
Parallel computing with Elmer

ElmerTeam
CSC – IT Center for Science, Finland

CSC, 2018

Algorithm scalability

• Before going into parallel computation let’s study

where the bottle-necks will appear in the serial

system

• Each algorithm/procedure has a characteristic

scaling law that sets the lower limit to how the

solution time t increases with problem size n

oThe parallel implementation cannot hope to beat this
limit systematically

• Targeting very large problems the starting point

should be nearly optimal (=linear) algorithm!

n

t

Poisson equation at ”Winkel”

• Mesh generation is cheapest

• Success of various iterative

methods determined mainly by

preconditioning strategy

• Best preconditioner is clustering

multigrid method (CMG)

• For simple Poisson almost all

preconditioners work reasonable

well

• Direct solvers differe significantly

in scaling
4.2.20214

Mesh generation alpha beta

Gmsh 21.4 1.18

Linear solver alpha beta

BiCGStab+CMG0(SGS1) 178.30 1.09

GCR+CMG0(SGS2) 180.22 1.10

Idrs+CMG0(SGS1) 175.20 1.10

…

BiCgStab + ILU0 192.50 1.13

…

CG + vanka 282.07 1.16

Idrs(4) + vanka 295.18 1.16

…

CG + diag 257.98 1.17

BiCgStab(4) + diag 290.11 1.19

…

MUMPS(PosDef) 4753.99 1.77

MUMPS 12088.74 1.93

umfpack 74098.48 2.29

Motivation for using optimal linear solvers

• Comparison of algorithm scaling in linear elasticity between different preconditioners

o ILU1 vs. block preconditioning (Gauss-Seidel) with agglomeration multigrid for each component

• At smallest system performance about the same

• Increasing size with 8^3=512 gives the block solver

scalability of O(~1.03) while ILU1 fails to converge

BiCGstab(4)+ILU1 GCR+BP(AMG)

#dofs T(s) #iters T(s) #iters

7,662 1.12 36 1.19 34

40,890 11.77 76 6.90 45

300,129 168.72 215 70.68 82

2,303,472 >21,244* >5000* 756.45 116

* No convergence was obtainedSimulation Peter Råback, CSC.

Computer architectures

• Shared memory

oAll cores can access the whole memory

• Distributed memory

oAll cores have their own memory

oCommunication between cores is needed in
order to access the memory of other cores

• Current supercomputers combine the

distributed and shared memory (within

nodes) approaches

Programming models

• Threads (pthreads, OpenMP)

oCan be used only in shared memory computer

o Limited parallel scalability

o Simpler or less explicit programming

• Message passing (MPI)

oCan be used both in distributed and shared memory
computers

o Programming model allows good parallel scalability

o Programming is quite explicit

• Massively parallel FEM codes use typically MPI as

the main parallelization strategy

o As does Elmer!

Parallel computing concepts

4.2.20219

Strong scaling

• How the solution time T varies with the

number of processors P for a

fixed total problem size.

• Optimal case: P x T = const.

• A bad algorithm may have excellent strong

scaling

• Typically 104-105 dofs needed in FEM for

good strong scaling

Weak scaling

• How the solution time T varies with the

number of processors P for a fixed

problem size per processor.

• Optimal case: T=const.

• Weak scaling is limited by algorithmic

scaling

Weak vs. strong parallel scaling

4.2.202110

Serial workflow of Elmer

• All steps in the workflow are serial

• Typically solution of the linear system is the main bottle-neck

• For larger problems bottle-necks starts to appear in all phases

of the serial workflow

SOLUTION

VISUALIZATION

ASSEMBLY

MESHING

Basic Parallel workflow of Elmer

• Addiational partition step using ElmerGrid

• Both assembly and solution is done in parallel using MPI

• Assembly is trivially parallel

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

ElmerGrid

ElmerGrid partitioning commands

Basic volume mesh partitioning options

(geometric partitioning and Metis graph partitiong)

There are additional flags to control the partitioning of contact boundaries

and halo elements.
2/4/202113

-partition int[3] : the mesh will be partitioned in cartesian main directions

-partorder real[3] : in the 'partition' method set the direction of the ordering

-partcell int[3] : the mesh will be partitioned in cells of fixed sizes

-partcyl int[3] : the mesh will be partitioned in cylindrical main directions

-metis int : mesh will be partitioned with Metis using mesh routines

-metiskway int : mesh will be partitioned with Metis using Kway routine

-metisrec int : mesh will be partitioned with Metis using Recursive routine

-metiscontig : enforce that the metis partitions are contiguous

-partdual : use the dual graph in partition method (when available)

ElmerGrid partitioning examples

• ElmerGrid 2 2 mesh –partcell nx ny nz

oPartition elements in a uniform grid based on the bounding box

oNumber of partitions may be lower than the product if there are empty cells

oDoes not quarantee that partitions are of same size

• ElmerGrid 2 2 mesh –partition nx ny nz

oPartition elements recursively in the main coordinate directions

oPartitions are of same size

oGoodness depends heavily on the geometry

• ElmerGrid 2 2 mesh –metisrec n

oPartition elements using a recursive routine of Metis

oCannot beat the geometric strategy for some ideal shapes

oRobust in that partitioning is always reasonable

4.2.202114

2/4/202115

Mesh partitioning with ElmerGrid – structured mesh

-partcell 2 2 2 -partition 2 2 2

-metis 8 -partdual -metisrec 8

2/4/202116

Mesh partitioning with ElmerGrid – unstructured mesh

-metis 8

-partcell 2 2 2 -partition 2 2 2

-partdual -metisrec 8

Mesh structure of Elmer

Serial

meshdir/

• mesh.header

size info of the mesh

• mesh.nodes

node coordinates

• mesh.elements

bulk element defs

• mesh.boundary

boundary element defs with reference

to parents

Parallel

meshdir/partitioning.N/

• mesh.n.header

• mesh.n.nodes

• mesh.n.elements

• mesh.n.boundary

• mesh.n.shared

information on shared nodes

for each i in [0,N-1]

Iterative

• HUTITER

oKrylov methods initially coded at HUT

• Hypre

o Krylov solvers

o Algebraic multigrid: BoomerAMG

o Truly parallel ILU and Parasails preconditioning

• Trilinos

o Krylov solvers

o Algebraic multigrid: ML

o …

• ESPRESO

o FETI library of IT4I

http://espreso.it4i.cz/

Direct

• MUMPS

o Direct solver that may work when averything
else fails

• MKL Pardiso

oComes with the Intel MKL library

oMultihreaded

Parallel linear solvers in Elmer

4.2.202120

Partitioning and matrix structure

• ji 4.2.202121

• Shared nodes result to need for communication.

o Each dof has just one owner partiotion and we know the
neighbours for

oOwner partition usually handles the full row

oResults to point-to-point communication in MPI

• Matrix structure sets challenges to efficient

preconditioners in parallel

o It is more difficult to implement algorithms that are
sequential in nature, e.g. ILU

oKrylov methods require just matrix vector product, easy!

• Communication cannot be eliminated. It reflects the

local interactions of the underlying PDEContiguous parallel numbering used

Partitioning and matrix structure – unstructured mesh

4.2.202122

• Partitioning should try

to minimize

communication

• Relative fraction of

shared nodes goes as

N^(-1/DIM)

• For vector valued and

high order problems

more communication

with same dof count
Metis partitioning into 8

Differences in serial and parallel algorithms

• Some algorithms are slightly different in

parallel

• ILU in ElmerSolver library is performed only

blockwise which may result to inferior

convergence

• Diagonal and vanka preconditions are

exactly the same in parallel

Parallel computation in ElmerGUI

• If you have parallel environment it

can also be used interactively via

ElmerGUI

• Calls ElmerGrid automatically for

partiotioning (and fusing)

Parallel postprocessing using Paraview

• Use ResultOutputSolver to save data to .vtu files

• The operation is almost the same for parallel data as for serial

data

• There is a extra file .pvtu that holds is a wrapper for the

parallel .vtu data of each partition

• Serial mesh files

• Command file (.sif) may be given as an inline

parameter

• Execution with

ElmerSolver [case.sif]

• Writes results to one file

• Partitioned mesh files

• ELMERSOLVER_STARTINFO is always

needed to define the command file (.sif)

• Execution with

mpirun -np N ElmerSolver_mpi

• Calling convention is platform dependent

• Writes results to N files + 1 wrapper file

Summary: Files in serial vs. parallel solution

Serial Parallel

Example: Weak scaling of Elmer (FETI)

#Procs Dofs Time (s) Efficiency

8 0.8 47.80 -

64 6.3M 51.53 0.93

125 12.2M 51.98 0.92

343 33.7M 53.84 0.89

512 50.3M 53.90 0.89

1000 98.3M 54.54 0.88

1331 131M 55.32 0.87

1728 170M 55.87 0.86

2197 216M 56.43 0.85

2744 270M 56.38 0.85

3375 332M 57.24 0.84

Solution of Poisson equation with FETI method where local problem (of size 32^3=32,768
nodes) and coarse problem (distributed to 10 partitions) is solved with MUMPS. Simulation
with Cray XC (Sisu) by Juha Ruokolainen, CSC, 2013.

Block preconditioner: Weak scaling of 3D driven-cavity

Elems Dofs #procs Time (s)

34^3 171,500 16 44.2

43^3 340,736 32 60.3

54^3 665,500 64 66.7

68^3 1,314,036 128 73.6

86^3 2,634,012 256 83.5

108^3 5,180,116 512 102.0

132^3 9,410,548 1024 106.8

Velocity solves with Hypre: CG + BoomerAMG preconditioner for the
3D driven-cavity case (Re=100) on Cray XC (Sisu).
Simulation Mika Malinen, CSC, 2013.

O(~1.14)

Scalability of edge element AV solver for end-windings

Magnetic field strength (left) and electric potential (right)
of an electrical engine end-windings. Meshing M. Lyly,

ABB. Simulation (Cray XC, Sisu) J. Ruokolainen, CSC.

#Procs Time(s) T2P/TP

4 1366 -

8 906 1.5

16 260 3.5

32 122 2.1

64 58.1 2.1

128 38.2 1.8

256 18.1 2.1

• Monolithic parallel linear

system including

oElectric scalar potential using
nodal elements

oMagnetic vector potential using
edge elements (in 3D)

oMortar projector for the nodal
dofs 𝑃𝑣 (for conductors)

oMortar projector for the edge
dofs 𝑃𝑎 (in 3D)

oCurrent conditions for case
driven by external circuit
(few rather dense rows)

• Solved with Krylov method, e.g. GCR or

BiCGStab(l)

• Hybrid preconditioning strategy

oVector potential with diagonal

oScalar potential & mortar projectors with ILU

oElectrical circuits either with ILU or MUMPS

• Still some challenges on robustness!

Coupled model for electrical machines

4.2.202145

Hybrid partitioning scheme

• The linear system arising from the electromagentic

problem must be solved together with the continuity

constraints

• To minimize communication (and coding) effort we

partition the mesh cleverly

• Electrical machines have always rotating interface:

Partition the interface elements so that opposing

element layers on the cylinder are always within the

same partition

o Unstructured surface meshes are treated similarly except halo
elements are also saved on the boundary

• Other elements are partitioned with Metis

• Local mortar conditions much easier to deal with!

Parallel workflow for meshing bottle-necks

• Large meshes may be finilized at the parallel level

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

COARSE MESHING

FINE MESHING

Mesh Multiplication

Mesh #splits #elems #procs T_center
(s)

T_graded
(s)

A 2 4 M 12 0.469 0.769

2 4 M 128 0.039 0.069

3 32 M 128 0.310 0.549

B 2 4.20 M 12 0.369

2 4.20 M 128 0.019

3 33.63 M 128 0.201

Mesh grading nicely preserved

• Split elements edges after partitioning at parallel level

oeffectively eliminating memory and I/O bottle-necks

oEach multiplication creates 2^DIM-fold number of elements

oDoes not increase accuracy of geometry presentation

oMay inherit mesh grading

oCPU time used in neglible

Mesh A: structured, 62500 hexahedrons
Mesh B: unstructured, 65689 tetrahedrons

Overcoming bottle-necks in postprocessing

• Visualization

o Paraview and Visit excellent tools for parallel visualization

oAccess to all data is often an overkill

• Reducing data

o Saving only boundaries

oUniform point clouds

oA priori defined isosurfaces

oUsing coarser meshes for output when hierarchy of meshes exist

• Extracting data

oDimensional reduction (3D -> 2D)

oAveraging over time

o Integrals over BCs & bodies

• More robust I/O

oNot all cores should write to disk in massively parallel simulations

oHDF5+XDML output available for Elmer, mixed experiences

Binary
output

Single
Prec.

Only
bound.

Bytes/
node

- X - 376.0

X - - 236.5

X X - 184.5

X - X 67.2

X X X 38.5

Hybridization of the Finite Element code

• The number of cores in CPUs keep

increasing but the clock speed has

stagnated

• Significant effort has been invested for

the hybrization of Elmer

oAssembly process has been multithreaded and
vectorized

o”Coloring” of element to avoid race conditions

• Speed-up of assembly for typical

elements varies between 2 to 8.

• As an accompanion the multitreaded

assembly requires multithreaded linear

solvers.63

Multicore speedup, P=2
128 threads on KNL, 24 threads on HSW

Element (#ndofs,
#quadrature
points)

Speedup Optimized local
matrix

evaluations / s

KNL HSW KNL HSW

Line (3, 4) 0.7 2.0 4.2 M 14.5 M

Triangle (6, 16) 2.5 3.9 2.6 M 6.5 M

Quadrilateral (8, 16) 2.8 4.0 2.6 M 6.6 M

Tetrahedron (10, 64) 7.9 6.3 1.0 M 1.5 M

Prism (15, 64) 8.3 5.8 0.8 M 0.9 M

Hexahedron (20, 64) 7.2 5.8 0.6 M 0.9 M

Speed-up assembly process for poisson equation using
2nd order p-elements. Juhani Kataja, CSC, IXPUG Annual
Spring Conference 2017.

Recipes for resolving scalability bottle-necks

• Finalize mesh on a parallel level (no I/O)

oMesh multiplication or parallel mesh generation

• Use algorithms that scale well

oE.g. Multigrid methods

• If the initial problem is difficult to solve effectively divide it into simpler

sub-problems

oOne component at a time -> block preconditioners

oGCR + Block Gauss-Seidel + AMG + SGS

oOne domain at a time -> FETI

oSplitting schemes (e.g. Pressure correction in CFD)

• Analyze results on-the-fly and reduce the amount of data for

visualization

Future outlook

• Deeper integration of the workflow

oHeavy pre- and postprocessing internally or via API

• Cheaper flops from new multicore environments

o Interesting now also for the finite element solvers

oUsable via reasonable programming effort;
attention to algorithms and implementation

• Complex physics introduces always new bottle-necks

oRotating boundary conditions in parallel…

