
Post-processing utilities within
ElmerSolver

ElmerTeam

CSC – IT Center for Science, Finland

CSC, 2018

Postprocessing utilities in ElmerSolver

• Saving data

oFEM data

oLine data

oScalars data

oGrid data

• Computing data

oDerived fields (gradient, curl, divecgence,…)

oData reduction & filtering

oCreating fields of material properties

• The functionality is usually achieved by use of atomic auxialiry solvers

Computing derived fields

• Many solvers have internal options or dedicated post-processing solvers
for computing derived fields
oE.g. stress fields by the elasticity solvers

oE.g. MagnetoDynamicsCalcFields

• Elmer offers several auxiliary solvers that may be used in a more generic
way
oSaveMaterials: makes a material parameter into field variable

oStreamlineSolver: computes the streamlines of 2D flow

oFluxSolver: given potential, computes the flux q = - c

oVorticitySolver: computes the vorticity of flow, w =

oPotentialSolver: given flux, compute the potential - c = q

oFilterTimeSeries: compute filtered data from time series
(mean, fourier coefficients,…)

o…

Derived nodal data

• By default Elmer operates on distributed fields but sometimes

nodal values are of interest

oMultiphysics coupling may also be performed alternatively using nodal
values for computing and setting loads

• Elmer computes the nodal loads from Ax-b where A, and b are

saved before boundary conditions are applied

oCalculate Loads = True

• This is the most consistant way of obtaining boundary loads

• Note: the nodal data is really pointwise

oexpressed in units N, C, W etc.
(rather than N/m^2, C/m^2, W/m^2 etc.)

oFor comparison with distributed data divided by the ~size of the surface
elements

Derived lower dimensional data

• Derived boundary data
oSaveLine: Computes fluxes on-the-fly

• Derived lumped (or 0D) data
oSaveScalars: Computes a large number of different quantities on-the-fly

oFluidicForce: compute the fluidic force acting on a surface

oElectricForce: compute the electrostatic froce using the Maxwell stress
tensor

oMany solvers compute lumped quantities internally for later use
(Capacitance, Lumped spring,…)

Exporting FEM data: ResultOutputSolve

• Currently recommened format is VTU

oXML based unstructured VTK

oHas the most complete set of features

oOld ElmerPost format (with suffix .ep) is becoming obsolite

oSimple way to save VTU files: Post File = file.vtu

• ResultOutputSolve offers additionally several formats

ovtk: Visualization tookit legacy format

ovtu: Visualization tookit XML format

oGid: GiD software from CIMNE: http://gid.cimne.upc.es

oGmsh: Gmsh software: http://www.geuz.org/gmsh

oDx: OpenDx software

Exporting 2D/3D data: ResultOutputSolve

An example shows how to save data in unstructured XML VTK (.vtu) files to directory ”results” in
single precision binary format.

Solver n

Exec Solver = after timestep

Equation = "result output"

Procedure = "ResultOutputSolve""ResultOutputSolver"

Output File Name = "case"

Output Format = String ”vtu”

Binary Output = True

Single Precision = True

End

Saving 1D data: SaveLine

• Lines of interest may be defined on-the-fly

• Data can either be saved in uniform 1D grid,

or where element faces and lines intersect

• Flux computation using integration points on the boundary –

not the most accurate

• By default saves all existing field variables

Saving 1D data: SaveLine…

Solver n

Equation = "SaveLine"

Procedure = File "SaveData" "SaveLine"

Filename = "g.dat"

File Append = Logical True

Polyline Coordinates(2,2) = Real 0.0 1.0 0.0 2.0

End

Boundary Condition m

Save Line = Logical True

End

Computing and saving 0D data: SaveScalars

Operators on bodies

• Statistical operators
oMin, max, min abs, max abs, mean, variance, deviation, rms

• Integral operators (quadratures on bodies)
o volume, int mean, int variance, int rms

oDiffusive energy, convective energy, potential energy

Operators on boundaries

• Statistical operators
o Boundary min, boundary max, boundary min abs, max abs, mean, boundary variance,

boundary deviation, boundary sum, boundary rms

oMin, max, minabs, maxabs, mean

• Integral operators (quadratures on boundary)
o area

oDiffusive flux, convective flux

Other operators
o nonlinear change, steady state change, time, timestep size,…

Saving 0D data: SaveScalars…

Solver n

Exec Solver = after timestep

Equation = String SaveScalars

Procedure = File "SaveData" "SaveScalars"

Filename = File "f.dat"

Variable 1 = String Temperature

Operator 1 = String max

Variable 2 = String Temperature

Operator 2 = String min

Variable 3 = String Temperature

Operator 3 = String mean

End

Boundary Condition m

Save Scalars = Logical True

End

Slots for executing postprocessing solvers

• Often the postprocessing solver need to computed only at desired
slots, not at every time-step or coupled system iteration

• The execution is controlled by the ”Exec Solver” keyword
oExec Solver = before simulation

oExec Solver = after simulation

oExec Solver = before timesteo

oExec Solver = after timestep

oExec Solver = before saving

oExec Solver = after saving

• The before/after saving slot is controlled by the output

intervals

oDerived solvers often use the ”before saving” slot

oData is often saved with the ”after saving” slot

12

Case: TwelveSolvers

Natural convection with ten auxialiary
solvers

Case: Motivation

• The purpose of the example is to show the flexibility of the

modular structure

• The users should not be afraid to add new atomistic solvers to

perform specific tasks

• A case of 12 solvers is rather rare, yet not totally unrealitistic

Case: preliminaries

• Square with hot wall on right

and cold wall on left

• Filled with viscous fluid

• Bouyancy modeled with

Boussinesq approximation

• Temperature difference initiates

a convection roll

Cold

wall

Hot

wall

Case: 12 solvers
1. HeatSolver

2. FlowSolver

3. FluxSolver: solve the heat flux

4. StreamSolver: solve the stream function

5. VorticitySolver: solve the vorticity field (curl of vector field)

6. DivergenceSolver: solve the divergence

7. ShearrateSolver: calculate the shearrate

8. IsosurfaceSolver: generate an isosurface at given value

9. ResultOutputSolver: write data

10. SaveGridData: save data on uniform grid

11. SaveLine: save data on given lines

12. SaveScalars: save various reductions

Mesh of 10000 bilinear elements

Primary fields for natural convection

Pressure Velocity Temperature

Derived fields for Navier-Stokes solution

Shearrate field Stream function Vorticity field Divergence field

Derived fields for heat equation

Heat flux Nodal heat loads

• Nodal loads only occur at

boundaries (nonzero

heat source)

• Nodal loads are

associated to continuous

heat flux by element size

factor

Visualization in differen postprocessors

GiD

gmsh

Paraview

Example: total flux

• Saved by SaveScalars

• Two ways of computing the

total flux give different

approximations

• When convergence is reached

the agreement is good

Example: boundary flux

• Saved by SaveLine

• Three ways of computing the

boundary flux give different

approximations

• At the corner the nodal flux

should be normalized using only

h/2

Example, saving boundaries in .sif file

Solver 2

Exec Solver = Always

Equation = "result output"

Procedure = "ResultOutputSolve”

"ResultOutputSolver"

Output File Name = case

Vtu Format = Logical True

Save Boundaries Only = Logical True

End

Example, File size in Swiss Cheese
• Memory consumption of vtu-files (for Paraview) was studied in the

”swiss cheese” case

• The ResultOutputSolver with different flags was used to write

output in parallel

• Saving just boundaries in single precision binary format may save

over 90% in files size compared to full data in ascii

• With larger problem sizes the benefits are amplified

Binary output Single Prec. Only bound. Bytes/node

- X - 376.0

X - - 236.5

X X - 184.5

X - X 67.2

X X X 38.5

Manually editing the command files

• Only the most important solvers and features are supported by the

GUI

• Minor modifications are most easily done by manual manipulation of

the files

• The tutorials, test cases and documentation all include usable sif file

pieces

• Use your favorite text editor (emacs, notepad++,…) and copy-paste

new definitions to your .sif file

• If your additiones were sensible you can rerun your case

• Note: you cannot read in the changes made in the .sif file

Exercise

• Study the command file with 12 solvers

• Copy-paste an appropriate solver from there to some existing

case of your own

oResultOutputSolver for VTU output

oStreamSolver, VorticitySolver, FluxSolver,…

• Note: Make sure that the numbering of Solvers is consistant

oSolvers that involve finite element solution you need to activate by
Active Solvers

• Run the modified case

• Visualize results in Paraview in different ways

Using tests as a starting point

• There are over 500 consistancy tests that come with the Elmer distribution

o The hope is to minimize the propability of new bugs

• The tests are small for speedy computation

• Step-by-step instructions

1. Go to tests at
$ELMER_HOME/tests

2. Choose a test case relevant to you (by name, or by grep)

▪ Look in Models manual for good search strings

3. Copy the tests to your working directory

4. Edit the sif file

▪ Activate the output writing: Post File

▪ Make the solver more verbose: Max Output Level

5. Run the case (see runtest.cmake for the meshing procedure)

▪ Often just: ElmerSolver

6. Open the result file to see what you got

7. Modify the case and rerun etc.

Conclusions

• It is good to think in advance what kind of data you need

o3D volume and 2D surface data

oDerived fields

o1D line data

o0D lumped data

• Internal strategies may allow better accuracy than doing the

analysis with external postprocessing software

oConsistent use of basis functions to evaluate the data

• Often the same reduction operations may be done also at later

stages but with significantly greater effort

