
Network Working Group S. Dawkins
Request for Comments: 3150 G. Montenegro
BCP: 48 M . Kojo
Category: Best Current Practice V. Magret
 July 2001

 End-to-end Performance Implications of Slow Links

Status of this Memo

 This document specifies an Internet Best Current Practices for the
 Internet Community, and requests discussion and suggestions for
 improvements. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document makes performance-related recommendations for users of
 network paths that traverse "very low bit-rate" links.

 "Very low bit-rate" implies "slower than we would like". This
 recommendation may be useful in any network where hosts can saturate
 available bandwidth, but the design space for this recommendation
 explicitly includes connections that traverse 56 Kb/second modem
 links or 4.8 Kb/second wireless access links - both of which are
 widely deployed.

 This document discusses general-purpose mechanisms. Where
 application-specific mechanisms can outperform the relevant general-
 purpose mechanism, we point this out and explain why.

 This document has some recommendations in common with RFC 2689,
 "Providing integrated services over low-bitrate links", especially in
 areas like header compression. This document focuses more on
 traditional data applications for which "best-effort delivery" is
 appropriate.

Dawkins, et al. Best Current Practice [Page 1]

RFC 3150 PILC - Slow Links July 2001

Table of Contents

 1.0 Introduction ... 2
 2.0 Description of Optimizations 3
 2.1 Header Compression Alternatives 3
 2.2 Payload Compression Alternatives 5
 2.3 Choosing MTU sizes 5
 2.4 Interactions with TCP Congestion Control [RFC2581] ... 6
 2.5 TCP Buffer Auto-tuning 9
 2.6 Small Window Effects 10
 3.0 Summary of Recommended Optimizations 10
 4.0 Topics For Further Work 12
 5.0 Security Considerations 12
 6.0 IANA Considerations .. 13
 7.0 Acknowledgements ... 13
 8.0 References ... 13
 Authors’ Addresses ... 16
 Full Copyright Statement ... 17

1.0 Introduction

 The Internet protocol stack was designed to operate in a wide range
 of link speeds, and has met this design goal with only a limited
 number of enhancements (for example, the use of TCP window scaling as
 described in "TCP Extensions for High Performance" [RFC1323] for
 very-high-bandwidth connections).

 Pre-World Wide Web application protocols tended to be either
 interactive applications sending very little data (e.g., Telnet) or
 bulk transfer applications that did not require interactive response
 (e.g., File Transfer Protocol, Network News). The World Wide Web has
 given us traffic that is both interactive and often "bulky",
 including images, sound, and video.

 The World Wide Web has also popularized the Internet, so that there
 is significant interest in accessing the Internet over link speeds
 that are much "slower" than typical office network speeds. In fact,
 a significant proportion of the current Internet users is connected
 to the Internet over a relatively slow last-hop link. In future, the
 number of such users is likely to increase rapidly as various mobile
 devices are foreseen to to be attached to the Internet over slow
 wireless links.

 In order to provide the best interactive response for these "bulky"
 transfers, implementors may wish to minimize the number of bits
 actually transmitted over these "slow" connections. There are two

Dawkins, et al. Best Current Practice [Page 2]

RFC 3150 PILC - Slow Links July 2001

 areas that can be considered - compressing the bits that make up the
 overhead associated with the connection, and compressing the bits
 that make up the payload being transported over the connection.

 In addition, implementors may wish to consider TCP receive window
 settings and queuing mechanisms as techniques to improve performance
 over low-speed links. While these techniques do not involve protocol
 changes, they are included in this document for completeness.

2.0 Description of Optimizations

 This section describes optimizations which have been suggested for
 use in situations where hosts can saturate their links. The next
 section summarizes recommendations about the use of these
 optimizations.

2.1 Header Compression Alternatives

 Mechanisms for TCP and IP header compression defined in [RFC1144,
 RFC2507, RFC2508, RFC2509, RFC3095] provide the following benefits:

 - Improve interactive response time

 - Decrease header overhead (for a typical dialup MTU of 296
 bytes, the overhead of TCP/IP headers can decrease from about
 13 percent with typical 40-byte headers to 1-1.5 percent with
 with 3-5 byte compressed headers, for most packets). This
 enables use of small packets for delay-sensitive low data-rate
 traffic and good line efficiency for bulk data even with small
 segment sizes (for reasons to use a small MTU on slow links,
 see section 2.3)

 - Many slow links today are wireless and tend to be significantly
 lossy. Header compression reduces packet loss rate over lossy
 links (simply because shorter transmission times expose packets
 to fewer events that cause loss).

 [RFC1144] header compression is a Proposed Standard for TCP Header
 compression that is widely deployed. Unfortunately it is vulnerable
 on lossy links, because even a single bit error results in loss of
 synchronization between the compressor and decompressor. It uses TCP
 timeouts to detect a loss of such synchronization, but these errors
 result in loss of data (up to a full TCP window), delay of a full
 RTO, and unnecessary slow-start.

Dawkins, et al. Best Current Practice [Page 3]

RFC 3150 PILC - Slow Links July 2001

 A more recent header compression proposal [RFC2507] includes an
 explicit request for retransmission of an uncompressed packet to
 allow resynchronization without waiting for a TCP timeout (and
 executing congestion avoidance procedures). This works much better
 on links with lossy characteristics.

 The above scheme ceases to perform well under conditions as extreme
 as those of many cellular links (error conditions of 1e-3 or 1e-2 and
 round trip times over 100 ms.). For these cases, the ’Robust Header
 Compression’ working group has developed ROHC [RFC3095]. Extensions
 of ROHC to support compression of TCP headers are also under
 development.

 [RFC1323] defines a "TCP Timestamp" option, used to prevent
 "wrapping" of the TCP sequence number space on high-speed links, and
 to improve TCP RTT estimates by providing unambiguous TCP roundtrip
 timings. Use of TCP timestamps prevents header compression, because
 the timestamps are sent as TCP options. This means that each
 timestamped header has TCP options that differ from the previous
 header, and headers with changed TCP options are always sent
 uncompressed. In addition, timestamps do not seem to have much of an
 impact on RTO estimation [AlPa99].

 Nevertheless, the ROHC working group is developing schemes to
 compress TCP headers, including options such as timestamps and
 selective acknowledgements.

 Recommendation: Implement [RFC2507], in particular as it relates to
 IPv4 tunnels and Minimal Encapsulation for Mobile IP, as well as TCP
 header compression for lossy links and links that reorder packets.
 PPP capable devices should implement "IP Header Compression over PPP"
 [RFC2509]. Robust Header Compression [RFC3095] is recommended for
 extremely slow links with very high error rates (see above), but
 implementors should judge if its complexity is justified (perhaps by
 the cost of the radio frequency resources).

 [RFC1144] header compression should only be enabled when operating
 over reliable "slow" links.

 Use of TCP Timestamps [RFC1323] is not recommended with these
 connections, because it complicates header compression. Even though
 the Robust Header Compression (ROHC) working group is developing
 specifications to remedy this, those mechanisms are not yet fully
 developed nor deployed, and may not be generally justifiable.
 Furthermore, connections traversing "slow" links do not require
 protection against TCP sequence-number wrapping.

Dawkins, et al. Best Current Practice [Page 4]

RFC 3150 PILC - Slow Links July 2001

2.2 Payload Compression Alternatives

 Compression of IP payloads is also desirable on "slow" network links.
 "IP Payload Compression Protocol (IPComp)" [RFC2393] defines a
 framework where common compression algorithms can be applied to
 arbitrary IP segment payloads.

 IP payload compression is something of a niche optimization. It is
 necessary because IP-level security converts IP payloads to random
 bitstreams, defeating commonly-deployed link-layer compression
 mechanisms which are faced with payloads that have no redundant
 "information" that can be more compactly represented.

 However, many IP payloads are already compressed (images, audio,
 video, "zipped" files being transferred), or are already encrypted
 above the IP layer (e.g., SSL [SSL]/TLS [RFC2246]). These payloads
 will not "compress" further, limiting the benefit of this
 optimization.

 For uncompressed HTTP payload types, HTTP/1.1 [RFC2616] also includes
 Content-Encoding and Accept-Encoding headers, supporting a variety of
 compression algorithms for common compressible MIME types like
 text/plain. This leaves only the HTTP headers themselves
 uncompressed.

 In general, application-level compression can often outperform
 IPComp, because of the opportunity to use compression dictionaries
 based on knowledge of the specific data being compressed.

 Extensive use of application-level compression techniques will reduce
 the need for IPComp, especially for WWW users.

 Recommendation: IPComp may optionally be implemented.

2.3 Choosing MTU Sizes

 There are several points to keep in mind when choosing an MTU for
 low-speed links.

 First, if a full-length MTU occupies a link for longer than the
 delayed ACK timeout (typically 200 milliseconds, but may be up to 500
 milliseconds), this timeout will cause an ACK to be generated for
 every segment, rather than every second segment, as occurs with most
 implementations of the TCP delayed ACK algorithm.

Dawkins, et al. Best Current Practice [Page 5]

RFC 3150 PILC - Slow Links July 2001

 Second, "relatively large" MTUs, which take human-perceptible amounts
 of time to be transmitted into the network, create human-perceptible
 delays in other flows using the same link. [RFC1144] considers
 100-200 millisecond delays as human-perceptible. The convention of
 choosing 296-byte MTUs (with header compression enabled) for dialup
 access is a compromise that limits the maximum link occupancy delay
 with full-length MTUs close to 200 milliseconds on 9.6 Kb/second
 links.

 Third, on last-hop links using a larger link MTU size, and therefore
 larger MSS, would allow a TCP sender to increase its congestion
 window faster in bytes than when using a smaller MTU size (and a
 smaller MSS). However, with a smaller MTU size, and a smaller MSS
 size, the congestion window, when measured in segments, increases
 more quickly than it would with a larger MSS size. Connections using
 smaller MSS sizes are more likely to be able to send enough segments
 to generate three duplicate acknowledgements, triggering fast
 retransmit/fast recovery when packet losses are encountered. Hence,
 a smaller MTU size is useful for slow links with lossy
 characteristics.

 Fourth, using a smaller MTU size also decreases the queuing delay of
 a TCP flow (and thereby RTT) compared to use of larger MTU size with
 the same number of packets in a queue. This means that a TCP flow
 using a smaller segment size and traversing a slow link is able to
 inflate the congestion window (in number of segments) to a larger
 value while experiencing the same queuing delay.

 Finally, some networks charge for traffic on a per-packet basis, not
 on a per-kilobyte basis. In these cases, connections using a larger
 MTU may be charged less than connections transferring the same number
 of bytes using a smaller MTU.

 Recommendation: If it is possible to do so, MTUs should be chosen
 that do not monopolize network interfaces for human-perceptible
 amounts of time, and implementors should not chose MTUs that will
 occupy a network interface for significantly more than 100-200
 milliseconds.

2.4 Interactions with TCP Congestion Control [RFC2581]

 In many cases, TCP connections that traverse slow links have the slow
 link as an "access" link, with higher-speed links in use for most of
 the connection path. One common configuration might be a laptop
 computer using dialup access to a terminal server (a last-hop
 router), with an HTTP server on a high-speed LAN "behind" the
 terminal server.

Dawkins, et al. Best Current Practice [Page 6]

RFC 3150 PILC - Slow Links July 2001

 In this case, the HTTP server may be able to place packets on its
 directly-attached high-speed LAN at a higher rate than the last-hop
 router can forward them on the low-speed link. When the last-hop
 router falls behind, it will be unable to buffer the traffic intended
 for the low-speed link, and will become a point of congestion and
 begin to drop the excess packets. In particular, several packets may
 be dropped in a single transmission window when initial slow start
 overshoots the last-hop router buffer.

 Although packet loss is occurring, it isn’t detected at the TCP
 sender until one RTT time after the router buffer space is exhausted
 and the first packet is dropped. This late congestion signal allows
 the congestion window to increase up to double the size it was at the
 time the first packet was dropped at the router.

 If the link MTU is large enough to take more than the delayed ACK
 timeout interval to transmit a packet, an ACK is sent for every
 segment and the congestion window is doubled in a single RTT. If a
 smaller link MTU is in use and delayed ACKs can be utilized, the
 congestion window increases by a factor of 1.5 in one RTT. In both
 cases the sender continues transmitting packets well beyond the
 congestion point of the last-hop router, resulting in multiple packet
 losses in a single window.

 The self-clocking nature of TCP’s slow start and congestion avoidance
 algorithms prevent this buffer overrun from continuing. In addition,
 these algorithms allow senders to "probe" for available bandwidth -
 cycling through an increasing rate of transmission until loss occurs,
 followed by a dramatic (50-percent) drop in transmission rate. This
 happens when a host directly connected to a low-speed link offers an
 advertised window that is unrealistically large for the low-speed
 link. During the congestion avoidance phase the peer host continues
 to probe for available bandwidth, trying to fill the advertised
 window, until packet loss occurs.

 The same problems may also exist when a sending host is directly
 connected to a slow link as most slow links have some local buffer in
 the link interface. This link interface buffer is subject to
 overflow exactly in the same way as the last-hop router buffer.

 When a last-hop router with a small number of buffers per outbound
 link is used, the first buffer overflow occurs earlier than it would
 if the router had a larger number of buffers. Subsequently with a
 smaller number of buffers the periodic packet losses occur more
 frequently during congestion avoidance, when the sender probes for
 available bandwidth.

Dawkins, et al. Best Current Practice [Page 7]

RFC 3150 PILC - Slow Links July 2001

 The most important responsibility of router buffers is to absorb
 bursts. Too few buffers (for example, only three buffers per
 outbound link as described in [RFC2416]) means that routers will
 overflow their buffer pools very easily and are unlikely to absorb
 even a very small burst. When a larger number of router buffers are
 allocated per outbound link, the buffer space does not overflow as
 quickly but the buffers are still likely to become full due to TCP’s
 default behavior. A larger number of router buffers leads to longer
 queuing delays and a longer RTT.

 If router queues become full before congestion is signaled or remain
 full for long periods of time, this is likely to result in "lock-
 out", where a single connection or a few connections occupy the
 router queue space, preventing other connections from using the link
 [RFC2309], especially when a tail drop queue management discipline is
 being used.

 Therefore, it is essential to have a large enough number of buffers
 in routers to be able to absorb data bursts, but keep the queues
 normally small. In order to achieve this it has been recommended in
 [RFC2309] that an active queue management mechanism, like Random
 Early Detection (RED) [RED93], should be implemented in all Internet
 routers, including the last-hop routers in front of a slow link. It
 should also be noted that RED requires a sufficiently large number of
 router buffers to work properly. In addition, the appropriate
 parameters of RED on a last-hop router connected to a slow link will
 likely deviate from the defaults recommended.

 Active queue management mechanism do not eliminate packet drops but,
 instead, drop packets at earlier stage to solve the full-queue
 problem for flows that are responsive to packet drops as congestion
 signal. Hosts that are directly connected to low-speed links may
 limit the receive windows they advertise in order to lower or
 eliminate the number of packet drops in a last-hop router. When
 doing so one should, however, take care that the advertised window is
 large enough to allow full utilization of the last-hop link capacity
 and to allow triggering fast retransmit, when a packet loss is
 encountered. This recommendation takes two forms:

 - Modern operating systems use relatively large default TCP receive
 buffers compared to what is required to fully utilize the link
 capacity of low-speed links. Users should be able to choose the
 default receive window size in use - typically a system-wide
 parameter. (This "choice" may be as simple as "dial-up access/LAN
 access" on a dialog box - this would accommodate many environments
 without requiring hand-tuning by experienced network engineers.)

Dawkins, et al. Best Current Practice [Page 8]

RFC 3150 PILC - Slow Links July 2001

 - Application developers should not attempt to manually manage
 network bandwidth using socket buffer sizes. Only in very rare
 circumstances will an application actually know both the bandwidth
 and delay of a path and be able to choose a suitably low (or high)
 value for the socket buffer size to obtain good network
 performance.

 This recommendation is not a general solution for any network path
 that might involve a slow link. Instead, this recommendation is
 applicable in environments where the host "knows" it is always
 connected to other hosts via "slow links". For hosts that may
 connect to other host over a variety of links (e.g., dial-up laptop
 computers with LAN-connected docking stations), buffer auto-tuning
 for the receive buffer is a more reasonable recommendation, and is
 discussed below.

2.5 TCP Buffer Auto-tuning

 [SMM98] recognizes a tension between the desire to allocate "large"
 TCP buffers, so that network paths are fully utilized, and a desire
 to limit the amount of memory dedicated to TCP buffers, in order to
 efficiently support large numbers of connections to hosts over
 network paths that may vary by six orders of magnitude.

 The technique proposed is to dynamically allocate TCP buffers, based
 on the current congestion window, rather than attempting to
 preallocate TCP buffers without any knowledge of the network path.

 This proposal results in receive buffers that are appropriate for the
 window sizes in use, and send buffers large enough to contain two
 windows of segments, so that SACK and fast recovery can recover
 losses without forcing the connection to use lengthy retransmission
 timeouts.

 While most of the motivation for this proposal is given from a
 server’s perspective, hosts that connect using multiple interfaces
 with markedly-different link speeds may also find this kind of
 technique useful. This is true in particular with slow links, which
 are likely to dominate the end-to-end RTT. If the host is connected
 only via a single slow link interface at a time, it is fairly easy to
 (dynamically) adjust the receive window (and thus the advertised
 window) to a value appropriate for the slow last-hop link with known
 bandwidth and delay characteristics.

 Recommendation: If a host is sometimes connected via a slow link but
 the host is also connected using other interfaces with markedly-
 different link speeds, it may use receive buffer auto-tuning to
 adjust the advertised window to an appropriate value.

Dawkins, et al. Best Current Practice [Page 9]

RFC 3150 PILC - Slow Links July 2001

2.6 Small Window Effects

 If a TCP connection stabilizes with a congestion window of only a few
 segments (as could be expected on a "slow" link), the sender isn’t
 sending enough segments to generate three duplicate acknowledgements,
 triggering fast retransmit and fast recovery. This means that a
 retransmission timeout is required to repair the loss - dropping the
 TCP connection to a congestion window with only one segment.

 [TCPB98] and [TCPF98] observe that (in studies of network trace
 datasets) it is relatively common for TCP retransmission timeouts to
 occur even when some duplicate acknowledgements are being sent. The
 challenge is to use these duplicate acknowledgements to trigger fast
 retransmit/fast recovery without injecting traffic into the network
 unnecessarily - and especially not injecting traffic in ways that
 will result in instability.

 The "Limited Transmit" algorithm [RFC3042] suggests sending a new
 segment when the first and second duplicate acknowledgements are
 received, so that the receiver is more likely to be able to continue
 to generate duplicate acknowledgements until the TCP retransmit
 threshold is reached, triggering fast retransmit and fast recovery.
 When the congestion window is small, this is very useful in assisting
 fast retransmit and fast recovery to recover from a packet loss
 without using a retransmission timeout. We note that a maximum of
 two additional new segments will be sent before the receiver sends
 either a new acknowledgement advancing the window or two additional
 duplicate acknowledgements, triggering fast retransmit/fast recovery,
 and that these new segments will be acknowledgement-clocked, not
 back-to-back.

 Recommendation: Limited Transmit should be implemented in all hosts.

3.0 Summary of Recommended Optimizations

 This section summarizes our recommendations regarding the previous
 standards-track mechanisms, for end nodes that are connected via a
 slow link.

 Header compression should be implemented. [RFC1144] header
 compression can be enabled over robust network links. [RFC2507]
 should be used over network connections that are expected to
 experience loss due to corruption as well as loss due to congestion.
 For extremely lossy and slow links, implementors should evaluate ROHC
 [RFC3095] as a potential solution. [RFC1323] TCP timestamps must be
 turned off because (1) their protection against TCP sequence number
 wrapping is unjustified for slow links, and (2) they complicate TCP
 header compression.

Dawkins, et al. Best Current Practice [Page 10]

RFC 3150 PILC - Slow Links July 2001

 IP Payload Compression [RFC2393] should be implemented, although
 compression at higher layers of the protocol stack (for example [RFC
 2616]) may make this mechanism less useful.

 For HTTP/1.1 environments, [RFC2616] payload compression should be
 implemented and should be used for payloads that are not already
 compressed.

 Implementors should choose MTUs that don’t monopolize network
 interfaces for more than 100-200 milliseconds, in order to limit the
 impact of a single connection on all other connections sharing the
 network interface.

 Use of active queue management is recommended on last-hop routers
 that provide Internet access to host behind a slow link. In
 addition, number of router buffers per slow link should be large
 enough to absorb concurrent data bursts from more than a single flow.
 To absorb concurrent data bursts from two or three TCP senders with a
 typical data burst of three back-to-back segments per sender, at
 least six (6) or nine (9) buffers are needed. Effective use of
 active queue management is likely to require even larger number of
 buffers.

 Implementors should consider the possibility that a host will be
 directly connected to a low-speed link when choosing default TCP
 receive window sizes.

 Application developers should not attempt to manually manage network
 bandwidth using socket buffer sizes as only in very rare
 circumstances an application will be able to choose a suitable value
 for the socket buffer size to obtain good network performance.

 Limited Transmit [RFC3042] should be implemented in all end hosts as
 it assists in triggering fast retransmit when congestion window is
 small.

 All of the mechanisms described above are stable standards-track RFCs
 (at Proposed Standard status, as of this writing).

 In addition, implementors may wish to consider TCP buffer auto-
 tuning, especially when the host system is likely to be used with a
 wide variety of access link speeds. This is not a standards-track
 TCP mechanism but, as it is an operating system implementation issue,
 it does not need to be standardized.

 Of the above mechanisms, only Header Compression (for IP and TCP) may
 cease to work in the presence of end-to-end IPSEC. However,
 [RFC3095] does allow compressing the ESP header.

Dawkins, et al. Best Current Practice [Page 11]

RFC 3150 PILC - Slow Links July 2001

4.0 Topics For Further Work

 In addition to the standards-track mechanisms discussed above, there
 are still opportunities to improve performance over low-speed links.

 "Sending fewer bits" is an obvious response to slow link speeds. The
 now-defunct HTTP-NG proposal [HTTP-NG] replaced the text-based HTTP
 header representation with a binary representation for compactness.
 However, HTTP-NG is not moving forward and HTTP/1.1 is not being
 enhanced to include a more compact HTTP header representation.
 Instead, the Wireless Application Protocol (WAP) Forum has opted for
 the XML-based Wireless Session Protocol [WSP], which includes a
 compact header encoding mechanism.

 It would be nice to agree on a more compact header representation
 that will be used by all WWW communities, not only the wireless WAN
 community. Indeed, general XML content encodings have been proposed
 [Millau], although they are not yet widely adopted.

 We note that TCP options which change from segment to segment
 effectively disable header compression schemes deployed today,
 because there’s no way to indicate that some fields in the header are
 unchanged from the previous segment, while other fields are not. The
 Robust Header Compression working group is developing such schemes
 for TCP options such as timestamps and selective acknowledgements.
 Hopefully, documents subsequent to [RFC3095] will define such
 specifications.

 Another effort worth following is that of ’Delta Encoding’. Here,
 clients that request a slightly modified version of some previously
 cached resource would receive a succinct description of the
 differences, rather than the entire resource [HTTP-DELTA].

5.0 Security Considerations

 All recommendations included in this document are stable standards-
 track RFCs (at Proposed Standard status, as of this writing) or
 otherwise do not suggest any changes to any protocol. With the
 exception of Van Jacobson compression [RFC1144] and [RFC2507,
 RFC2508, RFC2509], all other mechanisms are applicable to TCP
 connections protected by end-to-end IPSec. This includes ROHC
 [RFC3095], albeit partially, because even though it can compress the
 outermost ESP header to some extent, encryption still renders any
 payload data uncompressible (including any subsequent protocol
 headers).

Dawkins, et al. Best Current Practice [Page 12]

RFC 3150 PILC - Slow Links July 2001

6.0 IANA Considerations

 This document is a pointer to other, existing IETF standards. There
 are no new IANA considerations.

7.0 Acknowledgements

 This recommendation has grown out of "Long Thin Networks" [RFC2757],
 which in turn benefited from work done in the IETF TCPSAT working
 group.

8.0 References

 [AlPa99] Mark Allman and Vern Paxson, "On Estimating End-to-End
 Network Path Properties", in ACM SIGCOMM 99 Proceedings,
 1999.

 [HTTP-DELTA] J. Mogul, et al., "Delta encoding in HTTP", Work in
 Progress.

 [HTTP-NG] Mike Spreitzer, Bill Janssen, "HTTP ’Next Generation’",
 9th International WWW Conference, May, 2000. Also
 available as: http://www.www9.org/w9cdrom/60/60.html

 [Millau] Marc Girardot, Neel Sundaresan, "Millau: an encoding
 format for efficient representation and exchange of XML
 over the Web", 9th International WWW Conference, May,
 2000. Also available as:
 http://www.www9.org/w9cdrom/154/154.html

 [PAX97] Paxson, V., "End-to-End Internet Packet Dynamics", 1997,
 in SIGCOMM 97 Proceedings, available as:
 http://www.acm.org/sigcomm/ccr/archive/ccr-toc/ccr-toc-
 97.html

 [RED93] Floyd, S., and Jacobson, V., Random Early Detection
 gateways for Congestion Avoidance, IEEE/ACM Transactions
 on Networking, V.1 N.4, August 1993, pp. 397-413. Also
 available from http://ftp.ee.lbl.gov/floyd/red.html.

 [RFC1144] Jacobson, V., "Compressing TCP/IP Headers for Low-Speed
 Serial Links", RFC 1144, February 1990.

Dawkins, et al. Best Current Practice [Page 13]

RFC 3150 PILC - Slow Links July 2001

 [RFC1323] Jacobson, V., Braden, R. and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol: Version
 1.0", RFC 2246, January 1999.

 [RFC2309] Braden, R., Clark, D., Crowcroft, J., Davie, B.,
 Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
 Minshall, G., Partridge, C., Peterson, L., Ramakrishnan,
 K., Shenker, S., Wroclawski, J. and L. Zhang,
 "Recommendations on Queue Management and Congestion
 Avoidance in the Internet", RFC 2309, April 1998.

 [RFC2393] Shacham, A., Monsour, R., Pereira, R. and M. Thomas, "IP
 Payload Compression Protocol (IPComp)", RFC 2393,
 December 1998.

 [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [RFC2416] Shepard, T. and C. Partridge, "When TCP Starts Up With
 Four Packets Into Only Three Buffers", RFC 2416,
 September 1998.

 [RFC2507] Degermark, M., Nordgren, B. and S. Pink, "IP Header
 Compression", RFC 2507, February 1999.

 [RFC2508] Casner, S. and V. Jacobson. "Compressing IP/UDP/RTP
 Headers for Low-Speed Serial Links", RFC 2508, February
 1999.

 [RFC2509] Engan, M., Casner, S. and C. Bormann, "IP Header
 Compression over PPP", RFC 2509, February 1999.

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2757] Montenegro, G., Dawkins, S., Kojo, M., Magret, V., and
 N. Vaidya, "Long Thin Networks", RFC 2757, January 2000.

 [RFC3042] Allman, M., Balakrishnan, H. and S. Floyd, "Enhancing
 TCP’s Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

Dawkins, et al. Best Current Practice [Page 14]

RFC 3150 PILC - Slow Links July 2001

 [RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima,
 H., Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T.,
 Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro,
 K., Wiebke, T., Yoshimura, T. and H. Zheng, "RObust
 Header Compression (ROHC): Framework and four Profiles:
 RTP, UDP ESP and uncompressed", RFC 3095, July 2001.

 [SMM98] Jeffrey Semke, Matthew Mathis, and Jamshid Mahdavi,
 "Automatic TCP Buffer Tuning", in ACM SIGCOMM 98
 Proceedings 1998. Available from
 http://www.acm.org/sigcomm/sigcomm98/tp/abs_26.html.

 [SSL] Alan O. Freier, Philip Karlton, Paul C. Kocher, The SSL
 Protocol: Version 3.0, March 1996. (Expired Internet-
 Draft, available from
 http://home.netscape.com/eng/ssl3/ssl-toc.html)

 [TCPB98] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan
 Seshan, Mark Stemm, Randy H. Katz, "TCP Behavior of a
 Busy Internet Server: Analysis and Improvements", IEEE
 Infocom, March 1998. Available from:
 http://www.cs.berkeley.edu/˜hari/papers/infocom98.ps.gz

 [TCPF98] Dong Lin and H.T. Kung, "TCP Fast Recovery Strategies:
 Analysis and Improvements", IEEE Infocom, March 1998.
 Available from:
 http://www.eecs.harvard.edu/networking/papers/ infocom-
 tcp-final-198.pdf

 [WSP] Wireless Application Protocol Forum, "WAP Wireless
 Session Protocol Specification", approved 4 May, 2000,
 available from
 http://www1.wapforum.org/tech/documents/WAP-203-WSP-
 20000504-a.pdf. (informative reference).

Dawkins, et al. Best Current Practice [Page 15]

RFC 3150 PILC - Slow Links July 2001

Authors’ Addresses

 Questions about this document may be directed to:

 Spencer Dawkins
 Fujitsu Network Communications
 2801 Telecom Parkway
 Richardson, Texas 75082

 Phone: +1-972-479-3782
 EMail: spencer.dawkins@fnc.fujitsu.com

 Gabriel Montenegro
 Sun Microsystems Laboratories, Europe
 29, chemin du Vieux Chene
 38240 Meylan, FRANCE

 Phone: +33 476 18 80 45
 EMail: gab@sun.com

 Markku Kojo
 Department of Computer Science
 University of Helsinki
 P.O. Box 26 (Teollisuuskatu 23)
 FIN-00014 HELSINKI
 Finland

 Phone: +358-9-1914-4179
 Fax: +358-9-1914-4441
 EMail: kojo@cs.helsinki.fi

 Vincent Magret
 Alcatel Internetworking, Inc.
 26801 W. Agoura road
 Calabasas, CA, 91301

 Phone: +1 818 878 4485
 EMail: vincent.magret@alcatel.com

Dawkins, et al. Best Current Practice [Page 16]

RFC 3150 PILC - Slow Links July 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Dawkins, et al. Best Current Practice [Page 17]

