
Network Working Group C. de Laat
Request for Comments: 2903 Utrecht University
Category: Experimental G. Gross
 Lucent Technologies
 L. Gommans
 Enterasys Networks EMEA
 J. Vollbrecht
 D. Spence
 Interlink Networks, Inc.
 August 2000

 Generic AAA Architecture

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This memo proposes an Authentication, Authorization, Accounting (AAA)
 architecture that would incorporate a generic AAA server along with
 an application interface to a set of Application Specific Modules
 that could perform application specific AAA functions. A separation
 of AAA functions required in a multi-domain environment is then
 proposed using a layered protocol abstraction. The long term goal is
 to create a generic framework which allows complex authorizations to
 be realized through a network of interconnected AAA servers.

de Laat, et al. Experimental [Page 1]

RFC 2903 Generic AAA Architecture August 2000

Table of Contents

 1. Introduction .. 2
 2. Generic AAA Architecture 4
 2.1. Architectural Components of a Generic AAA Server 4
 2.1.1. Authorization Rule Evaluation 4
 2.1.2. Application Specific Module (ASM) 5
 2.1.3. Authorization Event Log 6
 2.1.4. Policy Repository 6
 2.1.5. Request Forwarding 6
 2.2. Generic AAA Server Model 6
 2.2.1. Generic AAA Server Interactions 7
 2.2.2. Compatibility with Legacy Protocols 7
 2.2.3. Interaction between the ASM and the Service 9
 2.2.4. Multi-domain Architecture 10
 2.3. Model Observations 10
 2.4. Suggestions for Future Work 11
 3. Layered AAA Protocol Model 12
 3.1. Elements of a Layered Architecture 14
 3.1.1. Service Layer Abstract Interface Primitives 14
 3.1.2. Service Layer Peer End Point Name Space 14
 3.1.3. Peer Registration, Discovery, and Location
 Resolution ... 14
 3.1.4. Trust Relationships Between Peer End Points 14
 3.1.5. Service Layer Finite State Machine 15
 3.1.6. Protocol Data Unit Types 15
 3.2. AAA Application Specific Service Layer 15
 3.3. Presentation Service Layer 16
 3.4. AAA Transaction/Session Management Service Layer 17
 3.5. AAA-TSM Service Layer Program Interface Primitives 20
 3.6. AAA-TSM Layer End Point Name Space 21
 3.7. Protocol Stack Examples 22
 4. Security Considerations 22
 Glossary ... 23
 References ... 24
 Authors’ Addresses ... 24
 Full Copyright Statement 26

1. Introduction

 The work for this memo was done by a group that originally was the
 Authorization subgroup of the AAA Working Group of the IETF. When
 the charter of the AAA working group was changed to focus on MobileIP
 and NAS requirements, the AAAarch Research Group was chartered within
 the IRTF to continue and expand the architectural work started by the
 Authorization subgroup. This memo is one of four which were created
 by the subgroup. This memo is a starting point for further work
 within the AAAarch Research Group. It is still a work in progress

de Laat, et al. Experimental [Page 2]

RFC 2903 Generic AAA Architecture August 2000

 and is published so that the work will be available for the AAAarch
 subgroup and others working in this area, not as a definitive
 description of architecture or requirements.

 The authorization subgroup of the AAA Working Group proposed an "AAA
 Authorization Framework" [2] illustrated with numerous application
 examples [3] which in turn motivates a proposed list of authorization
 requirements [4]. This memo builds on the framework presented in [2]
 by proposing an AAA infrastructure consisting of a network of
 cooperating generic AAA servers communicating via a standard
 protocol. The protocol should be quite general and should support
 the needs of a wide variety of applications requiring AAA
 functionality. To realize this goal, the protocol will need to
 operate in a multi-domain environment with multiple service providers
 as well as entities taking on other AAA roles such as User Home
 Organizations and brokers. It should be possible to combine requests
 for multiple authorizations of different types in the same
 authorization transaction. The AAA infrastructure will be required
 to forward the components of such requests to the appropriate AAA
 servers for authorization and to collect the authorization decisions
 from the various AAA servers consulted. All of this activity is
 perfectly general in nature and can be realized in the common
 infrastructure.

 But the applications requiring AAA services will each have their own
 unique needs. After a service is authorized, it must be configured
 and initialized. This will require application specific knowledge
 and may require application specific protocols to communicate with
 application specific service components. To handle these application
 specific functions, we propose an application interface between a
 generic AAA server and a set of one or more Application Specific
 Modules (ASMs) which can carry out the unique functionality required
 by each application.

 Since the data required by each application for authentication,
 authorization, or accounting may have unique structure, the standard
 AAA protocol should allow the encapsulation of opaque units of
 Application Specific Information (ASI). These units would begin with
 a standard header to allow them to be forwarded by the generic
 infrastructure. When delivered to the final destination, an ASI unit
 would be passed by a generic AAA server across its program interface
 to an appropriate ASM for application specific processing.
 Nevertheless, it remains a goal of the design for information units
 to be encoded in standard ways as much as possible so as to enable
 processing by a generic rule based engine.

de Laat, et al. Experimental [Page 3]

RFC 2903 Generic AAA Architecture August 2000

 The interactions of the generic AAA server with the Application
 Specific Modules and with each other to realize complex AAA functions
 is explored in section 2. Then, in section 3, we attempt to further
 organize the AAA functions into logical groups using a protocol
 layering abstraction. This abstraction is not intended to be a
 reference model ready to be used for protocol design. At this point
 in the work, there are numerous questions that need to be addressed
 and numerous problems that remain to be solved. It may be that an
 abstraction other than layering will prove to be more useful or, more
 likely, that the application layer will require some substructure of
 its own.

 Finally, in section 4, we show how the security requirements
 identified in [4] can be met in the generic server and the
 Application Specific Modules by applying security techniques such as
 public key encryption or digital signatures to the Application
 Specific Information units individually, so that different
 stakeholders in the AAA server network can protect selected
 information units from being deciphered or altered by other
 stakeholders in an authentication, authorization, or accounting
 chain.

2. Generic AAA Architecture

 For the long term we envision a generic AAA server which is capable
 of authenticating users, handling authorization requests, and
 collecting accounting data. For a service provider, such a generic
 AAA server would be interfaced to an application specific module
 which manages the resource for which authorization is required.
 Generic AAA components would also be deployed in other administrative
 domains performing authorization functions.

2.1. Architectural Components of a Generic AAA Server

2.1.1. Authorization Rule Evaluation

 The first step in the authorization process is for the user or an
 entity operating on the user’s behalf to submit a well-formatted
 request to an AAA server. A generic AAA server has rules (logic
 and/or algebraic formulas) to inspect the request and come to an
 authorization decision. The first problem which arises is that
 Application Specific Information (ASI) has to be separated from the
 underlying logic for the authorization. Ideally the AAA server would
 have a rule based engine at this point which would know the logic
 rules and understand some generic information in the request, but it
 would not know anything about application specific information except
 where this information can be evaluated to give a boolean or
 numerical value. It should be possible to create rules that refer to

de Laat, et al. Experimental [Page 4]

RFC 2903 Generic AAA Architecture August 2000

 data elements that were not considered when the application was
 created. For example, one could request to do a remote virtual
 control room experiment from home using a dialin provider. The
 request would only be successful if the dialin access server allows
 it and if there is bandwidth available (bandwidth broker) and if the
 experimenter has the money to pay for it (E-Commerce). Possibly the
 people who specified the bandwidth broker protocol did not think of
 combining quality of service with a network service authorization in
 a single AAA request, but this generic model would allow it.

 +------+ +-------+ +-------+ +-------+ +-------+
	auth		auth		auth		auth	
	<---->	AAA	<---->	AAA	<---->	AAA	<---->	AAA
	+-------+ +-------+ +-------+ +-------+							
User								
		+-------+ +-------+ +-------+						
			BB		BB		Budget	
		+-------+ +-------+ +-------+						
	+-------+							
		dial in	+-------+ +-------+					
	<====>	service	<====>	network	<====>	network	<===> Experiment	
 +------+ +-------+ +-------+ +-------+

 user <-> dialin <-> backbone with BB <-> <remote experiment>

 Fig. 1 -- Example of a Multi Domain Multi Type of Server Request

2.1.2. Application Specific Module (ASM)

 Ultimately an AAA server needs to interact with an application
 specific module (ASM). In a service provider, the ASM would manage
 resources and configure the service equipment to provide the
 authorized service. It might also involve itself in the
 authorization decision because it has the application specific
 knowledge required. A user home organization (UHO) may require ASMs
 as well, to perform application specific user authorization
 functions. For example, a UHO ASM might be required to access
 certain application specific databases or interpret application
 specific service level specifications.

 Whatever the role of an administration relative to an authorization
 decision, the capabilities of the generic AAA server and the
 interface between it and the ASMs remains the same. This interface
 may be an Application Program Interface (API) or could even be a
 protocol based interface. In this model, however, the application

de Laat, et al. Experimental [Page 5]

RFC 2903 Generic AAA Architecture August 2000

 specific module is regarded as as separate architectural component
 from the generic AAA server. As such, it must be addressable and
 must therefore be part of a global naming space.

2.1.3. Authorization Event Log

 For auditing purposes, the generic server must have some form of
 database to store time-stamped events which occur in the AAA server.
 This database can be used to account for authorizations which were
 given, but it can also be used in rules. One can imagine rules in
 which an authorization is only given if some other event was logged
 in the past. With the aid of certificates, this database could
 support non-repudiation.

2.1.4. Policy Repository

 A database containing the available services and resources about
 which authorization decisions can be made and the policy rules to
 make them is also needed. Here too, the naming space for the
 services and resources is important since they must be addressable
 from other AAA servers to be able to build complex authorization
 requests.

2.1.5. Request Forwarding

 Due to the multiple administrative domain (multi-kingdom) nature of
 the AAA problem, a mechanism to forward messages between AAA servers
 is needed. The protocol by which two AAA servers communicate should
 be a peer-to-peer protocol.

2.2. Generic AAA Server Model

 With the implementation of the above mentioned components, the AAA
 server would be able to handle AAA requests. It would inspect the
 contents of the request, determine what authorization is requested,
 retrieve the policy rules from the repository, perform various local
 functions, and then choose one of the following options to further
 process each of the components of the request:

 a) Let the component be evaluated by an attached ASM.

 b) Query the authorization event log or the policy repository for the
 answer.

 c) Forward the component(s) to another AAA server for evaluation.

 In the following sections we present the generic model.

de Laat, et al. Experimental [Page 6]

RFC 2903 Generic AAA Architecture August 2000

2.2.1. Generic AAA Server Interactions

 Figure 2 illustrates a generic AAA Server with connections to the
 various architectural components described above. In this model, the
 user or another AAA server contacts the AAA server to get
 authorization, and the AAA server interacts with the service. The
 request is sent to the AAA server using the future AAA protocol. The
 server interacts with the service via a second protocol which we have
 labeled as type "2" in the figure. We say no more of the type 2
 protocol than that it must support some global naming space for the
 application specific items. The same holds for the type 3
 communication used to access the repository.

 +------------------+
 | |
 request <-----1----->|Generic AAA Server|<---1---> AAA server
 |Rule based engine |
 | |\
 +------------------+ 3 +------------+
 ^ \| Policy and |
 | | event |
 2 | repository |
 | +------------+
 v
 +------------------+
 | Application |
 | Specific |
 | Module |
 +------------------+

 The numbers in the links denote types of communication.

 Fig. 2 -- Generic AAA Server Interactions

2.2.2. Compatibility with Legacy Protocols

 Because of the widespread deployment of equipment that implements
 legacy AAA protocols and the desire to realize the functionality of
 the new AAA protocol while protecting the investment in existing
 infrastructure, it may be useful to implement a AAA gateway function
 that can encapsulate legacy protocol data units within the messages
 of the new protocol. Use of this technique, for example, would allow
 Radius attribute value pairs to be encapsulated in Application
 Specific Information (ASI) units of the new protocol in such a way
 that the ASI units can be digitally signed and encrypted for end-to-
 end protection between a service provider’s AAA server and a home AAA
 server communicating via a marginally trusted proxy AAA server. The
 service provider’s NAS would communicate via Radius to the service

de Laat, et al. Experimental [Page 7]

RFC 2903 Generic AAA Architecture August 2000

 provider’s AAA server, but the AAA servers would communicate among
 themselves via the new AAA protocol. In this case, the AAA gateway
 would be a software module residing in the service provider’s AAA
 server. Alternatively the AAA gateway could be implemented as a
 standalone process.

 Figure 3 illustrates an AAA gateway. Communication type 4 is the
 legacy protocol. Communication type 1 is the future standard AAA
 protocol. And communication type 2 is for application specific
 communication to Application Specific Modules (ASMs) or Service
 Equipment.

 +-------+
 | AAA |<---1---> to AAA server as in fig. 2
 request <---4--->|GateWay|
 | |<---2---> optionally to ASM/service
 +-------+

 The numbers in the links denote types of communication.

 Fig. 3 -- AAA Gateway for Legacy AAA Protocols

de Laat, et al. Experimental [Page 8]

RFC 2903 Generic AAA Architecture August 2000

2.2.3. Interaction between the ASM and the Service

 In a service provider, the Application Specific Module (ASM) and the
 software providing the service itself may be tightly bound into a
 single "Service Application". In this case, the interface between
 them is just a software interface. But the service itself may be
 provided by equipment external to the ASM, for example, a router in
 the bandwidth broker application. In this case, the ASM communicates
 with the service via some protocol. These two possibilities are
 illustrated in figure 4. In both cases, we have labeled the
 communication between the ASM and the service as communication type
 5, which of course, is service specific.

 | |
 +--------------|----+ |
 | Service 2 | 2
 | Application | | |
 | +-------------+ | +-------------+
 | | Application | | | Application |
 | | Specific | | | Specific |
 | | Module | | | Module |
 | +-------------+ | +-------------+
 | | | |
 | 5 | 5
 | | | |
 | +-------------+ | +-------------+
 | | Service | | | Service |
 | | | | | Equipment |
 | +-------------+ | +-------------+
 +-------------------+

 Fig. 4 -- ASM to Service Interaction (two views)

de Laat, et al. Experimental [Page 9]

RFC 2903 Generic AAA Architecture August 2000

2.2.4. Multi-domain Architecture

 The generic AAA server modules can use communication type 1 to
 contact each other to evaluate parts of requests. Figure 5
 illustrates a network of generic AAA servers in different
 administrative domains communicating via communication type 1.

 +-----+
 o--------| AAA |---->...
 / | |
 / +-----+\
 / | \+----+
 / +-----+ | RP |
 / | ASM | +----+
 +--------+ +-----+ / | |
 | Client |------| AAA |-------o +-----+
 +--------+ | | \
 +-----+ \
 | +----+ \ +-----+
 +-----+ | RP | o-----| AAA |---->...
 | ASM | +----+ | |
 | | +-----+\
 +-----+ | \+----+
 +-----+ | RP |
 | ASM | +----+
 | |
 +-----+

 The AAA servers use only communication type 1 to communicate.
 ASM = Application Specific Module
 RP = Repository

 Fig. 5 -- Multi-domain Multi-type of Service Architecture

2.3. Model Observations

 Some key points of the generic architecture are:

 1) The same generic AAA server can function in all three
 authorization models: agent, pull, and push [2].

 2) The rule based engine knows how to evaluate logical formulas and
 how to parse AAA requests.

 3) The Generic AAA server has no knowledge whatsoever about the
 application specific services so the application specific
 information it forwards is opaque to it.

de Laat, et al. Experimental [Page 10]

RFC 2903 Generic AAA Architecture August 2000

 4) Communication types 1, 2, and 3 each present their own naming
 space problems. Solving these problems is fundamental to
 forwarding AAA messages, locating application specific entities,
 and locating applicable rules in the rule repositories.

 5) A standard AAA protocol for use in communication type 1 should be
 a peer-to-peer protocol without imposing client and server roles
 on the communicating entities.

 6) A standard AAA protocol should allow information units for
 multiple different services belonging to multiple different
 applications in multiple different administrative domains to be
 combined in a single AAA protocol message.

2.4. Suggestions for Future Work

 It is hoped that by using this generic model it will be feasible to
 design a AAA protocol that is "future proof", in a sense, because
 much of what we do not think about now can be encoded as application
 specific information and referenced by policy rules stored in a
 policy repository. From this model, some generic requirements arise
 that will require some further study. For example, suppose a new
 user is told that somewhere on a specific AAA server a certain
 authorization can be obtained. The user will need a AAA protocol
 that can:

 1) send a query to find out which authorizations can be obtained from
 a specific server,

 2) provide a mechanism for determining what components must be put in
 an AAA request for a specific authorization, and

 3) formulate and transmit the authorization request.

 Some areas where further work is particularly needed are in
 identifying and designing the generic components of a AAA protocol
 and in determining the basis upon which component forwarding and
 policy retrieval decisions are made.

 In addition to these areas, there is a need to explore the management
 of rules in a multi-domain AAA environment because the development
 and future deployment of a generic multi-domain AAA infrastructure is
 largely dependent on its manageability. Multi-domain AAA
 environments housing many rules distributed over several AAA servers
 quickly become unmanageable if there is not some form of automated
 rule creation and housekeeping. Organizations that allow their
 services to be governed by rules, based on some form of commercial
 contract, require the contract to be implemented with the least

de Laat, et al. Experimental [Page 11]

RFC 2903 Generic AAA Architecture August 2000

 possible effort. This can, for example, be achieved in a scalable
 fashion if the individual user or user organization requesting a
 service is able to establish the service itself. This kind of
 interaction requires policy rule establishment between AAA servers
 belonging to multiple autonomous administrative domains.

3. Layered AAA Protocol Model

 In the previous section, we proposed the idea of a generic AAA server
 with an interface to one or more Application Specific Modules (ASMs).
 The generic server would handle many common functions including the
 forwarding of AAA messages between servers in different
 administrative domains. We envision message transport, hop-by-hop
 security, and message forwarding as clearly being functions of the
 generic server. The application specific modules would handle all
 application specific tasks such as communication with service
 equipment and access to special purpose databases. Between these two
 sets of functions is another set of functions that presumably could
 take place in either the generic server or an ASM or possibly by a
 collaboration of both. These functions include the evaluation of
 authorization rules against data that may reside in various places
 including attributes from the authorization request itself. The more
 we can push these functions down into the generic server, the more
 powerful the generic server can be and the simpler the ASMs can be.

 One way of organizing the different functions mentioned above would
 be to assign them to a layered hierarchy. In fact, we have found the
 layer paradigm to be a useful one in understanding AAA functionality.
 This section explores the use of a layered hierarchy consisting of
 the following AAA layers as a way of organizing the AAA functions:

 Application Specific Service Layer
 Presentation Service Layer
 Transaction/Session Management Service Layer
 Reliable/Secure Transport Service Layer

 Nevertheless, the interface between the generic AAA server and the
 ASMs proposed in the previous section may be more complex than a
 simple layered model would allow. Even the division of functionality
 proposed in this section goes beyond a strict understanding of
 layering. Therefore this paper can probably best be understood as
 the beginnings of a work to understand and organize the common
 functionality required for a general purpose AAA infrastructure
 rather than as a mature reference model for the creation of AAA
 protocols.

de Laat, et al. Experimental [Page 12]

RFC 2903 Generic AAA Architecture August 2000

 In our view of AAA services modeled as a hierarchy of service layers,
 there is a set of distributed processes at each service layer that
 cooperate and are responsible for implementing that service layer’s
 functions. These processes communicate with each other using a
 protocol specialized to carry out the functions and responsibilities
 assigned to their service layer. The protocol at service layer n
 communicates to its peers by depending on the services available to
 it from service layer n-1. The service layer n also has a protocol
 end point address space, through which the peer processes at service
 layer n can send messages to each other. Together, these AAA service
 layers can be assembled into an AAA protocol stack.

 The advantage of this approach is that there is not just one
 monolithic "AAA protocol". Instead there is a suite of protocols,
 and each one is optimized to solve the problems found at its layer of
 the AAA protocol stack hierarchy.

 This approach realizes several key benefits:

 - The protocol used at any particular layer in the protocol stack
 can be substituted for another functionally equivalent protocol
 without disrupting the services in adjacent layers.

 - Requirements in one layer may be met without impact on protocols
 operating in other layers. For example, local security
 requirements may dictate the substitution of stronger or weaker
 "reliable secure transport" layer security algorithms or
 protocols. These can be introduced with no change or awareness of
 the substitution by the layers above the Reliable/Secure Transport
 layer.

 - The protocol used for a given layer is simpler because it is
 focused on a specific narrow problem that is assigned to its
 service layer. In particular, it should be feasible to leverage
 existing protocol designs for some aspects of this protocol stack
 (e.g. CORBA GIOP/CDR for the presentation layer).

 - A legacy AAA protocol message (e.g. a RADIUS message) can be
 encapsulated within the protocol message(s) of a lower layer
 protocol, preserving the investment of a Service Provider or User
 Home Organization in their existing AAA infrastructure.

 - At each service layer, a suite of alternatives can be designed,
 and the service layer above it can choose which alternative makes
 sense for a given application. However, it should be a primary
 goal of the AAA protocol standardization effort to specify one
 mandatory to implement protocol at the AAA Transaction/Session
 Management (AAA-TSM) service layer (see section 3.4).

de Laat, et al. Experimental [Page 13]

RFC 2903 Generic AAA Architecture August 2000

3.1. Elements of a Layered Architecture

 At each layer of a layered architecture, a number of elements need to
 be defined. These elements are discussed in the following sections.

3.1.1. Service Layer Abstract Interface Primitives

 The service layer n is assumed to present a program interface through
 which its adjacent service layer n+1 can access its services. The
 types of abstract program service primitives and associated
 parameters exchanged across the boundary between these service layers
 must be specified.

3.1.2. Service Layer Peer End Point Name Space

 Each service layer is treated as a set of cooperating processes
 distributed across multiple computing systems. The service layer
 must manage an end point name space that identifies these peer
 processes. The conventions by which a service layer assigns a unique
 end point name to each such peer process must be specified.

3.1.3. Peer Registration, Discovery, and Location Resolution

 Along with defining an end point name space, a service layer must
 also specify how its peers:

 - announce their presence and availability,

 - discover one another when they first begin operation, and

 - detect loss of connectivity or service withdrawal.

 It is also necessary to specify what mechanisms, if any, exist to
 resolve a set of service layer specific search attributes into one or
 more peer end point names that match the search criteria.

3.1.4. Trust Relationships Between Peer End Points

 Once an end point has established its initial contact with another
 peer, it must decide what authentication policy to adapt. It can
 trust whatever authentication was done on its behalf by a lower
 service layer or, through a pre-provisioning process, implicitly
 trust the peer, or else go through an authentication process with its
 peer. The supported mechanisms for establishing a service layer’s
 end point trust relationships must be specified.

de Laat, et al. Experimental [Page 14]

RFC 2903 Generic AAA Architecture August 2000

3.1.5. Service Layer Finite State Machine

 To the extent that a service layer’s internal states are externally
 visible, the layer’s behavior in terms of a Finite State Machine
 (FSM) should be specified. Events that can drive the FSM state
 transitions may include:

 - service layer n+1 interface primitive requests

 - protocol data unit arrivals from peer service layer n end points
 received through the layer n-1 access point

 - service layer n-1 interface primitives (e.g. call backs or
 interrupts)

 - timer expirations

3.1.6. Protocol Data Unit Types

 Each service layer defines a lexicon of protocol data units (PDUs)
 that communicate between the layer’s peer processes the information
 that controls and/or monitors that service layer’s distributed state
 and allows the service processes of that layer to perform their
 functions. Embedded in the PDUs of each layer are the PDUs of the
 higher layers which depend on its services. The PDUs of each service
 layer must be specified.

3.2. AAA Application Specific Service Layer

 AAA applications have almost unlimited diversity, but imposing some
 constraints and commonality is required for them to participate in
 this generic AAA architectural framework. To satisfy these
 constraints, participating AAA applications would derive their
 application specific program logic from a standardized "Authorization
 Server" abstract base object class. They would also support an
 "Authorized Session" object class. An Authorization Session object
 instance represents an approved authorization request that has a
 long-lived allocation of services or resources. The generic AAA
 architecture could be extended to include other abstract base object
 classes in the future (e.g. Authorization Reservation, Authentication
 Server, etc.). How to implement the derived Authorization Server
 class’s public methods for a given problem domain is entirely up to
 the application. One technique might be to place a software
 "wrapper" around an existing embedded application specific service to
 adapt it to the standardized Authorization Server object paradigm.
 The major Authorization Server class methods are:

de Laat, et al. Experimental [Page 15]

RFC 2903 Generic AAA Architecture August 2000

 - Publish an advertisement that describes the Authorization Server’s
 service attributes and its application specific service layer end
 point address. Once the Authorization Server has registered, peer
 processes can discover its presence or send messages addressed to
 it.

 - Application Specific Authorization Decision Function (AS-ADF)
 method takes a User’s application specific authorization request
 and returns a decision of approve, deny, or conditionally approve
 with referral to another stakeholder. In the latter case, the
 application may create a reservation for the requested services or
 resources. This method represents the "condition" side of a
 policy rule’s condition/action pair.

 - Commit a service or set of resources to a previously conditionally
 approved authorization decision. For those authorization requests
 that have a long-term lifecycle (as opposed to being
 transactions), this method mobilizes a reservation into an
 Authorized Session object instance. This method represents the
 "action" side of a policy rule’s condition/action pair.

 - Cancel a previously conditionally approved Authorization request.
 This method releases any associated reservations for services or
 resources.

 - Withdraw the Authorization Server’s service advertisement.

 A key motivation for structuring an AAA application as an
 Authorization Server object instance is to separate the generic
 authorization decision logic from the application-specific
 authorization decision logic. In many cases, the application can be
 divorced from the AAA problem altogether, and its AAA responsibility
 can be assigned to an external rules based generic AAA Server. (The
 idea is similar to that of a trust management policy server as
 defined in [5].) This would facilitate a security administrator
 deploying AAA policy in a central repository. The AAA policy is
 applied consistently across all users of the applications, resources,
 and services controlled by the AAA server. However, it is recognized
 that for many problem domains, there are unique rules intrinsic to
 the application. In these cases, the generic AAA Server must refer
 the User’s authorization request to the relevant Application Specific
 Module.

3.3. Presentation Service Layer

 The presentation service layer solves the data representation
 problems that are encountered when communicating peers exchange
 complex data structures or objects between their heterogeneous

de Laat, et al. Experimental [Page 16]

RFC 2903 Generic AAA Architecture August 2000

 computing systems. The goal is to transfer semantically equivalent
 application layer data structures regardless of the local machine
 architecture, operating system, compiler, or other potential inter-
 system differences.

 One way to better understand the role of the presentation layer is to
 evaluate an existing example. The Generic Inter-ORB Protocol (GIOP)
 and its Common Data Representation (CDR) is a presentation service
 layer protocol developed by the Object Management Group (OMG)
 industry consortium. GIOP is one component within the Common Object
 Request Broker Architecture (CORBA). Peer Object Request Brokers
 (ORB) executing on heterogeneous systems use GIOP to invoke remote
 CORBA object interface methods. GIOP encodes an object method’s
 input and output parameters in the Common Data Representation (CDR).
 While there are other presentation service layer protocols in the
 industry, GIOP in combination with CDR represents a mature,
 comprehensive solution that exhibits many of the presentation service
 layer requirements that are applicable within the AAA protocol model.

 In the context of Internet access AAA protocols, RADIUS and its
 successors use the Attribute Value Pair (AVP) paradigm as the
 presentation service layer encoding scheme. While such an approach
 is versatile, it is also prone to becoming splintered into many ad
 hoc and vendor specific dialects. There is no structure imposed or
 method to negotiate the constraints on which AVPs are combined and
 interpreted for a given conversation in a consistent way across AAA
 protocol implementations or problem domains. At run-time, it can be
 hard for the communicating peers to negotiate to a common inter-
 operable set of AVPs.

 To avoid this pitfall, a primary presentation service layer
 responsibility is the ability to let peers negotiate from a base
 Authorization Server object class towards a commonly understood
 derived Authorization Server object class that both presentation
 service layer peers have implemented for their application specific
 problem domain. This negotiation implies a requirement for a
 globally registered and maintained presentation service layer
 hierarchy of Authorization Server object class names.

3.4. AAA Transaction/Session Management Service Layer

 The AAA Transaction/Session Management (AAA-TSM) service layer is a
 distributed set of AAA Servers, which typically reside in different
 administrative domains. Collectively they are responsible for the
 following three services:

de Laat, et al. Experimental [Page 17]

RFC 2903 Generic AAA Architecture August 2000

 Authentication -- Execute the procedure(s) needed to confirm the
 identity of the other parties with which the AAA TSM entity has a
 trust relationship.

 Authorization -- Make an authorization decision to grant or deny a
 User’s request for services or resources. The generic rules based
 policy engine described earlier in this document executes the
 authorization decision function. When the User’s request is
 instantaneous and transient, then its authorization approval is
 treated as an ephemeral transaction. If the authorization
 approval implies a sustained consumption of a service or
 resources, then the request is transformed into an Authorized
 Session. For the duration of the Authorized Session’s lifetime:

 - its state may be queried and reported, or

 - it may be canceled before service is completed, or

 - the service being delivered may be modified to operate under
 new parameters and conditions, or

 - the service may complete on its own accord.

 In each of these cases, the AAA-TSM service layer must synchronize
 the Authorized Session’s distributed state across all of those AAA
 Servers which are implementing that specific Authorized Session.

 Accounting -- Generate any relevant accounting information regarding
 the authorization decision and the associated Authorized Session
 (if any) that represents the ongoing consumption of those services
 or resources.

 The peer AAA servers and their AAA-TSM end points exchange AAA-TSM
 messages to realize these AAA functions. A central AAA-TSM concept
 is that there is a set of one or more AAA Server stakeholders who are
 solicited to approve/disapprove a User request for application layer
 services. The AAA-TSM service layer routes the User’s request from
 one stakeholder to the next, accumulating the requisite approvals
 until they have all been asked to make an authorization decision.

 The AAA Servers may also do User authentication (or re-
 authentication) as part of this approval process. The overall flow
 of the routing from one stakeholder to another may take the form of
 the "push", "pull", or "agent" authorization models developed in [2].
 However, in principle, it is feasible to have an arbitrary routing
 path of an AAA-TSM authorization request among stakeholders. Once the
 final approval is received, the AAA-TSM service layer commits the
 requested service by notifying all of those stakeholders that require

de Laat, et al. Experimental [Page 18]

RFC 2903 Generic AAA Architecture August 2000

 a confirmation (i.e. turn on a pending reservation and do a
 transaction commit). Alternatively, any stakeholder among those on
 the consent list can veto the authorization request. In that case,
 all stakeholders who previously approved the request and had asked
 for a confirmation are told that the request has been denied (i.e.,
 cancel reservation and do a transaction rollback).

 The AAA-TSM authorization request payload must carry its own "Context
 State", such that when an AAA server receives it, there is sufficient
 information that it is essentially self-contained. Embedding the
 Context State within the AAA-TSM message provides two benefits.
 First, the message can be immediately processed with respect to the
 AAA Server’s local policy, and this minimizes or altogether avoids
 the need for the AAA Server to exchange additional AAA-TSM messages
 with its peers to complete its piece of the overall authorization
 decision. The other benefit is that the AAA Server minimizes the
 amount of state information resources that it commits to a user’s
 pending request until it is fully approved. This helps protect
 against denial of service attacks.

 One can envision many possible message elements that could be part of
 the Context State carried within an AAA-TSM request message:

 - AAA-TSM session identifier, a unique handle representing this
 authorization request. All AAA servers who participate in a
 request’s approval process and its subsequent monitoring
 throughout its Session lifetime refer to this handle.

 - permission lists stating which AAA Servers are allowed to modify
 which parts of the message.

 - User’s authorization request, encoded as a presentation layer PDU.

 - User authentication information, (e.g. an X.509 public key
 certificate).

 - User credentials information, or else a pointer to where that
 information can be found by an AAA server. An example of such
 credentials would be an X.509 attributes certificate.

 - the list of AAA Server stakeholders who have yet to be visited to
 gain full approval of the User’s authorization request. Each
 element in that list contains a presentation layer message
 encoding how the user authorization request should be evaluated by
 its application specific Authorization Decision Function (ADF).

 - the current position in the list of AAA Server stakeholders to be
 visited.

de Laat, et al. Experimental [Page 19]

RFC 2903 Generic AAA Architecture August 2000

 - a list of those AAA servers which have already conditionally
 approved the User’s authorization request, but which have
 predicated their approval on the request also completing its
 approval from those stakeholders who have not yet seen the
 request. Each element in the list has a digital signature or
 comparable mechanism by which their approval can be subsequently
 verified.

 - an expiration time stamp, expressed in a universally understood
 time reference, which sets a lifetime limit on the AAA-TSM
 message’s validity. This offers some replay attack protection,
 and inhibits messages from circulating indefinitely seeking the
 completion of a request’s approval.

 - a message payload modification audit trail, tracing which parties
 introduced changes into the User’s authorization request terms and
 conditions.

 - an AAA-TSM message integrity check, computed across the whole
 message rather than its individual elements, and signed by the
 most recent AAA-TSM layer end point process to modify the AAA-TSM
 message before its transmission to its AAA-TSM peer. This
 function may be delegated to the underlying Reliable Secure
 Transport layer connection to that destination peer.

3.5. AAA-TSM Service Layer Program Interface Primitives

 The AAA-TSM service layer and its adjacent presentation service layer
 communicate across their boundary through a set of program interface
 primitives. A key design goal is to keep these primitives the same
 regardless of the higher level AAA application, analogous to a
 callable "plug-in". The two service layers are responsible for
 coordinating their state information. This responsibility includes
 all of the pending Authorization requests and the Authorization
 Sessions that they are both controlling and monitoring. The initial
 contact between these two layers is through an abstract object that
 is called an AAA-TSM Service Access Point (SAP). A particular
 service instance between these two layers is realized in an abstract
 object that is called an Authorized Session. The presentation
 service layer invokes AAA-TSM interface primitives against an AAA-TSM
 SAP.

 The AAA-TSM service layer interface primitives can be broadly
 characterized as follows:

 - Register a presentation end point address identifier and its
 associated set of attributes to a service access point.

de Laat, et al. Experimental [Page 20]

RFC 2903 Generic AAA Architecture August 2000

 - Send a presentation layer message to a specified destination
 presentation layer peer end point address.

 - Receive a presentation layer message from another presentation
 layer end point address. A receive operation may select a
 specific originating presentation layer end point address from
 which the message is expected, or receive a message from any
 presentation layer peer.

 - The AAA-TSM service layer calls an application specific
 authorization decision function, which returns a condition code
 expressing an approval, denial, or partially approves with a
 referral to another AAA Server.

 - AAA-TSM service layer tells the presentation layer to commit an
 earlier partially approved authorization request.

 - Cancel an earlier partially approved authorization request (i.e.
 rollback).

 - The presentation service layer notifies the AAA-TSM service layer
 that it has terminated an in-progress Authorized Session.

 - AAA-TSM service layer notifies the presentation service layer that
 another presentation service layer peer has terminated an
 Authorized Session.

 - Un-register a presentation service layer end point address.

3.6. AAA-TSM Layer End Point Name Space

 The AAA-TSM service layer end point name space is the N-tuple formed
 by concatenating the following components:

 - AAA Server’s Reliable/Secure Transport layer end point address

 - AAA-TSM authorization request serial number, a unique durable
 unsigned integer generated by the AAA Server who first receives
 the User’s authorization request.

 Some AAA applications may require that each assigned AAA-TSM
 transaction serial number be stored in persistent storage, and
 require that it be recoverable across AAA Server system re-boots.
 The serial number generation algorithm must be guaranteed unique even
 if the AAA Server does a re-boot.

de Laat, et al. Experimental [Page 21]

RFC 2903 Generic AAA Architecture August 2000

3.7. Protocol Stack Examples

 The layering paradigm makes it possible to use the most appropriate
 syntax for each application for encoding the Application Specific
 Information units of that application. This encoding would take
 place at the presentation layer. Similarly the application layer can
 recognize the semantics specific to each application. Figure 6
 illustrates some possible AAA protocol stacks.

 +------------++------------++-----------++-----------++----------+
		Application		E-Commerce		Bandwidth		Roaming &
AAA		specific		Internet		Broker		mobile IP
Application		object class		Open		cross-admin		remote
Service		interface		Trading		domain		access
Layer		specified in		Protocol		COPS		AVP
		CORBA IDL		(IOTP)		extensions		lexicons
+------------++------------++-----------++-----------++----------+								
		CORBA		Extensible		Common		DIAMETER
Presentation		Generic		Markup		Open		or
Service		Inter-ORB		Language		Policy		RADIUS
Layer		Protocol		(XML)		Specificatn		Attribute
		(GIOP)				(COPS)		Value/Pair
+------------++------------++-----------++-----------++----------+								
AAA-TSM Service Layer Application Program Interface (API)								
+--+								
AAA Transaction/Session Management (AAA-TSM) Service Layer								
+--+								
Reliable Secure Transport Layer								
 +--+

 Fig. 6 -- Possible AAA Protocol Stacks

4. Security Considerations

 Security considerations for the framework on which the work described
 in this memo is based are discussed in [2]. Security requirements
 for authorization are listed in section 2.2 of [3].

 This memo identifies a basic set of AAA functions that are general in
 nature and common to many different AAA applications. We propose
 that a standard set of security mechanisms should be defined as part
 of a base AAA protocol which would include such things as public key
 encryption and digital signatures that could be applied to individual
 information units within an AAA message. Security with this
 granularity is needed to meet the end-to-end security requirement
 specified in section 2.2.7 of [3] because a single AAA message may

de Laat, et al. Experimental [Page 22]

RFC 2903 Generic AAA Architecture August 2000

 contain multiple information units each generated by AAA servers from
 different administrative domains and destined to AAA servers in
 different domains.

 In addition, it may be necessary to encrypt or sign an entire AAA
 message on a hop-by-hop basis. This could be handled by a standard,
 lower layer protocol such as IPSEC. If so, then certain auditing
 requirements will have to be met so that it can be established later
 that the messages relative to some specific session ID were, in fact,
 protected in a particular way. Alternatively, hop-by-hop security
 mechanisms may be built into the base AAA protocol itself.

Glossary

 Application Specific Information (ASI) -- information in an AAA
 protocol message that is specific to a particular application.

 Application Specific Module (ASM) -- a software module that
 implements a program interface to a generic AAA server which
 handles application specific functionality for an AAA protocol
 message.

 Service Provider -- an organization which provides a service.

 User -- the entity seeking authorization to use a resource or a
 service.

 User Home Organization (UHO) -- An organization with whom the User
 has a contractual relationship which can authenticate the User and
 may be able to authorize access to resources or services.

de Laat, et al. Experimental [Page 23]

RFC 2903 Generic AAA Architecture August 2000

References

 [1] Bradner, S., "The Internet Standards Process -- Revision 3", BCP
 9, RFC 2026, October 1996.

 [2] Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L., Gross,
 G., de Bruijn, B., de Laat, D., Holdrege, M. and D. Spence, "AAA
 Authorization Framework", RFC 2904, August 2000.

 [3] Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L., Gross,
 G., de Bruijn, B., de Laat, C., Holdrege, M. and D. Spence, "AAA
 Authorization Application Examples", RFC 2905, August 2000.

 [4] Farrell, S., Vollbrecht, J., Calhoun, P., Gommans, L., Gross,
 G., de Bruijn, B., de Laat, C., Holdrege, M. and D. Spence, "AAA
 Authorization Requirements", RFC 2906, August 2000.

 [5] Blaze, M., Feigenbaum, J., Ioannidis, J. and A. Keromytis, "The
 KeyNote Trust-Management System Version 2", RFC 2704, September
 1999.

Authors’ Addresses

 Cees T.A.M. de Laat
 Physics and Astronomy dept.
 Utrecht University
 Pincetonplein 5,
 3584CC Utrecht
 Netherlands

 Phone: +31 30 2534585
 Phone: +31 30 2537555
 EMail: delaat@phys.uu.nl

 George M. Gross
 Lucent Technologies
 184 Liberty Corner Road, m.s. LC2N-D13
 Warren, NJ 07059
 USA

 Phone: +1 908 580 4589
 Fax: +1 908-580-4991
 EMail: gmgross@lucent.com

de Laat, et al. Experimental [Page 24]

RFC 2903 Generic AAA Architecture August 2000

 Leon Gommans
 Enterasys Networks EMEA
 Kerkplein 24
 2841 XM Moordrecht
 The Netherlands

 Phone: +31 182 379279
 email: gommans@cabletron.com
 or at University of Utrecht:
 l.h.m.gommans@phys.uu.nl

 John R. Vollbrecht
 Interlink Networks, Inc.
 775 Technology Drive, Suite 200
 Ann Arbor, MI 48108
 USA

 Phone: +1 734 821 1205
 Fax: +1 734 821 1235
 EMail: jrv@interlinknetworks.com

 David W. Spence
 Interlink Networks, Inc.
 775 Technology Drive, Suite 200
 Ann Arbor, MI 48108
 USA

 Phone: +1 734 821 1203
 Fax: +1 734 821 1235
 EMail: dspence@interlinknetworks.com

de Laat, et al. Experimental [Page 25]

RFC 2903 Generic AAA Architecture August 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

de Laat, et al. Experimental [Page 26]

