Internet Engineering Task Force (IETF) S. Kitterman
Request for Comments: 7208 Kitterman Technical Services
Obsoletes: 4408 April 2014

Category: Standards Track

ISSN: 2070-1721

Sender Policy Framework (SPF)
for Authorizing Use of Domains in Email, Version 1

Abstract

Email on the Internet can be forged in a number of ways. In

particular, existing protocols place no restriction on what a sending

host can use as the "MAIL FROM" of a message or the domain given on
the SMTP HELO/EHLO commands. This document describes version 1 of
the Sender Policy Framework (SPF) protocol, whereby ADministrative
Management Domains (ADMDs) can explicitly authorize the hosts that

are allowed to use their domain names, and a receiving host can check
such authorization.

This document obsoletes RFC 4408.

Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://lwww.rfc-editor.org/info/rfc7208.

Kitterman Standards Track [Page 1]

RFC 7208 Sender Policy Framework (SPF) April 2014

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. INtrodUCHION ...ceeeeiiiiiee e 5
1.1. Terminologycccccvveeeeeeeeeeeiiesiinineeeeeeeeee e 5
1.1.1. Key WOrdS ...ccoovvviiieiiiiiiee e 5
1.1.2. Imported Definitionscccoevveerenninnnnn. 5
1.1.3. MAIL FROM Definitionccccceevviiveeeennnns 6
1.1.4. HELO Definitioncccccoeviiiiiiiiiiiinnennn. 6
1.2. check host() ..ccccooovviiiiiiiiiieeee e, 6
2. Operational OVEIVIEWccccvvviveeeieeeeeee e 6
2.1. Publishing Authorizationccccccovviiieennne. 6
2.2. Checking Authorizationccccceveeinniiieneenen. 7
2.3. The "HELO" Identityccccccevvvvvvreeeiiiiee e 8
2.4. The "MAIL FROM" [dentityccccvveeriivinneennnnne 9
2.5. Location of Checkscccvveeeiiiiieeeeiiiiieeens 9
2.6. Results of Evaluationccccceeeiviiiieeeinnnnnn 9
2.6.1. NONE oo 10
2.6.2. Neutralcccceveveeeeiiiiiiiiieeeeeeeen 10
2.6.3. PASS .coiiiiiiiii e 10
2.6.4. Fail cccoooviiiiiiiiiii 10

Kitterman Standards Track [Page 2]

RFC 7208 Sender Policy Framework (SPF) April 2014

2.6.5. Softfailcccveveiiiiii 10
2.6.6. TEMPEITON .ot 10
2.6.7. PEIMEITOr ..cooviiiiiiiiiieiiieeii e 10
3. SPF RECOrdSccoiiiiiiiiiiieeee e 11
3.1. DNS Resource Recordsccccuvieeeeeiiieenninnnns 11
3.2. Multiple DNS Recordsccocccvvvvveeveeeeeenieins 12
3.3. Multiple Strings in a Single DNS Record 12
3.4. RECOId SiZE ...uvvvviiiiiiiieee e 13
3.5. Wildcard Recordscccccveveeeeeeiiiiiiiiiieee, 13
4. The check_host() Functionccccceieeiiiniiiinnnen. 14
4.1. ArguMENIS ..oooiiiiiiiiieeeieeiee e 14
4.2. RESUIS ..o 15
4.3. Initial Processingccoocevvvvveveeeeeeeie i 15
4.4. Record LOOKUPooveeiiiiiiieeiiiiee e 15
4.5. Selecting ReCOrdscoccveeeeiiiiieieiiiiieeeene 15
4.6. Record Evaluationcccccceeeeeiininiiiiieneen. 16
4.6.1. Term Evaluationcccoceeeiiieiinnnnns 16
4.6.2. Mechanismsccccccovvieieiiiiinee e, 16
4.6.3. MOdIfierscccevveiiiiiiieiiieee e, 17
4.6.4. DNS Lookup LimitScccceeeviiieeienniiienennn 17
4.7. Default Resultccccooeeiiiiiiiiiiiiieeeeeeeen, 18
4.8. Domain Specificationccccceeeeeieniiiiiiiineen. 19
5. Mechanism Definitionsccccccceieniiinniiiiieenen. 20
5.1 Mall" 21
5.2."INCIUdE" ..oooiiiiiieii e 21
5.3, A i 23
B4, MX" e 23
5.5."ptr" (dO NOt USE) ..cooeeiiiiiiiiiiiiieeeeeeeeeee 23
5.6. "ip4" and "Ip6"cooiiiiiiii e 25
5.7, "eXIStS" i 25
6. Modifier Definitionsccoccveeeiiiiien e 26
6.1. redirect: Redirected QUErYccceeevvviiiereennnnen. 26
6.2. exp: Explanation ..., 27
7. MACIOS ... 28
7.1. Formal Specificationccccceeeeeeieiinnninns 29
7.2. Macro Definitionscccceeviiiiee e 29
7.3. Macro Processing Detallscccccvvveeveeneeennn. 30
7.4. Expansion Examplescccccoviiiiniineennnn, 32
8. Result Handlingccccooiiiiiiiieeee 33
8.1. NONE i 34
8.2. Neutralouuveeeiiiiiii e, 34
8.3. PASS o 34
8.4 Fall v 35
8.5. Softfailcoovveviie 35
8.6. TEMPEITON ..coeveieiiiiiiiiecee e 36
8.7. PEIMEITON ..coiiiiiiiiiieeeiee e 36

Kitterman Standards Track [Page 3]

RFC 7208 Sender Policy Framework (SPF) April 2014

9. Recording the Resultccccvvvveeeveee e, 36
9.1. The Received-SPF Header Fieldccccvvveeeenn. 37
9.2. SPF Results in the Authentication-Results Header Field39
10. Effects on Infrastructureccooeecvviiiieennenennn, 39
10.1. Sending DOMAINScoooiiiiriiiiiiieeeeeee e 40
10.1.1. DNS Resource Considerationsc....... 40
10.1.2. Administrator’s Considerations 41
10.1.3. BOUNCES ...ovviviiiiiniiiiiieieie e eeeeaeaeeen 41
10.2. RECEIVEIS ...oveeiiiaeeeiiiiiiiiieee e 42
10.3. Mediatorsccccvviiieiieeieee e 42
11. Security Considerationsccccceeeeeevenniivivieneeen. 43
11.1. Processing Limitscccccceeeeiiiiiiiiiiiiieeeeeee. 43
11.2. SPF-Authorized Email May Contain Other False Identities ..44
11.3. Spoofed DNS and IP Dataccoovvvveeeeininneen, 44
11.4. Cross-User FOrgerycccooeeviinnncininneeeneeeenns 44
11.5. Untrusted Information SOUrcesccccccceevinnes 45
11.5.1. Recorded ResSUltScoeveeiiiiiiiiiiiinnee 45
11.5.2. External Explanationscccccceeeeeenn.n. 45
11.5.3. Macro EXpansioncccccccvvvveeeeeeeeennnn 46
11.6. Privacy EXPOSUIEcccouveeeiiiiiieeeeiniieeeeenans 46
11.7. Delivering Mail Producing a "Fail" Result 46
12. Collected ABNF ...t 46
13. Contributors and Acknowledgementsocccuuvvineeen. 48
14. IANA Considerationsccccceevviieeeeeiiieeeesenenns 49
14.1. The SPF DNS Record TYPEcevvveeeeeeiiiiiirireeeeenn. 49
14.2. The Received-SPF Mail Header Field 50
14.3. SPF Modifier Registrycccocoeveeniiieneennnnn. 50
15. ReferencCescccveeeiiiiiiiiiiiiieeiee e 50
15.1. Normative Referencescccccceeeeieeeiiniiinnnns 50
15.2. Informative Referencescccccovvvveeeeviinnenen, 51
Appendix A. Extended Examplescccccceeeeieeeeeiiiinnns 54
A.l. Simple Examplesccccviiiieiiiiiiiiiiiiieeees 55
A.2. Multiple Domain Examplec.ccoceiniiiiieeinnnn. 56
A.3. DNS Blacklist (DNSBL) Style Exampleccuvveeeee. 56
A.4. Multiple Requirements Exampleccccooviiiinneen. 57
Appendix B. Changes in Implementation Requirements from RFC 4408 ..57
Appendix C. Further Testing AdViCecccccvvvvvvveerenenn. 58
Appendix D. SPF/Mediator Interactionscccccoeveenne 59
D.1. Originating ADMDSccvvieiiiiiiieeiiieee e 59
D.2. MedIatorsSceeviiieeaiiiiiiiiieeeeeee e e 60
D.3. Receiving ADMDSoooiiiiiiieiiiieeeeeeeiii 60
Appendix E. Mail Servicescoccccvveeeeiiiiiiciiiiieee. 61
Appendix F. MTA REIAYSvvvvieeiiiieeee e 61
Appendix G. Local Policy Considerationsccccoeuvueee.. 62
G.1. Policy for SPF Passcccoceveeiniiiieeeiiiiieeeees 62
G.2. Policy for SPF Fall ..., 62
G.3. Policy for SPF Permerrorcccccuvveeeeeenenennnn. 63
G.4. Policy for SPF TeMPErrorcccccvvvvveeereeeeeenenn, 63

Kitterman Standards Track [Page 4]

RFC 7208 Sender Policy Framework (SPF) April 2014

1. Introduction

The current email infrastructure has the property that any host

injecting mail into the system can use any DNS domain name it wants
in each of the various identifiers specified by [RFC5321] and
[RFC5322]. Although this feature is desirable in some circumstances,
it is a major obstacle to reducing Unsolicited Bulk Email (UBE, aka
spam). Furthermore, ADMDs (as described in [RFC5598]) are
understandably concerned about the ease with which other entities can
make use of their domain names, often with malicious intent.

This document defines a protocol by which ADMDs can authorize hosts
to use their domain names in the "MAIL FROM" or "HELO" identities.
Compliant ADMDs publish Sender Policy Framework (SPF) records in the
DNS specifying which hosts are permitted to use their names, and
compliant mail receivers use the published SPF records to test the
authorization of sending Mail Transfer Agents (MTAS) using a given
"HELO" or "MAIL FROM" identity during a mail transaction.

An additional benefit to mail receivers is that after the use of an

identity is verified, local policy decisions about the mail can be

made based on the sender’s domain, rather than the host’s IP address.
This is advantageous because reputation of domain names is likely to
be more accurate than reputation of host IP addresses since domains
are likely to be more stable over a longer period. Furthermore, if a
claimed identity fails verification, local policy can take stronger

action against such email, such as rejecting it.

1.1. Terminology
1.1.1. Key Words

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in

[RFC2119].

1.1.2. Imported Definitions

ABNF (Augmented Backus-Naur Form) ABNF is defined in [RFC5234], as
are the tokens "ALPHA", "DIGIT", and "SP" (space).

The tokens "Local-part”, "Domain", and "Mailbox" are defined in
[RFC5321].

"dot-atom", "quoted-string", "comment”, "CFWS" (comment folded white
space), "FWS" (folded white space), and "CRLF" (carriage-return/
line-feed) are defined in [RFC5322].

Kitterman Standards Track [Page 5]

RFC 7208 Sender Policy Framework (SPF) April 2014

1.1.3. MAIL FROM Definition

This document is concerned with the identity of the sender of a mail
message, as referred to in [RFC5321]:

The transaction starts with a MAIL command that gives the sender
identification.

Since there are many other names for this identity, it is important
to choose a name that is:

1. commonly used
2. well defined

As such, throughout this document the term "MAIL FROM" will be used,
which is defined as the RFC5321.MailFrom (reverse-path) identity
described in [RFC5598].

1.1.4. HELO Definition

This document also makes use of the HELO/EHLO identity. The "HELO"
identity derives from either the SMTP HELO or EHLO command (see
[RFC5321]). Since HELO and EHLO can, in many cases, be used
interchangeably, they are identified commonly as "HELO" in this
document. This means RFC5321.HELO/.EHLO as defined in [RFC5598].
These commands supply the identity of the SMTP client (sending host)
for the SMTP session.

1.2. check _host()

Section 4 introduces an algorithm to evaluate an SPF policy against
an arriving email transaction. In an early implementation, this
algorithm was encoded in a function called check_host(). That name
is used in this document as symbolic of the SPF evaluation algorithm,
but of course implementers are not required to use this name.

2. Operational Overview

2.1. Publishing Authorization
An SPF-compliant domain publishes valid SPF records as described in
Section 3. These records authorize the use of the relevant domain

names in the "HELO" and "MAIL FROM" identities by the MTAs specified
therein.

Kitterman Standards Track [Page 6]

RFC 7208 Sender Policy Framework (SPF) April 2014

SPF results can be used to make both positive (source is authorized)
and negative (source is not authorized) determinations. If ADMDs
choose to publish SPF records and want to support receivers making
negative authorization determinations, it is necessary for them to
publish records that end in "-all", or redirect to other records that

do; otherwise, no definitive determination of authorization can be
made. Potential issues and mitigations associated with negative
determinations are discussed in Section 10.

ADMDs that wish to declare that no hosts are authorized to use their

DNS domain names in the HELO or MAIL FROM commands during SMTP
sessions can publish SPF records that say so for domain names that

are neither used in the domain part of email addresses nor expected

to originate mail.

When changing SPF records, care has to be taken to ensure that there
is a transition period so that the old policy remains valid until all
legitimate email can reasonably expect to have been checked.
[RFC5321], Section 4.5.4.1 discusses how long a message might be in
transit. While offline checks are possible, the closer to the

original transmission time checks are performed, the more likely they
are to get an SPF result that matches the sending ADMD intent at the
time the message was sent.

2.2. Checking Authorization

A mail receiver can perform a set of SPF checks for each mail message
it receives. An SPF check tests the authorization of a client host

to emit mail with a given identity. Typically, such checks are done

by a receiving MTA, but can be performed elsewhere in the mail
processing chain so long as the required information is available and
reliable. The "MAIL FROM" and "HELQ" identities are checked as
described in Sections 2.4 and 2.3, respectively.

Without explicit approval of the publishing ADMD, checking other

identities against SPF version 1 records is NOT RECOMMENDED because
there are cases that are known to give incorrect results. For

example, almost all mailing lists rewrite the "MAIL FROM" identity

(see Section 10.3), but some do not change any other identities in

the message. Documents that define other identities will have to

define the method for explicit approval.

It is possible that mail receivers will use the SPF check as part of

a larger set of tests on incoming mail. The results of other tests
might influence whether or not a particular SPF check is performed.
For example, finding the sending host’s IP address on a local
whitelist might cause all other tests to be skipped and all mail from
that host to be accepted.

Kitterman Standards Track [Page 7]

RFC 7208 Sender Policy Framework (SPF) April 2014

When a mail receiver decides to perform an SPF check, it has to use a
correctly implemented check_host() function (Section 4) evaluated
with the correct parameters. Although the test as a whole is

optional, once it has been decided to perform a test it has to be
performed as specified so that the correct semantics are preserved
between publisher and receiver.

To make the test, the mail receiver MUST evaluate the check host()
function with the arguments described in Section 4.1.

Although invalid, malformed, or non-existent domains cause SPF checks
to return "none" because no SPF record can be found, it has long been
the policy of many MTAs to reject email from such domains, especially
in the case of invalid "MAIL FROM". Rejecting email will prevent one
method of circumventing of SPF records.

Implementations have to take care to correctly extract the <domain>

from the data given with the SMTP MAIL FROM command as many MTAs will
still accept such things as source routes (see Appendix C of

[RFC5321]), the %-hack (see [RFC1123]), and bang paths (see

[RFC1983]). These archaic features have been maliciously used to

bypass security systems.

2.3. The "HELOQO" Identity

It is RECOMMENDED that SPF verifiers not only check the "MAIL FROM"
identity but also separately check the "HELO" identity by applying

the check_host() function (Section 4) to the "HELO" identity as the
<sender>. Checking "HELO" promotes consistency of results and can
reduce DNS resource usage. If a conclusive determination about the
message can be made based on a check of "HELQ", then the use of DNS
resources to process the typically more complex "MAIL FROM" can be
avoided. Additionally, since SPF records published for "HELO"

identities refer to a single host, when available, they are a very

reliable source of host authorization status. Checking "HELO" before
"MAIL FROM" is the RECOMMENDED sequence if both are checked.

Note that requirements for the domain presented in the EHLO or HELO
command are not always clear to the sending party, and SPF verifiers
have to be prepared for the identity to be an IP address literal (see
[RFC5321], Section 4.1.3) or simply be malformed. This SPF check can
only be performed when the "HELQO" string is a valid, multi-label

domain name.

Kitterman Standards Track [Page 8]

RFC 7208 Sender Policy Framework (SPF) April 2014

2.4. The "MAIL FROM" Identity

SPF verifiers MUST check the "MAIL FROM" identity if a "HELO" check
either has not been performed or has not reached a definitive policy
result by applying the check_host() function to the "MAIL FROM"
identity as the <sender>.

[RFC5321] allows the reverse-path to be null (see Section 4.5.5 in
[RFC5321]). In this case, there is no explicit sender mailbox, and

such a message can be assumed to be a notification message from the
mail system itself. When the reverse-path is null, this document
defines the "MAIL FROM" identity to be the mailbox composed of the
local-part "postmaster" and the "HELO" identity (which might or might
not have been checked separately before).

2.5. Location of Checks

The authorization check SHOULD be performed during the processing of
the SMTP transaction that receives the mail. This reduces the

complexity of determining the correct IP address to use as an input

to check_host() and allows errors to be returned directly to the

sending MTA by way of SMTP replies. Appendix D of [RFC7001] provides
a more thorough discussion of this topic.

The authorization check is performed during the SMTP transaction at
the time of the MAIL command, and uses the MAIL FROM value and the
client IP address. Performing the check at later times or with other

input can cause problems such as the following:

o It might be difficult to accurately extract the required
information from potentially deceptive headers.

0 Legitimate email might fail the authorization check because the
sender’s policy has since changed.

Generating non-delivery natifications to forged identities that have
failed the authorization check often constitutes backscatter, i.e.,
nuisance rejection notices that are not actionable. Operators are
strongly advised to avoid such practices. Section 2 of [RFC3834]
describes backscatter and the problems it causes.

2.6. Results of Evaluation

Section 4 defines check _host(), a model function definition that uses
the inputs defined above and the sender’s policy published in the DNS
to reach a conclusion about client authorization. An SPF verifier
implements something semantically equivalent to the function defined
there.

Kitterman Standards Track [Page 9]

RFC 7208 Sender Policy Framework (SPF) April 2014

This section enumerates and briefly defines the possible outputs of
that function. Note, however, that the protocol establishes no
normative requirements for handling any particular result.
Discussion of handling options for each result can be found in
Section 8.

2.6.1. None
A result of "none" means either (a) no syntactically valid DNS domain
name was extracted from the SMTP session that could be used as the
one to be authorized, or (b) no SPF records were retrieved from
the DNS.

2.6.2. Neutral

A "neutral" result means the ADMD has explicitly stated that it is
not asserting whether the IP address is authorized.

2.6.3. Pass

A "pass" result is an explicit statement that the client is
authorized to inject mail with the given identity.

2.6.4. Fall

A "fail" result is an explicit statement that the client is not
authorized to use the domain in the given identity.

2.6.5. Softfail
A "softfail" result is a weak statement by the publishing ADMD that
the host is probably not authorized. It has not published a
stronger, more definitive policy that results in a "fail".

2.6.6. Temperror
A "temperror" result means the SPF verifier encountered a transient
(generally DNS) error while performing the check. A later retry may
succeed without further DNS operator action.

2.6.7. Permerror
A "permerror" result means the domain’s published records could not

be correctly interpreted. This signals an error condition that
definitely requires DNS operator intervention to be resolved.

Kitterman Standards Track [Page 10]

RFC 7208 Sender Policy Framework (SPF) April 2014

3. SPF Records

An SPF record is a DNS record that declares which hosts are, and are
not, authorized to use a domain name for the "HELO" and "MAIL FROM"
identities. Loosely, the record partitions hosts into permitted and
not-permitted sets (though some hosts might fall into neither

category).

The SPF record is expressed as a single string of text found in the
RDATA of a single DNS TXT resource record; multiple SPF records are
not permitted for the same owner name. The record format and the
process for selecting records are described below in Section 4. An
example record is the following:

v=spfl +mx a:colo.example.com/28 -all

This record has a version of "spfl" and three directives: "+mx",
"a:colo.example.com/28" (the "+" is implied), and "-all".

Each SPF record is placed in the DNS tree at the owner name it
pertains to, not in a subdomain under the owner name. This is
similar to how SRV records [RFC2782] are done.

The example in this section might be published via these lines in a
domain zone file:

example.com. TXT "v=spfl +mx a:colo.example.com/28 -all"

Since TXT records have multiple uses, beware of other TXT records
published there for other purposes. They might cause problems with
size limits (see Section 3.4), and care has to be taken to ensure

that only SPF records are used for SPF processing.

ADMDs publishing SPF records ought to keep the amount of DNS
information needed to evaluate a record to a minimum. Sections 4.6.4
and 10.1.1 provide some suggestions about "include" mechanisms and
chained "redirect" modifiers.

3.1. DNS Resource Records

SPF records MUST be published as a DNS TXT (type 16) Resource Record
(RR) [RFC1035] only. The character content of the record is encoded

as [US-ASCII]. Use of alternative DNS RR types was supported in

SPF's experimental phase but has been discontinued.

In 2003, when SPF was first being developed, the requirements for

assignment of a new DNS RR type were considerably more stringent than
they are now. Additionally, support for easy deployment of new DNS

Kitterman Standards Track [Page 11]

RFC 7208 Sender Policy Framework (SPF) April 2014

RR types was not widely deployed in DNS servers and provisioning
systems. As a result, developers of SPF found it easier and more
practical to use the TXT RR type for SPF records.

In its review of [RFC4408], the SPFbis working group concluded that

its dual RR type transition model was fundamentally flawed since it
contained no common RR type that implementers were required to serve
and required to check. Many alternatives were considered to resolve
this issue, but ultimately the working group concluded that

significant migration to the SPF RR type in the foreseeable future

was very unlikely and that the best solution for resolving this
interoperability issue was to drop support for the SPF RR type from

SPF version 1. See Appendix A of [RFC6686] for further information.

The circumstances surrounding SPF’s initial deployment a decade ago
are unique. If a future update to SPF were developed that did not
reuse existing SPF records, it could use the SPF RR type. SPF’s use
of the TXT RR type for structured data should in no way be taken as
precedent for future protocol designers. Further discussion of

design considerations when using new DNS RR types can be found in
[RFC5507].

3.2. Multiple DNS Records
A domain name MUST NOT have multiple records that would cause an
authorization check to select more than one record. See Section 4.5
for the selection rules.
3.3. Multiple Strings in a Single DNS Record
As defined in [RFC1035], Sections 3.3 and 3.3.14, a single text DNS
record can be composed of more than one string. If a published
record contains multiple character-strings, then the record MUST be
treated as if those strings are concatenated together without adding
spaces. For example:
IN TXT "v=spfl first" "second string..."
is equivalent to:
IN TXT "v=spfl firstsecond string..."
TXT records containing multiple strings are useful in constructing

records that would exceed the 255-octet maximum length of a
character-string within a single TXT record.

Kitterman Standards Track [Page 12]

RFC 7208 Sender Policy Framework (SPF) April 2014

3.4. Record Size

The published SPF record for a given domain name SHOULD remain small
enough that the results of a query for it will fit within 512 octets.

Otherwise, there is a possibility of exceeding a DNS protocol limit.

This UDP limit is defined in [RFC1035], Section 2.3.4, although it

was raised by [RFC2671]. Staying below 512 octets ought to prevent
older DNS implementations from failing over to TCP and will work with
UDP in the absence of EDNSO [RFC6891] support. Since the answer size
is dependent on many things outside the scope of this document, it is

only possible to give this guideline: If the size of the DNS message,

the combined length of the DNS name and the text of all the records

of a given type is under 450 octets, then DNS answers ought to fit in

UDP packets. Records that are too long to fit in a single UDP packet
could be silently ignored by SPF verifiers due to firewall and other

issues that interfere with the operation of DNS over TCP or using

ENDSO.

Note that when computing the sizes for replies to queries of the TXT
format, one has to take into account any other TXT records published
at the domain name. Similarly, the sizes for replies to all queries
related to SPF have to be evaluated to fit in a single 512-octet UDP
packet (i.e., DNS message size limited to 450 octets).

3.5. Wildcard Records

Use of wildcard records for publishing is discouraged, and care has

to be taken if they are used. If a zone includes wildcard MX

records, it might want to publish wildcard declarations, subject to

the same requirements and problems. In particular, the declaration
MUST be repeated for any host that has any RR records at all, and for
subdomains thereof. Consider the example in [RFC1034],

Section 4.3.3. Based on that, we can do the following:

EXAMPLE.COM. MX 10 A.EXAMPLE.COM
EXAMPLE.COM. TXT “v=spfl a:A.EXAMPLE.COM -all*

* EXAMPLE.COM. MX 10 A.EXAMPLE.COM
* EXAMPLE.COM. TXT "v=spfl a:A.EXAMPLE.COM -all"

A.EXAMPLE.COM. A 203.0.113.1
A.EXAMPLE.COM. MX 10 A.EXAMPLE.COM
A.EXAMPLE.COM. TXT “v=spfl a:A.EXAMPLE.COM -all

*A.EXAMPLE.COM. MX 10 A.EXAMPLE.COM
*A.EXAMPLE.COM. TXT "v=spfl a:A.EXAMPLE.COM -all"

Kitterman Standards Track [Page 13]

RFC 7208 Sender Policy Framework (SPF) April 2014

SPF records have to be listed twice for every name within the zone:
once for the name, and once with a wildcard to cover the tree under
the name, in order to cover all domains in use in outgoing mail.

4. The check_host() Function

This description is not an application programming interface
definition, but rather a function description used to illustrate the
algorithm. A compliant SPF implementation MUST produce results
semantically equivalent to this description.

The check_host() function fetches SPF records, parses them, and
evaluates them to determine whether a particular host is or is not
permitted to send mail with a given identity. Receiving ADMDs that
perform this check MUST correctly evaluate the check_host() function
as described here.

Implementations MAY use a different algorithm than the canonical
algorithm defined here, so long as the results are the same in all
cases.

4.1. Arguments
The check_host() function takes these arguments:

<ip> - the IP address of the SMTP client that is emitting
the mail, either IPv4 or IPv6.

<domain> - the domain that provides the sought-after authorization
information; initially, the domain portion of the
"MAIL FROM" or "HELQO" identity.

<sender> - the "MAIL FROM" or "HELO" identity.

For recursive evaluations, the domain portion of <sender> might not
be the same as the <domain> argument when check_host() is initially
evaluated. In most other cases it will be the same (see Section 5.2
below). The overall DNS lookup limit for SPF terms described below
in Section 4.6.4 must be tracked as a single global limit for all
evaluations, not just for a single instance of a recursive

evaluation.

Note that the <domain> argument might not be a well-formed domain
name. For example, if the reverse-path was null, then the EHLO/HELO
domain is used, with its associated problems (see Section 2.3). In
these cases, check_host() is defined in Section 4.3 to return a
"none" result.

Kitterman Standards Track [Page 14]

RFC 7208 Sender Policy Framework (SPF) April 2014

4.2. Results

The check_host() function can return one of several results described
in Section 2.6. Based on the result, the action to be taken is
determined by the local policies of the receiver. This is discussed

in Section 8.

4.3. Initial Processing

If the <domain> is malformed (e.g., label longer than 63 characters,
zero-length label not at the end, etc.) or is not a multi-label

domain name, or if the DNS lookup returns "Name Error" (RCODE 3, also
known as "NXDOMAIN" [RFC2308]), check host() immediately returns the
result "none". DNS RCODEs are defined in [RFC1035]. Properly formed
domains are fully qualified domains as defined in [RFC1983]. That

is, in the DNS they are implicitly qualified relative to the root

(see Section 3.1 of [RFC1034]). Internationalized domain names MUST
be encoded as A-labels, as described in Section 2.3 of [RFC5890].

If the <sender> has no local-part, substitute the string "postmaster"
for the local-part.

4.4. Record Lookup

In accordance with how the records are published (see Section 3
above), a DNS query needs to be made for the <domain> name, querying
for type TXT only.

If the DNS lookup returns a server failure (RCODE 2) or some other
error (RCODE other than 0 or 3), or if the lookup times out, then
check_host() terminates immediately with the result "temperror".

4.5. Selecting Records
Records begin with a version section:

record = version terms *SP
version = "v=spfl"

Starting with the set of records that were returned by the lookup,
discard records that do not begin with a version section of exactly
"v=spfl". Note that the version section is terminated by either an
SP character or the end of the record. As an example, a record with
a version section of "v=spfl0" does not match and is discarded.

If the resultant record set includes no records, check_host()

produces the "none" result. If the resultant record set includes
more than one record, check host() produces the "permerror" result.

Kitterman Standards Track [Page 15]

RFC 7208 Sender Policy Framework (SPF) April 2014

4.6. Record Evaluation

The check_host() function parses and interprets the SPF record to
find a result for the current test. The syntax of the record is
validated first, and if there are any syntax errors anywhere in the
record, check_host() returns immediately with the result "permerror”,
without further interpretation or evaluation.

4.6.1. Term Evaluation

There are two types of terms: mechanisms (defined in Section 5) and
modifiers (defined in Section 6). A record contains an ordered list

of these as specified in the following Augmented Backus-Naur Form
(ABNF).

terms =*(1*SP (directive / modifier))
directive = [qualifier] mechanism
qualifier SR A Ay A
mechanism = (all/ include
[almx/ptr/ipd/ip6 /exists)
modifier = redirect / explanation / unknown-modifier

unknown-maodifier = name "=" macro-string
; where name is not any known modifier

name = ALPHA *(ALPHA /DIGIT /™" /" "["")
Most mechanisms allow a ":" or "/" character after the name.

Modifiers always contain an equals ('=") character immediately after
the name, and before any ":" or "/" characters that might be part of
the macro-string.

Terms that do not contain any of "=", ":", or "/" are mechanisms, as
defined in Section 5.

As per the definition of the ABNF notation in [RFC5234], mechanism
and modifier names are case-insensitive.

4.6.2. Mechanisms
Each mechanism is considered in turn from left to right. If there
are no more mechanisms, the result is the default result as described
in Section 4.7.

When a mechanism is evaluated, one of three things can happen: it can
match, not match, or return an exception.

Kitterman Standards Track [Page 16]

RFC 7208 Sender Policy Framework (SPF) April 2014

If it matches, processing ends and the qualifier value is returned as
the result of that record. If it does not match, processing

continues with the next mechanism. If it returns an exception,
mechanism processing ends and the exception value is returned.

The possible qualifiers, and the results they cause check host() to
return, are as follows:

"+" pass
"-" fail
softfail
"?" neutral

The qualifier is optional and defaults to "+".

When a mechanism matches and the qualifier is "-", then a "fail"
result is returned and the explanation string is computed as
described in Section 6.2.

The specific mechanisms are described in Section 5.
4.6.3. Modifiers

Modifiers are not mechanisms. They do not return match or not-match.
Instead, they provide additional information. Although modifiers do

not directly affect the evaluation of the record, the "redirect"

modifier has an effect after all the mechanisms have been evaluated.

4.6.4. DNS Lookup Limits

Some mechanisms and modifiers (collectively, "terms") cause DNS
queries at the time of evaluation, and some do not. The following
terms cause DNS queries: the "include”, "a", "mx", "ptr", and
"exists" mechanisms, and the "redirect" modifier. SPF
implementations MUST limit the total number of those terms to 10
during SPF evaluation, to avoid unreasonable load on the DNS. If
this limit is exceeded, the implementation MUST return "permerror"”.
The other terms -- the "all", "ip4", and "ip6" mechanisms, and the
"exp" modifier -- do not cause DNS queries at the time of SPF
evaluation (the "exp" modifier only causes a lookup at a later time),
and their use is not subject to this limit.

When evaluating the "mx" mechanism, the number of "MX" resource
records queried is included in the overall limit of 10 mechanisms/
modifiers that cause DNS lookups as described above. In addition to
that limit, the evaluation of each "MX" record MUST NOT result in

Kitterman Standards Track [Page 17]

RFC 7208 Sender Policy Framework (SPF) April 2014

guerying more than 10 address records -- either "A" or "AAAA"
resource records. If this limit is exceeded, the "mx" mechanism MUST
produce a "permerror" result.

When evaluating the "ptr* mechanism or the %({p} macro, the number of
"PTR" resource records queried is included in the overall limit of 10
mechanisms/modifiers that cause DNS lookups as described above. In
addition to that limit, the evaluation of each "PTR" record MUST NOT
result in querying more than 10 address records -- either "A" or

"AAAA" resource records. If this limit is exceeded, all records

other than the first 10 MUST be ignored.

The reason for the disparity is that the set of and contents of the

MX record are under control of the publishing ADMD, while the set of
and contents of PTR records are under control of the owner of the IP
address actually making the connection.

These limits are per mechanism or macro in the record, and are in
addition to the lookup limits specified above.

MTASs or other processors SHOULD impose a limit on the maximum amount
of elapsed time to evaluate check_host(). Such a limit SHOULD allow

at least 20 seconds. If such a limit is exceeded, the result of

authorization SHOULD be "temperror".

As described at the end of Section 11.1, there may be cases where it
is useful to limit the number of "terms" for which DNS queries return
either a positive answer (RCODE 0) with an answer count of 0, or a
"Name Error" (RCODE 3) answer. These are sometimes collectively
referred to as "void lookups"”. SPF implementations SHOULD limit
"void lookups" to two. An implementation MAY choose to make such a
limit configurable. In this case, a default of two is RECOMMENDED.
Exceeding the limit produces a "permerror" result.

4.7. Default Result

If none of the mechanisms match and there is no "redirect" modifier,
then the check_host() returns a result of "neutral”, just as if

"?all" were specified as the last directive. If there is a

"redirect" modifier, check_host() proceeds as defined in Section 6.1.

It is better to use either a "redirect" modifier or an "all"

mechanism to explicitly terminate processing. Although there is an
implicit "?all" at the end of every record that is not explicitly
terminated, it aids debugging efforts when it is explicitly provided.

Kitterman Standards Track [Page 18]

RFC 7208 Sender Policy Framework (SPF) April 2014

For example:
v=spfl +mx -all
or
v=spfl +mx redirect=_spf.example.com
4.8. Domain Specification

Several of these mechanisms and modifiers have a <domain-spec>
section. The <domain-spec> string is subject to macro expansion (see
Section 7). The resulting string is the common presentation form of

a fully qualified DNS name: a series of labels separated by periods.
This domain is called the <target-name> in the rest of this document.

Note: The result of the macro expansion is not subject to any further
escaping. Hence, this facility cannot produce all characters that

are legal in a DNS label (e.g., the control characters). However,
this facility is powerful enough to express legal host names and
common utility labels (such as "_spf") that are used in DNS.

For several mechanisms, the <domain-spec> is optional. If it is not
provided, the <domain> from the check host() arguments (see
Section 4.1) is used as the <target-name>. "domain" and
<domain-spec> are syntactically identical after macro expansion.
"domain" is an input value for check_host(), while <domain-spec> is
computed by check_host().

The result of evaluating check_host() with a syntactically invalid
domain is undefined.

Note: This document and its predecessors make no provisions for
defining correct handling of a syntactically invalid <domain-spec>

(which might be the result of macro expansion), per [RFC1035].
Examples include names with empty labels, such as "foo..example.com",
and labels that are longer than 63 characters. Some implementations
choose to treat such errors as not-match and therefore ignore such
names, while others return a "permerror" exception.

Kitterman Standards Track [Page 19]

RFC 7208 Sender Policy Framework (SPF) April 2014

5. Mechanism Definitions

This section defines two types of mechanisms: basic language
framework mechanisms and designated sender mechanisms.

Basic mechanisms contribute to the language framework. They do not
specify a particular type of authorization scheme. The basic
mechanisms are as follows:

all
include

Designated sender mechanisms are used to identify a set of <ip>
addresses as being permitted or not permitted to use the <domain> for
sending mail. The designated sender mechanisms are as follows:

a

mx

ptr (do not use)
ip4

ip6

exists

The following conventions apply to all mechanisms that perform a
comparison between <ip> and an IP address at any point:

If no CIDR prefix length is given in the directive, then <ip> and the
IP address are compared for equality. (Here, CIDR is Classless
Inter-Domain Routing, described in [RFC4632].)

If a CIDR prefix length is specified, then only the specified number
of high-order bits of <ip> and the IP address are compared for
equality.

When any mechanism fetches host addresses to compare with <ip>, when
<ip> is an IPv4, "A" records are fetched; when <ip> is an IPv6

address, "AAAA" records are fetched. SPF implementations on IPv6
servers need to handle both "AAAA" and "A" records, for clients on
IPv4-mapped IPv6 addresses [RFC4291]. IPv4 <ip> addresses are only
listed in an SPF record using the "ip4" mechanism.

Several mechanisms rely on information fetched from the DNS. For
these DNS queries, except where noted, if the DNS server returns an
error (RCODE other than 0 or 3) or the query times out, the mechanism
stops and the topmost check_host() returns "temperror”. If the

server returns "Name Error" (RCODE 3), then evaluation of the
mechanism continues as if the server returned no error (RCODE 0) and
zero answer records.

Kitterman Standards Track [Page 20]

RFC 7208 Sender Policy Framework (SPF) April 2014

5.1. "all"
all ="all"

The "all" mechanism is a test that always matches. It is used as the
rightmost mechanism in a record to provide an explicit default.

For example:
v=spfl a mx -all

Mechanisms after "all" will never be tested. Mechanisms listed after
"all" MUST be ignored. Any "redirect" modifier (Section 6.1) MUST be
ignored when there is an "all* mechanism in the record, regardless of
the relative ordering of the terms.

5.2. "include"
include ="include" ":" domain-spec

The "include" mechanism triggers a recursive evaluation of
check_host().

1. The <domain-spec> is expanded as per Section 7.

2. check_host() is evaluated with the resulting string as the
<domain>. The <ip> and <sender> arguments remain the same as in
the current evaluation of check_host().

3. The recursive evaluation returns match, not-match, or an error.

4. If it returns match, then the appropriate result for the
"include" mechanism is used (e.g., include or +include produces a
"pass" result and -include produces "fail").

5. Ifit returns not-match or an error, the parent check host()
resumes processing as per the table below, with the previous
value of <domain> restored.

In hindsight, the name "include" was poorly chosen. Only the
evaluated result of the referenced SPF record is used, rather than
literally including the mechanisms of the referenced record in the
first. For example, evaluating a "-all" directive in the referenced
record does not terminate the overall processing and does not
necessarily result in an overall "fail". (Better names for this

mechanism would have been "if-match", "on-match", etc.)

Kitterman Standards Track [Page 21]

RFC 7208 Sender Policy Framework (SPF) April 2014

The "include" mechanism makes it possible for one domain to designate
multiple administratively independent domains. For example, a vanity
domain "example.net" might send mail using the servers of
administratively independent domains example.com and example.org.

Example.net could say
IN TXT "v=spfl include:example.com include:example.org -all"

This would direct check_host() to, in effect, check the records of
example.com and example.org for a "pass” result. Only if the host
were not permitted for either of those domains would the result be
“fail”.

Whether this mechanism matches, does not match, or returns an
exception depends on the result of the recursive evaluation of
check_host():

+ + +
| A recursive check host() result | Causes the "include" mechanism |
| of: | to: |
+ + +
| pass | match |
I I I
| fail | not match |

I I
| softfail | not match |
I I I
| neutral | not match |
I I I
| temperror | return temperror |
I I I
| permerror | return permerror |
I I I
| none | return permerror |
+ + +

The "include" mechanism is intended for crossing administrative
boundaries. When remaining within one administrative authority,
"include” is usually not the best choice. For example, if

example.com and example.org were managed by the same entity, and if
the permitted set of hosts for both domains was "mx:example.com"”, it
would be possible for example.org to specify “include:example.com",

but it would be preferable to specify "redirect=example.com" or even
"mx:example.com".

Kitterman Standards Track [Page 22]

RFC 7208 Sender Policy Framework (SPF) April 2014

With the "include" mechanism, an administratively external set of

hosts can be authorized, but determination of sender policy is still

a function of the original domain’s SPF record (as determined by the

"all" mechanism in that record). The "redirect" modifier is more

suitable for consolidating both authorizations and policy into a

common set to be shared within an ADMD. Redirect is much more like a
common code element to be shared among records in a single ADMD. It
is possible to control both authorized hosts and policy for an

arbitrary number of domains from a single record.

53. "a"

This mechanism matches if <ip> is one of the <target-name>'s IP
addresses. For clarity, this means the "a" mechanism also matches
AAAA records.

a ="a" [""domain-spec][dual-cidr-length]

An address lookup is done on the <target-name> using the type of
lookup (A or AAAA) appropriate for the connection type (IPv4 or
IPv6). The <ip>is compared to the returned address(es). If any
address matches, the mechanism matches.

54. "mx"

This mechanism matches if <ip> is one of the MX hosts for a domain
name.

mx ="mx" [™" domain-spec] [dual-cidr-length]

check_host() first performs an MX lookup on the <target-name>. Then
it performs an address lookup on each MX name returned. The <ip>is
compared to each returned IP address. To prevent denial-of-service
(DoS) attacks, the processing limits defined in Section 4.6.4 MUST be
followed. If the MX lookup limit is exceeded, then "permerror" is
returned and the evaluation is terminated. If any address matches,

the mechanism matches.

Note regarding implicit MXes: If the <target-name> has no MX record,
check_host() MUST NOT apply the implicit MX rules of [RFC5321] by
guerying for an A or AAAA record for the same name.

5.5. "ptr" (do not use)
This mechanism tests whether the DNS reverse-mapping for <ip> exists
and correctly points to a domain name within a particular domain.

This mechanism SHOULD NOT be published. See the note at the end of
this section for more information.

Kitterman Standards Track [Page 23]

RFC 7208 Sender Policy Framework (SPF) April 2014

ptr ="ptr" [":" domain-spec]
The <ip>’s name is looked up using this procedure:

o Perform a DNS reverse-mapping for <ip>: Look up the corresponding
PTR record in "in-addr.arpa.” if the address is an IPv4 address
and in "ip6.arpa." if it is an IPv6 address.

o For each record returned, validate the domain name by looking up
its IP addresses. To prevent DoS attacks, the PTR processing
limits defined in Section 4.6.4 MUST be applied. If they are
exceeded, processing is terminated and the mechanism does not
match.

o If <ip>is among the returned IP addresses, then that domain name
is validated.

Check all validated domain names to see if they either match the
<target-name> domain or are a subdomain of the <target-name> domain.
If any do, this mechanism matches. If no validated domain name can

be found, or if none of the validated domain names match or are a
subdomain of the <target-name>, this mechanism fails to match. If a
DNS error occurs while doing the PTR RR lookup, then this mechanism
fails to match. If a DNS error occurs while doing an A RR lookup,

then that domain name is skipped and the search continues.

This mechanism matches if
o the <target-name> is a subdomain of a validated domain name, or
o the <target-name> and a validated domain name are the same.

For example, "mail.example.com” is within the domain "example.com",
but "mail.bad-example.com” is not.

Note: This mechanism is slow, it is not as reliable as other

mechanisms in cases of DNS errors, and it places a large burden on

the .arpa name servers. If used, proper PTR records have to be in

place for the domain’s hosts and the "ptr* mechanism SHOULD be one of
the last mechanisms checked. After many years of SPF deployment
experience, it has been concluded that it is unnecessary and more
reliable alternatives should be used instead. It is, however, still

in use as part of the SPF protocol, so compliant check _host()
implementations MUST support it.

Kitterman Standards Track [Page 24]

RFC 7208 Sender Policy Framework (SPF) April 2014

5.6. "ip4" and "ip6"

These mechanisms test whether <ip> is contained within a given
IP network.
ip4
ip6

"ipd" ™" ip4-network [ip4-cidr-length]
"ip6" ™" ip6-network [ip6-cidr-length]

ip4-cidr-length ="/" ("0" / %x31-39 0*1DIGIT) ; value range 0-32
ip6-cidr-length ="/" ("0" / %x31-39 0*2DIGIT) ; value range 0-128
dual-cidr-length = [ip4-cidr-length] ["/" ip6-cidr-length]

ip4-network = qgnum "." gnum "." gnum "." gnum
gnum =DIGIT ;0-9

/ %x31-39 DIGIT ; 10-99

/"1" 2DIGIT ; 100-199

/"2" %x30-34 DIGIT ; 200-249

/"25" %x30-35 ; 250-255

; as per conventional dotted-quad notation, e.g., 192.0.2.0

ip6-network = <as per Section 2.2 of [RFC4291]>
; €.g., 2001:db8::cd30

The <ip> is compared to the given network. If CIDR prefix length
high-order bits match, the mechanism matches.

If ip4-cidr-length is omitted, it is taken to be "/32". If
ip6-cidr-length is omitted, it is taken to be "/128". It is not
permitted to omit parts of the IP address instead of using CIDR
notations. That is, use 192.0.2.0/24 instead of 192.0.2.

5.7. "exists"
This mechanism is used to construct an arbitrary domain name that is
used for a DNS A record query. It allows for complicated schemes
involving arbitrary parts of the mail envelope to determine what is
permitted.
exists ="exists" ":" domain-spec
The <domain-spec> is expanded as per Section 7. The resulting domain
name is used for a DNS A RR lookup (even when the connection type is
IPv6). If any A record is returned, this mechanism matches.

Domains can use this mechanism to specify arbitrarily complex
gueries. For example, suppose example.com publishes the record:

v=spfl exists:%{ir}.%{l1r+-}. spf.%{d} -all

Kitterman Standards Track [Page 25]

RFC 7208 Sender Policy Framework (SPF) April 2014

The <target-name> might expand to
"1.2.0.192.someuser._spf.example.com". This makes fine-grained
decisions possible at the level of the user and client IP address.

6. Modifier Definitions

Modifiers are name/value pairs that provide additional information.
Modifiers always have an "=" separating the name and the value.

The modifiers defined in this document (“redirect" and "exp") SHOULD
appear at the end of the record, after all mechanisms, though
syntactically they can appear anywhere in the record. Ordering of
these two modifiers does not matter. These two modifiers MUST NOT
appear in a record more than once each. If they do, then
check_host() exits with a result of "permerror".

Unrecognized modifiers MUST be ignored no matter where, or how often,
they appear in a record. This allows implementations conforming to

this document to gracefully handle records with modifiers that are

defined in other specifications.

6.1. redirect: Redirected Query

The "redirect" modifier is intended for consolidating both
authorizations and policy into a common set to be shared within a
single ADMD. It is possible to control both authorized hosts and
policy for an arbitrary number of domains from a single record.

redirect = "redirect” "=" domain-spec

If all mechanisms fail to match, and a "redirect" modifier is
present, then processing proceeds as follows:

The <domain-spec> portion of the redirect section is expanded as per
the macro rules in Section 7. Then check_host() is evaluated with
the resulting string as the <domain>. The <ip> and <sender>
arguments remain the same as in the current evaluation of
check_host().

The result of this new evaluation of check_host() is then considered
the result of the current evaluation with the exception that if no

SPF record is found, or if the <target-name> is malformed, the result
is a "permerror" rather than "none".

Note that the newly queried domain can itself specify redirect
processing.

Kitterman Standards Track [Page 26]

RFC 7208 Sender Policy Framework (SPF) April 2014

This facility is intended for use by organizations that wish to apply
the same record to multiple domains. For example:

la.example.com. TXT "v=spfl redirect=_spf.example.com"

ny.example.com. TXT "v=spfl redirect=_spf.example.com"

sf.example.com. TXT "v=spfl redirect=_spf.example.com"
_spf.example.com. TXT "v=spfl mx:example.com -all"

In this example, mail from any of the three domains is described by
the same record. This can be an administrative advantage.

Note: In general, the domain "A" cannot reliably use a redirect to
another domain "B" not under the same administrative control. Since
the <sender> stays the same, there is no guarantee that the record at
domain "B" will correctly work for mailboxes in domain "A",

especially if domain "B" uses mechanisms involving local-parts. An
"include” directive will generally be more appropriate.

For clarity, any "redirect" modifier SHOULD appear as the very last
term in a record. Any "redirect" modifier MUST be ignored if there
is an "all" mechanism anywhere in the record.

6.2. exp: Explanation
explanation ="exp" "=" domain-spec

If check_host() results in a "fail" due to a mechanism match (such as
"-all"), and the "exp" modifier is present, then the explanation

string returned is computed as described below. If no "exp" modifier
is present, then either a default explanation string or an empty
explanation string MUST be returned to the calling application.

The <domain-spec> is macro expanded (see Section 7) and becomes the
<target-name>. The DNS TXT RRset for the <target-name> is fetched.

If there are any DNS processing errors (any RCODE other than 0), or
if no records are returned, or if more than one record is returned,

or if there are syntax errors in the explanation string, then proceed

as if no "exp" modifier was given.

The fetched TXT record’s strings are concatenated with no spaces, and
then treated as an explain-string, which is macro-expanded. This

final result is the explanation string. Implementations MAY limit

the length of the resulting explanation string to allow for other

protocol constraints and/or reasonable processing limits. Since the
explanation string is intended for an SMTP response and Section 2.4
of [RFC5321] says that responses are in [US-ASCII], the explanation
string MUST be limited to [US-ASCII].

Kitterman Standards Track [Page 27]

RFC 7208 Sender Policy Framework (SPF) April 2014

Software evaluating check host() can use this string to communicate
information from the publishing domain in the form of a short message
or URL. Software SHOULD make it clear that the explanation string
comes from a third party. For example, it can prepend the macro
string "%{o} explains: " to the explanation, as shown in the example

in Section 8.4.

Suppose example.com has this record:
v=spfl mx -all exp=explain._spf.%{d}

Here are some examples of possible explanation TXT records at
explain._spf.example.com:

"Mail from example.com should only be sent by its own servers.
-- a simple, constant message
"%{i} is not one of %{d}'s designated mail servers."

-- a message with a little more information, including the
IP address that failed the check

"See http://%{d}/why.htmI?s=%{S}&i=%{l}"

-- a complicated example that constructs a URL with the
arguments to check_host() so that a web page can be
generated with detailed, custom instructions

Note: During recursion into an "include” mechanism, an "exp" modifier
from the <target-name> MUST NOT be used. In contrast, when executing
a "redirect" modifier, an "exp" modifier from the original domain

MUST NOT be used. This is because "include" is meant to cross
administrative boundaries and the explanation provided should be the

one from the receiving ADMD, while "redirect" is meant to operate as

a tool to consolidate policy records within an ADMD so the redirected
explanation is the one that ought to have priority.

7. Macros
When evaluating an SPF policy record, certain character sequences are

intended to be replaced by parameters of the message or of the
connection. These character sequences are referred to as "macros"”.

Kitterman Standards Track [Page 28]

RFC 7208 Sender Policy Framework (SPF) April 2014

7.1. Formal Specification

The ABNF description for a macro is as follows:

domain-spec = macro-string domain-end
domain-end = ("." toplabel ["."]) / macro-expand
toplabel = (*alphanum ALPHA *alphanum) /

(1*alphanum "-" *(alphanum / "-") alphanum)
alphanum = ALPHA / DIGIT

explain-string = *(macro-string / SP)

macro-string = *(macro-expand / macro-literal)

macro-expand = ("%{" macro-letter transformers *delimiter "}")
/ ll%%ll / Il%_ll / ll%_ll

macro-literal = %x21-24 / %x26-7E
; visible characters except "%"

macro_letter = "S" / llIll / IIOII / lldll / Ilill / Ilpll / IIhll/
llCll / llrll / "t" / IIVII

transformers =*DIGIT ["r"

delimiter = ll.ll / Il-ll / II+II / Il,ll / Il/ll / II_II / II:lI

The "toplabel" construction is subject to the letter-digit-hyphen
(LDH) rule plus additional top-level domain (TLD) restrictions. See
Section 2 of [RFC3696] for background.

Some special cases:

0 A literal "%" is expressed by "%%".

0 "% " expands to a single " " space.

0 "%-" expands to a URL-encoded space, viz., "%20".
7.2. Macro Definitions
The following macro letters are expanded in term arguments:

s = <sender>

| = local-part of <sender>

0 = domain of <sender>

d = <domain>

i = <ip>

p = the validated domain name of <ip> (do not use)

v = the string "in-addr" if <ip> is ipv4, or "ip6" if <ip> is ipv6
h = HELO/EHLO domain

Kitterman Standards Track [Page 29]

RFC 7208 Sender Policy Framework (SPF) April 2014

<domain>, <sender>, and <ip> are defined in Section 4.1.
The following macro letters are allowed only in "exp" text:

c = SMTP client IP (easily readable format)
r = domain name of host performing the check
t = current timestamp

7.3. Macro Processing Details

A "%’ character not followed by a '{’, '%’, -, or ’_’ character is
a syntax error. So:

-exists:%(ir).sbl.example.org

is incorrect and will cause check_host() to yield a "permerror”.
Instead, the following is legal:

-exists:%fir}.sbl.example.org
Optional transformers are the following:

*DIGIT = zero or more digits

1,00

r' = reverse value, splitting on dots by default

If transformers or delimiters are provided, the replacement value for
a macro letter is split into parts separated by one or more of the
specified delimiter characters. After performing any reversal
operation and/or removal of left-hand parts, the parts are rejoined

using "." and not the original splitting characters.

By default, strings are split on "." (dots). Note that no special

treatment is given to leading, trailing, or consecutive delimiters in

input strings, and so the list of parts might contain empty strings.

Some older implementations of SPF prohibit trailing dots in domain
names, so trailing dots SHOULD NOT be published, although they MUST
be accepted by implementations conforming to this document. Macros
can specify delimiter characters that are used instead of ".".

The "r" transformer indicates a reversal operation: if the client IP
address were 192.0.2.1, the macro %f{i} would expand to "192.0.2.1"
and the macro %({ir} would expand to "1.2.0.192".

The DIGIT transformer indicates the number of right-hand parts to
use, after optional reversal. If a DIGIT is specified, the value
MUST be nonzero. If no DIGITs are specified, or if the value
specifies more parts than are available, all the available parts are

Kitterman Standards Track [Page 30]

RFC 7208 Sender Policy Framework (SPF) April 2014

used. If the DIGIT was 5, and only 3 parts were available, the macro
interpreter would pretend the DIGIT was 3. Implementations MUST
support at least a value of 127, as that is the maximum number of
labels in a domain name (less the zero-length label at the end).

The "s" macro expands to the <sender> argument. It is an email
address with a local-part, an "@" character, and a domain. The "I"
macro expands to just the local-part. The "0" macro expands to just
the domain part. Note that these values remain the same during
recursive and chained evaluations due to "include" and/or "redirect".
Note also that if the original <sender> had no local-part, the
local-part was set to "postmaster” in initial processing (see

Section 4.3).

For IPv4 addresses, both the "i" and "c" macros expand to the
standard dotted-quad format.

For IPv6 addresses, the "i" macro expands to a dot-format address; it
is intended for use in %f{ir}. The "c" macro can expand to any of the
hexadecimal colon-format addresses specified in Section 2.2 of
[RFC4291]. Itis intended for humans to read.

The "p" macro expands to the validated domain name of <ip>. The
procedure for finding the validated domain name is defined in

Section 5.5. If the <domain> is present in the list of validated

domains, it SHOULD be used. Otherwise, if a subdomain of the
<domain> is present, it SHOULD be used. Otherwise, any name from the
list can be used. If there are no validated domain names or if a DNS
error occurs, the string "unknown" is used.

This macro SHOULD NOT be published (see Section 5.5 for the
discussion).

The "h" macro expands to the parameter that was provided to the SMTP
server via the HELO or EHLO SMTP verb. For sessions where that verb
was provided more than once, the most recent instance is used.

The "r" macro expands to the name of the receiving MTA. This SHOULD
be a fully qualified domain name, but if one does not exist (as when

the checking is done by a Mail User Agent (MUA)) or if policy

restrictions dictate otherwise, the word "unknown" SHOULD be
substituted. The domain name can be different from the name found in
the MX record that the client MTA used to locate the receiving MTA.

Kitterman Standards Track [Page 31]

RFC 7208 Sender Policy Framework (SPF) April 2014

The "t" macro expands to the decimal representation of the
approximate number of seconds since the Epoch (Midnight, January 1,
1970, UTC) at the time of the evaluation. This is the same value as
the value that is returned by the Portable Operating System Interface
(POSIX) time() function in most standards-compliant libraries.

When the result of macro expansion is used in a domain name query, if
the expanded domain name exceeds 253 characters (the maximum length
of a domain name in this format), the left side is truncated to fit,

by removing successive domain labels (and their following dots) until

the total length does not exceed 253 characters.

Uppercase macros expand exactly as their lowercase equivalents, and
are then URL escaped. URL escaping MUST be performed for characters
not in the "unreserved" set, which is defined in [RFC3986].

Care has to be taken by the sending ADMD so that macro expansion for
legitimate email does not exceed the 63-character limit on DNS

labels. The local-part of email addresses, in particular, can have

more than 63 characters between dots.

To minimize DNS lookup resource requirements, it is better if sending
ADMDs avoid using the "s", "I", "0", or "h" macros in conjunction

with any mechanism directive. Although these macros are powerful and
allow per-user records to be published, they severely limit the

ability of implementations to cache results of check_host() and they
reduce the effectiveness of DNS caches.

If no directive processed during the evaluation of check_host()
contains an "s", "I", "0", or "h" macro, then the results of the

evaluation can be cached on the basis of <domain> and <ip> alone for
as long as the DNS record involved with the shortest Time to Live

(TTL) has not expired.
7.4. Expansion Examples
The <sender> is strong-bad@email.example.com. The IPv4 SMTP client

IPis 192.0.2.3. The IPv6 SMTP client IP is 2001:db8::cb01. The PTR
domain name of the client IP is mx.example.org.

Kitterman Standards Track [Page 32]

RFC 7208 Sender Policy Framework (SPF) April 2014

macro expansion

%{s} strong-bad@email.example.com

%({o} email.example.com

%{d} email.example.com

%{d4} email.example.com

%{d3} email.example.com

%{d2} example.com

%{d1} com

%{dr} com.example.email

%{d2r} example.email

%{1} strong-bad

%({I-} strong.bad

%({Ir} strong-bad

%{Ir-} bad.strong

%{11r-} strong

macro-string expansion
%{ir}.%{v}._spf.%{d2} 3.2.0.192.in-addr._spf.example.com
%{Ir-}.Ip._spf.%{d2} bad.strong.lp._spf.example.com

%{Ir-}.Ip.%{ir}.%{v}._spf.%{d2} .
bad.strong.lp.3.2.0.192.in-addr._spf.example.com

%{ir}.%{v}.%{I1r-}.Ip._spf.%{d2}
3.2.0.192.in-addr.strong.Ip._spf.example.com

%{d2}.trusted-domains.example.net
example.com.trusted-domains.example.net

IPv6:
%{ir}.%{v}._spf.%{d2} 1.0.b.c.0.0.0.0.
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6._spf.example.com

8. Result Handling

This section provides guidance for SPF verifier operators in response
to the various possible outputs of check_host() on a message.
Definitions of SPF results are presented in Section 2.6; this section
provides more detail on each for use in developing local policy for
message handling.

Every operating environment is different. There are some receivers
for whom strict adherence to SPF is appropriate, and definitive
treatment of messages that are evaluated to be explicitly
unauthorized (“fail" and sometimes "softfail") is the norm. There
are others for which the "false negative" cases are more of a

Kitterman Standards Track [Page 33]

RFC 7208 Sender Policy Framework (SPF) April 2014

concern. This concern is typically handled by merely recording the
result in the header and allowing the message to pass on for
additional processing. There are still others where SPF is one of
several inputs to the message-handling decision. As such, there is
no comprehensive normative requirement for message handling in
response to any particular result. This section is provided to
present a complete picture of the likely cause of each result and,
where available, the experience gained during experimental
deployment.

There are essentially two classes of handling choices:

o Handling within the SMTP session that attempted to deliver the
message, such as by returning a permanent SMTP error (rejection)
or temporary SMTP error ("try again later");

o Permitting the message to pass (a successful SMTP reply code) and
adding an additional header field that indicates the result
returned by check host() and other salient details; this is
discussed in more detail in Section 9.

8.1. None

With a "none" result, the SPF verifier has no information at all
about the authorization or lack thereof of the client to use the
checked identity or identities. The check_host() function completed
without errors but was not able to reach any conclusion.

8.2. Neutral

A "neutral" result indicates that although a policy for the identity
was discovered, there is no definite assertion (positive or negative)
about the client.

A "neutral” result MUST be treated exactly like the "none" result;
the distinction exists only for informational purposes. Treating
"neutral" more harshly than "none" would discourage ADMDs from
testing the use of SPF records (see Section 10.1).

8.3. Pass

A "pass" result means the client is authorized to inject mail with

the given identity. The domain can now, in the sense of reputation,

be considered responsible for sending the message. Further policy
checks can now proceed with confidence in the legitimate use of the
identity. This is further discussed in Appendix G.1.

Kitterman Standards Track [Page 34]

RFC 7208 Sender Policy Framework (SPF) April 2014

8.4. Falil

A "fail" result is an explicit statement that the client is not

authorized to use the domain in the given identity. Disposition of
SPF fail messages is a matter of local policy. See Appendix G.2 for
considerations on developing local policy.

If the checking software chooses to reject the mail during the SMTP
transaction, then it SHOULD use an SMTP reply code of 550 (see
[RFC5321]) and, if supported, the 5.7.1 enhanced status code (see
[RFC3463], Section 3.8), in addition to an appropriate reply text.
The check_host() function will return either a default explanation
string or one from the domain that published the SPF records (see
Section 6.2). If the information does not originate with the

checking software, it is good to make it clear that the text is
provided by the sender’'s domain. For example:

550 5.7.1 SPF MAIL FROM check failed:
550 5.7.1 The domain example.com explains:
550 5.7.1 Please see http://www.example.com/mailpolicy.html

If the checking software chooses not to reject the mail during the
SMTP transaction, then it SHOULD add a Received-SPF or
Authentication-Results header field (see Section 9) to communicate
this result to downstream message processors. While this is true for
all SPF results, it is of particular importance for "fail" results

since the message is explicitly not authorized by the ADMD.

8.5. Softfail

A "softfail" result ought to be treated as somewhere between "fail"

and "neutral"/"'none". The ADMD believes the host is not authorized
but is not willing to make a strong policy statement. Receiving
software SHOULD NOT reject the message based solely on this result,
but MAY subject the message to closer scrutiny than normal.

The ADMD wants to discourage the use of this host and thus desires
limited feedback when a "softfail" result occurs. For example, the
recipient's MUA could highlight the "softfail" status, or the

receiving MTA could give the sender a message using greylisting
[RFC6647], with a note the first time the message is received, but
accept it on a later attempt based on receiver policy.

Kitterman Standards Track [Page 35]

RFC 7208 Sender Policy Framework (SPF) April 2014

8.6. Temperror

A "temperror" result means the SPF verifier encountered a transient
(generally DNS) error while performing the check. Checking software
can choose to accept or temporarily reject the message. If the

message is rejected during the SMTP transaction for this reason, the
software SHOULD use an SMTP reply code of 451 and, if supported, the
4.4.3 enhanced status code (see Section 3.5 of [RFC3463]). These
errors can be caused by problems in either the sender’s or receiver’s
DNS software. See Appendix G.4 for considerations on developing

local policy.

8.7. Permerror

A "permerror" result means the domain’s published records could not
be correctly interpreted. This signals an error condition that

definitely requires DNS operator intervention to be resolved. If the
message is rejected during the SMTP transaction for this reason, the
software SHOULD use an SMTP reply code of 550 and, if supported, the
5.5.2 enhanced status code (see [RFC3463], Section 3.6). Be aware
that if the ADMD uses macros (Section 7), it is possible that this

result is due to the checked identities having an unexpected format.

It is also possible that this result is generated by certain SPF

verifiers due to the input arguments having an unexpected format; see
Section 4.8. See Appendix G.3 for considerations on developing local

policy.
9. Recording the Result

To provide downstream agents, such as MUASs, with the information they
might need in terms of evaluating or representing the apparent safety

of the message content, it is RECOMMENDED that SMTP receivers record
the result of SPF processing in the message header. For SPF verifier
operators that choose to record SPF results in the header of the
message for processing by internal filters or MUAs, two methods are
presented: Section 9.1 defines the Received-SPF field, which is the
results field originally defined for SPF use. Section 9.2 discusses

the Authentication-Results header field [RFC7001], which was

specified more recently and is designed for use by SPF and other
authentication methods.

Both are in common use, and hence both are included here. However,
it is important to note that they were designed to serve slightly
different purposes. Received-SPF is intended to include enough
information to enable reconstruction of the SPF evaluation of the
message, while Authentication-Results is designed only to relay the
result itself and related output details of likely use to end users

(e.g., what property of the message was actually authenticated and

Kitterman Standards Track [Page 36]

RFC 7208 Sender Policy Framework (SPF) April 2014

what it contained), leaving reconstructive work to the purview of
system logs and the Received field contents. Also, Received-SPF
relies on compliance of agents within the receiving ADMD to adhere to
the header field ordering rules of [RFC5321] and [RFC5322], while
Authentication-Results includes some provisions to protect against
non-compliant implementations.

An SPF verifier operator could choose to use both to serve different
downstream agents. In such cases, care needs to be taken to ensure
that both fields are conveying the same details, or unexpected

results can occur.

9.1. The Received-SPF Header Field

The Received-SPF header field is a trace field (see [RFC5322],

Section 3.6.7) and SHOULD be prepended to the existing header, above
the Received: field that is generated by the SMTP receiver. It MUST
appear above all other Received-SPF fields in the message. The
header field has the following format:

header-field = "Received-SPF:" [CFWS] result FWS [comment FWS]
[key-value-list] CRLF

result ="pass" / "fail" / "softfail" / "neutral" /
"none" / "temperror" / "permerror"

key-value-list = key-value-pair *(;" [CFWS] key-value-pair)
("]

key-value-pair = key [CFWS] "=" (dot-atom / quoted-string)

key = "client-ip" / "envelope-from" / "helo" /

"problem" / "receiver" / "identity" /
"mechanism” / name

identity = "mailfrom" ; for the "MAIL FROM" identity
/"helo" ; for the "HELO" identity
/ name ; other identities
dot-atom = <unquoted word as per [RFC5322]>
guoted-string = <quoted string as per [RFC5322]>
comment = <comment string as per [RFC5322]>
CFWS = <comment or folding white space as per [RFC5322]>
FWS = <folding white space as per [RFC5322]>
CRLF = <standard end-of-line token as per [RFC5322]>

Kitterman Standards Track [Page 37]

RFC 7208 Sender Policy Framework (SPF) April 2014

The header field SHOULD include a "(...)" style comment after the
result, conveying supporting information for the result, such as
<ip>, <sender>, and <domain>.

The following key-value pairs are designed for later machine parsing.
SPF verifiers SHOULD give enough information so that the SPF results
can be verified -- that is, at least "client-ip", "helo", and, if the

"MAIL FROM" identity was checked, "envelope-from".

client-ip the IP address of the SMTP client
envelope-from the envelope sender mailbox
helo the host name given in the HELO or EHLO command

mechanism the mechanism that matched (if no mechanisms matched,
substitute the word "default")

problem if an error was returned, details about the error
receiver the host name of the SPF verifier

identity the identity that was checked; see the <identity>
ABNF rule

Other keys MAY be defined by SPF verifiers.

SPF verifiers MUST make sure that the Received-SPF header f