Internet-Draft ACME DA December 2025
Weeks, et al. Expires 10 June 2026 [Page]
Workgroup:
ACME Working Group
Internet-Draft:
draft-acme-device-attest-08
Published:
Intended Status:
Standards Track
Expires:
Authors:
B. Weeks
G. Mallaya
S. Rajala

Automated Certificate Management Environment (ACME) Device Attestation Extension

Abstract

This document specifies new identifiers and a challenge for the Automated Certificate Management Environment (ACME) protocol which allows validating the identity of a device using attestation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 June 2026.

Table of Contents

1. Introduction

The Automatic Certificate Management Environment (ACME) [RFC8555] standard specifies methods for validating control over identifiers, such as domain names. It is also useful to be able to validate properties of the device requesting the certificate, such as the identity of the device /and whether the certificate key is protected by a secure cryptoprocessor.

Many operating systems and device vendors offer functionality enabling a device to generate a cryptographic attestation of their identity, such as:

Using ACME and device attestation to issue client certificates for enterprise PKI is anticipated to be the most common use case. The following variances to the ACME specification are described in this document:

This document does not specify the attestation verification procedures. Section 13 of [WebAuthn] gives some guidance, however verification procedures are complex and may require changes to address future security issues.

Efforts are underway within the Remote ATtestation ProcedureS (RATS) working group to define a set of standard formats and protocols for attestation. An explict aim of this document is to support vendor specific formats and protocols that are widley deployed at the time it was authored. In the future, an ACME challenge type based on these standards SHOULD be used instead of device-attest-01.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. Permanent Identifier

A new identifier type, "permanent-identifier" is introduced to represent the identity of a device assigned by the manufacturer, typically a serial number. The name of this identifier type was chosen to align with [RFC4043], it does not prescribe the lifetime of the identifier, which is at the discretion of the Assigner Authority.

The identity along with the assigning organization can be included in the Subject Alternate Name Extension using the PermanentIdentifier form described in [RFC4043].

Clients MAY include this identifier in the certificate signing request (CSR). Alternatively if the server wishes to only issue privacy-preserving certificates, it MAY reject CSRs containing a PermanentIdentifier in the subjectAltName extension.

4. Hardware Module

A new identifier type, "hardware-module" is introduced to represent the identity of the secure cryptoprocessor that generated the certificate key.

The hardware module identity can be included in the Subject Alternate Name Extension using the HardwareModuleName form described in [RFC4108]. The HardwareModuleName is encoded as an otherName with the OID id-on-hardwareModuleName (1.3.6.1.5.5.7.8.4) and consists of:

Clients MAY include this identifier in the certificate signing request (CSR). When included in a CSR, it MUST appear in an extensionRequest attribute [RFC2985] requesting a subjectAltName extension.

If the server includes HardwareModule in the subjectAltName extension the CA MUST verify that the certificate key was generated on the secure cryptoprocessor with the asserted identity and type. The key MUST NOT be able to be exported from the cryptoprocessor.

If the server wishes to issue privacy-preserving certificates, it MAY omit HardwareModule from the subjectAltName extension.

5. Device Attestation Challenge

The client can prove control over a permanent identifier of a device by providing an attestation statement containing the identifier of the device.

The device-attest-01 ACME challenge object has the following format:

type (required, string):

The string "device-attest-01".

token (required, string):

A random value that uniquely identifies the challenge. This value MUST have at least 128 bits of entropy. It MUST NOT contain any characters outside the base64url alphabet, including padding characters ("="). See [RFC4086] for additional information on randomness requirements.

{
  "type": "device-attest-01",
  "url": "https://example.com/acme/chall/Rg5dV14Gh1Q",
  "status": "pending",
  "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ-PCt92wr-oA"
}

A client fulfills this challenge by constructing a key authorization (Section 8.1 of [RFC8555]) from the "token" value provided in the challenge and the client's account key. The client then generates a WebAuthn attestation object using the key authorization as the challenge.

This specification borrows the WebAuthn attestation object representation as described in Section 6.5.4 of [WebAuthn] for encapsulating attestation formats, but with these modifications:

A client responds with the response object containing the WebAuthn attestation object in the "attObj" field to acknowledge that the challenge can be validated by the server.

On receiving a response, the server constructs and stores the key authorization from the challenge's "token" value and the current client account key.

To validate a device attestation challenge, the server performs the following steps:

  1. Perform the verification procedures described in Section 6 of [WebAuthn].

  2. Verify that key authorization conveyed by attToBeSigned matches the key authorization stored by the server.

POST /acme/chall/Rg5dV14Gh1Q
Host: example.com
Content-Type: application/jose+json

{
  "protected": base64url({
    "alg": "ES256",
    "kid": "https://example.com/acme/acct/evOfKhNU60wg",
    "nonce": "SS2sSl1PtspvFZ08kNtzKd",
    "url": "https://example.com/acme/chall/Rg5dV14Gh1Q"
  }),
  "payload": base64url({
    "attObj": base64url(/* WebAuthn attestation object */),
  }),
  "signature": "Q1bURgJoEslbD1c5...3pYdSMLio57mQNN4"
}

The webauthn payload MAY contain any identifiers registered in "WebAuthn Attestation Statement Format Identifiers" and any extensions registered in "WebAuthn Extension Identifiers" [IANA-Webauthn], [RFC8809].

6. Security Considerations

See Section 13 of [WebAuthn] for additional security considerations related to attestation statement formats, including certificate revocation.

Key attestation statements may include a variety of information in addition to the public key being attested. While not described in this document, the server MAY use any policy when evaluating this information. This evaluation can result in rejection of a certificate request that features a verifiable key attestation for the public key contained in the request. For example, an attestation statement may indicate use of an unacceptable firmware version.

7. IANA Considerations

7.1. ACME Identifier Types

The "ACME Identifier Types" registry is to be updated to include the following entries:

Table 1
Label Reference
permanent-identifier RFC XXXX
hardware-module RFC XXXX

7.2. ACME Validation Method

The "ACME Validation Methods" registry is to be updated to include the following entry:

Table 2
Label Identifier Type ACME Reference
device-attest-01 permanent-identifier Y RFC XXXX

7.3. New Error Types

This document adds the following entries to the ACME Error Type registry:

Table 3
Type Description Reference
badAttestationStatement The attestation statement is unacceptable (e.g. not signed by an attestation authority trusted by the CA) RFC XXXX
  • Change Controller:

    • W3C Web Authentication Working Group (public-webauthn@w3.org)

8. References

8.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/rfc/rfc2119>.
[RFC2985]
Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object Classes and Attribute Types Version 2.0", RFC 2985, DOI 10.17487/RFC2985, , <https://www.rfc-editor.org/rfc/rfc2985>.
[RFC4043]
Pinkas, D. and T. Gindin, "Internet X.509 Public Key Infrastructure Permanent Identifier", RFC 4043, DOI 10.17487/RFC4043, , <https://www.rfc-editor.org/rfc/rfc4043>.
[RFC4086]
Eastlake 3rd, D., Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, RFC 4086, DOI 10.17487/RFC4086, , <https://www.rfc-editor.org/rfc/rfc4086>.
[RFC4108]
Housley, R., "Using Cryptographic Message Syntax (CMS) to Protect Firmware Packages", RFC 4108, DOI 10.17487/RFC4108, , <https://www.rfc-editor.org/rfc/rfc4108>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/rfc/rfc8174>.
[RFC8555]
Barnes, R., Hoffman-Andrews, J., McCarney, D., and J. Kasten, "Automatic Certificate Management Environment (ACME)", RFC 8555, DOI 10.17487/RFC8555, , <https://www.rfc-editor.org/rfc/rfc8555>.
[RFC8809]
Hodges, J., Mandyam, G., and M. Jones, "Registries for Web Authentication (WebAuthn)", RFC 8809, DOI 10.17487/RFC8809, , <https://www.rfc-editor.org/rfc/rfc8809>.
[WebAuthn]
Hodges, J., Jones, J., Jones, M. B., Kumar, A., and E. Lundberg, "Web Authentication: An API for accessing Public Key Credentials Level 2", , <https://www.w3.org/TR/webauthn-2/>.

8.2. Informative References

[IANA-Webauthn]
"IANA Registries for Web Authentication (WebAuthn)", n.d., <https://www.iana.org/assignments/webauthn/webauthn.xhtml>.

Appendix A. Enterprise PKI

ACME was originally envisioned for issuing certificates in the Web PKI, however this extension will primarily be useful in enterprise PKI. The subsection below covers some operational considerations for an ACME-based enterprise CA.

A.1. External Account Binding

An enterprise CA likely only wants to receive requests from authorized devices. It is RECOMMENDED that the server require a value for the "externalAccountBinding" field to be present in "newAccount" requests.

If an enterprise CA desires to limit the number of certificates that can be requested with a given account, including limiting an account to a single certificate. After the desired number of certificates have been issued to an account, the server MAY revoke the account as described in Section 7.1.2 of [RFC8555].

Acknowledgments

TODO acknowledge.

Authors' Addresses

Brandon Weeks
Ganesh Mallaya
Sven Rajala