receiver parses the different packet headers. If none of the
 four TESLA authentication tags are present, the receiver MUST
 discard the packet. If the session is in "Single Key Chain" mode
 (e.g., when the "S" flag is set in the bootstrap information
 message), then the receiver MUST discard any packet containing an
 Authentication Tag with a New Key Chain Commitment or an
 Authentication Tag with a Last Key of Old Chain Disclosure.

 2. Safe packet test: When the receiver receives packet P_j, it first
 records the local time T at which the packet arrived. The
 receiver then computes an upper bound t_j on the sender’s clock
 at the time when the packet arrived: t_j = T + D_t. The receiver

Roca, et al. Experimental [Page 40]

RFC 5776 TESLA in ALC and NORM April 2010

 then computes the highest interval the sender could possibly be
 in: highest_i = floor((t_j - T_0) / T_int). He also retrieves
 the "i" interval index from the authentication tag. The receiver
 can now proceed with the "safe packet" test. If highest_i < i +
 d, then the sender is not yet in the interval during which it
 discloses the key K_i. The packet is safe (but not necessarily
 authentic). If the test fails, the packet is unsafe, and the
 receiver MUST discard the packet.

 3. Group MAC test: if the optional Group MAC tag is present and if
 the session uses this feature, then verify the Group MAC
 (Section 4.1.1). If the verification fails, the packet MUST be
 immediately dropped. A packet that does not contain a Group MAC
 tag whereas the session uses this feature MUST be immediately
 dropped. On the opposite, if a packet contains a Group MAC tag
 whereas the session does not use this feature, this tag MUST be
 ignored.

 4. Disclosed Key processing: When the packet discloses a key (i.e.,
 with a Standard Authentication Tag, or with an Authentication Tag
 with a Last Key of Old Chain Disclosure), the following tests are
 performed:

 * New key index test: the receiver checks whether a legitimate
 key already exists with the same index (i.e., i-d). If such a
 legitimate key exists, the receiver compares its value with
 the current disclosed key and if they are identical, skips the
 "Unverifiable key test" and "Key verification test". If such
 a legitimate key exists but the values differ, the receiver
 MUST discard the packet.

 * Unverifiable key test: when the disclosed key index is new, it
 is possible that no earlier disclosed and legitimate key
 exists for this key chain, thereby preventing the verification
 of the disclosed key. This happens when the disclosed key
 belongs to the old key chain and no commitment to this old key
 chain has ever been received (e.g., because the first
 bootstrap packet received by a latecomer is for the current
 key chain, and therefore includes a commitment to the current
 key chain, not the previous one). When this happens, the
 receiver MUST ignore the disclosed key (anyway useless) and
 skip the Key verification test.

 * Key verification test: If the disclosed key index is new and
 the key can be verified, the receiver checks the legitimacy of
 K_{i-d} by verifying, for some earlier disclosed and
 legitimate key K_v (with v < i-d), that K_v and F^{i-d-
 v}(K_{i-d}) are identical. In other words, the receiver

Roca, et al. Experimental [Page 41]

RFC 5776 TESLA in ALC and NORM April 2010

 checks the disclosed key by computing the necessary number of
 PRF functions to obtain a previously disclosed and legitimate
 (i.e., verified) key. If the key verification fails, the
 receiver MUST discard the packet. If the key verification
 succeeds, this key is said to be legitimate and is stored by
 the receiver, as well as all the keys between indexes v and
 i-d.

 5. When applicable, the receiver performs any congestion control
 related action (i.e., the ALC or NORM headers are used by the
 associated congestion control building block, if any), even if
 the packet has not yet been authenticated [RFC5651]. If this
 feature leads to a potential DoS attack (the attacker can send a
 faked packet with a wrong sequence number to simulate packet
 losses), it does not compromise the security features offered by
 TESLA and enables a rapid reaction in front of actual congestion
 problems.

 6. The receiver then buffers the packet for a later authentication,
 once the corresponding key will be disclosed (after d time
 intervals) or deduced from another key (if all packets disclosing
 this key are lost). In some situations, this packet might also
 be discarded later, if it turns out that the receiver will never
 be able to deduce the associated key.

 7. Authentication test: Let v be the smallest index of the
 legitimate keys known by the receiver so far. For all the new
 keys K_w, with v < w <= i-d, that have been either disclosed by
 this packet (i.e., K_{i-d}) or derived by K_{i-d} (i.e., keys in
 interval {v+1,.. i-d-1}), the receiver verifies the authenticity
 of the safe packets buffered for the corresponding interval w.
 To authenticate one of the buffered packets P_h containing
 message M_h protected with a MAC that used key index w, the
 receiver will compute K’_w = F’(K_w) from which it can compute
 MAC(K’_w, M_h). If this MAC does not equal the MAC stored in
 the packet, the receiver MUST discard the packet. If the two
 MACs are equal, the packet is successfully authenticated and the
 receiver continues processing it.

 8. Authenticated new key chain commitment processing: If the
 authenticated packet contains a new key chain commitment and if
 no verified commitment already exists, then the receiver stores
 the commitment to the new key chain. Then, if there are non-
 authenticated packets for a previous chain (i.e., the key chain
 before the current one), all these packets can be discarded
 (Section 4.4).

Roca, et al. Experimental [Page 42]

RFC 5776 TESLA in ALC and NORM April 2010

 9. The receiver continues the ALC or NORM processing of all the
 packets authenticated during the authentication test.

 In this specification, a receiver using TESLA MUST immediately drop
 unsafe packets. But the receiver MAY also decide, at any time, to
 continue an ALC or NORM session in unsafe (insecure) mode, ignoring
 TESLA extensions. There SHOULD be an explicit user action to that
 purpose.

4.3.1. Discarding Unnecessary Packets Earlier

 Following strictly the above steps can lead to excessive processing
 overhead in certain situations. This is the case when a receiver
 receives packets for an unwanted object with the ALC or NORM
 protocols, i.e., an object in which the application (or the end user)
 explicitly mentioned it is not interested. This is also the case
 when a receiver receives packets for an already decoded object, or
 when this object has been partitioned in several blocks, for an
 already decoded block. When such a packet is received, which is
 easily identified by looking at the receiver’s status for the
 incoming ALC or NORM packet, the receiver MUST also check that the
 packet is a pure data packet that does not contain any signaling
 information of importance for the session.

 With ALC, a packet containing an "A" flag ("Close Session") or a "B"
 flag ("Close Object") MUST NOT be discarded before having been
 authenticated and processed normally. Otherwise, the receiver can
 safely discard the incoming packet for instance just after step 1 of
 Section 4.3. This optimization can dramatically reduce the
 processing overhead by avoiding many useless authentication checks.

4.4. Flushing the Non-Authenticated Packets of a Previous Key Chain

 In some cases, a receiver having experienced a very long
 disconnection might have lost all the disclosures of the last key(s)
 of a previous key chain. Let j be the index of this key chain for
 which there remains non-authenticated packets. This receiver can
 flush all the packets of the key chain j if he determines that:

 o he has just switched to a chain of index j+2 (inclusive) or
 higher;

 o the sender has sent a commitment to the new key chain of index j+2
 (Section 3.1.2.3). This situation requires that the receiver has
 received a packet containing such a commitment and that he has
 been able to check its integrity. In some cases, it might require
 receiving a bootstrap information message for the current key
 chain.

Roca, et al. Experimental [Page 43]

RFC 5776 TESLA in ALC and NORM April 2010

 If one of the above two tests succeeds, the sender can discard all
 the awaiting packets since there is no way to authenticate them.

5. Integration in the ALC and NORM Protocols

5.1. Authentication Header Extension Format

 The integration of TESLA in ALC or NORM is similar and relies on the
 header extension mechanism defined in both protocols. More
 precisely, this document details the EXT_AUTH==1 header extension
 defined in [RFC5651].

 Several fields are added in addition to the "HET" (Header Extension
 Type) and "HEL" (Header Extension Length) fields (Figure 9).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET (=1) | HEL | ASID | Type | |
 +-+ +
 | |
 ˜ ˜
 | Content |
 ˜ ˜
 | |
 +-+

 Figure 9: Format of the TESLA EXT_AUTH Header Extension

 The fields of the TESLA EXT_AUTH Header Extension are:

 "ASID" (Authentication Scheme IDentifier) field (4 bits):

 The "ASID" identifies the source authentication scheme or protocol
 in use. The association between the "ASID" value and the actual
 authentication scheme is defined out-of-band, at session startup.

 "Type" field (4 bits):

 The "Type" field identifies the type of TESLA information carried
 in this header extension. This specification defines the
 following types:

 * 0: Bootstrap information, sent by the sender periodically or
 after a direct time synchronization request;

 * 1: Standard Authentication Tag for the ongoing key chain, sent
 by the sender along with a packet;

Roca, et al. Experimental [Page 44]

RFC 5776 TESLA in ALC and NORM April 2010

 * 2: Authentication Tag without Key Disclosure, sent by the
 sender along with a packet;

 * 3: Authentication Tag with a New Key Chain Commitment, sent by
 the sender when approaching the end of a key chain;

 * 4: Authentication Tag with a Last Key of Old Chain Disclosure,
 sent by the sender some time after moving to a new key chain;

 * 5: Direct time synchronization request, sent by a NORM
 receiver. This type of message is invalid in the case of an
 ALC session since ALC is restricted to unidirectional
 transmissions. Yet, an external mechanism may provide the
 direct time synchronization functionality;

 * 6: Direct time synchronization response, sent by a NORM sender.
 This type of message is invalid in the case of an ALC session
 since ALC is restricted to unidirectional transmissions. Yet,
 an external mechanism may provide the direct time
 synchronization functionality.

 "Content" field (variable length):

 This is the TESLA information carried in the header extension,
 whose type is given by the "Type" field.

5.2. Use of Authentication Header Extensions

 Each packet sent by the session’s sender MUST contain exactly one
 TESLA EXT_AUTH Header Extension.

 All receivers MUST recognize EXT_AUTH but MAY not be able to parse
 its content, for instance, because they do not support TESLA. In
 that case, these receivers MUST ignore the TESLA EXT_AUTH extensions.
 In the case of NORM, the packets sent by receivers MAY contain a
 direct synchronization request but MUST NOT contain any of the other
 five TESLA EXT_AUTH Header Extensions.

5.2.1. EXT_AUTH Header Extension of Type Bootstrap Information

 The "bootstrap information" TESLA EXT_AUTH (Type==0) MUST be sent in
 a stand-alone control packet, rather than in a packet containing
 application data. The reason for that is the large size of this
 bootstrap information. By using stand-alone packets, the maximum
 payload size of data packets is only affected by the (mandatory)
 authentication information header extension.

Roca, et al. Experimental [Page 45]

RFC 5776 TESLA in ALC and NORM April 2010

 With ALC, the "bootstrap information" TESLA EXT_AUTH MUST be sent in
 a control packet, i.e., containing no encoding symbol.

 With NORM, the "bootstrap information" TESLA EXT_AUTH MUST be sent in
 a NORM_CMD(APPLICATION) message.

Roca, et al. Experimental [Page 46]

RFC 5776 TESLA in ALC and NORM April 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+ ---
 | HET (=1) | HEL (=46) | ASID | 0 | 0 | 0 |0|1|0| ^
 +-+ |
 | d | 2 | 2 | 2 | |
 +-+ |
 | 1 | 3 | 128 | |
 +-+ |
 | 0 (reserved) | T_int | |
 +-+ |
 | | |
 + T_0 (NTP timestamp format) + | 5
 | | | 2
 +-+ |
 | N (Key Chain Length) | | b
 +-+ | y
 | Current Interval Index i | | t
 +-+ | e
 | | | s
 + + |
 | | |
 + Current Key Chain Commitment + |
 | (20 bytes) | |
 + + |
 | | |
 + + |
 | | v
 +-+ ---
 | | ^ 1
 + + | 2
 | | | 8
 . . |
 . Signature . | b
 . (128 bytes) . | y
 | | | t
 + + | e
 | | v s
 +-+ ---
 | Group MAC |
 +-+

 Figure 10: Example: Format of the Bootstrap Information Message
 (Type 0) Using SHA-256/1024-Bit Signatures,
 the Default HMAC-SHA-256, and a Group MAC

Roca, et al. Experimental [Page 47]

RFC 5776 TESLA in ALC and NORM April 2010

 For instance, Figure 10 shows the bootstrap information message when
 using the HMAC-SHA-256 transform for the PRF, MAC, and Group MAC
 functions, along with SHA-256/128 byte (1024 bit) key digital
 signatures (which also means that the "Signature" field is 128 bytes
 long). The TESLA EXT_AUTH Header Extension is then 184 bytes long
 (i.e., 46 words of 32 bits).

5.2.2. EXT_AUTH Header Extension of Type Authentication Tag

 The four "authentication tag" TESLA EXT_AUTH Header Extensions (Type
 1, 2, 3, and 4) MUST be attached to the ALC or NORM packet (data or
 control packet) that they protect.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET (=1) | HEL (=10) | ASID | 1 | Reserved |
 +-+
 | i (Interval Index of K’_i) |
 +-+
 | |
 + +
 | |
 + Disclosed Key K_{i-d} +
 | (20 bytes) |
 + +
 | |
 + +
 | |
 +-+
 | |
 + +
 | MAC(K’_i, M) |
 + (16 bytes) +
 | |
 + +
 | |
 +-+

 Figure 11: Example: Format of the Standard Authentication Tag
 (Type 1) Using the Default HMAC-SHA-256

Roca, et al. Experimental [Page 48]

RFC 5776 TESLA in ALC and NORM April 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET (=1) | HEL (=5) | ASID | 2 | Reserved |
 +-+
 | i (Interval Index of K’_i) |
 +-+
 | |
 + +
 | MAC(K’_i, M) |
 + (16 bytes) +
 | |
 + +
 | |
 +-+

 Figure 12: Example: Format of the Authentication Tag without
 Key Disclosure (Type 2) Using the Default HMAC-SHA-256

 For instance, Figures 11 and 12 show the format of the authentication
 tags, respectively with and without the K_{i-d} key disclosure, when
 using the (default) HMAC-SHA-256 transform for the PRF and MAC
 functions. In these examples, the Group MAC feature is not used.

5.2.3. EXT_AUTH Header Extension of Type Direct Time Synchronization
 Request

 With NORM, the "direct time synchronization request" TESLA EXT_AUTH
 (Type==7) MUST be sent by a receiver in a NORM_CMD(APPLICATION) NORM
 packet.

 With ALC, the "direct time synchronization request" TESLA EXT_AUTH
 cannot be included in an ALC packet, since ALC is restricted to
 unidirectional transmissions, from the session’s sender to the
 receivers. An external mechanism must be used with ALC for carrying
 direct time synchronization requests to the session’s sender.

 In the case of direct time synchronization, it is RECOMMENDED that
 the receivers spread the transmission of direct time synchronization
 requests over the time (Section 2.3.1).

5.2.4. EXT_AUTH Header Extension of Type Direct Time Synchronization
 Response

 With NORM, the "direct time synchronization response" TESLA EXT_AUTH
 (Type==8) MUST be sent by the sender in a NORM_CMD(APPLICATION)
 message.

Roca, et al. Experimental [Page 49]

RFC 5776 TESLA in ALC and NORM April 2010

 With ALC, the "direct time synchronization response" TESLA EXT_AUTH
 can be sent in an ALC control packet (i.e., containing no encoding
 symbol) or through the external mechanism used to carry the direct
 time synchronization request.

6. Security Considerations

 [RFC4082] discusses the security of TESLA in general. These
 considerations apply to the present specification, namely:

 o great care must be taken in the timing aspects. In particular,
 the D_t parameter is critical and must be correctly initialized;

 o if the sender realizes that the key disclosure schedule is not
 appropriate, then the current session MUST be closed and a new one
 created. Indeed, Section 3.1.3 requires that these parameters be
 fixed during the whole session.

 o when the verifier that authenticates the incoming packets and the
 application that uses the data are two different components, there
 is a risk that an attacker located between these components inject
 faked data. Similarly, when the verifier and the secure timing
 system are two different components, there is a risk that an
 attacker located between these components inject faked timing
 information. For instance, when the verifier reads the local time
 by means of a dedicated system call (e.g., gettimeofday()), if an
 attacker controls the host, he may catch the system call and
 return a faked time information.

 The current specification discusses additional aspects with more
 details.

6.1. Dealing with DoS Attacks

 TESLA introduces new opportunities for an attacker to mount DoS
 attacks. For instance, an attacker can try to saturate the
 processing capabilities of the receiver (faked packets are easy to
 create but checking them requires computing a MAC over the packet or
 sometimes checking a digital signature as with the bootstrap and
 direct time synchronization response messages). An attacker can also
 try to saturate the receiver’s memory (since authentication is
 delayed and non-authenticated packets will accumulate), or to make
 the receiver believe that a congestion has happened (since congestion
 control MUST be performed before authenticating incoming packets,
 Section 4.3).

Roca, et al. Experimental [Page 50]

RFC 5776 TESLA in ALC and NORM April 2010

 In order to mitigate these attacks, it is RECOMMENDED to use the
 Group MAC scheme (Section 3.3.3). No mitigation is possible if a
 group member acts as an attacker with Group MAC.

 Generally, it is RECOMMENDED that the amount of memory used to store
 incoming packets waiting to be authenticated be limited to a
 reasonable value.

6.2. Dealing With Replay Attacks

 Replay attacks, whereby an attacker stores a valid message and
 replays it later, can have significant impacts, depending on the
 message type. Two levels of impacts must be distinguished:

 o within the TESLA protocol, and

 o within the ALC or NORM protocol.

6.2.1. Impacts of Replay Attacks on TESLA

 Replay attacks can impact the TESLA component itself. We review here
 the potential impacts of such an attack depending on the TESLA
 message type:

 o bootstrap information: Since most parameters contained in a
 bootstrap information message are static, replay attacks have no
 consequences. The fact that the "i" and "K_i" fields can be
 updated in subsequent bootstrap information messages does not
 create a problem either, since all "i" and "K_i" fields sent
 remain valid. Finally, a receiver that successfully initialized
 its TESLA component MUST ignore the following messages (see
 Section 4.2.1 for an exception to this rule), which voids replay
 attacks, unless he missed all the commitments to a new key chain
 (e.g., after a long disconnection) (Section 3.2.1).

 o direct time synchronization request: If the Group MAC scheme is
 used, an attacker that is not a member of the group can replay a
 packet and oblige the sender to respond, which requires digitally
 signing the response, a time-consuming process. If the Group MAC
 scheme is not used, an attacker can easily forge a request anyway.
 In both cases, the attack will not compromise the TESLA component,
 but might create a DoS. If this is a concern, it is RECOMMENDED,
 when the Group MAC scheme is used, that the sender verify the
 "t_r" NTP timestamp contained in the request and respond only if
 this value is strictly larger than the previous one received from
 this receiver. When the Group MAC scheme is not used, this attack
 can be mitigated by limiting the number of requests per second
 that will be processed.

Roca, et al. Experimental [Page 51]

RFC 5776 TESLA in ALC and NORM April 2010

 o direct time synchronization response: Upon receiving a response, a
 receiver who has no pending request MUST immediately drop the
 packet. If this receiver has previously issued a request, he
 first checks the Group MAC (if applicable), then the "t_r" field,
 to be sure it is a response to his request, and finally the
 digital signature. A replayed packet will be dropped during these
 verifications, without compromising the TESLA component.

 o other messages, containing an authentication tag: Replaying a
 packet containing a TESLA authentication tag will never compromise
 the TESLA component itself (but perhaps the underlying ALC or NORM
 component, see below).

 To conclude, TESLA itself is robust in front of replay attacks.

6.2.2. Impacts of Replay Attacks on NORM

 We review here the potential impacts of a replay attack on the NORM
 component. Note that we do not consider here the protocols that
 could be used along with NORM, for instance, the congestion control
 protocols.

 First, let us consider replay attacks within a given NORM session.
 NORM defines a "sequence" field that can be used to protect against
 replay attacks [RFC5740] within a given NORM session. This
 "sequence" field is a 16-bit value that is set by the message
 originator (sender or receiver) as a monotonically increasing number
 incremented with each NORM message transmitted. It is RECOMMENDED
 that a receiver check this "sequence" field and drop messages
 considered as replayed. Similarly, it is RECOMMENDED that a sender
 check this sequence, for each known receiver, and drop messages
 considered as replayed. In both cases, checking this "sequence"
 field SHOULD be done before TESLA processing of the packet: if the
 "sequence" field has not been corrupted, the replay attack will
 immediately be identified; otherwise, the packet will fail the TESLA
 authentication test. This analysis shows that NORM itself is robust
 in front of replay attacks within the same session.

 Now let us consider replay attacks across several NORM sessions.
 Since the key chain used in each session MUST differ, a packet
 replayed in a subsequent session will be identified as unauthentic.
 Therefore, NORM is robust in front of replay attacks across different
 sessions.

Roca, et al. Experimental [Page 52]

RFC 5776 TESLA in ALC and NORM April 2010

6.2.3. Impacts of Replay Attacks on ALC

 We review here the potential impacts of a replay attack on the ALC
 component. Note that we do not consider here the protocols that
 could be used along with ALC, for instance, the layered or wave-based
 congestion control protocols.

 First, let us consider replay attacks within a given ALC session:

 o Regular packets containing an authentication tag: a replayed
 message containing an encoding symbol will be detected once
 authenticated, thanks to the object/block/symbol identifiers, and
 will be silently discarded. This kind of replay attack is only
 penalizing in terms of memory and processing load, but does not
 compromise the ALC behavior.

 o Control packets containing an authentication tag: ALC control
 packets, by definition, do not include any encoding symbol and
 therefore do not include any object/block/symbol identifier that
 would enable a receiver to identify duplicates. However, a sender
 has a very limited number of reasons to send control packets.
 More precisely:

 * At the end of the session, a "Close Session" ("A" flag) packet
 is sent. Replaying this packet has no impact since the
 receivers already left.

 * Similarly, replaying a packet containing a "Close Object" ("B"
 flag) has no impact since this object is probably already
 marked as closed by the receiver.

 This analysis shows that ALC itself is robust in front of replay
 attacks within the same session.

 Now let us consider replay attacks across several ALC sessions.
 Since the key chain used in each session MUST differ, a packet
 replayed in a subsequent session will be identified as unauthentic.
 Therefore, ALC is robust in front of replay attacks across different
 sessions.

6.3. Security of the Back Channel

 As specified in Section 1.1, this specification does not consider the
 packets that may be sent by receivers, for instance, NORM’s feedback
 packets. When a back channel is used, its security is critical to
 the global security, and an appropriate security mechanism MUST be
 used. [RMT-SIMPLE-AUTH] describes several techniques that can be
 used to that purpose. However, the authentication and integrity

Roca, et al. Experimental [Page 53]

RFC 5776 TESLA in ALC and NORM April 2010

 verification of the packets sent by receivers on the back channel, if
 any, is out of the scope of this document.

7. IANA Considerations

 IANA has registered the following attributes according to this
 document. The registries are provided by [RFC4442] under the "Timed
 Efficient Stream Loss-tolerant Authentication (TESLA) Parameters"
 registry [TESLA-REG]. Following the policies outlined in [RFC4442],
 the values in the range up to 240 (including 240) for the following
 attributes are assigned after expert review by the MSEC working group
 or its designated successor. The values in the range from 241 to 255
 are reserved for private use.

 Cryptographic Pseudo-Random Function, TESLA-PRF: All implementations
 MUST support HMAC-SHA-256 (default).

 +------------------------+-------+
 | PRF name | Value |
 +------------------------+-------+
 | HMAC-SHA1 | 0 |
 | HMAC-SHA-224 | 1 |
 | HMAC-SHA-256 (default) | 2 |
 | HMAC-SHA-384 | 3 |
 | HMAC-SHA-512 | 4 |
 +------------------------+-------+

 Cryptographic Message Authentication Code (MAC) Function, TESLA-MAC:
 All implementations MUST support HMAC-SHA-256 (default). These MAC
 schemes are used both for the computing of regular MAC and the Group
 MAC (if applicable).

 +------------------------+-------+
 | MAC name | Value |
 +------------------------+-------+
 | HMAC-SHA1 | 0 |
 | HMAC-SHA-224 | 1 |
 | HMAC-SHA-256 (default) | 2 |
 | HMAC-SHA-384 | 3 |
 | HMAC-SHA-512 | 4 |
 +------------------------+-------+

 Furthermore, IANA has created two new registries. Here also, the
 values in the range up to 240 (including 240) for the following
 attributes are assigned after expert review by the MSEC working group
 or its designated successor. The values in the range from 241 to 255
 are reserved for private use.

Roca, et al. Experimental [Page 54]

RFC 5776 TESLA in ALC and NORM April 2010

 Signature Encoding Algorithm, TESLA-SIG-ALGO: All implementations
 MUST support RSASSA-PKCS1-v1_5 (default).

 +-----------------------------+-------+
 | Signature Algorithm Name | Value |
 +-----------------------------+-------+
 | INVALID | 0 |
 | RSASSA-PKCS1-v1_5 (default) | 1 |
 | RSASSA-PSS | 2 |
 +-----------------------------+-------+

 Signature Cryptographic Function, TESLA-SIG-CRYPTO-FUNC: All
 implementations MUST support SHA-256 (default).

 +-----------------------------+-------+
 | Cryptographic Function Name | Value |
 +-----------------------------+-------+
 | INVALID | 0 |
 | SHA-1 | 1 |
 | SHA-224 | 2 |
 | SHA-256 (default) | 3 |
 | SHA-384 | 4 |
 | SHA-512 | 5 |
 +-----------------------------+-------+

8. Acknowledgments

 The authors are grateful to Yaron Sheffer, Brian Weis, Ramu
 Panayappan, Ran Canetti, David L. Mills, Brian Adamson, and Lionel
 Giraud for their valuable comments while preparing this document.
 The authors are also grateful to Brian Weis for the digital signature
 details.

9. References

9.1. Normative References

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation", RFC 1305,
 March 1992.

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

Roca, et al. Experimental [Page 55]

RFC 5776 TESLA in ALC and NORM April 2010

 [RFC4082] Perrig, A., Song, D., Canetti, R., Tygar, J., and
 B. Briscoe, "Timed Efficient Stream Loss-Tolerant
 Authentication (TESLA): Multicast Source
 Authentication Transform Introduction", RFC 4082,
 June 2005.

 [RFC5651] Luby, M., Watson, M., and L. Vicisano, "Layered
 Coding Transport (LCT) Building Block", RFC 5651,
 October 2009.

 [RFC5740] Adamson, B., Bormann, C., Handley, M., and J.
 Macker, "NACK-Oriented Reliable Multicast (NORM)
 Transport Protocol", RFC 5740, November 2009.

 [RFC5775] Luby, M., Watson, M., and L. Vicisano,
 "Asynchronous Layered Coding (ALC) Protocol
 Instantiation", RFC 5775, April 2010.

 [TESLA-REG] "TESLA Parameters IANA Registry",
 http://www.iana.org.

9.2. Informative References

 [NTP-NTPv4] Burbank, J., Kasch, W., Martin, J., Ed., and D.
 Mills, "The Network Time Protocol Version 4
 Protocol And Algorithm Specification", Work
 in Progress, October 2009.

 [Perrig04] Perrig, A. and J. Tygar, "Secure Broadcast
 Communication in Wired and Wireless Networks",
 Kluwer Academic Publishers ISBN 0-7923-7650-1,
 2004.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication",
 RFC 2104, February 1997.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key
 Cryptography Standards (PKCS) #1: RSA Cryptography
 Specifications Version 2.1", RFC 3447,
 February 2003.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E.,
 and K. Norrman, "The Secure Real-time Transport
 Protocol (SRTP)", RFC 3711, March 2004.

Roca, et al. Experimental [Page 56]

RFC 5776 TESLA in ALC and NORM April 2010

 [RFC4330] Mills, D., "Simple Network Time Protocol (SNTP)
 Version 4 for IPv4, IPv6 and OSI", RFC 4330,
 January 2006.

 [RFC4359] Weis, B., "The Use of RSA/SHA-1 Signatures within
 Encapsulating Security Payload (ESP) and
 Authentication Header (AH)", RFC 4359,
 January 2006.

 [RFC4383] Baugher, M. and E. Carrara, "The Use of Timed
 Efficient Stream Loss-Tolerant Authentication
 (TESLA) in the Secure Real-time Transport Protocol
 (SRTP)", RFC 4383, February 2006.

 [RFC4442] Fries, S. and H. Tschofenig, "Bootstrapping Timed
 Efficient Stream Loss-Tolerant Authentication
 (TESLA)", RFC 4442, March 2006.

 [RMT-FLUTE] Paila, T., Walsh, R., Luby, M., Lehtonen, R., and
 V. Roca, "FLUTE - File Delivery over
 Unidirectional Transport", Work in Progress,
 August 2009.

 [RMT-SIMPLE-AUTH] Roca, V., "Simple Authentication Schemes for the
 ALC and NORM Protocols", Work in Progress,
 October 2009.

Roca, et al. Experimental [Page 57]

RFC 5776 TESLA in ALC and NORM April 2010

Authors’ Addresses

 Vincent Roca
 INRIA
 655, av. de l’Europe
 Inovallee; Montbonnot
 ST ISMIER cedex 38334
 France

 EMail: vincent.roca@inria.fr
 URI: http://planete.inrialpes.fr/˜roca/

 Aurelien Francillon
 INRIA
 655, av. de l’Europe
 Inovallee; Montbonnot
 ST ISMIER cedex 38334
 France

 EMail: aurelien.francillon@inria.fr
 URI: http://planete.inrialpes.fr/˜francill/

 Sebastien Faurite
 INRIA
 655, av. de l’Europe
 Inovallee; Montbonnot
 ST ISMIER cedex 38334
 France

 EMail: faurite@lcpc.fr

Roca, et al. Experimental [Page 58]

