Using Elmer with other pre- and postprocessors

D.Sc. Peter Råback CSC - IT Center for Science, Finland

Elmer basic course 25.5.2010

Alternative mesh generators for Elmer

Open Source tools

- Mesh2D
 - 2D Delaunay
 - Writes Elmer format
 - Usable via the old ElmerFront
- ElmerGrid: native to Elmer
 - Simple structured mesh generation
 - Usable via ElmerGUI
- Tetgen, Netgen
 - Tetrahedral mesh generation
 - Usable via ElmerGUI as a plug-in
- Gmsh
 - Includes geometry definition tools
 - ElmerGUI/ElmerGrid can read the format
- Triangle
 - 2D Delaunay
 - ElmerGUI/ElmerGrid can read the format

Commercial tools

- GiD
 - Inexpensive
 - With an add-on module can directly write Elmer format
- Gambit
 - Preprocessor of Fluent suite
 - ElmerGUI/ElmerGrid can read .FDNEUT format
- Comsol multiphysics
 - ElmerGUI/ElmerGrid can read .mphtxt format
- ...

 Ask for your format: Writing a parser from ascii-mesh file usually not big a deal

CAD – OpenCASCADE

http://www.opencascade.com/ http://www.opencascade.org/

- What is it?
 - Open CASCADE is a powerful CAD/CAM/CAE kernel and development platform for 3D modeling applications.
 - It consists of reusable C++ object libraries and a set of development tools that are available in Open Source
 - Modular structure (see diagram)
- Devolopment history
 - EUCLID-IS CAD/CAM system 1987
 - Published under Open Source in 1999 as OpenCASCADE
 - OpenCASCADE S.A.S. is a service company of 80 developers
 - Curstomers CEA, BMW, SAMTECH, EADS, RINA, Alcatel,...
- The only proper CAD library under Open Source
 - Included in ElmerGUI

CAD – SALOME

http://www.salome-platform.org/

- What is it?
 - Free software that provides a generic platform for Pre and Post-Processing for numerical simulation.
- Based on a number of free software libraries
 - Qt, OpenCASCADE, Doxygen, Python, VTK
- Main functions
 - Create/modify, import/export (IGES, STEP), repair/clean CAD models
 - Mesh CAD elements, check mesh quality, import/export mesh (MED, UNV, ASCII)
 - Handle physical properties and quantities attached to geometrical items
 - Perform computation using one or more external solvers (coupling)
 - Display computation results (scalar, vectorial)
 - Manage studies (creation, save, reload)

Using Salome with Elmer

There are some instructions in Wiki

- http://www.elmerfem.org/wiki/index.php/Salome
- The .unv format provides a channel from Salome to Elmer
 - ElmerGrid 8 2 test.unv -autoclean
 - Or direct opening with ElmerGUI

Meshing - Netgen

http://www.hpfem.jku.at/netgen/

- What is it?
 - An automatic 2D/3D tetrahedral mesh generator
 - Developed mainly by Joachim Schöberl
- Key features
 - Accepts input from constructive solid geometry (CSG) or boundary representation (BRep) from STL file format
 - Connection to OpenCASCADE deals with IGES and STEP files
 - Contains modules for mesh optimization and hierarchical mesh refinement
 - LGPL library
- Netgen library is utilized by a large number of GUI projects

Points: 1253 Elements: 3581 Surf Elements: 2270

Meshing - Gmsh

http://geuz.org/gmsh/

- Gmsh is a 3D finite element grid generator with a build-in CAD engine and post-processor
- Its design goal is to provide a fast, light and user-friendly meshing tool with parametric input
- Gmsh is built around four modules: geometry, mesh, solver and post-processing.
- The specification of any input to these modules is done either interactively using the graphical user interface or in ASCII text files using Gmsh's own scripting language.
- Probably the most popular academic mesh generation package under open source

Using Gmsh with Elmer

- Saving of the mesh in native gmsh format
 - Suffix .msh
- Usually saving all geometric entities is most robust method
 - Elmer automatically drops lower dimensional entities
 - Elmer renumbers BCs and bodies with 1,2,3,....
- In practice:
- In Gmsh:
 - File -> Save as
 - Filename: test.msh
 - MSH Options
 - Version 2.0 ASCII
 - Save all (ignore physical groups)
- In ElmerGUI
 File -> Open : test.msh
- Or ElmerGrid: ElmerGrid 14 2 test.msh (creates a mesh file in directory test)

Example: exporting tutorial 2 of Gmsh

Exercise: Gmsh to Elmer export

- Start gmsh.exe
- Load a existing tutorial in Gmsh
 - t1-t6
- Create the default mesh for it
 - Mesh -> 1D, 2D, (3D)
 - A global size factor may be found at Options - Mesh - General - Max. Element size
- Open the mesh in ElmerGUI
- Perform a simple thermal analysis if you have time

Tutorial 2 of Gmsh

GiD

http://gid.cimne.upc.es/

- A good compromise between features and price
- Enables creation of hybrid meshes (not well supported in Gmsh)

Using GID with Elmer

- Requires special plugins that enable problemtype "Elmer"
- For more details see: http://www.csc.fi/english/pages/elmer/interfaces

Alternative postprocessors for Elmer

Open Source tools

- ElmerPost
 - Postprocessor of Elmer suite
- ParaView, Visit
 - Use ResultOutputSolve to write .vtu or .vtk
 - Visualization of parallel data
- OpenDX
 - Supports some basic elementtypes
- Gmsh
 - Use ResultOutputSolve to write dat
- Gnuplot, R, Octave, ...
 - Use SaveData to save results in ascii matrix format
 - Line plotting

Commercial tools

- Matlab, Excel, ...
 - Use SaveData to save results in ascii matrix format
 - Line plotting

Visualization - VTK

http://www.vtk.org/

- What Is it?
 - Software system for 3D computer graphics, image processing, and visualization
- Features
 - Consists of a C++ class library and several interpreted interface layers including Tcl/Tk, Java, and Python.
 - VTK supports a wide variety of visualization algorithms including scalar, vector, tensor, texture, and volumetric methods
 - Supports parallel processing
 - Integrates with various databases on GUI toolkits such as Qt
 - VTK is cross-platform and runs on Linux, Windows, Mac and Unix platforms. An opensource, multi-platform data analysis and visualization application
- Professional support provided by Kitware Inc.
 - Proper documentation not free
 - Supported by a number of large institutions: Los Alamos an Sandia nat.lab.

VTK library is used in ElmerGUI for visualization

Visualization - VisIT

http://wci.llnl.gov/visit/

- What is it?
 - Interactive parallel visualization and graphical analysis tool for viewing scientific data on Unix and PC platforms
 - Developed by Department of Energy (DOE)
 - Rather similar in features as Paraview
 - Distributed under BSD license

Visualization - Mayavi

http://code.enthought.com/projects/mayavi/

- What is it?
 - Easy and interactive visualization of 3-D data
 - Includes a (optional) rich user interface with dialogs to interact with all data and objects in the visualization.
 - A simple and clean scripting interface in Python, including one-liners, or an objectoriented programming interface.
 - Based on the VTK toolkit

Visualization - Paraview

- http://www.paraview.org/
- What Is it?
 - An open-source, multi-platform data analysis and visualization application
 - Developed to analyze extremely large datasets using parallel computing
- Features
 - Data exploration may be done interactive or using batch processing
 - Can be run on laptops and supercomputers
 - Based on VTK library
- Our choice for external postprocessor

Paraview vs. ElmerPost

- Requires a separate solver in Elmer
- + Industry standard
- + Parallel files need not to be fused
- + Supports multicore visualization
- + Export of visualization separated from looking at them
- + Has a batch job mode

- + Integrated to Elmer
- Limited to Elmer
- No actual parallel support
- + May be faster for basic operations
- In exporting figures and animations the screen must be intact

Using other postprocessors in Elmer

- The data is written by an auxiliary solver: ResultOutputSolve
- Currently supported formats include:
 - GiD
 - Gmsh
 - VTK (legacy)
 - VTU (unstructurec XML VTK)
 - DX (open DX)
- Choose by
 - Output Format = String
- GiD, VTU and Gmsh formats require explicit definition of the variables to be saved
 - Scalar Field i = String
 - Vector Field i = String
- In addition define output file name
 - Output File Name = String

Activating paraview output

- Using ElmerGUI
 - Add to the equation the solver "Result Output" and toggle its settings in the "Edit Solver Settings" submenu
- Manually
 - Use your favorite editor copy-paste the following settings to your sif file (with the 1st free index number for the solver)

```
Solver 2
Equation = Result Output
Procedure = "ResultOutputSolve" "ResultOutputSolver"
Output File Name = case
Output Format = Vtu
Scalar Field 1 = Pressure
Vector Field 1 = Velocity
End
```

Kitware ParaView 3.6.1 File Edit View Sources Filters Animation Tools	Help	
] 🖻 🖻 🛱 🛱 📪 🚺 🗛 🗛	🏘 👯 🍘 🖉 🖉 🖂 🗸 🔺 🕨 🕪 ы 🛱 🗍 Time: 🖸 👘 🔁	
📗 🗧 🎥 🛱 🔹 velocity 💽 Mag	itud 🗨 🛛 🕼 🖾 🗱 📫 🗱 🛱 🗱 👫 🖉 🚱 🚱	
Pipeline Browser 🗗 🖓		
 builtin: case0001.vtu 		
Object Inspector 🛛 🗗 🗘		
Properties Display Information		
Apply ØReset XDelete		
Cell/Point Array Status		
 ✓ ● pressure 		
Velocity	t t	
l	↓ → →	
	Animation View	
		rames: 10 🖃
Selection Inspector 8 2	Time 0.000e+00 2.500e-01 5.000e-01 7.500e-01	1.000e+00
Current Object: case0001.vtu	TimeKeeper - Time	
Create Selection	Cell Arrays	
- 🖻 - Active Selection		
Selected Object: [selected object name]		
Selection Type: IDs		
Field Type:		
		1

Exercise: Adding VTU output to the solver

- Choose an existing project
 - Perhaps not tutorial 3
 - Here Tutorial 4
- Add the definitions to your sif file either by ElmerGUI or manually
 - Remember that when you leave the GUI and edit the sif manually there is no going back
- Open the resulting .vtu file in Paraview and visualize the results