
Network Working Group P. Gutmann, Ed.
Request for Comments: 4387 University of Auckland
Category: Standards Track February 2006

 Internet X.509 Public Key Infrastructure
 Operational Protocols: Certificate Store Access via HTTP

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The protocol conventions described in this document satisfy some of
 the operational requirements of the Internet Public Key
 Infrastructure (PKI). This document specifies the conventions for
 using the Hypertext Transfer Protocol (HTTP/HTTPS) as an interface
 mechanism to obtain certificates and certificate revocation lists
 (CRLs) from PKI repositories. Additional mechanisms addressing PKIX
 operational requirements are specified in separate documents.

Gutmann Standards Track [Page 1]

RFC 4387 Certificate Store Access via HTTP February 2006

Table of Contents

 1. Introduction ..2
 2. HTTP Certificate Store Interface3
 2.1. Converting Binary Blobs into Search Keys4
 2.2. Attribute Types: X.5095
 2.3. Attribute Types: PGP6
 2.4. Attribute Types: XML6
 2.5. Implementation Notes and Rationale6
 2.5.1. Identification7
 2.5.2. Checking of Input Values9
 2.5.3. URI Notes ..10
 2.5.4. Responses ..11
 2.5.5. Performance Issues12
 2.5.6. Miscellaneous13
 2.6. Examples ..14
 3. Locating HTTP Certificate Stores15
 3.1. Information in the Certificate15
 3.2. Use of DNS SRV ..16
 3.2.1. Example ..16
 3.3. Use of a "well-known" Location16
 3.3.1. Examples ...17
 3.4. Manual Configuration of the Client Software18
 3.5. Implementation Notes and Rationale18
 3.5.1. DNS SRV ..18
 3.5.2. "well-known" Locations19
 3.5.3. Information in the Certificate19
 3.5.4. Miscellaneous20
 4. Security Considerations ..20
 5. IANA Considerations ..22
 6. Acknowledgements ...22
 7. References ...22
 7.1. Normative References22
 7.2. Informative References23

1. Introduction

 This specification is part of a multi-part standard for the Internet
 Public Key Infrastructure (PKI) using X.509 certificates and
 certificate revocation lists (CRLs). This document specifies the
 conventions for using the Hypertext Transfer Protocol (HTTP), or
 optionally, HTTPS as an interface mechanism to obtain certificates or
 public keys, and certificate revocation lists (CRLs), from PKI
 repositories. Throughout the remainder of this document the generic
 term HTTP will be used to cover either option.

Gutmann Standards Track [Page 2]

RFC 4387 Certificate Store Access via HTTP February 2006

 Although RFC 2585 [RFC2585] covers fetching certificates via HTTP,
 this merely mentions that certificates may be fetched from a static
 URL, which doesn’t provide any general-purpose interface capabilities
 to a certificate store. The conventions described in this document
 allow HTTP to be used as a general-purpose, transparent interface to
 any type of certificate or key store including flat files, standard
 databases such as Berkeley DB and relational databases, and
 traditional X.500/LDAP directories. Typical applications would
 include use with web-enabled relational databases (which most
 databases are) or simple {key,value} lookup mechanisms such as
 Berkeley DB and its various descendants.

 Additional mechanisms addressing PKIX operational requirements are
 specified in separate documents.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in [RFC2119].

2. HTTP Certificate Store Interface

 The GET method is used in combination with an HTTP query URI
 [RFC2616] to retrieve certificates from the underlying certificate
 store:

 http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]

 The parameters for the query portion of the URI are a certificate or
 key identifier consisting of an attribute type and a value that
 specifies one or more certificates or public keys to be returned from
 the query:

 query = attribute ’=’ value

 Certificates and public keys are retrieved from one URI (the
 certificate URI) and CRLs from another URI (the revocation URI).
 These may or may not correspond to the same certificate store and/or
 server (the exact interpretation is a local configuration issue).
 The query value MUST be encoded using the form-urlencoded media type
 [RFC2854]. Further details of URI construction, size limits, and
 other factors are given in [RFC2616].

 Responses to unsuccessful queries (for example, to indicate a non-
 match or an error condition) are handled in the standard manner as
 per [RFC2616]. Clients should in particular be aware that in some
 instances servers may return HTTP type 3xx redirection requests to
 explicitly redirect queries to another server. Obviously, implicit
 DNS-based redirection is also possible.

Gutmann Standards Track [Page 3]

RFC 4387 Certificate Store Access via HTTP February 2006

 If more than one certificate matches a query, it MUST be returned as
 a multipart/mixed response. The returned data MUST be returned
 verbatim; it MUST NOT use any additional content- or transfer-
 encoding at the HTTP level (for example, it can’t be compressed or
 encoded as base64 or quoted-printable text). Implementations SHOULD
 NOT use chunked encoding in responses.

 The query component of the URI MAY optionally contain additional
 attribute/value pairs separated by the standard ampersand delimiter
 ’&’ that specify further actions to be taken by the certificate
 store. Certificate stores SHOULD ignore any additional unrecognised
 attribute/value pairs present in the URI.

 Other information, such as naming conventions and MIME types, is
 specified in [RFC2585] (with additional MIME types for non-X.509
 content in [RFC3156] and [RFC3275]).

2.1. Converting Binary Blobs into Search Keys

 Some fields (indicated by the "Process" column in the tables below)
 are of arbitrary length and/or contain non-textual data. Both of
 these properties make them unsuited for direct use in HTTP queries.
 In order to make them usable, fields for which the processing option
 is "Hash" are first hashed down to a fixed-length 160-bit value.
 Fields for which the processing option is "Hash" or "Base64" are
 base64-encoded to transform the binary data into textual forms:

 Processing Processing step
 option

 "Hash" Hash the key value using SHA-1 [FIPS180] to produce a
 160-bit value, then continue with the base64 encoding
 step that follows.

 "Hash" Encode the binary value using base64 encoding to produce
 "Base64" a 27-byte text-only value. Base64 encoding of the 20
 byte value will produce 28 bytes, and the last byte will
 always be a ’=’ padding character. The 27-byte value is
 created by dropping the trailing ’=’ character.

 For cases where the binary value is smaller or larger than the 20-
 byte SHA-1 output (for example, with 64-bit/8 byte PGP key IDs), the
 final value is created by removing any trailing ’=’ padding from the
 encoding of the binary value (this is a generalisation of the above
 case).

Gutmann Standards Track [Page 4]

RFC 4387 Certificate Store Access via HTTP February 2006

 Implementations MUST verify that the base64-encoded values submitted
 in requests contain only characters in the ranges ’a’-’z’, ’A’-’Z’,
 ’0’-’9’, ’+’, and ’/’. Queries containing any other character MUST
 be rejected. (See the implementation notes in Section 2.5 and the
 security considerations in Section 4 for more details on this
 requirement.)

2.2. Attribute Types: X.509

 Permitted attribute types and associated values for use with X.509
 certificates and CRLs are described below. Arbitrary-length binary
 values (as indicated in the table below) are converted into a search
 key by the process described in Section 2.1. Note that the values
 are checked for an exact match (after decoding of any form-urlencoded
 [RFC2854] portions if this is necessary) and are therefore case
 sensitive.

 Attribute Process Value
 --------- ------- -----
 certHash Hash Search key derived from the SHA-1 hash of the
 certificate (sometimes called the certificate
 fingerprint or thumbprint).

 uri None Subject URI associated with the certificate,
 without the (optional) scheme specifier. The URI
 type depends on the certificate. For S/MIME
 certificates, it would be an email address; for
 SSL/TLS certificates, it would be the server’s DNS
 name (this is usually also specified as the
 CommonName); for IPsec certificates, it would be
 the DNS name/IP address; and so on.

 iHash Hash Search key derived from the DER-encoded issuer DN
 as it appears in the certificate, CRL, or other
 object.

 iAndSHash Hash Search key derived from the certificate’s
 DER-encoded issuerAndSerialNumber [RFC3852].

 name None Subject CommonName contained in the certificate.

 sHash Hash Search key derived from the DER-encoded subject
 DN as it appears in the certificate or other
 object.

 sKIDHash Hash Search key derived from the certificate’s
 subjectKeyIdentifier (specifically the contents
 octets of the KeyIdentifier OCTET STRING).

Gutmann Standards Track [Page 5]

RFC 4387 Certificate Store Access via HTTP February 2006

 Certificate URIs MUST support retrieval by all the above attribute
 types.

 CRL URIs MUST support retrieval by the iHash and sKIDHash attribute
 types, which identify the issuer of the CRL. In addition, CRL URIs
 MAY support retrieval by certHash and iAndSHash attribute types, for
 cases where this is required by the use of the
 issuingDistributionPoint extension. A CRL query MUST return the
 matching CRL with the greatest thisUpdate value (in other words, the
 most recent CRL).

2.3. Attribute Types: PGP

 Permitted attribute types and associated values for use with PGP
 public keys and key revocation information are described below.
 Binary values (as indicated in the table below) are converted into a
 search key by the process described in Section 2.1.

 Attribute Process Value
 --------- ------- -----
 email None email address associated with the key.

 fingerprint Base64 160-bit PGP key fingerprint [RFC2440].

 keyID Base64 64-bit PGP key ID [RFC2440].

 name None User name associated with the key.

 Key URIs MUST support retrieval by all of the above attribute types.

 Revocation URIs MUST support retrieval by the fingerprint and keyID
 attribute types, which identify the issuer of the key revocation.

2.4. Attribute Types: XML

 Permitted attribute types and associated values for use with XML are
 as specified in sections 2.2 and 2.3. Since XML allows arbitrary
 attributes to be associated with the <RetrievalMethod> child element
 of <KeyInfo> [RFC3275], there are no additional special requirements
 for use with XML.

2.5. Implementation Notes and Rationale

 This informative section documents the rationale behind the design in
 Section 2 and provides guidance for implementors.

Gutmann Standards Track [Page 6]

RFC 4387 Certificate Store Access via HTTP February 2006

2.5.1. Identification

 The identifiers are taken from PKCS #15 [PKCS15], a standard that
 covers (among other things) a transparent interface to a
 certificate/public key store. These identifiers have been field
 proven, as they have been in common use for a number of years,
 typically via PKCS #11 [PKCS11]. Certificate stores and the
 identifiers that are required for typical certificate lookup
 operations are analysed in some detail in [Gutmann].

 The URI identifier type specifies the identifier associated with the
 certificate’s intended usage with a given Internet security protocol.
 For example, an SSL/TLS server certificate would contain the server’s
 DNS name (this is traditionally also specified as the CommonName or
 CN) an S/MIME certificate would contain the subject’s email address;
 an IPsec certificate would contain a DNS name or IP address; and a
 SIP certificate would contain a SIP URI. A modicum of common sense
 is assumed when deciding upon an appropriate URI field value.

 For historical reasons going back to its primary use as a means of
 looking up users’ S/MIME email certificates, some clients may specify
 the URI attribute name as "email" rather than "uri". Although not
 required by this specification, servers may choose to allow the use
 of "email" as an alias for "uri".

 In addition, it is common practice to use the Internet identifier
 associated with the certificate’s intended field of application as
 the CN for the certificate when this is the most sensible name for
 the certificate subject. For example, an SSL/TLS server certificate
 will contain the server’s DNS name in the CN field. In web-enabled
 devices, this may indeed be the only name that exists for the device.
 It is therefore quite possible that the URI will duplicate the CN,
 and that it may be the only identifier present (that is, there’s no
 full DN but only a single CN field).

 By long-standing convention, URIs in certificates are given without a
 scheme specifier. For example, an SSL/TLS server certificate would
 contain www.example.com rather than https://www.example.com, and an
 S/MIME certificate would contain user@example.com rather than
 mailto:user@example.com. This convention is extended to other URI
 types as well, so that a certificate containing the (effective) URIs
 im:user@example.com and xmpp:user@example.com would be queried using
 the single URI user@example.com. The certificate store would then
 return all certificates containing this URI, leaving it to the client
 to determine which one is most appropriate for its use. This
 approach is taken both because for the most common URI types there’s
 no schema specifier (see the paragraphs above) and no easy way to
 determine what the intended use is (an SSL/TLS server certificate is

Gutmann Standards Track [Page 7]

RFC 4387 Certificate Store Access via HTTP February 2006

 simply one presented by an SSL/TLS server), and because the relying
 party/client is in a better position to judge the certificate’s most
 appropriate use than the certificate store server.

 Another possible identifier that has been suggested is an IP address
 or DNS name, which will be required for web-enabled embedded devices.
 This is necessary to allow for example a home automation controller
 to be queried for certificates for the devices that it controls.
 Since this value is regarded as the CN for the device, common
 practice is to use this value for the CN in the same way that web
 server certificates set the CN to the server’s DNS name, so this
 option is already covered in a widely-accepted manner.

 The name and email address are an exact copy of what is present in
 the certificate, without any canonicalisation or rewriting (other
 than the transport encoding required by HTTP). This follows standard
 implementation practice, which transfers an exact copy of these data
 items in order to avoid problems due to character set translation,
 handling of whitespace, and other issues.

 Hashes are used for arbitrary-length fields such as ones containing
 DNs in place of the full field to keep the length manageable. In
 addition, the use of the hashed form emphasizes that searching for
 structured name data isn’t a supported feature, since this is a
 simple interface to a {key,value} certificate store rather than an
 HTTP interface to an X.500 directory. Users specifically requiring
 an HTTP interface to X.500 may use technology such as HTTP LDAP
 gateways for this purpose.

 Although clients will always submit a fixed 160-bit value, servers
 are free to use as many bits of this value as they require. For
 example, a server may choose to use only the first 40, 64, 80, or 128
 bits for efficiency in searching and maintaining indices.

 PGP has traditionally encoded IDs using a C-style 0xABCDEF notation
 based on the display format used for IDs in PGP 2.0. Unfortunately,
 strings in this format are also valid strings in the base64 format,
 complicated further by the fact that near-misses such as 0xABCDRF
 could be either a mistyped attempt at a hex ID or a valid base64 ID.
 For this reason, and to ensure consistency, base64 IDs are used
 throughout this specification. The search keys used internally will
 be binary values, so whether these are converted from ASCII-hex or
 base64 is immaterial in the long run.

 The attributes are given shortened name forms (for example, iAndSHash
 in place of issuerAndSerialNumberHash) in order to keep the lengths
 reasonable, or common name forms (for example, email in place of

Gutmann Standards Track [Page 8]

RFC 4387 Certificate Store Access via HTTP February 2006

 rfc822Name, rfc822Mailbox, emailAddress, mail, or email) where
 multiple name forms exist.

 In some cases, users may require additional, application-specific
 attribute types. For example, a healthcare application that uses a
 healthcare ID as the primary key for its databases may require the
 ability to perform certificate lookups based on this healthcare ID.
 The formatting and use of such application-specific identifiers is
 beyond the scope of this document. However, they should begin with
 ’x-’ to ensure that they don’t conflict with identifiers that may be
 defined in future versions of this specification.

2.5.2. Checking of Input Values

 The attribute value portion of the identifier should be carefully
 checked for invalid characters since allowing raw data presents a
 security risk. Consider, for example, a certificate/public key store
 implemented using an RDBMS in which the SQL query is built up as
 "SELECT certificate FROM certificates WHERE iHash = " + <search key>.
 If <search key> is set to "ABCD;DELETE FROM certificates", the
 results of the query will be quite different from what was expected
 by the certificate store administrators. Even a read-only query can
 be problematic; for example, setting <search key> to "UNION SELECT
 password FROM master.sysxlogins" will list all passwords in an SQL
 Server database (in an easily-decrypted format) if the user is
 running under the sa (DBA) account. For this reason, only valid
 base64 encodings should be allowed. The same checking applies to
 queries by name or email address.

 Straightforward sanitisation of queries may not be sufficient to
 prevent all attacks; for example, a filter that removes the SQL query
 string "DELETE" can be bypassed by submitting the string embedded in
 another instance of the string. Removing "DELETE" from
 "DELDELETEETE" leaves the outer "DELETE" in place. Abusing the
 truncation of over-long strings by filters can also be used as a
 means of attack, with the attacker ensuring that the truncation
 occurs in the middle of an escape sequence, bypassing the filtering.
 Although in theory recursive filtering may help here, the use of
 parameterised queries (often called placeholders) that aren’t
 vulnerable to SQL injection should be used to avoid these attacks.
 More information on securing database back-ends may be found in
 [Birkholz], and more comments on sanitisation and safety concerns may
 be found in the security considerations section.

Gutmann Standards Track [Page 9]

RFC 4387 Certificate Store Access via HTTP February 2006

2.5.3. URI Notes

 Pre-constructed URIs that fetch a certificate/public key matching a
 fixed search criterion may be useful for items such as web pages or
 business cards, or even for technical support/helpdesk staff who want
 to mail to users but can’t find the certificate themselves. These
 URIs may also be used to enforce privacy measures when distributing
 certificates by perturbing the search key in a manner known only to
 the certificate/public key store, or to the certificate store and
 users (in other words, by converting the URI into a capability). For
 example, a user with a newly-issued certificate could be instructed
 to fetch it with a key of "x-encrCertHash=...", which is decrypted by
 the certificate store to fetch the appropriate certificate, ensuring
 that only the certificate owner can fetch their certificate
 immediately after issue. Similarly, an organisation that doesn’t
 want to make its certificates available for public query might
 require a MAC on search keys (e.g., "x-macCertHash=...") to ensure
 that only authorised users can search for certificates (although a
 more logical place for access control, if a true web server is being
 used to access the store, would obviously be at the HTTP level).

 The query types have been specifically chosen to be not just an HTTP
 interface to LDAP but a general-purpose retrieval mechanism that
 allows arbitrary certificate/public key storage mechanisms (with a
 bias towards simple {key,value} stores, which are deployed almost
 universally, whether as ISAM, Berkeley DB, or an RDBMS) to be
 employed as back-ends. This specification has been deliberately
 written to be technology neutral, allowing any {key,value} lookup
 mechanism to be used. It doesn’t matter if you choose to have
 trained chimpanzees look up certificates in books of tables, as long
 as your method can provide the correct response with reasonable
 efficiency.

 Certificate/public key and CRL stores are allocated separate URIs
 because they may be implemented using different mechanisms. A
 certificate store typically contains large numbers of small items,
 while a CRL store contains a very small number of potentially large
 items. By providing independent URIs, it’s possible to implement the
 two stores using mechanisms tailored to the data they contain.

 PGP combines key and revocation information into a single data object
 so that it’s possible to return both public keys and revocation
 information from the same URI. If distinct key and revocation
 servers are available, these can provide a slight performance gain
 since fetching revocation information doesn’t require fetching the
 key that it applies to. If no separate servers are available, a

Gutmann Standards Track [Page 10]

RFC 4387 Certificate Store Access via HTTP February 2006

 single server can be used to satisfy both types of queries with a
 slight performance loss, since fetching revocation information will
 also fetch the public key data associated with the revocation data.

2.5.4. Responses

 The disallowance of exotic encoding forms reflects the fact that most
 clients (and many servers, particularly for embedded devices) are not
 general-purpose web browsers or servers capable of handling an
 arbitrary range of encoding forms and types, but simply basic HTTP
 engines attached to key management applications. In other words, the
 HTTP interface is a rudimentary add-on to a key management
 application, rather than key-management being an add-on to a
 general-purpose web client or server. Eliminating unnecessary
 choices simplifies the implementation task and reduces code size and
 complexity, with an accompanying decrease in the probability of
 security issues arising from the added complexity.

 The use of an "Accept-encoding: identity" header would achieve the
 same effect as disallowing any additional encodings and may indeed be
 useful since section 14.3 of [RFC2616] indicates that the absence of
 this header may be taken to mean that any encoding is permitted.
 However, this unnecessarily bloats the HTTP header in a potentially
 performance-affecting manner (see Section 2.5.5), whereas
 establishing a requirement that the response be returned without any
 additional decoration avoids the need to specify this in each
 request. Implementations should therefore omit the Accept-encoding
 header entirely or if it has to be included, include "identity" or
 the wildcard "*" as an accepted content-encoding type.

 Use of chunked encoding is given as a SHOULD NOT rather than a MUST
 NOT because support for it is required by [RFC2616]. Nevertheless,
 this form of encoding is strongly discouraged, as the data quantities
 being transferred (1-2kB) make it entirely unnecessary, and support
 for this encoding form is vulnerable to various implementation bugs,
 some of which may affect security. However, implementors should be
 aware that many versions of the Apache web server will unnecessarily
 use chunked encoding when returning responses. Although it would be
 better to make this a MUST NOT, this would render clients that
 rejected it incompatible with the world’s most widely used web
 server. For this reason, support for chunked encoding is strongly
 discouraged but is nevertheless permitted. Clients that choose not
 to support it should be aware that they may run into problems when
 communicating with Apache-based HTTP certificate stores.

 Multiple responses are returned as multipart/mixed rather than an
 ASN.1 SEQUENCE OF Certificate or PKCS #7/CMS certificate chain
 (degenerate signed data containing only certificates) because this is

Gutmann Standards Track [Page 11]

RFC 4387 Certificate Store Access via HTTP February 2006

 more straightforward to implement with standard web-enabled tools.
 An additional advantage is that it doesn’t restrict this access
 mechanism to DER-based data, allowing it to be extended to other
 certificate types, such as XML, PGP, and SPKI.

2.5.5. Performance Issues

 Where high throughput/performance under load is a critical issue, a
 main-memory database that acts as a form of content cache may be
 interposed between the on-disk database and the HTTP interface
 [Garcia-Molina]. A main-memory database provides the same
 functionality as an on-disk database and is fully transparent to the
 HTTP front-end, but offers buffer management and retrieval facilities
 optimised for memory-resident data. Where further scalability is
 required, the content-caching system could be implemented as a
 cluster of main-memory databases [Ji].

 Various network efficiency considerations need to be taken into
 account when implementing this certificate/public key distribution
 mechanism. For example, a simplistic implementation that performs
 two writes (the HTTP header and the certificate, written separately)
 followed by a read will interact badly with TCP delayed-ACK and
 slow-start. This occurs because the TCP MSS is typically 1460 bytes
 on a LAN (Ethernet) or 512/536 bytes on a WAN, while HTTP headers are
 ˜200-300 bytes, far less than the MSS. When an HTTP message is first
 sent, the TCP congestion window begins at one segment, with the TCP
 slow-start then doubling its size for each ACK. Sending the headers
 separately will send one short segment and a second MSS-size segment,
 whereupon the TCP stack will wait for the responder’s ACK before
 continuing. The responder gets both segments, then delays its ACK
 for 200ms in the hopes of piggybacking it on responder data, which is
 never sent, since it’s still waiting for the rest of the HTTP body
 from the initiator. As a result, there is a 200ms (+assorted RTT)
 delay in each message sent.

 There are various other considerations that need to be taken into
 account to provide maximum efficiency. These are covered in depth
 elsewhere [Spero] [Heidemann] [Nielsen]. In addition, modifications
 to TCP’s behaviour, such as the use of 4K initial windows [RFC3390]
 (designed to reduce small HTTP transfer times to a single RTT),
 should also ameliorate some of these issues.

 A rule of thumb for optimal performance is to combine the HTTP header
 and data payload into a single write (any reasonable HTTP
 implementation will do this anyway, thanks to the considerable body
 of experience that exists for HTTP server performance tuning), and to
 keep the HTTP headers to a minimum to try to fit data within the TCP
 MSS. For example, since this protocol doesn’t involve a web browser,

Gutmann Standards Track [Page 12]

RFC 4387 Certificate Store Access via HTTP February 2006

 there’s no need to include various common browser-related headers
 such as ones detailing software versions or acceptable languages.

2.5.6. Miscellaneous

 The interface specified in this document is a basic read-only type
 that will be used by the majority of clients. The handling of
 updates (both insertion and deletion) is a complex issue involving
 both technological issues (a variety of fields used for indexing and
 information retrieval need to be specified in a technology-neutral
 manner, or the certificate store needs to perform its own parsing of
 the item being added, moving it from a near-universal key=value
 lookup mechanism to a full public-key/certificate processing system)
 and political ones (who can perform updates to the certificate store,
 and under what conditions?). Because of this complexity, the details
 of any potential update mechanism are left as a local configuration
 issue, although they may at some point be covered in a future
 document if there is sufficient demand.

 Concerns have been raised over the use of HTTP as a substrate
 [RFC3205]. The mechanism described here, which implements a
 straightforward request/response protocol with the same semantics as
 traditional HTTP requests, is unaffected by these issues.
 Specifically, it does not implement any form of complex RPC
 mechanism, does not require HTTP security measures, is not affected
 by firewalls (since it uses only a basic HTTP GET rather than
 layering a new protocol on top of HTTP), and has well-defined MIME
 media types specified in standards documents. As such, the concerns
 expressed in [RFC3205] do not apply here. In addition, although a
 number of servers still don’t fully support some of the more advanced
 features of HTTP 1.1 [Krishnamurthy], the minimal subset used here is
 well supported by the majority of servers and HTTP implementations.

 This access mechanism is similar to the PGP HKP protocol [HKP];
 however, the latter is almost entirely undocumented and requires that
 implementors reverse-engineer other implementations. Because of this
 lack of standardisation, no attempt has been made to ensure
 interoperability or compatibility with HKP-based servers, although
 PGP developers provided much valuable input for this document. One
 benefit that HKP does bring is extensive implementation experience,
 which indicates that this is a very workable solution to the problem
 of a simple certificate/public key retrieval mechanism. HKP servers
 have been implemented using flat files, Berkeley DB, and various
 databases, such as Postgres and MySQL.

Gutmann Standards Track [Page 13]

RFC 4387 Certificate Store Access via HTTP February 2006

2.6. Examples

 To convert the subject DN C=NZ, O=... CN=Fred Dagg into a search key:

 Hash the DN, in the DER-encoded form it appears in the
 certificate, to obtain

 96 4C 70 C4 1E C9 08 E5 CA 45 25 10 D6 C8 28 3A 1A C1 DF E2

 Base-64 encode this to obtain:

 lkxwxB7JCOXKRSUQ1sgoOhrB3+I

 (Note the absence of trailing ’=’ padding.) This is the search key
 to use in the query URI.

 To fetch all certificates useful for sending encrypted email to
 foo@example.com:

 GET /search.cgi?email=foo%40example.com HTTP/1.1

 (For simplicity, the additional Host: header required by [RFC2616] is
 omitted here and in the following examples.) In this case,
 "/search.cgi" is the abs_path portion of the query URI, and the
 request is submitted to the server located at the net_loc portion of
 the query URI. Note the encoding of the ’@’ symbol as per [RFC2854].
 Remaining required headers, such as the "Host" header required by
 HTTP 1.1, have been omitted for the sake of clarity.

 To fetch the CA certificate that issued the email certificate:

 <Convert the issuer DN to a search key>
 GET /search.cgi?sHash=<search key> HTTP/1.1

 Alternatively, if chaining is by key identifier:

 <Extract the keyIdentifier from the authorityKeyIdentifier>
 GET /search.cgi?sKIDHash=<search key> HTTP/1.1

 To fetch other certificates belonging to the same user as the email
 certificate:

 <Convert the subject DN to a search key>
 GET /search.cgi?sHash=<search key> HTTP/1.1

Gutmann Standards Track [Page 14]

RFC 4387 Certificate Store Access via HTTP February 2006

 To fetch the CRL for the certificate:

 <Convert the issuer DN to a search key>
 GET /search.cgi?iHash=<search key> HTTP/1.1

 Note that since the differentiator is the URI base, the above two
 queries appear identical (since the URI base isn’t shown) but are in
 fact distinct.

 To retrieve a key using XML methods, the <KeyName> (which contains
 the string identifier for the key), used with the subject DN hash
 above, would be:

 <KeyName KeyID="sHash">lkxwxB7JCOXKRSUQ1sgoOhrB3+I</KeyName>.

3. Locating HTTP Certificate Stores

 In order to locate servers from which certificates may be retrieved,
 relying parties can employ one or more of the following strategies:

 - Information contained in the certificate
 - Use of DNS SRV
 - Use of a "well-known" location
 - Manual configuration of the client software

 The intent of the various options provided here is to make the
 certificate store access as transparent as possible, only requiring
 manual user configuration as a last resort.

3.1. Information in the Certificate

 In order to convey a well-known point of information access to
 relying parties, CAs SHOULD use the SubjectInfoAccess (SIA) and
 AuthorityInfoAccess (AIA) extension [RFC3280] in certificates. The
 OID value for the accessMethod is one of:

 id-ad-http-certs OBJECT IDENTIFIER ::= { id-ad 6 }
 id-ad-http-crls OBJECT IDENTIFIER ::= { id-ad 7 }

 where:

 id-ad OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5)
 pkix(7) 48 }

Gutmann Standards Track [Page 15]

RFC 4387 Certificate Store Access via HTTP February 2006

 The corresponding accessLocation is the query URI. The use of this
 facility provides a CA with a convenient, standard location to
 indicate where further certificates may be found, for example, for
 certification path construction purposes. Note that it doesn’t mean
 that the provision of certificate store access services is limited to
 CAs only.

3.2. Use of DNS SRV

 DNS SRV is a facility for specifying the location of the server(s)
 for a specific protocol and domain [RFC2782]. For the certificate
 store interface, the DNS SRV symbolic name for the certificate store
 interface SHALL be "certificates". The name for the CRL store
 interface SHALL be "crls". The name for the PGP public key store
 SHALL be "pgpkeys". The name for the PGP revocation store SHALL be
 "pgprevocations". Handling of additional DNS SRV facilities, such as
 the priority and weight fields, is as per [RFC2782].

3.2.1. Example

 If a CA with the domain example.com were to make its certificates
 available via an HTTP certificate store interface, the server details
 could be obtained by a lookup on:

 _certificates._tcp.example.com

 and

 _crls._tcp.example.com

 This would return the server(s) and port(s) for the service as
 specified in [RFC2782].

3.3. Use of a "well-known" Location

 If no other location information is available, the certificate store
 interface may be located at a "well-known" location constructed from
 the service provider’s domain name. In the usual case, the URI is
 constructed by prepending the type of information to be retrieved
 ("certificates.", "crls.", "pgpkeys.", or "pgprevocations.") to the
 domain name to obtain the net_loc portion of the URI, and by
 appending a fixed abs_path portion "search.cgi". The URI form of the
 "well-known" location is therefore:

 certificates.<domain_name>/search.cgi
 crls.<domain_name>/search.cgi
 pgpkeys.<domain_name>/search.cgi
 pgprevocations.<domain_name>/search.cgi

Gutmann Standards Track [Page 16]

RFC 4387 Certificate Store Access via HTTP February 2006

 Certificate store service providers SHOULD use these URIs in
 preference to other alternatives. Note that the use of "search.cgi"
 does not imply the use of CGI scripts [RFC3875]. This would be the
 exception rather than the rule, since it would lead to a rather
 inefficient implementation; it merely provides one possible (and
 relatively simple to set up) implementation alternative (see the
 rationale for more on this).

 A second case occurs when the certificate access service is being
 provided by web-enabled embedded devices, such as Universal Plug and
 Play devices [UPNP]. These devices have a single, fixed net_loc
 (either an IP address or a DNS name) and make services available via
 an HTTP interface. In this case, the URI is constructed by appending
 a fixed abs_path portion "certificates/search.cgi" for certificates,
 "crls/search.cgi" for CRLs, "pgpkeys/search.cgi" for PGP public keys,
 and "pgprevocations/search.cgi" for PGP revocation information to the
 net_loc. The URI form of the "well-known" location is therefore:

 <net_loc>/certificates/search.cgi
 <net_loc>/crls/search.cgi
 <net_loc>/pgpkeys/search.cgi
 <net_loc>/pgprevocations/search.cgi

 If certificate access as described in this document is implemented by
 the device, then it SHOULD use these URIs in preference to other
 alternatives (see the rationale for more on this requirement).

3.3.1. Examples

 If a CA with the domain example.com were to make its certificates
 available via an HTTP certificate store interface, the "well-known"
 query URIs for certificates and CRLs would be:

 http://certificates.example.com/search.cgi
 http://crls.example.com/search.cgi

 A home automation controller with the IP address 192.0.2.1 (a control
 point in UPnP terminology) would make certificates for devices such
 as HVAC controllers, lighting and appliance controllers, and fire and
 physical intrusion detection devices available as:

 http://192.0.2.1/certificates/search.cgi
 http://192.0.2.1/crls/search.cgi

Gutmann Standards Track [Page 17]

RFC 4387 Certificate Store Access via HTTP February 2006

 A print server with DNS name "printspooler" would make certificates
 for web-enabled printers that it communicates with available as:

 http://printspooler/certificates/search.cgi
 http://printspooler/crls/search.cgi

3.4. Manual Configuration of the Client Software

 The accessLocation for the HTTP certificate/public key/CRL store MAY
 be configured locally at the client. This can be used if no other
 information is available, or if it is necessary to override other
 information.

3.5. Implementation Notes and Rationale

 This informative section documents the rationale behind the design in
 Section 3 and provides guidance for implementors.

3.5.1. DNS SRV

 The optimal solution for the problem of service location would be DNS
 SRV. Unfortunately, the operating system used by the user group most
 desperately in need of this type of handholding has no support for
 anything beyond the most basic DNS address lookups, making it
 impossible to use DNS SRV with anything but very recent Win2K and XP
 systems. To make things even more entertaining, several of the
 function names and some of the function parameters changed at various
 times during the Win2K phase of development, and the behaviour of
 portions of the Windows sockets API changed in undocumented ways to
 match. This leads to an unfortunate situation in which a Unix
 sysadmin can make use of DNS SRV to avoid having to deal with
 technical configuration issues, but a Windows’95 user can’t. Because
 of these problems, an alternative to DNS SRV is provided for
 situations where it’s not possible to use this.

 The SRV or "well-known" location option can frequently be
 automatically derived by user software from currently-known
 parameters. For example, if the recipient’s email address is
 @example.com, the user software would query
 _certificates._tcp.example.com or go to certificates.example.com and
 request the certificate. In addition, user software may maintain a
 list of known certificate sources in the way that known CA lists are
 maintained by web browsers. The specific mention of support for
 redirection in Section 2 emphasises that many sites will outsource
 the certificate-storage task. At worst, all that will be required is
 the addition of a single static web page pointing to the real server.
 Alternatives such as DNS CNAME RRs are also possible but may not be
 as easy to set up as HTTP redirects (corporate policies tend to be

Gutmann Standards Track [Page 18]

RFC 4387 Certificate Store Access via HTTP February 2006

 more flexible in regard to web page contents than modifying DNS
 configurations would be).

3.5.2. "well-known" Locations

 The "well-known" location URI is designed to make hosting options as
 flexible as possible. Locating the service at www.<domain name>
 would generally require that it be handled by the provider’s main web
 server, while using a distinct server URI allows for it be handled as
 desired by the provider. Although there will no doubt be servers
 that implement the interface using Apache and Perl scripts, a more
 logical implementation would consist of a simple network interface to
 a key-and-value lookup mechanism, such as Berkeley DB. The URI form
 presented in Section 3.3 allows for maximum flexibility, since it
 will work with both web servers/CGI scripts and non-web-server-based
 network front-ends for certificate stores.

3.5.3. Information in the Certificate

 Implementations that require the use of nonstandard locations, ports,
 or HTTPS rather than HTTP in combination with "well-known" locations
 should use an HTTP redirect at the "well-known" location to point to
 the nonstandard location. For example, if the print spooler in
 Section 3.3 used an SSL-protected server named printspooler-server
 with an abs_path portion of cert_access, it would use an HTTP 302
 redirect to https://printspooler-server/cert_access. This combines
 the plug-and-play capability of "well-known" locations with the
 ability to use nonstandard locations and ports.

 The SIA and AIA extensions are used to indicate the location for the
 CRL store interface rather than the CRLDistributionPoint (CRLDP)
 extension, since the two perform entirely different functions. A
 CRLDP contains "a pointer to the current CRL", a fixed location
 containing a CRL for the current certificate, while the SIA/AIA
 extension indicates "how to access CA information and services for
 the subject/issuer of the certificate in which the extension
 appears", in this case, the CRL store interface that provides CRLs
 for any certificates issued by the CA. In addition, CRLDP associates
 other attribute information with a query that is incompatible with
 the simple query mechanisms presented in this document.

 A single server can be used to handle both CRLDP and AIA/SIA queries
 provided that the CRLDP form uses an HTTP URI. Since CRLDP points to
 a single static location for a CRL, a query can be pre-constructed
 and stored in the CRLDP extension. Software that uses the CRLDP will
 retrieve the single CRL that applies to the certificate from the
 server, and software that uses the AIA/SIA can retrieve any CRL from
 the server. Similar pre-constructed URIs may also be useful in other

Gutmann Standards Track [Page 19]

RFC 4387 Certificate Store Access via HTTP February 2006

 circumstances (for example, for links on web pages) to place in
 appropriate locations like the issuerAltName, or even for technical
 support/helpdesk staff to email to users who can’t find the
 certificate themselves, as described in Section 2.5. The resulting
 certstore URL, when clicked on by the user, will directly access the
 certificate when used in conjunction with any certificate-aware
 application, such as a browser or mail program.

3.5.4. Miscellaneous

 Web-enabled (or, more strictly, HTTP-enabled) devices are intended to
 be plug-and-play, with minimal (or no) user configuration necessary.
 The "well-known" URI allows any known device (for example, one
 discovered via UPNP’s Simple Service Discovery Protocol, SSDP) to be
 queried for certificates without requiring further user
 configuration. Note that in practice no embedded device would ever
 use the address given in the example (the de facto standard address
 for web-enabled embedded devices is 192.168.1.x and not 192.0.2.x);
 however, IETF policy requires the use of this non-address for
 examples.

 Protocols such as UPnP have their own means of disseminating device
 and protocol information. For example, UPnP uses SOAP, which
 provides a GetPublicKeys action for pulling device keys and a
 PresentKeys action for pushing control point keys. The text in
 Section 3.3 is not meant to imply that this document overrides the
 existing UPnP mechanism, but merely that, if a device implements the
 mechanism described here, it should use the naming scheme in Section
 3.3 rather than use arbitrary names.

4. Security Considerations

 HTTP caching proxies are common on the Internet, and some proxies may
 not check for the latest version of an object correctly. [RFC2616]
 specifies that responses to query URLs should not be cached, and most
 proxies and servers correctly implement the "Cache-Control: no-cache"
 mechanism, which can be used to override caching ("Pragma: no-cache"
 for HTTP 1.0). However, in the rare instance in which an HTTP
 request for a certificate or CRL goes through a misconfigured or
 otherwise broken proxy, the proxy may return an out-of-date response.

 Care should be taken to ensure that only valid queries are fed
 through to the back-end used to retrieve certificates. Allowing
 attackers to submit arbitrary queries may allow them to manipulate
 the certificate store in unexpected ways if the back-end tries to
 interpret the query contents. For example, if a certificate store is
 implemented using an RDBMS for which the calling application
 assembles a complete SQL string to perform the query, and the SQL

Gutmann Standards Track [Page 20]

RFC 4387 Certificate Store Access via HTTP February 2006

 query is built up as "SELECT certificate FROM certificates WHERE
 iHash = " + <search key>, and <search key> is set to "X;DELETE FROM
 certificates", the results of the query will be quite different from
 what was expected by the certificate store administrator. The same
 applies to queries by name and email address. Even a read-only query
 can be problematic; for example, setting <search key> to "UNION
 SELECT password FROM master.sysxlogins" will list all passwords in an
 SQL Server database (in an easily decrypted format) if the user is
 running under the sa (DBA) account. Straightforward sanitisation of
 queries may not be sufficient to prevent all attacks; for example, a
 filter that removes the SQL query string "DELETE" can be bypassed by
 submitting the string embedded in another instance of the string.
 Removing "DELETE" from "DELDELETEETE" leaves the outer "DELETE" in
 place. Abusing the truncation of over-long strings by filters can
 also be used as a means of attack, in which the attacker ensures that
 the truncation occurs in the middle of an escape sequence, bypassing
 the filtering. The use of parameterised queries (often called
 placeholders) that aren’t vulnerable to SQL injection should be used
 to avoid these attacks.

 In addition, since some query data may be encoded/decoded before
 being sent to the back-end, applications should check both the
 encoded and decoded form for valid data. A simple means of avoiding
 these problems is to use parameterised commands rather than hand-
 assembling SQL strings for use in queries (this is also more
 efficient for most database interfaces). The use of parameterised
 commands means that the query value is never present in any position
 where it could be interpreted as a portion of the query command.

 Alongside filtering of queries, the back-end should be configured to
 disable any form of update access via the web interface. For
 Berkeley DB, this restriction can be imposed by opening the
 certificate store in read-only mode from the web interface. For
 relational databases, it can be imposed through the SQL GRANT/REVOKE
 mechanism, for example, "REVOKE ALL ON certificates FROM webuser.
 GRANT SELECT ON certificates TO webuser" will allow read-only access
 of the appropriate kind for the web interface. Server-specific
 security measures may also be employed; for example, the SQL Server
 provides the built-in db_datareader account that only allows read
 access to tables (but see the note above about what can be done even
 with read-only access) and the ability to run the server under a
 dedicated low-privilege account (a standard feature of Unix systems).

 The mechanism described in this document is not intended to function
 as a trusted directory/database. In particular, users should not
 assume that just because they fetched a public key or certificate
 from an entity claiming to be X, that X has made any statement about
 the veracity of the public key or certificate. The use of a signed

Gutmann Standards Track [Page 21]

RFC 4387 Certificate Store Access via HTTP February 2006

 representation of the items stored removes the need to depend on the
 certificate store for any security service other than availability.
 Although it’s possible to implement a trusted directory/database
 using HTTPS or some other form of secured/trusted link, this is a
 local policy/configuration issue, and in the absence of such
 additional security measures users should apply appropriate levels of
 verification to any keys or certificates fetched before they take
 them into use.

5. IANA Considerations

 No action by IANA is needed. The AIA/SIA accessMethod types are
 identified by object identifiers (OIDs) from an arc managed by the
 PKIX working group. Should additional accessMethods be introduced
 (for example, for attribute certificates or non-X.509 certificate
 types), the advocates for such accessMethods are expected to assign
 the necessary OIDs from their own arcs.

6. Acknowledgements

 Anders Rundgren, Blake Ramsdell, Jeff Jacoby, David Shaw, and members
 of the ietf-pkix working group provided useful input and feedback on
 this document.

7. References

7.1. Normative References

 [FIPS180] Federal Information Processing Standards Publication
 (FIPS PUB) 180-1, Secure Hash Standard, 17 April
 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2440] Callas, J., Donnerhacke, L., Finney, H., and R.
 Thayer, "OpenPGP Message Format", RFC 2440, November
 1998.

 [RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public
 Key Infrastructure Operational Protocols: FTP and
 HTTP", RFC 2585, May 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee,
 "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616,
 June 1999.

Gutmann Standards Track [Page 22]

RFC 4387 Certificate Store Access via HTTP February 2006

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR
 for specifying the location of services (DNS SRV)",
 RFC 2782, February 2000.

 [RFC2854] Connolly, D. and L. Masinter, "The ’text/html’ Media
 Type", RFC 2854, June 2000.

 [RFC3156] Elkins, M., Del Torto, D., Levien, R., and T.
 Roessler, "MIME Security with OpenPGP", RFC 3156,
 August 2001.

 [RFC3275] Eastlake 3rd, D., Reagle, J., and D. Solo,
 "(Extensible Markup Language) XML-Signature Syntax
 and Processing", RFC 3275, March 2002.

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo,
 "Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile", RFC
 3280, April 2002.

 [RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)",
 RFC 3852, July 2004.

7.2. Informative References

 [Birkholz] "Special Ops: Host and Network Security for
 Microsoft, Unix, and Oracle", Erik Birkholz et al,
 Syngress Publishing, November 2002.

 [Garcia-Molina] "Main Memory Database Systems", Hector Garcia-Molina
 and Kenneth Salem, IEEE Transactions on Knowledge and
 Data Engineering, Vol.4, No.6 (December 1992), p.509.

 [Gutmann] "A Reliable, Scalable General-purpose Certificate
 Store", P. Gutmann, Proceedings of the 16th Annual
 Computer Security Applications Conference, December
 2000.

 [Heidemann] "Performance Interactions Between P-HTTP and TCP
 Implementations", J. Heidemann, ACM Computer
 Communications Review, April 1997.

 [HKP] "A PGP Public Key Server", Marc Horowitz, 2000,
 http://www.mit.edu/afs/net.mit.edu/project/pks/
 thesis/paper/thesis.html. A more complete and up-
 to-date overview of HKP may be obtained from the
 source code of an open-source OpenPGP implementation
 such as GPG.

Gutmann Standards Track [Page 23]

RFC 4387 Certificate Store Access via HTTP February 2006

 [Ji] "Affinity-based Management of Main Memory Database
 Clusters", Minwen Ji, ACM Transactions on Internet
 Technology, Vol.2, No.4 (November 2002), p.307.

 [Krishnamurthy] "PRO-COW: Protocol Compliance on the Web - A
 Longitudinal Survey", Balachander Krishnamurthy and
 Martin Arlitt, Proceedings of the 3rd Usenix
 Symposium on Internet Technologies and Systems
 (USITS’01), March 2001, p.109.

 [Nielsen] "Network Performance Effects of HTTP/1.1, CSS1, and
 PNG", H.Nielsen, J.Gettys, A.Baird-Smith,
 E.Prud’hommeaux, H.Wium Lie, and C.Lilley, 24 June
 1997, http://www.w3.org/Protocols/HTTP/
 Performance/Pipeline.html

 [PKCS11] PKCS #11 Cryptographic Token Interface Standard, RSA
 Laboratories, December 1999.

 [PKCS15] PKCS #15 Cryptographic Token Information Syntax
 Standard, RSA Laboratories, June 2000.

 [RFC3205] Moore, K., "On the use of HTTP as a Substrate", BCP
 56, RFC 3205, February 2002.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing
 TCP’s Initial Window", RFC 3390, October 2002.

 [RFC3875] Robinson, D. and K. Coar, "The Common Gateway
 Interface (CGI) Version 1.1", RFC 3875, October 2004.

 [Spero] "Analysis of HTTP Performance Problems", S.Spero,
 July 1994, http://www.w3.org/Protocols/HTTP/1.0/
 HTTPPerformance.html.

 [UPNP] "Universal Plug and Play Device Architecture, Version
 1.0", UPnP Forum, 8 June 2000.

Author’s Address

 Peter Gutmann
 University of Auckland
 Private Bag 92019
 Auckland, New Zealand

 EMail: pgut001@cs.auckland.ac.nz

Gutmann Standards Track [Page 24]

RFC 4387 Certificate Store Access via HTTP February 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Gutmann Standards Track [Page 25]

