
Network Working Group D. Harrington
Request for Comments: 2261 Cabletron Systems, Inc.
Category: Standards Track R. Presuhn
 BMC Software, Inc.
 B. Wijnen
 IBM T. J. Watson Research
 January 1998

 An Architecture for Describing
 SNMP Management Frameworks

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1997). All Rights Reserved.

Abstract

 This document describes an architecture for describing SNMP
 Management Frameworks. The architecture is designed to be modular to
 allow the evolution of the SNMP protocol standards over time. The
 major portions of the architecture are an SNMP engine containing a
 Message Processing Subsystem, a Security Subsystem and an Access
 Control Subsystem, and possibly multiple SNMP applications which
 provide specific functional processing of management data.

Table of Contents

 1. Introduction .. 3
 1.1. Overview .. 3
 1.2. SNMP .. 4
 1.3. Goals of this Architecture 5
 1.4. Security Requirements of this Architecture 6
 1.5. Design Decisions .. 7
 2. Documentation Overview 8
 2.1. Document Roadmap .. 10
 2.2. Applicability Statement 10
 2.3. Coexistence and Transition 10
 2.4. Transport Mappings .. 11

Harrington, et. al. Standards Track [Page 1]

RFC 2261 SNMPv3 Architecture January 1998

 2.5. Message Processing .. 11
 2.6. Security .. 11
 2.7. Access Control .. 11
 2.8. Protocol Operations 12
 2.9. Applications .. 12
 2.10. Structure of Management Information 12
 2.11. Textual Conventions 13
 2.12. Conformance Statements 13
 2.13. Management Information Base Modules 13
 2.13.1. SNMP Instrumentation MIBs 13
 2.14. SNMP Framework Documents 13
 3. Elements of the Architecture 14
 3.1. The Naming of Entities 14
 3.1.1. SNMP engine ... 15
 3.1.1.1. snmpEngineID .. 16
 3.1.1.2. Dispatcher .. 16
 3.1.1.3. Message Processing Subsystem 16
 3.1.1.3.1. Message Processing Model 17
 3.1.1.4. Security Subsystem 17
 3.1.1.4.1. Security Model 17
 3.1.1.4.2. Security Protocol 18
 3.1.2. Access Control Subsystem 18
 3.1.2.1. Access Control Model 18
 3.1.3. Applications .. 18
 3.1.3.1. SNMP Manager .. 19
 3.1.3.2. SNMP Agent .. 20
 3.2. The Naming of Identities 21
 3.2.1. Principal ... 21
 3.2.2. securityName .. 21
 3.2.3. Model-dependent security ID 22
 3.3. The Naming of Management Information 22
 3.3.1. An SNMP Context ... 23
 3.3.2. contextEngineID ... 24
 3.3.3. contextName ... 24
 3.3.4. scopedPDU ... 25
 3.4. Other Constructs .. 25
 3.4.1. maxSizeResponseScopedPDU 25
 3.4.2. Local Configuration Datastore 25
 3.4.3. securityLevel ... 25
 4. Abstract Service Interfaces 26
 4.1. Dispatcher Primitives 26
 4.1.1. Generate Outgoing Request or Notification 26
 4.1.2. Process Incoming Request or Notification PDU 26
 4.1.3. Generate Outgoing Response 27
 4.1.4. Process Incoming Response PDU 27
 4.1.5. Registering Responsibility for Handling SNMP PDUs 28
 4.2. Message Processing Subsystem Primitives 28
 4.2.1. Prepare Outgoing SNMP Request or Notification Message ... 28

Harrington, et. al. Standards Track [Page 2]

RFC 2261 SNMPv3 Architecture January 1998

 4.2.2. Prepare an Outgoing SNMP Response Message 29
 4.2.3. Prepare Data Elements from an Incoming SNMP Message 29
 4.3. Access Control Subsystem Primitives 30
 4.4. Security Subsystem Primitives 30
 4.4.1. Generate a Request or Notification Message 30
 4.4.2. Process Incoming Message 31
 4.4.3. Generate a Response Message 31
 4.5. Common Primitives ... 32
 4.5.1. Release State Reference Information 32
 4.6. Scenario Diagrams ... 32
 4.6.1. Command Generator or Notification Originator 32
 4.6.2. Scenario Diagram for a Command Responder Application 33
 5. Managed Object Definitions for SNMP Management Frameworks ... 35
 6. Intellectual Property 44
 7. Acknowledgements .. 45
 8. Security Considerations 46
 9. References .. 46
 10. Editors’ Addresses ... 48
 A. Guidelines for Model Designers 49
 A.1. Security Model Design Requirements 49
 A.1.1. Threats ... 49
 A.1.2. Security Processing 50
 A.1.3. Validate the security-stamp in a received message 51
 A.1.4. Security MIBs ... 51
 A.1.5. Cached Security Data 51
 A.2. Message Processing Model Design Requirements 52
 A.2.1. Receiving an SNMP Message from the Network 52
 A.2.2. Sending an SNMP Message to the Network 52
 A.3. Application Design Requirements 53
 A.3.1. Applications that Initiate Messages 53
 A.3.2. Applications that Receive Responses 54
 A.3.3. Applications that Receive Asynchronous Messages 54
 A.3.4. Applications that Send Responses 54
 A.4. Access Control Model Design Requirements 55
 B. Full Copyright Statement 56

1. Introduction

 1.1. Overview

 This document defines a vocabulary for describing SNMP Management
 Frameworks, and an architecture for describing the major portions of
 SNMP Management Frameworks.

Harrington, et. al. Standards Track [Page 3]

RFC 2261 SNMPv3 Architecture January 1998

 This document does not provide a general introduction to SNMP. Other
 documents and books can provide a much better introduction to SNMP.
 Nor does this document provide a history of SNMP. That also can be
 found in books and other documents.

 Section 1 describes the purpose, goals, and design decisions of this
 architecture.

 Section 2 describes various types of documents which define SNMP
 Frameworks, and how they fit into this architecture. It also provides
 a minimal road map to the documents which have previously defined
 SNMP frameworks.

 Section 3 details the vocabulary of this architecture and its pieces.
 This section is important for understanding the remaining sections,
 and for understanding documents which are written to fit within this
 architecture.

 Section 4 describes the primitives used for the abstract service
 interfaces between the various subsystems, models and applications
 within this architecture.

 Section 5 defines a collection of managed objects used to instrument
 SNMP entities within this architecture.

 Sections 6, 7, 8, and 9 are administrative in nature.

 Appendix A contains guidelines for designers of Models which are
 expected to fit within this architecture.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. SNMP

 An SNMP management system contains:

 - several (potentially many) nodes, each with an SNMP entity
 containing command responder and notification originator
 applications, which have access to management instrumentation
 (traditionally called agents);

 - at least one SNMP entity containing command generator and/or
 notification receiver applications (traditionally called a
 manager) and,

Harrington, et. al. Standards Track [Page 4]

RFC 2261 SNMPv3 Architecture January 1998

 - a management protocol, used to convey management information
 between the SNMP entities.

 SNMP entities executing command generator and notification receiver
 applications monitor and control managed elements. Managed elements
 are devices such as hosts, routers, terminal servers, etc., which are
 monitored and controlled via access to their management information.

 It is the purpose of this document to define an architecture which
 can evolve to realize effective management in a variety of
 configurations and environments. The architecture has been designed
 to meet the needs of implementations of:

 - minimal SNMP entities with command responder and/or
 notification originator applications (traditionally called SNMP
 agents),

 - SNMP entities with proxy forwarder applications (traditionally
 called SNMP proxy agents),

 - command line driven SNMP entities with command generator and/or
 notification receiver applications (traditionally called SNMP
 command line managers),

 - SNMP entities with command generator and/or notification
 receiver, plus command responder and/or notification originator
 applications (traditionally called SNMP mid-level managers or
 dual-role entities),

 - SNMP entities with command generator and/or notification
 receiver and possibly other types of applications for managing
 a potentially very large number of managed nodes (traditionally
 called (network) management stations).

1.3. Goals of this Architecture

 This architecture was driven by the following goals:

 - Use existing materials as much as possible. It is heavily based
 on previous work, informally known as SNMPv2u and SNMPv2*.

 - Address the need for secure SET support, which is considered
 the most important deficiency in SNMPv1 and SNMPv2c.

 - Make it possible to move portions of the architecture forward
 in the standards track, even if consensus has not been reached
 on all pieces.

Harrington, et. al. Standards Track [Page 5]

RFC 2261 SNMPv3 Architecture January 1998

 - Define an architecture that allows for longevity of the SNMP
 Frameworks that have been and will be defined.

 - Keep SNMP as simple as possible.

 - Make it relatively inexpensive to deploy a minimal conforming
 implementation.

 - Make it possible to upgrade portions of SNMP as new approaches
 become available, without disrupting an entire SNMP framework.

 - Make it possible to support features required in large
 networks, but make the expense of supporting a feature directly
 related to the support of the feature.

1.4. Security Requirements of this Architecture

 Several of the classical threats to network protocols are applicable
 to the management problem and therefore would be applicable to any
 Security Model used in an SNMP Management Framework. Other threats
 are not applicable to the management problem. This section discusses
 principal threats, secondary threats, and threats which are of lesser
 importance.

 The principal threats against which any Security Model used within
 this architecture SHOULD provide protection are:

 Modification of Information
 The modification threat is the danger that some unauthorized SNMP
 entity may alter in-transit SNMP messages generated on behalf of
 an authorized principal in such a way as to effect unauthorized
 management operations, including falsifying the value of an
 object.

 Masquerade
 The masquerade threat is the danger that management operations not
 authorized for some principal may be attempted by assuming the
 identity of another principal that has the appropriate
 authorizations.

 Message Stream Modification
 The SNMP protocol is typically based upon a connectionless
 transport service which may operate over any subnetwork service.
 The re-ordering, delay or replay of messages can and does occur
 through the natural operation of many such subnetwork services.
 The message stream modification threat is the danger that messages

Harrington, et. al. Standards Track [Page 6]

RFC 2261 SNMPv3 Architecture January 1998

 may be maliciously re-ordered, delayed or replayed to an extent
 which is greater than can occur through the natural operation of a
 subnetwork service, in order to effect unauthorized management
 operations.

 Disclosure
 The disclosure threat is the danger of eavesdropping on the
 exchanges between SNMP engines. Protecting against this threat
 may be required as a matter of local policy.

 There are at least two threats against which a Security Model within
 this architecture need not protect.

 Denial of Service
 A Security Model need not attempt to address the broad range of
 attacks by which service on behalf of authorized users is denied.
 Indeed, such denial-of-service attacks are in many cases
 indistinguishable from the type of network failures with which any
 viable management protocol must cope as a matter of course.

 Traffic Analysis
 A Security Model need not attempt to address traffic analysis
 attacks. Many traffic patterns are predictable - entities may be
 managed on a regular basis by a relatively small number of
 management stations - and therefore there is no significant
 advantage afforded by protecting against traffic analysis.

1.5. Design Decisions

 Various design decisions were made in support of the goals of the
 architecture and the security requirements:

 - Architecture
 An architecture should be defined which identifies the
 conceptual boundaries between the documents. Subsystems should
 be defined which describe the abstract services provided by
 specific portions of an SNMP framework. Abstract service
 interfaces, as described by service primitives, define the
 abstract boundaries between documents, and the abstract
 services that are provided by the conceptual subsystems of an
 SNMP framework.

 - Self-contained Documents
 Elements of procedure plus the MIB objects which are needed for
 processing for a specific portion of an SNMP framework should
 be defined in the same document, and as much as possible,
 should not be referenced in other documents. This allows pieces
 to be designed and documented as independent and self-contained

Harrington, et. al. Standards Track [Page 7]

RFC 2261 SNMPv3 Architecture January 1998

 parts, which is consistent with the general SNMP MIB module
 approach. As portions of SNMP change over time, the documents
 describing other portions of SNMP are not directly impacted.
 This modularity allows, for example, Security Models,
 authentication and privacy mechanisms, and message formats to
 be upgraded and supplemented as the need arises. The self-
 contained documents can move along the standards track on
 different time-lines.

 - Threats
 The Security Models in the Security Subsystem SHOULD protect
 against the principal threats: modification of information,
 masquerade, message stream modification and disclosure. They
 do not need to protect against denial of service and traffic
 analysis.

 - Remote Configuration
 The Security and Access Control Subsystems add a whole new set
 of SNMP configuration parameters. The Security Subsystem also
 requires frequent changes of secrets at the various SNMP
 entities. To make this deployable in a large operational
 environment, these SNMP parameters must be able to be remotely
 configured.

 - Controlled Complexity
 It is recognized that producers of simple managed devices want
 to keep the resources used by SNMP to a minimum. At the same
 time, there is a need for more complex configurations which can
 spend more resources for SNMP and thus provide more
 functionality. The design tries to keep the competing
 requirements of these two environments in balance and allows
 the more complex environments to logically extend the simple
 environment.

2. Documentation Overview

 The following figure shows the set of documents that fit within the
 SNMP Architecture.

Harrington, et. al. Standards Track [Page 8]

RFC 2261 SNMPv3 Architecture January 1998

 +------------------------- Document Set ----------------------------+
 | |
 | +------------+ +-----------------+ +----------------+ |
 | | Document * | | Applicability * | | Coexistence * | |
 | | Roadmap | | Statement | | & Transition | |
 | +------------+ +-----------------+ +----------------+ |
 | |
 | +---+ |
	Message Handling							
	+----------------+ +-----------------+ +-----------------+							
		Transport		Message		Security		
		Mappings		Processing and				
				Dispatcher				
	+----------------+ +-----------------+ +-----------------+							
+---+								
+---+								
	PDU Handling							
	+----------------+ +-----------------+ +-----------------+							
		Protocol		Applications		Access		
		Operations				Control		
	+----------------+ +-----------------+ +-----------------+							
+---+								
+---+								
	Information Model							
	+--------------+ +--------------+ +---------------+							
		Structure of		Textual		Conformance		
		Management		Conventions		Statements		
		Information						
	+--------------+ +--------------+ +---------------+							
+---+								
+---+								
	MIBs							
	+-------------+ +-------------+ +----------+ +----------+							
		Standard v1		Standard v1		Historic		Draft v2
		RFC1157		RFC1212		RFC14XX		RFC19XX
		format		format		format		format
	+-------------+ +-------------+ +----------+ +----------+							
+---+								
 +---+

 Note: RFC14XX means RFCs 1442, 1443, and 1444. RFC19XX means RFCs
 1902, 1903, and 1904.

Harrington, et. al. Standards Track [Page 9]

RFC 2261 SNMPv3 Architecture January 1998

 Those marked with an asterisk (*) are expected to be written in the
 future. Each of these documents may be replaced or supplemented.
 This Architecture document specifically describes how new documents
 fit into the set of documents in the area of Message and PDU
 handling.

2.1. Document Roadmap

 One or more documents may be written to describe how sets of
 documents taken together form specific Frameworks. The configuration
 of document sets might change over time, so the "road map" should be
 maintained in a document separate from the standards documents
 themselves.

2.2. Applicability Statement

 SNMP is used in networks that vary widely in size and complexity, by
 organizations that vary widely in their requirements of management.
 Some models will be designed to address specific problems of
 management, such as message security.

 One or more documents may be written to describe the environments to
 which certain versions of SNMP or models within SNMP would be
 appropriately applied, and those to which a given model might be
 inappropriately applied.

2.3. Coexistence and Transition

 The purpose of an evolutionary architecture is to permit new models
 to replace or supplement existing models. The interactions between
 models could result in incompatibilities, security "holes", and other
 undesirable effects.

 The purpose of Coexistence documents is to detail recognized
 anomalies and to describe required and recommended behaviors for
 resolving the interactions between models within the architecture.

 Coexistence documents may be prepared separately from model
 definition documents, to describe and resolve interaction anomalies
 between a model definition and one or more other model definitions.

 Additionally, recommendations for transitions between models may also
 be described, either in a coexistence document or in a separate
 document.

Harrington, et. al. Standards Track [Page 10]

RFC 2261 SNMPv3 Architecture January 1998

2.4. Transport Mappings

 SNMP messages are sent over various transports. It is the purpose of
 Transport Mapping documents to define how the mapping between SNMP
 and the transport is done.

2.5. Message Processing

 A Message Processing Model document defines a message format, which
 is typically identified by a version field in an SNMP message header.
 The document may also define a MIB module for use in message
 processing and for instrumentation of version-specific interactions.

 An SNMP engine includes one or more Message Processing Models, and
 thus may support sending and receiving multiple versions of SNMP
 messages.

2.6. Security

 Some environments require secure protocol interactions. Security is
 normally applied at two different stages:

 - in the transmission/receipt of messages, and

 - in the processing of the contents of messages.

 For purposes of this document, "security" refers to message-level
 security; "access control" refers to the security applied to protocol
 operations.

 Authentication, encryption, and timeliness checking are common
 functions of message level security.

 A security document describes a Security Model, the threats against
 which the model protects, the goals of the Security Model, the
 protocols which it uses to meet those goals, and it may define a MIB
 module to describe the data used during processing, and to allow the
 remote configuration of message-level security parameters, such as
 passwords.

 An SNMP engine may support multiple Security Models concurrently.

2.7. Access Control

 During processing, it may be required to control access to managed
 objects for operations.

Harrington, et. al. Standards Track [Page 11]

RFC 2261 SNMPv3 Architecture January 1998

 An Access Control Model defines mechanisms to determine whether
 access to a managed object should be allowed. An Access Control
 Model may define a MIB module used during processing and to allow the
 remote configuration of access control policies.

2.8. Protocol Operations

 SNMP messages encapsulate an SNMP Protocol Data Unit (PDU). It is the
 purpose of a Protocol Operations document to define the operations of
 the protocol with respect to the processing of the PDUs.

 An application document defines which Protocol Operations documents
 are supported by the application.

2.9. Applications

 An SNMP entity normally includes a number of applications.
 Applications use the services of an SNMP engine to accomplish
 specific tasks. They coordinate the processing of management
 information operations, and may use SNMP messages to communicate with
 other SNMP entities.

 Applications documents describe the purpose of an application, the
 services required of the associated SNMP engine, and the protocol
 operations and informational model that the application uses to
 perform management operations.

 An application document defines which set of documents are used to
 specifically define the structure of management information, textual
 conventions, conformance requirements, and operations supported by
 the application.

2.10. Structure of Management Information

 Management information is viewed as a collection of managed objects,
 residing in a virtual information store, termed the Management
 Information Base (MIB). Collections of related objects are defined in
 MIB modules.

 It is the purpose of a Structure of Management Information document
 to establish the syntax for defining objects, modules, and other
 elements of managed information.

Harrington, et. al. Standards Track [Page 12]

RFC 2261 SNMPv3 Architecture January 1998

2.11. Textual Conventions

 When designing a MIB module, it is often useful to define new types
 similar to those defined in the SMI, but with more precise semantics,
 or which have special semantics associated with them. These newly
 defined types are termed textual conventions, and may defined in
 separate documents, or within a MIB module.

2.12. Conformance Statements

 It may be useful to define the acceptable lower-bounds of
 implementation, along with the actual level of implementation
 achieved. It is the purpose of Conformance Statements to define the
 notation used for these purposes.

2.13. Management Information Base Modules

 MIB documents describe collections of managed objects which
 instrument some aspect of a managed node.

2.13.1. SNMP Instrumentation MIBs

 An SNMP MIB document may define a collection of managed objects which
 instrument the SNMP protocol itself. In addition, MIB modules may be
 defined within the documents which describe portions of the SNMP
 architecture, such as the documents for Message processing Models,
 Security Models, etc. for the purpose of instrumenting those Models,
 and for the purpose of allowing remote configuration of the Model.

2.14. SNMP Framework Documents

 This architecture is designed to allow an orderly evolution of
 portions of SNMP Frameworks.

 Throughout the rest of this document, the term "subsystem" refers to
 an abstract and incomplete specification of a portion of a Framework,
 that is further refined by a model specification.

 A "model" describes a specific design of a subsystem, defining
 additional constraints and rules for conformance to the model. A
 model is sufficiently detailed to make it possible to implement the
 specification.

 An "implementation" is an instantiation of a subsystem, conforming to
 one or more specific models.

 SNMP version 1 (SNMPv1), is the original Internet-standard Network
 Management Framework, as described in RFCs 1155, 1157, and 1212.

Harrington, et. al. Standards Track [Page 13]

RFC 2261 SNMPv3 Architecture January 1998

 SNMP version 2 (SNMPv2), is the SNMPv2 Framework as derived from the
 SNMPv1 Framework. It is described in RFCs 1902-1907. SNMPv2 has no
 message definition.

 The Community-based SNMP version 2 (SNMPv2c), is an experimental SNMP
 Framework which supplements the SNMPv2 Framework, as described in
 RFC1901. It adds the SNMPv2c message format, which is similar to the

 SNMPv1 message format.

 SNMP version 3 (SNMPv3), is an extensible SNMP Framework which
 supplements the SNMPv2 Framework, by supporting the following:

 - a new SNMP message format,

 - Security for Messages, and

 - Access Control.

 Other SNMP Frameworks, i.e., other configurations of implemented
 subsystems, are expected to also be consistent with this
 architecture.

3. Elements of the Architecture

 This section describes the various elements of the architecture and
 how they are named. There are three kinds of naming:

 1) the naming of entities,

 2) the naming of identities, and

 3) the naming of management information.

 This architecture also defines some names for other constructs that
 are used in the documentation.

3.1. The Naming of Entities

 An SNMP entity is an implementation of this architecture. Each such
 SNMP entity consists of an SNMP engine and one or more associated
 applications.

 The following figure shows details about an SNMP entity and the
 components within it.

Harrington, et. al. Standards Track [Page 14]

RFC 2261 SNMPv3 Architecture January 1998

 +---+
 | SNMP entity |
 | |
 | +---+ |
	SNMP engine (identified by snmpEngineID)									
	+------------+ +------------+ +-----------+ +-----------+									
		Dispatcher		Message		Security		Access		
				Processing		Subsystem		Control		
				Subsystem				Subsystem		
	+------------+ +------------+ +-----------+ +-----------+									
+---+										
+---+										
	Application(s)									
	+-------------+ +--------------+ +--------------+									
		Command		Notification		Proxy				
		Generator		Receiver		Forwarder				
	+-------------+ +--------------+ +--------------+									
	+-------------+ +--------------+ +--------------+									
		Command		Notification		Other				
		Responder		Originator						
	+-------------+ +--------------+ +--------------+									
+---+										
 +---+

3.1.1. SNMP engine

 An SNMP engine provides services for sending and receiving messages,
 authenticating and encrypting messages, and controlling access to
 managed objects. There is a one-to-one association between an SNMP
 engine and the SNMP entity which contains it.

 The engine contains:

 1) a Dispatcher,

 2) a Message Processing Subsystem,

Harrington, et. al. Standards Track [Page 15]

RFC 2261 SNMPv3 Architecture January 1998

 3) a Security Subsystem, and

 4) an Access Control Subsystem.

3.1.1.1. snmpEngineID

 Within an administrative domain, an snmpEngineID is the unique and
 unambiguous identifier of an SNMP engine. Since there is a one-to-one
 association between SNMP engines and SNMP entities, it also uniquely
 and unambiguously identifies the SNMP entity.

3.1.1.2. Dispatcher

 There is only one Dispatcher in an SNMP engine. It allows for
 concurrent support of multiple versions of SNMP messages in the SNMP
 engine. It does so by:

 - sending and receiving SNMP messages to/from the network,

 - determining the version of an SNMP message and interacting with
 the corresponding Message Processing Model,

 - providing an abstract interface to SNMP applications for
 delivery of a PDU to an application.

 - providing an abstract interface for SNMP applications that
 allows them to send a PDU to a remote SNMP entity.

3.1.1.3. Message Processing Subsystem

 The Message Processing Subsystem is responsible for preparing
 messages for sending, and extracting data from received messages.

 The Message Processing Subsystem potentially contains multiple
 Message Processing Models as shown in the next figure.

 * One or more Message Processing Models may be present.

Harrington, et. al. Standards Track [Page 16]

RFC 2261 SNMPv3 Architecture January 1998

 +--+
 | |
 | Message Processing Subsystem |
 | |
 | +------------+ +------------+ +------------+ +------------+ |
	*		*		*		*	
	SNMPv3		SNMPv1		SNMPv2c		Other	
	Message		Message		Message		Message	
	Processing		Processing		Processing		Processing	
	Model		Model		Model		Model	
+------------+ +------------+ +------------+ +------------+								
 +--+

3.1.1.3.1. Message Processing Model

 Each Message Processing Model defines the format of a particular
 version of an SNMP message and coordinates the preparation and
 extraction of each such version-specific message format.

3.1.1.4. Security Subsystem

 The Security Subsystem provides security services such as the
 authentication and privacy of messages and potentially contains
 multiple Security Models as shown in the following figure

 * One or more Security Models may be present.

 +--+
 | |
 | Security Subsystem |
 | |
 | +----------------+ +-----------------+ +-------------------+ |
	*		*		*	
	User-Based		Other		Other	
	Security		Security		Security	
	Model		Model		Model	
+----------------+ +-----------------+ +-------------------+						
 +--+

3.1.1.4.1. Security Model

 A Security Model defines the threats against which it protects, the
 goals of its services, and the security protocols used to provide
 security services such as authentication and privacy.

Harrington, et. al. Standards Track [Page 17]

RFC 2261 SNMPv3 Architecture January 1998

3.1.1.4.2. Security Protocol

 A Security Protocol defines the mechanisms, procedures, and MIB data
 used to provide a security service such as authentication or privacy.

3.1.2. Access Control Subsystem

 The Access Control Subsystem provides authorization services by means
 of one or more Access Control Models.

 +--+
 | |
 | Access Control Subsystem |
 | |
 | +---------------+ +-----------------+ +------------------+ |
 | | * | | * | | * | |
 | | View-Based | | Other | | Other | |
 | | Access | | Access | | Access | |
 | | Control | | Control | | Control | |
 | | Model | | Model | | Model | |
 | | | | | | | |
 | +---------------+ +-----------------+ +------------------+ |
 | |
 +--+

3.1.2.1. Access Control Model

 An Access Control Model defines a particular access decision function
 in order to support decisions regarding access rights.

3.1.3. Applications

 There are several types of applications, including:

 - command generators, which monitor and manipulate management
 data,

 - command responders, which provide access to management data,

 - notification originators, which initiate asynchronous messages,

 - notification receivers, which process asynchronous messages,
 and

 - proxy forwarders, which forward messages between entities.

 These applications make use of the services provided by the SNMP
 engine.

Harrington, et. al. Standards Track [Page 18]

RFC 2261 SNMPv3 Architecture January 1998

3.1.3.1. SNMP Manager

 An SNMP entity containing one or more command generator and/or
 notification receiver applications (along with their associated SNMP
 engine) has traditionally been called an SNMP manager. * One or more
 models may be present.

 (traditional SNMP manager)
 +---+
 | +--------------+ +--------------+ +--------------+ SNMP entity |
	NOTIFICATION		NOTIFICATION		COMMAND	
	ORIGINATOR		RECEIVER		GENERATOR	
	applications		applications		applications	
+--------------+ +--------------+ +--------------+						
^ ^ ^						
v v v						
+-------+--------+-----------------+						
^						
	+---------------------+ +----------------+					
		Message Processing		Security		
Dispatcher v	Subsystem		Subsystem			
+-------------------+	+------------+					
	PDU Dispatcher		+->	v1MP *	<--->	+------------+
				+------------+		
				+------------+		
			+->	v2cMP *	<--->	
	Message			+------------+		+------------+
	Dispatcher <--------->+					
				+------------+		+------------+
			+->	v3MP *	<--->	
	Transport			+------------+		
	Mapping			+------------+		
	(e.g RFC1906)		+->	otherMP *	<--->	+------------+
+-------------------+	+------------+					
^ +---------------------+ +----------------+						
v						
+---+						
+-----+ +-----+ +-------+						
UDP		IPX	. . .	other		
 +-----+ +-----+ +-------+
 ^ ^ ^
 | | |
 v v v
 +------------------------------+
 | Network |
 +------------------------------+

Harrington, et. al. Standards Track [Page 19]

RFC 2261 SNMPv3 Architecture January 1998

3.1.3.2. SNMP Agent

 An SNMP entity containing one or more command responder and/or
 notification originator applications (along with their associated
 SNMP engine) has traditionally been called an SNMP agent.
 +------------------------------+
 | Network |
 +------------------------------+
 ^ ^ ^
 | | |
 v v v
 +-----+ +-----+ +-------+
 | UDP | | IPX | . . . | other |
 +-----+ +-----+ +-------+ (traditional SNMP agent)
 +---+
 | ^ |
	+---------------------+ +----------------+								
		Message Processing		Security					
Dispatcher v	Subsystem		Subsystem						
+-------------------+	+------------+								
	Transport		+->	v1MP *	<--->	+------------+			
	Mapping			+------------+			Other		
	(e.g. RFC1906)			+------------+			Security		
			+->	v2cMP *	<--->		Model		
	Message			+------------+		+------------+			
	Dispatcher <--------->	+------------+		+------------+					
			+->	v3MP *	<--->		User-based		
				+------------+			Security		
	PDU Dispatcher			+------------+			Model		
+-------------------+	+->	otherMP *	<--->	+------------+					
^	+------------+								
	+---------------------+ +----------------+								
v									
+-------+-------------------------+---------------+									
^ ^ ^									
v v v									
+-------------+ +---------+ +--------------+ +-------------+									
	COMMAND		ACCESS		NOTIFICATION		PROXY *		
	RESPONDER	<->	CONTROL	<->	ORIGINATOR		FORWARDER		
	application				applications		application		
+-------------+ +---------+ +--------------+ +-------------+									
^ ^									
v v									
+--+									
	MIB instrumentation	SNMP entity							
 +---+

Harrington, et. al. Standards Track [Page 20]

RFC 2261 SNMPv3 Architecture January 1998

3.2. The Naming of Identities

 principal
 ^
 |
 |
 +----------------------------|-------------+
 | SNMP engine v |
 | +--------------+ |
+-----------------	securityName	---+		
	Security Model			
	+--------------+			
	^			
	v			
	+------------------------------+			
		Model		
		Dependent		
		Security ID		
	+------------------------------+			
	^			
+-------------------------	----------+			
 +----------------------------|-------------+
 |
 v
 network

3.2.1. Principal

 A principal is the "who" on whose behalf services are provided or
 processing takes place.

 A principal can be, among other things, an individual acting in a
 particular role; a set of individuals, with each acting in a
 particular role; an application or a set of applications; and
 combinations thereof.

3.2.2. securityName

 A securityName is a human readable string representing a principal.
 It has a model-independent format, and can be used outside a
 particular Security Model.

Harrington, et. al. Standards Track [Page 21]

RFC 2261 SNMPv3 Architecture January 1998

3.2.3. Model-dependent security ID

 A model-dependent security ID is the model-specific representation of
 a securityName within a particular Security Model.

 Model-dependent security IDs may or may not be human readable, and
 have a model-dependent syntax. Examples include community names, user
 names, and parties.

 The transformation of model-dependent security IDs into securityNames
 and vice versa is the responsibility of the relevant Security Model.

3.3. The Naming of Management Information

 Management information resides at an SNMP entity where a Command
 Responder Application has local access to potentially multiple
 contexts. This application uses a contextEngineID equal to the
 snmpEngineID of its associated SNMP engine.

Harrington, et. al. Standards Track [Page 22]

RFC 2261 SNMPv3 Architecture January 1998

 +---+
 | SNMP entity (identified by snmpEngineID, example: abcd) |
 | |
 | +--+ |
	SNMP engine (identified by snmpEngineID)									
	+-------------+ +------------+ +-----------+ +-----------+									
		Dispatcher		Message		Security		Access		
				Processing		Subsystem		Control		
				Subsystem				Subsystem		
	+-------------+ +------------+ +-----------+ +-----------+									
+--+										
+--+										
	Command Responder Application									
	(contextEngineID, example: abcd)									
	example contextNames:									
	"bridge1" "bridge2" "" (default)									
	--------- --------- ------------									
+------	------------------	-------------------	--------------+							
+------	------------------	-------------------	--------------+							
	MIB	instrumentation								
	+---v------------+ +---v------------+ +----v-----------+									
		context		context		context				
		+------------+		+------------+		+------------+				
			bridge MIB				bridge MIB			
		+------------+		+------------+		+------------+				
						+------------+				
							some MIB			
						+------------+				
 +---+

3.3.1. An SNMP Context

 An SNMP context, or just "context" for short, is a collection of
 management information accessible by an SNMP entity. An item of
 management information may exist in more than one context. An SNMP
 entity potentially has access to many contexts.

Harrington, et. al. Standards Track [Page 23]

RFC 2261 SNMPv3 Architecture January 1998

 Typically, there are many instances of each managed object type
 within a management domain. For simplicity, the method for
 identifying instances specified by the MIB module does not allow each
 instance to be distinguished amongst the set of all instances within
 a management domain; rather, it allows each instance to be identified
 only within some scope or "context", where there are multiple such
 contexts within the management domain. Often, a context is a
 physical device, or perhaps, a logical device, although a context can
 also encompass multiple devices, or a subset of a single device, or
 even a subset of multiple devices, but a context is always defined as
 a subset of a single SNMP entity. Thus, in order to identify an
 individual item of management information within the management
 domain, its contextName and contextEngineID must be identified in
 addition to its object type and its instance.

 For example, the managed object type ifDescr [RFC1573], is defined as
 the description of a network interface. To identify the description
 of device-X’s first network interface, four pieces of information are
 needed: the snmpEngineID of the SNMP entity which provides access to
 the management information at device-X, the contextName (device-X),
 the managed object type (ifDescr), and the instance ("1").

 Each context has (at least) one unique identification within the
 management domain. The same item of management information can exist
 in multiple contexts. An item of management information may have
 multiple unique identifications. This occurs when an item of
 management information exists in multiple contexts, and this also
 occurs when a context has multiple unique identifications.

 The combination of a contextEngineID and a contextName unambiguously
 identifies a context within an administrative domain; note that there
 may be multiple unique combinations of contextEngineID and
 contextName that unambiguously identify the same context.

3.3.2. contextEngineID

 Within an administrative domain, a contextEngineID uniquely
 identifies an SNMP entity that may realize an instance of a context
 with a particular contextName.

3.3.3. contextName

 A contextName is used to name a context. Each contextName MUST be
 unique within an SNMP entity.

Harrington, et. al. Standards Track [Page 24]

RFC 2261 SNMPv3 Architecture January 1998

3.3.4. scopedPDU

 A scopedPDU is a block of data containing a contextEngineID, a
 contextName, and a PDU.

 The PDU is an SNMP Protocol Data Unit containing information named in
 the context which is unambiguously identified within an
 administrative domain by the combination of the contextEngineID and
 the contextName. See, for example, RFC1905 for more information about
 SNMP PDUs.

3.4. Other Constructs

3.4.1. maxSizeResponseScopedPDU

 The maxSizeResponseScopedPDU is the maximum size of a scopedPDU to be
 included in a response message. Note that the size of a scopedPDU
 does not include the size of the SNMP message header.

3.4.2. Local Configuration Datastore

 The subsystems, models, and applications within an SNMP entity may
 need to retain their own sets of configuration information.

 Portions of the configuration information may be accessible as
 managed objects.

 The collection of these sets of information is referred to as an
 entity’s Local Configuration Datastore (LCD).

3.4.3. securityLevel

 This architecture recognizes three levels of security:

 - without authentication and without privacy (noAuthNoPriv)

 - with authentication but without privacy (authNoPriv)

 - with authentication and with privacy (authPriv)

 These three values are ordered such that noAuthNoPriv is less than
 authNoPriv and authNoPriv is less than authPriv.

 Every message has an associated securityLevel. All Subsystems
 (Message Processing, Security, Access Control) and applications are
 required to either supply a value of securityLevel or to abide by the
 supplied value of securityLevel while processing the message and its
 contents.

Harrington, et. al. Standards Track [Page 25]

RFC 2261 SNMPv3 Architecture January 1998

4. Abstract Service Interfaces

 Abstract service interfaces have been defined to describe the
 conceptual interfaces between the various subsystems within an SNMP
 entity.

 These abstract service interfaces are defined by a set of primitives
 that define the services provided and the abstract data elements that
 are to be passed when the services are invoked. This section lists
 the primitives that have been defined for the various subsystems.

4.1. Dispatcher Primitives

 The Dispatcher typically provides services to the SNMP applications
 via its PDU Dispatcher. This section describes the primitives
 provided by the PDU Dispatcher.

4.1.1. Generate Outgoing Request or Notification

 The PDU Dispatcher provides the following primitive for an
 application to send an SNMP Request or Notification to another SNMP
 entity:

 statusInformation = -- sendPduHandle if success
 -- errorIndication if failure
 sendPdu(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- transport address to be used
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
)

4.1.2. Process Incoming Request or Notification PDU

 The PDU Dispatcher provides the following primitive to pass an
 incoming SNMP PDU to an application:

 processPdu(-- process Request/Notification PDU
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal

Harrington, et. al. Standards Track [Page 26]

RFC 2261 SNMPv3 Architecture January 1998

 IN securityLevel -- Level of Security
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN stateReference -- reference to state information
) -- needed when sending a response

4.1.3. Generate Outgoing Response

 The PDU Dispatcher provides the following primitive for an
 application to return an SNMP Response PDU to the PDU Dispatcher:

 returnResponsePdu(
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN stateReference -- reference to state information
 -- as presented with the request
 IN statusInformation -- success or errorIndication
) -- error counter OID/value if error

4.1.4. Process Incoming Response PDU

 The PDU Dispatcher provides the following primitive to pass an
 incoming SNMP Response PDU to an application:

 processResponsePdu(-- process Response PDU
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN statusInformation -- success or errorIndication
 IN sendPduHandle -- handle from sendPdu
)

Harrington, et. al. Standards Track [Page 27]

RFC 2261 SNMPv3 Architecture January 1998

4.1.5. Registering Responsibility for Handling SNMP PDUs

 Applications can register/unregister responsibility for a specific
 contextEngineID, for specific pduTypes, with the PDU Dispatcher
 according to the following primitives. The list of particular
 pduTypes that an application can register for is determined by the
 Message Processing Model(s) supported by the SNMP entity that
 contains the PDU Dispatcher.

 statusInformation = -- success or errorIndication
 registerContextEngineID(
 IN contextEngineID -- take responsibility for this one
 IN pduType -- the pduType(s) to be registered
)

 unregisterContextEngineID(
 IN contextEngineID -- give up responsibility for this one
 IN pduType -- the pduType(s) to be unregistered
)

 Note that realizations of the registerContextEngineID and
 unregisterContextEngineID abstract service interfaces may provide
 implementation-specific ways for applications to register/deregister
 responsiblity for all possible values of the contextEngineID or
 pduType parameters.

4.2. Message Processing Subsystem Primitives

 The Dispatcher interacts with a Message Processing Model to process a
 specific version of an SNMP Message. This section describes the
 primitives provided by the Message Processing Subsystem.

4.2.1. Prepare Outgoing SNMP Request or Notification Message

 The Message Processing Subsystem provides this service primitive for
 preparing an outgoing SNMP Request or Notification Message:

 statusInformation = -- success or errorIndication
 prepareOutgoingMessage(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- transport address to be used
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU

Harrington, et. al. Standards Track [Page 28]

RFC 2261 SNMPv3 Architecture January 1998

 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
 IN sendPduHandle -- the handle for matching
 -- incoming responses
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- its length
)

4.2.2. Prepare an Outgoing SNMP Response Message

 The Message Processing Subsystem provides this service primitive for
 preparing an outgoing SNMP Response Message:

 result = -- SUCCESS or FAILURE
 prepareResponseMessage(
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- same as on incoming request
 IN securityName -- same as on incoming request
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN stateReference -- reference to state information
 -- as presented with the request
 IN statusInformation -- success or errorIndication
 -- error counter OID/value if error
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- its length
)

4.2.3. Prepare Data Elements from an Incoming SNMP Message

 The Message Processing Subsystem provides this service primitive for
 preparing the abstract data elements from an incoming SNMP message:

 result = -- SUCCESS or errorIndication
 prepareDataElements(
 IN transportDomain -- origin transport domain
 IN transportAddress -- origin transport address
 IN wholeMsg -- as received from the network
 IN wholeMsgLength -- as received from the network
 OUT messageProcessingModel -- typically, SNMP version

Harrington, et. al. Standards Track [Page 29]

RFC 2261 SNMPv3 Architecture January 1998

 OUT securityModel -- Security Model to use
 OUT securityName -- on behalf of this principal
 OUT securityLevel -- Level of Security requested
 OUT contextEngineID -- data from/at this entity
 OUT contextName -- data from/in this context
 OUT pduVersion -- the version of the PDU
 OUT PDU -- SNMP Protocol Data Unit
 OUT pduType -- SNMP PDU type
 OUT sendPduHandle -- handle for matched request
 OUT maxSizeResponseScopedPDU -- maximum size of the Response PDU
 OUT statusInformation -- success or errorIndication
 -- error counter OID/value if error
 OUT stateReference -- reference to state information
 -- to be used for possible Response
)

4.3. Access Control Subsystem Primitives

 Applications are the typical clients of the service(s) of the Access
 Control Subsystem.

 The following primitive is provided by the Access Control Subsystem
 to check if access is allowed:

 statusInformation = -- success or errorIndication
 isAccessAllowed(
 IN securityModel -- Security Model in use
 IN securityName -- principal who wants to access
 IN securityLevel -- Level of Security
 IN viewType -- read, write, or notify view
 IN contextName -- context containing variableName
 IN variableName -- OID for the managed object
)

4.4. Security Subsystem Primitives

 The Message Processing Subsystem is the typical client of the
 services of the Security Subsystem.

4.4.1. Generate a Request or Notification Message

 The Security Subsystem provides the following primitive to generate a
 Request or Notification message:

 statusInformation =
 generateRequestMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN globalData -- message header, admin data

Harrington, et. al. Standards Track [Page 30]

RFC 2261 SNMPv3 Architecture January 1998

 IN maxMessageSize -- of the sending SNMP entity
 IN securityModel -- for the outgoing message
 IN securityEngineID -- authoritative SNMP entity
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN scopedPDU -- message (plaintext) payload
 OUT securityParameters -- filled in by Security Module
 OUT wholeMsg -- complete generated message
 OUT wholeMsgLength -- length of the generated message
)

4.4.2. Process Incoming Message

 The Security Subsystem provides the following primitive to process an
 incoming message:

 statusInformation = -- errorIndication or success
 -- error counter OID/value if error
 processIncomingMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN maxMessageSize -- of the sending SNMP entity
 IN securityParameters -- for the received message
 IN securityModel -- for the received message
 IN securityLevel -- Level of Security
 IN wholeMsg -- as received on the wire
 IN wholeMsgLength -- length as received on the wire
 OUT securityEngineID -- identification of the principal
 OUT securityName -- identification of the principal
 OUT scopedPDU, -- message (plaintext) payload
 OUT maxSizeResponseScopedPDU -- maximum size of the Response PDU
 OUT securityStateReference -- reference to security state
) -- information, needed for response

4.4.3. Generate a Response Message

 The Security Subsystem provides the following primitive to generate a
 Response message:

 statusInformation =
 generateResponseMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN globalData -- message header, admin data
 IN maxMessageSize -- of the sending SNMP entity
 IN securityModel -- for the outgoing message
 IN securityEngineID -- authoritative SNMP entity
 IN securityName -- on behalf of this principal
 IN securityLevel -- for the outgoing message
 IN scopedPDU -- message (plaintext) payload

Harrington, et. al. Standards Track [Page 31]

RFC 2261 SNMPv3 Architecture January 1998

 IN securityStateReference -- reference to security state
 -- information from original request
 OUT securityParameters -- filled in by Security Module
 OUT wholeMsg -- complete generated message
 OUT wholeMsgLength -- length of the generated message
)

4.5. Common Primitives

 These primitive(s) are provided by multiple Subsystems.

4.5.1. Release State Reference Information

 All Subsystems which pass stateReference information also provide a
 primitive to release the memory that holds the referenced state
 information:

 stateRelease(
 IN stateReference -- handle of reference to be released
)

4.6. Scenario Diagrams

4.6.1. Command Generator or Notification Originator

 This diagram shows how a Command Generator or Notification Originator
 application requests that a PDU be sent, and how the response is
 returned (asynchronously) to that application.

Harrington, et. al. Standards Track [Page 32]

RFC 2261 SNMPv3 Architecture January 1998

 Command Dispatcher Message Security
 Generator | Processing Model
	Model	
sendPdu		
------------------->		
	prepareOutgoingMessage	
:	----------------------->	
:		generateRequestMsg
:		-------------------->
:		
:		<--------------------
:		
:	<-----------------------	
:		
:	------------------+	
:	Send SNMP	
:	Request Message	
:	to Network	
:	v	
: : : : :		
: : : : :		
: : : : :		
:		
:	Receive SNMP	
:	Response Message	
:	from Network	
:	<-----------------+	
:		
:	prepareDataElements	
:	----------------------->	
:		processIncomingMsg
:		-------------------->
:		
:		<--------------------
:		
:	<-----------------------	
processResponsePdu		
<-------------------		

4.6.2. Scenario Diagram for a Command Responder Application

 This diagram shows how a Command Responder or Notification Receiver
 application registers for handling a pduType, how a PDU is dispatched
 to the application after a SNMP message is received, and how the
 Response is (asynchronously) send back to the network.

Harrington, et. al. Standards Track [Page 33]

RFC 2261 SNMPv3 Architecture January 1998

 Command Dispatcher Message Security
 Responder | Processing Model
	Model		
registerContextEngineID			
------------------------>			
<------------------------			
	Receive SNMP		
:	Message		
:	from Network		
:	<-------------+		
:			
:	prepareDataElements		
:	------------------->		
:		processIncomingMsg	
:		------------------->	
:			
:		<-------------------	
:			
:	<-------------------		
processPdu			
<------------------------			
: : : :			
: : : :			
returnResponsePdu			
------------------------>			
 : | prepareResponseMsg | |
 : |------------------->| |
 : | |generateResponseMsg |
 : | |------------------->|
 : | | |
 : | |<-------------------|
 : | | |
 : |<-------------------| |
 : | | |
 : |--------------+ | |
 : | Send SNMP | | |
 : | Message | | |
 : | to Network | | |
 : | v | |

Harrington, et. al. Standards Track [Page 34]

RFC 2261 SNMPv3 Architecture January 1998

5. Managed Object Definitions for SNMP Management Frameworks

 SNMP-FRAMEWORK-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 OBJECT-IDENTITY,
 snmpModules FROM SNMPv2-SMI
 TEXTUAL-CONVENTION FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF;

 snmpFrameworkMIB MODULE-IDENTITY
 LAST-UPDATED "9711200000Z" -- 20 November 1997
 ORGANIZATION "SNMPv3 Working Group"
 CONTACT-INFO "WG-email: snmpv3@tis.com
 Subscribe: majordomo@tis.com
 In message body: subscribe snmpv3

 Chair: Russ Mundy
 Trusted Information Systems
 postal: 3060 Washington Rd
 Glenwood MD 21738
 USA
 email: mundy@tis.com
 phone: +1 301-854-6889

 Co-editor Dave Harrington
 Cabletron Systems, Inc.
 postal: Post Office Box 5005
 Mail Stop: Durham
 35 Industrial Way
 Rochester, NH 03867-5005
 USA
 email: dbh@ctron.com
 phone: +1 603-337-7357

 Co-editor Randy Presuhn
 BMC Software, Inc.
 postal: 1190 Saratoga Avenue
 Suite 130
 San Jose, CA 95129
 USA
 email: rpresuhn@bmc.com
 phone: +1 408-556-0720

 Co-editor: Bert Wijnen
 IBM T.J. Watson Research
 postal: Schagen 33

Harrington, et. al. Standards Track [Page 35]

RFC 2261 SNMPv3 Architecture January 1998

 3461 GL Linschoten
 Netherlands
 email: wijnen@vnet.ibm.com
 phone: +31 348-432-794
 "
 DESCRIPTION "The SNMP Management Architecture MIB"
 ::= { snmpModules 2 }

 -- Textual Conventions used in the SNMP Management Architecture ***

 SnmpEngineID ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "An SNMP engine’s administratively-unique identifier.

 The value for this object may not be all zeros or
 all ’ff’H or the empty (zero length) string.

 The initial value for this object may be configured
 via an operator console entry or via an algorithmic
 function. In the latter case, the following
 example algorithm is recommended.

 In cases where there are multiple engines on the
 same system, the use of this algorithm is NOT
 appropriate, as it would result in all of those
 engines ending up with the same ID value.

 1) The very first bit is used to indicate how the
 rest of the data is composed.

 0 - as defined by enterprise using former methods
 that existed before SNMPv3. See item 2 below.

 1 - as defined by this architecture, see item 3
 below.

 Note that this allows existing uses of the
 engineID (also known as AgentID [RFC1910]) to
 co-exist with any new uses.

 2) The snmpEngineID has a length of 12 octets.

 The first four octets are set to the binary
 equivalent of the agent’s SNMP management
 private enterprise number as assigned by the
 Internet Assigned Numbers Authority (IANA).
 For example, if Acme Networks has been assigned
 { enterprises 696 }, the first four octets would

Harrington, et. al. Standards Track [Page 36]

RFC 2261 SNMPv3 Architecture January 1998

 be assigned ’000002b8’H.

 The remaining eight octets are determined via
 one or more enterprise-specific methods. Such
 methods must be designed so as to maximize the
 possibility that the value of this object will
 be unique in the agent’s administrative domain.
 For example, it may be the IP address of the SNMP
 entity, or the MAC address of one of the
 interfaces, with each address suitably padded
 with random octets. If multiple methods are
 defined, then it is recommended that the first
 octet indicate the method being used and the
 remaining octets be a function of the method.

 3) The length of the octet strings varies.

 The first four octets are set to the binary
 equivalent of the agent’s SNMP management
 private enterprise number as assigned by the
 Internet Assigned Numbers Authority (IANA).
 For example, if Acme Networks has been assigned
 { enterprises 696 }, the first four octets would
 be assigned ’000002b8’H.

 The very first bit is set to 1. For example, the
 above value for Acme Networks now changes to be
 ’800002b8’H.

 The fifth octet indicates how the rest (6th and
 following octets) are formatted. The values for
 the fifth octet are:

 0 - reserved, unused.

 1 - IPv4 address (4 octets)
 lowest non-special IP address

 2 - IPv6 address (16 octets)
 lowest non-special IP address

 3 - MAC address (6 octets)
 lowest IEEE MAC address, canonical
 order

 4 - Text, administratively assigned
 Maximum remaining length 27

Harrington, et. al. Standards Track [Page 37]

RFC 2261 SNMPv3 Architecture January 1998

 5 - Octets, administratively assigned
 Maximum remaining length 27

 6-127 - reserved, unused

 127-255 - as defined by the enterprise
 Maximum remaining length 27
 "
 SYNTAX OCTET STRING (SIZE(1..32))

 SnmpSecurityModel ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "An identifier that uniquely identifies a
 securityModel of the Security Subsystem within the
 SNMP Management Architecture.

 The values for securityModel are allocated as
 follows:

 - The zero value is reserved.
 - Values between 1 and 255, inclusive, are reserved
 for standards-track Security Models and are
 managed by the Internet Assigned Numbers Authority
 (IANA).
 - Values greater than 255 are allocated to
 enterprise-specific Security Models. An
 enterprise-specific securityModel value is defined
 to be:

 enterpriseID * 256 + security model within
 enterprise

 For example, the fourth Security Model defined by
 the enterprise whose enterpriseID is 1 would be
 260.

 This scheme for allocation of securityModel
 values allows for a maximum of 255 standards-
 based Security Models, and for a maximum of
 255 Security Models per enterprise.

 It is believed that the assignment of new
 securityModel values will be rare in practice
 because the larger the number of simultaneously
 utilized Security Models, the larger the
 chance that interoperability will suffer.
 Consequently, it is believed that such a range
 will be sufficient. In the unlikely event that

Harrington, et. al. Standards Track [Page 38]

RFC 2261 SNMPv3 Architecture January 1998

 the standards committee finds this number to be
 insufficient over time, an enterprise number
 can be allocated to obtain an additional 255
 possible values.

 Note that the most significant bit must be zero;
 hence, there are 23 bits allocated for various
 organizations to design and define non-standard
 securityModels. This limits the ability to
 define new proprietary implementations of Security
 Models to the first 8,388,608 enterprises.

 It is worthwhile to note that, in its encoded
 form, the securityModel value will normally
 require only a single byte since, in practice,
 the leftmost bits will be zero for most messages
 and sign extension is suppressed by the encoding
 rules.

 As of this writing, there are several values
 of securityModel defined for use with SNMP or
 reserved for use with supporting MIB objects.
 They are as follows:

 0 reserved for ’any’
 1 reserved for SNMPv1
 2 reserved for SNMPv2c
 3 User-Based Security Model (USM)
 "
 SYNTAX INTEGER(0..2147483647)

 SnmpMessageProcessingModel ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "An identifier that uniquely identifies a Message
 Processing Model of the Message Processing
 Subsystem within a SNMP Management Architecture.

 The values for messageProcessingModel are
 allocated as follows:

 - Values between 0 and 255, inclusive, are
 reserved for standards-track Message Processing
 Models and are managed by the Internet Assigned
 Numbers Authority (IANA).
 - Values greater than 255 are allocated to
 enterprise-specific Message Processing Models.
 An enterprise messageProcessingModel value is
 defined to be:

Harrington, et. al. Standards Track [Page 39]

RFC 2261 SNMPv3 Architecture January 1998

 enterpriseID * 256 +
 messageProcessingModel within enterprise

 For example, the fourth Message Processing Model
 defined by the enterprise whose enterpriseID
 is 1 would be 260.

 This scheme for allocation of securityModel
 values allows for a maximum of 255 standards-
 based Message Processing Models, and for a
 maximum of 255 Message Processing Models per
 enterprise.

 It is believed that the assignment of new
 messageProcessingModel values will be rare
 in practice because the larger the number of
 simultaneously utilized Message Processing Models,
 the larger the chance that interoperability
 will suffer. It is believed that such a range
 will be sufficient. In the unlikely event that
 the standards committee finds this number to be
 insufficient over time, an enterprise number
 can be allocated to obtain an additional 256
 possible values.

 Note that the most significant bit must be zero;
 hence, there are 23 bits allocated for various
 organizations to design and define non-standard
 messageProcessingModels. This limits the ability
 to define new proprietary implementations of
 Message Processing Models to the first 8,388,608
 enterprises.

 It is worthwhile to note that, in its encoded
 form, the securityModel value will normally
 require only a single byte since, in practice,
 the leftmost bits will be zero for most messages
 and sign extension is suppressed by the encoding
 rules.

 As of this writing, there are several values of
 messageProcessingModel defined for use with SNMP.
 They are as follows:

 0 reserved for SNMPv1
 1 reserved for SNMPv2c
 2 reserved for SNMPv2u and SNMPv2*
 3 reserved for SNMPv3

Harrington, et. al. Standards Track [Page 40]

RFC 2261 SNMPv3 Architecture January 1998

 "
 SYNTAX INTEGER(0..2147483647)

 SnmpSecurityLevel ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "A Level of Security at which SNMP messages can be
 sent or with which operations are being processed;
 in particular, one of:

 noAuthNoPriv - without authentication and
 without privacy,
 authNoPriv - with authentication but
 without privacy,
 authPriv - with authentication and
 with privacy.

 These three values are ordered such that
 noAuthNoPriv is less than authNoPriv and
 authNoPriv is less than authPriv.
 "
 SYNTAX INTEGER { noAuthNoPriv(1),
 authNoPriv(2),
 authPriv(3)
 }

 SnmpAdminString ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "255a"
 STATUS current
 DESCRIPTION "An octet string containing administrative
 information, preferably in human-readable form.

 To facilitate internationalization, this
 information is represented using the ISO/IEC
 IS 10646-1 character set, encoded as an octet
 string using the UTF-8 transformation format
 described in [RFC2044].

 Since additional code points are added by
 amendments to the 10646 standard from time
 to time, implementations must be prepared to
 encounter any code point from 0x00000000 to
 0x7fffffff.

 The use of control codes should be avoided.

 When it is necessary to represent a newline,
 the control code sequence CR LF should be used.

Harrington, et. al. Standards Track [Page 41]

RFC 2261 SNMPv3 Architecture January 1998

 The use of leading or trailing white space should
 be avoided.

 For code points not directly supported by user
 interface hardware or software, an alternative
 means of entry and display, such as hexadecimal,
 may be provided.

 For information encoded in 7-bit US-ASCII,
 the UTF-8 encoding is identical to the
 US-ASCII encoding.

 Note that when this TC is used for an object that
 is used or envisioned to be used as an index, then
 a SIZE restriction must be specified so that the
 number of sub-identifiers for any object instance
 does not exceed the limit of 128, as defined by
 [RFC1905].
 "
 SYNTAX OCTET STRING (SIZE (0..255))

 -- Administrative assignments ***************************************

 snmpFrameworkAdmin
 OBJECT IDENTIFIER ::= { snmpFrameworkMIB 1 }
 snmpFrameworkMIBObjects
 OBJECT IDENTIFIER ::= { snmpFrameworkMIB 2 }
 snmpFrameworkMIBConformance
 OBJECT IDENTIFIER ::= { snmpFrameworkMIB 3 }

 -- the snmpEngine Group **

 snmpEngine OBJECT IDENTIFIER ::= { snmpFrameworkMIBObjects 1 }

 snmpEngineID OBJECT-TYPE
 SYNTAX SnmpEngineID
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "An SNMP engine’s administratively-unique identifier.
 "
 ::= { snmpEngine 1 }

 snmpEngineBoots OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of times that the SNMP engine has

Harrington, et. al. Standards Track [Page 42]

RFC 2261 SNMPv3 Architecture January 1998

 (re-)initialized itself since its initial
 configuration.
 "
 ::= { snmpEngine 2 }

 snmpEngineTime OBJECT-TYPE
 SYNTAX INTEGER (0..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of seconds since the SNMP engine last
 incremented the snmpEngineBoots object.
 "
 ::= { snmpEngine 3 }

 snmpEngineMaxMessageSize OBJECT-TYPE
 SYNTAX INTEGER (484..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The maximum length in octets of an SNMP message
 which this SNMP engine can send or receive and
 process, determined as the minimum of the maximum
 message size values supported among all of the
 transports available to and supported by the engine.
 "
 ::= { snmpEngine 4 }

 -- Registration Points for Authentication and Privacy Protocols **

 snmpAuthProtocols OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Registration point for standards-track
 authentication protocols used in SNMP Management
 Frameworks.
 "
 ::= { snmpFrameworkAdmin 1 }

 snmpPrivProtocols OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Registration point for standards-track privacy
 protocols used in SNMP Management Frameworks.
 "
 ::= { snmpFrameworkAdmin 2 }

 -- Conformance information **

 snmpFrameworkMIBCompliances
 OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 1}

Harrington, et. al. Standards Track [Page 43]

RFC 2261 SNMPv3 Architecture January 1998

 snmpFrameworkMIBGroups
 OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 2}

 -- compliance statements

 snmpFrameworkMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for SNMP engines which
 implement the SNMP Management Framework MIB.
 "
 MODULE -- this module
 MANDATORY-GROUPS { snmpEngineGroup }

 ::= { snmpFrameworkMIBCompliances 1 }

 -- units of conformance

 snmpEngineGroup OBJECT-GROUP
 OBJECTS {
 snmpEngineID,
 snmpEngineBoots,
 snmpEngineTime,
 snmpEngineMaxMessageSize
 }
 STATUS current
 DESCRIPTION "A collection of objects for identifying and
 determining the configuration and current timeliness
 values of an SNMP engine.
 "
 ::= { snmpFrameworkMIBGroups 1 }

 END

6. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

Harrington, et. al. Standards Track [Page 44]

RFC 2261 SNMPv3 Architecture January 1998

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

7. Acknowledgements

 This document is the result of the efforts of the SNMPv3 Working
 Group. Some special thanks are in order to the following SNMPv3 WG
 members:

 Dave Battle (SNMP Research, Inc.)
 Uri Blumenthal (IBM T.J. Watson Research Center)
 Jeff Case (SNMP Research, Inc.)
 John Curran (BBN)
 T. Max Devlin (Hi-TECH Connections)
 John Flick (Hewlett Packard)
 David Harrington (Cabletron Systems Inc.)
 N.C. Hien (IBM T.J. Watson Research Center)
 Dave Levi (SNMP Research, Inc.)
 Louis A Mamakos (UUNET Technologies Inc.)
 Paul Meyer (Secure Computing Corporation)
 Keith McCloghrie (Cisco Systems)
 Russ Mundy (Trusted Information Systems, Inc.)
 Bob Natale (ACE*COMM Corporation)
 Mike O’Dell (UUNET Technologies Inc.)
 Dave Perkins (DeskTalk)
 Peter Polkinghorne (Brunel University)
 Randy Presuhn (BMC Software, Inc.)
 David Reid (SNMP Research, Inc.)
 Shawn Routhier (Epilogue)
 Juergen Schoenwaelder (TU Braunschweig)
 Bob Stewart (Cisco Systems)
 Bert Wijnen (IBM T.J. Watson Research Center)

 The document is based on recommendations of the IETF Security and
 Administrative Framework Evolution for SNMP Advisory Team. Members
 of that Advisory Team were:

 David Harrington (Cabletron Systems Inc.)
 Jeff Johnson (Cisco Systems)
 David Levi (SNMP Research Inc.)
 John Linn (Openvision)
 Russ Mundy (Trusted Information Systems) chair
 Shawn Routhier (Epilogue)
 Glenn Waters (Nortel)
 Bert Wijnen (IBM T. J. Watson Research Center)

Harrington, et. al. Standards Track [Page 45]

RFC 2261 SNMPv3 Architecture January 1998

 As recommended by the Advisory Team and the SNMPv3 Working Group
 Charter, the design incorporates as much as practical from previous
 RFCs and drafts. As a result, special thanks are due to the authors
 of previous designs known as SNMPv2u and SNMPv2*:

 Jeff Case (SNMP Research, Inc.)
 David Harrington (Cabletron Systems Inc.)
 David Levi (SNMP Research, Inc.)
 Keith McCloghrie (Cisco Systems)
 Brian O’Keefe (Hewlett Packard)
 Marshall T. Rose (Dover Beach Consulting)
 Jon Saperia (BGS Systems Inc.)
 Steve Waldbusser (International Network Services)
 Glenn W. Waters (Bell-Northern Research Ltd.)

8. Security Considerations

 This document describes how an implementation can include a Security
 Model to protect management messages and an Access Control Model to
 control access to management information.

 The level of security provided is determined by the specific Security
 Model implementation(s) and the specific Access Control Model
 implementation(s) used.

 Applications have access to data which is not secured. Applications
 should take reasonable steps to protect the data from disclosure.

 It is the responsibility of the purchaser of an implementation to
 ensure that:

 1) an implementation complies with the rules defined by this
 architecture,

 2) the Security and Access Control Models utilized satisfy the
 security and access control needs of the organization,

 3) the implementations of the Models and Applications comply with
 the model and application specifications,

 4) and the implementation protects configuration secrets from
 inadvertent disclosure.

9. References

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
 of Management Information for TCP/IP-based internets", STD 16, RFC
 1155, May 1990.

Harrington, et. al. Standards Track [Page 46]

RFC 2261 SNMPv3 Architecture January 1998

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "The
 Simple Network Management Protocol", STD 15, RFC 1157, May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD
 16, RFC 1212, March 1991.

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901, January 1996.

 [RFC1902] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Structure of Management Information for Version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1902, January 1996.

 [RFC1905] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Protocol Operations for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1905, January 1996.

 [RFC1906] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Transport Mappings for Version 2 of the Simple Network Management
 Protocol (SNMPv2)", RFC 1906, January 1996.

 [RFC1907] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Management Information Base for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1907 January 1996.

 [RFC1908] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Coexistence between Version 1 and Version 2 of the Internet-
 standard Network Management Framework", RFC 1908, January 1996.

 [RFC1909] McCloghrie, K., Editor, "An Administrative Infrastructure
 for SNMPv2", RFC 1909, February 1996.

 [RFC1910] Waters, G., Editor, "User-based Security Model for SNMPv2",
 RFC 1910, February 1996.

 [RFC2028] Hovey, R. and S. Bradner, "The Organizations Involved in
 the IETF Standards Process", BCP 11, RFC 2028, October 1996.

 [RFC2044] Yergeau, F., "UTF-8, a transformation format of Unicode and
 ISO 10646", RFC 2044, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2262] Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
 "Message Processing and Dispatching for the Simple Network
 Management Protocol (SNMP)", RFC 2262, January 1998.

Harrington, et. al. Standards Track [Page 47]

RFC 2261 SNMPv3 Architecture January 1998

 [RFC2264] Blumenthal, U., and B. Wijnen, "The User-Based
 Security Model for Version 3 of the Simple Network Management
 Protocol (SNMPv3)", RFC 2264, January 1998.

 [RFC2265] Wijnen, B., Presuhn, R., and K. McCloghrie,
 "View-based Access Control Model for the Simple Network Management
 Protocol (SNMP)", RFC 2265, January 1998.

 [RFC2263] Levi, D., Meyer, P., and B. Stewart, "SNMPv3
 Applications", RFC 2263, January 1998.

10. Editors’ Addresses

 Bert Wijnen
 IBM T.J. Watson Research
 Schagen 33
 3461 GL Linschoten
 Netherlands

 Phone: +31 348-432-794
 EMail: wijnen@vnet.ibm.com

 Dave Harrington
 Cabletron Systems, Inc
 Post Office Box 5005
 Mail Stop: Durham
 35 Industrial Way
 Rochester, NH 03867-5005
 USA

 Phone: +1 603-337-7357
 EMail: dbh@ctron.com

 Randy Presuhn
 BMC Software, Inc.
 1190 Saratoga Avenue
 Suite 130
 San Jose, CA 95129
 USA

 Phone: +1 408-556-0720
 EMail: rpresuhn@bmc.com

Harrington, et. al. Standards Track [Page 48]

RFC 2261 SNMPv3 Architecture January 1998

APPENDIX A

A. Guidelines for Model Designers

 This appendix describes guidelines for designers of models which are
 expected to fit into the architecture defined in this document.

 SNMPv1 and SNMPv2c are two SNMP frameworks which use communities to
 provide trivial authentication and access control. SNMPv1 and SNMPv2c
 Frameworks can coexist with Frameworks designed according to this
 architecture, and modified versions of SNMPv1 and SNMPv2c Frameworks
 could be designed to meet the requirements of this architecture, but
 this document does not provide guidelines for that coexistence.

 Within any subsystem model, there should be no reference to any
 specific model of another subsystem, or to data defined by a specific
 model of another subsystem.

 Transfer of data between the subsystems is deliberately described as
 a fixed set of abstract data elements and primitive functions which
 can be overloaded to satisfy the needs of multiple model definitions.

 Documents which define models to be used within this architecture
 SHOULD use the standard primitives between subsystems, possibly
 defining specific mechanisms for converting the abstract data
 elements into model-usable formats. This constraint exists to allow
 subsystem and model documents to be written recognizing common
 borders of the subsystem and model. Vendors are not constrained to
 recognize these borders in their implementations.

 The architecture defines certain standard services to be provided
 between subsystems, and the architecture defines abstract service
 interfaces to request these services.

 Each model definition for a subsystem SHOULD support the standard
 service interfaces, but whether, or how, or how well, it performs the
 service is dependent on the model definition.

A.1. Security Model Design Requirements

A.1.1. Threats

 A document describing a Security Model MUST describe how the model
 protects against the threats described under "Security Requirements
 of this Architecture", section 1.4.

Harrington, et. al. Standards Track [Page 49]

RFC 2261 SNMPv3 Architecture January 1998

A.1.2. Security Processing

 Received messages MUST be validated by a Model of the Security
 Subsystem. Validation includes authentication and privacy processing
 if needed, but it is explicitly allowed to send messages which do not
 require authentication or privacy.

 A received message contains a specified securityLevel to be used
 during processing. All messages requiring privacy MUST also require
 authentication.

 A Security Model specifies rules by which authentication and privacy
 are to be done. A model may define mechanisms to provide additional
 security features, but the model definition is constrained to using
 (possibly a subset of) the abstract data elements defined in this
 document for transferring data between subsystems.

 Each Security Model may allow multiple security protocols to be used
 concurrently within an implementation of the model. Each Security
 Model defines how to determine which protocol to use, given the
 securityLevel and the security parameters relevant to the message.
 Each Security Model, with its associated protocol(s) defines how the
 sending/receiving entities are identified, and how secrets are
 configured.

 Authentication and Privacy protocols supported by Security Models are
 uniquely identified using Object Identifiers. IETF standard protocols
 for authentication or privacy should have an identifier defined
 within the snmpAuthProtocols or the snmpPrivProtocols subtrees.
 Enterprise specific protocol identifiers should be defined within the
 enterprise subtree.

 For privacy, the Security Model defines what portion of the message
 is encrypted.

 The persistent data used for security should be SNMP-manageable, but
 the Security Model defines whether an instantiation of the MIB is a
 conformance requirement.

 Security Models are replaceable within the Security Subsystem.
 Multiple Security Model implementations may exist concurrently within
 an SNMP engine. The number of Security Models defined by the SNMP
 community should remain small to promote interoperability.

Harrington, et. al. Standards Track [Page 50]

RFC 2261 SNMPv3 Architecture January 1998

A.1.3. Validate the security-stamp in a received message

 A Message Processing Model requests that a Security Model:
 - verifies that the message has not been altered,
 - authenticates the identification of the principal for whom the
 message was generated.
 - decrypts the message if it was encrypted.

 Additional requirements may be defined by the model, and additional
 services may be provided by the model, but the model is constrained
 to use the following primitives for transferring data between
 subsystems. Implementations are not so constrained.

 A Message Processing Model uses the processMsg primitive as described
 in section 4.5.

A.1.4. Security MIBs

 Each Security Model defines the MIB module(s) required for security
 processing, including any MIB module(s) required for the security
 protocol(s) supported. The MIB module(s) SHOULD be defined
 concurrently with the procedures which use the MIB module(s). The
 MIB module(s) are subject to normal access control rules.

 The mapping between the model-dependent security ID and the
 securityName MUST be able to be determined using SNMP, if the model-
 dependent MIB is instantiated and if access control policy allows
 access.

A.1.5. Cached Security Data

 For each message received, the Security Model caches the state
 information such that a Response message can be generated using the
 same security information, even if the Local Configuration Datastore
 is altered between the time of the incoming request and the outgoing
 response.

 A Message Processing Model has the responsibility for explicitly
 releasing the cached data if such data is no longer needed. To enable
 this, an abstract securityStateReference data element is passed from
 the Security Model to the Message Processing Model.

 The cached security data may be implicitly released via the
 generation of a response, or explicitly released by using the
 stateRelease primitive, as described in section 4.1.

Harrington, et. al. Standards Track [Page 51]

RFC 2261 SNMPv3 Architecture January 1998

A.2. Message Processing Model Design Requirements

 An SNMP engine contains a Message Processing Subsystem which may
 contain multiple Message Processing Models.

 The Message Processing Model MUST always (conceptually) pass the
 complete PDU, i.e., it never forwards less than the complete list of
 varBinds.

A.2.1. Receiving an SNMP Message from the Network

 Upon receipt of a message from the network, the Dispatcher in the
 SNMP engine determines the version of the SNMP message and interacts
 with the corresponding Message Processing Model to determine the
 abstract data elements.

 A Message Processing Model specifies the SNMP Message format it
 supports and describes how to determine the values of the abstract
 data elements (like msgID, msgMaxSize, msgFlags,
 msgSecurityParameters, securityModel, securityLevel etc). A Message
 Processing Model interacts with a Security Model to provide security
 processing for the message using the processMsg primitive, as
 described in section 4.5.

A.2.2. Sending an SNMP Message to the Network

 The Dispatcher in the SNMP engine interacts with a Message Processing
 Model to prepare an outgoing message. For that it uses the following
 primitives:

 - for requests and notifications: prepareOutgoingMessage, as
 described in section 4.4

 - for response messages: prepareResponseMessage, as described in
 section 4.4

 A Message Processing Model, when preparing an Outgoing SNMP Message,
 interacts with a Security Model to secure the message. For that it
 uses the following primitives:

 - for requests and notifications: generateRequestMsg, as
 described in section 4.5.

 - for response messages: generateResponseMsg as described in
 section 4.5.

Harrington, et. al. Standards Track [Page 52]

RFC 2261 SNMPv3 Architecture January 1998

 Once the SNMP message is prepared by a Message Processing Model,
 the Dispatcher sends the message to the desired address using the
 appropriate transport.

A.3. Application Design Requirements

 Within an application, there may be an explicit binding to a specific
 SNMP message version, i.e., a specific Message Processing Model, and
 to a specific Access Control Model, but there should be no reference
 to any data defined by a specific Message Processing Model or Access
 Control Model.

 Within an application, there should be no reference to any specific
 Security Model, or any data defined by a specific Security Model.

 An application determines whether explicit or implicit access control
 should be applied to the operation, and, if access control is needed,
 which Access Control Model should be used.

 An application has the responsibility to define any MIB module(s)
 used to provide application-specific services.

 Applications interact with the SNMP engine to initiate messages,
 receive responses, receive asynchronous messages, and send responses.

A.3.1. Applications that Initiate Messages

 Applications may request that the SNMP engine send messages
 containing SNMP commands or notifications using the sendPdu primitive
 as described in section 4.2.

 If it is desired that a message be sent to multiple targets, it is
 the responsibility of the application to provide the iteration.

 The SNMP engine assumes necessary access control has been applied to
 the PDU, and provides no access control services.

 The SNMP engine looks at the "expectResponse" parameter, and if a
 response is expected, then the appropriate information is cached such
 that a later response can be associated to this message, and can then
 be returned to the application. A sendPduHandle is returned to the
 application so it can later correspond the response with this message
 as well.

Harrington, et. al. Standards Track [Page 53]

RFC 2261 SNMPv3 Architecture January 1998

A.3.2. Applications that Receive Responses

 The SNMP engine matches the incoming response messages to outstanding
 messages sent by this SNMP engine, and forwards the response to the
 associated application using the processResponsePdu primitive, as
 described in section 4.2.

A.3.3. Applications that Receive Asynchronous Messages

 When an SNMP engine receives a message that is not the response to a
 request from this SNMP engine, it must determine to which application
 the message should be given.

 An Application that wishes to receive asynchronous messages registers
 itself with the engine using the primitive registerContextEngineID as
 described in section 4.2.

 An Application that wishes to stop receiving asynchronous messages
 should unregister itself with the SNMP engine using the primitive
 unregisterContextEngineID as described in section 4.2.

 Only one registration per combination of PDU type and contextEngineID
 is permitted at the same time. Duplicate registrations are ignored.
 An errorIndication will be returned to the application that attempts
 to duplicate a registration.

 All asynchronously received messages containing a registered
 combination of PDU type and contextEngineID are sent to the
 application which registered to support that combination.

 The engine forwards the PDU to the registered application, using the
 processPdu primitive, as described in section 4.2.

A.3.4. Applications that Send Responses

 Request operations require responses. An application sends a
 response via the returnResponsePdu primitive, as described in section
 4.2.

 The contextEngineID, contextName, securityModel, securityName,
 securityLevel, and stateReference parameters are from the initial
 processPdu primitive. The PDU and statusInformation are the results
 of processing.

Harrington, et. al. Standards Track [Page 54]

RFC 2261 SNMPv3 Architecture January 1998

A.4. Access Control Model Design Requirements

 An Access Control Model determines whether the specified securityName
 is allowed to perform the requested operation on a specified managed
 object. The Access Control Model specifies the rules by which access
 control is determined.

 The persistent data used for access control should be manageable
 using SNMP, but the Access Control Model defines whether an
 instantiation of the MIB is a conformance requirement.

 The Access Control Model must provide the primitive isAccessAllowed.

Harrington, et. al. Standards Track [Page 55]

RFC 2261 SNMPv3 Architecture January 1998

B. Full Copyright Statement

 Copyright (C) The Internet Society (1997). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Harrington, et. al. Standards Track [Page 56]

