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        The Subnetwork Encapsulation and Adaptation Layer (SEAL)

Abstract

   For the purpose of this document, subnetworks are defined as virtual
   topologies that span connected network regions bounded by
   encapsulating border nodes.  These virtual topologies may span
   multiple IP and/or sub-IP layer forwarding hops, and can introduce
   failure modes due to packet duplication and/or links with diverse
   Maximum Transmission Units (MTUs).  This document specifies a
   Subnetwork Encapsulation and Adaptation Layer (SEAL) that
   accommodates such virtual topologies over diverse underlying link
   technologies.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for examination, experimental implementation, and
   evaluation.

   This document defines an Experimental Protocol for the Internet
   community.  This is a contribution to the RFC Series, independently
   of any other RFC stream.  The RFC Editor has chosen to publish this
   document at its discretion and makes no statement about its value for
   implementation or deployment.  Documents approved for publication by
   the RFC Editor are not a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5320.

IESG Note

   This RFC is not a candidate for any level of Internet Standard.  The
   IETF disclaims any knowledge of the fitness of this RFC for any
   purpose and in particular notes that the decision to publish is not
   based on IETF review for such things as security, congestion control,
   or inappropriate interaction with deployed protocols.  The RFC Editor
   has chosen to publish this document at its discretion.  Readers of
   this document should exercise caution in evaluating its value for
   implementation and deployment.  See RFC 3932 for more information.
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1.  Introduction

   As Internet technology and communication has grown and matured, many
   techniques have developed that use virtual topologies (including
   tunnels of one form or another) over an actual network that supports
   the Internet Protocol (IP) [RFC0791][RFC2460].  Those virtual
   topologies have elements that appear as one hop in the virtual
   topology, but are actually multiple IP or sub-IP layer hops.  These
   multiple hops often have quite diverse properties that are often not
   even visible to the endpoints of the virtual hop.  This introduces
   failure modes that are not dealt with well in current approaches.

   The use of IP encapsulation has long been considered as the means for
   creating such virtual topologies.  However, the insertion of an outer
   IP header reduces the effective path MTU as-seen by the IP layer.
   When IPv4 is used, this reduced MTU can be accommodated through the
   use of IPv4 fragmentation, but unmitigated in-the-network
   fragmentation has been found to be harmful through operational
   experience and studies conducted over the course of many years
   [FRAG][FOLK][RFC4963].  Additionally, classical path MTU discovery
   [RFC1191] has known operational issues that are exacerbated by in-
   the-network tunnels [RFC2923][RFC4459].  In the following
   subsections, we present further details on the motivation and
   approach for addressing these issues.

1.1.  Motivation

   Before discussing the approach, it is necessary to first understand
   the problems.  In both the Internet and private-use networks today,
   IPv4 is ubiquitously deployed as the Layer 3 protocol.  The two
   primary functions of IPv4 are to provide for 1) addressing, and 2) a
   fragmentation and reassembly capability used to accommodate links
   with diverse MTUs.  While it is well known that the addressing
   properties of IPv4 are limited (hence, the larger address space
   provided by IPv6), there is a lesser-known but growing consensus that
   other limitations may be unable to sustain continued growth.

   First, the IPv4 header Identification field is only 16 bits in
   length, meaning that at most 2^16 packets pertaining to the same
   (source, destination, protocol, Identification)-tuple may be active
   in the Internet at a given time.  Due to the escalating deployment of
   high-speed links (e.g., 1Gbps Ethernet), however, this number may
   soon become too small by several orders of magnitude.  Furthermore,
   there are many well-known limitations pertaining to IPv4
   fragmentation and reassembly -- even to the point that it has been
   deemed "harmful" in both classic and modern-day studies (cited
   above).  In particular, IPv4 fragmentation raises issues ranging from
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   minor annoyances (e.g., slow-path processing in routers) to the
   potential for major integrity issues (e.g., mis-association of the
   fragments of multiple IP packets during reassembly).

   As a result of these perceived limitations, a fragmentation-avoiding
   technique for discovering the MTU of the forward path from a source
   to a destination node was devised through the deliberations of the
   Path MTU Discovery Working Group (PMTUDWG) during the late 1980’s
   through early 1990’s (see Appendix A).  In this method, the source
   node provides explicit instructions to routers in the path to discard
   the packet and return an ICMP error message if an MTU restriction is
   encountered.  However, this approach has several serious shortcomings
   that lead to an overall "brittleness".

   In particular, site border routers in the Internet are being
   configured more and more to discard ICMP error messages coming from
   the outside world.  This is due in large part to the fact that
   malicious spoofing of error messages in the Internet is made simple
   since there is no way to authenticate the source of the messages.
   Furthermore, when a source node that requires ICMP error message
   feedback when a packet is dropped due to an MTU restriction does not
   receive the messages, a path MTU-related black hole occurs.  This
   means that the source will continue to send packets that are too
   large and never receive an indication from the network that they are
   being discarded.

   The issues with both IPv4 fragmentation and this "classical" method
   of path MTU discovery are exacerbated further when IP-in-IP tunneling
   is used.  For example, site border routers that are configured as
   ingress tunnel endpoints may be required to forward packets into the
   subnetwork on behalf of hundreds, thousands, or even more original
   sources located within the site.  If IPv4 fragmentation were used,
   this would quickly wrap the 16-bit Identification field and could
   lead to undetected data corruption.  If classical IPv4 path MTU
   discovery were used instead, the site border router may be bombarded
   by ICMP error messages coming from the subnetwork that may be either
   untrustworthy or insufficiently provisioned to allow translation into
   error message to be returned to the original sources.

   The situation is exacerbated further still by IPsec tunnels, since
   only the first IPv4 fragment of a fragmented packet contains the
   transport protocol selectors (e.g., the source and destination ports)
   required for identifying the correct security association rendering
   fragmentation useless under certain circumstances.  Even worse, there
   may be no way for a site border router that configures an IPsec
   tunnel to transcribe the encrypted packet fragment contained in an
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   ICMP error message into a suitable ICMP error message to return to
   the original source.  Due to these many limitations, a new approach
   to accommodate links with diverse MTUs is necessary.

1.2.  Approach

   For the purpose of this document, subnetworks are defined as virtual
   topologies that span connected network regions bounded by
   encapsulating border nodes.  Examples include the global Internet
   interdomain routing core, Mobile Ad hoc Networks (MANETs) and
   enterprise networks.  Subnetwork border nodes forward unicast and
   multicast IP packets over the virtual topology across multiple IP
   and/or sub-IP layer forwarding hops that may introduce packet
   duplication and/or traverse links with diverse Maximum Transmission
   Units (MTUs).

   This document introduces a Subnetwork Encapsulation and Adaptation
   Layer (SEAL) for tunnel-mode operation of IP over subnetworks that
   connect Ingress and Egress Tunnel Endpoints (ITEs/ETEs) of border
   nodes.  Operation in transport mode is also supported when subnetwork
   border node upper-layer protocols negotiate the use of SEAL during
   connection establishment.  SEAL accommodates links with diverse MTUs
   and supports efficient duplicate packet detection by introducing a
   minimal mid-layer encapsulation.

   The SEAL encapsulation introduces an extended Identification field
   for packet identification and a mid-layer segmentation and reassembly
   capability that allows simplified cutting and pasting of packets.
   Moreover, SEAL senses in-the-network IPv4 fragmentation as a "noise"
   indication that packet sizing parameters are "out of tune" with
   respect to the network path.  As a result, SEAL can naturally tune
   its packet sizing parameters to eliminate the in-the-network
   fragmentation.

   The SEAL encapsulation layer and protocol are specified in the
   following sections.

2.  Terminology and Requirements

   The terms "inner", "mid-layer", and "outer", respectively, refer to
   the innermost IP (layer, protocol, header, packet, etc.) before any
   encapsulation, the mid-layer IP (protocol, header, packet, etc.)
   after any mid-layer ’*’ encapsulation, and the outermost IP (layer,
   protocol, header, packet etc.) after SEAL/*/IPv4 encapsulation.

   The term "IP" used throughout the document refers to either Internet
   Protocol version (IPv4 or IPv6).  Additionally, the notation
   IPvX/*/SEAL/*/IPvY refers to an inner IPvX packet encapsulated in any
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   mid-layer ’*’ encapsulations, followed by the SEAL header, followed
   by any outer ’*’ encapsulations, followed by an outer IPvY header,
   where the notation "IPvX" means either IP protocol version (IPv4 or
   IPv6).

   The following abbreviations correspond to terms used within this
   document and elsewhere in common Internetworking nomenclature:

      ITE - Ingress Tunnel Endpoint

      ETE - Egress Tunnel Endpoint

      PTB - an ICMPv6 "Packet Too Big" or an ICMPv4 "Fragmentation
            Needed" message

      DF - the IPv4 header "Don’t Fragment" flag

      MHLEN - the length of any mid-layer ’*’ headers and trailers

      OHLEN - the length of the outer encapsulating SEAL/*/IPv4 headers

      HLEN - the sum of MHLEN and OHLEN

      S_MRU - the per-ETE SEAL Maximum Reassembly Unit

      S_MSS - the SEAL Maximum Segment Size

      SEAL_ID - a 32-bit Identification value, randomly initialized and
                monotonically incremented for each SEAL protocol packet

      SEAL_PROTO - an IPv4 protocol number used for SEAL

      SEAL_PORT - a TCP/UDP service port number used for SEAL

      SEAL_OPTION - a TCP option number used for (transport-mode) SEAL

   The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in [RFC2119].

3.  Applicability Statement

   SEAL was motivated by the specific case of subnetwork abstraction for
   Mobile Ad hoc Networks (MANETs); however, the domain of applicability
   also extends to subnetwork abstractions of enterprise networks, the
   interdomain routing core, etc.  The domain of application therefore
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   also includes the map-and-encaps architecture proposals in the IRTF
   Routing Research Group (RRG) (see http://www3.tools.ietf.org/group/
   irtf/trac/wiki/RoutingResearchGroup).

   SEAL introduces a minimal new sublayer for IPvX in IPvY encapsulation
   (e.g., as IPv6/SEAL/IPv4), and appears as a subnetwork encapsulation
   as seen by the inner IP layer.  SEAL can also be used as a sublayer
   for encapsulating inner IP packets within outer UDP/IPv4 headers
   (e.g., as IPv6/SEAL/UDP/IPv4) such as for the Teredo domain of
   applicability [RFC4380].  When it appears immediately after the outer
   IPv4 header, the SEAL header is processed exactly as for IPv6
   extension headers.

   SEAL can also be used in "transport-mode", e.g., when the inner layer
   includes upper-layer protocol data rather than an encapsulated IP
   packet.  For instance, TCP peers can negotiate the use of SEAL for
   the carriage of protocol data encapsulated as TCP/SEAL/IPv4.  In this
   sense, the "subnetwork" becomes the entire end-to-end path between
   the TCP peers and may potentially span the entire Internet.

   The current document version is specific to the use of IPv4 as the
   outer encapsulation layer; however, the same principles apply when
   IPv6 is used as the outer layer.

4.  SEAL Protocol Specification - Tunnel Mode

4.1.  Model of Operation

   SEAL supports the encapsulation of inner IP packets in mid-layer and
   outer encapsulating headers/trailers.  For example, an inner IPv6
   packet would appear as IPv6/*/SEAL/*/IPv4 after mid-layer and outer
   encapsulations, where ’*’ denotes zero or more additional
   encapsulation sublayers.  Ingres Tunnel Endpoints (ITEs) add mid-
   layer inject into a subnetwork, where the outermost IPv4 header
   contains the source and destination addresses of the subnetwork
   entry/exit points (i.e., the ITE/ETE), respectively.  SEAL uses a new
   Internet Protocol type and a new encapsulation sublayer for both
   unicast and multicast.  The ITE encapsulates an inner IP packet in
   mid-layer and outer encapsulations as shown in Figure 1:
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                                            +-------------------------+
                                            |                         |
                                            ˜   Outer */IPv4 headers  ˜
                                            |                         |
   I                                        +-------------------------+
   n                                        |       SEAL Header       |
   n      +-------------------------+       +-------------------------+
   e      ˜ Any mid-layer * headers ˜       ˜ Any mid-layer * headers ˜
   r      +-------------------------+       +-------------------------+
          |                         |       |                         |
   I -->  ˜         Inner IP        ˜  -->  ˜         Inner IP        ˜
   P -->  ˜         Packet          ˜  -->  ˜         Packet          ˜
          |                         |       |                         |
   P      +-------------------------+       +-------------------------+
   a      ˜  Any mid-layer trailers ˜       ˜  Any mid-layer trailers ˜
   c      +-------------------------+       +-------------------------+
   k                                        ˜    Any outer trailers   ˜
   e                                        +-------------------------+
   t
           (After mid-layer encaps.)        (After SEAL/*/IPv4 encaps.)

                       Figure 1: SEAL Encapsulation

   where the SEAL header is inserted as follows:

   o  For simple IPvX/IPv4 encapsulations (e.g.,
      [RFC2003][RFC2004][RFC4213]), the SEAL header is inserted between
      the inner IP and outer IPv4 headers as: IPvX/SEAL/IPv4.

   o  For tunnel-mode IPsec encapsulations over IPv4, [RFC4301], the
      SEAL header is inserted between the {AH,ESP} header and outer IPv4
      headers as: IPvX/*/{AH,ESP}/SEAL/IPv4.

   o  For IP encapsulations over transports such as UDP, the SEAL header
      is inserted immediately after the outer transport layer header,
      e.g., as IPvX/*/SEAL/UDP/IPv4.

   SEAL-encapsulated packets include a 32-bit SEAL_ID formed from the
   concatenation of the 16-bit ID Extension field in the SEAL header as
   the most-significant bits, and with the 16-bit Identification value
   in the outer IPv4 header as the least-significant bits.  (For tunnels
   that traverse IPv4 Network Address Translators, the SEAL_ID is
   instead maintained only within the 16-bit ID Extension field in the
   SEAL header.)  Routers within the subnetwork use the SEAL_ID for
   duplicate packet detection, and ITEs/ETEs use the SEAL_ID for SEAL
   segmentation and reassembly.

   SEAL enables a multi-level segmentation and reassembly capability.
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   First, the ITE can use IPv4 fragmentation to fragment inner IPv4
   packets with DF=0 before SEAL encapsulation to avoid lower-layer
   segmentation and reassembly.  Secondly, the SEAL layer itself
   provides a simple cutting-and-pasting capability for mid-layer
   packets to avoid IPv4 fragmentation on the outer packet.  Finally,
   ordinary IPv4 fragmentation is permitted on the outer packet after
   SEAL encapsulation and used to detect and dampen any in-the-network
   fragmentation as quickly as possible.

   The following sections specify the SEAL-related operations of the ITE
   and ETE, respectively:

4.2.  ITE Specification

4.2.1.  Tunnel Interface MTU

   The ITE configures a tunnel virtual interface over one or more
   underlying links that connect the border node to the subnetwork.  The
   tunnel interface must present a fixed MTU to the inner IP layer
   (i.e., Layer 3) as the size for admission of inner IP packets into
   the tunnel.  Since the tunnel interface may support a potentially
   large set of ETEs, however, care must be taken in setting a greatest-
   common-denominator MTU for all ETEs while still upholding end system
   expectations.

   Due to the ubiquitous deployment of standard Ethernet and similar
   networking gear, the nominal Internet cell size has become 1500
   bytes; this is the de facto size that end systems have come to expect
   will either be delivered by the network without loss due to an MTU
   restriction on the path or a suitable PTB message returned.  However,
   the network may not always deliver the necessary PTBs, leading to
   MTU-related black holes [RFC2923].  The ITE therefore requires a
   means for conveying 1500 byte (or smaller) packets to the ETE without
   loss due to MTU restrictions and without dependence on PTB messages
   from within the subnetwork.

   In common deployments, there may be many forwarding hops between the
   original source and the ITE.  Within those hops, there may be
   additional encapsulations (IPSec, L2TP, etc.) such that a 1500 byte
   packet sent by the original source might grow to a larger size by the
   time it reaches the ITE for encapsulation as an inner IP packet.
   Similarly, additional encapsulations on the path from the ITE to the
   ETE could cause the encapsulated packet to become larger still and
   trigger in-the-network fragmentation.  In order to preserve the end
   system expectations, the ITE therefore requires a means for conveying
   these larger packets to the ETE even though there may be links within
   the subnetwork that configure a smaller MTU.
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   The ITE should therefore set a tunnel virtual interface MTU of 1500
   bytes plus extra room to accommodate any additional encapsulations
   that may occur on the path from the original source (i.e., even if
   the path to the ETE does not support an MTU of this size).  The ITE
   can set larger MTU values still, but should select a value that is
   not so large as to cause excessive PTBs coming from within the tunnel
   interface (see Sections 4.2.2 and 4.2.6).  The ITE can also set
   smaller MTU values; however, care must be taken not to set so small a
   value that original sources would experience an MTU underflow.  In
   particular, IPv6 sources must see a minimum path MTU of 1280 bytes,
   and IPv4 sources should see a minimum path MTU of 576 bytes.

   The inner IP layer consults the tunnel interface MTU when admitting a
   packet into the interface.  For inner IPv4 packets larger than the
   tunnel interface MTU and with the IPv4 Don’t Fragment (DF) bit set to
   0, the inner IPv4 layer uses IPv4 fragmentation to break the packet
   into fragments no larger than the tunnel interface MTU (but, see also
   Section 4.2.3), then admits each fragment into the tunnel as an
   independent packet.  For all other inner packets (IPv4 or IPv6), the
   ITE admits the packet if it is no larger than the tunnel interface
   MTU; otherwise, it drops the packet and sends an ICMP PTB message
   with an MTU value of the tunnel interface MTU to the source.

4.2.2.  Accounting for Headers

   As for any transport layer protocol, ITEs use the MTU of the
   underlying IPv4 interface, the length of any mid-layer ’*’ headers
   and trailers, and the length of the outer SEAL/*/IPv4 headers to
   determine the maximum size for a SEAL segment (see Section 4.2.3).
   For example, when the underlying IPv4 interface advertises an MTU of
   1500 bytes and the ITE inserts a minimum-length (i.e., 20-byte) IPv4
   header, the ITE sees a maximum segment size of 1480 bytes.  When the
   ITE inserts IPv4 header options, the size is further reduced by as
   many as 40 additional bytes (the maximum length for IPv4 options)
   such that as few as 1440 bytes may be available for the upper-layer
   payload.  When the ITE inserts additional ’*’ encapsulations, the
   maximum segment size is reduced further still.

   The ITE must additionally account for the length of the SEAL header
   itself as an extra encapsulation that further reduces the maximum
   segment size.  The length of the SEAL header is not incorporated in
   the IPv4 header length; therefore, the network does not observe the
   SEAL header as an IPv4 option.  In this way, the SEAL header is
   inserted after the IPv4 options but before the upper-layer payload in
   exactly the same manner as for IPv6 extension headers.
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4.2.3.  Segmentation and Encapsulation

   For each ETE, the ITE maintains the length of any mid-layer ’*’
   encapsulation headers and trailers (e.g., for ’*’ = AH, ESP, NULL,
   etc.) in a variable ’MHLEN’ and maintains the length of the outer
   SEAL/*/IPv4 encapsulation headers in a variable ’OHLEN’.  The ITE
   further maintains a variable ’HLEN’ set to MHLEN plus OHLEN.  The ITE
   maintains a SEAL Maximum Reassembly Unit (S_MRU) value for each ETE
   as soft state within the tunnel interface (e.g., in the IPv4
   destination cache).  The ITE initializes S_MRU to a value no larger
   than 2KB and uses this value to determine the maximum-sized packet it
   will require the ETE to reassemble.  The ITE additionally maintains a
   SEAL Maximum Segment Size (S_MSS) value for each ETE.  The ITE
   initializes S_MSS to the maximum of (the underlying IPv4 interface
   MTU minus OHLEN) and S_MRU/8 bytes, and decreases or increases S_MSS
   based on any ICMPv4 Fragmentation Needed messages received (see
   Section 4.2.6).

   The ITE performs segmentation and encapsulation on inner packets that
   have been admitted into the tunnel interface.  For inner IPv4 packets
   with the DF bit set to 0, if the length of the inner packet is larger
   than (S_MRU - HLEN), the ITE uses IPv4 fragmentation to break the
   packet into IPv4 fragments no larger than (S_MRU - HLEN).  For
   unfragmentable inner packets (e.g., IPv6 packets, IPv4 packets with
   DF=1, etc.), if the length of the inner packet is larger than
   (MAX(S_MRU, S_MSS) - HLEN), the ITE drops the packet and sends an
   ICMP PTB message with an MTU value of (MAX(S_MRU, S_MSS) - HLEN) back
   to the original source.

   The ITE then encapsulates each inner packet/fragment in the MHLEN
   bytes of mid-layer ’*’ headers and trailers.  For each such resulting
   mid-layer packet of length ’M’, if (S_MRU >= (M + OHLEN) > S_MSS),
   the ITE must perform SEAL segmentation.  To do so, it breaks the mid-
   layer packet into N segments (N <= 8) that are no larger than
   (MIN(1KB, S_MSS) - OHLEN) bytes each.  Each segment, except the final
   one, MUST be of equal length, while the final segment MUST be no
   larger than the initial segment.  The first byte of each segment MUST
   begin immediately after the final byte of the previous segment, i.e.,
   the segments MUST NOT overlap.  The ITE should generate the smallest
   number of segments possible, e.g., it should not generate 6 smaller
   segments when the packet could be accommodated with 4 larger
   segments.

   Note that this SEAL segmentation ignores the fact that the mid-layer
   packet may be unfragmentable.  This segmentation process is a mid-
   layer (not an IP layer) operation employed by the ITE to adapt the
   mid-layer packet to the subnetwork path characteristics, and the ETE
   will restore the packet to its original form during reassembly.
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   Therefore, the fact that the packet may have been segmented within
   the subnetwork is not observable outside of the subnetwork.

   The ITE next encapsulates each segment in a SEAL header formatted as
   follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          ID Extension         |A|R|M|RSV| SEG |  Next Header  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 2: SEAL Header Format

   where the header fields are defined as follows:

   ID Extension (16)
      a 16-bit extension of the Identification field in the outer IPv4
      header; encodes the most-significant 16 bits of a 32 bit SEAL_ID
      value.

   A (1)
      the "Acknowledgement Requested" bit.  Set to 1 if the ITE wishes
      to receive an explicit acknowledgement from the ETE.

   R (1)
      the "Report Fragmentation" bit.  Set to 1 if the ITE wishes to
      receive a report from the ETE if any IPv4 fragmentation occurs.

   M (1)
      the "More Segments" bit.  Set to 1 if this SEAL protocol packet
      contains a non-final segment of a multi-segment mid-layer packet.

   RSV (2)
      a 2-bit field reserved for future use.  Must be set to 0 for the
      purpose of this specification.

   SEG (3)
      a 3-bit segment number.  Encodes a segment number between 0 - 7.

   Next Header (8)
      an 8-bit field that encodes an Internet Protocol number the same
      as for the IPv4 protocol and IPv6 next header fields.
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   For single-segment mid-layer packets, the ITE encapsulates the
   segment in a SEAL header with (M=0; SEG=0).  For N-segment mid-layer
   packets (N <= 8), the ITE encapsulates each segment in a SEAL header
   with (M=1; SEG=0) for the first segment, (M=1; SEG=1) for the second
   segment, etc., with the final segment setting (M=0; SEG=N-1).

   The ITE next sets RSV=’00’ and sets the A and R bits in the SEAL
   header of the first segment according to whether the packet is to be
   used as an explicit/implicit probe as specified in Section 4.2.4.
   The ITE then writes the Internet Protocol number corresponding to the
   mid-layer packet in the SEAL ’Next Header’ field and encapsulates
   each segment in the requisite */IPv4 outer headers according to the
   specific encapsulation format (e.g., [RFC2003], [RFC4213], [RFC4380],
   etc.), except that it writes ’SEAL_PROTO’ in the protocol field of
   the outer IPv4 header (when simple IPv4 encapsulation is used) or
   writes ’SEAL_PORT’ in the outer destination service port field (e.g.,
   when UDP/IPv4 encapsulation is used).  The ITE finally sets packet
   identification values as specified in Section 4.2.5 and sends the
   packets as specified in Section 4.2.6.

4.2.4.  Sending Probes

   When S_MSS is larger than S_MRU/8 bytes, the ITE sends ordinary
   encapsulated data packets as implicit probes to detect in-the-network
   IPv4 fragmentation and to determine new values for S_MSS.  The ITE
   sets R=1 in the SEAL header of a packet with SEG=0 to be used as an
   implicit probe, and will receive ICMPv4 Fragmentation Needed messages
   from the ETE if any IPv4 fragmentation occurs.  When the ITE has
   already reduced S_MSS to the minimum value, it instead sets R=0 in
   the SEAL header to avoid generating fragmentation reports for
   unavoidable in-the-network fragmentation.

   The ITE should send explicit probes periodically to manage a window
   of SEAL_IDs of outstanding probes as a means to validate any ICMPv4
   messages it receives.  The ITE sets A=1 in the SEAL header of a
   packet with SEG=0 to be used as an explicit probe, where the probe
   can be either an ordinary data packet or a NULL packet created by
   setting the ’Next Header’ field in the SEAL header to a value of "No
   Next Header" (see Section 4.7 of [RFC2460]).

   The ITE should further send explicit probes, periodically, to detect
   increases in S_MSS by resetting S_MSS to the maximum of (the
   underlying IPv4 interface MTU minus OHLEN) and S_MRU/8 bytes, and/or
   by sending explicit probes that are larger than the current S_MSS.

   Finally, the ITE MAY send "expendable" probe packets with DF=1 (see
   Section 4.2.6) in order to generate ICMPv4 Fragmentation Needed
   messages from routers on the path to the ETE.
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4.2.5.  Packet Identification

   For the purpose of packet identification, the ITE maintains a 32-bit
   SEAL_ID value as per-ETE soft state, e.g., in the IPv4 destination
   cache.  The ITE randomly initializes SEAL_ID when the soft state is
   created and monotonically increments it (modulo 2^32) for each
   successive SEAL protocol packet it sends to the ETE.  For each
   packet, the ITE writes the least-significant 16 bits of the SEAL_ID
   value in the Identification field in the outer IPv4 header, and
   writes the most-significant 16 bits in the ID Extension field in the
   SEAL header.

   For SEAL encapsulations specifically designed for the traversal of
   IPv4 Network Address Translators (NATs), e.g., for encapsulations
   that insert a UDP header between the SEAL header and outer IPv4
   header such as IPv6/SEAL/UDP/IPv4, the ITE instead maintains SEAL_ID
   as a 16-bit value that it randomly initializes when the soft state is
   created and monotonically increments (modulo 2^16) for each
   successive packet.  For each packet, the ITE writes SEAL_ID in the ID
   extension field of the SEAL header and writes a random 16-bit value
   in the Identification field in the outer IPv4 header.  This is due to
   the fact that the ITE has no way to control IPv4 NATs in the path
   that could rewrite the Identification value in the outer IPv4 header.

4.2.6.  Sending SEAL Protocol Packets

   Following SEAL segmentation and encapsulation, the ITE sets DF=0 in
   the outer IPv4 header of every outer packet it sends.  For
   "expendable" packets (e.g., for NULL packets used as probes -- see
   Section 4.2.4), the ITE may instead set DF=1.

   The ITE then sends each outer packet that encapsulates a segment of
   the same mid-layer packet into the tunnel in canonical order, i.e.,
   segment 0 first, followed by segment 1, etc. and finally segment N-1.

4.2.7.  Processing Raw ICMPv4 Messages

   The ITE may receive "raw" ICMPv4 error messages from either the ETE
   or routers within the subnetwork that comprise an outer IPv4 header,
   followed by an ICMPv4 header, followed by a portion of the SEAL
   packet that generated the error (also known as the "packet-in-
   error").  For such messages, the ITE can use the 32-bit SEAL ID
   encoded in the packet-in-error as a nonce to confirm that the ICMP
   message came from either the ETE or an on-path router.  The ITE MAY
   process raw ICMPv4 messages as soft errors indicating that the path
   to the ETE may be failing.
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   The ITE should specifically process raw ICMPv4 Protocol Unreachable
   messages as a hint that the ETE does not implement the SEAL protocol.

4.2.8.  Processing SEAL-Encapsulated ICMPv4 Messages

   In addition to any raw ICMPv4 messages, the ITE may receive SEAL-
   encapsulated ICMPv4 messages from the ETE that comprise outer ICMPv4/
   */SEAL/*/IPv4 headers followed by a portion of the SEAL-encapsulated
   packet-in-error.  The ITE can use the 32-bit SEAL ID encoded in the
   packet-in-error as well as information in the outer IPv4 and SEAL
   headers as nonces to confirm that the ICMP message came from a
   legitimate ETE.  The ITE then verifies that the SEAL_ID encoded in
   the packet-in-error is within the current window of transmitted
   SEAL_IDs for this ETE.  If the SEAL_ID is outside of the window, the
   ITE discards the message; otherwise, it advances the window and
   processes the message.

   The ITE processes SEAL-encapsulated ICMPv4 messages other than ICMPv4
   Fragmentation Needed exactly as specified in [RFC0792].

   For SEAL-encapsulated ICMPv4 Fragmentation Needed messages, the ITE
   sets a variable ’L’ to the IPv4 length of the packet-in-error minus
   OHLEN.  If (L > S_MSS), or if the packet-in-error is an IPv4 first
   fragment (i.e., with MF=1; Offset=0) and (L >= (576 - OHLEN)), the
   ITE sets (S_MSS = L).

   Note that 576 in the above corresponds to the nominal minimum MTU for
   IPv4 links.  When an ITE instead receives an IPv4 first fragment
   packet-in-error with (L < (576 - OHLEN)), it discovers that IPv4
   fragmentation is occurring in the network but it cannot determine the
   true MTU of the restricting link due to a router on the path
   generating runt first fragments.  The ITE should therefore search for
   a reduced S_MSS value (to a minimum of S_MRU/8) through an iterative
   searching strategy that parallels (Section 5 of [RFC1191]).

   This searching strategy may require multiple iterations of sending
   SEAL packets with DF=0 using a reduced S_MSS and receiving additional
   Fragmentation Needed messages, but it will soon converge to a stable
   value.  During this process, it is essential that the ITE reduce
   S_MSS based on the first Fragmentation Needed message received, and
   refrain from further reducing S_MSS until ICMPv4 Fragmentation Needed
   messages pertaining to packets sent under the new S_MSS are received.

   As an optimization only, the ITE MAY transcribe SEAL-encapsulated
   Fragmentation Needed messages that contain sufficient information
   into corresponding PTB messages to return to the original source.
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4.3.  ETE Specification

4.3.1.  Reassembly Buffer Requirements

   ETEs MUST be capable of using IPv4-layer reassembly to reassemble
   SEAL protocol outer IPv4 packets up to 2KB in length, and MUST also
   be capable of using SEAL-layer reassembly to reassemble mid-layer
   packets up to (2KB - OHLEN).  Note that the ITE must retain the
   SEAL/*/IPv4 header during both IPv4-layer and SEAL-layer reassembly
   for the purpose of associating the fragments/segments of the same
   packet.

4.3.2.  IPv4-Layer Reassembly

   The ETE performs IPv4 reassembly as normal, and should maintain a
   conservative high- and low-water mark for the number of outstanding
   reassemblies pending for each ITE.  When the size of the reassembly
   buffer exceeds this high-water mark, the ETE actively discards
   incomplete reassemblies (e.g., using an Active Queue Management (AQM)
   strategy) until the size falls below the low-water mark.  The ETE
   should also use a reduced IPv4 maximum segment lifetime value (e.g.,
   15 seconds), i.e., the time after which it will discard an incomplete
   IPv4 reassembly for a SEAL protocol packet.  Finally, the ETE should
   also actively discard any pending reassemblies that clearly have no
   opportunity for completion, e.g., when a considerable number of new
   IPv4 fragments have been received before a fragment that completes a
   pending reassembly has arrived.

   After reassembly, the ETE either accepts or discards the reassembled
   packet based on the current status of the IPv4 reassembly cache
   (congested versus uncongested).  The SEAL_ID included in the IPv4
   first fragment provides an additional level of reassembly assurance,
   since it can record a distinct arrival timestamp useful for
   associating the first fragment with its corresponding non-initial
   fragments.  The choice of accepting/discarding a reassembly may also
   depend on the strength of the upper-layer integrity check if known
   (e.g., IPSec/ESP provides a strong upper-layer integrity check)
   and/or the corruption tolerance of the data (e.g., multicast
   streaming audio/video may be more corruption-tolerant than file
   transfer, etc.).  In the limiting case, the ETE may choose to discard
   all IPv4 reassemblies and process only the IPv4 first fragment for
   SEAL-encapsulated error generation purposes (see the following
   sections).
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4.3.3.  Generating SEAL-Encapsulated ICMPv4 Fragmentation Needed
        Messages

   During IPv4-layer reassembly, the ETE determines whether the packet
   belongs to the SEAL protocol by checking for SEAL_PROTO in the outer
   IPv4 header (i.e., for simple IPv4 encapsulation) or for SEAL_PORT in
   the outer */IPv4 header (e.g., for ’*’=UDP).  When the ETE processes
   the IPv4 first fragment (i.e, one with DF=1 and Offset=0 in the IPv4
   header) of a SEAL protocol IPv4 packet with (R=1; SEG=0) in the SEAL
   header, it sends a SEAL-encapsulated ICMPv4 Fragmentation Needed
   message back to the ITE with the MTU field set to 0.  (Note that
   setting a non-zero value in the MTU field of the ICMPv4 Fragmentation
   Needed message would be redundant with the length value in the IPv4
   header of the first fragment, since this value is set to the correct
   path MTU through in-the-network fragmentation.  Setting the MTU field
   to 0 therefore avoids the ambiguous case in which the MTU field and
   the IPv4 length field of the first fragment would record different
   non-zero values.)

   When the ETE processes a SEAL protocol IPv4 packet with (A=1; SEG=0)
   for which no IPv4 reassembly was required, or for which IPv4
   reassembly was successful and the R bit was not set, it sends a SEAL-
   encapsulated ICMPv4 Fragmentation Needed message back to the ITE with
   the MTU value set to 0.  Note therefore that when both the A and R
   bits are set and fragmentation occurs, the ETE only sends a single
   ICMPv4 Fragmentation Needed message, i.e., it does not send two
   separate messages (one for the first fragment and a second for the
   reassembled whole SEAL packet).

   The ETE prepares the ICMPv4 Fragmentation Needed message by
   encapsulating as much of the first fragment (or the non-fragmented
   packet) as possible in outer */SEAL/*/IPv4 headers without the length
   of the message exceeding 576 bytes, as shown in Figure 3:

Templin                       Experimental                     [Page 18]



RFC 5320                          SEAL                     February 2010

      +-------------------------+ -
      |                         |   ˜ Outer */SEAL/*/IPv4 hdrs˜   |
      |                         |   |
      +-------------------------+   |
      |      ICMPv4 Header      |   |
      |(Dest Unreach; Frag Need)|   |
      +-------------------------+   |
      |                         |    > Up to 576 bytes
      ˜    IP/*/SEAL/*/IPv4     ˜   |
      ˜ hdrs of packet/fragment ˜   |
      |                         |   |
      +-------------------------+   |
      |                         |   |
      ˜ Data of packet/fragment ˜   |
      |                         |   /
      +-------------------------+ -

       Figure 3: SEAL-Encapsulated ICMPv4 Fragmentation Needed Message

   The ETE next sets A=0, R=0, and SEG=0 in the outer SEAL header, sets
   the SEAL_ID the same as for any SEAL packet, then sets the SEAL Next
   Header field and the fields of the outer */IPv4 headers the same as
   for ordinary SEAL encapsulation.  The ETE then sets the outer IPv4
   destination and source addresses to the source and destination
   addresses (respectively) of the packet/fragment.  If the destination
   address in the packet/fragment was multicast, the ETE instead sets
   the outer IPv4 source address to an address assigned to the
   underlying IPv4 interface.  The ETE finally sends the SEAL-
   encapsulated ICMPv4 message to the ITE the same as specified in
   Section 4.2.5, except that when the A bit in the packet/fragment is
   not set, the ETE sends the messages subject to rate limiting since it
   is not entirely critical that all fragmentation be reported to the
   ITE.

4.3.4.  SEAL-Layer Reassembly

   Following IPv4 reassembly of a SEAL packet with (RSV!=0; SEG=0), if
   the packet is not a SEAL-encapsulated ICMPv4 message, the ETE
   generates a SEAL-encapsulated ICMPv4 Parameter Problem message with
   pointer set to the flags field in the SEAL header, sends the message
   back to the ITE in the same manner specified in Section 4.3.3, then
   drops the packet.  For all other SEAL packets, the ETE adds the
   packet to a SEAL-Layer pending-reassembly queue if either the M bit
   or the SEG field in the SEAL header is non-zero.

   The ETE performs SEAL-layer reassembly through simple in-order
   concatenation of the encapsulated segments from N consecutive SEAL
   protocol packets from the same mid-layer packet.  SEAL-layer
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   reassembly requires the ETE to maintain a cache of recently received
   segments for a hold time that would allow for reasonable inter-
   segment delays.  The ETE uses a SEAL maximum segment lifetime of 15
   seconds for this purpose, i.e., the time after which it will discard
   an incomplete reassembly.  However, the ETE should also actively
   discard any pending reassemblies that clearly have no opportunity for
   completion, e.g., when a considerable number of new SEAL packets have
   been received before a packet that completes a pending reassembly has
   arrived.

   The ETE reassembles the mid-layer packet segments in SEAL protocol
   packets that contain segment numbers 0 through N-1, with M=1/0 in
   non-final/final segments, respectively, and with consecutive SEAL_ID
   values.  That is, for an N-segment mid-layer packet, reassembly
   entails the concatenation of the SEAL-encapsulated segments with
   (segment 0, SEAL_ID i), followed by (segment 1, SEAL_ID ((i + 1) mod
   2^32)), etc. up to (segment N-1, SEAL_ID ((i + N-1) mod 2^32)).  (For
   SEAL encapsulations specifically designed for traversal of IPv4 NATs,
   the ETE instead uses only a 16-bit SEAL_ID value, and uses mod 2^16
   arithmetic to associate the segments of the same packet.)

4.3.5.  Delivering Packets to Upper Layers

   Following SEAL-layer reassembly, the ETE silently discards the
   reassembled packet if it was a NULL packet (see Section 4.2.4).  In
   the same manner, the ETE silently discards any reassembled mid-layer
   packet larger than (2KB - OHLEN) that either experienced IPv4
   fragmentation or did not arrive as a single SEAL segment.

   Next, if the ETE determines that the inner packet would cause an
   ICMPv4 error message to be generated, it generates a SEAL-
   encapsulated ICMPv4 error message, sends the message back to the ITE
   in the same manner specified in Section 4.3.3, then either accepts or
   drops the packet according to the type of error.  Otherwise, the ETE
   delivers the inner packet to the upper-layer protocol indicated in
   the Next Header field.

5.  SEAL Protocol Specification - Transport Mode

   Section 4 specifies the operation of SEAL in "tunnel mode", i.e.,
   when there are both an inner and outer IP layer with a SEAL
   encapsulation layer between.  However, the SEAL protocol can also be
   used in a "transport mode" of operation within a subnetwork region in
   which the inner-layer corresponds to a transport layer protocol
   (e.g., UDP, TCP, etc.) instead of an inner IP layer.
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   For example, two TCP endpoints connected to the same subnetwork
   region can negotiate the use of transport-mode SEAL for a connection
   by inserting a ’SEAL_OPTION’ TCP option during the connection
   establishment phase.  If both TCPs agree on the use of SEAL, their
   protocol messages will be carried as TCP/SEAL/IPv4 and the connection
   will be serviced by the SEAL protocol using TCP (instead of an
   encapsulating tunnel endpoint) as the transport layer protocol.  The
   SEAL protocol for transport mode otherwise observes the same
   specifications as for Section 4.

6.  Link Requirements

   Subnetwork designers are expected to follow the recommendations in
   Section 2 of [RFC3819] when configuring link MTUs.

7.  End System Requirements

   SEAL provides robust mechanisms for returning PTB messages; however,
   end systems that send unfragmentable IP packets larger than 1500
   bytes are strongly encouraged to use Packetization Layer Path MTU
   Discovery per [RFC4821].

8.  Router Requirements

   IPv4 routers within the subnetwork are strongly encouraged to
   implement IPv4 fragmentation such that the first fragment is the
   largest and approximately the size of the underlying link MTU, i.e.,
   they should avoid generating runt first fragments.

9.  IANA Considerations

   SEAL_PROTO, SEAL_PORT, and SEAL_OPTION are taken from their
   respective range of experimental values documented in [RFC3692] and
   [RFC4727].  These values are for experimentation purposes only, and
   not to be used for any kind of deployments (i.e., they are not to be
   shipped in any products).

10.  Security Considerations

   Unlike IPv4 fragmentation, overlapping fragment attacks are not
   possible due to the requirement that SEAL segments be non-
   overlapping.

   An amplification/reflection attack is possible when an attacker sends
   IPv4 first fragments with spoofed source addresses to an ETE,
   resulting in a stream of ICMPv4 Fragmentation Needed messages
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   returned to a victim ITE.  The encapsulated segment of the spoofed
   IPv4 first fragment provides mitigation for the ITE to detect and
   discard spurious ICMPv4 Fragmentation Needed messages.

   The SEAL header is sent in-the-clear (outside of any IPsec/ESP
   encapsulations) the same as for the outer */IPv4 headers.  As for
   IPv6 extension headers, the SEAL header is protected only by L2
   integrity checks and is not covered under any L3 integrity checks.

11.  Related Work

   Section 3.1.7 of [RFC2764] provides a high-level sketch for
   supporting large tunnel MTUs via a tunnel-level segmentation and
   reassembly capability to avoid IP level fragmentation, which is in
   part the same approach used by tunnel-mode SEAL.  SEAL could
   therefore be considered as a fully functioned manifestation of the
   method postulated by that informational reference; however, SEAL also
   supports other modes of operation including transport-mode and
   duplicate packet detection.

   Section 3 of [RFC4459] describes inner and outer fragmentation at the
   tunnel endpoints as alternatives for accommodating the tunnel MTU;
   however, the SEAL protocol specifies a mid-layer segmentation and
   reassembly capability that is distinct from both inner and outer
   fragmentation.

   Section 4 of [RFC2460] specifies a method for inserting and
   processing extension headers between the base IPv6 header and
   transport layer protocol data.  The SEAL header is inserted and
   processed in exactly the same manner.

   The concepts of path MTU determination through the report of
   fragmentation and extending the IP Identification field were first
   proposed in deliberations of the TCP-IP mailing list and the Path MTU
   Discovery Working Group (MTUDWG) during the late 1980’s and early
   1990’s.  SEAL supports a report fragmentation capability using bits
   in an extension header (the original proposal used a spare bit in the
   IP header) and supports ID extension through a 16-bit field in an
   extension header (the original proposal used a new IP option).  A
   historical analysis of the evolution of these concepts, as well as
   the development of the eventual path MTU discovery mechanism for IP,
   appears in Appendix A of this document.

12.  SEAL Advantages over Classical Methods

   The SEAL approach offers a number of distinct advantages over the
   classical path MTU discovery methods [RFC1191] [RFC1981]:
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   1.  Classical path MTU discovery *always* results in packet loss when
       an MTU restriction is encountered.  Using SEAL, IPv4
       fragmentation provides a short-term interim mechanism for
       ensuring that packets are delivered while SEAL adjusts its packet
       sizing parameters.

   2.  Classical path MTU discovery requires that routers generate an
       ICMP PTB message for *all* packets lost due to an MTU
       restriction; this situation is exacerbated at high data rates and
       becomes severe for in-the-network tunnels that service many
       communicating end systems.  Since SEAL ensures that packets no
       larger than S_MRU are delivered, however, it is sufficient for
       the ETE to return ICMPv4 Fragmentation Needed messages subject to
       rate limiting and not for every packet-in-error.

   3.  Classical path MTU may require several iterations of dropping
       packets and returning ICMP PTB messages until an acceptable path
       MTU value is determined.  Under normal circumstances, SEAL
       determines the correct packet sizing parameters in a single
       iteration.

   4.  Using SEAL, ordinary packets serve as implicit probes without
       exposing data to unnecessary loss.  SEAL also provides an
       explicit probing mode not available in the classic methods.

   5.  Using SEAL, ETEs encapsulate ICMP error messages in an outer SEAL
       header such that packet-filtering network middleboxes can
       distinguish them from "raw" ICMP messages that may be generated
       by an attacker.

   6.  Most importantly, all SEAL packets have a 32-bit Identification
       value that can be used for duplicate packet detection purposes
       and to match ICMP error messages with actual packets sent without
       requiring per-packet state.  Moreover, the SEAL ITE can be
       configured to accept ICMP feedback only from the legitimate ETE;
       hence, the packet spoofing-related denial-of-service attack
       vectors open to the classical methods are eliminated.

   In summary, the SEAL approach represents an architecturally superior
   method for ensuring that packets of various sizes are either
   delivered or deterministically dropped.  When end systems use their
   own end-to-end MTU determination mechanisms [RFC4821], the SEAL
   advantages are further enhanced.
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Appendix A.  Historic Evolution of PMTUD

   (Taken from "Neighbor Affiliation Protocol for IPv6-over-(foo)-over-
   IPv4"; written 10/30/2002):

   The topic of Path MTU discovery (PMTUD) saw a flurry of discussion
   and numerous proposals in the late 1980’s through early 1990.  The
   initial problem was posed by Art Berggreen on May 22, 1987 in a
   message to the TCP-IP discussion group [TCP-IP].  The discussion that
   followed provided significant reference material for [FRAG].  An IETF
   Path MTU Discovery Working Group [MTUDWG] was formed in late 1989
   with charter to produce an RFC.  Several variations on a very few
   basic proposals were entertained, including:

   1.  Routers record the PMTUD estimate in ICMP-like path probe
       messages (proposed in [FRAG] and later [RFC1063])

   2.  The destination reports any fragmentation that occurs for packets
       received with the "RF" (Report Fragmentation) bit set (Steve
       Deering’s 1989 adaptation of Charles Lynn’s Nov. 1987 proposal)

   3.  A hybrid combination of 1) and Charles Lynn’s Nov. 1987 (straw
       RFC draft by McCloughrie, Fox and Mogul on Jan 12, 1990)

   4.  Combination of the Lynn proposal with TCP (Fred Bohle, Jan 30,
       1990)

   5.  Fragmentation avoidance by setting "IP_DF" flag on all packets
       and retransmitting if ICMPv4 "fragmentation needed" messages
       occur (Geof Cooper’s 1987 proposal; later adapted into [RFC1191]
       by Mogul and Deering).

   Option 1) seemed attractive to the group at the time, since it was
   believed that routers would migrate more quickly than hosts.  Option
   2) was a strong contender, but repeated attempts to secure an "RF"
   bit in the IPv4 header from the IESG failed and the proponents became
   discouraged. 3) was abandoned because it was perceived as too
   complicated, and 4) never received any apparent serious
   consideration.  Proposal 5) was a late entry into the discussion from
   Steve Deering on Feb. 24th, 1990.  The discussion group soon
   thereafter seemingly lost track of all other proposals and adopted
   5), which eventually evolved into [RFC1191] and later [RFC1981].

   In retrospect, the "RF" bit postulated in 2) is not needed if a
   "contract" is first established between the peers, as in proposal 4)
   and a message to the MTUDWG mailing list from jrd@PTT.LCS.MIT.EDU on
   Feb 19. 1990.  These proposals saw little discussion or rebuttal, and
   were dismissed based on the following the assertions:
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      o  routers upgrade their software faster than hosts

      o  PCs could not reassemble fragmented packets

      o  Proteon and Wellfleet routers did not reproduce the "RF" bit
         properly in fragmented packets

      o  Ethernet-FDDI bridges would need to perform fragmentation
         (i.e., "translucent" not "transparent" bridging)

      o  the 16-bit IP_ID field could wrap around and disrupt reassembly
         at high packet arrival rates

   The first four assertions, although perhaps valid at the time, have
   been overcome by historical events leaving only the final to
   consider.  But, [FOLK] has shown that IP_ID wraparound simply does
   not occur within several orders of magnitude the reassembly timeout
   window on high-bandwidth networks.

   (Author’s 2/11/08 note: this final point was based on a loose
   interpretation of [FOLK], and is more accurately addressed in
   [RFC4963].)
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Appendix B.  Reliability Extensions

   The SEAL header includes a Reserved (RSV) field that is set to zero
   for the purpose of this specification.  This field may be used by
   future updates to this specification for the purpose of improved
   reliability in the face of loss due to congestion, signal
   intermittence, etc.  Automatic Repeat-ReQuest (ARQ) mechanisms are
   used to ensure reliable delivery between the endpoints of physical
   links (e.g., on-link neighbors in an IEEE 802.11 network) as well as
   between the endpoints of an end-to-end transport (e.g., the endpoints
   of a TCP connection).  However, ARQ mechanisms may be poorly suited
   to in-the-network elements such as the SEAL ITE and ETE, since
   retransmission of lost segments would require unacceptable state
   maintenance at the ITE and would result in packet reordering within
   the subnetwork.

   Instead, alternate reliability mechanisms such as Forward Error
   Correction (FEC) may be specified in future updates to this
   specification for the purpose of improved reliability.  Such
   mechanisms may entail the ITE performing proactive transmissions of
   redundant data, e.g., by sending multiple copies of the same data.
   Signaling from the ETE (e.g., by sending SEAL-encapsulated ICMPv4
   Source Quench messages) may be specified in a future document as a
   means for the ETE to dynamically inform the ITE of changing FEC
   conditions.
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