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Chapter 1

Introduction

Welcome to the MAVERIK Programmer’s Guide (MPG), which describes version 6.2 of GNU
MAVERIK — the MAnchester Virtual EnviRonment Interface Kernel. In this manual we’ll discuss
the ideas behind MAVERIK, its architecture, the facilities it provides to application programmers, and
also why we think it’s novel and interesting. For complete documentation of the functions and types
that make up the MAVERIK API, please refer the MAVERIK Functional Specification (MFS) [3]
which is included in the MAVERIK distribution as postscript, pdf, HTML, and as on-line nan pages.
Generally, when a function is first mentioned in this manual, we cross-reference its main entry in the
MFS.

Please also refer to the MAVERIK Frequently Asked Questions (FAQ) file, in the top-level directory
of the MAVERIK distribution. For your convenience the FAQ is also listed in Appendix E (page 175),
but the on-line version (http://ai g. cs. man. ac. uk/ maveri k/ f ag. php) is likely to be more up-to-
date.

1.1 Whatis MAVERIK?

In its simplest form, MAVERIK is a C toolkit for managing display and interaction in stand-alone (that
is, non-networked) single-user Virtual Environment applications. A complementary system under
development, Deva [18, 21, 22, 8], provides a networked multi-user, multi-environment layer on top
of MAVERIK, with the ability to efficiently specify behaviour, laws etc. As of release 4.3, MAVERIK
is an official component of the Free Software Foundation’s GNU Project located in Boston, USA
(http://ww. gnu. or g). However, as the copyright holders of the original MAVERIK source we are
able to distribute non-GPL’d versions of (our version of) MAVERIK under a commercial license. See
http://aig.cs.man. ac. uk/ maverik/ non-gpl . php for more details.

There are numerous other “VR toolkits” available, ranging from very low-level libraries of functions
for drawing three-dimensional graphics and interacting with peripherals, to fully-blown “systems”
that describe virtual environments in much higher level terms. MAVERIK lies somewhere in between
these extremes. It provides an application with the tools needed to create, manage, view, interact with,

3



4 CHAPTER 1. INTRODUCTION

and navigate around graphically complex Virtual Environments while making the minimum number
of assumptions about the nature of the application.

MAVERIK does not dictate the use of any fixed object/scene representations or viewing/interaction
techniques. Rather, it has the ability, where needed, to directly link into and exploit an application’s
own data structures and algorithms. This novel aspect of MAVERIK allows it to easily take advan-
tage of representations, optimisations, and techniques that are highly application specific giving the
resulting virtual environment a behaviour which is customized to, and consistent with, the nature of
the application.

MAVERIK’s flexible design means that applications with widely differing requirements can be sup-
ported.

MAVERIK has two components:

e a micro-kernel, which provides the framework within which applications are built;

e a collection of supporting modules, which provide optimised display management, culling,
spatial management, interaction and navigation techniques, control of input and output devices
etc. These modules are distributed as source code and act as a basis for customization.

It is important to appreciate that MAVERIK is not an “end-user application”: there are no graphical
user interfaces or “world editors” — it is strictly a programming tool.

A more detailed description of MAVERIK’s architecture and design philosophy is given in the next
chapter.

1.2 What platforms does MAVERIK support?

MAVERIK is available as source code and should compile under Windows, MacOS and on UNIX
systems — essentially any system that has OpenGL, Mesa (version 3.1 or above), IrisGL or DirectX
(version 7). However, while it is possible to use any of these libraries, OpenGL/Mesa is currently the
best supported library for MAVERIK to use.

MAVERIK is known to run on the following operating systems:

SGI Irix 5.3, 6.3 and 6.5;

RedHat 5.2 and 6.x;

FreeBSD 3.2;

SuSE 7.1;

SunOS 5.7;
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o Windows 98, 2k and NT;

e MacOS;

This list is not intended to be exhaustive but simply reflects operating systems that we, or others, have
access to and tried MAVERIK with. Ports to other UNIX platforms should be fairly trivial and we
believe the code to work on Window 95.

Since MAVERIK uses well supported graphics libraries to perform rendering (OpenGL, IrisGL or
DirectX) it can take advantage of the hardware acceleration available on certain graphics cards. For
example, as well as our SGI’s, we use MAVERIK on PCs, running GNU/Linux which are equipped
with GeForce3 graphics cards (we also use a machine fitted with two Voodoo2 cards in order to
produce stereo output).

1.3 What peripherals does MAVERIK support?

A standard compilation of MAVERIK provides supports for a desktop mouse, keyboard and screen.
This makes it easy to try out the examples and demonstrations.

The configuration of 3D peripherals used in VR labs tends to be site specific. Code is included in
the distribution to support Polhemus FASTRAK and ISOTRAK 11 six degree of freedom trackers (op-
tionally coupled to Division 3D mice); Ascension Flock of birds (ERC only); Spacetec SpaceBalls
and SpaceOrb360s; Magellan Space Mouse; InterSense InterTrax 30 gyroscopic trackers; 5DT data
gloves; and a serial Logitech Marble Mouse. With modification other similar specification 6 DOF
input devices/tracking technology can be supported. Code to support IBM’s ViaVoice speech recog-
nition engine is also provided. This code is not compiled by default since it is not relevant to everyone
and requires some manual configuration. See the README in the src/ extras sub-directory of the
MAVERIK distribution for more information.

We have also supported more peculiar peripherals in our own lab: Microsoft SideWinder Force-
Feedback joystick and our homebuilt MIDI server. These are relatively uncommon devices and so are
not included in a “standard” MAVERIK release. If you’re interested in this code, please contact us.

1.4 What has MAVERIK been used for so far?

The development of MAVERIK began in 1997, since when it has been used for many different projects
and applications, including:

e research into the improvement of interfaces to complex engineering tasks, such as the design
and operation of off-shore drilling platforms [13, 12, 24, 4, 10];

o large-scale electronic landscapes for way-finding and public information access [19, 14, 23, 20];
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e stereoscopic modelling of scenes of crime [9, 15];

e abstract data visualisation [17, 16];

e visualisation of physically based simulations [7, 5, 6];

e electronic artworks [2];

e tools for interactively creating and editing virtual environments;
e modelling nanotechnology;

o architectural modelling.

You can find details of these and other projects at the Advanced Interfaces Group’s MAVERIK appli-
cations Web page — http: // ai g. cs. man. ac. uk/ gal | ery/ i ndex. php.

1.5 MAVERIK levels

The MAVERIK API comprises over 550 functions, only a small subset of which will commonly be
used by programmers wishing to use MAVERIK “out of the box”. Similarly, many functions will be
of interest only to those users wishing to understand the internal workings of MAVERIK, and possibly
wishing to tailor it to their own requirements.

With these various requirements in mind, we have divided the MAVERIK functionality into three
“levels”, which we hope will help users to find their way around. This three-level structure is reflected
both in this manual, and in the MAVERIK Functional Specification.

e Level 1 functions are those which first-time users of MAVERIK will normally use. These func-
tions make use of the many defaults built into MAVERIK, and should enable users to create
interesting MAVERIK applications quickly.

e Level 2 functions are those which allow more advanced use of MAVERIK. Examples might
include defining new classes of object, or defining new methods of navigating around the virtual
environment.

e Level 3 functions are intended for “Research and Development” using MAVERIK. They are
low-level functions which provide interfaces to the MAVERIK kernel and associated modules.
For example, Level 3 functions would be required for extending MAVERIK to provide new
level-of-detail processing algorithms, new object culling algorithms, or to provide support for
new kinds of input devices.

1.6 Assumed readers’ background

Because MAVERIK is a research and development system, we assume that the reader is already famil-
iar with the basic concepts of computer graphics and virtual environments. In particular, we assume
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that the reader is comfortable with the ideas of modelling coordinates and world coordinates; trans-
formations; rendering in the OpenGL style; callback functions; and the object-oriented programming
ideas of classes and methods.

1.7 Contact

Comments, questions and feedback are actively encouraged and should be addressed to us personally
at maveri k@i g. cs. man. ac. uk, or to the MAVERIK user’s mailing list (details of which can be
found at http://ai g.cs. man. ac. uk/ contact . php). Bugs should be reported to the mailing list,
or to bug- maveri k@i g. cs. man. ac. uk, but only after you have consulted the FAQand list of known
bugs.

1.8 Authors and contributors

The following people are responsible for the design, development and implementation of MAVERIK
(in alphabetical order): Jon Cook, Tim Davis, Simon Gibson, Toby Howard, Roger Hubbold, Martin
Keates, Alan Murta, Steve Pettifer, Adrian West. We are also indebted to the many valuable contribu-
tions of the following research students: Mat Brooks, Mashhuda Glencross, James Marsh, Gary Ng,
Dan Oram, James Pearce, James Sinnott and Dongbo Xiao.

We would also like to thank the following people for contributing to MAVERIK: Robert Belleman (So-
laris support), Shamus Smith (ISOTRAK Il support), Joerg Anders (Windows support), Alex (MacOS
support), Joe Topjian (FreeBSD support), Jake Burkholder (FreeBSD support), Rob G (FreeBSD sup-
port); Daniel Amos (Ascension Flock of Birds support); Alessandro De Luca (SpaceOrb360 and 5DT
data glove support); and to everyone who mailed us with bug reports and fixes.

1.9 Acknowledgements

It’s a pleasure to have the opportunity to acknowledge the organisations and individuals who have
made the development of MAVERIK possible.

We thank the UK Engineering and Physical Sciences Research Council (EPSRC) for funding the
VRLSA (GR/K99701) and REVEAL (GR/M14531) projects; the ESPRIT programme for funding eS-
CAPE (ESPRIT 25377); our academic research partners at the Universities of Manchester, Lancaster
and Nottingham, the Swedish Institute of Computer Science, and ZKM in Karlsruhe; our industrial
partners CADCentre Ltd, Sharp Laboratories of Europe Ltd, Brown & Root, Greater Manchester
Police and Harlequin Ltd.
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Chapter 2

MAVERIK’s architecture and design

This chapter briefly describes the architecture and design principles behind MAVERIK. For a more
detailed description please see [11].

MAVERIK was designed to be a Virtual Reality system which addresses two key concerns: easy
customisation to meet the demands of different applications, and efficient operation so that very
large environments can be handled. Our approach adopts a “micro-kernel” design which minimises
assumptions about how environments are represented and stored by the system.

MAVERIK is one of two components in a complete VR “operating system” under development within
the Advanced Interfaces Group. We refer to MAVERIK as a micro-kernel because it provides a core set
of functions for implementing VR interfaces on behalf of a single user. The second component, called
Deva, provides a higher-level operating environment supporting multiple users, distributed shared
environments, and multiple persistent concurrent environments. We do not discuss Deva further in
this manual; for details please see [18, 8].

This chapter presents a description of the MAVERIK micro-kernel, its features and architecture, and
how it compares to other VR software systems.

2.1 Virtual environment representations

One defining characteristic of a VR system is the way in which representations of virtual environments
are stored and manipulated internally. In this section we contrast two common approaches: fixed
representations and immediate-mode rendering.

2.1.1 Fixed representations

Most VR systems use a fixed representation for the virtual environment. This is shown in the figure
below:
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Application VR system

Dataimport

P VR system’s
Angtt;atlon representation of
data

Here, an application’s data is imported into a separate VR system, which stores it internally in some
fixed format optimised for its own use. Often this will be a polygonal representation of the geometry
of the model in a format dictated by the underlying graphics system.

This approach works well if the required VE has limited possibilities for interaction, such as a simple
walk-through, or interaction with only a small number of objects. The advantage of the approach
is that a large number of “standard” capabilities suited to the chosen representation — for example,
culling and interaction mechanisms — can be provided as part of the VR system’s intrinsic design and
implementation.

However, as the complexity of an environment increases, and the requirement arises to associate ap-
propriate behaviours and affordances with objects, the “fixed representation” approach become prob-
lematic. The data required to achieve such behaviour will always be application specific — since only
the application can “know” what an object actually is, and what it means in the VE. Finding sensible
mappings between a semantically rich application database and the restricted graphics-oriented data
structure of the VR system is usually difficult and often unsatisfactory. Furthermore, it is often very
difficult to exploit this information to affect the behaviour of the core VR system’s functionality — for
example, its culling, level-of-detail and navigation routines — since the user has little or no access to
these.

Choosing a common representation, suitable for widely differing applications, is a difficult task, in-
evitably involving a trade-off between conflicting interests. For example, the needs of an application
involved in design work for the motor industry are clearly quite different from those involved in ab-
stract data visualization. A consequence of application diversity is that with a fixed representation, it
is difficult to create a truly general-purpose VR system which can exploit application semantics.

The “fixed representation” scheme has another drawback: it requires that the two separate represen-
tations of the same underlying data must be maintained, one for the application and one for the VR
system. It is a non-trivial programming task to keep separate representations synchronized.

2.1.2 Immediate-mode rendering

An alternative to storing graphical data in a separate fixed data structure as described above is to use
immediate-mode rendering. Here, pictures are generated algorithmically, directly from an applica-
tion’s data, by writing a program in a language such as C. Calls to functions in a graphics library,
such as OpenGL, embedded within the application, send data directly to the graphics hardware for
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immediate rendering.

The big advantage of this approach is its ability to directly use arbitrary application data structures
and also to exploit the application’s algorithms to give the VE meaningful behaviour. The disadvan-
tage is that since no standard representation is used, the graphics library cannot provide higher level
functionality, such as culling and navigation.

2.2 The MAVERIK system

Like OpenGL, MAVERIK can be thought of as a graphics library which links into an application and
directly uses its data structures and algorithms.

The crucial difference is that it also defines a standardized framework in which an application provides
MAVERIK with the means to access its objects. Through the use of this framework, MAVERIK can
provide high level functionality without dictating the use of any specific object representation.

MAVERIK has an object-oriented structure. It defines a set of classes for different kinds of object, and
mechanisms for defining new classes. Customisation for different applications is achieved by defining
methods associated with each class.

MAVERIK is implemented in standard C, so that it can be ported easily to different platforms and
can be used by anyone with basic C programming skills. Methods are implemented using callback
functions, with data passed via generic “typeless” pointer parameters. Note, however, that class
hierarchies and inheritance are not supported.

2.2.1 Object definition

An “object” is simply a convenient way of naming something which an application requires MAVERIK
to treat as an entity. No assumptions are made about how an object is represented by the application.
For example, an object might be a single polygon, a group of polygons defining some more complex
shape, such as a desk or chair, or some group of more complex primitive shapes which are specific to
that one application — such as a ladder, or a valve.

The way to define different kinds of objects is to create a class for each one. This is done by calling a
function, which returns a unique identifier for the new class. Different classes each have a (possibly
unique) set of methods, implemented as C functions accessed as callbacks. Methods govern operations
such as displaying primitives, computing their bounding boxes, or finding objects which are spatially
closest to a given point. MAVERIK arranges that these methods are called to render frames. Methods
which are specific to a particular application can also be defined, such as computing the mass of an
object, or finding its centre of mass. Generally speaking, the minimum set of methods necessary
to create a simple interactive VE comprises those for displaying objects, for computing a bounding
volume, and for selecting/manipulating them (usually by ‘grasping’ or pointing at them in some way).

To avoid the tedium of having to write callback functions every time a new application is implemented,
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MAVERIK provides default methods for a few common primitives such as polygons, polygon meshes,
spheres, cylinders, cones, tori, boxes, and sub-parts of these (such as an angular section of a cylinder
or torus). These default methods are distributed as source code, providing a set of examples and
facilitating customisation.

As well as defining classes and associated methods, individual objects to be managed by MAVERIK
must be registered. This is performed by a function which takes as input an object’s class and a
pointer to the data defining that object. This function binds these two elements into a single MAVERIK
object, whose identifier is returned for use in subsequent references. In this way, objects are stored so
that MAVERIK can find the class of any registered object — and hence any associated methods — and
can also pass to the callback functions the generic pointer to the application data. Callback functions
perform a cast into a pointer of the correct type for the data. The figure below illustrates the MAVERIK
framework for objects, classes and methods:

@

APPLICATION <:>\
OBJECT
DATA STRUCTURES
O\
<:>
DATA DATA DATA DATA
[ Mmavosn| [ mavosz| [ mav 0B | [ MAV OBH
CLASS CLASS CLASS CLASS
v\ OBJECT CLASS1
DRAW
APPLICATION K BOUNDING BOX
OBJECT — |
METHODS SELECT
APP SPEC
OBJECT CLASS2
\ 4 o
BOUNDING BOX
v APP SPEC

The application’s data structures are shown (as hexagons) to the left of the vertical line. The appli-
cation’s methods, which act upon the objects, are drawn as triangles. The shading illustrates which
algorithms operate on which data structures (black on black, white on white).

The framework by which MAVERIK can access the application is shown on the right of the vertical
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line. Each MAVERIK class contains a number of callback functions to process each class of object.
The MAVERIK objects are the encapsulation of the appropriate class and the application-specific data
structures which define the object.

Because MAVERIK objects only maintain pointers to — not copies of — the data structure and class,
they do not have to be notified of any changes to them.

Although not shown in the Figure, MAVERIK uses a similar callback mechanism for registering event
handlers and navigation functions.

The standard distribution of MAVERIK contains libraries of default methods for displaying and man-
aging many common types of graphical primitives, and for navigation around the virtual environment.
These can be customised easily by adding extra data and code, or simply replaced by alternative
versions which are intimately bound to the data structures used by the application.

2.2.2 Spatial management structures

Another important feature of a VR system is its support for spatial management — this is central
to many algorithms and techniques, such as culling, object selection, and collision detection, and is
essential for managing large models. A common approach is to use a hierarchy of bounding volumes
for spatial searching, which generally works efficiently because of its logarithmic complexity. How-
ever, as with object storage, it is possible to find optimisations which capitalise on application-specific
features to yield superior performance.

MAVERIK provides a framework which permits customisation of spatial management methods. In a
manner analogous to object definition, MAVERIK uses classes and methods to store and access spatial
data. An application defines a class for each object storage technique, registers the callback func-
tions corresponding to the different methods for each class, and defines generic object management
structures — called spatial management structures (SMSs) — to store and manage MAVERIK objects.

Typical methods associated with SMSs include object insertion, object deletion and cull to a region
of space. However, as with objects, an application can define whatever new classes and associated
methods are most appropriate. An example of application-specific SMS processing might be to en-
force a minimum spatial separation between objects.

As with objects, default methods are supplied which implement a range of useful techniques. One
default class of SMS stores objects as a simple linked list, and processes them (for example, for
display) in the order in which they were inserted, but only if an object’s bounding box lies inside
the current view frustum. Another class of SMS implements a hierarchy of bounding volumes. Any
application-specific object that provides the “calculate bounding box” method can be used with these
spatial management structures.

Although SMSs, as their name implies, are generally used for spatial management, objects can be
stored in a non-spatial manner. For example, a linear list which maintains objects in insertion order
is usually non-spatial. Such a list can be re-ordered to optimise graphics hardware context changes
during display. Alternatively, objects could be sorted on a particular application-specific data field in
order to accelerate processing of other kinds of queries.
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Multiple SMSs

Objects can be inserted in any number of SMS’s and processing can be performed on the SMS most
suited to a particular task. One case where a simple linear list is useful is object manipulation. Sup-
pose that a hierarchy of bounding volumes (HBV) is the default SMS for a large-scale model. Objects
to be manipulated can be temporarily removed from the HBV SMS and inserted into a simple linked
list for the duration of the manipulation. Subsequently, they can be reinserted into the HBV structure.
The advantage of this is that potentially expensive alterations to the HBV structure are not needed
during dynamic changes to the model. Because MAVERIK can manage several SMS structures simul-
taneously, the programming effort required to manage this is small.

A second example of multiple SMSs is to use one for view frustum culling and a second for object
display. The first structure is used to flag visible objects and is organised for efficient spatial searching.
A good choice for this would be an HBV. Objects referenced in the HBV are actually stored in the
second SMS, which is ordered to minimise graphics context switches. This second SMS is then
traversed displaying only the flagged visible objects.

Data consistency is maintained because all SMSs store references to MAVERIK objects, which in turn
contain references to the application-specific objects. MAVERIK maintains, for each object, a list of
the SMSs into which it has been inserted, and automatically removes it from each SMS if the object
is deleted.

2.3 Summary
The design approach we have adopted for MAVERIK has three advantages:

e First, none of the application data is imported into, or replicated within, MAVERIK. This avoids
the problem of synchronising changes to multiple representations.

e Second, the framework encapsulates all the information needed by MAVERIK to access data
and methods stored externally within the application, so that object classes can be reused easily
in other applications.

e Third, the philosophy is simple to understand and use, and straightforward to link to existing
applications. This last point is important in domains such as CAD, where there is a major legacy
problem with large-scale databases and existing code.

It might be argued that other VR systems can be tailored in much the same way. For us, the issue
is the ease with which alternative behaviours can be implemented. The callback mechanism is a fa-
miliar programming technique, popularised by windowing systems such as X Windows, and graphics
systems such as OpenGL. In MAVERIK a simpler parameter-passing mechanism has been adopted
than that in X. Our design provides a clean interface which enables customisation to be configured
dynamically at run-time. Callbacks can be switched (re-registered) to change the dynamic behaviour
of the system.
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For example, suppose that an environment comprises a city populated by buildings which the user is
permitted to enter and move around. The insides of the buildings and the city outside may be opti-
mised to use completely different spatial management methods for culling, navigation and interaction.
Specifically, we use an occlusion culling algorithm for displaying the city, and a cell and portal method
for the interior of the buildings. In MAVERIK, we can treat the objects representing the exterior of
the buildings as belonging to a different class from those on the insides, and we register appropriate
methods for each. However, the method employed by the user for moving around may need to be
changed dynamically at run-time. Thus, the methods for a user walking around the streets or inside a
building will be quite different from one driving a virtual car — the constraints and affordances in each
case will be quite different. The navigation methods can be re-registered as the user enters or leaves
buildings, or climbs into the car.

The remainder of this manual describes MAVERIK from a programmer’s point of view. In the next
chapter we present an introduction to programming with MAVERIK, using a series of worked example
programs, all of which are available in the MAVERIK distribution.
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Chapter 3

Introduction to MAVERIK programming

In this chapter we introduce some of the fundamental MAVERIK concepts in enough detail to allow
you to write simple applications.

We’ll present and work through a set of example programs, each of which builds on the previous
example, as follows:

Example 1: a minimal MAVERIK application;

Example 2: defining and displaying an object;

Example 3: surface parameters and navigation around the virtual environment;

Example 4: a more complex environment with multiple objects.

The source code for the example programs in this manual, along with the Makefi | e to build them,
can be found in the exanpl es/ MPGdirectory of the MAVERIK distribution. If you installed MAVERIK
yourself, you’ll know where this is. If not, ask your friendly system administrator.

We suggest you take copies of the examples, and the Makef i | e, to familiarise yourself with compiling
and linking with MAVERIK. See Appendix A (page 127) for full details of how to compile and execute
these examples.

3.1 The structure of a MAVERIK application

Broadly speaking, a MAVERIK application has a simple logical structure, comprising the following
five sections:

e MAVERIK initialisation;

19
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Define the objects which comprise the virtual environment;

Define the application’s “behaviour” —how objects are managed, responds to interactions, defin-
ing navigation etc;

Enter the MAVERIK rendering and interaction loop; once entered, this loop never quits, until
the application does;

Within each cycle of the loop, react to interaction events, and draw a frame.

3.2 Example 1: A minimal MAVERIK application

Our first example program is about as minimal as it’s possible to get, but we hope it will serve to
illustrate the logical structure outlined above. It will also ensure that you have correctly compiled the
example, have a working version of the MAVERIK library, and that any paths are correctly set.

Try compiling and running egl. ¢c. You should see a window appear with the MAVERIK welcome
message in it. This message consists of a spiraling MAVERIK logo with various copyright, version
and contact information displayed. By default this message appears at the start of every MAVERIK
application.

When the message clears you should see an empty blue window. The window will sit there forever,
or until you move the mouse focus into the window, and type Shift-Esc on the keyboard. This key
sequence is recognised by all MAVERIK applications and causes them to quit.

Here’s the source code for egl. c:

I* egl.c */
#i ncl ude "maverik. h"

int main(int argc, char *argv[])

{
[* Initialise the Maverik system */
mav_initialise(&rge, argv);

/* Rendering |oop */
while (1) {

[* Check for and act on any events */
mav_event sCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Request end of the frane */
mav_franeEnd();



3.2. EXAMPLE 1: A MINIMAL MAVERIK APPLICATION 21

The program begins with an include file. maveri k. h is the standard MAVERIK include which must
appear in all MAVERIK programs. It contains all the definitions for MAVERIK constants, typedefs,
and prototypes for the MAVERIK functions.

MAVERIK must be initialised before it can be used. Either one of two functions can be used to
perform this—mav_i ni tial i se (MFS p 140) or mav_i ni tial i seNoArgs (MFS p 140) — and one of
these must be the first MAVERIK function called by the application. The two function are essentially
the same, the difference being the former takes the command line arguments which can be used to
control the initialisation process (see Appendix D (page 171) for a full description of this).

By default initialisation opens a screen window for rendering which will be a quarter of the overall
screen size, and positioned in the lower left quadrant of the screen.

The shape and position of the window created by the initialisation call are examples of a number of
aspects of MAVERIK’s behaviour which are controlled by a set of global variables. These global vari-
ables are named nmav_opt _*, and their default values can be explicitly overwritten by an application.
For example, setting the variables mav _opt x, mav_opt _y, mav_opt -wi dt h and mav _opt _hei ght prior
to the initialisation call allows an application to customise the position (bottom-left) and size of the
window opened by mav_i ni ti al i se. See Appendix C (page 157) for a complete list of the mav opt _*
variables.

Once initialised, MAVERIK is ready for use. In this example, we immediately enter the main rendering
and interaction loop without defining any objects or “behaviour”. The main loop typically has the
following structure:

e The application calls mav_event sCheck (MFS p 130) to check if any interaction events have
occurred (triggered, for example, by the use of a mouse or keyboard). If MAVERIK detects that
any events have occurred, it automatically calls functions to process the events. We’ll describe
how this works in Chapter 4 (page 35). Calling mav_event sCheck also triggers navigation, as
we’ll see in Example 3.

e Next, the application calls mav_f rameBegi n (MFS p 133) to request MAVERIK to start a new
rendering frame. mav _frameBegi n actually causes quite a few things to happen behind the
scenes, which we’ll discuss later. MAVERIK uses double-buffering by default, so for now, think
of this function as just clearing the back buffer in preparation for rendering a new frame.

e The next step would be to ask MAVERIK to do something useful for us, which would normally
be to request an up-to-date display of all the objects in the virtual environment. We’ll discuss
this in Example 2.

e Finally, we call mav_f rameEnd (MFS p 135) to inform MAVERIK that the frame is now com-
plete, and ready for display. MAVERIK then swaps the buffers and updates the display (assuming
we are using the default double-buffered configuration).

The wallclock time elapsed between the calls to mav _f r aneBegi n and nav _f r anmeEnd gives the
time taken to render a frame. The reciprocal of this value, the frame-rate, is stored in the global
MAVERIK variable mav_f ps, which the application can consult.

For example, you could print it in the shell window using the following code (placed after
mav_f r aneEnd):
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printf ("frame rate: % 2f\n", mav_fps);

N.B. For high frame rates (short elapsed time) this value will inevitably fluctuate from frame to
frame due to variations in system load and the resolution and inaccuracies of the internal clock.
The variable mav _f ps_avg gives the frame rate averaged over the last second and does not suffer
from these problems.

3.3 Example 2: defining and displaying an object

We now extend the first example to define and render an object. In this example, eg2. ¢, we’ve
rearranged the code slightly from Example 1 by introducing some functions. We’ve done this to keep
the code more manageable as we work through the examples.

We’ll present the example as a whole and then describe it:
I* eg2.c */
#include "maverik. h"

/* Define a box */
voi d def Box( MAV_box *b)

{

b->size.x= 1.0; /* Specify its size */

b->si ze.y= 2.0;

b->si ze.z= 3.0;

b->matrix= MAV_ID MATRIX; /* Position and orientation */

b->sp= mav_sp_defaul t; I* Surface paraneters, i.e. colour */
}

/* Render a frame */

voi d dr awFrame( MAV_SMS *sns)

{
[* Check for and act on any events */
mav_event sCheck();

/* Request start of a new frame */
mav_frameBegin();

[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(nmav_win_all, sns);

/* Request end of the frane */
mav_frameEnd();

}

int main(int argc, char *argv[])
{

MAV_box box;

MAV_obj ect *obj ;
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MAV_SMS *snis;

[* Initialise the Maverik system */
mav_initialise(&rge, argv);

/* Define a box object */
def Box( &box) ;

/* Register the box as a Maverik object */
obj = mav_obj ect New( mav_cl ass_hox, &box);

/[* Create a SMS */
sne= mav_SMSQhj Li st New() ;

/* Add object to SMB */
mav_SMSChj ect Add(sns, obj);

/* Rendering loop */
while (1) drawrrame(sms);

Example 2 defines a single object — a box. MAVERIK supports 19 different default primitive object
classes, including box, sphere, cone, cylinder, polygon and text — Appendix B (page 135) gives the
complete list. An application can also define its own new object classes, as described in Chapter 7

(page 69).

This is the MAVERIK data structure to represent a box, MAV_box (MFS p 6):

typedef struct {

MAV vector size; I* size of object */
MAV surfaceParanms *sp; /* surface paraneters */
MAV matrix matrix; [* transformation matrix */
voi d *userdef; [* user-defined data */

} MAV_box;

and comprises of:

e A MAV_vector (MFS p 34), si ze, to define the dimensions of the box about its local coordi-
nate system origin. MAV_vect or ’s, comprising of three floats, X, y and z, are used extensively
throughout MAVERIK to define 3D vectors.

MAVERIK, like OpenGL, is intrinsically unitless, in that it does not dictate the use of any par-
ticular set of units for its local or world coordinate systems. The choice of units is an arbitrary
decision made by the application.

There are, however, occasions when MAVERIK needs to convert from one set of units into
those used by the application. For example, we will see later how the mouse can be used to
navigate around the virtual environment. To achieve this MAVERIK needs to convert mouse
movements, measured in pixels, into eye position movements, measured in the units chosen by
the application. In these cases MAVERIK relies on the application to specify this conversion.
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e A MAV_surfaceParans (MFS p 29), sp, which specifies the “surface parameters”, and deter-
mines how the object is rendered, enabling the application to specify colour, material charac-
teristics, and texture mapping. In this example we use mav _sp _def aul t , the MAVERIK default
value for the surface parameters, which renders the box in a pinky-red colour. We’ll show how
to change the surface parameters in Example 3.

By default, all objects are drawn filled. You can toggle between filled and wire-frame rendering
in a window at any time by pressing Shift-F8. MAVERIK responds to a number of function keys
at run-time, and the complete set is listed in Appendix A.3 (page 128).

e AMV.matrix (MFS p 75), matrix. In MAVERIK, each object is defined in its own private
local coordinate system. This is subsequently mapped into the world coordinate system of the
virtual environment using the 4x4 transformation matrix specified by this field.

In the example we have set this to be the identity matrix (MAV_I D_MATRI X) so that the box is
positioned with its centre at the world coordinate origin and aligned along the major axis.

e Thevoi d *userdef is a pointer to any extra data an application wishes to attach to the object.
We don’t use this in this example.

We define the box as follows:

voi d def Box( MAV_box *h)

{
b->si ze.x= 1.0; I* Specify its size */
b->si ze.y= 2.0;
b->si ze.z= 3.0;
b->matrix= MAV_ID MATRIX; /* Position and orientation */
b->sp= mav_sp_defaul t; [* Surface paraneters, i.e. colour */
}

Having defined the box, we now need to register it as a new MAVERIK object:

obj = mav_obj ect New( mav_cl ass_box, &hox);

The function mav_obj ect New (MFS p 176) takes two arguments: the first is an identifier which in-
dicates the class of the object — in this case, it’s mav_cl ass_box, one of the default object classes
provided by MAVERIK; the second argument is a pointer to the data structure which defines the
object.

mav_obj ect New registers the new object with MAVERIK, and returns a “handle” to the object, which
MAVERIK will subsequently use to refer to the object. Note that whatever the class of an object, its
handle will always be of the generic object handle type ( MAV_obj ect *). And because the handle was
created by using a pointer to, rather than a copy of, the box object, the handle remains independent of
any changes the application makes to the box, such as changing its size.

One of the key aims of MAVERIK is to provide powerful methods for efficiently managing the 3D
space of a virtual environment, and the objects which inhabit that space. To achieve this, MAVERIK
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introduces the concept of a Spatial Management Structure (SMS). An SMS dictates how objects are
stored, the culling strategy, level-of-detail processing, and the order in which objects are displayed.

SMS’s are, however, too complex an issue to deal with in any depth at this point in this tutorial. At
this stage it is sufficient to say that objects must be inserted into an SMS if they are to be displayed.

In the example, we first create a new SMS to manage our virtual environment with mav _SM5Qbj Li st New (MFS
p 206):

MAV_SMS *snis;

sne= mav_SMSQhj Li st New() ;

which creates a new SMS of type “object list” (we’ll explain exactly what this means in a moment).
The call returns a “handle” to the SMS, of type MAV_SM5 (MFS p 103), which is used to refer to it in
future calls.

Next we add the box object into the SMS we’ve just created with mav _SMSChj ect Add (MFS p 204):

mav_SMBChj ect Add(sns, obj);

A similar function, mav_SMShj ect Rmv (MFS p 205), removes an object from an SMS. Within the
main frame loop function dr awFr ame we request display of the SMS in all windows with mav _SMsDi spl ay (MFS
p 203):

mav_SMSDi spl ay(mav_win_all, sns);

Note that we have not specified any viewing parameters — the eyepoint, the view direction vector, and
so on. Unless changed, MAVERIK uses a default set of viewing parameters, with the eyepoint some
distance along the positive world-coordinate Z axis looking down that axis towards the origin, with
the view-up vector parallel to the world coordinates Y axis. Viewing is described in detail in Chapter 5

(page 47).

The *“object list” is the simplest type of SMS and stores objects inserted into it as a simple linked list.
When displayed with mav_SMSDi spl ay, this type of SMS uses the axis-aligned bounding box of each
object to determine if it is visible.

More complex types of SMS are also provided, such as the “hierarchical bounding box” SMS, which
offers a more efficient culling strategy for large models. Users can also make their own SMS’s to suit
the needs of an application, e.g. one based on cells and portals or one optimized for particular shaped,
say long and thin, objects.

Whatever type of SMS is used, the process of creating it always results in the same generic handle:
(MAV_SMS *). Therefore, switching between different SMS’s is simply a case of changing the single
function call which creates the SMS.
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When you run Example 2 you should see, after the welcome message has cleared, a blue screen with
a red rectangle in the middle. Since the box is viewed edge-on it appears as a rectangle. Quit the
program in the same way as for Example 1, by pressing Shift-Esc.

3.4 Example 3: Surface parameters and navigation

Our next example, eg3. ¢, demonstrates two more features of MAVERIK: controlling the way an
object is rendered using its surface parameters, and how to navigate around the virtual environment:

I* eg3.c */

#i ncl ude "maverik. h"
#i ncl ude <stdio. h>
#include <stdlib. h>

/* Define a box */
voi d def Box( MAV_box *b, int col)

{
b->size.x= 1.0; /* Specify its size */
b->si ze.y= 2.0;
b->si ze.z= 3.0;
b->matrix= MAV_ID MATRIX; /* Position and orientation */
[* Define its "surface paraneters", i.e. the colour with which it's rendered */
/* Use the sign of col toindicate a material or texture, and the value */
/* of col gives the material or texture index to use */
if (col>=0)
{
b->sp= mav_surfaceParansNew( MAV_MATERI AL, 0, col, 0); /* Use material index col */
}
el se
{
b->sp= mav_surfaceParansNew MAV_TEXTURE, 0, 0, -col); /* Use texture index col */
}
}

/* Render a frame */
voi d drawFrame( MAV_SMS *sns)

{

[* Check for and act on any events */
mav_event sCheck();

/* Request start of a new frame */
mav_frameBegin();

[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(nmav_win_all, sns);

/* Request end of the frane */
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mav_frameEnd();

}
int main(int argc, char *argv[])
{
MAV_box box;
MAV_obj ect *obj ;
MAV_SMS *snrs;
[* Initialise the Maverik system */
mav_initialise(&rgc, argv);
if (argc !'=2) {
printf("usage: % colour\n", argv[0]);
exit(l);
}
/* Define a box object */
def Box( &ox, atoi(argv[1]));
[* Use default mouse navigation */
mav_navi gati onMouse(nmav_wi n_al |, mav_navi gati onMouseDefaul t);
/* Register the box as a Maverik object */
obj = mav_obj ect New( mav_cl ass_hox, &box);
/* Create a SMS */
sms= mav_SMSQhj Li st New() ;
/* Add object to SMB */
mav_SMBChj ect Add(sns, ohj);
/* Rendering loop */
while (1) drawFrame(sns);
}

In eg3. ¢, we’ve extended the def Box function to take an argument, col , which is used to control the
object’s surface parameters, i.e. the colour with which it is rendered.

Every MAVERIK window has a “palette” associated with it. This contains a colour table, material
table, texture table, font table, and light table, each of which is intialised with a number of default
values when the window is created. An object’s “surface parameters” specify which table entries in
the palette to use when rendering the object.

In Example 2, we used mav_sp_def aul t as the surface parameters; here, we define the surface param-
eters using mav_sur f acePar amsNew (MFS p 210):

MAV_surfaceParans *mav_surfaceParanmsNew (int nmode, int colour,
int material, int texture);



28 CHAPTER 3. INTRODUCTION TO MAVERIK PROGRAMMING

This function creates a new set of surface parameters. Depending on the value of mode, objects may
be rendered with a simple colour, a material type, a texture, or a combination of these — see Section 6.1
(page 55) for details. The remaining values, col our, mat eri al andt ext ur e, specify which entry or
entries in the palette to use. Rarely does more than one of these three values need to be given, and
values which are not applicable should be set to zero.

In the example, if col is positive, it’s used to select a material from the window’s material table; if it’s
negative, it selects a texture:

if (col>=0)
{
b->sp= mav_surfaceParamsNew( MAV_MATERI AL, 0, col, 0); /* Use material index col */
}
el se
{

b->sp= mav_surfaceParamsNew( MAV_TEXTURE, 0, 0, -col); /* Use texture index col */
}

The other MAVERIK feature introduced in this example is “navigation”. Navigation is an example
of the “application behaviour” aspect of a MAVERIK program, and is enabled by calling the function
mav_navi gat i onMouse (MFS p 168):

mav_navi gati onMouse(nmav_wi n_al |, mav_navi gati onMouseDefaul t);

This activates the default navigation method in all active windows, controlled by the desktop mouse,
as follows:

o With the left mouse button pressed, mouse movement translates the eyepoint forwards/backwards,
and yaws (rotates about the Y axis) the view.

e With the right mouse button pressed, mouse movement translates the eyepoint up/down and
left/right;

In case you’re wondering how this works, navigation is actually triggered by the mav_event sCheck
function. In Chapter 5 (page 47) we discuss navigation in detail, listing the various navigation methods
avaliable to the application. You can also create your own customised kinds of navigation which is
described in Chapter 8 (page 93).

To execute this example you have to provide an integer on the command line to determine which
material or texture to use, e.g “eg3 5” uses default material 5 (a white-ish colour), “eg3 -1” uses
default texture 1 (a marble effect). There are 20 default materials (numbered 0-19) with number
1 being used to make the pinky-red default set of surface parameters. There are 2 default textures
(numbers 1 and 2). Section 6.1 (page 55) describes how to specify your own colours, materials and
textures.
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The initial view should be the same as the last example (except it will be a different coloured rectan-
gle), but now you will be able to move around the box using the mouse commands described above.
Quit the example in the usual manner.

3.5 Example 4: a more complex environment

Our next example, ex4. c, draws together features we have seen in the previous examples, to create
a more complex virtual environment, comprising a number of different classes of object in random
positions and orientations, with random surface parameters, and a textured ground plane.

This example demonstrates:

defining other classes of object: a rectangle, cylinder and composite object;

using the mat ri x field of an object to set its position and orientation;

defining a texture map from a file;

populating the virtual environment with multiple objects.

I* egd.c */

#i ncl ude "maverik. h"
#i ncl ude <stdio. h>
#include <stdlib. h>

MAV_sur f aceParanms *sp[4];

/* Define a rectangle */
voi d def Rect (MAV_ rectangl e *r)

{
r->w dth= 500.0; /* Size */
r->hei ght = 500. 0;
r->xtile= 3; /* Texture repeat tiling */
r->ytile= 3;
/* Orientation (RPY 0,-90,0) and position (XYZ 0,-2,0) */
r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);
[* Use decal texture with index 5 */
r->sp= mav_surfaceParansNew( MAV_TEXTURE, 0, 0, 5);
}

/* Define a box */
voi d def Box( MAV_box *b)
{
/* Random box size, position/orientation and set of surface parans */
b->si ze. x= mav_randon() *30;
b->si ze. y= mav_randon() *30;
b->si ze. z= mav_randon() *30;
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b->matri x= mav_matrixSet (0, 0, mav_randon() * 360,
- 200+mav_r andom() *400, 0, - 200+mav_r andon( ) *400) ;
b->sp= sp[(int) (mav_random()*4)];
}

/* Define a cylinder */
voi d def Cyl (MAV_cyl i nder *c)

{
/* Random cylinder size, position/orientation and set of surface parans */
c->radi us= mav_randon() * 20;
c->hei ght = mav_randon() * 20;
c->endcap= 1,
c->nverts= 10;
c->matrix= mav_matrixSet (0, mav_randon() *360, 0,
- 200+mav_r andom() *400, 0, - 200+mav_r andon( ) *400) ;
c->sp= sp[(int) (mav_random()*4)];
}

/* Define a conposite object */
voi d def Conp( MAV_conposite *c)
{
/* Read AC3D object fromfile */
if (!'mav_conpositeReadAC3D(" mavl ogo.ac", ¢, MAV_ID MATRI X)) {
printf("failed to read mavl ogo.ac\n");
exit(l);
}

/* Fixed position and orientation */
c->matrix= mav_matrixSet(0,0,0, 0,0.2,-15);
}

/* Render a frame */
voi d drawFrame( MAV_SMS *sns)

{
[* Check for and act on any events */
mav_event sCheck();
/* Request start of a new frame */
mav_frameBegin();
[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(mav_win_all, sns);
/* Request end of the frane */
mav_f rameEnd();

}

int main(int argc, char *argv[])
{

MAV_rectangl e gp;

MAV_SMB *obj s;

MAV_box box[ 10];

MAV_cylinder cyl[10];
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MAV_conposite conp;
int i

[* Initialise the Maverik system */
mav_initialise(&rgc, argv);

/* Define a texture map fromfile, texture index 5 */
mav_pal etteTextureSet (mav_pal ette_default, 5, "marble floor.ppnt);

/* Define a set of "surface paraneters", i.e. the colour with */
/* which an object is rendered */

sp[ 0] = mav_surfacePar anmsNew( MAV_MATERI AL, 0, 1, 0); /* Material index 1 */
sp[ 1] = mav_surfacePar ansNew( MAV_MATERI AL, 0, 2, 0); /* Material index 2 */
sp[ 2] = mav_surfacePar ansNew( MAV_MATERI AL, 0, 3, 0); /* Material index 3 */

[* Texture 1 nodulated with material 2 */
sp[ 3] = mav_surfaceParansNew MAV_LI T_TEXTURE, 0, 2, 1);

/* Define a rectangle to act as the ground plane */
def Rect (&gp) ;

/* Create an SM5 for the objects and add the ground plane to it */
obj s= mav_SMBbj Li st New() ;
mav_SMSChj ect Add( obj s, mav_obj ect New(mav_cl ass_rectangle, &gp));

/* Create 10 boxes and cylinders */
for (i=0; i<10; i++) {

/* Define a box and a cylinder */
def Box( &ox[i]);
def Oyl (&eyl [i]);

/* Add the box and cylinder to the objs SM5 */
mav_SMSChj ect Add( obj s, mav_obj ect New( mav_cl ass_box, &box[i]));

}

mav_SMSChj ect Add( obj s, mav_obj ect New( mav_cl ass_cylinder, &cyl[i]));

/* Define a conposite object and add it to objs SM5 */
def Conp( &conp) ;
mav_SMSChj ect Add( obj s, mav_obj ect New( mav_cl ass_conposite, &conp));

/* Use default nouse navigation */
mav_navi gati onMouse(nmav_win_all, nav_navi gationMuseDefaul t);

/* Rendering |oop */
while (1) drawFrame(objs);
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The example begins by defining from file mar bl e_f | oor . ppmentry number 5 in the default palette’s
texture table. All windows are associated with the default palette (mav_pal ette_defaul t) unless
explicitly re-assigned. MAVERIK can read textures defined in virtually any image file format since it
uses ImageMagick’s convert program to convert the file into PPM format which is trivial to parse.

N.B. if ImageMagick is not installed then you will be limited to PPM image files.
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It then initialises an array of surface parameters. Array indices 0-2 are set to be materials from the
default set, while index 3 is default texture 1 modulated with default material 2 (effectively giving a
lit texture).

Next, new objects are defined by the functions def Rect, def Box, def Cyl and def Conp. def Rect
defines a textured rectangle:

->wi dth= 500.0; /* Size */

- >hei ght = 500. 0;

->xtile= 3; /* Texture repeat tiling */

r->ytile= 3;

[* Orientation (RPY 0,-90,0) and position (XYZ 0,-2,0) */
r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);

/* Use decal texture with index 5 */

r->sp= mav_surfaceParansNew( MAV_TEXTURE, 0, 0, 5);

e —

The rectangle object, fully described in Section B.14 (page 150), is centered at its local coordinate
frame origin and defined by a wi dt h along its local coordinate frame X axis and a hei ght along its Y
axis.

The rectangle is defined in the local coordinate frame XY plane with its normal along the positive Z
axis, but we want to use it in this example to represent the ground plane which is the world coordinate
frame XZ plane with a normal along the Y axis. So, the transformation between local and world
coordinate frames needs to rotate the rectangle by 270 (or -90) degrees about its local coordinate
frame X axis. Such a transformation would place the rectangle on the world coordinate frame XZ
plane atY = 0. (MAVERIK uses a right handed coordinate system and so a rotation of just 90 degrees
would place the rectangle in the XZ plane, but with its normal aligned with the negative Y axis. We
need to rotate it a further 180 degrees in order for its normal to be correctly oriented.)

The default eyepoint is also at Y = 0 and therefore the rectangle would not be visible since we would
be viewing it exactly along the plane. To overcome this, the rectangle needs to be offset by some
amount along the negative Y axis so it appears beneath us. The same effect could more correctly be
achieved by moving the eyepoint upwards, and we show how to perform this is Chapter 5 (page 47).

This transformation matrix to achive this is defined using the function mav _mat ri xSet (MFS p 152):

MAV matrix mav_matrixSet(float roll, float pitch, float yaw,
float x, float y, float z);

where rol |, pi t ch and yaw, are defined to be rotation, in degrees, about the Z, X and Y axes respec-
tively. Rotations are applied in the order roll, yaw, then pitch.

So the rectangle’s matrix is set as follows:

r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);
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This places it the world coordinate frame XZ plane atY = —2.

The box and cylinder objects are given a random size, position, orientation and surface parameters, as
def Cyl illustrates:

->radi us= mav_randon() *20;
->hei ght = mav_randon() * 20;
->endcap= 1;
->nverts= 10;
->matrix= mav_matrixSet (0, mav_random()*360, O,
-200+mav_random() *400, 0, -200+nav_randon()*400);
c->sp= sp[(int) (mav_random()*4)];

[ I o I o B o B )

where mav_r andom(MFS p 200) returns a pseudo-random number in the range zero to one.

3.5.1 Level of detail

The cylinder in this example is rendered with nver t s facets. If you set the option variable mav _opt cur veLCD
to MAV_TRUE, then MAVERIK will ignore the nvert s value and render the cylinder with as many, or as

few, facets as it deems necessary to accurately represent the curved surface. However, it will never use

more than mav_opt _vert siax or less than mav_opt _vert sM n facets. Furthermore, the rate at which

the number of vertices used is reduced as the object recedes from the eye point, is controlled by the
arbitrary constant mav_opt _cur veFact or. An undocumented example in the exanpl es/ nmi sc/ LCD
sub-directory of the MAVERIK distribution allows you to dynamically change these variables and
observe the effects.

Note however that even if you are using automatic level of detail, nvert s must be set to a valid value
(i.e. greater than 2) since it is used for other purpose besides rendering, such as in calculating the
cylinder’s bounding box.

3.5.2 Reading objects from file

As well as its simple primitive object classes, MAVERIK also supports a “composite object”, which
comprises a set of other objects linked together. Although an application can define composite objects
“pby hand”, MAVERIK provides a convenient way to create them automatically, by reading object
definitions from AC3D [1], VRML97 or Lightwave format files.

AC3D is an interactive geometry modeler which, as well as creating and editing objects, can im-
port objects defined in a number of common 3D file formats (including 3DS, DXF, Lightwave and
VRML1). def Conp defines a “composite object”, read in from the AC3D file mavl ogo. ac (it’s a 3D
MAVERIK logo). See Section B.18 (page 154) for full details of composite objects.

We’ll return to this example in Chapter 4.
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3.6 Summary

We hope these four simple examples have given you an insight into how to create simple applications
with MAVERIK. In subsequent chapters we’ll cover MAVERIK’s functionality in more detail, and
present more example programs to illustrate more advanced techniques.



Chapter 4

Keyboard and mouse events

In MAVERIK, an application defines the actions to be taken when mouse and keyboard events occur
using a generalised callback mechanism. In this chapter we describe how MAVERIK handles input
events, how these relate to objects, and how to write and register callback functions.

4.1 Example 5: basic event handling

This example, eg5. ¢, expands Example 2 from Section 3.3 (page 22) so that when the middle mouse
button is pressed while the cursor is pointing at the box, it increases in size, and when a key is pressed
a message is printed to the shell window. Note that the navigation has also been included in this
example.

If you don’t have a middle mouse button, and can’t emulate one on your operating system, then it is
trivial to modify this example to work with either the left or right buttons. However, note that the left
and right buttons will also trigger navigation.

/* eg5.c */
#i ncl ude "maverik. h"
#i ncl ude <stdio. h>

[* Define a box */
voi d def Box( MAV_box *b)

{

b->size.x= 1.0; /* Specify its size */

b->si ze.y= 2.0;

b->size.z= 3.0;

b->matrix= MAV_ID MATRIX; /* Position and orientation */

b->sp= mav_sp_defaul t; [* Surface paraneters, i.e. colour */
}

/* Render a frame */
voi d drawFrame( MAV_SMS *sns)

35
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{
[* Check for and act on any events */
mav_event sCheck();
/* Request start of a new frame */
mav_frameBegin();
[* Display the SM5 in all w ndows */
mav_SMSDi spl ay(mav_win_all, sns);
/* Request end of the frane */
mav_f rameEnd();

}

/* Mouse event callback */
int mouseEvent (MAV_obj ect *o, MAV_npbuseEvent *ne)

{
MAV_box *box;

/* Convert from generic Maverik object to the box object */
box= (MAV_box *) mav_obj ect Dat aGet (0);

if (me->movenment==MAV_PRESSED) { /* Only consider button presses */
box->si ze. x+=1.0; /* Make box a bhit bigger */

}

return 1;

}

/* Keyboard event callback */
int keyEvent (MAV_object *o, MAV_keyboardEvent *ke)

{
if (ke->movement==MAV_PRESSED) { /* Only consider button presses */
if (ke->key<255) { /* Only consider printable ASCI| characters */
printf("Pressed % (%)\n", ke->key, ke->key);
}
}
return 1,
}
int main(int argc, char *argv[])
{
MAV_box box;
MAV_obj ect *obj ;
MAV_SMS *snrs;

[* Initialise the Maverik system */
mav_initialise(&rge, argv);

/* Define a box object */
def Box( &ox) ;
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/* Register the box as a Maverik object */
obj = mav_obj ect New( mav_cl ass_box, &box);

/* Create a SMS */
sme= mav_SMSOhj Li st New() ;

/* Add object to SM5 */
mav_SMBChj ect Add(sns, ohj);

/* Use default nouse navigation */
mav_navi gati onMouse(mav_wi n_al |, mav_navi gati onMouseDefaul t);

/* Define nouse cal |l back */
mav_cal | backMouseSet (MAV_M DDLE BUTTON, mav_win_all, nav_class_box, nouseEvent);

[* Define keyboard event callback */
mav_cal | backKeyboar dSet (mav_win_al |, mav_class_world, keyEvent);

/* Rendering |oop */
while (1) drawFrame(sms);

Mouse and keyboard event callbacks are defined with the functions mav _cal | backMouseSet (MFS
p 127) and mav _cal | backKeyboar dSet (MFS p 126) respectively. Mouse event callbacks are defined
for a specific button, while keyboard event callbacks are defined for any key.

In addition, event callbacks are defined on a per-window and per-object-class, rather than per-object,
basis. This means that, for example, all boxes will share the same event callback function. This may
seem unusual at first, but it is a fundamental way in which MAVERIK deals with objects. It would be
trivial to implement a per-object event callback mechanism by having the per-object-class callback
function execute another function which was stored in the object’s data structure and setting this to be
a different function for different objects.

Setting the callback on a per-window basis allows for objects to respond differently to events in dif-
ferent windows (we shall see in Section 6.2.6 (page 64) how to open multiple windows). However,
here we use the “all windows” identifier mav Wi n_al | to set the event callback.

In this example a mouse event callback function (mouseEvent ) will be called for middle mouse button
events which occur while the mouse is pointing at any box.

The keyboard event callback function (keyEvent) is set for the primitive class mav cl ass wor | d.
Callbacks set for this class are activated when an event occurs anywhere in the window. Two similar
classes also exist: mav_cl ass_any and mav_cl ass_m ss. Respectively, these allow callbacks to be
defined for events which occur when the mouse is over any object, regardless of its class, and when
the mouse is over no object.

The callback functions take as their arguments the MAVERIK object which the mouse was over when
the event occurred, and a data structure which details the event. No attempt should be made to in-
terpret the MAVERIK object passed to the callback function set for the classes mav cl ass worl d,
mav_cl ass_any and mav_cl ass_mi ss.
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At this stage we will ignore the significance of the return value of the callback function, and return to
this in Section 4.3 (page 40).

The first action the mouse event callback function needs to perform is to convert the MAVERIK object
which it receives in its 0 argument, into the box object so it can operate on it. The function which
does this, mav _obj ect Dat aGet (MFS p 173), simply returns the object data pointer maintained by the
MAVERIK object. However, this is returned as a generic voi d pointer, rather than a pointer to a box
object, but since this callback will only be activated for MAVERIK objects which are of the box class
(observe how the callback was set), we can safely cast this pointer into a box object pointer.

The keyboard event callback function simply prints a message in the shell window indicating which
key was pressed. This data is the key field of the MAV_keyboar dEvent (MFS p 16) data structure
which details the event. Note that non-ASCII symbols, such as the pound and euro signs, may not
correctly interpreted.

4.2 Example 6: modifying the rendering loop

Now we have introduced some of the subtleties of event callbacks with a simple example, we return to
the “ground plane and objects” of Example 4 (page 29). We now allow the user to increase the radius
of a cylinder and scale of the composite object (the MAVERIK logo) by clicking on these objects with
the middle mouse button. The keyboard event function traps two key presses: ‘q’ which quits the
application and “h” which displays a help message.

The following is excerpted from eg6. ¢, and shows how the event functions are used:

/* eg6.c [excerpt] */
[ * code onmtted */

/* Mouse event for cylinders */
int cyl Event (MAV_obj ect *obj, MAV_npbuseEvent *ev)

{
MAV cylinder *cyl;

[* Convert fromgeneric Maverik object to a cylinder object */
cyl = (MAV_cylinder *) mav_object Dat aCGet (0bj);

if (ev->novenent==MAV_PRESSED) { /* Only consider button presses */
cyl->radi us+=1; /* Increase cylinder radius */

}

return 1;

}

/* Mouse event for conposites */
int conpEvent (MAV_obj ect *obj, MAV_nmpuseEvent *ev)

{
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if (ev->novenent ==MAV_PRESSED) {
MAV_conposite *conp= (MAV_conposite *) mav_obj ect Dat aGet (obj);
/* Scale conmposite by a factor of 1.1 */
comp->natrix= mav_natrixScal eSet (conp->matrix, 1.1);

}

return 1;

}

/* Display a help nessage */
voi d hel pMsg(voi d *ignored)

{
mav_stringDisplay(mav_win_all, "Left nmouse button - navigate forward/ backward and yaw',
MAV_COLOUR BLACK, 0, -0.95, 0.90);
mav_stringDisplay(mav_win_all, "R ght nouse button - navigate up/down and left/right",
MAV_COLOUR BLACK, 0, -0.95, 0.83);
mav_stringDisplay(mav_win_all, "Mddle nouse click on cylinder - increase radius",
MAV_COLOUR BLACK, 0, -0.95, 0.76);
mav_stringDisplay(mv_win_all,
"M ddl e nouse click on conposite (Maverik | o0go) - increase scale",
MAV_COLOUR BLACK, 0, -0.95, 0.69);
mav_stringDisplay(mav_win_all, "h - help", MAV_COLOUR BLACK, 0, -0.95 0.60);
mav_stringDisplay(mav_win_all, "q - quit", MA_COLOUR BLACK, 0, -0.95, 0.53);
}

/* Keyboard event */
int keyEvent (MAV_object *obj, MAV keyboardEvent *ke)

{
switch (ke->key) {
case 'q': [* Qit */
exit(l);
break;
case 'h': [* Help */
i f (ke->movenent ==MAV_PRESSED)
{
/* Begin executing function hel pMsg at the end of each frame */
mav_franeFn3Add( hel pMsg, NULL);
}
el se
{
/* Stop executing function hel pMsg at the end of each frane */
mav_f rameFn3Rmv( hel pMsg, NULL);
}
break;
}
return 1,
}
int main(int arge, char *argv[])
{

[* code omtted */
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/* Define nouse event callbacks */
mav_cal | backMouseSet (MAV_M DDLE BUTTON, mav_win_all, nav_class_cylinder, cylEvent);
mav_cal | backMouseSet (MAV_M DDLE BUTTON, mav_win_all, nav_class_conposite, conpEvent);

[* Define keyboard event callback */
mav_cal | backKeyboar dSet (mav_win_all, mav_class_world, keyEvent);

[* code omtted */

This example shows how we can modify the rendering loop by dynamically adding and removing
application-defined functions which are executed at various stages in the rendering loop.

Rendering a frame can be broken down into 3 phases:

e Phase 1: before the window is cleared and the view for the frame is fixed:;
e Phase 2: the window is now cleared, the view is fixed, but no objects have yet been drawn;

e Phase 3: all objects have now been drawn and the frame is complete, but the buffers have not
yet been swapped.

The functions mav _f rameFn1Add (MFS p 136) and mav _f rameFn1Rmv (MFS p 136) respectively add
and remove functions to be executed at phase 1; there are corresponding functions for the other ren-
dering phases, named mav _f r ameFnNAdd (where Nis 1, 2 or 3). There is no limit on the number of
functions which can be added to each phase. The second argument to mav _f raneFnNAdd is not in-
terpreted by MAVERIK, rather it forms the single parameter to the application defined function thus
allowing data to be passed into the function. This feature is not used in this example.

Example 6 adds the function hel pMsg to be executed at phase 3 when the ‘h’ key is pressed. When
that key is released the function is removed. hel pMsg prints a help message on screen using the
function mav _stringDi spl ay (MFS p 208) which takes as its arguments the window on which it
acts, the string to display, the colour and font to use and where to position the text. This text is not a
3D object in the world, but rather “annotation text” overlayed on the 2D window. The position of the
string is given as an x,y position where (—1,—1) maps to the bottom left of the screen and (1,1) to
the top right.

Note that either of phases 2 or 3 would suffice to display this message, but if phase 1 was used nothing
would have been displayed since the message would have been rendered before the window was
cleared.

4.3 Example 7: advanced event handling

We now extend Example 6 to demonstrate more advanced event handling and the use of so-called
“process-based” callbacks. This term refers to callbacks which perform arbitrary operations on objects
— it does not refer to “processes” in the Unix sense of the word.
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The following code is excerpted from eg?7. c.

I* eg7.c [excerpt] */

[* code omitted */

MAV natrix *obj Mat1l, *obj Mat2;
float objDist;

int fc=0;

/* Function to nmake object junp */
voi d junp(void *ignored)

{
/* Increase Y conponent of matrix by an ammount which ranges
+4 to -4 over 60 interactions */
obj Mat 1- >mat [ MAV_MATRI X_YCOWP] +=cos( MAV_DEG2RAD( f ¢*3. 0)) *4. 0;
/* Stop executing this function after 60 frames */
fc++;
if (fc>60) {
fc=0;
mav_frameFnlRmv(junp, NULL);
}
}

/* Function to drag object with nouse */
voi d pick(void *ignored)
{

MAV_vect or pos;

[* Calculate the position of a point a distance objDist away fromthe eye along */
/* the nornalized vector defined by the eye point and the mouse’s projection */

/* onto the near clip plane (this is mav_mouse dir) */

pos= mav_vect or Add(mav_wi n_current->vp->eye, mav_vectorScal ar(mav_nouse dir, objDist));

[* Set the object’s matrix to this position */
*obj Mat 2= mav_mat ri xXYZSet (*obj Mat 2, pos);
}

/* Keyboard event */
int keyEvent (MAV_object *obj, MAV keyboardEvent *ke)
{

MAV_surfaceParans **spptr;

switch (ke->key) {
case 'q': [* Qit */
exit(1);
br eak;

case 'h': [* Help */
if (ke->nmovenent ==MAV_PRESSED)
{
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/* Begin executing function hel pMsg at the end of each frame */
mav_franeFn3Add( hel pMsg, NULL);
}

el se

{
/* Stop executing function hel pMsg at the end of each frame */
mav_f rameFn3Rmv( hel pMsg, NULL);

}

break;

}

[* Only consider event if the nouse was pointing at an object */
if (ke->intersects) {
if (ke->movenent==MAV_PRESSED) { /* Only consider button press event */
switch (ke->key) {
case 'd': /* Delete an object */
mav_obj ect Del et e( ke- >obj ) ;
br eak;

case 'b': /* Increase size of box */
[* Ensure object is a box */
i f (mav_object d assGet (ke->obj)==mav_cl ass_box)
{
/* Convert from generic Maverik object to a box object */
MAV_box *box= (MAV_box *) mav_obj ect Dat aCet (ke->obj ) ;
box->si ze. x+=0.5; /* Increase size of box */

}

el se

{
printf("Cbject is not a box\n");

}

break;

case 'c¢': /* Change colour */
if (mav_cal | backGet SurfaceParansExec(mav_wi n_current, ke->obj, &spptr)) {
[* Get a ptr to the surfaceParnmas field of the object */
*spptr= sp[(int) (mav_randonm()*4)]; /* Set it to some random val ue */

}

break;

case 'j': /* Make object junp */
if (fc==0) { /* Only if sonething is not currently in flight */
[* CGet a ptr to the matrix field of the object */
if (mav_cal | backGet Matri xExec(mav_wi n_current, ke->obj, &objMtl)) {
/* Begin executing function junp at the start of each frane */
mav_f rameFnlAdd(j unp, NULL);
}
}
br eak;
}
}

switch (ke->key) {
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case 'p': /* Pick object */
i f (ke->movenent==MAV_PRESSED)
{
[* Get a ptr to the matrix field of the object */
if (mav_cal | backGet Matri xExec(mav_wi n_current, ke->obj, &objMt2)) {
/* Remenber distance fromeye to object intersection */
obj Di st= ke->objint.ptl;
/* Begin executing function pick after the view has been set */
mav_franmeFn2Add(pi ck, NULL);

}
}

el se

{

/* Stop executing function pick after the view has been set */
mav_frameFn2Rmv(pi ck, NULL);

}

break;

}
}

return 1;
} I* keyEvent */

int main(int argc, char *argv[])

{

/* code omtted */

/* Create an SM5 for the ground plane and add rectangle object to it */
groundPl ane= nmav_SMSQhj Li st New() ;
mav_SMBChj ect Add( groundPl ane, nmav_obj ect New( mav_cl ass_rectangl e, &gp));

/* Make objects in groundPl ane SM5 unsel ectable to keyboard and nouse event */
mav_SMSSel ect abi | i tySet (groundPl ane, mav_win_all, MA_FALSE);

[* code omtted */

Recall that the keyboard event callback is registered for the mav _cl ass_wor | d class and as such the
MAVERIK object passed to the callback function should not be interpreted. However, stored in both
the keyboard and mouse event data structures is the object which the mouse was over when the event
occurred. This information is stored in the obj field of the data structure along with i nt ersects
which indicates if the cursor was pointing at an object.

In Example 7, pressing the ‘d’” key deletes the object the mouse is pointing at. This is achieved by
calling mav _obj ect Del et e (MFS p 175) which removes the object from any SMS’s which it is in
before deleting the object.

By default, any object which is in an SMS can activate the event callbacks. However, an SMS can
be set to be “non-selectable” and objects in such an SMS will not trigger event callbacks if the
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mouse was pointing at them. So, by having multiple SMS’s an application can maintain groups of
objects which are selectable, and groups which are not. Example 7 uses two SMS’s: one for the
ground plane, and one for the remaining objects. The SMS containing the ground plane object is set
to be non-selectable and so pointing at this object will not trigger keyboard and mouse events. Note:
setting the selectability of an SMS also determines whether it is searched in the functions which check
whether a line or bounding box intersect any objects — mav_SMSI nt er sect Li neAl | (MFS p 289) and
mav_SMSI nt er sect BBAI | (MFS p 287) respectively.

Pressing ‘b’ increases the size of a box. This is similar to Example 5 (page 35) except that now we
first have to ensure that the object pointed to by the mouse really is a box. This is achieved with the
function mav_obj ect d assGet (MFS p 172) which returns the class of an object.

4.3.1 Process-based callbacks

The ‘¢’ key changes the set of surface parameters which are used to render the object which the mouse
is pointing at. All of the default MAVERIK primitives have this field, named sp, in their data structure.
The problem is: how can we access this field when we only have a generic MAVERIK object to work
with?

One way would be to have a large switch statement which checked the class of the MAVERIK object
(using the function described above for the ‘b’ key) and then casts the data portion of the MAVERIK
object to be the data structure appropriate for this type of primitive, thus allowing direct access to the
required field.

Alternatively, it could be arranged that for each class of object there was a function which returned
a pointer to its surface parameters field (a pointer being more useful since it can be used to change
the value stored in the data structure). The function would take as input a MAVERIK object, cast the
data portion of this to be the relevant data structure for the class of object and return a pointer to the
required field. Furthermore, if this function was accessible via the MAVERIK class data structure, then
there is enough information encapsulated in a MAVERIK object to execute the relevant function and
gain access to the surface parameters field.

While appearing overly complicated at first, the second method is, in fact, preferable since it allows
for new classes of objects to be seamlessly added. (Using the first method you would have to extend
the switch statement to accommodate the new class). The ability to add new classes of objects is a
key aspect of MAVERIK and we show how this is performed in Chapter 7.

Essentially this is a callback mechanism and it can be thought of as being analogous to the event-
based callbacks introduced earlier in this chapter. To distinguish between the two, we call the type
of callback just introduced “process-based” since they perform an arbitrary processing operation on a
object — such as accessing a specific data field. A conceptual difference between the two is that event-
based callbacks are executed by MAVERIK, whereas process-based callbacks are explicitly invoked
by the application itself. However, this does not prevent them being implemented with the same
mechanism.

The function mav_cal | backGet Sur f acePar anmsExec (MFS p 263) executes the “get surface param-
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eters” process-callback on an object. Its full prototype is:

int mav_cal | backGet Sur f acePar ansExec( MAV_wi ndow *w, MAV object *o,
MAV_surfaceParans ***sp);

Let’s break this function prototype down into each parameter.

The first argument, w, is a MAVERIK window and indicates which window the callback is being
executed for. This seems very strange at first, but recall from earlier in this chapter that event-based
callbacks are defined on a per-window and per-object class basis (thus allowing objects the ability to
respond to mouse event differently in different windows). And, as the two different types of callback
are implemented by the same mechanism, process-based callbacks are also defined on the same basis.
That said, the authors cannot envisage the case where, for example, the “get surface parameters”
callback function would be implemented differently in different windows!

The second argument, o, is the MAVERIK object in question.

The third argument is a triple pointer to a MAVERIK surface parameters data structure — actually, it’s
the address of a pointer to the required field in the data structure. Put another way, recall that a pointer
to the desired field in the data structure is required so that its value can be set. Unfortunately, the
required field is itself a pointer, and so a pointer to this pointer is needed. Furthermore, this value can
not be passed back as the functions return value since that is used for another purpose (see below).
Therefore, the only option is to pass into the function the address of a pointer to the required field so
that the function can set the contents of this address to be the appropriate value. Hopefully, its use in
Example 7 (summarized below) will help clarify this:

MAV_surfaceParans **spptr;
if (mav_cal | backGet SurfaceParamsExec(mav_win_current, ke->obj, &spptr)) {
*spptr= sp[(int) (mav_randon()*4)]; /* Set it to some random val ue */

Note the use of the “current window” handle mav_wi n_cur rent to specify the window the callback is
being executed for. Virtually all process-based callbacks are executed in this manner.

The return value of this function call is MAV_TRUE or MAV_FALSE and indicates if the callback was
successful. There are two reasons why the execution of a callback can fail: either there is no callback
function provided for this class of object, or the callback function could not successfully complete the
operation for some reason.

The ‘j” key makes the object pointed at “jump in the air”. This is achieved by using the “get matrix”
process-based callback to obtain a pointer to the transformation matrix of the object under the cursor.
The Y position component of this matrix is then manipulated by a mav_f rameFnl function to move
the object vertically up 4 units and then back down by the same amount over 60 consecutive frames.
One point worth noting in the implementation of this is that the frame function automatically removes
itself after the 60 frames have elapsed.

Holding down the ‘p’ key allows the user to drag an object around the scene with the mouse.
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In order to describe how this is achieved we have to introduce the concept of the mouse’s 3D world
position. While the desktop mouse is intrinsically a 2D device, its position can be mapped onto the
near clip plane to give it a 3D position in the world. A vector can be defined using the eyepoint and
this position. It is the intersection of any objects with this vector thats allows MAVERIK to determine
if the mouse is pointing at any object. This vector turns out to be very useful and so is calculated by
MAVERIK at the start of each frame and stored in the global variable mav _nouse dir.

Back to moving objects around. When the key press event occurs, the distance from the eye to the first
point of intersection on the objects surface is noted. This value, pt 1, is part of the MAV_obj ect | nt er secti on (MFS
p 78) data structure, obj i nt, which itself is part of both the keyboard and mouse event data struc-
tures. In addition, the “get matrix” process-based callback is executed on the selected object and a

mav_f r ameFn1l function is added.

