Linear Solvers of Elmer in serial & parallel

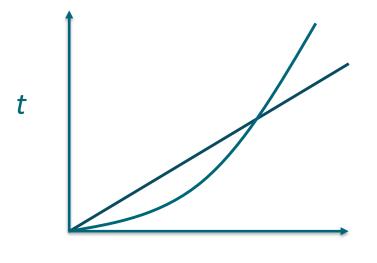
ElmerTeam CSC CSC

Algorithm scalability

- Before going into parallel computation let's study where the bottle-necks will appear in the serial system
- Each algorithm/procedure has a characteristic scaling law that sets the lower limit to how the solution time *t* increases with problem size *n*

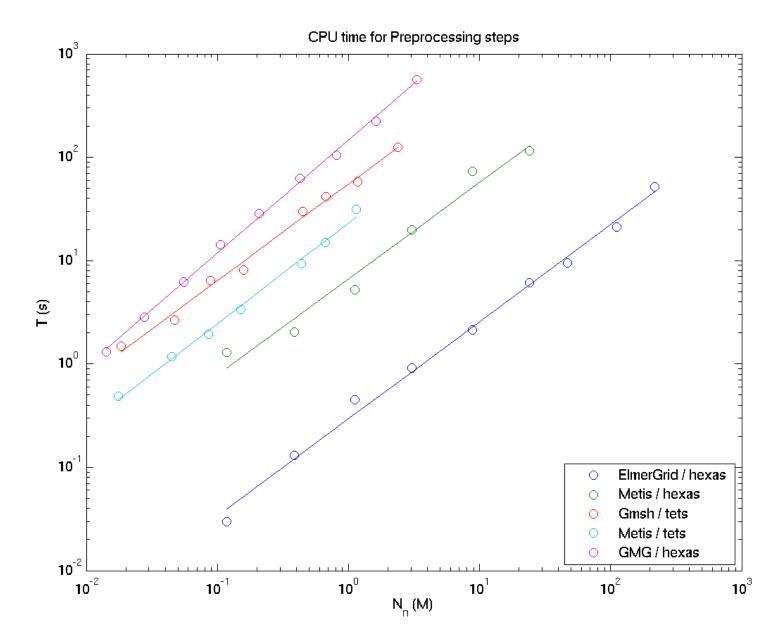
oThe parallel implementation cannot hope to beat this limit systematically

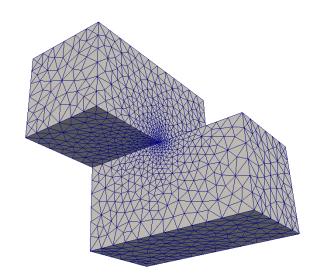
• Targeting very large problems the starting point should be nearly optimal (=linear) algorithm!



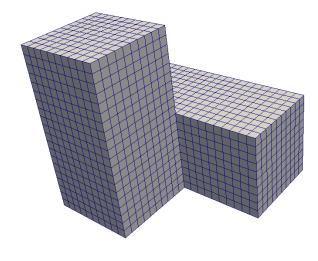
n

CPU time for serial pre-processing and solution

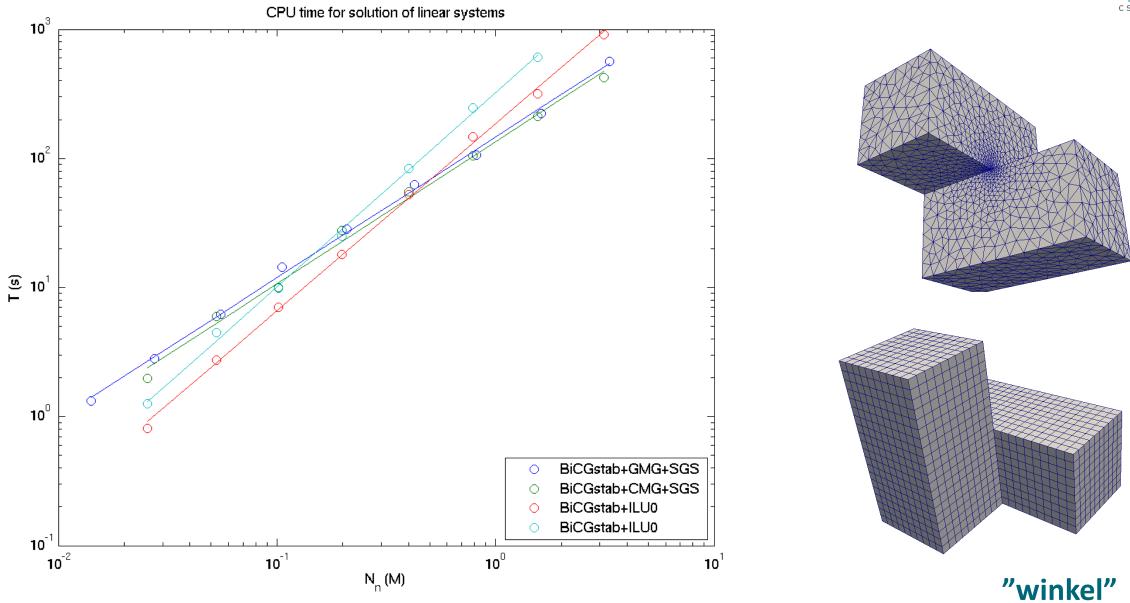




CSC



CPU time for serial solution – one level vs. multilevel



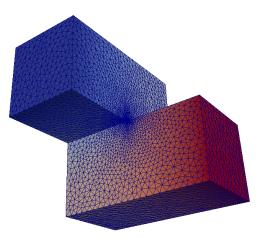
csc

Algorithmic scalability results (old)

Serial performance of different tools and algorithms in terms of CPU time and memory consumption for Poisson equation.

software	algorithm	mesh	$\alpha_T(s/M)$	β_T	$\alpha_M(b)$
ElmerGrid	meshing	hexas	0.295	0.939	73.8
Metis	PartMeshNodal	hexas	6.67	0.932	377.0
Gmsh	Delaunay	tets	55.2	0.93	1481
Gmsh	Advancing Front	tets	155.1	1.00	643
Metis	PartMeshDual	tets	23.1	0.97	513.4
BiCGStab	CMG + SGS	hexas	134.9	1.100	1595
BiCGStab	ILU0	hexas	198.53	1.544	1717

 $t = \alpha n^{\beta}$



T(solution) > T(tet meshing) > T(partitioning) > T(hex meshing)

The solution is the first bottleneck even for simple equations, for complex equations and transient problems even more so!

Poisson equation at "Winkel"

- Success of various iterative methods determined mainly by preconditioning strategy
- Best preconditioner is clustering multigrid method (CMG)
- For simple Poisson almost all preconditioners work reasonable well
- Direct solvers differ significantly in scaling
- For vector valued problems number of possible strategies increases due to various splitting techniques

 Monolithic vs. segregated methods

Linear solver BiCGStab+CMG0(SGS1) GCR+CMG0(SGS2) Idrs+CMG0(SGS1)	alpha 178.30 180.22 175.20	beta 1.09 1.10 1.10
 BiCgStab + ILU0	192.50	1.13
 CG + vanka Idrs(4) + vanka	282.07 295.18	1.16 1.16
… CG + diag BiCgStab(4) + diag	257.98 290.11	1.17 1.19
 MUMPS(PosDef) MUMPS umfpack	4753.99 12088.74 74098.48	1.77 1.93 2.29

csc

6

Serial linear solvers used with Elmer

We must solve large sparse linear systems: Ax = b

Iterative methods

- Internal Krylov methods
 - HUT library: CG, BiCGStab, BiCGStabl, GMRes, TMQMR, QMR
 Recent additions: GCR, Idrs, BiCGStabl
- Internal Algebraic multigrid

 Serial AMG and CMG methods (alpha version)
- Hypre
 - \circ Linear solvers
 - \circ Both Krylov methods & BoomerAMG
- Trilinos

• AMGx 4.2.2021

Direct methods

- Banded (serial only)
- Umfpack (serial only)
- MUMPS (serial and parallel)
- MKL Pardiso (parallel, not free)

Preconditioning of linear systems

• Instead of solving the original linear system, one may solve the (left) preconditioned system:

PAx = Pb

where P is an approximation of the inverse if A
ILUn, Incomplete LU depomposition with fill pattern defined by Aⁿ
Diagonal precondtioner, P=1/diag(A)
No strict guidelines on construction, experimental numerics

- *P* may also be considered to an operator

 Multigrid as precondioner
- The goal of this preconditioned system is to reduce the condition number
 - Results to more robust and faster convergence of linear system
- Typically iterative solution: Krylov method + preconditioner

• Preconditioners in Elmer

ILUn, n=0,1,2,3,...
ILUt, specific tolerance
Diagonal
Vanka
AMG and AMG

8

Linear solvers, example

```
Linear System Solver = Iterative
Linear System Iterative Method = "GCR" ! BiCGStab, BiCGStabl, GMRes, Idrs, ...
Linear System Max Iterations = 500
Linear System Convergence Tolerance = 1.0E-08
Linear System Abort Not Converged = False
Linear System Preconditioning = "ILU0" ! ILU0, ILU1, ILU2, ILUT
Linear System ILUt Tolerance = 1.0e-3
Linear System Residual Output = 10
! Tdrs Parameter = 4
!BiCGStabl Polynomial Degree = 6
```

```
!Linear System Residual Mode = Logical True
!Linear System Robust = Logical True ! Works with GCR and BiCGStabl
```

```
! Direct alternative
!Linear System Solver = Direct
Linear System Direct Method = MUMPS ! umfpack
```

9

Parallel computing concepts

csc

Computer architectures

- Shared memory
 - \circ All cores can access the whole memory
- Distributed memory
 - All cores have their own memory
 Communication between cores is needed in order to access the memory of other cores
- Current supercomputers combine the distributed and shared memory (within nodes) approaches

Programming models

- Threads (pthreads, OpenMP)
 - Can be used only in shared memory computer
 Limited parallel scalability
 Simpler or less explicit programming
- Message passing (MPI)
 - Can be used both in distributed and shared memory computers
 - Programming model allows good parallel scalability
 Programming is quite explicit
- Massively parallel FEM codes use typically MPI as the main parallelization strategy

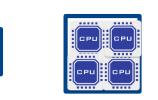
Weak vs. strong parallel scaling

Strong scaling

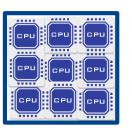
- How the solution time *T* varies with the number of processors *P* for a fixed total problem size.
- Optimal case: *P xT* = *const*.
- A bad algorithm may have excellent strong scaling
- Typically 104-105 dofs needed in FEM for good strong scaling

Weak scaling

- How the solution time *T* varies with the number of processors *P* for a fixed problem size per processor.
- Optimal case: *T=const.*
- Weak scaling is limited by algorithmic scaling



СРЦ

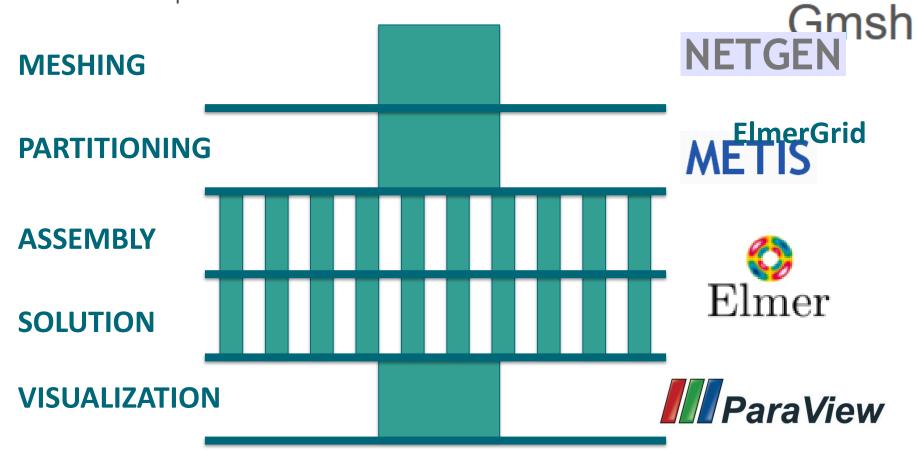


CSC

Basic Parallel workflow (of Elmer)

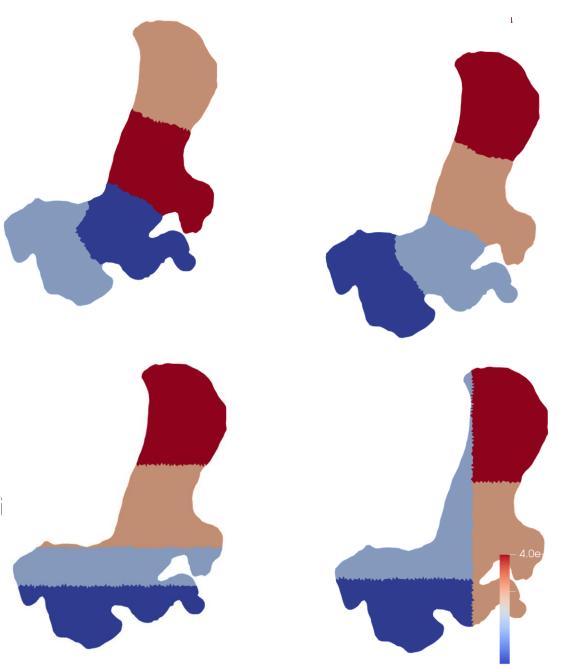
CSC

- Both assembly and solution is done in parallel using MPI
- Assembly is trivially parallel
- This is the most common parallel workflow



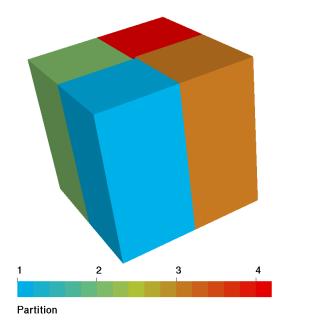
Mesh partitioning with ElmerGrid

- Two main strategies for mesh partitioning
- Metis graph partitioning library:
 -metiskway #np & -metisrec #np
 - \circ Generic strategy
 - Includes five different graph partitioning routines finder
 Metis
- Recursive division by cartesian directions:
 - -partition nx ny nz
 - Simple shapes (ideal for quads and hexas)
 - \odot Choice between partitioning of nodes or elements fi

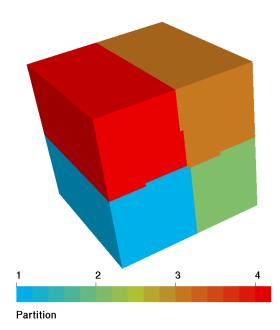


Mesh partitioning with ElmerGrid

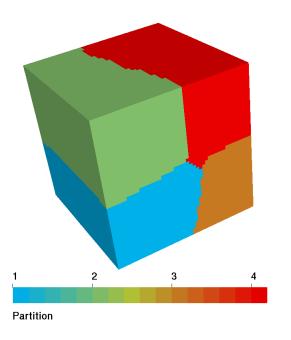
- Optimal partitioning depends on geometry
- To find the best partitioning is a non-trivial task



-partition 2 2 1



-partdual -metisrec 4



CSC

-partdual -metiskway 4

ElmerGrid command in parallel

Keywords are related to mesh partitioning for parallel ElmerSolver runs: -partition int[3] : the mesh will be partitioned in cartesian main directions -partorder real[3] : in the 'partition' method set the direction of the ordering -partcell int[3] : the mesh will be partitioned in cells of fixed sizes -partcyl int[3] : the mesh will be partitioned in cylindrical main directions : mesh will be partitioned with Metis using mesh routines -metis int -metiskway int : mesh will be partitioned with Metis using graph Kway routine -metisrec int : mesh will be partitioned with Metis using graph Recursive routine -metiscontig : enforce that the metis partitions are contiguous -metisseed : random number generator seed for Metis algorithms -partdual : use the dual graph in partition method (when available) -halo : create halo for the partitioning for DG -halobc : create halo for the partitioning at boundaries only -haloz / -halor : create halo for the the special z- or r-partitioning-halogreedy

...

Mesh structure of Elmer

Serial

meshdir/

- mesh.header size info of the mesh
- mesh.nodes node coordinates
- mesh.elements bulk element defs
- mesh.boundary
 boundary element defs with reference
 to parents

Parallel

meshdir/partitioning.N/

- mesh.n.header
- mesh.n.nodes
- mesh.n.elements
- mesh.n.boundary
- mesh.n.shared information on shared nodes
 for each i in [0,N-1]

Serial vs. parallel solution

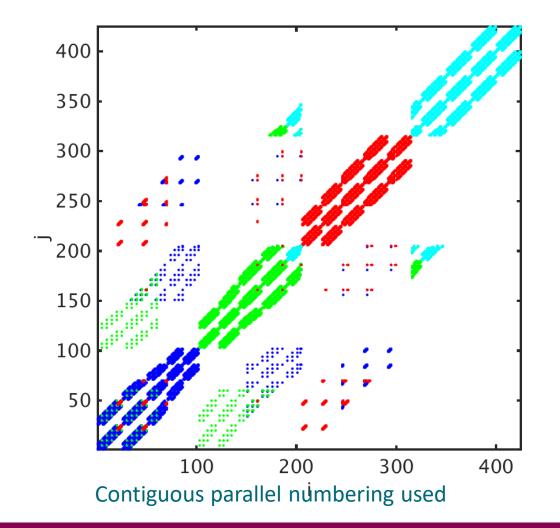
Serial

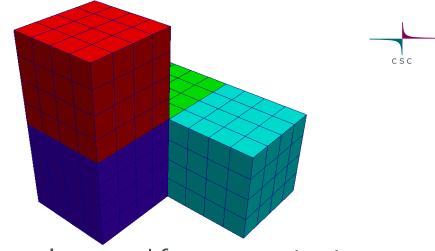
- Serial mesh files
- Execution with ElmerSolver case.sif
- Writes results to one file: ${\tt vtu}~{\tt files}$

Parallel

- Partitioned mesh files
- Execution with mpirun -np N ElmerSolver_mpi case.sif
- Calling convention is platform dependent
- Writes results to N vtu files + one pvtu file

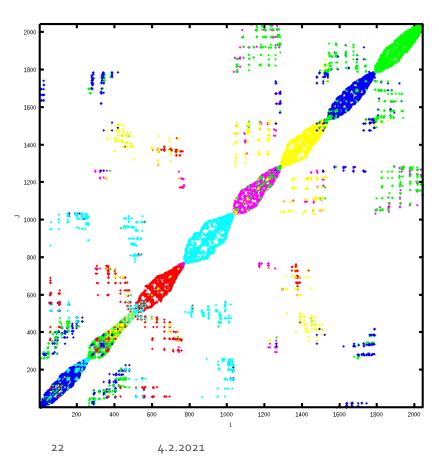
Partitioning and matrix structure

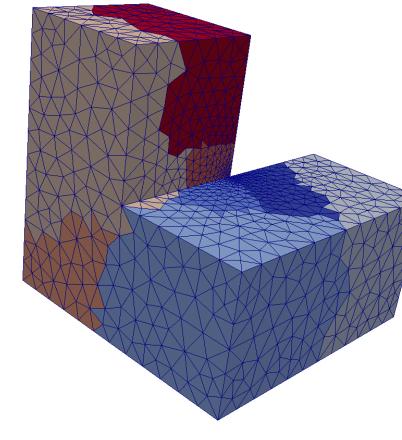




- Shared nodes result to need for communication.
 - Each dof has just one owner partiotion and we know the neighbours for
 - Owner partition usually handles the full row
 Results to point-to-point communication in MPI
- Matrix structure sets challenges to efficient preconditioners in parallel
 - It is more difficult to implement algorithms that are sequential in nature, e.g. ILU
 - o Krylov methods require just matrix vector product, easy!
- Communication cannot be eliminated. It reflects the local interactions of the underlying PDE

Partitioning and matrix structure – unstructured mesh





 Partitioning should try to minimize communication

CSC

- Relative fraction of shared nodes goes as N^(-1/DIM)
- For vector valued and high order problems more communication with same dof count

Metis partitioning into 8

Parallel linear solvers used with Elmer

Iterative

- Internal Krylov methods
 - \circ Usable as in serial
 - o ILUn done only partitionwise

• Hypre

- \circ Krylov solvers
- o Algebraic multigrid: BoomerAMG
- $\circ\,$ Truly parallel ILU and Parasails preconditioning

• Trilinos

- Krylov solvers
- Algebraic multigrid: ML
- 0....

• FETI

 \circ Uses MUMPS for local problem

Direct

• MUMPS

 Direct solver that may work when averything else fails CSC

- MKL Pardiso
 - Comes with the Intel MKL library
 Multihreaded

Challenge of real-world problems

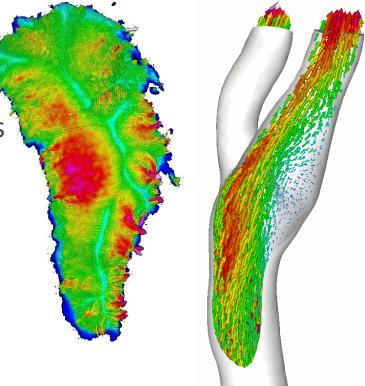
- Linear solver libraries work great for many standard problems • Scalability demonstrated up to 1000's of cores
- Unfortunately many of the real world cases are

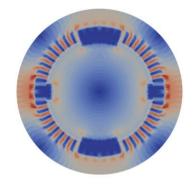
○ Unsymmetric

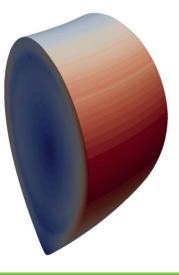
 $\circ \textbf{Constrained}$

Compromized in mesh quality (aspect ratio)
Etc.

- Often the target number of cores is often rather modest 0100's of cores
 - $\odot\,\mbox{But}$ direct solvers are still too slow or memory intensive
- We look on strategies that split the complex problems into more simple ones where standard libraries excel
 24 => block precontioning







Block preconditioning

- In parallel runs a central challenge is to have good **parallel preconditioners**
- This problem is increasingly difficult for PDEs with vector fields

 Navier-Stokes, elasticity, acoustics,...
 Strongly coupled multiphysics problems
- Preconditioner need not to be just a matrix, it can be a procedure!
- Idea: Use as preconditioner a procedure where the components are solved one-by-one and the solution is used as a **search direction** in an outer Krylov method
- Number of outer iterations may be shown to be bounded
- Individual blocks may be solved with optimally scaling methods
 Multilevel methods

CSC

Block precontioning

• Given a block system

$$\begin{bmatrix} \mathbf{K}_{11} & \cdots & \mathbf{K}_{1N} \\ & \cdots & \\ \mathbf{K}_{N1} & \cdots & \mathbf{K}_{NN} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_N \end{bmatrix}$$

Block Gauss-Seidel
 Block Jacobi

$$\mathsf{P} = \begin{bmatrix} \mathsf{K}_{11} & \mathbf{0} & \mathbf{0} & \cdots \\ \mathsf{K}_{21} & \mathsf{K}_{22} & \mathbf{0} & \cdots \\ \cdots & & & & \end{bmatrix} \qquad \qquad \mathsf{P} = \begin{bmatrix} \mathsf{K}_{11} & \mathbf{0} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathsf{K}_{22} & \mathbf{0} & \cdots \\ \cdots & & & & & \end{bmatrix}$$

- \bullet Preconditioner is the operator which produces the new search direction $s^{(k)}$
- Use GCR to minimize the residual $||\mathbf{b} \mathbf{K}\mathbf{x}^{(k)}||$ over the space $\mathcal{V}_k = \mathbf{x}^{(0)} + \operatorname{span}\{\mathbf{s}^{(1)}, \mathbf{s}^{(2)}, \dots, \mathbf{s}^{(k)}\}$

GCR with general search directions to solve Ku = f

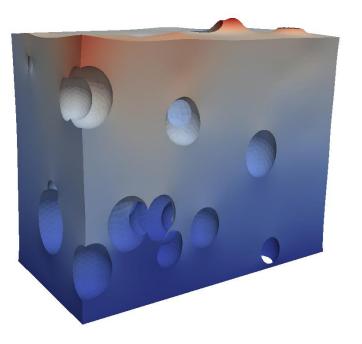
k = 0 $\mathbf{r}^{(k)} = \mathbf{f} - \mathbf{K}\mathbf{u}^{(k)}$ while $(\|\mathbf{r}^{(k)}\| < TOL\|\mathbf{f}\|$ and k < m) Generate the search direction $\mathbf{s}^{(k+1)}$ $\mathbf{v}^{(k+1)} = \mathbf{K} \mathbf{s}^{(k+1)}$ do i = 1, k $\mathbf{v}^{(k+1)} = \mathbf{v}^{(k+1)} - \langle \mathbf{v}^{(j)}, \mathbf{v}^{(k+1)} \rangle \mathbf{v}^{(j)}$ $\mathbf{s}^{(k+1)} = \mathbf{s}^{(k+1)} - \langle \mathbf{v}^{(j)}, \mathbf{v}^{(k+1)} \rangle \mathbf{s}^{(j)}$ end do $\mathbf{v}^{(k+1)} = \mathbf{v}^{(k+1)} / \|\mathbf{v}^{(k+1)}\|$ $\mathbf{s}^{(k+1)} = \mathbf{s}^{(k+1)} / \|\mathbf{v}^{(k+1)}\|$ $\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} + \langle \mathbf{v}^{(k+1)}, \mathbf{r}^{(k)} \rangle \mathbf{s}^{(k+1)}$ $\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \langle \mathbf{v}^{(k+1)}, \mathbf{r}^{(k)} \rangle \mathbf{v}^{(k+1)}$ k = k + 1end while

27

Motivation for using block preconditioner

- Comparison of algorithm scaling in linear elasticity between different preconditioners • ILU1 vs. block preconditioning (Gauss-Seidel) with agglomeration multigrid for each component
- At smallest system performance about the same
- Increasing size with 8³=512 gives the block solver scalability of *O(~1.03)* while ILU1 fails to converge

	BiCGstab(4)+ILU1		GCR+BP(AMG)		
#dofs	T(s)	#iters	T(s)	#iters	
7,662	1.12	36	1.19	34	
40,890	11.77	76	6.90	45	
300,129	168.72	215	70.68	82	
2,303,472	>21,244*	>5000*	756.45	116	



Simulation Peter Råback, CSC.

* No convergence was obtained

Stokes problem in computational glaciology

Stokes equation

$$-\operatorname{div}[2\eta(\mathbf{D})\mathbf{D}(\mathbf{v})] + \nabla p = \rho \mathbf{g},$$
$$-\operatorname{div} \mathbf{v} = 0$$

where the strain rate tensor is

$$\mathbf{D} = \mathbf{D}(\mathbf{v}) = 1/2(\nabla \mathbf{v} + \nabla \mathbf{v}^{T}).$$

• Ice is a shear-thinning fluid that follows the Glen's flow law

$$\eta = 1/2A^{-k}[I_2(\mathbf{D})]^{(k-1)/2}$$

Resulting system is very challenging to solve

 The viscosity variations may be of order 10⁵
 The aspect ratio of the ice may be of order 10³

Block preconditioner for the Stokes problem

• Each nonlinear step requires solving the Stokes problem

 $\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{P} \end{bmatrix} = \begin{bmatrix} \mathbf{F} \\ \mathbf{G} \end{bmatrix}$

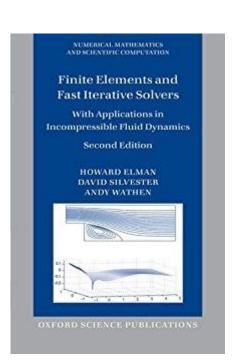
• Note that here C is result of stabilization, with suitable choice of basis vectors it can also be zero. The preconditioner is of the form

$$\mathsf{P} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B}^{\mathcal{T}} \\ \mathbf{0} & \mathbf{Q} \end{array} \right]$$

• An optimal choice of Q corresponds to the Schur complement. Usual choice is

 $\mathbf{Q} = \varepsilon^{-1} \mathbf{M},$

where M is the mass matrix and ϵ is the viscosity from previous iteration.



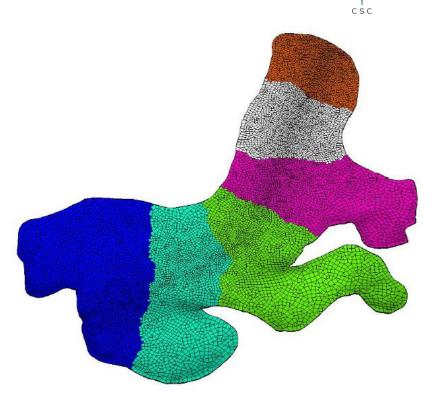
H. Elman, D. Silvester, A. Wathen, *Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics*, OUP Oxford, 2005.

Block preconditioner robustness

• Tested on Midtre Lovenbreen glacier test case

α_K	n	N_{GCR}^0
5	285131	18
10	282897	23
19.2	286650	25
30.2	289835	29
40	289338	30
80	287496	34

Ν	n	N_{GCR}^0
20	9261	23
30	29791	25
40	68921	27
50	132651	29
60	226981	30



Robustness in respect to element aspect ratio $\boldsymbol{\alpha}$

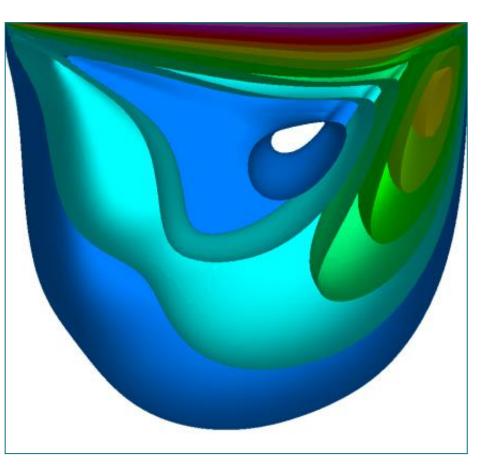
Robustness in respect to problem size

- Number of outer iterations is not too much affected by the problem size of mesh quality.
- Speed of computation determined by the strategy used ₃₂ for individual blocks

M. Malinen, J. Ruokolainen, P. Råback, J. Thies, T. Zwinger. *Parallel block preconditioning by using the solver of Elmer.* Applied Parallel and Scientific Computing, PARA 2012, Helsinki, Finland, Springer, Heidelberg, 2013; 545-547.

Block preconditioner: Weak scaling of 3D driven-cavity

Elems	Dofs	#procs	Time (s)
34^3	171,500	16	44.2
43^3	340,736	32	60.3
54^3	665,500	64	66.7
68^3	1,314,036	128	73.6
86^3	2,634,012	256	83.5
108^3	5,180,116	512	102.0
132^3	9,410,548	1024	106.8



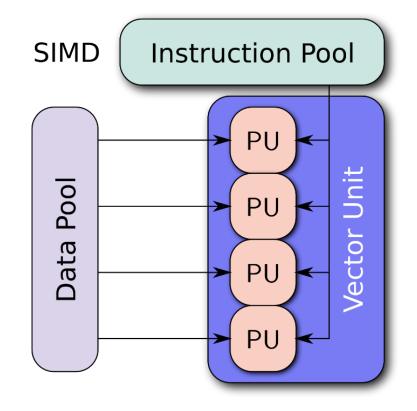
CSC

Velocity solves with Hypre: CG + BoomerAMG preconditioner for the 3D driven-cavity case (Re=100) on Cray XC (Sisu). Simulation Mika Malinen, CSC, 2013.

0(~1.14)

Motivation for vectorization

- New computer architectures use SIMD (=vector) units to do fast computations
- If you (on an Intel chip) don't utilize this, you a priori loose ³/₄ of your performance
- FEM: assembly = creating the matrix solution = solving it
- Until recently, assembly procedures in Elmer did not utilize SIMD
 - New Stokes solver does!
 - Gains depend on the number of integration points



By Vadikus - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=39715273

Hybridization of the Finite Element code

- The number of cores in CPUs keep increasing but the clock speed has stagnated
- Significant effort has been invested for the hybrization of Elmer
 - Assembly process has been multithreaded and vectorized
 - ${\rm \circ}\, "{\rm Coloring}"$ of element to avoid race conditions
- Speed-up of assembly for typical elements varies between 2 to 8.
- As an accompanion the multitreaded assembly requires multithreaded linear solvers.

Multicore speedup, P=2 128 threads on KNL, 24 threads on HSW					
Element (#ndofs, #quadrature points)	Speedup		Optimized local matrix evaluations / s		
	KNL	HSW	KNL	HSW	
Line (3, 4)	0.7	2.0	4.2 M	14.5 M	
Triangle (6, 16)	2.5	3.9	2.6 M	6.5 M	
Quadrilateral (8, 16)	2.8	4.0	2.6 M	6.6 M	
Tetrahedron (10, 64)	7.9	6.3	1.0 M	1.5 M	
Prism (15, 64)	8.3	5.8	0.8 M	0.9 M	
Hexahedron (20, 64)	7.2	5.8	0.6 M	0.9 M	

Speed-up assembly process for poisson equation using 2nd order p-elements. Juhani Kataja, CSC, IXPUG Annual Spring Conference 2017.

Tips for linear solvers

- Direct solvers
 - $\,\circ\,$ In 1D always
 - $\,\circ\,$ In 2D often very competitive
 - \circ In 3D only if nothing else works
- Iterative solvers
 - BiCGStabl + "BiCGStabl Polynomial Degree = 4..6"
 - $\,\circ\,$ Perhaps the most robust iterative solver without memory problems
 - o IDRS + "Idrs Parameter"
 - $\,\circ\,$ Very fast and quite robust
 - \circ GCR
- $\,\circ\,$ Very robust, but cost and memory consumption increases with iteration count
- $\,\circ\,$ Best used when number of iterations is bounded (block preconditioner)
- $\circ~$ Does not require exact preconditioner
- Preconditioners
 - ILUn + ILUt
 - $\,\circ\,$ The standard strategy, mind that not the same in parallel
 - $\circ~$ Balance higher "n" with crappier iterative solver
 - $\,\circ\,$ Block preconditioner
 - $\circ~$ When you aim massively parallel

