
Network Working Group Abhay Bhushan
Request for Comments: 171 MIT
NIC 6793 Bob Braden
Categories: D.4, D.5, and D.7 UCLA
Updates: 114 Will Crowther
Obsolete: None Alex McKenzie
 BBN
 Eric Harslem
 John Heafner
 Rand
 John Melvin
 Dick Watson
 SRI
 Bob Sundberg
 HARVARD
 Jim White
 UCSB
 23 June 1971

 THE DATA TRANSFER PROTOCOL

I. INTRODUCTION

 A common protocol is desirable for data transfer in such diverse
 applications as remote job entry, file transfer, network mail system,
 graphics, remote program execution, and communication with block data
 terminals (such as printers, card, paper tape, and magnetic tape
 equipment, especially in context of terminal IMPs). Although it
 would be possible to include some or even all of the above
 applications in an all-inclusive file transfer protocol, a separation
 between data transfer and application functions would provide
 flexibility in implementation, and reduce complexity. Separating the
 data transfer function would also reduce proliferation of programs
 and protocols.

 We have therefore defined a low-level data transfer protocol (DTP) to
 be used for transfer of data in file transfer, remote job entry, and
 other applications protocols. This paper concerns itself solely with
 the data transfer protocol. A companion paper (RFC 172) describes
 file transfer protocol.

II. DISCUSSION

 The data transfer protocol (DTP) serves three basic functions. It
 provides for convenient separation of NCP messages into "logical"
 blocks (transactions, units, records, groups, and files), it allows
 for the separation of data and control information, and it includes
 some error control mechanisms.

Bhushan, et al. [Page 1]

RFC 171 THE DATA TRANSFER PROTOCOL June 1971

 Three modes of separating messages into transactions [1] are allowed
 by DTP. The first is an indefinite bit stream which terminates only
 when the connection is closed (i.e., the bit stream represents a
 single transaction for duration of connection). This mode would be
 useful in data transfer between hosts and terminal IMPs (TIPs).

 The second mode utilizes a "transparent" block convention, similar to
 the ASCII DLE (Data Link Escape). In "transparent" mode,
 transactions (which may be arbitrarily long) end whenever the
 character sequence DLE ETX is encountered (DLE and ETX are 8-bit
 character codes). To prevent the possibility of a DLE ETX sequence
 occurring within data stream, any occurrence of DLE is replaced by
 DLE DLE on transmission. The extra DLE is stripped on reception. A
 departure from the ASCII convention is that "transparent" block does
 not begin with DLE STX, but with a transaction type byte. This mode
 will be useful in data transfer between terminal IMPs.

 The third mode utilizes a count mechanism. Each transaction begins
 with a fixed-length descriptor field containing separate binary
 counts of information bits and filler bits. If a transaction has no
 filler bits, its filler count is zero. This mode will be useful in
 most host-to-host data transfer applications.

 DTP allows for the above modes to be intermixed over the same
 connection (i.e., mode is not associated with connection, but only
 with transaction). The above transfer modes can represent transfer
 of either data or control information. The protocol allows for
 separating data or control information at a lower level, by providing
 different "type" codes (see SPECIFICATIONS) for data and control
 transactions. This provision may simplify some implementations.

 The implementation of a workable [2] subset of the above modes is
 specifically permitted by DTP. To provide compatibility between
 hosts using different subsets of transfer modes, an initial
 "handshake" procedure is required by DTP. The handshake involves
 exchanging information on modes available for transmit and receive.
 This will enable host programs to agree on transfer modes acceptable
 for a connection.

 The manner in which DTP is used would depend largely on the
 applications protocol. It is the applications protocol which defines
 the workable subset of transfer modes. For example, the file
 transfer protocol will not work just with the indefinite bit stream
 modes. At least, for control information one of the other two modes
 is required. Again, the use of information separator and abort
 functions provided in DTP (see SPECIFICATIONS) is defined by the
 applications protocol. For example, in a remote job entry protocol,
 aborts may be used to stop the execution of a job while they may not

Bhushan, et al. [Page 2]

RFC 171 THE DATA TRANSFER PROTOCOL June 1971

 cause any action in another applications protocol.

 It should also be noted that DTP does not define a data transfer
 service. There is no standard server socket, or initial connection
 protocol defined for DTP. What DTP defines is a mechanism for data
 transfer which can be used to provide services for block data
 transfers, file transfers, remote job entry, network mail and
 numerous other applications.

 There are to be no restrictions on the manner in which DTP is
 implemented at various sites. For example, DTP may be imbedded in an
 applications program such as for file transfer, or it may be a
 separate service program or subroutine used by several applications
 programs. Another implementation may employ macros or UUO’s (user
 unimplemented operations on PDP-10’s), to achieve the functions
 specified in DTP. It is also possible that in implementation, the
 separation between the DTP and applications protocols be only at a
 conceptual level.

III. SPECIFICATIONS

 1. Byte Size for Network Connection

 The standard byte size for network connections using DTP is 8-
 bit. However, other byte sizes specified by higher-level
 applications protocols or applications programs are also allowed
 by DTP. For the purpose of this document bytes are assumed to be
 8-bits, unless otherwise stated.

2. Transactions

 At DTP level, all information transmitted over connection is a
 sequence of transactions. DTP defines the rules for delimiting
 transactions. [3]

2A. Types

 The first byte of each transaction shall define a transaction
 type, as shown below. (Note that code assignments do not
 conflict with assignments in TELNET protocol.) The transaction
 types may be referred by the hexadecimal code assigned to them.
 The transactions types are discussed in more detail in section
 2B.

Bhushan, et al. [Page 3]

RFC 171 THE DATA TRANSFER PROTOCOL June 1971

 Code Transaction Type
 Hex Octal

 B0 260 Indefinite bit stream -- data.
 B1 261 Transparent (DLE) block--data.
 B2 262 Descriptor and counts--data.
 B3 263 Modes available (handshake).
 B4 264 Information separators (endcode).
 B5 265 Error codes.
 B6 266 Abort.
 B7 267 No operation (NoOp).
 B8 270 Indefinite bit stream--control.
 B9 271 Transparent (DLE) block--control.
 BA 272 Descriptor and counts--control.
 BB 273 (unassigned but reserved for data transfer)
 BC 274 " " "
 BD 275 " " "
 BE 276 " " "
 BF 277 " " "

 2B. Syntax and Semantics

 2B.1 Type B0 and B8 (indefinite bitstream modes) transactions
 terminate only when the NCP connection is "closed". There is
 no other escape convention defined in DTP at this level. It
 should be noted, that closing connection in bitstream mode
 represents an implicit file separator (see section 2B.5).

 2B.2 Type B1 and B0 (transparent block modes) transactions terminate
 when the byte sequence DLE ETX is encountered. The sender
 shall replace any occurrence of DLE in data stream by the
 sequence DLE DLE. The receiver shall strip the extra DLE. The
 transaction is assumed to by byte-oriented. The code for DLE
 is Hex ’90’ or Octal ’220’ (this is different from the ASCII
 DLE which is Hex ’10’ or Octal ’020). ETX is Hex ’03’ or Octal
 ’03’ (the same as ASCII ETX) [4].

 2B.3 Type B2 and BA (descriptor and counts modes) transactions have
 three fields, a 9-byte (72-bits) descriptor field [5] and
 variable length (including zero) info and filler fields, as
 shown below. The total length of a transaction is
 (72+info+filler) bits.

Bhushan, et al. [Page 4]

RFC 171 THE DATA TRANSFER PROTOCOL June 1971

|<B2 or BA><Info count><NUL><Seq #><NUL><filler count>|<info><filler> |

| 3-bits 24-bits 8-bits 16-bits 8-bits 8-bits |Variable length|

|<----- 72-bit descriptor field --------------------->|info and filler|

 Info count is a binary count of number of bits in info field,
 not including descriptor or filler bits. Number of info bits
 is limited to (2**24 - 1), as there are 24 bits in info count
 field.

 Sequence # is a sequential count in round-robin manner of B2
 and BA type transaction. The inclusion of sequence numbers
 would help in debugging and error control, as sequence numbers
 may be used to check for missing transactions, and aid in
 locating errors. Hosts not wishing to implement this mechanism
 should have all 1’s in the field. The count shall start from
 zero and continue sequentially to all 1’s, after which it is
 reset to all zeros. The permitted sequence numbers are one
 greater than the previous, and all 1’s.

 Filler count is a binary count of bits used as fillers (i.e.,
 not information) after the end of meaningful data. Number of
 filler bits is limited to 255, as there are 8 bits in filler
 count field.

 The NUL bytes contain all 0’s.

 2B.4 Type B3 (modes available) transactions have a fixed length of 3
 bytes, as shown below. First byte defines transaction type as
 B3, second byte defines modes available for send, and third
 byte defines modes available for receive.

 +------------------+---------------------+---------------------+
 | Type | I send | I receive | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | |
 | B3 |0|0|BA|B2|B9|B1|B8|B0|0|0|BA|B2|B9|B1|B8|B0|
 +------------------+---------------------+---------------------+

 The modes are indicated by bit-coding, as shown above. The
 particular bit or bits, if set to logical "1", indicate that
 mode to be available. The 2 most significant bits should be
 set to logical "0". The use of type B3 transactions is
 discussed in section 3B.

 2B.5 Type B4 (information separator) transactions have fixed length
 of 2 bytes, as shown below. First byte defines transaction
 type as B4, and second byte defines the separator.

Bhushan, et al. [Page 5]

RFC 171 THE DATA TRANSFER PROTOCOL June 1971

 +------------------+------------------+
 | Type | End Code | | | |
 | | | |R| |
 | | |G|E| |
 | B4 | F|R|C|U|
 | | I|O|O|N|
 | | L|U|R|I|
 | | E|P|D|T|
 +------------------+------------------+

 The following separator codes are assigned:

 Code Meaning
 Hex Octal

 01 001 Unit separator
 03 003 Record separator
 07 007 Group separator
 0F 017 File separator

 Files, groups, records, and units may be data blocks that a
 user defines to be so. The only restriction is that of the
 hierarchical relationship File>Groups>Records>Units (where
 ’>’ means ’contains’). Thus a file separator marks not only
 the end of file, but also the end of group, record, and unit.
 These separators may provide a convenient "logical" separation
 of data at the data transfer level. Their use is governed by
 the applications protocol.

 2B.6 Type B5 (error codes) transactions have a fixed length of 3
 bytes, as shown below. First byte defines transaction type as
 B5, second byte indicates an error code, and third byte may
 indicate the sequence number on which error occurred.

 +------------------+-------------------+-----------------+
 | Type | Error Code | Sequence # |
 | | | |
 | B5 | | |
 +------------------+-------------------+-----------------+

Bhushan, et al. [Page 6]

RFC 171 THE DATA TRANSFER PROTOCOL June 1971

 The following error codes are assigned:

 Error Code Meaning
 Hex Octal

 00 000 Undefined error
 01 001 Out of sync. (type code other
 than B0 through BF).
 02 002 Broken sequence (the sequence #
 field contains the first expected
 but not received sequence number).
 03 003 Illegal DLE sequence (other than
 DLE DLE or DLE ETX).
 B0 260
 through through The transaction type (indicated by
 BF 277 by error code) is not implemented.

 The error code transaction is defined only for the purpose of
 error control. DTP does not require the receiver of an error
 code to take any recovery action. The receiver may discard the
 error code transaction. In addition, DTP does not require that
 sequence numbers be remembered or transmitted.

 2B.7 Type B6 (abort) transactions have a fixed length of 2 bytes, as
 shown below. First byte defines transaction type as B6, and
 second byte defines the abort function.

 +-------------------+--------------------+
 | Type | Function | | | | |
 | | | | |R| |
 | | | |G|E| |
 | | |F|R|C|U|
 | | |I|O|O|N|
 | | |L|U|R|I|
 | | |E|P|D|T|
 +-------------------+--------------------+

Bhushan, et al. [Page 7]

RFC 171 THE DATA TRANSFER PROTOCOL June 1971

 The following abort codes are assigned:

 Abort Code Meaning
 Hex Octal

 00 000 Abort preceding transaction
 01 001 Abort preceding unit
 02 002 Abort preceding record
 07 007 Abort preceding group
 0F 017 Abort preceding file

 DTP does not require the receiver of an abort to take specific
 action, therefore sender should not necessarily make any
 assumptions. The manner in which abort is handled is to be
 specified by higher-level applications protocols.

 2B.8 Type B7 (NoOp) transactions are one byte long, and indicate no
 operation. These may be useful as fillers when byte size used
 for network connections is other than 8-bits.

3. Initial Connection, Handshake and Error Recovery

 3A. DTP does not specify the mechanism used in establishing
 connections. It is up to the applications protocol (e.g., file
 transfer protocol) to choose the mechanism which suits its
 requirements. [6]

 3B. The first transaction after connection is made will be type B3
 (modes available). In a full-duplex connection, both server and
 user will communicate type B3 transactions, indicating modes
 available for send and receive. In a simplex connection only
 sender will communicate a type B3 transaction. It is the
 sender’s responsibility to choose a mode acceptable to the
 receiver. If an acceptable mode is not available or if mode
 chosen is not acceptable, the connection may be closed. [7]

 3C. No error recovery mechanisms are specified by DTP. The
 applications protocol may implement error recovery and further
 error control mechanisms.

END NOTES

[1] The term transaction is used here to mean a block of data defined
 by the transfer mode.

[2] What constitutes a workable subset is entirely governed by the
 high-level application protocol.

Bhushan, et al. [Page 8]

RFC 171 THE DATA TRANSFER PROTOCOL June 1971

[3] Transactions suppress the notion of host-IMP messages, and may have
 a logical interpretation similar to that of flags (and data)
 defined by Mealy in RFC 91.

[4] This assignment is made to be consistent with the TELNET philosophy
 of maintaining the integrity of the 128 Network ASCII characters.

[5] A 72-b9t descriptor field provides a convenient separation of
 information bits, as 72 is the least common multiple of 8 and 36,
 the commonly encountered byte sizes on ARPA network host
 computers.

[6] It is, however, recommended that the standard initial connection
 protocol be adopted where feasible.

[7] It is recommended that when more than one mode is available, the
 sender should choose ’descriptor and count’ mode (Type B2 or BA).
 The ’bitstream’ mode (type B0 or B8) should be chosen only when
 the other two modes cannot be used.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Samuel Etler 08/99]

Bhushan, et al. [Page 9]

