
Linear Solvers of Elmer
in

serial & parallel

ElmerTeam

CSC

Algorithm scalability

• Before going into parallel computation let’s study

where the bottle-necks will appear in the serial

system

• Each algorithm/procedure has a characteristic

scaling law that sets the lower limit to how the

solution time t increases with problem size n

oThe parallel implementation cannot hope to beat this
limit systematically

• Targeting very large problems the starting point

should be nearly optimal (=linear) algorithm!

n

t

CPU time for serial pre-processing and solution

”winkel”

CPU time for serial solution – one level vs. multilevel

”winkel”

Algorithmic scalability results (old)

T(solution) > T(tet meshing) > T(partitioning) > T(hex meshing)

The solution is the first bottleneck even for simple equations,
for complex equations and transient problems even more so!

Serial performance of different tools and algorithms in terms of
CPU time and memory consumption for Poisson equation.

Poisson equation at ”Winkel”

• Success of various iterative methods

determined mainly by preconditioning

strategy

• Best preconditioner is clustering multigrid

method (CMG)

• For simple Poisson almost all

preconditioners work reasonable well

• Direct solvers differ significantly in scaling

• For vector valued problems number of

possible strategies increases due to

various splitting techniques

o Monolithic vs. segregated methods

4.2.20216

Linear solver alpha beta

BiCGStab+CMG0(SGS1) 178.30 1.09

GCR+CMG0(SGS2) 180.22 1.10

Idrs+CMG0(SGS1) 175.20 1.10

…

BiCgStab + ILU0 192.50 1.13

…

CG + vanka 282.07 1.16

Idrs(4) + vanka 295.18 1.16

…

CG + diag 257.98 1.17

BiCgStab(4) + diag 290.11 1.19

…

MUMPS(PosDef) 4753.99 1.77

MUMPS 12088.74 1.93

umfpack 74098.48 2.29

Iterative methods

• Internal Krylov methods

oHUT library: CG, BiCGStab, BiCGStabl,
GMRes, TMQMR, QMR

oRecent additions: GCR, Idrs, BiCGStabl

• Internal Algebraic multigrid

o Serial AMG and CMG methods (alpha version)

• Hypre

o Linear solvers

oBoth Krylov methods & BoomerAMG

• Trilinos

• AMGx

Direct methods

• Banded (serial only)

• Umfpack (serial only)

• MUMPS (serial and parallel)

• MKL Pardiso (parallel, not free)

Serial linear solvers used with Elmer

4.2.20217

𝐴𝑥 = 𝑏We must solve large sparse linear systems:

• Instead of solving the original linear system, one may solve the (left)

preconditioned system:

where P is an approximation of the inverse if A

o ILUn, Incomplete LU depomposition with fill pattern defined by An

oDiagonal precondtioner, P=1/diag(A)

oNo strict guidelines on construction, experimental numerics

• P may also be considered to an operator

oMultigrid as precondioner

• The goal of this preconditioned system is to reduce the condition

number

oResults to more robust and faster convergence of linear system

• Typically iterative solution: Krylov method + preconditioner

Preconditioning of linear systems

4.2.20218

𝑃𝐴𝑥 = 𝑃𝑏
• Preconditioners in Elmer

o ILUn, n=0,1,2,3,…

o ILUt, specific tolerance

oDiagonal

oVanka

oAMG and AMG

Linear solvers, example

4.2.20219

Linear System Solver = Iterative

Linear System Iterative Method = "GCR” ! BiCGStab, BiCGStabl, GMRes, Idrs, …

Linear System Max Iterations = 500

Linear System Convergence Tolerance = 1.0E-08

Linear System Abort Not Converged = False

Linear System Preconditioning = "ILU0” ! ILU0, ILU1, ILU2, ILUT

Linear System ILUt Tolerance = 1.0e-3

Linear System Residual Output = 10

!Idrs Parameter = 4

!BiCGStabl Polynomial Degree = 6

!Linear System Residual Mode = Logical True

!Linear System Robust = Logical True ! Works with GCR and BiCGStabl

! Direct alternative

!Linear System Solver = Direct

Linear System Direct Method = MUMPS ! umfpack

Computer architectures

• Shared memory

oAll cores can access the whole memory

• Distributed memory

oAll cores have their own memory

oCommunication between cores is needed in
order to access the memory of other cores

• Current supercomputers combine the

distributed and shared memory (within

nodes) approaches

Programming models

• Threads (pthreads, OpenMP)

oCan be used only in shared memory computer

o Limited parallel scalability

o Simpler or less explicit programming

• Message passing (MPI)

oCan be used both in distributed and shared memory
computers

o Programming model allows good parallel scalability

o Programming is quite explicit

• Massively parallel FEM codes use typically MPI as

the main parallelization strategy

Parallel computing concepts

4.2.202110

Strong scaling

• How the solution time T varies with the

number of processors P for a

fixed total problem size.

• Optimal case: P x T = const.

• A bad algorithm may have excellent strong

scaling

• Typically 104-105 dofs needed in FEM for

good strong scaling

Weak scaling

• How the solution time T varies with the

number of processors P for a fixed

problem size per processor.

• Optimal case: T=const.

• Weak scaling is limited by algorithmic

scaling

Weak vs. strong parallel scaling

4.2.202111

Basic Parallel workflow (of Elmer)

• Both assembly and solution is done in parallel using MPI

• Assembly is trivially parallel

• This is the most common parallel workflow

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

ElmerGrid

Mesh partitioning with ElmerGrid

• Two main strategies for mesh partitioning

• Metis graph partitioning library:

-metiskway #np & -metisrec #np

oGeneric strategy

o Includes five different graph partitioning routines from
Metis

• Recursive division by cartesian directions:

-partition nx ny nz

oSimple shapes (ideal for quads and hexas)

oChoice between partitioning of nodes or elements first

-partition 2 2 1

Mesh partitioning with ElmerGrid

• Optimal partitioning depends on geometry

• To find the best partitioning is a non-trivial task

-partdual -metisrec 4 -partdual -metiskway 4

ElmerGrid command in parallel

4.2.202115

Keywords are related to mesh partitioning for parallel ElmerSolver runs:

-partition int[3] : the mesh will be partitioned in cartesian main directions

-partorder real[3] : in the 'partition' method set the direction of the ordering

-partcell int[3] : the mesh will be partitioned in cells of fixed sizes

-partcyl int[3] : the mesh will be partitioned in cylindrical main directions

-metis int : mesh will be partitioned with Metis using mesh routines

-metiskway int : mesh will be partitioned with Metis using graph Kway routine

-metisrec int : mesh will be partitioned with Metis using graph Recursive routine

-metiscontig : enforce that the metis partitions are contiguous

-metisseed : random number generator seed for Metis algorithms

-partdual : use the dual graph in partition method (when available)

-halo : create halo for the partitioning for DG

-halobc : create halo for the partitioning at boundaries only

-haloz / -halor : create halo for the the special z- or r-partitioning-halogreedy

…

Mesh structure of Elmer

Serial

meshdir/

• mesh.header

size info of the mesh

• mesh.nodes

node coordinates

• mesh.elements

bulk element defs

• mesh.boundary

boundary element defs with reference

to parents

Parallel

meshdir/partitioning.N/

• mesh.n.header

• mesh.n.nodes

• mesh.n.elements

• mesh.n.boundary

• mesh.n.shared

information on shared nodes

for each i in [0,N-1]

Serial vs. parallel solution

• Serial mesh files

• Execution with

ElmerSolver case.sif

• Writes results to one file: vtu files

Serial Parallel

• Partitioned mesh files

• Execution with

mpirun -np N ElmerSolver_mpi

case.sif

• Calling convention is platform dependent

• Writes results to N vtu files + one pvtu file

Partitioning and matrix structure

• ji 4.2.202121

• Shared nodes result to need for communication.

o Each dof has just one owner partiotion and we know the
neighbours for

oOwner partition usually handles the full row

oResults to point-to-point communication in MPI

• Matrix structure sets challenges to efficient

preconditioners in parallel

o It is more difficult to implement algorithms that are
sequential in nature, e.g. ILU

oKrylov methods require just matrix vector product, easy!

• Communication cannot be eliminated. It reflects the

local interactions of the underlying PDEContiguous parallel numbering used

Partitioning and matrix structure – unstructured mesh

4.2.202122

• Partitioning should try

to minimize

communication

• Relative fraction of

shared nodes goes as

N^(-1/DIM)

• For vector valued and

high order problems

more communication

with same dof count
Metis partitioning into 8

Iterative

• Internal Krylov methods

oUsable as in serial

o ILUn done only partitionwise

• Hypre

o Krylov solvers

o Algebraic multigrid: BoomerAMG

o Truly parallel ILU and Parasails preconditioning

• Trilinos

o Krylov solvers

o Algebraic multigrid: ML

o …

• FETI

o Uses MUMPS for local problem

Direct

• MUMPS

o Direct solver that may work when averything
else fails

• MKL Pardiso

oComes with the Intel MKL library

oMultihreaded

Parallel linear solvers used with Elmer

4.2.202123

Challenge of real-world problems

4.2.202124

• Linear solver libraries work great for many standard problems

oScalability demonstrated up to 1000’s of cores

• Unfortunately many of the real world cases are

oUnsymmetric

oConstrained

oCompromized in mesh quality (aspect ratio)

oEtc.

• Often the target number of cores is often rather modest

o100’s of cores

oBut direct solvers are still too slow or memory intensive

• We look on strategies that split the complex problems into

more simple ones where standard libraries excel

=> block precontioning

Block preconditioning

• In parallel runs a central challenge is to have good

parallel preconditioners

• This problem is increasingly difficult for PDEs with vector fields

oNavier-Stokes, elasticity, acoustics,…

oStrongly coupled multiphysics problems

• Preconditioner need not to be just a matrix, it can be a procedure!

• Idea: Use as preconditioner a procedure where the components are

solved one-by-one and the solution is used as a search direction in

an outer Krylov method

• Number of outer iterations may be shown to be bounded

• Individual blocks may be solved with optimally scaling methods

oMultilevel methods

Block precontioning

• Given a block system

• Block Gauss-Seidel Block Jacobi

• Preconditioner is the operator which produces the new search direction s(k)

• Use GCR to minimize the residual

over the space

4.2.202126

GCR with general search directions to solve Ku = f

4.2.202127

Motivation for using block preconditioner

• Comparison of algorithm scaling in linear elasticity between different preconditioners

o ILU1 vs. block preconditioning (Gauss-Seidel) with agglomeration multigrid for each component

• At smallest system performance about the same

• Increasing size with 8^3=512 gives the block solver

scalability of O(~1.03) while ILU1 fails to converge

BiCGstab(4)+ILU1 GCR+BP(AMG)

#dofs T(s) #iters T(s) #iters

7,662 1.12 36 1.19 34

40,890 11.77 76 6.90 45

300,129 168.72 215 70.68 82

2,303,472 >21,244* >5000* 756.45 116

* No convergence was obtainedSimulation Peter Råback, CSC.

Stokes problem in computational glaciology

• Stokes equation

where the strain rate tensor is

• Ice is a shear-thinning fluid that follows the Glen’s flow law

• Resulting system is very challenging to solve

oThe viscosity variations may be of order 105

oThe aspect ratio of the ice may be of order 103

4.2.202130

Block preconditioner for the Stokes problem

4.2.202131

H. Elman, D. Silvester, A. Wathen,
Finite Elements and Fast Iterative Solvers: with
Applications in Incompressible Fluid Dynamics,
OUP Oxford, 2005.

• Each nonlinear step requires solving the Stokes problem

• Note that here C is result of stabilization, with suitable choice of basis

vectors it can also be zero. The preconditioner is of the form

• An optimal choice of Q corresponds to the Schur complement.

Usual choice is

where M is the mass matrix and ε is the viscosity from previous

iteration.

Block preconditioner robustness

• Tested on Midtre Lovenbreen glacier test case

• Number of outer iterations is not too much affected by

the problem size of mesh quality.

• Speed of computation determined by the strategy used

for individual blocks4.2.202132

Robustness in respect to
element aspect ratio α

Robustness in respect to
problem size

M. Malinen, J. Ruokolainen, P. Råback, J. Thies,

T. Zwinger. Parallel block preconditioning by

using the solver of Elmer. Applied Parallel and

Scientific Computing, PARA 2012, Helsinki,

Finland, Springer, Heidelberg, 2013; 545-547.

Block preconditioner: Weak scaling of 3D driven-cavity

Elems Dofs #procs Time (s)

34^3 171,500 16 44.2

43^3 340,736 32 60.3

54^3 665,500 64 66.7

68^3 1,314,036 128 73.6

86^3 2,634,012 256 83.5

108^3 5,180,116 512 102.0

132^3 9,410,548 1024 106.8

Velocity solves with Hypre: CG + BoomerAMG preconditioner for the
3D driven-cavity case (Re=100) on Cray XC (Sisu).
Simulation Mika Malinen, CSC, 2013.

O(~1.14)

• New computer architectures use SIMD

(=vector) units to do fast computations

• If you (on an Intel chip) don’t utilize this,

you a priori loose ¾ of your performance

• FEM: assembly = creating the matrix

solution = solving it

• Until recently, assembly procedures in

Elmer did not utilize SIMD

o New Stokes solver does!

o Gains depend on the number of integration
points

Motivation for vectorization

By Vadikus - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=39715273

Hybridization of the Finite Element code

• The number of cores in CPUs keep

increasing but the clock speed has

stagnated

• Significant effort has been invested for

the hybrization of Elmer

oAssembly process has been multithreaded and
vectorized

o”Coloring” of element to avoid race conditions

• Speed-up of assembly for typical

elements varies between 2 to 8.

• As an accompanion the multitreaded

assembly requires multithreaded linear

solvers.35

Multicore speedup, P=2
128 threads on KNL, 24 threads on HSW

Element (#ndofs,
#quadrature
points)

Speedup Optimized local
matrix

evaluations / s

KNL HSW KNL HSW

Line (3, 4) 0.7 2.0 4.2 M 14.5 M

Triangle (6, 16) 2.5 3.9 2.6 M 6.5 M

Quadrilateral (8, 16) 2.8 4.0 2.6 M 6.6 M

Tetrahedron (10, 64) 7.9 6.3 1.0 M 1.5 M

Prism (15, 64) 8.3 5.8 0.8 M 0.9 M

Hexahedron (20, 64) 7.2 5.8 0.6 M 0.9 M

Speed-up assembly process for poisson equation using
2nd order p-elements. Juhani Kataja, CSC, IXPUG Annual
Spring Conference 2017.

Tips for linear solvers

• Direct solvers

o In 1D always

o In 2D often very competitive

o In 3D only if nothing else works

• Iterative solvers

o BiCGStabl + ”BiCGStabl Polynomial Degree = 4..6”

o Perhaps the most robust iterative solver without memory problems

o IDRS + ”Idrs Parameter”

o Very fast and quite robust

o GCR

o Very robust, but cost and memory consumption increases with iteration count

o Best used when number of iterations is bounded (block preconditioner)

o Does not require exact preconditioner

• Preconditioners

o ILUn + ILUt

o The standard strategy, mind that not the same in parallel

o Balance higher ”n” with crappier iterative solver

o Block preconditioner

o When you aim massively parallel

