
svm() internals
Some technical notes about the svm() in package e1071

by David Meyer
FH Technikum Wien, Austria
David.Meyer@R-Project.org

October 13, 2020

This document explains how to use the parameters in an object returned by svm() for own
prediction functions.

1 Binary Classifier

For class prediction in the binary case, the class of a new data vector n is usually given by the
sign of ∑

i

aiyiK(xi, n) + ρ (1)

where xi is the i-th support vector, yi the corresponding label, ai the corresponding coefficiant,
and K is the kernel (for example the linear one, i.e. K(u, v) = u>v).

Now, the libsvm library interfaced by the svm() function actually returns aiyi as i-th coefficiant
and the negative ρ, so in fact uses the formula:∑

i

coefiK(xi, n)− ρ

where the training examples (=training data) are labeled {1,-1} (!). A simplified R function for
prediction with linear kernel would be:

svmpred <- function (m, newdata, K=crossprod)

{

this guy does the computation:

pred.one <- function (x)

sign(sum(sapply(1:m$tot.nSV, function (j)

K(m$SV[j,], x) * m$coefs[j]

)

) - m$rho

)

this is just for convenience:

if (is.vector(newdata))

newdata <- t(as.matrix(x))

sapply (1:nrow(newdata),

function (i) pred.one(newdata[i,]))

}

1

David.Meyer@R-Project.org

where pred.one() does the actual prediction for one new data vector, the remainder is just a
convenience for prediction of multiple new examples. It is easy to extend this to other kernels,
just replace K() with the appropriate function (see the help page for the formulas used) and supply
the additional constants.

As we will see in the next section, the multi-class prediction is more complicated, because the
coefficiants of the diverse binary SVMs are stored in a compressed format.

2 Multiclass-classifier

To handle k classes, k > 2, svm() trains all binary subclassifiers (one-against-one-method) and
then uses a voting mechanism to determine the actual class. Now, this means k(k−1)/2 classifiers,
hence in principle k(k − 1)/2 sets of SVs, coefficiants and rhos. These are stored in a compressed
format:

1. Only one SV is stored in case it were used by several classifiers. The model$SV-matrix is
ordered by classes, and you find the starting indices by using nSV (number of SVs):

start <- c(1, cumsum(model$nSV))

start <- start[-length(start)]

sum(nSV) equals the total number of (distinct) SVs.

2. The coefficients of the SVs are stored in the model$coefs-matrix, grouped by classes. Be-
cause the separating hyperplanes found by the SVM algorithm has SVs on both sides, you
will have two sets of coefficients per binary classifier, and e.g., for 3 classes, you could build
a block -matrix like this for the classifiers (i, j) (i,j=class numbers):

i \ j 0 1 2
0 X set (0, 1) set (0, 2)
1 set (1, 0) X set (1, 2)
2 set (2, 0) set (2, 1) X

where set(i, j) are the coefficients for the classifier (i,j), lying on the side of class j. Because
there are no entries for (i, i), we can save the diagonal and shift up the lower triangular
matrix to get

i \ j 0 1 2
0 set (1,0) set (0,1) set (0,2)
1 set (2,0) set (2,1) set (1,2)

Each set (., j) has length nSV[j], so of course, there will be some filling 0s in some sets.

model$coefs is the transposed of such a matrix, therefore for a data set with, say, 6 classes,
you get 6-1=5 columns.

The coefficients of (i, j) start at model$coefs[start[i],j] and those of (j, i) at
model$coefs[start[j],i-1].

3. The k(k − 1)/2 rhos are just linearly stored in the vector model$rho.

2

The following code shows how to use this for prediction:

Linear Kernel function

K <- function(i,j) crossprod(i,j)

predsvm <- function(object, newdata)

{

compute start-index

start <- c(1, cumsum(object$nSV)+1)

start <- start[-length(start)]

compute kernel values

kernel <- sapply (1:object$tot.nSV,

function (x) K(object$SV[x,], newdata))

compute raw prediction for classifier (i,j)

predone <- function (i,j)

{

ranges for class i and j:

ri <- start[i] : (start[i] + object$nSV[i] - 1)

rj <- start[j] : (start[j] + object$nSV[j] - 1)

coefs for (i,j):

coef1 <- object$coefs[ri, j-1]

coef2 <- object$coefs[rj, i]

return raw values:

crossprod(coef1, kernel[ri]) + crossprod(coef2, kernel[rj])

}

compute votes for all classifiers

votes <- rep(0,object$nclasses)

c <- 0 # rho counter

for (i in 1 : (object$nclasses - 1))

for (j in (i + 1) : object$nclasses)

if (predone(i,j) > object$rho[c <- c + 1])

votes[i] <- votes[i] + 1

else

votes[j] <- votes[j] + 1

return winner (index with max. votes)

object$levels[which(votes %in% max(votes))[1]]

}

In case data were scaled prior fitting the model (note that this is the default for svm(), the
new data needs to be scaled as well before applying the predition functions, for example using the
following code snipped (object is an object returned by svm(), newdata a data frame):

if (any(object$scaled))

newdata[,object$scaled] <-

scale(newdata[,object$scaled, drop = FALSE],

center = object$x.scale$"scaled:center",

scale = object$x.scale$"scaled:scale"

)

For regression, the response needs to be scaled as well before training, and the predictions need
to be scaled back accordingly.

3

	Binary Classifier
	Multiclass-classifier

