
Network Working Group E. Rescorla
Request for Comments: 2631 RTFM Inc.
Category: Standards Track June 1999

 Diffie-Hellman Key Agreement Method

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This document standardizes one particular Diffie-Hellman variant,
 based on the ANSI X9.42 draft, developed by the ANSI X9F1 working
 group. Diffie-Hellman is a key agreement algorithm used by two
 parties to agree on a shared secret. An algorithm for converting the
 shared secret into an arbitrary amount of keying material is
 provided. The resulting keying material is used as a symmetric
 encryption key. The Diffie-Hellman variant described requires the
 recipient to have a certificate, but the originator may have a static
 key pair (with the public key placed in a certificate) or an
 ephemeral key pair.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Terminology 2
 2. Overview Of Method . 2
 2.1. Key Agreement . 2
 2.1.1. Generation of ZZ 3
 2.1.2. Generation of Keying Material 3
 2.1.3. KEK Computation . 4
 2.1.4. Keylengths for common algorithms 5
 2.1.5. Public Key Validation 5
 2.1.6. Example 1 . 5
 2.1.7. Example 2 . 6
 2.2. Key and Parameter Requirements 7
 2.2.1. Group Parameter Generation 7
 2.2.1.1. Generation of p, q 8

Rescorla Standards Track [Page 1]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

 2.2.1.2. Generation of g 9
 2.2.2. Group Parameter Validation 9
 2.3. Ephemeral-Static Mode 10
 2.4. Static-Static Mode 10
 2.4. Acknowledgements . 10
 2.4. References . 11
 Security Considerations 12
 Author’s Address . 12
 Full Copyright Statement 13

1. Introduction

 In [DH76] Diffie and Hellman describe a means for two parties to
 agree upon a shared secret in such a way that the secret will be
 unavailable to eavesdroppers. This secret may then be converted into
 cryptographic keying material for other (symmetric) algorithms. A
 large number of minor variants of this process exist. This document
 describes one such variant, based on the ANSI X9.42 specification.

1.1. Requirements Terminology

 Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and
 "MAY" that appear in this document are to be interpreted as described
 in [RFC2119].

2. Overview Of Method

 Diffie-Hellman key agreement requires that both the sender and
 recipient of a message have key pairs. By combining one’s private key
 and the other party’s public key, both parties can compute the same
 shared secret number. This number can then be converted into
 cryptographic keying material. That keying material is typically
 used as a key-encryption key (KEK) to encrypt (wrap) a content-
 encryption key (CEK) which is in turn used to encrypt the message
 data.

2.1. Key Agreement

 The first stage of the key agreement process is to compute a shared
 secret number, called ZZ. When the same originator and recipient
 public/private key pairs are used, the same ZZ value will result.
 The ZZ value is then converted into a shared symmetric cryptographic
 key. When the originator employs a static private/public key pair,
 the introduction of a public random value ensures that the resulting
 symmetric key will be different for each key agreement.

Rescorla Standards Track [Page 2]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

2.1.1. Generation of ZZ

 X9.42 defines that the shared secret ZZ is generated as follows:

 ZZ = g ^ (xb * xa) mod p

 Note that the individual parties actually perform the computations:

 ZZ = (yb ^ xa) mod p = (ya ^ xb) mod p

 where ^ denotes exponentiation

 ya is party a’s public key; ya = g ^ xa mod p
 yb is party b’s public key; yb = g ^ xb mod p
 xa is party a’s private key
 xb is party b’s private key
 p is a large prime
 q is a large prime
 g = h^{(p-1)/q} mod p, where
 h is any integer with 1 < h < p-1 such that h{(p-1)/q} mod p > 1
 (g has order q mod p; i.e. g^q mod p = 1 if g!=1)
 j a large integer such that p=qj + 1
 (See Section 2.2 for criteria for keys and parameters)

 In [CMS], the recipient’s key is identified by the CMS
 RecipientIdentifier, which points to the recipient’s certificate.
 The sender’s public key is identified using the
 OriginatorIdentifierOrKey field, either by reference to the sender’s
 certificate or by inline inclusion of a public key.

2.1.2. Generation of Keying Material

 X9.42 provides an algorithm for generating an essentially arbitrary
 amount of keying material from ZZ. Our algorithm is derived from that
 algorithm by mandating some optional fields and omitting others.

 KM = H (ZZ || OtherInfo)

 H is the message digest function SHA-1 [FIPS-180] ZZ is the shared
 secret value computed in Section 2.1.1. Leading zeros MUST be
 preserved, so that ZZ occupies as many octets as p. For instance, if
 p is 1024 bits, ZZ should be 128 bytes long. OtherInfo is the DER
 encoding of the following structure:

 OtherInfo ::= SEQUENCE {
 keyInfo KeySpecificInfo,
 partyAInfo [0] OCTET STRING OPTIONAL,
 suppPubInfo [2] OCTET STRING

Rescorla Standards Track [Page 3]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

 }

 KeySpecificInfo ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 counter OCTET STRING SIZE (4..4) }

 Note that these ASN.1 definitions use EXPLICIT tagging. (In ASN.1,
 EXPLICIT tagging is implicit unless IMPLICIT is explicitly
 specified.)

 algorithm is the ASN.1 algorithm OID of the CEK wrapping algorithm
 with which this KEK will be used. Note that this is NOT an
 AlgorithmIdentifier, but simply the OBJECT IDENTIFIER. No
 parameters are used.

 counter is a 32 bit number, represented in network byte order. Its
 initial value is 1 for any ZZ, i.e. the byte sequence 00 00 00 01
 (hex), and it is incremented by one every time the above key
 generation function is run for a given KEK.

 partyAInfo is a random string provided by the sender. In CMS, it is
 provided as a parameter in the UserKeyingMaterial field (encoded as
 an OCTET STRING). If provided, partyAInfo MUST contain 512 bits.

 suppPubInfo is the length of the generated KEK, in bits, represented
 as a 32 bit number in network byte order. E.g. for 3DES it would be
 the byte sequence 00 00 00 C0.

 To generate a KEK, one generates one or more KM blocks (incrementing
 counter appropriately) until enough material has been generated. The
 KM blocks are concatenated left to right I.e. KM(counter=1) ||
 KM(counter=2)...

 Note that the only source of secret entropy in this computation is
 ZZ. Even if a string longer than ZZ is generated, the effective key
 space of the KEK is limited by the size of ZZ, in addition to any
 security level considerations imposed by the parameters p and q.
 However, if partyAInfo is different for each message, a different KEK
 will be generated for each message. Note that partyAInfo MUST be used
 in Static-Static mode, but MAY appear in Ephemeral-Static mode.

2.1.3. KEK Computation

 Each key encryption algorithm requires a specific size key (n). The
 KEK is generated by mapping the left n-most bytes of KM onto the key.
 For 3DES, which requires 192 bits of keying material, the algorithm
 must be run twice, once with a counter value of 1 (to generate K1’,
 K2’, and the first 32 bits of K3’) and once with a counter value of 2

Rescorla Standards Track [Page 4]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

 (to generate the last 32 bits of K3). K1’,K2’ and K3’ are then parity
 adjusted to generate the 3 DES keys K1,K2 and K3. For RC2-128, which
 requires 128 bits of keying material, the algorithm is run once, with
 a counter value of 1, and the left-most 128 bits are directly
 converted to an RC2 key. Similarly, for RC2-40, which requires 40
 bits of keying material, the algorithm is run once, with a counter
 value of 1, and the leftmost 40 bits are used as the key.

2.1.4. Keylengths for common algorithms

 Some common key encryption algorithms have KEKs of the following
 lengths.

 3-key 3DES 192 bits
 RC2-128 128 bits
 RC2-40 40 bits

 RC2 effective key lengths are equal to RC2 real key lengths.

2.1.5. Public Key Validation

 The following algorithm MAY be used to validate a received public key
 y.

 1. Verify that y lies within the interval [2,p-1]. If it does not,
 the key is invalid.
 2. Compute y^q mod p. If the result == 1, the key is valid.
 Otherwise the key is invalid.

 The primary purpose of public key validation is to prevent a small
 subgroup attack [LAW98] on the sender’s key pair. If Ephemeral-Static
 mode is used, this check may not be necessary. See also [P1363] for
 more information on Public Key validation.

 Note that this procedure may be subject to pending patents.

2.1.6. Example 1

 ZZ is the 20 bytes 00 01 02 03 04 05 06 07 08 09
 0a 0b 0c 0d 0e 0f 10 11 12 13

 The key wrap algorithm is 3DES-EDE wrap.

 No partyAInfo is used.

 Consequently, the input to the first invocation of SHA-1 is:

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 ; ZZ

Rescorla Standards Track [Page 5]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

 30 1d
 30 13
 06 0b 2a 86 48 86 f7 0d 01 09 10 03 06 ; 3DES wrap OID
 04 04
 00 00 00 01 ; Counter
 a2 06
 04 04
 00 00 00 c0 ; key length

 And the output is the 20 bytes:

 a0 96 61 39 23 76 f7 04 4d 90 52 a3 97 88 32 46 b6 7f 5f 1e

 The input to the second invocation of SHA-1 is:

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 ; ZZ
 30 1d
 30 13
 06 0b 2a 86 48 86 f7 0d 01 09 10 03 06 ; 3DES wrap OID
 04 04
 00 00 00 02 ; Counter
 a2 06
 04 04
 00 00 00 c0 ; key length

 And the output is the 20 bytes:

 f6 3e b5 fb 5f 56 d9 b6 a8 34 03 91 c2 d3 45 34 93 2e 11 30

 Consequently,
 K1’=a0 96 61 39 23 76 f7 04
 K2’=4d 90 52 a3 97 88 32 46
 K3’=b6 7f 5f 1e f6 3e b5 fb

 Note: These keys are not parity adjusted

2.1.7. Example 2

 ZZ is the 20 bytes 00 01 02 03 04 05 06 07 08 09
 0a 0b 0c 0d 0e 0f 10 11 12 13

 The key wrap algorithm is RC2-128 key wrap, so we need 128 bits (16
 bytes) of keying material.

 The partyAInfo used is the 64 bytes

 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01

Rescorla Standards Track [Page 6]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01

 Consequently, the input to SHA-1 is:

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 ; ZZ
 30 61
 30 13
 06 0b 2a 86 48 86 f7 0d 01 09 10 03 07 ; RC2 wrap OID
 04 04
 00 00 00 01 ; Counter
 a0 42
 04 40
 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01 ; partyAInfo
 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
 a2 06
 04 04
 00 00 00 80 ; key length

 And the output is the 20 bytes:

 48 95 0c 46 e0 53 00 75 40 3c ce 72 88 96 04 e0 3e 7b 5d e9

 Consequently,
 K=48 95 0c 46 e0 53 00 75 40 3c ce 72 88 96 04 e0

2.2. Key and Parameter Requirements

 X9.42 requires that the group parameters be of the form p=jq + 1
 where q is a large prime of length m and j>=2. An algorithm for
 generating primes of this form (derived from the algorithms in FIPS
 PUB 186-1[FIPS-186] and [X942]can be found in appendix A.

 X9.42 requires that the private key x be in the interval [2, (q -
 2)]. x should be randomly generated in this interval. y is then
 computed by calculating g^x mod p. To comply with this memo, m MUST
 be >=160 bits in length, (consequently, q MUST be at least 160 bits
 long). When symmetric ciphers stronger than DES are to be used, a
 larger m may be advisable. p must be a minimum of 512 bits long.

2.2.1. Group Parameter Generation

 Agents SHOULD generate domain parameters (g,p,q) using the following
 algorithm, derived from [FIPS-186] and [X942]. When this algorithm is
 used, the correctness of the generation procedure can be verified by
 a third party by the algorithm of 2.2.2.

Rescorla Standards Track [Page 7]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

2.2.1.1. Generation of p, q

 This algorithm generates a p, q pair where q is of length m and p is
 of length L.

 1. Set m’ = m/160 where / represents integer division with rounding
 upwards. I.e. 200/160 = 2.

 2. Set L’= L/160

 3. Set N’= L/1024

 4. Select an arbitrary bit string SEED such that the length of SEED
 >= m

 5. Set U = 0

 6. For i = 0 to m’ - 1

 U = U + (SHA1[SEED + i] XOR SHA1[(SEED + m’ + i)) * 2^(160 * i)

 Note that for m=160, this reduces to the algorithm of [FIPS-186]

 U = SHA1[SEED] XOR SHA1[(SEED+1) mod 2^160].

 5. Form q from U by computing U mod (2^m) and setting the most
 significant bit (the 2^(m-1) bit) and the least significant bit to
 1. In terms of boolean operations, q = U OR 2^(m-1) OR 1. Note
 that 2^(m-1) < q < 2^m

 6. Use a robust primality algorithm to test whether q is prime.

 7. If q is not prime then go to 4.

 8. Let counter = 0

 9. Set R = seed + 2*m’ + (L’ * counter)

 10. Set V = 0

 12. For i = 0 to L’-1 do

 V = V + SHA1(R + i) * 2^(160 * i)

 13. Set W = V mod 2^L

 14. Set X = W OR 2^(L-1)

Rescorla Standards Track [Page 8]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

 Note that 0 <= W < 2^(L-1) and hence X >= 2^(L-1)

 15. Set p = X - (X mod (2*q)) + 1

 6. If p > 2^(L-1) use a robust primality test to test whether p is
 prime. Else go to 18.

 17. If p is prime output p, q, seed, counter and stop.

 18. Set counter = counter + 1

 19. If counter < (4096 * N) then go to 8.

 20. Output "failure"

 Note: A robust primality test is one where the probability of a non-
 prime number passing the test is at most 2^-80. [FIPS-186] provides a
 suitable algorithm, as does [X942].

2.2.1.2. Generation of g

 This section gives an algorithm (derived from [FIPS-186]) for
 generating g.

 1. Let j = (p - 1)/q.

 2. Set h = any integer, where 1 < h < p - 1 and h differs
 from any value previously tried.

 3. Set g = h^j mod p

 4. If g = 1 go to step 2

2.2.2. Group Parameter Validation

 The ASN.1 for DH keys in [PKIX] includes elements j and validation-
 Parms which MAY be used by recipients of a key to verify that the
 group parameters were correctly generated. Two checks are possible:

 1. Verify that p=qj + 1. This demonstrates that the parameters meet
 the X9.42 parameter criteria.
 2. Verify that when the p,q generation procedure of [FIPS-186]
 Appendix 2 is followed with seed ’seed’, that p is found when
 ’counter’ = pgenCounter.

 This demonstrates that the parameters were randomly chosen and
 do not have a special form.

Rescorla Standards Track [Page 9]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

 Whether agents provide validation information in their certificates
 is a local matter between the agents and their CA.

2.3. Ephemeral-Static Mode

 In Ephemeral-Static mode, the recipient has a static (and certified)
 key pair, but the sender generates a new key pair for each message
 and sends it using the originatorKey production. If the sender’s key
 is freshly generated for each message, the shared secret ZZ will be
 similarly different for each message and partyAInfo MAY be omitted,
 since it serves merely to decouple multiple KEKs generated by the
 same set of pairwise keys. If, however, the same ephemeral sender key
 is used for multiple messages (e.g. it is cached as a performance
 optimization) then a separate partyAInfo MUST be used for each
 message. All implementations of this standard MUST implement
 Ephemeral-Static mode.

 In order to resist small subgroup attacks, the recipient SHOULD
 perform the check described in 2.1.5. If an opponent cannot determine
 success or failure of a decryption operation by the recipient, the
 recipient MAY choose to omit this check. See also [LL97] for a method
 of generating keys which are not subject to small subgroup attack.

2.4. Static-Static Mode

 In Static-Static mode, both the sender and the recipient have a
 static (and certified) key pair. Since the sender’s and recipient’s
 keys are therefore the same for each message, ZZ will be the same for
 each message. Thus, partyAInfo MUST be used (and different for each
 message) in order to ensure that different messages use different
 KEKs. Implementations MAY implement Static-Static mode.

 In order to prevent small subgroup attacks, both originator and
 recipient SHOULD either perform the validation step described in
 Section 2.1.5 or verify that the CA has properly verified the
 validity of the key. See also [LL97] for a method of generating keys
 which are not subject to small subgroup attack.

Acknowledgements

 The Key Agreement method described in this document is based on work
 done by the ANSI X9F1 working group. The author wishes to extend his
 thanks for their assistance.

 The author also wishes to thank Stephen Henson, Paul Hoffman, Russ
 Housley, Burt Kaliski, Brian Korver, John Linn, Jim Schaad, Mark
 Schertler, Peter Yee, and Robert Zuccherato for their expert advice
 and review.

Rescorla Standards Track [Page 10]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

References

 [CMS] Housley, R., "Cryptographic Message Syntax", RFC 2630,
 June 1999.

 [FIPS-46-1] Federal Information Processing Standards Publication
 (FIPS PUB) 46-1, Data Encryption Standard, Reaffirmed
 1988 January 22 (supersedes FIPS PUB 46, 1977 January
 15).

 [FIPS-81] Federal Information Processing Standards Publication
 (FIPS PUB) 81, DES Modes of Operation, 1980 December 2.

 [FIPS-180] Federal Information Processing Standards Publication
 (FIPS PUB) 180-1, "Secure Hash Standard", 1995 April 17.

 [FIPS-186] Federal Information Processing Standards Publication
 (FIPS PUB) 186, "Digital Signature Standard", 1994 May
 19.

 [P1363] "Standard Specifications for Public Key Cryptography",
 IEEE P1363 working group draft, 1998, Annex D.

 [PKIX] Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and CRL
 Profile", RFC 2459, January 1999.

 [LAW98] L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone,
 "An efficient protocol for authenticated key agreement",
 Technical report CORR 98-05, University of Waterloo,
 1998.

 [LL97] C.H. Lim and P.J. Lee, "A key recovery attack on discrete
 log-based schemes using a prime order subgroup", B.S.
 Kaliski, Jr., editor, Advances in Cryptology - Crypto
 ’97, Lecture Notes in Computer Science, vol. 1295, 1997,
 Springer-Verlag, pp. 249-263.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [X942] "Agreement Of Symmetric Keys Using Diffie-Hellman and MQV
 Algorithms", ANSI draft, 1998.

Rescorla Standards Track [Page 11]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

Security Considerations

 All the security in this system is provided by the secrecy of the
 private keying material. If either sender or recipient private keys
 are disclosed, all messages sent or received using that key are
 compromised. Similarly, loss of the private key results in an
 inability to read messages sent using that key.

 Static Diffie-Hellman keys are vulnerable to a small subgroup attack
 [LAW98]. In practice, this issue arises for both sides in Static-
 Static mode and for the receiver during Ephemeral-Static mode.
 Sections 2.3 and 2.4 describe appropriate practices to protect
 against this attack. Alternatively, it is possible to generate keys
 in such a fashion that they are resistant to this attack. See [LL97]

 The security level provided by these methods depends on several
 factors. It depends on the length of the symmetric key (typically, a
 2^l security level if the length is l bits); the size of the prime q
 (a 2^{m/2} security level); and the size of the prime p (where the
 security level grows as a subexponential function of the size in
 bits). A good design principle is to have a balanced system, where
 all three security levels are approximately the same. If many keys
 are derived from a given pair of primes p and q, it may be prudent to
 have higher levels for the primes. In any case, the overall security
 is limited by the lowest of the three levels.

Author’s Address

 Eric Rescorla
 RTFM Inc.
 30 Newell Road, #16
 East Palo Alto, CA 94303

 EMail: ekr@rtfm.com

Rescorla Standards Track [Page 12]

RFC 2631 Diffie-Hellman Key Agreement Method June 1999

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rescorla Standards Track [Page 13]

