
 Network Working Group V. Jacobson/1/
 Request for Comments: 1144 LBL
 February 1990

 Compressing TCP/IP Headers

 for Low-Speed Serial Links

 Status of this Memo

 This RFC is a proposed elective protocol for the Internet community and
 requests discussion and suggestions for improvement. It describes a
 method for compressing the headers of TCP/IP datagrams to improve
 performance over low speed serial links. The motivation, implementation
 and performance of the method are described. C code for a sample
 implementation is given for reference. Distribution of this memo is
 unlimited.

 NOTE: Both ASCII and Postscript versions of this document are available.
 The ASCII version, obviously, lacks all the figures and all the
 information encoded in typographic variation (italics, boldface,
 etc.). Since this information was, in the author’s opinion, an
 essential part of the document, the ASCII version is at best
 incomplete and at worst misleading. Anyone who plans to work
 with this protocol is strongly encouraged obtain the Postscript
 version of this RFC.

 1. This work was supported in part by the U.S. Department of Energy
 under Contract Number DE-AC03-76SF00098.

 Contents

 1 Introduction 1

 2 The problem 1

 3 The compression algorithm 4

 3.1 The basic idea . 4

 3.2 The ugly details . 5

 3.2.1 Overview. 5

 3.2.2 Compressed packet format. 7

 3.2.3 Compressor processing 8

 3.2.4 Decompressor processing 12

 4 Error handling 14

 4.1 Error detection . 14

 4.2 Error recovery . 17

 5 Configurable parameters and tuning 18

 5.1 Compression configuration 18

 5.2 Choosing a maximum transmission unit 20

 5.3 Interaction with data compression 21

 6 Performance measurements 23

 7 Acknowlegements 25

 A Sample Implementation 27

 A.1 Definitions and State Data 28

 A.2 Compression . 31

 i

 A.3 Decompression . 37

 A.4 Initialization . 41

 A.5 Berkeley Unix dependencies 41

 B Compatibility with past mistakes 43

 B.1 Living without a framing ‘type’ byte 43

 B.2 Backwards compatible SLIP servers 43

 C More aggressive compression 45

 D Security Considerations 46

 E Author’s address 46

 ii

 RFC 1144 Compressing TCP/IP Headers February 1990

 1 Introduction

 As increasingly powerful computers find their way into people’s homes,
 there is growing interest in extending Internet connectivity to those
 computers. Unfortunately, this extension exposes some complex problems
 in link-level framing, address assignment, routing, authentication and
 performance. As of this writing there is active work in all these
 areas. This memo describes a method that has been used to improve
 TCP/IP performance over low speed (300 to 19,200 bps) serial links.

 The compression proposed here is similar in spirit to the Thinwire-II
 protocol described in [5]. However, this protocol compresses more
 effectively (the average compressed header is 3 bytes compared to 13 in
 Thinwire-II) and is both efficient and simple to implement (the Unix
 implementation is 250 lines of C and requires, on the average, 90us (170
 instructions) for a 20MHz MC68020 to compress or decompress a packet).

 This compression is specific to TCP/IP datagrams./2/ The author
 investigated compressing UDP/IP datagrams but found that they were too
 infrequent to be worth the bother and either there was insufficient
 datagram-to-datagram coherence for good compression (e.g., name server
 queries) or the higher level protocol headers overwhelmed the cost of
 the UDP/IP header (e.g., Sun’s RPC/NFS). Separately compressing the IP
 and the TCP portions of the datagram was also investigated but rejected
 since it increased the average compressed header size by 50% and doubled
 the compression and decompression code size.

 2 The problem

 Internet services one might wish to access over a serial IP link from
 home range from interactive ‘terminal’ type connections (e.g., telnet,
 rlogin, xterm) to bulk data transfer (e.g., ftp, smtp, nntp). Header
 compression is motivated by the need for good interactive response.
 I.e., the line efficiency of a protocol is the ratio of the data to
 header+data in a datagram. If efficient bulk data transfer is the only
 objective, it is always possible to make the datagram large enough to
 approach an efficiency of 100%.

 Human-factors studies[15] have found that interactive response is
 perceived as ‘bad’ when low-level feedback (character echo) takes longer

 2. The tie to TCP is deeper than might be obvious. In addition to the
 compression ‘knowing’ the format of TCP and IP headers, certain features
 of TCP have been used to simplify the compression protocol. In
 particular, TCP’s reliable delivery and the byte-stream conversation
 model have been used to eliminate the need for any kind of error
 correction dialog in the protocol (see sec. 4).

 Jacobson [Page 1]

 RFC 1144 Compressing TCP/IP Headers February 1990

 than 100 to 200 ms. Protocol headers interact with this threshold three
 ways:

 (1) If the line is too slow, it may be impossible to fit both the
 headers and data into a 200 ms window: One typed character results
 in a 41 byte TCP/IP packet being sent and a 41 byte echo being
 received. The line speed must be at least 4000 bps to handle these
 82 bytes in 200 ms.

 (2) Even with a line fast enough to handle packetized typing echo (4800
 bps or above), there may be an undesirable interaction between bulk
 data and interactive traffic: For reasonable line efficiency the
 bulk data packet size needs to be 10 to 20 times the header size.
 I.e., the line maximum transmission unit or MTU should be 500 to
 1000 bytes for 40 byte TCP/IP headers. Even with type-of-service
 queuing to give priority to interactive traffic, a telnet packet has
 to wait for any in-progress bulk data packet to finish. Assuming
 data transfer in only one direction, that wait averages half the MTU
 or 500 ms for a 1024 byte MTU at 9600 bps.

 (3) Any communication medium has a maximum signalling rate, the Shannon
 limit. Based on an AT&T study[2], the Shannon limit for a typical
 dialup phone line is around 22,000 bps. Since a full duplex, 9600
 bps modem already runs at 80% of the limit, modem manufacturers are
 starting to offer asymmetric allocation schemes to increase
 effective bandwidth: Since a line rarely has equivalent amounts of
 data flowing both directions simultaneously, it is possible to give
 one end of the line more than 11,000 bps by either time-division
 multiplexing a half-duplex line (e.g., the Telebit Trailblazer) or
 offering a low-speed ‘reverse channel’ (e.g., the USR Courier
 HST)./3/ In either case, the modem dynamically tries to guess which
 end of the conversation needs high bandwidth by assuming one end of
 the conversation is a human (i.e., demand is limited to <300 bps by
 typing speed). The factor-of-forty bandwidth multiplication due to
 protocol headers will fool this allocation heuristic and cause these
 modems to ‘thrash’.

 From the above, it’s clear that one design goal of the compression
 should be to limit the bandwidth demand of typing and ack traffic to at
 most 300 bps. A typical maximum typing speed is around five characters

 3. See the excellent discussion of two-wire dialup line capacity in
 [1], chap. 11. In particular, there is widespread misunderstanding of
 the capabilities of ‘echo-cancelling’ modems (such as those conforming
 to CCITT V.32): Echo-cancellation can offer each side of a two-wire
 line the full line bandwidth but, since the far talker’s signal adds to
 the local ‘noise’, not the full line capacity. The 22Kbps Shannon limit
 is a hard-limit on data rate through a two-wire telephone connection.

 Jacobson [Page 2]

 RFC 1144 Compressing TCP/IP Headers February 1990

 per second/4/ which leaves a budget 30 - 5 = 25 characters for headers
 or five bytes of header per character typed./5/ Five byte headers solve
 problems (1) and (3) directly and, indirectly, problem (2): A packet
 size of 100--200 bytes will easily amortize the cost of a five byte
 header and offer a user 95--98% of the line bandwidth for data. These
 short packets mean little interference between interactive and bulk data
 traffic (see sec. 5.2).

 Another design goal is that the compression protocol be based solely on
 information guaranteed to be known to both ends of a single serial link.
 Consider the topology shown in fig. 1 where communicating hosts A and B
 are on separate local area nets (the heavy black lines) and the nets are
 connected by two serial links (the open lines between gateways C--D and
 E--F)./6/ One compression possibility would be to convert each TCP/IP
 conversation into a semantically equivalent conversation in a protocol
 with smaller headers, e.g., to an X.25 call. But, because of routing
 transients or multipathing, it’s entirely possible that some of the A--B
 traffic will follow the A-C-D-B path and some will follow the A-E-F-B
 path. Similarly, it’s possible that A->B traffic will flow A-C-D-B and
 B->A traffic will flow B-F-E-A. None of the gateways can count on seeing
 all the packets in a particular TCP conversation and a compression
 algorithm that works for such a topology cannot be tied to the TCP
 connection syntax.

 A physical link treated as two, independent, simplex links (one each
 direction) imposes the minimum requirements on topology, routing and
 pipelining. The ends of each simplex link only have to agree on the
 most recent packet(s) sent on that link. Thus, although any compression
 scheme involves shared state, this state is spatially and temporally

 4. See [13]. Typing bursts or multiple character keystrokes such as
 cursor keys can exceed this average rate by factors of two to four.
 However the bandwidth demand stays approximately constant since the TCP
 Nagle algorithm[8] aggregates traffic with a <200ms interarrival time
 and the improved header-to-data ratio compensates for the increased
 data.
 5. A similar analysis leads to essentially the same header size limit
 for bulk data transfer ack packets. Assuming that the MTU has been
 selected for ‘unobtrusive’ background file transfers (i.e., chosen so
 the packet time is 200--400 ms --- see sec. 5), there can be at most 5
 data packets per second in the ‘high bandwidth’ direction. A reasonable
 TCP implementation will ack at most every other data packet so at 5
 bytes per ack the reverse channel bandwidth is 2.5 * 5 = 12.5 bytes/sec.
 6. Note that although the TCP endpoints are A and B, in this example
 compression/decompression must be done at the gateway serial links,
 i.e., between C and D and between E and F. Since A and B are using IP,
 they cannot know that their communication path includes a low speed
 serial link. It is clearly a requirement that compression not break the
 IP model, i.e., that compression function between intermediate systems
 and not just between end systems.

 Jacobson [Page 3]

 RFC 1144 Compressing TCP/IP Headers February 1990

 local and adheres to Dave Clark’s principle of fate sharing[4]: The two
 ends can only disagree on the state if the link connecting them is
 inoperable, in which case the disagreement doesn’t matter.

 3 The compression algorithm

 3.1 The basic idea

 Figure 2 shows a typical (and minimum length) TCP/IP datagram header./7/
 The header size is 40 bytes: 20 bytes of IP and 20 of TCP.
 Unfortunately, since the TCP and IP protocols were not designed by a
 committee, all these header fields serve some useful purpose and it’s
 not possible to simply omit some in the name of efficiency.

 However, TCP establishes connections and, typically, tens or hundreds of
 packets are exchanged on each connection. How much of the per-packet
 information is likely to stay constant over the life of a connection?
 Half---the shaded fields in fig. 3. So, if the sender and receiver keep
 track of active connections/8/ and the receiver keeps a copy of the
 header from the last packet it saw from each connection, the sender gets
 a factor-of-two compression by sending only a small (<= 8 bit)
 connection identifier together with the 20 bytes that change and letting
 the receiver fill in the 20 fixed bytes from the saved header.

 One can scavenge a few more bytes by noting that any reasonable
 link-level framing protocol will tell the receiver the length of a
 received message so total length (bytes 2 and 3) is redundant. But then
 the header checksum (bytes 10 and 11), which protects individual hops
 from processing a corrupted IP header, is essentially the only part of
 the IP header being sent. It seems rather silly to protect the
 transmission of information that isn’t being transmitted. So, the
 receiver can check the header checksum when the header is actually sent
 (i.e., in an uncompressed datagram) but, for compressed datagrams,
 regenerate it locally at the same time the rest of the IP header is
 being regenerated./9/

 7. The TCP and IP protocols and protocol headers are described in [10]
 and [11].
 8. The 96-bit tuple <src address, dst address, src port, dst port>
 uniquely identifies a TCP connection.
 9. The IP header checksum is not an end-to-end checksum in the sense
 of [14]: The time-to-live update forces the IP checksum to be
 recomputed at each hop. The author has had unpleasant personal
 experience with the consequences of violating the end-to-end argument in
 [14] and this protocol is careful to pass the end-to-end TCP checksum
 through unmodified. See sec. 4.

 Jacobson [Page 4]

 RFC 1144 Compressing TCP/IP Headers February 1990

 This leaves 16 bytes of header information to send. All of these bytes
 are likely to change over the life of the conversation but they do not
 all change at the same time. For example, during an FTP data transfer
 only the packet ID, sequence number and checksum change in the
 sender->receiver direction and only the packet ID, ack, checksum and,
 possibly, window, change in the receiver->sender direction. With a copy
 of the last packet sent for each connection, the sender can figure out
 what fields change in the current packet then send a bitmask indicating
 what changed followed by the changing fields./10/

 If the sender only sends fields that differ, the above scheme gets the
 average header size down to around ten bytes. However, it’s worthwhile
 looking at how the fields change: The packet ID typically comes from a
 counter that is incremented by one for each packet sent. I.e., the
 difference between the current and previous packet IDs should be a
 small, positive integer, usually <256 (one byte) and frequently = 1.
 For packets from the sender side of a data transfer, the sequence number
 in the current packet will be the sequence number in the previous packet
 plus the amount of data in the previous packet (assuming the packets are
 arriving in order). Since IP packets can be at most 64K, the sequence
 number change must be < 2^16 (two bytes). So, if the differences in the
 changing fields are sent rather than the fields themselves, another
 three or four bytes per packet can be saved.

 That gets us to the five-byte header target. Recognizing a couple of
 special cases will get us three byte headers for the two most common
 cases---interactive typing traffic and bulk data transfer---but the
 basic compression scheme is the differential coding developed above.
 Given that this intellectual exercise suggests it is possible to get
 five byte headers, it seems reasonable to flesh out the missing details
 and actually implement something.

 3.2 The ugly details

 3.2.1 Overview

 Figure 4 shows a block diagram of the compression software. The
 networking system calls a SLIP output driver with an IP packet to be

 10. This is approximately Thinwire-I from [5]. A slight modification
 is to do a ‘delta encoding’ where the sender subtracts the previous
 packet from the current packet (treating each packet as an array of 16
 bit integers), then sends a 20-bit mask indicating the non-zero
 differences followed by those differences. If distinct conversations
 are separated, this is a fairly effective compression scheme (e.g.,
 typically 12-16 byte headers) that doesn’t involve the compressor
 knowing any details of the packet structure. Variations on this theme
 have been used, successfully, for a number of years (e.g., the Proteon
 router’s serial link protocol[3]).

 Jacobson [Page 5]

 RFC 1144 Compressing TCP/IP Headers February 1990

 sent over the serial line. The packet goes through a compressor which
 checks if the protocol is TCP. Non-TCP packets and ‘uncompressible’ TCP
 packets (described below) are just marked as TYPE_IP and passed to a
 framer. Compressible TCP packets are looked up in an array of packet
 headers. If a matching connection is found, the incoming packet is
 compressed, the (uncompressed) packet header is copied into the array,
 and a packet of type COMPRESSED_TCP is sent to the framer. If no match
 is found, the oldest entry in the array is discarded, the packet header
 is copied into that slot, and a packet of type UNCOMPRESSED_TCP is sent
 to the framer. (An UNCOMPRESSED_TCP packet is identical to the original
 IP packet except the IP protocol field is replaced with a connection
 number---an index into the array of saved, per-connection packet
 headers. This is how the sender (re-)synchronizes the receiver and
 ‘seeds’ it with the first, uncompressed packet of a compressed packet
 sequence.)

 The framer is responsible for communicating the packet data, type and
 boundary (so the decompressor can learn how many bytes came out of the
 compressor). Since the compression is a differential coding, the framer
 must not re-order packets (this is rarely a concern over a single serial
 link). It must also provide good error detection and, if connection
 numbers are compressed, must provide an error indication to the
 decompressor (see sec. 4)./11/

 The decompressor does a ‘switch’ on the type of incoming packets: For
 TYPE_IP, the packet is simply passed through. For UNCOMPRESSED_TCP, the
 connection number is extracted from the IP protocol field and
 IPPROTO_TCP is restored, then the connection number is used as an index
 into the receiver’s array of saved TCP/IP headers and the header of the
 incoming packet is copied into the indexed slot. For COMPRESSED_TCP,
 the connection number is used as an array index to get the TCP/IP header
 of the last packet from that connection, the info in the compressed
 packet is used to update that header, then a new packet is constructed
 containing the now-current header from the array concatenated with the
 data from the compressed packet.

 Note that the communication is simplex---no information flows in the
 decompressor-to-compressor direction. In particular, this implies that
 the decompressor is relying on TCP retransmissions to correct the saved
 state in the event of line errors (see sec. 4).

 11. Link level framing is outside the scope of this document. Any
 framing that provides the facilities listed in this paragraph should be
 adequate for the compression protocol. However, the author encourages
 potential implementors to see [9] for a proposed, standard, SLIP
 framing.

 Jacobson [Page 6]

 RFC 1144 Compressing TCP/IP Headers February 1990

 3.2.2 Compressed packet format

 Figure 5 shows the format of a compressed TCP/IP packet. There is a
 change mask that identifies which of the fields expected to change
 per-packet actually changed, a connection number so the receiver can
 locate the saved copy of the last packet for this TCP connection, the
 unmodified TCP checksum so the end-to-end data integrity check will
 still be valid, then for each bit set in the change mask, the amount the
 associated field changed. (Optional fields, controlled by the mask, are
 enclosed in dashed lines in the figure.) In all cases, the bit is set
 if the associated field is present and clear if the field is absent./12/

 Since the delta’s in the sequence number, etc., are usually small,
 particularly if the tuning guidelines in section 5 are followed, all the
 numbers are encoded in a variable length scheme that, in practice,
 handles most traffic with eight bits: A change of one through 255 is
 represented in one byte. Zero is improbable (a change of zero is never
 sent) so a byte of zero signals an extension: The next two bytes are
 the MSB and LSB, respectively, of a 16 bit value. Numbers larger than
 16 bits force an uncompressed packet to be sent. For example, decimal
 15 is encoded as hex 0f, 255 as ff, 65534 as 00 ff fe, and zero as 00 00
 00. This scheme packs and decodes fairly efficiently: The usual case
 for both encode and decode executes three instructions on a MC680x0.

 The numbers sent for TCP sequence number and ack are the difference/13/
 between the current value and the value in the previous packet (an
 uncompressed packet is sent if the difference is negative or more than
 64K). The number sent for the window is also the difference between the
 current and previous values. However, either positive or negative
 changes are allowed since the window is a 16 bit field. The packet’s
 urgent pointer is sent if URG is set (an uncompressed packet is sent if
 the urgent pointer changes but URG is not set). For packet ID, the
 number sent is the difference between the current and previous values.
 However, unlike the rest of the compressed fields, the assumed change
 when I is clear is one, not zero.

 There are two important special cases:

 (1) The sequence number and ack both change by the amount of data in the
 last packet; no window change or URG.

 (2) The sequence number changes by the amount of data in the last
 packet, no ack or window change or URG.

 12. The bit ‘P’ in the figure is different from the others: It is a
 copy of the ‘PUSH’ bit from the TCP header. ‘PUSH’ is a curious
 anachronism considered indispensable by certain members of the Internet
 community. Since PUSH can (and does) change in any datagram, an
 information preserving compression scheme must pass it explicitly.
 13. All differences are computed using two’s complement arithmetic.

 Jacobson [Page 7]

 RFC 1144 Compressing TCP/IP Headers February 1990

 (1) is the case for echoed terminal traffic. (2) is the sender side of
 non-echoed terminal traffic or a unidirectional data transfer. Certain
 combinations of the S, A, W and U bits of the change mask are used to
 signal these special cases. ‘U’ (urgent data) is rare so two unlikely
 combinations are S W U (used for case 1) and S A W U (used for case 2).
 To avoid ambiguity, an uncompressed packet is sent if the actual changes
 in a packet are S * W U.

 Since the ‘active’ connection changes rarely (e.g., a user will type for
 several minutes in a telnet window before changing to a different
 window), the C bit allows the connection number to be elided. If C is
 clear, the connection is assumed to be the same as for the last
 compressed or uncompressed packet. If C is set, the connection number
 is in the byte immediately following the change mask./14/

 From the above, it’s probably obvious that compressed terminal traffic
 usually looks like (in hex): 0B c c d, where the 0B indicates case (1),
 c c is the two byte TCP checksum and d is the character typed. Commands
 to vi or emacs, or packets in the data transfer direction of an FTP
 ‘put’ or ‘get’ look like 0F c c d ... , and acks for that FTP look like
 04 c c a where a is the amount of data being acked./15/

 3.2.3 Compressor processing

 The compressor is called with the IP packet to be processed and the
 compression state structure for the outgoing serial line. It returns a
 packet ready for final framing and the link level ‘type’ of that packet.

 As the last section noted, the compressor converts every input packet
 into either a TYPE_IP, UNCOMPRESSED_TCP or COMPRESSED_TCP packet. A

 14. The connection number is limited to one byte, i.e., 256
 simultaneously active TCP connections. In almost two years of
 operation, the author has never seen a case where more than sixteen
 connection states would be useful (even in one case where the SLIP link
 was used as a gateway behind a very busy, 64-port terminal multiplexor).
 Thus this does not seem to be a significant restriction and allows the
 protocol field in UNCOMPRESSED_TCP packets to be used for the connection
 number, simplifying the processing of those packets.
 15. It’s also obvious that the change mask changes infrequently and
 could often be elided. In fact, one can do slightly better by saving
 the last compressed packet (it can be at most 16 bytes so this isn’t
 much additional state) and checking to see if any of it (except the TCP
 checksum) has changed. If not, send a packet type that means
 ‘compressed TCP, same as last time’ and a packet containing only the
 checksum and data. But, since the improvement is at most 25%, the added
 complexity and state doesn’t seem justified. See appendix C.

 Jacobson [Page 8]

 RFC 1144 Compressing TCP/IP Headers February 1990

 TYPE_IP packet is an unmodified copy/16/ of the input packet and
 processing it doesn’t change the compressor’s state in any way.

 An UNCOMPRESSED_TCP packet is identical to the input packet except the
 IP protocol field (byte 9) is changed from ‘6’ (protocol TCP) to a
 connection number. In addition, the state slot associated with the
 connection number is updated with a copy of the input packet’s IP and
 TCP headers and the connection number is recorded as the last connection
 sent on this serial line (for the C compression described below).

 A COMPRESSED_TCP packet contains the data, if any, from the original
 packet but the IP and TCP headers are completely replaced with a new,
 compressed header. The connection state slot and last connection sent
 are updated by the input packet exactly as for an UNCOMPRESSED_TCP
 packet.

 The compressor’s decision procedure is:

 - If the packet is not protocol TCP, send it as TYPE_IP.

 - If the packet is an IP fragment (i.e., either the fragment offset
 field is non-zero or the more fragments bit is set), send it as
 TYPE_IP./17/

 - If any of the TCP control bits SYN, FIN or RST are set or if the ACK
 bit is clear, consider the packet uncompressible and send it as
 TYPE_IP./18/

 16. It is not necessary (or desirable) to actually duplicate the input
 packet for any of the three output types. Note that the compressor
 cannot increase the size of a datagram. As the code in appendix A
 shows, the protocol can be implemented so all header modifications are
 made ‘in place’.
 17. Only the first fragment contains the TCP header so the fragment
 offset check is necessary. The first fragment might contain a complete
 TCP header and, thus, could be compressed. However the check for a
 complete TCP header adds quite a lot of code and, given the arguments in
 [6], it seems reasonable to send all IP fragments uncompressed.
 18. The ACK test is redundant since a standard conforming
 implementation must set ACK in all packets except for the initial SYN
 packet. However, the test costs nothing and avoids turning a bogus
 packet into a valid one.
 SYN packets are not compressed because only half of them contain a valid
 ACK field and they usually contain a TCP option (the max. segment size)
 which the following packets don’t. Thus the next packet would be sent
 uncompressed because the TCP header length changed and sending the SYN
 as UNCOMPRESSED_TCP instead of TYPE_IP would buy nothing.
 The decision to not compress FIN packets is questionable. Discounting
 the trick in appendix B.1, there is a free bit in the header that could
 be used to communicate the FIN flag. However, since connections tend to

 Jacobson [Page 9]

 RFC 1144 Compressing TCP/IP Headers February 1990

 If a packet makes it through the above checks, it will be sent as either
 UNCOMPRESSED_TCP or COMPRESSED_TCP:

 - If no connection state can be found that matches the packet’s source
 and destination IP addresses and TCP ports, some state is reclaimed
 (which should probably be the least recently used) and an
 UNCOMPRESSED_TCP packet is sent.

 - If a connection state is found, the packet header it contains is
 checked against the current packet to make sure there were no
 unexpected changes. (E.g., that all the shaded fields in fig. 3 are
 the same). The IP protocol, fragment offset, more fragments, SYN,
 FIN and RST fields were checked above and the source and destination
 address and ports were checked as part of locating the state. So
 the remaining fields to check are protocol version, header length,
 type of service, don’t fragment, time-to-live, data offset, IP
 options (if any) and TCP options (if any). If any of these fields
 differ between the two headers, an UNCOMPRESSED_TCP packet is sent.

 If all the ‘unchanging’ fields match, an attempt is made to compress the
 current packet:

 - If the URG flag is set, the urgent data field is encoded (note that
 it may be zero) and the U bit is set in the change mask.
 Unfortunately, if URG is clear, the urgent data field must be
 checked against the previous packet and, if it changes, an
 UNCOMPRESSED_TCP packet is sent. (‘Urgent data’ shouldn’t change
 when URG is clear but [11] doesn’t require this.)

 - The difference between the current and previous packet’s window
 field is computed and, if non-zero, is encoded and the W bit is set
 in the change mask.

 - The difference between ack fields is computed. If the result is
 less than zero or greater than 2^16 - 1, an UNCOMPRESSED_TCP packet
 is sent./19/ Otherwise, if the result is non-zero, it is encoded
 and the A bit is set in the change mask.

 - The difference between sequence number fields is computed. If the
 result is less than zero or greater than 2^16 - 1, an

 last for many packets, it seemed unreasonable to dedicate an entire bit
 to a flag that would only appear once in the lifetime of the connection.
 19. The two tests can be combined into a single test of the most
 significant 16 bits of the difference being non-zero.

 Jacobson [Page 10]

 RFC 1144 Compressing TCP/IP Headers February 1990

 UNCOMPRESSED_TCP packet is sent./20/ Otherwise, if the result is
 non-zero, it is encoded and the S bit is set in the change mask.

 Once the U, W, A and S changes have been determined, the special-case
 encodings can be checked:

 - If U, S and W are set, the changes match one of the special-case
 encodings. Send an UNCOMPRESSED_TCP packet.

 - If only S is set, check if the change equals the amount of user data
 in the last packet. I.e., subtract the TCP and IP header lengths
 from the last packet’s total length field and compare the result to
 the S change. If they’re the same, set the change mask to SAWU (the
 special case for ‘unidirectional data transfer’) and discard the
 encoded sequence number change (the decompressor can reconstruct it
 since it knows the last packet’s total length and header length).

 - If only S and A are set, check if they both changed by the same
 amount and that amount is the amount of user data in the last
 packet. If so, set the change mask to SWU (the special case for
 ‘echoed interactive’ traffic) and discard the encoded changes.

 - If nothing changed, check if this packet has no user data (in which
 case it is probably a duplicate ack or window probe) or if the
 previous packet contained user data (which means this packet is a
 retransmission on a connection with no pipelining). In either of
 these cases, send an UNCOMPRESSED_TCP packet.

 Finally, the TCP/IP header on the outgoing packet is replaced with a
 compressed header:

 - The change in the packet ID is computed and, if not one,/21/ the
 difference is encoded (note that it may be zero or negative) and the
 I bit is set in the change mask.

 - If the PUSH bit is set in the original datagram, the P bit is set in
 the change mask.

 - The TCP and IP headers of the packet are copied to the connection
 state slot.

 20. A negative sequence number change probably indicates a
 retransmission. Since this may be due to the decompressor having
 dropped a packet, an uncompressed packet is sent to re-sync the
 decompressor (see sec. 4).
 21. Note that the test here is against one, not zero. The packet ID is
 typically incremented by one for each packet sent so a change of zero is
 very unlikely. A change of one is likely: It occurs during any period
 when the originating system has activity on only one connection.

 Jacobson [Page 11]

 RFC 1144 Compressing TCP/IP Headers February 1990

 - The TCP and IP headers of the packet are discarded and a new header
 is prepended consisting of (in reverse order):

 - the accumulated, encoded changes.

 - the TCP checksum (if the new header is being constructed ‘in
 place’, the checksum may have been overwritten and will have to
 be taken from the header copy in the connection state or saved
 in a temporary before the original header is discarded).

 - the connection number (if different than the last one sent on
 this serial line). This also means that the the line’s last
 connection sent must be set to the connection number and the C
 bit set in the change mask.

 - the change mask.

 At this point, the compressed TCP packet is passed to the framer for
 transmission.

 3.2.4 Decompressor processing

 Because of the simplex communication model, processing at the
 decompressor is much simpler than at the compressor --- all the
 decisions have been made and the decompressor simply does what the
 compressor has told it to do.

 The decompressor is called with the incoming packet,/22/ the length and
 type of the packet and the compression state structure for the incoming
 serial line. A (possibly re-constructed) IP packet will be returned.

 The decompressor can receive four types of packet: the three generated
 by the compressor and a TYPE_ERROR pseudo-packet generated when the
 receive framer detects an error./23/ The first step is a ‘switch’ on
 the packet type:

 - If the packet is TYPE_ERROR or an unrecognized type, a ‘toss’ flag
 is set in the state to force COMPRESSED_TCP packets to be discarded
 until one with the C bit set or an UNCOMPRESSED_TCP packet arrives.
 Nothing (a null packet) is returned.

 22. It’s assumed that link-level framing has been removed by this point
 and the packet and length do not include type or framing bytes.
 23. No data need be associated with a TYPE_ERROR packet. It exists so
 the receive framer can tell the decompressor that there may be a gap in
 the data stream. The decompressor uses this as a signal that packets
 should be tossed until one arrives with an explicit connection number (C
 bit set). See the last part of sec. 4.1 for a discussion of why this is
 necessary.

 Jacobson [Page 12]

 RFC 1144 Compressing TCP/IP Headers February 1990

 - If the packet is TYPE_IP, an unmodified copy of it is returned and
 the state is not modified.

 - If the packet is UNCOMPRESSED_TCP, the state index from the IP
 protocol field is checked./24/ If it’s illegal, the toss flag is
 set and nothing is returned. Otherwise, the toss flag is cleared,
 the index is copied to the state’s last connection received field, a
 copy of the input packet is made,/25/ the TCP protocol number is
 restored to the IP protocol field, the packet header is copied to
 the indicated state slot, then the packet copy is returned.

 If the packet was not handled above, it is COMPRESSED_TCP and a new
 TCP/IP header has to be synthesized from information in the packet plus
 the last packet’s header in the state slot. First, the explicit or
 implicit connection number is used to locate the state slot:

 - If the C bit is set in the change mask, the state index is checked.
 If it’s illegal, the toss flag is set and nothing is returned.
 Otherwise, last connection received is set to the packet’s state
 index and the toss flag is cleared.

 - If the C bit is clear and the toss flag is set, the packet is
 ignored and nothing is returned.

 At this point, last connection received is the index of the appropriate
 state slot and the first byte(s) of the compressed packet (the change
 mask and, possibly, connection index) have been consumed. Since the
 TCP/IP header in the state slot must end up reflecting the newly arrived
 packet, it’s simplest to apply the changes from the packet to that
 header then construct the output packet from that header concatenated
 with the data from the input packet. (In the following description,
 ‘saved header’ is used as an abbreviation for ‘the TCP/IP header saved
 in the state slot’.)

 - The next two bytes in the incoming packet are the TCP checksum.
 They are copied to the saved header.

 - If the P bit is set in the change mask, the TCP PUSH bit is set in
 the saved header. Otherwise the PUSH bit is cleared.

 24. State indices follow the C language convention and run from 0 to N
 - 1, where 0 < N <= 256 is the number of available state slots.
 25. As with the compressor, the code can be structured so no copies are
 done and all modifications are done in-place. However, since the output
 packet can be larger than the input packet, 128 bytes of free space must
 be left at the front of the input packet buffer to allow room to prepend
 the TCP/IP header.

 Jacobson [Page 13]

 RFC 1144 Compressing TCP/IP Headers February 1990

 - If the low order four bits (S, A, W and U) of the change mask are
 all set (the ‘unidirectional data’ special case), the amount of user
 data in the last packet is calculated by subtracting the TCP and IP
 header lengths from the IP total length in the saved header. That
 amount is then added to the TCP sequence number in the saved header.

 - If S, W and U are set and A is clear (the ‘terminal traffic’ special
 case), the amount of user data in the last packet is calculated and
 added to both the TCP sequence number and ack fields in the saved
 header.

 - Otherwise, the change mask bits are interpreted individually in the
 order that the compressor set them:

 - If the U bit is set, the TCP URG bit is set in the saved header
 and the next byte(s) of the incoming packet are decoded and
 stuffed into the TCP Urgent Pointer. If the U bit is clear, the
 TCP URG bit is cleared.

 - If the W bit is set, the next byte(s) of the incoming packet are
 decoded and added to the TCP window field of the saved header.

 - If the A bit is set, the next byte(s) of the incoming packet are
 decoded and added to the TCP ack field of the saved header.

 - If the S bit is set, the next byte(s) of the incoming packet are
 decoded and added to the TCP sequence number field of the saved
 header.

 - If the I bit is set in the change mask, the next byte(s) of the
 incoming packet are decoded and added to the IP ID field of the
 saved packet. Otherwise, one is added to the IP ID.

 At this point, all the header information from the incoming packet has
 been consumed and only data remains. The length of the remaining data
 is added to the length of the saved IP and TCP headers and the result is
 put into the saved IP total length field. The saved IP header is now up
 to date so its checksum is recalculated and stored in the IP checksum
 field. Finally, an output datagram consisting of the saved header
 concatenated with the remaining incoming data is constructed and
 returned.

 4 Error handling

 4.1 Error detection

 In the author’s experience, dialup connections are particularly prone to
 data errors. These errors interact with compression in two different
 ways:

 Jacobson [Page 14]

 RFC 1144 Compressing TCP/IP Headers February 1990

 First is the local effect of an error in a compressed packet. All error
 detection is based on redundancy yet compression has squeezed out almost
 all the redundancy in the TCP and IP headers. In other words, the
 decompressor will happily turn random line noise into a perfectly valid
 TCP/IP packet./26/ One could rely on the TCP checksum to detect
 corrupted compressed packets but, unfortunately, some rather likely
 errors will not be detected. For example, the TCP checksum will often
 not detect two single bit errors separated by 16 bits. For a V.32 modem
 signalling at 2400 baud with 4 bits/baud, any line hit lasting longer
 than 400us. would corrupt 16 bits. According to [2], residential phone
 line hits of up to 2ms. are likely.

 The correct way to deal with this problem is to provide for error
 detection at the framing level. Since the framing (at least in theory)
 can be tailored to the characteristics of a particular link, the
 detection can be as light or heavy-weight as appropriate for that
 link./27/ Since packet error detection is done at the framing level,
 the decompressor simply assumes that it will get an indication that the
 current packet was received with errors. (The decompressor always
 ignores (discards) a packet with errors. However, the indication is
 needed to prevent the error being propagated --- see below.)

 The ‘discard erroneous packets’ policy gives rise to the second
 interaction of errors and compression. Consider the following
 conversation:

 +---+
 |original | sent |received |reconstructed |
 +---------+--------+---------+--------------+
 | 1: A | 1: A | 1: A | 1: A |
 | 2: BC | 1, BC | 1, BC | 2: BC |
 | 4: DE | 2, DE | --- | --- |
 | 6: F | 2, F | 2, F | 4: F |
 | 7: GH | 1, GH | 1, GH | 5: GH |
 +---+

 (Each entry above has the form ‘starting sequence number:data sent’ or
 ‘?sequence number change,data sent’.) The first thing sent is an
 uncompressed packet, followed by four compressed packets. The third
 packet picks up an error and is discarded. To reconstruct the fourth
 packet, the receiver applies the sequence number change from incoming
 compressed packet to the sequence number of the last correctly received

 26. modulo the TCP checksum.
 27. While appropriate error detection is link dependent, the CCITT CRC
 used in [9] strikes an excellent balance between ease of computation and
 robust error detection for a large variety of links, particularly at the
 relatively small packet sizes needed for good interactive response.
 Thus, for the sake of interoperability, the framing in [9] should be
 used unless there is a truly compelling reason to do otherwise.

 Jacobson [Page 15]

 RFC 1144 Compressing TCP/IP Headers February 1990

 packet, packet two, and generates an incorrect sequence number for
 packet four. After the error, all reconstructed packets’ sequence
 numbers will be in error, shifted down by the amount of data in the
 missing packet./28/

 Without some sort of check, the preceding error would result in the
 receiver invisibly losing two bytes from the middle of the transfer
 (since the decompressor regenerates sequence numbers, the packets
 containing F and GH arrive at the receiver’s TCP with exactly the
 sequence numbers they would have had if the DE packet had never
 existed). Although some TCP conversations can survive missing data/29/
 it is not a practice to be encouraged. Fortunately the TCP checksum,
 since it is a simple sum of the packet contents including the sequence
 numbers, detects 100% of these errors. E.g., the receiver’s computed
 checksum for the last two packets above always differs from the packet
 checksum by two.

 Unfortunately, there is a way for the TCP checksum protection described
 above to fail if the changes in an incoming compressed packet are
 applied to the wrong conversation: Consider two active conversations C1
 and C2 and a packet from C1 followed by two packets from C2. Since the
 connection number doesn’t change, it’s omitted from the second C2
 packet. But, if the first C2 packet is received with a CRC error, the
 second C2 packet will mistakenly be considered the next packet in C1.
 Since the C2 checksum is a random number with respect to the C1 sequence
 numbers, there is at least a 2^-16 probability that this packet will be
 accepted by the C1 TCP receiver./30/ To prevent this, after a CRC error
 indication from the framer the receiver discards packets until it
 receives either a COMPRESSED_TCP packet with the C bit set or an
 UNCOMPRESSED_TCP packet. I.e., packets are discarded until the receiver
 gets an explicit connection number.

 To summarize this section, there are two different types of errors:
 per-packet corruption and per-conversation loss-of-sync. The first type
 is detected at the decompressor from a link-level CRC error, the second
 at the TCP receiver from a (guaranteed) invalid TCP checksum. The
 combination of these two independent mechanisms ensures that erroneous
 packets are discarded.

 28. This is an example of a generic problem with differential or delta
 encodings known as ‘losing DC’.
 29. Many system managers claim that holes in an NNTP stream are more
 valuable than the data.
 30. With worst-case traffic, this probability translates to one
 undetected error every three hours over a 9600 baud line with a 30%
 error rate).

 Jacobson [Page 16]

 RFC 1144 Compressing TCP/IP Headers February 1990

 4.2 Error recovery

 The previous section noted that after a CRC error the decompressor will
 introduce TCP checksum errors in every uncompressed packet. Although
 the checksum errors prevent data stream corruption, the TCP conversation
 won’t be terribly useful until the decompressor again generates valid
 packets. How can this be forced to happen?

 The decompressor generates invalid packets because its state (the saved
 ‘last packet header’) disagrees with the compressor’s state. An
 UNCOMPRESSED_TCP packet will correct the decompressor’s state. Thus
 error recovery amounts to forcing an uncompressed packet out of the
 compressor whenever the decompressor is (or might be) confused.

 The first thought is to take advantage of the full duplex communication
 link and have the decompressor send something to the compressor
 requesting an uncompressed packet. This is clearly undesirable since it
 constrains the topology more than the minimum suggested in sec. 2 and
 requires that a great deal of protocol be added to both the decompressor
 and compressor. A little thought convinces one that this alternative is
 not only undesirable, it simply won’t work: Compressed packets are
 small and it’s likely that a line hit will so completely obliterate one
 that the decompressor will get nothing at all. Thus packets are
 reconstructed incorrectly (because of the missing compressed packet) but
 only the TCP end points, not the decompressor, know that the packets are
 incorrect.

 But the TCP end points know about the error and TCP is a reliable
 protocol designed to run over unreliable media. This means the end
 points must eventually take some sort of error recovery action and
 there’s an obvious trigger for the compressor to resync the
 decompressor: send uncompressed packets whenever TCP is doing error
 recovery.

 But how does the compressor recognize TCP error recovery? Consider the
 schematic TCP data transfer of fig. 6. The confused decompressor is
 in the forward (data transfer) half of the TCP conversation. The
 receiving TCP discards packets rather than acking them (because of the
 checksum errors), the sending TCP eventually times out and retransmits a
 packet, and the forward path compressor finds that the difference
 between the sequence number in the retransmitted packet and the sequence
 number in the last packet seen is either negative (if there were
 multiple packets in transit) or zero (one packet in transit). The first
 case is detected in the compression step that computes sequence number
 differences. The second case is detected in the step that checks the
 ‘special case’ encodings but needs an additional test: It’s fairly
 common for an interactive conversation to send a dataless ack packet
 followed by a data packet. The ack and data packet will have the same
 sequence numbers yet the data packet is not a retransmission. To
 prevent sending an unnecessary uncompressed packet, the length of the
 previous packet should be checked and, if it contained data, a zero

 Jacobson [Page 17]

 RFC 1144 Compressing TCP/IP Headers February 1990

 sequence number change must indicate a retransmission.

 A confused decompressor in the reverse (ack) half of the conversation is
 as easy to detect (fig. 7): The sending TCP discards acks (because
 they contain checksum errors), eventually times out, then retransmits
 some packet. The receiving TCP thus gets a duplicate packet and must
 generate an ack for the next expected sequence number[11, p. 69]. This
 ack will be a duplicate of the last ack the receiver generated so the
 reverse-path compressor will find no ack, seq number, window or urg
 change. If this happens for a packet that contains no data, the
 compressor assumes it is a duplicate ack sent in response to a
 retransmit and sends an UNCOMPRESSED_TCP packet./31/

 5 Configurable parameters and tuning

 5.1 Compression configuration

 There are two configuration parameters associated with header
 compression: Whether or not compressed packets should be sent on a
 particular line and, if so, how many state slots (saved packet headers)
 to reserve. There is also one link-level configuration parameter, the
 maximum packet size or MTU, and one front-end configuration parameter,
 data compression, that interact with header compression. Compression
 configuration is discussed in this section. MTU and data compression
 are discussed in the next two sections.

 There are some hosts (e.g., low end PCs) which may not have enough
 processor or memory resources to implement this compression. There are
 also rare link or application characteristics that make header
 compression unnecessary or undesirable. And there are many existing
 SLIP links that do not currently use this style of header compression.
 For the sake of interoperability, serial line IP drivers that allow
 header compression should include some sort of user configurable flag to
 disable compression (see appendix B.2)./32/

 If compression is enabled, the compressor must be sure to never send a
 connection id (state index) that will be dropped by the decompressor.
 E.g., a black hole is created if the decompressor has sixteen slots and

 31. The packet could be a zero-window probe rather than a retransmitted
 ack but window probes should be infrequent and it does no harm to send
 them uncompressed.
 32. The PPP protocol in [9] allows the end points to negotiate
 compression so there is no interoperability problem. However, there
 should still be a provision for the system manager at each end to
 control whether compression is negotiated on or off. And, obviously,
 compression should default to ‘off’ until it has been negotiated ‘on’.

 Jacobson [Page 18]

 RFC 1144 Compressing TCP/IP Headers February 1990

 the compressor uses twenty./33/ Also, if the compressor is allowed too
 few slots, the LRU allocator will thrash and most packets will be sent
 as UNCOMPRESSED_TCP. Too many slots and memory is wasted.

 Experimenting with different sizes over the past year, the author has
 found that eight slots will thrash (i.e., the performance degradation is
 noticeable) when many windows on a multi-window workstation are
 simultaneously in use or the workstation is being used as a gateway for
 three or more other machines. Sixteen slots were never observed to
 thrash. (This may simply be because a 9600 bps line split more than 16
 ways is already so overloaded that the additional degradation from
 round-robbining slots is negligible.)

 Each slot must be large enough to hold a maximum length TCP/IP header of
 128 bytes/34/ so 16 slots occupy 2KB of memory. In these days of 4 Mbit
 RAM chips, 2KB seems so little memory that the author recommends the
 following configuration rules:

 (1) If the framing protocol does not allow negotiation, the compressor
 and decompressor should provide sixteen slots, zero through fifteen.

 (2) If the framing protocol allows negotiation, any mutually agreeable
 number of slots from 1 to 256 should be negotiable./35/ If number
 of slots is not negotiated, or until it is negotiated, both sides
 should assume sixteen.

 (3) If you have complete control of all the machines at both ends of
 every link and none of them will ever be used to talk to machines
 outside of your control, you are free to configure them however you
 please, ignoring the above. However, when your little eastern-block
 dictatorship collapses (as they all eventually seem to), be aware
 that a large, vocal, and not particularly forgiving Internet
 community will take great delight in pointing out to anyone willing

 33. Strictly speaking, there’s no reason why the connection id should
 be treated as an array index. If the decompressor’s states were kept in
 a hash table or other associative structure, the connection id would be
 a key, not an index, and performance with too few decompressor slots
 would only degrade enormously rather than failing altogether. However,
 an associative structure is substantially more costly in code and cpu
 time and, given the small per-slot cost (128 bytes of memory), it seems
 reasonable to design for slot arrays at the decompressor and some
 (possibly implicit) communication of the array size.
 34. The maximum header length, fixed by the protocol design, is 64
 bytes of IP and 64 bytes of TCP.
 35. Allowing only one slot may make the compressor code more complex.
 Implementations should avoid offering one slot if possible and
 compressor implementations may disable compression if only one slot is
 negotiated.

 Jacobson [Page 19]

 RFC 1144 Compressing TCP/IP Headers February 1990

 to listen that you have misconfigured your systems and are not
 interoperable.

 5.2 Choosing a maximum transmission unit

 From the discussion in sec. 2, it seems desirable to limit the maximum
 packet size (MTU) on any line where there might be interactive traffic
 and multiple active connections (to maintain good interactive response
 between the different connections competing for the line). The obvious
 question is ‘how much does this hurt throughput?’ It doesn’t.

 Figure 8 shows how user data throughput/36/ scales with MTU with (solid
 line) and without (dashed line) header compression. The dotted lines
 show what MTU corresponds to a 200 ms packet time at 2400, 9600 and
 19,200 bps. Note that with header compression even a 2400 bps line can
 be responsive yet have reasonable throughput (83%)./37/

 Figure 9 shows how line efficiency scales with increasing line speed,
 assuming that a 200ms. MTU is always chosen./38/ The knee in the
 performance curve is around 2400 bps. Below this, efficiency is
 sensitive to small changes in speed (or MTU since the two are linearly
 related) and good efficiency comes at the expense of good response.
 Above 2400bps the curve is flat and efficiency is relatively independent
 of speed or MTU. In other words, it is possible to have both good
 response and high line efficiency.

 To illustrate, note that for a 9600 bps line with header compression
 there is essentially no benefit in increasing the MTU beyond 200 bytes:
 If the MTU is increased to 576, the average delay increases by 188%
 while throughput only improves by 3% (from 96 to 99%).

 36. The vertical axis is in percent of line speed. E.g., ‘95’ means
 that 95% of the line bandwidth is going to user data or, in other words,
 the user would see a data transfer rate of 9120 bps on a 9600 bps line.
 Four bytes of link-level (framer) encapsulation in addition to the
 TCP/IP or compressed header were included when calculating the relative
 throughput. The 200 ms packet times were computed assuming an
 asynchronous line using 10 bits per character (8 data bits, 1 start, 1
 stop, no parity).
 37. However, the 40 byte TCP MSS required for a 2400 bps line might
 stress-test your TCP implementation.
 38. For a typical async line, a 200ms. MTU is simply .02 times the line
 speed in bits per second.

 Jacobson [Page 20]

 RFC 1144 Compressing TCP/IP Headers February 1990

 5.3 Interaction with data compression

 Since the early 1980’s, fast, effective, data compression algorithms
 such as Lempel-Ziv[7] and programs that embody them, such as the
 compress program shipped with Berkeley Unix, have become widely
 available. When using low speed or long haul lines, it has become
 common practice to compress data before sending it. For dialup
 connections, this compression is often done in the modems, independent
 of the communicating hosts. Some interesting issues would seem to be:
 (1) Given a good data compressor, is there any need for header
 compression? (2) Does header compression interact with data
 compression? (3) Should data be compressed before or after header
 compression?/39/

 To investigate (1), Lempel-Ziv compression was done on a trace of 446
 TCP/IP packets taken from the user’s side of a typical telnet
 conversation. Since the packets resulted from typing, almost all
 contained only one data byte plus 40 bytes of header. I.e., the test
 essentially measured L-Z compression of TCP/IP headers. The compression
 ratio (the ratio of uncompressed to compressed data) was 2.6. In other
 words, the average header was reduced from 40 to 16 bytes. While this
 is good compression, it is far from the 5 bytes of header needed for
 good interactive response and far from the 3 bytes of header (a
 compression ratio of 13.3) that header compression yielded on the same
 packet trace.

 The second and third questions are more complex. To investigate them,
 several packet traces from FTP file transfers were analyzed/40/ with and
 without header compression and with and without L-Z compression. The
 L-Z compression was tried at two places in the outgoing data stream
 (fig. 10): (1) just before the data was handed to TCP for
 encapsulation (simulating compression done at the ‘application’ level)
 and (2) after the data was encapsulated (simulating compression done in
 the modem). Table 1 summarizes the results for a 78,776 byte ASCII text
 file (the Unix csh.1 manual entry)/41/ transferred using the guidelines
 of the previous section (256 byte MTU or 216 byte MSS; 368 packets
 total). Compression ratios for the following ten tests are shown
 (reading left to right and top to bottom):

 39. The answers, for those who wish to skip the remainder of this
 section, are ‘yes’, ‘no’ and ‘either’, respectively.
 40. The data volume from user side of a telnet is too small to benefit
 from data compression and can be adversely affected by the delay most
 compression algorithms (necessarily) add. The statistics and volume of
 the computer side of a telnet are similar to an (ASCII) FTP so these
 results should apply to either.
 41. The ten experiments described were each done on ten ASCII files
 (four long e-mail messages, three Unix C source files and three Unix
 manual entries). The results were remarkably similar for different
 files and the general conclusions reached below apply to all ten files.

 Jacobson [Page 21]

 RFC 1144 Compressing TCP/IP Headers February 1990

 - data file (no compression or encapsulation)

 - data -> L--Z compressor

 - data -> TCP/IP encapsulation

 - data -> L--Z -> TCP/IP

 - data -> TCP/IP -> L--Z

 - data -> L--Z -> TCP/IP -> L--Z

 - data -> TCP/IP -> Hdr. Compress.

 - data -> L--Z -> TCP/IP -> Hdr. Compress.

 - data -> TCP/IP -> Hdr. Compress. -> L--Z

 - data -> L--Z -> TCP/IP -> Hdr. Compress. -> L--Z

 +---+
 | | No data | L--Z | L--Z | L--Z |
 | |compress. |on data |on wire | on both |
 +--------------+----------+--------+--------+---------+
 | Raw Data | 1.00 | 2.44 | ---- | ---- |
 | + TCP Encap. | 0.83 | 2.03 | 1.97 | 1.58 |
 | w/Hdr Comp. | 0.98 | 2.39 | 2.26 | 1.66 |
 +---+

 Table 1: ASCII Text File Compression Ratios

 The first column of table 1 says the data expands by 19% (‘compresses’
 by .83) when encapsulated in TCP/IP and by 2% when encapsulated in
 header compressed TCP/IP./42/ The first row says L--Z compression is
 quite effective on this data, shrinking it to less than half its
 original size. Column four illustrates the well-known fact that it is a
 mistake to L--Z compress already compressed data. The interesting
 information is in rows two and three of columns two and three. These
 columns say that the benefit of data compression overwhelms the cost of
 encapsulation, even for straight TCP/IP. They also say that it is
 slightly better to compress the data before encapsulating it rather than
 compressing at the framing/modem level. The differences however are

 42. This is what would be expected from the relative header sizes:
 256/216 for TCP/IP and 219/216 for header compression.

 Jacobson [Page 22]

 RFC 1144 Compressing TCP/IP Headers February 1990

 small --- 3% and 6%, respectively, for the TCP/IP and header compressed
 encapsulations./43/

 Table 2 shows the same experiment for a 122,880 byte binary file (the
 Sun-3 ps executable). Although the raw data doesn’t compress nearly as
 well, the results are qualitatively the same as for the ASCII data. The
 one significant change is in row two: It is about 3% better to compress
 the data in the modem rather than at the source if doing TCP/IP
 encapsulation (apparently, Sun binaries and TCP/IP headers have similar
 statistics). However, with header compression (row three) the results
 were similar to the ASCII data --- it’s about 3% worse to compress at
 the modem rather than the source./44/

 +---+
 | | No data | L--Z | L--Z | L--Z |
 | |compress. |on data |on wire | on both |
 +--------------+----------+--------+--------+---------+
 | Raw Data | 1.00 | 1.72 | ---- | ---- |
 | + TCP Encap. | 0.83 | 1.43 | 1.48 | 1.21 |
 | w/Hdr Comp. | 0.98 | 1.69 | 1.64 | 1.28 |
 +---+

 Table 2: Binary File Compression Ratios

 6 Performance measurements

 An implementation goal of compression code was to arrive at something
 simple enough to run at ISDN speeds (64Kbps) on a typical 1989

 43. The differences are due to the wildly different byte patterns of
 TCP/IP datagrams and ASCII text. Any compression scheme with an
 underlying, Markov source model, such as Lempel-Ziv, will do worse when
 radically different sources are interleaved. If the relative
 proportions of the two sources are changed, i.e., the MTU is increased,
 the performance difference between the two compressor locations
 decreases. However, the rate of decrease is very slow --- increasing
 the MTU by 400% (256 to 1024) only changed the difference between the
 data and modem L--Z choices from 2.5% to 1.3%.
 44. There are other good reasons to compress at the source: Far fewer
 packets have to be encapsulated and far fewer characters have to be sent
 to the modem. The author suspects that the ‘compress data in the modem’
 alternative should be avoided except when faced with an intractable,
 vendor proprietary operating system.

 Jacobson [Page 23]

 RFC 1144 Compressing TCP/IP Headers February 1990

 +---------------------------------------+
 | | Average per-packet | |
 | Machine | processing time (us.) |
 | | |
 | | Compress | Decompress |
 +---------------+----------+------------+
 |Sparcstation-1 | 24 | 18 |
 | Sun 4/260 | 46 | 20 |
 | Sun 3/60 | 90 | 90 |
 | Sun 3/50 | 130 | 150 |
 | HP9000/370 | 42 | 33 |
 | HP9000/360 | 68 | 70 |
 | DEC 3100 | 27 | 25 |
 | Vax 780 | 430 | 300 |
 | Vax 750 | 800 | 500 |
 | CCI Tahoe | 110 | 140 |
 +---------------------------------------+

 Table 3: Compression code timings

 workstation. 64Kbps is a byte every 122us so 120us was (arbitrarily)
 picked as the target compression/decompression time./45/

 As part of the compression code development, a trace-driven exerciser
 was developed. This was initially used to compare different compression
 protocol choices then later to test the code on different computer
 architectures and do regression tests after performance ‘improvements’.
 A small modification of this test program resulted in a useful
 measurement tool./46/ Table 3 shows the result of timing the
 compression code on all the machines available to the author (times were
 measured using a mixed telnet/ftp traffic trace). With the exception of
 the Vax architectures, which suffer from (a) having bytes in the wrong
 order and (b) a lousy compiler (Unix pcc), all machines essentially met
 the 120us goal.

 45. The time choice wasn’t completely arbitrary: Decompression is
 often done during the inter-frame ‘flag’ character time so, on systems
 where the decompression is done at the same priority level as the serial
 line input interrupt, times much longer than a character time would
 result in receiver overruns. And, with the current average of five byte
 frames (on the wire, including both compressed header and framing), a
 compression/decompression that takes one byte time can use at most 20%
 of the available time. This seems like a comfortable budget.
 46. Both the test program and timer program are included in the
 ftp-able package described in appendix A as files tester.c and timer.c.

 Jacobson [Page 24]

 RFC 1144 Compressing TCP/IP Headers February 1990

 7 Acknowlegements

 The author is grateful to the members of the Internet Engineering Task
 Force, chaired by Phill Gross, who provided encouragement and thoughtful
 review of this work. Several patient beta-testers, particularly Sam
 Leffler and Craig Leres, tracked down and fixed problems in the initial
 implementation. Cynthia Livingston and Craig Partridge carefully read
 and greatly improved an unending sequence of partial drafts of this
 document. And last but not least, Telebit modem corporation,
 particularly Mike Ballard, encouraged this work from its inception and
 has been an ongoing champion of serial line and dial-up IP.

 References

 [1] Bingham, J. A. C. Theory and Practice of Modem Design. John Wiley
 & Sons, 1988.

 [2] Carey, M. B., Chan, H.-T., Descloux, A., Ingle, J. F., and Park,
 K. I. 1982/83 end office connection study: Analog voice and
 voiceband data transmission performance characterization of the
 public switched network. Bell System Technical Journal 63, 9 (Nov.
 1984).

 [3] Chiappa, N., 1988. Private communication.

 [4] Clark, D. D. The design philosophy of the DARPA Internet
 protocols. In Proceedings of SIGCOMM ’88 (Stanford, CA, Aug.
 1988), ACM.

 [5] Farber, D. J., Delp, G. S., and Conte, T. M. A Thinwire Protocol
 for connecting personal computers to the Internet. Arpanet Working
 Group Requests for Comment, DDN Network Information Center, SRI
 International, Menlo Park, CA, Sept. 1984. RFC-914.

 [6] Kent, C. A., and Mogul, J. Fragmentation considered harmful. In
 Proceedings of SIGCOMM ’87 (Aug. 1987), ACM.

 [7] Lempel, A., and Ziv, J. Compression of individual sequences via
 variable-rate encoding. IEEE Transactions on Information Theory
 IT-24, 5 (June 1978).

 [8] Nagle, J. Congestion Control in IP/TCP Internetworks. Arpanet
 Working Group Requests for Comment, DDN Network Information Center,
 SRI International, Menlo Park, CA, Jan. 1984. RFC-896.

 [9] Perkins, D. Point-to-Point Protocol: A proposal for
 multi-protocol transmission of datagrams over point-to-point links.
 Arpanet Working Group Requests for Comment, DDN Network Information
 Center, SRI International, Menlo Park, CA, Nov. 1989. RFC-1134.

 Jacobson [Page 25]

 RFC 1144 Compressing TCP/IP Headers February 1990

 [10] Postel, J., Ed. Internet Protocol Specification. SRI
 International, Menlo Park, CA, Sept. 1981. RFC-791.

 [11] Postel, J., Ed. Transmission Control Protocol Specification. SRI
 International, Menlo Park, CA, Sept. 1981. RFC-793.

 [12] Romkey, J. A Nonstandard for Transmission of IP Datagrams Over
 Serial Lines: Slip. Arpanet Working Group Requests for Comment,
 DDN Network Information Center, SRI International, Menlo Park, CA,
 June 1988. RFC-1055.

 [13] Salthouse, T. A. The skill of typing. Scientific American 250, 2
 (Feb. 1984), 128--135.

 [14] Saltzer, J. H., Reed, D. P., and Clark, D. D. End-to-end arguments
 in system design. ACM Transactions on Computer Systems 2, 4 (Nov.
 1984).

 [15] Shneiderman, B. Designing the User Interface. Addison-Wesley,
 1987.

 Jacobson [Page 26]

 RFC 1144 Compressing TCP/IP Headers February 1990

 A Sample Implementation

 The following is a sample implementation of the protocol described in
 this document.

 Since many people who might have the deal with this code are familiar
 with the Berkeley Unix kernel and its coding style (affectionately known
 as kernel normal form), this code was done in that style. It uses the
 Berkeley ‘subroutines’ (actually, macros and/or inline assembler
 expansions) for converting to/from network byte order and
 copying/comparing strings of bytes. These routines are briefly
 described in sec. A.5 for anyone not familiar with them.

 This code has been run on all the machines listed in the table on page
 24. Thus, the author hopes there are no byte order or alignment
 problems (although there are embedded assumptions about alignment that
 are valid for Berkeley Unix but may not be true for other IP
 implementations --- see the comments mentioning alignment in
 sl_compress_tcp and sl_decompress_tcp).

 There was some attempt to make this code efficient. Unfortunately, that
 may have made portions of it incomprehensible. The author apologizes
 for any frustration this engenders. (In honesty, my C style is known to
 be obscure and claims of ‘efficiency’ are simply a convenient excuse.)

 This sample code and a complete Berkeley Unix implementation is
 available in machine readable form via anonymous ftp from Internet host
 ftp.ee.lbl.gov (128.3.254.68), file cslip.tar.Z. This is a compressed
 Unix tar file. It must be ftped in binary mode.

 All of the code in this appendix is covered by the following copyright:

 /*
 * Copyright (c) 1989 Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms are
 * permitted provided that the above copyright notice and this
 * paragraph are duplicated in all such forms and that any
 * documentation, advertising materials, and other materials
 * related to such distribution and use acknowledge that the
 * software was developed by the University of California,
 * Berkeley. The name of the University may not be used to
 * endorse or promote products derived from this software
 * without specific prior written permission.
 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
 * IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE.
 */

 Jacobson [Page 27]

 RFC 1144 Compressing TCP/IP Headers February 1990

 A.1 Definitions and State Data

 #define MAX_STATES 16 /* must be >2 and <255 */
 #define MAX_HDR 128 /* max TCP+IP hdr length (by protocol def) */

 /* packet types */
 #define TYPE_IP 0x40
 #define TYPE_UNCOMPRESSED_TCP 0x70
 #define TYPE_COMPRESSED_TCP 0x80
 #define TYPE_ERROR 0x00 /* this is not a type that ever appears on
 * the wire. The receive framer uses it to
 * tell the decompressor there was a packet
 * transmission error. */
 /*
 * Bits in first octet of compressed packet
 */

 /* flag bits for what changed in a packet */

 #define NEW_C 0x40
 #define NEW_I 0x20
 #define TCP_PUSH_BIT 0x10

 #define NEW_S 0x08
 #define NEW_A 0x04
 #define NEW_W 0x02
 #define NEW_U 0x01

 /* reserved, special-case values of above */
 #define SPECIAL_I (NEW_S|NEW_W|NEW_U) /* echoed interactive traffic */
 #define SPECIAL_D (NEW_S|NEW_A|NEW_W|NEW_U) /* unidirectional data */
 #define SPECIALS_MASK (NEW_S|NEW_A|NEW_W|NEW_U)

 /*
 * "state" data for each active tcp conversation on the wire. This is
 * basically a copy of the entire IP/TCP header from the last packet together
 * with a small identifier the transmit & receive ends of the line use to
 * locate saved header.
 */
 struct cstate {
 struct cstate *cs_next; /* next most recently used cstate (xmit only) */
 u_short cs_hlen; /* size of hdr (receive only) */
 u_char cs_id; /* connection # associated with this state */
 u_char cs_filler;
 union {
 char hdr[MAX_HDR];
 struct ip csu_ip; /* ip/tcp hdr from most recent packet */
 } slcs_u;
 };
 #define cs_ip slcs_u.csu_ip

 Jacobson [Page 28]

 RFC 1144 Compressing TCP/IP Headers February 1990

 #define cs_hdr slcs_u.csu_hdr

 /*
 * all the state data for one serial line (we need one of these per line).
 */
 struct slcompress {
 struct cstate *last_cs; /* most recently used tstate */
 u_char last_recv; /* last rcvd conn. id */
 u_char last_xmit; /* last sent conn. id */
 u_short flags;
 struct cstate tstate[MAX_STATES]; /* xmit connection states */
 struct cstate rstate[MAX_STATES]; /* receive connection states */
 };

 /* flag values */
 #define SLF_TOSS 1 /* tossing rcvd frames because of input err */

 /*
 * The following macros are used to encode and decode numbers. They all
 * assume that ‘cp’ points to a buffer where the next byte encoded (decoded)
 * is to be stored (retrieved). Since the decode routines do arithmetic,
 * they have to convert from and to network byte order.
 */

 /*
 * ENCODE encodes a number that is known to be non-zero. ENCODEZ checks for
 * zero (zero has to be encoded in the long, 3 byte form).
 */
 #define ENCODE(n) { \
 if ((u_short)(n) >= 256) { \
 *cp++ = 0; \
 cp[1] = (n); \
 cp[0] = (n) >> 8; \
 cp += 2; \
 } else { \
 *cp++ = (n); \
 } \
 }
 #define ENCODEZ(n) { \
 if ((u_short)(n) >= 256 || (u_short)(n) == 0) { \
 *cp++ = 0; \
 cp[1] = (n); \
 cp[0] = (n) >> 8; \
 cp += 2; \
 } else { \
 *cp++ = (n); \
 } \
 }

 /*
 * DECODEL takes the (compressed) change at byte cp and adds it to the

 Jacobson [Page 29]

 RFC 1144 Compressing TCP/IP Headers February 1990

 * current value of packet field ’f’ (which must be a 4-byte (long) integer
 * in network byte order). DECODES does the same for a 2-byte (short) field.
 * DECODEU takes the change at cp and stuffs it into the (short) field f.
 * ’cp’ is updated to point to the next field in the compressed header.
 */
 #define DECODEL(f) { \
 if (*cp == 0) {\
 (f) = htonl(ntohl(f) + ((cp[1] << 8) | cp[2])); \
 cp += 3; \
 } else { \
 (f) = htonl(ntohl(f) + (u_long)*cp++); \
 } \
 }
 #define DECODES(f) { \
 if (*cp == 0) {\
 (f) = htons(ntohs(f) + ((cp[1] << 8) | cp[2])); \
 cp += 3; \
 } else { \
 (f) = htons(ntohs(f) + (u_long)*cp++); \
 } \
 }
 #define DECODEU(f) { \
 if (*cp == 0) {\
 (f) = htons((cp[1] << 8) | cp[2]); \
 cp += 3; \
 } else { \
 (f) = htons((u_long)*cp++); \
 } \
 }

 Jacobson [Page 30]

 RFC 1144 Compressing TCP/IP Headers February 1990

 A.2 Compression

 This routine looks daunting but isn’t really. The code splits into four
 approximately equal sized sections: The first quarter manages a
 circularly linked, least-recently-used list of ‘active’ TCP
 connections./47/ The second figures out the sequence/ack/window/urg
 changes and builds the bulk of the compressed packet. The third handles
 the special-case encodings. The last quarter does packet ID and
 connection ID encoding and replaces the original packet header with the
 compressed header.

 The arguments to this routine are a pointer to a packet to be
 compressed, a pointer to the compression state data for the serial line,
 and a flag which enables or disables connection id (C bit) compression.

 Compression is done ‘in-place’ so, if a compressed packet is created,
 both the start address and length of the incoming packet (the off and
 len fields of m) will be updated to reflect the removal of the original
 header and its replacement by the compressed header. If either a
 compressed or uncompressed packet is created, the compression state is
 updated. This routines returns the packet type for the transmit framer
 (TYPE_IP, TYPE_UNCOMPRESSED_TCP or TYPE_COMPRESSED_TCP).

 Because 16 and 32 bit arithmetic is done on various header fields, the
 incoming IP packet must be aligned appropriately (e.g., on a SPARC, the
 IP header is aligned on a 32-bit boundary). Substantial changes would
 have to be made to the code below if this were not true (and it would
 probably be cheaper to byte copy the incoming header to somewhere
 correctly aligned than to make those changes).

 Note that the outgoing packet will be aligned arbitrarily (e.g., it
 could easily start on an odd-byte boundary).

 u_char
 sl_compress_tcp(m, comp, compress_cid)
 struct mbuf *m;
 struct slcompress *comp;
 int compress_cid;
 {
 register struct cstate *cs = comp->last_cs->cs_next;
 register struct ip *ip = mtod(m, struct ip *);
 register u_int hlen = ip->ip_hl;
 register struct tcphdr *oth; /* last TCP header */
 register struct tcphdr *th; /* current TCP header */

 47. The two most common operations on the connection list are a ‘find’
 that terminates at the first entry (a new packet for the most recently
 used connection) and moving the last entry on the list to the head of
 the list (the first packet from a new connection). A circular list
 efficiently handles these two operations.

 Jacobson [Page 31]

 RFC 1144 Compressing TCP/IP Headers February 1990

 register u_int deltaS, deltaA; /* general purpose temporaries */
 register u_int changes = 0; /* change mask */
 u_char new_seq[16]; /* changes from last to current */
 register u_char *cp = new_seq;

 /*
 * Bail if this is an IP fragment or if the TCP packet isn’t
 * ‘compressible’ (i.e., ACK isn’t set or some other control bit is
 * set). (We assume that the caller has already made sure the packet
 * is IP proto TCP).
 */
 if ((ip->ip_off & htons(0x3fff)) || m->m_len < 40)
 return (TYPE_IP);

 th = (struct tcphdr *) & ((int *) ip)[hlen];
 if ((th->th_flags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) != TH_ACK)
 return (TYPE_IP);

 /*
 * Packet is compressible -- we’re going to send either a
 * COMPRESSED_TCP or UNCOMPRESSED_TCP packet. Either way we need to
 * locate (or create) the connection state. Special case the most
 * recently used connection since it’s most likely to be used again &
 * we don’t have to do any reordering if it’s used.
 */
 if (ip->ip_src.s_addr != cs->cs_ip.ip_src.s_addr ||
 ip->ip_dst.s_addr != cs->cs_ip.ip_dst.s_addr ||
 *(int *) th != ((int *) &cs->cs_ip)[cs->cs_ip.ip_hl]) {

 /*
 * Wasn’t the first -- search for it.
 *
 * States are kept in a circularly linked list with last_cs
 * pointing to the end of the list. The list is kept in lru
 * order by moving a state to the head of the list whenever
 * it is referenced. Since the list is short and,
 * empirically, the connection we want is almost always near
 * the front, we locate states via linear search. If we
 * don’t find a state for the datagram, the oldest state is
 * (re-)used.
 */
 register struct cstate *lcs;
 register struct cstate *lastcs = comp->last_cs;

 do {
 lcs = cs;
 cs = cs->cs_next;
 if (ip->ip_src.s_addr == cs->cs_ip.ip_src.s_addr
 && ip->ip_dst.s_addr == cs->cs_ip.ip_dst.s_addr
 && *(int *) th == ((int *) &cs->cs_ip)[cs->cs_ip.ip_hl])
 goto found;

 Jacobson [Page 32]

 RFC 1144 Compressing TCP/IP Headers February 1990

 } while (cs != lastcs);

 /*
 * Didn’t find it -- re-use oldest cstate. Send an
 * uncompressed packet that tells the other side what
 * connection number we’re using for this conversation. Note
 * that since the state list is circular, the oldest state
 * points to the newest and we only need to set last_cs to
 * update the lru linkage.
 */
 comp->last_cs = lcs;
 hlen += th->th_off;
 hlen <<= 2;
 goto uncompressed;

 found:
 /* Found it -- move to the front on the connection list. */
 if (lastcs == cs)
 comp->last_cs = lcs;
 else {
 lcs->cs_next = cs->cs_next;
 cs->cs_next = lastcs->cs_next;
 lastcs->cs_next = cs;
 }
 }
 /*
 * Make sure that only what we expect to change changed. The first
 * line of the ‘if’ checks the IP protocol version, header length &
 * type of service. The 2nd line checks the "Don’t fragment" bit.
 * The 3rd line checks the time-to-live and protocol (the protocol
 * check is unnecessary but costless). The 4th line checks the TCP
 * header length. The 5th line checks IP options, if any. The 6th
 * line checks TCP options, if any. If any of these things are
 * different between the previous & current datagram, we send the
 * current datagram ‘uncompressed’.
 */
 oth = (struct tcphdr *) & ((int *) &cs->cs_ip)[hlen];
 deltaS = hlen;
 hlen += th->th_off;
 hlen <<= 2;

 if (((u_short *) ip)[0] != ((u_short *) &cs->cs_ip)[0] ||
 ((u_short *) ip)[3] != ((u_short *) &cs->cs_ip)[3] ||
 ((u_short *) ip)[4] != ((u_short *) &cs->cs_ip)[4] ||
 th->th_off != oth->th_off ||
 (deltaS > 5 && BCMP(ip + 1, &cs->cs_ip + 1, (deltaS - 5) << 2)) ||
 (th->th_off > 5 && BCMP(th + 1, oth + 1, (th->th_off - 5) << 2)))
 goto uncompressed;

 /*
 * Figure out which of the changing fields changed. The receiver

 Jacobson [Page 33]

 RFC 1144 Compressing TCP/IP Headers February 1990

 * expects changes in the order: urgent, window, ack, seq.
 */
 if (th->th_flags & TH_URG) {
 deltaS = ntohs(th->th_urp);
 ENCODEZ(deltaS);
 changes |= NEW_U;
 } else if (th->th_urp != oth->th_urp)
 /*
 * argh! URG not set but urp changed -- a sensible
 * implementation should never do this but RFC793 doesn’t
 * prohibit the change so we have to deal with it.
 */
 goto uncompressed;

 if (deltaS = (u_short) (ntohs(th->th_win) - ntohs(oth->th_win))) {
 ENCODE(deltaS);
 changes |= NEW_W;
 }
 if (deltaA = ntohl(th->th_ack) - ntohl(oth->th_ack)) {
 if (deltaA > 0xffff)
 goto uncompressed;
 ENCODE(deltaA);
 changes |= NEW_A;
 }
 if (deltaS = ntohl(th->th_seq) - ntohl(oth->th_seq)) {
 if (deltaS > 0xffff)
 goto uncompressed;
 ENCODE(deltaS);
 changes |= NEW_S;
 }
 /*
 * Look for the special-case encodings.
 */
 switch (changes) {

 case 0:
 /*
 * Nothing changed. If this packet contains data and the last
 * one didn’t, this is probably a data packet following an
 * ack (normal on an interactive connection) and we send it
 * compressed. Otherwise it’s probably a retransmit,
 * retransmitted ack or window probe. Send it uncompressed
 * in case the other side missed the compressed version.
 */
 if (ip->ip_len != cs->cs_ip.ip_len &&
 ntohs(cs->cs_ip.ip_len) == hlen)
 break;

 /* (fall through) */

 case SPECIAL_I:

 Jacobson [Page 34]

 RFC 1144 Compressing TCP/IP Headers February 1990

 case SPECIAL_D:
 /*
 * Actual changes match one of our special case encodings --
 * send packet uncompressed.
 */
 goto uncompressed;

 case NEW_S | NEW_A:
 if (deltaS == deltaA &&
 deltaS == ntohs(cs->cs_ip.ip_len) - hlen) {
 /* special case for echoed terminal traffic */
 changes = SPECIAL_I;
 cp = new_seq;
 }
 break;

 case NEW_S:
 if (deltaS == ntohs(cs->cs_ip.ip_len) - hlen) {
 /* special case for data xfer */
 changes = SPECIAL_D;
 cp = new_seq;
 }
 break;
 }
 deltaS = ntohs(ip->ip_id) - ntohs(cs->cs_ip.ip_id);
 if (deltaS != 1) {
 ENCODEZ(deltaS);
 changes |= NEW_I;
 }
 if (th->th_flags & TH_PUSH)
 changes |= TCP_PUSH_BIT;
 /*
 * Grab the cksum before we overwrite it below. Then update our
 * state with this packet’s header.
 */
 deltaA = ntohs(th->th_sum);
 BCOPY(ip, &cs->cs_ip, hlen);

 /*
 * We want to use the original packet as our compressed packet. (cp -
 * new_seq) is the number of bytes we need for compressed sequence
 * numbers. In addition we need one byte for the change mask, one
 * for the connection id and two for the tcp checksum. So, (cp -
 * new_seq) + 4 bytes of header are needed. hlen is how many bytes
 * of the original packet to toss so subtract the two to get the new
 * packet size.
 */
 deltaS = cp - new_seq;
 cp = (u_char *) ip;
 if (compress_cid == 0 || comp->last_xmit != cs->cs_id) {
 comp->last_xmit = cs->cs_id;

 Jacobson [Page 35]

 RFC 1144 Compressing TCP/IP Headers February 1990

 hlen -= deltaS + 4;
 cp += hlen;
 *cp++ = changes | NEW_C;
 *cp++ = cs->cs_id;
 } else {
 hlen -= deltaS + 3;
 cp += hlen;
 *cp++ = changes;
 }
 m->m_len -= hlen;
 m->m_off += hlen;
 *cp++ = deltaA >> 8;
 *cp++ = deltaA;
 BCOPY(new_seq, cp, deltaS);
 return (TYPE_COMPRESSED_TCP);

 uncompressed:
 /*
 * Update connection state cs & send uncompressed packet
 * (’uncompressed’ means a regular ip/tcp packet but with the
 * ’conversation id’ we hope to use on future compressed packets in
 * the protocol field).
 */
 BCOPY(ip, &cs->cs_ip, hlen);
 ip->ip_p = cs->cs_id;
 comp->last_xmit = cs->cs_id;
 return (TYPE_UNCOMPRESSED_TCP);
 }

 Jacobson [Page 36]

 RFC 1144 Compressing TCP/IP Headers February 1990

 A.3 Decompression

 This routine decompresses a received packet. It is called with a
 pointer to the packet, the packet length and type, and a pointer to the
 compression state structure for the incoming serial line. It returns a
 pointer to the resulting packet or zero if there were errors in the
 incoming packet. If the packet is COMPRESSED_TCP or UNCOMPRESSED_TCP,
 the compression state will be updated.

 The new packet will be constructed in-place. That means that there must
 be 128 bytes of free space in front of bufp to allow room for the
 reconstructed IP and TCP headers. The reconstructed packet will be
 aligned on a 32-bit boundary.

 u_char *
 sl_uncompress_tcp(bufp, len, type, comp)
 u_char *bufp;
 int len;
 u_int type;
 struct slcompress *comp;
 {
 register u_char *cp;
 register u_int hlen, changes;
 register struct tcphdr *th;
 register struct cstate *cs;
 register struct ip *ip;

 switch (type) {

 case TYPE_ERROR:
 default:
 goto bad;

 case TYPE_IP:
 return (bufp);

 case TYPE_UNCOMPRESSED_TCP:
 /*
 * Locate the saved state for this connection. If the state
 * index is legal, clear the ’discard’ flag.
 */
 ip = (struct ip *) bufp;
 if (ip->ip_p >= MAX_STATES)
 goto bad;

 cs = &comp->rstate[comp->last_recv = ip->ip_p];
 comp->flags &= ˜SLF_TOSS;
 /*
 * Restore the IP protocol field then save a copy of this
 * packet header. (The checksum is zeroed in the copy so we
 * don’t have to zero it each time we process a compressed

 Jacobson [Page 37]

 RFC 1144 Compressing TCP/IP Headers February 1990

 * packet.
 */
 ip->ip_p = IPPROTO_TCP;
 hlen = ip->ip_hl;
 hlen += ((struct tcphdr *) & ((int *) ip)[hlen])->th_off;
 hlen <<= 2;
 BCOPY(ip, &cs->cs_ip, hlen);
 cs->cs_ip.ip_sum = 0;
 cs->cs_hlen = hlen;
 return (bufp);

 case TYPE_COMPRESSED_TCP:
 break;
 }
 /* We’ve got a compressed packet. */
 cp = bufp;
 changes = *cp++;
 if (changes & NEW_C) {
 /*
 * Make sure the state index is in range, then grab the
 * state. If we have a good state index, clear the ’discard’
 * flag.
 */
 if (*cp >= MAX_STATES)
 goto bad;

 comp->flags &= ˜SLF_TOSS;
 comp->last_recv = *cp++;
 } else {
 /*
 * This packet has an implicit state index. If we’ve had a
 * line error since the last time we got an explicit state
 * index, we have to toss the packet.
 */
 if (comp->flags & SLF_TOSS)
 return ((u_char *) 0);
 }
 /*
 * Find the state then fill in the TCP checksum and PUSH bit.
 */
 cs = &comp->rstate[comp->last_recv];
 hlen = cs->cs_ip.ip_hl << 2;
 th = (struct tcphdr *) & ((u_char *) &cs->cs_ip)[hlen];
 th->th_sum = htons((*cp << 8) | cp[1]);
 cp += 2;
 if (changes & TCP_PUSH_BIT)
 th->th_flags |= TH_PUSH;
 else
 th->th_flags &= ˜TH_PUSH;

 /*

 Jacobson [Page 38]

 RFC 1144 Compressing TCP/IP Headers February 1990

 * Fix up the state’s ack, seq, urg and win fields based on the
 * changemask.
 */
 switch (changes & SPECIALS_MASK) {
 case SPECIAL_I:
 {
 register u_int i = ntohs(cs->cs_ip.ip_len) - cs->cs_hlen;
 th->th_ack = htonl(ntohl(th->th_ack) + i);
 th->th_seq = htonl(ntohl(th->th_seq) + i);
 }
 break;

 case SPECIAL_D:
 th->th_seq = htonl(ntohl(th->th_seq) + ntohs(cs->cs_ip.ip_len)
 - cs->cs_hlen);
 break;

 default:
 if (changes & NEW_U) {
 th->th_flags |= TH_URG;
 DECODEU(th->th_urp)
 } else
 th->th_flags &= ˜TH_URG;
 if (changes & NEW_W)
 DECODES(th->th_win)
 if (changes & NEW_A)
 DECODEL(th->th_ack)
 if (changes & NEW_S)
 DECODEL(th->th_seq)
 break;
 }
 /* Update the IP ID */
 if (changes & NEW_I)
 DECODES(cs->cs_ip.ip_id)
 else
 cs->cs_ip.ip_id = htons(ntohs(cs->cs_ip.ip_id) + 1);

 /*
 * At this point, cp points to the first byte of data in the packet.
 * If we’re not aligned on a 4-byte boundary, copy the data down so
 * the IP & TCP headers will be aligned. Then back up cp by the
 * TCP/IP header length to make room for the reconstructed header (we
 * assume the packet we were handed has enough space to prepend 128
 * bytes of header). Adjust the lenth to account for the new header
 * & fill in the IP total length.
 */
 len -= (cp - bufp);
 if (len < 0)
 /*
 * we must have dropped some characters (crc should detect
 * this but the old slip framing won’t)

 Jacobson [Page 39]

 RFC 1144 Compressing TCP/IP Headers February 1990

 */
 goto bad;

 if ((int) cp & 3) {
 if (len > 0)
 OVBCOPY(cp, (int) cp & ˜3, len);
 cp = (u_char *) ((int) cp & ˜3);
 }
 cp -= cs->cs_hlen;
 len += cs->cs_hlen;
 cs->cs_ip.ip_len = htons(len);
 BCOPY(&cs->cs_ip, cp, cs->cs_hlen);

 /* recompute the ip header checksum */
 {
 register u_short *bp = (u_short *) cp;
 for (changes = 0; hlen > 0; hlen -= 2)
 changes += *bp++;
 changes = (changes & 0xffff) + (changes >> 16);
 changes = (changes & 0xffff) + (changes >> 16);
 ((struct ip *) cp)->ip_sum = ˜changes;
 }
 return (cp);

 bad:
 comp->flags |= SLF_TOSS;
 return ((u_char *) 0);
 }

 Jacobson [Page 40]

 RFC 1144 Compressing TCP/IP Headers February 1990

 A.4 Initialization

 This routine initializes the state structure for both the transmit and
 receive halves of some serial line. It must be called each time the
 line is brought up.

 void
 sl_compress_init(comp)
 struct slcompress *comp;
 {
 register u_int i;
 register struct cstate *tstate = comp->tstate;

 /*
 * Clean out any junk left from the last time line was used.
 */
 bzero((char *) comp, sizeof(*comp));
 /*
 * Link the transmit states into a circular list.
 */
 for (i = MAX_STATES - 1; i > 0; --i) {
 tstate[i].cs_id = i;
 tstate[i].cs_next = &tstate[i - 1];
 }
 tstate[0].cs_next = &tstate[MAX_STATES - 1];
 tstate[0].cs_id = 0;
 comp->last_cs = &tstate[0];
 /*
 * Make sure we don’t accidentally do CID compression
 * (assumes MAX_STATES < 255).
 */
 comp->last_recv = 255;
 comp->last_xmit = 255;
 }

 A.5 Berkeley Unix dependencies

 Note: The following is of interest only if you are trying to bring the
 sample code up on a system that is not derived from 4BSD (Berkeley
 Unix).

 The code uses the normal Berkeley Unix header files (from
 /usr/include/netinet) for definitions of the structure of IP and TCP
 headers. The structure tags tend to follow the protocol RFCs closely
 and should be obvious even if you do not have access to a 4BSD
 system./48/

 48. In the event they are not obvious, the header files (and all the
 Berkeley networking code) can be anonymous ftp’d from host

 Jacobson [Page 41]

 RFC 1144 Compressing TCP/IP Headers February 1990

 The macro BCOPY(src, dst, amt) is invoked to copy amt bytes from src to
 dst. In BSD, it translates into a call to bcopy. If you have the
 misfortune to be running System-V Unix, it can be translated into a call
 to memcpy. The macro OVBCOPY(src, dst, amt) is used to copy when src
 and dst overlap (i.e., when doing the 4-byte alignment copy). In the
 BSD kernel, it translates into a call to ovbcopy. Since AT&T botched
 the definition of memcpy, this should probably translate into a copy
 loop under System-V.

 The macro BCMP(src, dst, amt) is invoked to compare amt bytes of src and
 dst for equality. In BSD, it translates into a call to bcmp. In
 System-V, it can be translated into a call to memcmp or you can write a
 routine to do the compare. The routine should return zero if all bytes
 of src and dst are equal and non-zero otherwise.

 The routine ntohl(dat) converts (4 byte) long dat from network byte
 order to host byte order. On a reasonable cpu this can be the no-op
 macro:
 #define ntohl(dat) (dat)

 On a Vax or IBM PC (or anything with Intel byte order), you will have to
 define a macro or routine to rearrange bytes.

 The routine ntohs(dat) is like ntohl but converts (2 byte) shorts
 instead of longs. The routines htonl(dat) and htons(dat) do the inverse
 transform (host to network byte order) for longs and shorts.

 A struct mbuf is used in the call to sl_compress_tcp because that
 routine needs to modify both the start address and length if the
 incoming packet is compressed. In BSD, an mbuf is the kernel’s buffer
 management structure. If other systems, the following definition should
 be sufficient:

 struct mbuf {
 u_char *m_off; /* pointer to start of data */
 int m_len; /* length of data */
 };

 #define mtod(m, t) ((t)(m->m_off))

 ucbarpa.berkeley.edu, files pub/4.3/tcp.tar and pub/4.3/inet.tar.

 Jacobson [Page 42]

 RFC 1144 Compressing TCP/IP Headers February 1990

 B Compatibility with past mistakes

 When combined with the modern PPP serial line protocol[9], the use of
 header compression is automatic and invisible to the user.
 Unfortunately, many sites have existing users of the SLIP described in
 [12] which doesn’t allow for different protocol types to distinguish
 header compressed packets from IP packets or for version numbers or an
 option exchange that could be used to automatically negotiate header
 compression.

 The author has used the following tricks to allow header compressed SLIP
 to interoperate with the existing servers and clients. Note that these
 are hacks for compatibility with past mistakes and should be offensive
 to any right thinking person. They are offered solely to ease the pain
 of running SLIP while users wait patiently for vendors to release PPP.

 B.1 Living without a framing ‘type’ byte

 The bizarre packet type numbers in sec. A.1 were chosen to allow a
 ‘packet type’ to be sent on lines where it is undesirable or impossible
 to add an explicit type byte. Note that the first byte of an IP packet
 always contains ‘4’ (the IP protocol version) in the top four bits. And
 that the most significant bit of the first byte of the compressed header
 is ignored. Using the packet types in sec. A.1, the type can be encoded
 in the most significant bits of the outgoing packet using the code

 p->dat[0] |= sl_compress_tcp(p, comp);

 and decoded on the receive side by

 if (p->dat[0] & 0x80)
 type = TYPE_COMPRESSED_TCP;
 else if (p->dat[0] >= 0x70) {
 type = TYPE_UNCOMPRESSED_TCP;
 p->dat[0] &=˜ 0x30;
 } else
 type = TYPE_IP;
 status = sl_uncompress_tcp(p, type, comp);

 B.2 Backwards compatible SLIP servers

 The SLIP described in [12] doesn’t include any mechanism that could be
 used to automatically negotiate header compression. It would be nice to

 Jacobson [Page 43]

 RFC 1144 Compressing TCP/IP Headers February 1990

 allow users of this SLIP to use header compression but, when users of
 the two SLIP varients share a common server, it would be annoying and
 difficult to manually configure both ends of each connection to enable
 compression. The following procedure can be used to avoid manual
 configuration.

 Since there are two types of dial-in clients (those that implement
 compression and those that don’t) but one server for both types, it’s
 clear that the server will be reconfiguring for each new client session
 but clients change configuration seldom if ever. If manual
 configuration has to be done, it should be done on the side that changes
 infrequently --- the client. This suggests that the server should
 somehow learn from the client whether to use header compression.
 Assuming symmetry (i.e., if compression is used at all it should be used
 both directions) the server can use the receipt of a compressed packet
 from some client to indicate that it can send compressed packets to that
 client. This leads to the following algorithm:

 There are two bits per line to control header compression: allowed and
 on. If on is set, compressed packets are sent, otherwise not. If
 allowed is set, compressed packets can be received and, if an
 UNCOMPRESSED_TCP packet arrives when on is clear, on will be set./49/
 If a compressed packet arrives when allowed is clear, it will be
 ignored.

 Clients are configured with both bits set (allowed is always set if on
 is set) and the server starts each session with allowed set and on
 clear. The first compressed packet from the client (which must be a
 UNCOMPRESSED_TCP packet) turns on compression for the server.

 49. Since [12] framing doesn’t include error detection, one should be
 careful not to ‘false trigger’ compression on the server. The
 UNCOMPRESSED_TCP packet should checked for consistency (e.g., IP
 checksum correctness) before compression is enabled. Arrival of
 COMPRESSED_TCP packets should not be used to enable compression.

 Jacobson [Page 44]

 RFC 1144 Compressing TCP/IP Headers February 1990

 C More aggressive compression

 As noted in sec. 3.2.2, easily detected patterns exist in the stream of
 compressed headers, indicating that more compression could be done.
 Would this be worthwhile?

 The average compressed datagram has only seven bits of header./50/ The
 framing must be at least one bit (to encode the ‘type’) and will
 probably be more like two to three bytes. In most interesting cases
 there will be at least one byte of data. Finally, the end-to-end
 check---the TCP checksum---must be passed through unmodified./51/

 The framing, data and checksum will remain even if the header is
 completely compressed out so the change in average packet size is, at
 best, four bytes down to three bytes and one bit --- roughly a 25%
 improvement in delay./52/ While this may seem significant, on a 2400
 bps line it means that typing echo response takes 25 rather than 29 ms.
 At the present stage of human evolution, this difference is not
 detectable.

 However, the author sheepishly admits to perverting this compression
 scheme for a very special case data-acquisition problem: We had an
 instrument and control package floating at 200KV, communicating with
 ground level via a telemetry system. For many reasons (multiplexed
 communication, pipelining, error recovery, availability of well tested
 implementations, etc.), it was convenient to talk to the package using
 TCP/IP. However, since the primary use of the telemetry link was data
 acquisition, it was designed with an uplink channel capacity <0.5% the
 downlink’s. To meet application delay budgets, data packets were 100
 bytes and, since TCP acks every other packet, the relative uplink
 bandwidth for acks is a/200 where ‘a’ is the total size of ack packets.
 Using the scheme in this paper, the smallest ack is four bytes which
 would imply an uplink bandwidth 2% of the downlink. This wasn’t

 50. Tests run with several million packets from a mixed traffic load
 (i.e., statistics kept on a year’s traffic from my home to work) show
 that 80% of packets use one of the two special encodings and, thus, the
 only header is the change mask.
 51. If someone tries to sell you a scheme that compresses the TCP
 checksum ‘Just say no’. Some poor fool has yet to have the sad
 experience that reveals the end-to-end argument is gospel truth. Worse,
 since the fool is subverting your end-to-end error check, you may pay
 the price for this education and they will be none the wiser. What does
 it profit a man to gain two byte times of delay and lose peace of mind?
 52. Note again that we must be concerned about interactive delay to be
 making this argument: Bulk data transfer performance will be dominated
 by the time to send the data and the difference between three and four
 byte headers on a datagram containing tens or hundreds of data bytes is,
 practically, no difference.

 Jacobson [Page 45]

 RFC 1144 Compressing TCP/IP Headers February 1990

 possible so we used the scheme described in footnote 15: If the first
 bit of the frame was one, it meant ‘same compressed header as last
 time’. Otherwise the next two bits gave one of the types described in
 sec. 3.2. Since the link had excellent forward error correction and
 traffic made only a single hop, the TCP checksum was compressed out
 (blush!) of the ‘same header’ packet types/53/ so the total header size
 for these packets was one bit. Over several months of operation, more
 than 99% of the 40 byte TCP/IP headers were compressed down to one
 bit./54/

 D Security Considerations

 Security considerations are not addressed in this memo.

 E Author’s address

 Address: Van Jacobson
 Real Time Systems Group
 Mail Stop 46A
 Lawrence Berkeley Laboratory
 Berkeley, CA 94720

 Phone: Use email (author ignores his phone)

 EMail: van@helios.ee.lbl.gov

 53. The checksum was re-generated in the decompressor and, of course,
 the ‘toss’ logic was made considerably more aggressive to prevent error
 propagation.
 54. We have heard the suggestion that ‘real-time’ needs require
 abandoning TCP/IP in favor of a ‘light-weight’ protocol with smaller
 headers. It is difficult to envision a protocol that averages less than
 one header bit per packet.

 Jacobson [Page 46]

