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Status of this Memo

   This document specifies an Internet Best Current Practices for the
   Internet Community, and requests discussion and suggestions for
   improvements.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

   This document provides advice to the designers of digital
   communication equipment and link-layer protocols employing link-layer
   Automatic Repeat reQuest (ARQ) techniques.  This document presumes
   that the designers wish to support Internet protocols, but may be
   unfamiliar with the architecture of the Internet and with the
   implications of their design choices for the performance and
   efficiency of Internet traffic carried over their links.

   ARQ is described in a general way that includes its use over a wide
   range of underlying physical media, including cellular wireless,
   wireless LANs, RF links, and other types of channel.  This document
   also describes issues relevant to supporting IP traffic over
   physical-layer channels where performance varies, and where link ARQ
   is likely to be used.
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1. Introduction

   IP, the Internet Protocol [RFC791], forms the core protocol of the
   global Internet and defines a simple "connectionless" packet-switched
   network.  Over the years, Internet traffic using IP has been carried
   over a wide variety of links, of vastly different capacities, delays
   and loss characteristics.  In the future, IP traffic can be expected
   to continue to be carried over a very wide variety of new and
   existing link designs, again of varied characteristics.

   A companion document [DRAFTKARN02] describes the general issues
   associated with link design.  This document should be read in
   conjunction with that and with other documents produced by the
   Performance Implications of Link Characteristics (PILC) IETF
   workgroup [RFC3135, RFC3155].
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   This document is intended for three distinct groups of readers:

   a. Link designers wishing to configure (or tune) a link for the IP
      traffic that it will carry, using standard link-layer mechanisms
      such as the ISO High-level Data Link Control (HDLC) [ISO4335a] or
      its derivatives.

   b. Link implementers who may wish to design new link mechanisms that
      perform well for IP traffic.

   c. The community of people using or developing TCP, UDP and related
      protocols, who may wish to be aware of the ways in which links
      can operate.

   The primary audiences are intended to be groups (a) and (b).  Group
   (c) should not need to be aware of the exact details of an ARQ scheme
   across a single link, and should not have to consider such details
   for protocol implementations; much of the Internet runs across links
   that do not use any form of ARQ.  However, the TCP/IP community does
   need to be aware that the IP protocol operates over a diverse range
   of underlying subnetworks.  This document may help to raise that
   awareness.

   Perfect reliability is not a requirement for IP networks, nor is it a
   requirement for links [DRAFTKARN02].  IP networks may discard packets
   due to a variety of reasons entirely unrelated to channel errors,
   including lack of queuing space, congestion management, faults, and
   route changes.  It has long been widely understood that perfect
   end-to-end reliability can be ensured only at, or above, the
   transport layer [SALT81].

   Some familiarity with TCP, the Transmission Control Protocol [RFC793,
   STE94], is presumed here.  TCP provides a reliable byte-stream
   transport service, building upon the best-effort datagram delivery
   service provided by the Internet Protocol.  TCP achieves this by
   dividing data into TCP segments, and transporting these segments in
   IP packets.  TCP guarantees that a TCP session will retransmit the
   TCP segments contained in any data packets that are lost along the
   Internet path between endhosts.  TCP normally performs retransmission
   using its Fast Retransmit procedure, but if the loss fails to be
   detected (or retransmission is unsuccessful), TCP falls back to a
   Retransmission Time Out (RTO) retransmission using a timer [RFC2581,
   RFC2988].  (Link protocols also implement timers to verify integrity
   of the link, and to assist link ARQ.)  TCP also copes with any
   duplication or reordering introduced by the IP network.  There are a
   number of variants of TCP, with differing levels of sophistication in
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   their procedures for handling loss recovery and congestion avoidance.
   Far from being static, the TCP protocol is itself subject to ongoing
   gradual refinement and evolution, e.g., [RFC2488, RFC2760].

   Internet networks may reasonably be expected to carry traffic from a
   wide and evolving range of applications.  Not all applications
   require or benefit from using the reliable service provided by TCP.
   In the Internet, these applications are carried by alternate
   transport protocols, such as the User Datagram Protocol (UDP)
   [RFC768].

1.1 Link ARQ

   At the link layer, ARQ operates on blocks of data, known as frames,
   and attempts to deliver frames from the link sender to the link
   receiver over a channel.  The channel provides the physical-layer
   connection over which the link protocol operates.  In its simplest
   form, a channel may be a direct physical-layer connection between the
   two link nodes (e.g., across a length of cable or over a wireless
   medium).  ARQ may also be used edge-to-edge across a subnetwork,
   where the path includes more than one physical-layer medium.  Frames
   often have a small fixed or maximum size for convenience of
   processing by Medium-Access Control (MAC) and link protocols.  This
   contrasts with the variable lengths of IP datagrams, or ’packets’.  A
   link-layer frame may contain all, or part of, one or more IP packets.
   A link ARQ mechanism relies on an integrity check for each frame
   (e.g., strong link-layer CRC [DRAFTKARN02]) to detect channel errors,
   and uses a retransmission process to retransmit lost (i.e., missing
   or corrupted) frames.

   Links may be full-duplex (allowing two-way communication over
   separate forward and reverse channels), half-duplex (where two-way
   communication uses a shared forward and reverse channel, e.g., IrDA,
   IEEE 802.11) or simplex (where a single channel permits communication
   in only one direction).

   ARQ requires both a forward and return path, and therefore link ARQ
   may be used over links that employ full- or half-duplex links.  When
   a channel is shared between two or more link nodes, a link MAC
   protocol is required to ensure all nodes requiring transmission can
   gain access to the shared channel.  Such schemes may add to the delay
   (jitter) associated with transmission of packet data and ARQ control
   frames.

   When using ARQ over a link where the probability of frame loss is
   related to the frame size, there is an optimal frame size for any
   specific target channel error rate.  To allow for efficient use of
   the channel, this maximum link frame size may be considerably lower
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   than the maximum IP datagram size specified by the IP Maximum
   Transmission Unit (MTU).  Each frame will then contain only a
   fraction of an IP packet, and transparent implicit fragmentation of
   the IP datagram is used [DRAFTKARN02].  A smaller frame size
   introduces more frame header overhead per payload byte transported.

   Explicit network-layer IP fragmentation is undesirable for a variety
   of reasons, and should be avoided [KEN87, DRAFTKARN02].  Its use can
   be minimized with use of Path MTU discovery [RFC1191, RFC1435,
   RFC1981].

   Another way to reduce the frame loss rate (or reduce transmit signal
   power for the same rate of frame loss) is to use coding, e.g.,
   Forward Error Correction (FEC) [LIN93].

   FEC is commonly included in the physical-layer design of wireless
   links and may be used simultaneously with link ARQ.  FEC schemes
   which combine modulation and coding also exist, and may also be
   adaptive.  Hybrid ARQ [LIN93] combines adaptive FEC with link ARQ
   procedures to reduce the probability of loss of retransmitted frames.
   Interleaving may also be used to reduce the probability of frame loss
   by dispersing the occurrence of errors more widely in the channel to
   improve error recovery; this adds further delay to the channel’s
   existing propagation delay.

   The document does not consider the use of link ARQ to support a
   broadcast or multicast service within a subnetwork, where a link may
   send a single packet to more than one recipient using a single link
   transmit operation.  Although such schemes are supported in some
   subnetworks, they raise a number of additional issues not examined
   here.

   Links supporting stateful reservation-based quality of service (QoS)
   according to the Integrated Services (intserv) model are also not
   explicitly discussed.

1.2 Causes of Packet Loss on a Link

   Not all packets sent to a link are necessarily received successfully
   by the receiver at the other end of the link.  There are a number of
   possible causes of packet loss.  These may occur as frames travel
   across a link, and include:

   a. Loss due to channel noise, often characterised by random frame
      loss.  Channel noise may also result from other traffic degrading
      channel conditions.
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   b. Frame loss due to channel interference.  This interference can
      be random, structured, and in some cases even periodic.

   c. A link outage, a period during which the link loses all or
      virtually all frames, until the link is restored.  This is a
      common characteristic of some types of link, e.g., mobile cellular
      radio.

   Other forms of packet loss are not related to channel conditions,
   but include:

   i.   Loss of a frame transmitted in a shared channel where a
        contention-aware MAC protocol is used (e.g., due to collision).
        Here, many protocols require that retransmission is deferred to
        promote stability of the shared channel (i.e., prevent excessive
        channel contention).  This is discussed further in section 1.5.

   ii.  Packet discards due to congestion.  Queues will eventually
        overflow as the arrival rate of new packets to send continues to
        exceed the outgoing packet transmission rate over the link.

   iii. Loss due to implementation errors, including hardware faults
        and software errors.  This is recognised as a common cause of
        packet corruption detected in the endhosts [STONE00].

   The rate of loss and patterns of loss experienced are functions of
   the design of the physical and link layers.  These vary significantly
   across different link configurations.  The performance of a specific
   implementation may also vary considerably across the same link
   configuration when operated over different types of channel.

1.3 Why Use ARQ?

   Reasons that encourage considering the use of ARQ include:

   a. ARQ across a single link has a faster control loop than TCP’s
      acknowledgement control loop, which takes place over the longer
      end-to-end path over which TCP must operate.  It is therefore
      possible for ARQ to provide more rapid retransmission of TCP
      segments lost on the link, at least for a reasonable number of
      retries [RFC3155, SALT81].

   b. Link ARQ can operate on individual frames, using implicit
      transparent link fragmentation [DRAFTKARN02].  Frames may be
      much smaller than IP packets, and repetition of smaller frames
      containing lost or errored parts of an IP packet may improve the
      efficiency of the ARQ process and the efficiency of the link.
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   A link ARQ procedure may be able to use local knowledge that is not
   available to endhosts, to optimise delivery performance for the
   current link conditions.  This information can include information
   about the state of the link and channel, e.g., knowledge of the
   current available transmission rate, the prevailing error
   environment, or available transmit power in wireless links.

1.4 Commonly-used ARQ Techniques

   A link ARQ protocol uses a link protocol mechanism to allow the
   sender to detect lost or corrupted frames and to schedule
   retransmission.  Detection of frame loss may be via a link protocol
   timer, by detecting missing positive link acknowledgement frames, by
   receiving explicit negative acknowledgement frames and/or by polling
   the link receiver status.

   Whatever mechanisms are chosen, there are two easily-described
   categories of ARQ retransmission process that are widely used:

1.4.1 Stop-And-Wait ARQ

   A sender using stop-and-wait ARQ (sometimes known as ’Idle ARQ’
   [LIN93]) transmits a single frame and then waits for an
   acknowledgement from the receiver for that frame.  The sender then
   either continues transmission with the next frame, or repeats
   transmission of the same frame if the acknowledgement indicates that
   the original frame was lost or corrupted.

   Stop-and-wait ARQ is simple, if inefficient, for protocol designers
   to implement, and therefore popular, e.g., tftp [RFC1350] at the
   transport layer.  However, when stop-and-wait ARQ is used in the link
   layer, it is well-suited only to links with low bandwidth-delay
   products.  This technique is not discussed further in this document.

1.4.2 Sliding-Window ARQ

   A protocol using sliding-window link ARQ [LIN93] numbers every frame
   with a unique sequence number, according to a modulus.  The modulus
   defines the numbering base for frame sequence numbers, and the size
   of the sequence space.  The largest sequence number value is viewed
   by the link protocol as contiguous with the first (0), since the
   numbering space wraps around.
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   TCP is itself a sliding-window protocol at the transport layer
   [STE94], so similarities between a link-interface-to-link-interface
   protocol and end-to-end TCP may be recognisable.  A sliding-window
   link protocol is much more complex in implementation than the simpler
   stop-and-wait protocol described in the previous section,
   particularly if per-flow ordering is preserved.

   At any time the link sender may have a number of frames outstanding
   and awaiting acknowledgement, up to the space available in its
   transmission window.  A sufficiently-large link sender window
   (equivalent to or greater than the number of frames sent, or larger
   than the bandwidth*delay product capacity of the link) permits
   continuous transmission of new frames.  A smaller link sender window
   causes the sender to pause transmission of new frames until a timeout
   or a control frame, such as an acknowledgement, is received.  When
   frames are lost, a larger window, i.e., more than the link’s
   bandwidth*delay product, is needed to allow continuous operation
   while frame retransmission takes place.

   The modulus numbering space determines the size of the frame header
   sequence number field.  This sequence space needs to be larger than
   the link window size and, if using selective repeat ARQ, larger than
   twice the link window size.  For continuous operation, the sequence
   space should be larger than the product of the link capacity and the
   link ARQ persistence (discussed in section 2), so that in-flight
   frames can be identified uniquely.

   As with TCP, which provides sliding-window delivery across an entire
   end-to-end path rather than across a single link, there are a large
   number of variations on the basic sliding-window implementation, with
   increased complexity and sophistication to make them suitable for
   various conditions.  Selective Repeat (SR), also known as Selective
   Reject (SREJ), and Go-Back-N, also known as Reject (REJ), are
   examples of ARQ techniques using protocols implementing sliding
   window ARQ.

1.5 Causes of Delay Across a Link

   Links and link protocols contribute to the total path delay
   experienced between communicating applications on endhosts.  Delay
   has a number of causes, including:

   a. Input packet queuing and frame buffering at the link head before
      transmission over the channel.

   b. Retransmission back-off, an additional delay introduced for
      retransmissions by some MAC schemes when operating over a shared
      channel to prevent excessive contention.  A high level of

Fairhurst & Wood         Best Current Practice                  [Page 8]



RFC 3366          Advice to Link Designers on Link ARQ       August 2002

      contention may otherwise arise, if, for example, a set of link
      receivers all retransmitted immediately after a collision on a
      busy shared channel.  Link ARQ protocols designed for shared
      channels may select a backoff delay, which increases with the
      number of attempts taken to retransmit a frame; analogies can be
      drawn with end-to-end TCP congestion avoidance at the transport
      layer [RFC2581].  In contrast, a link over a dedicated channel
      (which has capacity pre-allocated to the link) may send a
      retransmission at the earliest possible time.

   c. Waiting for access to the allocated channel when the channel is
      shared.  There may be processing or protocol-induced delay
      before transmission takes place [FER99, PAR00].

   d. Frame serialisation and transmission processing.  These are
      functions of frame size and the transmission speed of the link.

   e. Physical-layer propagation time, limited by the speed of
      transmission of the signal in the physical medium of the
      channel.

   f. Per-frame processing, including the cost of QoS scheduling,
      encryption, FEC and interleaving.  FEC and interleaving also add
      substantial delay and, in some cases, additional jitter.  Hybrid
      link ARQ schemes [LIN93], in particular, may incur significant
      receiver processing delay.

   g. Packet processing, including buffering frame contents at the
      link receiver for packet reassembly, before onward transmission
      of the packet.

   When link ARQ is used, steps (b), (c), (d), (e), and (f) may be
   repeated a number of times, every time that retransmission of a frame
   occurs, increasing overall delay for the packet carried in part by
   the frame.  Adaptive ARQ schemes (e.g., hybrid ARQ using adaptive FEC
   codes) may also incur extra per-frame processing for retransmitted
   frames.

   It is important to understand that applications and transport
   protocols at the endhosts are unaware of the individual delays
   contributed by each link in the path, and only see the overall path
   delay.  Application performance is therefore determined by the
   cumulative delay of the entire end-to-end Internet path.  This path
   may include an arbitrary or even a widely-fluctuating number of
   links, where any link may or may not use ARQ.  As a result, it is not
   possible to state fixed limits on the acceptable delay that a link
   can add to a path; other links in the path will add an unknown delay.
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2. ARQ Persistence

   ARQ protocols may be characterised by their persistency.  Persistence
   is the willingness of the protocol to retransmit lost frames to
   ensure reliable delivery of traffic across the link.

   A link’s retransmission persistency defines how long the link is
   allowed to delay a packet, in an attempt to transmit all the frames
   carrying the packet and its content over the link, before giving up
   and discarding the packet.  This persistency can normally be measured
   in milliseconds, but may, if the link propagation delay is specified,
   be expressed in terms of the maximum number of link retransmission
   attempts permitted.  The latter does not always map onto an exact
   time limit, for the reasons discussed in section 1.5.

   An example of a reliable link protocol that is perfectly persistent
   is the ISO HDLC protocol in the Asynchronous Balanced Mode (ABM)
   [ISO4335a].

   A protocol that only retransmits a number of times before giving up
   is less persistent, e.g., Ethernet [FER99], IEEE 802.11, or GSM RLP
   [RFC2757].  Here, lower persistence also ensures stability and fair
   sharing of a shared channel, even when many senders are attempting
   retransmissions.

   TCP, STCP [RFC2960] and a number of applications using UDP (e.g.,
   tftp) implement their own end-to-end reliable delivery mechanisms.
   Many TCP and UDP applications, e.g., streaming multimedia, benefit
   from timely delivery from lower layers with sufficient reliability,
   rather than perfect reliability with increased link delays.

2.1 Perfectly-Persistent (Reliable) ARQ Protocols

   A perfectly-persistent ARQ protocol is one that attempts to provide a
   reliable service, i.e., in-order delivery of packets to the other end
   of the link, with no missing packets and no duplicate packets.  The
   perfectly-persistent ARQ protocol will repeat a lost or corrupted
   frame an indefinite (and potentially infinite) number of times until
   the frame is successfully received.

   If traffic is going no further than across one link, and losses do
   not occur within the endhosts, perfect persistence ensures
   reliability between the two link ends without requiring any
   higher-layer protocols.  This reliability can become
   counterproductive for traffic traversing multiple links, as it
   duplicates and interacts with functionality in protocol mechanisms at
   higher layers [SALT81].
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   Arguments against the use of perfect persistence for IP traffic
   include:

   a. Variable link delay; the impact of ARQ introduces a degree of
      jitter, a function of the physical-layer delay and frame
      serialisation and transmission times (discussed in section 1.5),
      to all flows sharing a link performing frame retransmission.

   b. Perfect persistence does not provide a clear upper bound on the
      maximum retransmission delay for the link.  Significant changes
      in path delay caused by excessive link retransmissions may lead
      to timeouts of TCP retransmission timers, although a high
      variance in link delay and the resulting overall path delay may
      also cause a large TCP RTO value to be selected [LUD99b, PAR00].
      This will alter TCP throughput, decreasing overall performance,
      but, in mitigation, it can also decrease the occurrence of
      timeouts due to continued packet loss.

   c. Applications needing perfectly-reliable delivery can implement a
      form of perfectly-persistent ARQ themselves, or use a reliable
      transport protocol within the endhosts.  Implementing perfect
      persistence at each link along the path between the endhosts is
      redundant, but cannot ensure the same reliability as end-to-end
      transport [SALT81].

   d. Link ARQ should not adversely delay the flow of end-to-end
      control information.  As an example, the ARQ retransmission of
      data for one or more flows should not excessively extend the
      protocol control loops.  Excessive delay of duplicate TCP
      acknowledgements (dupacks [STE94, BAL97]), SACK, or Explicit
      Congestion Notification (ECN) indicators will reduce the
      responsiveness of TCP flows to congestion events.  Similar
      issues exist for TCP-Friendly Rate Control (TFRC), where
      equation-based congestion control is used with UDP [DRAFTHAN01].

   Perfectly-persistent link protocols that perform unlimited ARQ, i.e.,
   that continue to retransmit frames indefinitely until the frames are
   successfully received, are seldom found in real implementations.

   Most practical link protocols give up retransmission at some point,
   but do not necessarily do so with the intention of bounding the ARQ
   retransmission persistence.  A protocol may, for instance, terminate
   retransmission after a link connection failure, e.g., after no frames
   have been successfully received within a pre-configured timer period.
   The number of times a protocol retransmits a specific frame (or the
   maximum number of retransmissions) therefore becomes a function of
   many different parameters (ARQ procedure, link timer values, and
   procedure for link monitoring), rather than being pre-configured.
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   Another common feature of this type of behaviour is that some
   protocol implementers presume that, after a link failure, packets
   queued to be sent over the link are no longer significant and can be
   discarded when giving up ARQ retransmission.

   Examples of ARQ protocols that are perfectly persistent include
   ISO/ITU-T LAP-B [ISO7776] and ISO HDLC in the Asynchronously Balanced
   Mode (ABM) [ISO4335a], e.g., using Multiple Selective Reject (MSREJ
   [ISO4335b]).  These protocols will retransmit a frame an unlimited
   number of times until receipt of the frame is acknowledged.

2.2 High-Persistence (Highly-Reliable) ARQ Protocols

   High-persistence ARQ protocols limit the number of times (or number
   of attempts) that ARQ may retransmit a particular frame before the
   sender gives up on retransmission of the missing frame and moves on
   to forwarding subsequent buffered in-sequence frames.  Ceasing
   retransmission of a frame does not imply a lack of link connectivity
   and does not cause a link protocol state change.

   It has been recommended that a single IP packet should never be
   delayed by the network for more than the Maximum Segment Lifetime
   (MSL) of 120 seconds defined for TCP [RFC1122].  It is, however,
   difficult in practice to bound the maximum path delay of an Internet
   path.  One case where segment (packet) lifetime may be significant is
   where alternate paths of different delays exist between endhosts and
   route flapping or flow-unaware traffic engineering is used.  Some TCP
   packets may follow a short path, while others follow a much longer
   path, e.g., using persistent ARQ over a link outage.

   Failure to limit the maximum packet lifetime can result in TCP
   sequence numbers wrapping at high transmission rates, where old data
   segments may be confused with newer segments if the sequence number
   space has been exhausted and reused in the interim.  Some TCP
   implementations use the Round Trip Timestamp Measurement (RTTM)
   option in TCP packets to remove this ambiguity, using the Protection
   Against Wrapped Sequence number (PAWS) algorithm [RFC1323].

   In practice, the MSL is usually very large compared to the typical
   TCP RTO.  The calculation of TCP RTO is based on estimated round-trip
   path delay [RFC2988].  If the number of link retransmissions causes a
   path delay larger than the value of RTO, the TCP retransmission timer
   can expire, leading to a timeout and retransmission of a segment
   (packet) by the TCP sender.
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   Although high persistency may benefit bulk flows, the additional
   delay (and variations in delay) that it introduces may be highly
   undesirable for other types of flows.  Being able to treat flows
   separately, with different classes of link service, is useful, and is
   discussed in section 3.

   Examples of high-persistence ARQ protocols include [BHA97, ECK98,
   LUD99a, MEY99].

2.3 Low-Persistence (Partially-Reliable) ARQ Protocols

   The characteristics of a link using a low-persistence ARQ protocol
   may be summarised as:

   a. The link is not perfectly reliable and does not provide an
      absolute guarantee of delivery, i.e., the transmitter will
      discard some frames as it ’gives up’ before receiving an
      acknowledgement of successful transmission across the link.

   b. There is a lowered limit on the maximum added delay that IP
      packets will experience when travelling across the link
      (typically lower than the TCP path RTO).  This reduces
      interaction with TCP timers or with UDP-based error-control
      schemes.

   c. The link offers a low bound for the time that retransmission for
      any one frame can block completed transmission and assembly of
      other correctly and completely-received IP packets whose
      transmission was begun before the missing frame was sent.
      Limiting delay avoids aggravating contention or interaction
      between different packet flows (see also section 3.2).

   Examples of low-persistence ARQ protocols include [SAM96, WARD95,
   CHE00].

2.4 Choosing Your Persistency

   The TCP Maximum RTO is an upper limit on the maximum time that TCP
   will wait until it performs a retransmission.  Most TCP
   implementations will generally have a TCP RTO of at least several
   times the path delay.

   Setting a lower link persistency (e.g., of the order 2-5
   retransmission attempts) reduces potential interaction with the TCP
   RTO timer, and may therefore reduce the probability of duplicate
   copies of the same packet being present in the link transmit buffer
   under some patterns of loss.
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   A link using a physical layer with a low propagation delay may allow
   tens of retransmission attempts to deliver a single frame, and still
   satisfy a bound for (b) in section 2.3.  In this case, a low delay is
   defined as being where the total packet transmission time across the
   link is much less than 100 ms (a common value for the granularity of
   the internal TCP system timer).

   A packet may traverse a number of successive links on its total end-
   to-end path.  This is therefore an argument for much lower
   persistency on any individual link, as delay due to persistency is
   accumulated along the path taken by each packet.

   Some implementers have chosen a lower persistence, falling back on
   the judgement of TCP or of a UDP application to retransmit any
   packets that are not recovered by the link ARQ protocol.

2.5 Impact of Link Outages

   Links experiencing persistent loss, where many consecutive frames are
   corrupted over an extended time, may also need to be considered.
   Examples of channel behaviour leading to link outages include fading,
   roaming, and some forms of interference.  During the loss event,
   there is an increased probability that a retransmission request may
   be corrupted, and/or an increased probability that a retransmitted
   frame will also be lost.  This type of loss event is often known as a
   "transient outage".

   If the transient outage extends for longer than the TCP RTO, the TCP
   sender will also perform transport-layer retransmission.  At the same
   time, the TCP sender will reduce its congestion window (cwnd) to 1
   segment (packet), recalculate its RTO, and wait for an ACK packet.
   If no acknowledgement is received, TCP will retransmit again, up to a
   retry limit.  TCP only determines that the outage is over (i.e., that
   path capacity is restored) by receipt of an ACK.  If link ARQ
   protocol persistency causes a link in the path to discard the ACK,
   the TCP sender must wait for the next RTO retransmission and its ACK
   to learn that the link is restored.  This can be many seconds after
   the end of the transient outage.

   When a link layer is able to differentiate a set of link service
   classes (see section 3.3), a link ARQ persistency longer than the
   largest link loss event may benefit a TCP session.  This would allow
   TCP to rapidly restore transmission without the need to wait for a
   retransmission time out, generally improving TCP performance in the
   face of transient outages.  Implementation of such schemes remains a
   research issue.
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   When an outage occurs for a sender sharing a common channel with
   other nodes, uncontrolled high persistence can continue to consume
   transmission resources for the duration of the outage.  This may be
   undesirable, since it reduces the capacity available for other nodes
   sharing the channel, which do not necessarily experience the same
   outage.  These nodes could otherwise use the channel for more
   productive transfers.  The persistence is often limited by another
   controlling mechanism in such cases.  To counter such contention
   effects, ARQ protocols may delay retransmission requests, or defer
   the retransmission of requested frames until the outage ends for the
   sender.

   An alternate suggested approach for a link layer that is able to
   identify separate flows is to use low link persistency (section 2.3)
   along with a higher-layer mechanism, for example one that attempts to
   deliver one packet (or whole TCP segment) per TCP flow after a loss
   event [DRAFTKARN02].  This is intended to ensure that TCP
   transmission is restored rapidly.  Algorithms to implement this
   remain an area of research.

3. Treatment of Packets and Flows

3.1 Packet Ordering

   A common debate is whether a link should be allowed to forward
   packets in an order different from that in which they were originally
   received at its transmit interface.

   IP networks are not required to deliver all IP packets in order,
   although in most cases networks do deliver IP packets in their
   original transmission order.  Routers supporting class-based queuing
   do reorder received packets, by reordering packets in different
   flows, but these usually retain per-flow ordering.

   Policy-based queuing, allowing fairer access to the link, may also
   reorder packets.  There is still much debate on optimal algorithms,
   and on optimal queue sizes for particular link speeds.  This,
   however, is not related to the use of link ARQ and applies to any
   (potential) bottleneck router.

   Although small amounts of reordering are common in IP networks
   [BEN00], significant reordering within a flow is undesirable as it
   can have a number of effects:

   a. Reordering will increase packet jitter for real-time
      applications.  This may lead to application data loss if a small
      play-out buffer is used by the receiving application.
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   b. Reordering will interleave arrival of TCP segments, leading to
      generation of duplicate ACKs (dupacks), leading to assumptions
      of loss.  Reception of an ACK followed by a sequence of three
      identical dupacks causes the TCP sender to trigger fast
      retransmission and recovery, a form of congestion avoidance,
      since TCP always presumes that packet loss is due to congestion
      [RFC2581, STE94].  This reduces TCP throughput efficiency as far
      as the application is concerned, although it should not impact
      data integrity.

   In addition, reordering may negatively impact processing by some
   existing poorly-implemented TCP/IP stacks, by leading to unwanted
   side-effects in poorly-implemented IP fragment reassembly code,
   poorly-implemented IP demultiplexing (filter) code, or in
   poorly-implemented UDP applications.

   Ordering effects must also be considered when breaking the end-to-end
   paradigm and evaluating transport-layer relays such as split-TCP
   implementations or Protocol Enhancing Proxies [RFC3135].

   As with total path delay, TCP and UDP flows are impacted by the
   cumulative effect of reordering along the entire path.  Link protocol
   designers must not assume that their link is the only link
   undertaking packet reordering, as some level of reordering may be
   introduced by other links along the same path, or by router
   processing within the network [BEN00].  Ideally, the link protocol
   should not contribute to reordering within a flow, or at least ensure
   that it does not significantly increase the level of reordering
   within the flow.  To achieve this, buffering is required at the link
   receiver.  The total amount of buffering required is a function of
   the link’s bandwidth*delay product and the level of ARQ persistency,
   and is bounded by the link window size.

   A number of experimental ARQ protocols have allowed out-of-order
   delivery [BAL95, SAM96, WARD95].

3.2 Using Link ARQ to Support Multiple Flows

   Most links can be expected to carry more than one IP flow at a time.
   Some high-capacity links are expected to carry a very large number of
   simultaneous flows, often from and to a large number of different
   endhosts.  With use of multiple applications at an endhost, multiple
   flows can be considered the norm rather than the exception, even for
   last-hop links.
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   When packets from several flows are simultaneously in transit within
   a link ARQ protocol, ARQ may cause a number of additional effects:

   a. ARQ introduces variable delay (jitter) to a TCP flow sharing a
      link with another flow experiencing loss.  This additional
      delay, introduced by the need for a link to provide in-sequence
      delivery of packets, may adversely impact other applications
      sharing the link, and can increase the duration of the initial
      slow-start period for TCP flows for these applications.  This is
      significant for short-lived TCP flows (e.g., those used by
      HTTP/1.0 and earlier), which spend most of their lives in
      slow-start.

   b. ARQ introduces jitter to UDP flows that share a link with
      another flow experiencing loss.  An end-to-end protocol may not
      require reliable delivery for its flows, particularly if it is
      supporting a delay-sensitive application.

   c. High-persistence ARQ may delay packets long enough to cause the
      premature timeout of another TCP flow’s RTO timer, although
      modern TCP implementations should not experience this since
      their computed RTO values should leave a sufficient margin over
      path RTTs to cope with reasonable amounts of jitter.

   Reordering of packets belonging to different flows may be desirable
   [LUD99b, CHE00] to achieve fair sharing of the link between
   established bulk-data transfer sessions and sessions that transmit
   less data, but would benefit from lower link transit delay.
   Preserving ordering within each individual flow, to avoid the effects
   of reordering described earlier in section 3.1, is worthwhile.

3.3 Differentiation of Link Service Classes

   High ARQ persistency is generally considered unsuitable for many
   applications using UDP, where reliable delivery is not always
   required and where it may introduce unacceptable jitter, but may
   benefit bulk data transfers under certain link conditions.  A scheme
   that differentiates packet flows into two or more classes, to provide
   a different service to each class, is therefore desirable.

   Observation of flow behaviour can tell you which flows are controlled
   and congestion-sensitive, or uncontrolled and not, so that you can
   treat them differently and ensure fairness.  However, this cannot
   tell you whether a flow is intended as reliable or unreliable by its
   application, or what the application requires for best operation.
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   Supporting different link services for different classes of flows
   therefore requires that the link is able to distinguish the different
   flows from each other.  This generally needs an explicit indication
   of the class associated with each flow.

   Some potential schemes for indicating the class of a packet include:

   a. Using the Type of Service (ToS) bits in the IP header [RFC791].
      The IETF has replaced these globally-defined bits, which were
      not widely used, with the differentiated services model
      (diffserv [RFC2475, RFC3260]).  In diffserv, each packet carries a
      Differentiated Service Code Point (DSCP), which indicates which
      one of a set of diffserv classes the flow belongs to.  Each
      router maps the DSCP value of a received IP packet to one of a
      set of Per Hop Behaviours (PHBs) as the packet is processed
      within the network.  Diffserv uses include policy-based routing,
      class-based queuing, and support for other QoS metrics,
      including IP packet priority, delay, reliability, and cost.

   b. Inspecting the network packet header and viewing the IP protocol
      type [RFC791] to gain an idea of the transport protocol used and
      thus guess its needs.  This is not possible when carrying an
      encrypted payload, e.g., using the IP security extensions (IPSec)
      with Encapsulation Security Payload (ESP) [RFC2406] payload
      encryption.

   c. By inspecting the transport packet header information to view
      the TCP or UDP headers and port numbers (e.g., [PAR00, BAL95]).
      This is not possible when using payload encryption, e.g., IPSec
      with ESP payload encryption [RFC2406], and incurs processing
      overhead for each packet sent over the link.

   There are, however, some drawbacks to these schemes:

   i.   The ToS/Differentiated Services Code Point (DSCP) values
        [RFC2475] may not be set reliably, and may be overwritten by
        intermediate routers along the packet’s path.  These values may
        be set by an ISP, and do not necessarily indicate the level of
        reliability required by the end application.  The link must be
        configured with knowledge of the local meaning of the values.

   ii.  Tunnelling of traffic (e.g., GRE, MPLS, L2TP, IP-in-IP
        encapsulation) can aggregate flows of different transport
        classes, complicating individual flow classification with
        schemes (b) and (c) and incurring further header processing if
        tunnel contents are inspected.
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   iii. Use of the TCP/UDP port number makes assumptions about
        application behaviour and requirements.  New applications or
        protocols can invalidate these assumptions, as can the use of
        e.g., Network Address Port Translation, where port numbers are
        remapped [RFC3022].

   iv.  In IPv6, the entire IPv6 header must be parsed to locate the
        transport layer protocol, adding complexity to header
        inspection.  Again, this assumes that IPSec payload encryption
        is not used.

   Despite the difficulties in providing a framework for accurate flow
   identification, approach (a) may be beneficial, and is preferable to
   adding optimisations that are triggered by inspecting the contents of
   specific IP packets.  Some such optimisations are discussed in detail
   in [LUD99b].

   Flow management is desirable; clear flow identification increases the
   number of tools available for the link designer, and permits more
   complex ARQ strategies that may otherwise make misassumptions about
   traffic requirements and behaviour when flow identification is not
   done.

   Links that are unable to distinguish clearly and safely between
   delay-sensitive flows, e.g., real-time multimedia, DNS queries or
   telnet, and delay-insensitive flows, e.g., bulk ftp transfers or
   reliable multicast file transfer, cannot separate link service
   classes safely.  All flows should therefore experience the same link
   behaviour.

   In general, if separation of flows according to class is not
   practicable, a low persistency is best for link ARQ.

4. Conclusions

   A number of techniques may be used by link protocol designers to
   counter the effects of channel errors or loss. One of these
   techniques is Automatic Repeat ReQuest, ARQ, which has been and
   continues to be used on links that carry IP traffic.  An ARQ protocol
   retransmits link frames that have been corrupted during transmission
   across a channel.  Link ARQ may significantly improve the probability
   of successful transmission of IP packets over links prone to
   occasional frame loss.

   A lower rate of packet loss generally benefits transport protocols
   and endhost applications.  Applications using TCP generally benefit
   from Internet paths with little or no loss and low round trip path
   delay.  This reduces impact on applications, allows more rapid growth
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   of TCP’s congestion window during slow start, and ensures prompt
   reaction to end-to-end protocol exchanges (e.g., retransmission,
   congestion indications).  Applications using other transport
   protocols, e.g., UDP or SCTP, also benefit from low loss and timely
   delivery.

   A side-effect of link ARQ is that link transit delay is increased
   when frames are retransmitted.  At low error rates, many of the
   details of ARQ, such as degree of persistence or any resulting
   out-of-order delivery, become unimportant.  Most frame losses will be
   resolved in one or two retransmission attempts, and this is generally
   unlikely to cause significant impact to e.g., TCP.  However, on
   shared high-delay links, the impact of ARQ on other UDP or TCP flows
   may lead to unwanted jitter.

   Where error rates are highly variable, high link ARQ persistence may
   provide good performance for a single TCP flow.  However,
   interactions between flows can arise when many flows share capacity
   on the same link.  A link ARQ procedure that provides flow management
   will be beneficial.  Lower ARQ persistence may also have merit, and
   is preferable for applications using UDP.  The reasoning here is that
   the link can perform useful work forwarding some complete packets,
   and that blocking all flows by retransmitting the frames of a single
   packet with high persistence is undesirable.

   During a link outage, interactions between ARQ and multiple flows are
   less significant; the ARQ protocol is likely to be equally
   unsuccessful in retransmitting frames for all flows.  High
   persistence may benefit TCP flows, by enabling prompt recovery once
   the channel is restored.

   Low ARQ persistence is particularly useful where it is difficult or
   impossible to classify traffic flows, and hence treat each flow
   independently, and where the link capacity can accommodate a large
   number of simultaneous flows.

   Link ARQ designers should consider the implications of their design
   on the wider Internet.  Effects such as increased transit delay,
   jitter, and re-ordering are cumulative when performed on multiple
   links along an Internet path.  It is therefore very hard to say how
   many ARQ links may exist in series along an arbitrary Internet path
   between endhosts, especially as the path taken and its links may
   change over time.

   In summary, when links cannot classify traffic flows and treat them
   separately, low persistence is generally desirable; preserving packet
   ordering is generally desirable.  Extremely high persistence and
   perfect persistence are generally undesirable; highly-persistent ARQ
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   is a bad idea unless flow classification and detailed and accurate
   knowledge of flow requirements make it possible to deploy high
   persistency where it will be beneficial.

   There is currently insufficient experience to recommend a specific
   ARQ scheme for any class of link.  It is also important to realize
   that link ARQ is just one method of error recovery, and that other
   complementary physical-layer techniques may be used instead of, or
   together with, ARQ to improve overall link throughput for IP traffic.

   The choice of potential schemes includes adapting the data rate,
   adapting the signal bandwidth, adapting the transmission power,
   adaptive modulation, adaptive information redundancy / forward error
   control, and interleaving.  All of these schemes can be used to
   improve the received signal energy per bit, and hence reduce error,
   frame loss and resulting packet loss rates given specific channel
   conditions.

   There is a need for more research to more clearly identify the
   importance of and trade-offs between the above issues over various
   types of link and over various types of channels.  It would be useful
   if researchers and implementers clearly indicated the loss model,
   link capacity and characteristics, link and end-to-end path delays,
   details of TCP, and the number (and details) of flows sharing a link
   when describing their experiences.  In each case, it is recommended
   that specific details of the link characteristics and mechanisms also
   be considered; solutions vary with conditions.

5. Security Considerations

   No security implications have been identified as directly impacting
   IP traffic.  However, an unreliable link service may adversely impact
   some existing link-layer key management distribution protocols if
   link encryption is also used over the link.

   Denial-of-service attacks exploiting the behaviour of the link
   protocol, e.g., using knowledge of its retransmission behaviour and
   propagation delay to cause a particular form of jamming, may be
   specific to an individual link scenario.

6. IANA Considerations

   No assignments from the IANA are required.
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