
Elmer Programmer’s Tutorial

Mikko Lyly, Mika Malinen and Peter Råback

CSC – IT Center for Science

2010–2015

Elmer Programmer’s Tutorial

About this document
The Elmer Programmer’s Tutorials is part of the documentation of Elmer finite element software. It gives
examples on how to carry out simple coding tasks using the high-level routines from Elmer library.

The present manual corresponds to Elmer software version 9.0. Latest documentations and program
versions of Elmer are available (or links are provided) at http://www.csc.fi/elmer.

Copyright information
The original copyright of this document belongs to CSC – IT Center for Science, Finland, 1995–2019. This
document is licensed under the Creative Commons Attribution-No Derivative Works 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Elmer program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. Elmer software is distributed in the hope that it will be useful, but without
any warranty. See the GNU General Public License for more details.

Elmer includes a number of libraries licensed also under free licensing schemes compatible with the
GPL license. For their details see the copyright notices in the source files.

All information and specifications given in this document have been carefully prepared by the best ef-
forts of CSC, and are believed to be true and accurate as of time writing. CSC assumes no responsibility or
liability on any errors or inaccuracies in Elmer software or documentation. CSC reserves the right to modify
Elmer software and documentation without notice.

1

http://www.csc.fi/elmer
http://creativecommons.org/licenses/by-nd/3.0/

Contents

Table of Contents 2

1 User defined functions 3
1.1 Calling convention . 3
1.2 Compilation . 4

2 User defined solvers 5
2.1 Calling convention . 5
2.2 Compilation . 5
2.3 Solver Input File . 5

3 Reading data from SIF 6
3.1 Reading constant scalars . 6
3.2 Reading constant vectors . 7
3.3 Reading constant matrices . 7

4 Managing variables 8
4.1 Handle to variables . 8
4.2 Permutation vector of variable . 8
4.3 Vector valued field variables . 9
4.4 Global variables . 9
4.5 Creating variables . 9

5 Standard IO and error handling 10
5.1 Info – Writing information on console . 10
5.2 Error and Warning – Handling exceptions . 10

6 Mesh files 11
6.1 Creating mesh files manually . 11

7 Partial Differential Equations 12
7.1 Model problem . 12
7.2 Obtaining a discrete version of the model . 12
7.3 Implementation . 14

2

Chapter 1

User defined functions

1.1 Calling convention
All user defined functions that implement e.g. a material parameter, body force, or a boundary condition,
are written in Fortran90 with the following calling convention:

!---
!> File: MyLibrary.f90
!> Written by: ML, 5 May 2010
!> Modified by: -
!---
FUNCTION MyFunction(Model, n, f) RESULT(g)

USE DefUtils
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: f, g

! code

END FUNCTION MyFunction

The function is called automatically by ElmerSolver for each node index n, when activated from the Solver
Input File e.g. as follows:

Material 1
MyParameter = Variable Time
Real Procedure "MyLibrary" "MyFunction"

End

In this case, the value of time will be passed to the function in variable f. The function then returns the value
of the material parameter in variable h.

The type Model_t is declared and defined in the source file Types.src also referenced by DefUtils.src.
It contains the mesh and all model data specified in the Solver Input File. As an example, the coordinates of
node n are obtained from Model as follows:

REAL(KIND=dp) :: x, y, z
x = Model % Nodes % x(n)
y = Model % Nodes & y(n)
z = Model % Nodes % z(n)

If the value of the return value depends on a specific function (for example a temperature dependent heat
conducivity), we can fetch the nodal value of that function by using the DefUtils-subroutines (more details
to follow in the next section):

TYPE(Variable_t), POINTER :: TemperatureVariable
REAL(KIND=dp) :: NodalTemperature
INTEGER :: DofIndex
TemperatureVariable => VariableGet(Model % Variables, ’Temperature’)
DofIndex = TemperatureVariable % Perm(n)
NodalTemperature = TemperatureVariable % Values(dofIndex)
! Compute heat conductivity from NodalTemperature, k=k(T)

CSC – IT Center for Science

1. User defined functions 4

1.2 Compilation
The function is compiled into a shared library (Unix-like systems) or into a dll (Windows) by using the
default compiler wrapper elmerf90 (here and in the sequel, $ stands for the command prompt of a bash shell
(Unix) and > is input sign of the Command Prompt in Windows):

$ elmerf90 -o MyLibrary.so MyLibrary.f90

> elmerf90 -o MyLibrary.dll MyLibrary.f90

CSC – IT Center for Science

Chapter 2

User defined solvers

2.1 Calling convention
All user defined subroutines that implement a custom solver are written in Fortran90 with the following
calling convention:

!---
! File: MySolver.f90
! Written by: ML, 5 May 2010
! Modified by: -
!---
SUBROUTINE MySolver(Model, Solver, dt, Transient)

Use DefUtils
IMPLICIT NONE
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: Transient

! User defined code

END MySolver

The types Solver_t and Model_t are defined in the source file Types.src.

2.2 Compilation
The subroutine is compiled into a shared library like a user defined function by using the compiler wrapper
elmerf90:

$ elmerf90 -o MyLibrary.so MyLibrary.f90

> elmerf90 -o MyLibrary.dll MyLibrary.f90

2.3 Solver Input File
The user defined solver is called automatically by ElmerSolver when an appropriate Solver-block is found
from the Solver Input File:

Solver 1
Procedure = "MyLibrary" "MySolver"
...

End

CSC – IT Center for Science

Chapter 3

Reading data from SIF

In this chapter the flow of information from the command file is described. The file is also known as Solver
Input File, or sif file. The relevant functions and subroutines are defined in DefUtils.src.

3.1 Reading constant scalars
For reading constant valued scalars the following function is used

RECURSIVE FUNCTION GetConstReal(List, Name, Found) RESULT(Value)
TYPE(ValueList_t), POINTER : List
CHARACTER(LEN=*) :: Name
LOGICAL, OPTIONAL :: Found
REAL(KIND=dp) :: Value

Solver Input File:

Constants
MyConstant = Real 123.456

End

You may not thet here the type Real is defined. The type of fixed keywords are usually defined in file
SOLVER.KEYWORDS in the bin directory. Also the user may create a local copy of the file introducing
new variables there.

Code (ListEx1.f90):

SUBROUTINE MySolver(Model, Solver, dt, Transient)
USE DefUtils
IMPLICIT NONE
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: Transient

! Read constant scalar from Constants-block:
!--
REAL(KIND=dp) :: MyConstant
LOGICAL :: Found

MyConstant = GetConstReal(Model % Constants, "MyConstant", Found)
IF(.NOT.Found) CALL Fatal("MySolver", "Unable to find MyConstant")
PRINT *, "MyConstant =", MyConstant

END SUBROUTINE MySolver

Output:

MyConstant = 123.45600000

CSC – IT Center for Science

3. Reading data from SIF 7

3.2 Reading constant vectors
For reading constant valued vectors or matrices the following function is used
RECURSIVE SUBROUTINE GetConstRealArray(List, Value, Name, Found)

TYPE(ValueList_t), POINTER : List
CHARACTER(LEN=*) :: Name
LOGICAL, OPTIONAL :: Found
REAL(KIND=dp), POINTER :: Value(:,:)

Solver Input File:
Solver 1

MyVector(3) = Real 1.2 3.4 5.6
End

Code (ListEx2.f90)
SUBROUTINE MySolver(Model, Solver, dt, Transient)

Use DefUtils
IMPLICIT NONE
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: Transient

! Read constant vector from Solver-block:
!---
REAL(KIND=dp), POINTER :: MyVector(:,:)
LOGICAL :: Found

CALL GetConstRealArray(Solver % Values, MyVector, "MyVector", Found)
IF(.NOT.Found) CALL Fatal("MySolver", "Unable to find MyVector")
PRINT *, "MyVector =", MyVector(:,1)

END SUBROUTINE MySolver

Output:
MyVector = 1.2000000000 3.4000000000 5.6000000000

3.3 Reading constant matrices
Solver Input File:
Material 1

MyMatrix(2,3) = Real 11 12 13 21 22 23
End

Code (ListEx3.f90):
SUBROUTINE MySolver(Model, Solver, dt, Transient)

Use DefUtils
IMPLICIT NONE
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: Transient

! Read constant matrix from Material-block
!--
REAL(KIND=dp), POINTER :: MyMatrix(:,:)
LOGICAL :: Found
TYPE(ValueList_t), POINTER :: Material

Material => Model % Materials(1) % Values
CALL GetConstRealArray(Material, MyMatrix, "MyMatrix", Found)
IF(.NOT.Found) CALL Fatal("MySolver", "Unable to find MyMatrix")
PRINT *, "Size of MyMatrix =", SIZE(MyMatrix,1), "x", SIZE(MyMatrix,2)
PRINT *, "MyMatrix(1,:) =", MyMatrix(1,:)
PRINT *, "MyMatrix(2,:) =", MyMatrix(2,:)

END SUBROUTINE MySolver

Output:
Size of MyMatrix = 2 x 3
MyMatrix(1,:) = 11.000000000 12.000000000 13.000000000
MyMatrix(2,:) = 21.000000000 22.000000000 23.000000000

CSC – IT Center for Science

Chapter 4

Managing variables

In this chapter the treatment of variables is presented.

4.1 Handle to variables
You can access your global solution vector of your finite element subroutine. The following is limited to the
field variable that is being solved for:
TYPE(Variable_t), POINTER :: MyVariable
REAL(KIND=dp), POINTER :: MyVector(:)
INTEGER, POINTER :: MyPermutation(:)
...
MyVariable => Solver % Variable
MyVector => MyVariable % Values
MyPermutation => MyVariable % Perm

Also any other variable may be accessed by its name and thereafter be treated as the default variable. For
example
Mesh => GetMesh()
MyVariable => VariableGet(Mesh,’ExtVariable’)
IF(.NOT. ASSOCIATED (MyVariable)) THEN

CALL Fatal(’MySolver’,’Could not find variable > ExtVariable < ’)
END IF

If you want to set all values of the vector to a constant value that would be done simply with
MyVector = 123.456

4.2 Permutation vector of variable
The integer component Var % Perm tells the mapping between physical nodes and field variables. It is zero
there where the field variable is not active. The numbering of the non-zero entries must use all integerers
starting from 1. Usually the numbering is determined by bandwidth optimization which is always on by
default. You can turn the optimization off by adding the line Bandwidth optimization = FALSE in the
Solver-section of your SIF. In this case the permutation vector MyPermutation becomes the identity map.
In the case of a scalar field, you can then set the value of the field e.g. in node 3 as
MyVector(MyPermutation(3)) = 123.456

Some field variables do not have the Permulation defined and then MyPermutation would not be as-
sociated. For example, the coordinates are available as field variables Coordinate 1, Coordinate 2 and
Coordinate 3 without the permutation vector.
For example, getting the field variable corresponding to coordinate x could be done either as
x = Mesh % Nodes % x(node)

or
MyVariable => VariableGet(Mesh,’Coordinate 1’)
x = MyVariable % Values(node)

The alternative way of accessing the coordinates is important since that enables that the same dependency
features may be used for true field variables, as well as for coordinates.

CSC – IT Center for Science

4. Managing variables 9

4.3 Vector valued field variables
The field variable may also have vector values at each node. If the primary field name is VarName then the
individual components are by default referred to by their component indexes VarName i. The vector valued
field are ordered so that for each node the components follow each other.

For example, assume that we want to retrieve the three components of a displacement vector. This could
be done as follows:

...
MyVariable => GetVariable(Mesh % Variables,’Displacement’)
MyVector => MyVariable % Values
MyPermutation => MyVariable % Perm
MyDofs = MyVariable % Dofs

j = MyPermutation(node)
IF(j /= 0)) THEN

ux = MyVector(Dofs * (j-1)+1)
IF(Dofs >= 2) uy = MyVector(Dofs * (j-1)+2)
IF(Dofs >= 3) uz = MyVector(Dofs * (j-1)+3)

END IF

4.4 Global variables
Global variables may be treated similarly as field variables. However, they have no reference to nodes.
Examples of global variables are time, timestep size, nonlin iter and coupled iter.

A good indicator that a variable is global is that its size is equal to the number of i.e. the following
condition is true

SIZE(MyVector) == MyDofs

4.5 Creating variables
The default variable for a normal solver will be created when it is declared with a Variable statement in the
SIF file.

In the command file additional variables may be created with keyword Exported Variable i. It takes
also parameters such as -dofs and -global. So the following expression would create a global variable with
5 degrees of freedom.

Exported Variable 1 = -global -dofs 5 MyGlobals

Within the code variables may be created by command VariableAddVector.

CSC – IT Center for Science

Chapter 5

Standard IO and error handling

In this chapter the ways how standard information is printed on the console and errors are handled using
Info, Warning and Fatal ssubroutines.

5.1 Info – Writing information on console
For writing information on console one could basically use the normal PRINT commands. However, in
parallel this easily becomes complicated because often we want the information to be passed only by one
process. Also it is easier to control the flow of information when it is hidden under a well defined function.

The basic information is passed with the following way:

CALL Info(’MySolver’,’Starting the solver’)

This has a default output level of 5. If the Max Output Level given in the Simulation section is smaller
than this, no output will be printed. One can control the output level with an optional argument, Level as
shown below

CALL Info(’MySolver’,’Starting the solver’,Level=4)

Often the output string should include also some numerical information. For this aim one can use a temporary
global string Message, for example.

WRITE (Message,’(A,ES12.3)’) ’Scaling with factor: ’,Coeff
CALL Info(’MySolver’,Message)

5.2 Error and Warning – Handling exceptions
The Error and Warning subroutines are basically used as Info. However, Error results to a termination of
the program while Warning writes additional warnings on the console. Both also have a small output level
of three.

IF(.NOT. ASSOCIATED(Solver % Variable)) THEN
CALL Fatal(’MySolver’,’No variable associated for the solver!’)

END IF

CSC – IT Center for Science

Chapter 6

Mesh files

Elmer mesh is defined by a selection of files: mesh.header, mesh.nodes, mesh.elements and mesh.boundary.
In parallel runs there will also be file mesh.shared.

The mesh files may be created by ElmerGUI using some of its built-in mesh generators, or by ElmerGrid
using its native format or import utilities. If the user has his own mesh generator writing a parser to Elmer
format will not be a mission impossible.

6.1 Creating mesh files manually
To understand what the mesh file looks like we present a toy mesh. It consists of 6 nodes defined by their
(x,y,z) coordinates, 4 linear triangles (Elmer type 303) and 2 different boundaries.
mesh.nodes

1 -1 0.0 0.0 0.0
2 -1 0.0 -1.0 0.0
3 -1 1.0 -1.0 0.0
4 -1 1.0 1.0 0.0
5 -1 -1.0 1.0 0.0
6 -1 -1.0 0.0 0.0

mesh.elements

1 1 303 1 2 3
2 1 303 1 3 4
3 1 303 1 4 5
4 1 303 1 5 6

mesh.boundary

1 1 1 0 202 1 2
2 1 1 0 202 2 3
3 1 2 0 202 3 4
4 2 3 0 202 4 5
5 2 4 0 202 5 6
6 2 4 0 202 6 1

mesh.header

6 4 6
2
202 6
303 4

CSC – IT Center for Science

Chapter 7

Partial Differential Equations

In this chapter, we shall consider how the utilities of the Elmer solver are usually applied in order to create
the description of a discrete PDE model. To this end, we shall introduce a model problem, describe the
standard procedure for creating the computational version of the model, and finally consider the actual
implementation by using the Elmer utilities.

The code for the problem is available as ModelPDE.F90. Note that that solver has also reaction term
implemented.

7.1 Model problem
As an example, consider solving a field u = u(x, t) on Ω × [0, T] that satisfy the convection-diffusion
equation

ρ
∂u

∂t
+ κ(~a · ∇)u− µ∆u = f on Ω× [0, T], (7.1)

the initial condition
u(x, 0) = u0(x)

for every x ∈ Ω, and the boundary conditions

u = 0 on ΓD × [0, T] (7.2)

and
µ
∂u

∂n
= α(g − u) + q on ΓN × [0, T], (7.3)

with ΓD ∪ ΓN giving the boundary of Ω. The problem specification therefore involves giving the body
Ω ⊂ Rd (with d ∈ {1, 2, 3}) and the final time T , the initial state u0, the source data f, g, q and α, material
parameters ρ, κ and µ, and the vector field ~a.

This example case is thus

• evolutionary via the presence of the time derivative term

• parameter dependent via scalars ρ : Ω× R→ R, µ : Ω× R→ R and a vector ~a : Ω× R→ Rd

Taken that the vector field ~a may describe a solution to another PDE model, our treatment given in the
following can also be considered to imitate the solver development when an interaction between different
PDE models is taken into account by employing the standard segregated solution strategy of Elmer (cf. the
Chapter 1 of ElmerSolver Manual).

7.2 Obtaining a discrete version of the model
In the following, we describe basic steps for obtaining the discrete version of a PDE model which can then
be implemented by making use of a collection of standard Elmer utilities.

CSC – IT Center for Science

7. Partial Differential Equations 13

Step I: Semi-discretization in time. Implicit time discretization is usually applied in Elmer. For example,
in the case of the backward Euler method, we start by replacing (7.1) by the time-discretized version

ρ
un+1

∆t
+ κ(~a · ∇)un+1 − µ∆un+1 = fn+1 + ρ

un

∆t
, (7.4)

where ∆t is the time step size for advancing from time t = tn to tn+1 = tn + ∆t.

Step II: Weak formulation. To obtain a version of the semi-discrete problem which is suitable for the
spatial discretization using finite elements, the weak formulation of the semi-discrete problem is first written.
In the case of the example case (7.4) we are lead to seeking a sufficiently smooth un+1 ∈ X such that∫

Ω

ρ
un+1

∆t
v dΩ +

∫
Ω

κ(~a · ∇)un+1v dΩ +

∫
Ω

µ∇un+1 · ∇v dΩ +

∫
ΓN

αun+1v dS

=

∫
Ω

fn+1v dΩ +

∫
Ω

ρ
un

∆t
v dΩ +

∫
ΓN

αgv dS +

∫
ΓN

qv dS

(7.5)

for any v ∈ X . The right choice of the solution space X generally depends on the PDE model considered.
Here we take X ⊂ H1(Ω) so that X contains square-integrable functions over Ω whose all first partial
derivatives also are square-integrable. In addition, any u ∈ X is required to satisfy the constraint (7.2).

Step III: Finite element approximation. To obtain the spatial discretization via applying the Galerkin FE
approximation, we divide Ω into finite elements and introduce a set of mesh dependent finite element basis
functions φj such thatXh = span{φ1, φ2, . . . , φN} ⊂ X . The approximate solution is then sought from the
space Xh as a linear combination of the basis functions and determined from a finite-dimensional version of
the weak formulation. In the case of the example problem (7.5) we therefore seek

un+1
h =

N∑
i=1

un+1
i φi (un+1

i ∈ R)

such that∫
Ω

ρh
un+1
h

∆t
vh dΩ +

∫
Ω

κh(~ah · ∇)un+1
h vh dΩ +

∫
Ω

µh∇un+1
h · ∇vh dΩ +

∫
ΓN

αhu
n+1
h vh dS

=

∫
Ω

fn+1
h vh dΩ +

∫
Ω

ρh
un

∆t
vh dΩ +

∫
ΓN

αhghvh dS +

∫
ΓN

qhvh dS

(7.6)

for any vh ∈ Xh. The use of a subscript h in conjunction with the input data indicates that typically finite
element interpolation is also employed in order to approximate the input data.

Step IV: Linearization. Generally the fully discrete problem resulting from the time and spatial discretiza-
tion leads to solving a nonlinear system of algebraic equations. In such case, a nonlinear iteration is usually
employed in order to obtain a solution to the nonlinear problem. The above treatment has nevertheless
avoided the discussion of nonlinearities. In the current version only fixed value iteration is possible.

We conclude that the fully discretized (and potentially linearized) version of the PDE model finally leads
us to solving linear algebra problems

(
1

∆t
M +K)Un+1 = F +

1

∆t
MUn (7.7)

where the solution vectorUn+1 contains the coefficients in the finite element expansion of the solution, while
M and K = K are referred to as the scaled mass matrix (with ρ acting as a scaling factor) and the stationary

CSC – IT Center for Science

7. Partial Differential Equations 14

stiffness matrix, respectively. The entries of these matrices and the stationary part F of the right-hand side
vector are computed as

Mij =

∫
Ω

ρhφjφi dΩ

Kij =

∫
Ω

κh(~ah · ∇)φjφi dΩ +

∫
Ω

µh∇φj · ∇φi dΩ +

∫
ΓN

αhφjφi dS

Fi =

∫
Ω

fn+1
h φi dΩ +

∫
ΓN

αhghφi dS +

∫
ΓN

qhφi dS.

(7.8)

7.3 Implementation
In practice, the entries of the linear system resulting from the finite element approximation are computed
by calculating contributions elementwise and assembling the resulting element contributions into the actual
global linear system. In Elmer the book-keeping which is required in the implementation of this strategy so
that the elementwise contributions are added into the correct locations of the global system is basically auto-
mated. The treatment of contributions relating to the presence of time derivatives is standardized similarly.
Thus, the only low-level instructions relating to the implementation of a PDE solver are typically associated
with generating the element-level versions of the (scaled) mass matrix, the stationary stiffness matrix and
the stationary part of the right-hand side vector.

If ψi are element basis functions such that they coincide with the non-trivial restrictions of the global
basis functions on the element E considered, the creation of the example system (7.6) requires that a routine
for generating the element-level versions of (7.8) defined as

ME
ij =

∫
E

ρhψjψi dΩ,

KE
ij =

∫
E

κh(~ah · ∇)ψjψi dΩ +

∫
E

µh∇ψj · ∇ψi dΩ +

∫
ΓN

αhψjψi dS,

FE
i =

∫
E

fn+1
h ψi dΩ +

∫
ΓN

αhghψi dS +

∫
ΓN

qhψi dS

(7.9)

is written. The integrals over the elements are evaluated by integrating over a fixed reference element Ê. For
example, given an element mapping fE : Ê → E, the element mass matrix is computed as

ME
ij =

∫
Ê

ρh(fE(x̂)) ψi(fE(x̂)) ψj(fE(x̂)) |JE(x̂)| dΩ̂

where |JE | is the determinant of the Jacobian matrix of fE . In most cases, fE is either an affine or isopara-
metric map from the reference triangle, square, tetrahedron, hexahedron, etc., into the actual element. Fi-
nally, the integral over the reference element is computed numerically with an appropriate quadrature, so
that

ME
ij =

NG∑
k=1

wk ρh(fE(x̂k)) ψi(fE(x̂k)) ψj(fE(x̂k)) |JE(x̂k)|

where x̂k are the integration points and wk are the integration weights. Elmer uses the Gauss quadrature by
default.

To sum up, a PDE solver can be implemented by creating a separate software module which contains the
assembly loop over the elements and, if the problem is nonlinear, instructions for performing the nonlinear
iteration. In addition, it usually contains certain standard high-level subroutine calls for performing such
tasks as setting boundary conditions and solving the linear systems assembled.

CSC – IT Center for Science

7. Partial Differential Equations 15

If the consideration of the nonlinear iteration loop is now omitted for the simplicity of presentation, in the
case of our model PDE problem the body of the solver code, which is encapsulated into a subroutine having
a standard set of arguments and now given the name AdvDiffSolver, may simply consist of the following
instructions:

!--
SUBROUTINE AdvDiffSolver(Model,Solver,dt,TransientSimulation)
!--

USE DefUtils
IMPLICIT NONE

!--
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: TransientSimulation

!--
! Local variables
!--

...
!--

ElementCount = GetNOFActive() ! Obtain the count of volume elements
CALL DefaultInitialize() ! Perform standard initialization

DO t=1,ElementCount
Element => GetActiveElement(t) ! Gives a pointer to the element processed
n = GetElementNOFNodes() ! The count of Lagrange basis functions
nd = GetElementNOFDOFs() ! The count of actual basis functions

CALL IntegrateAndAssemble(Element, n, nd)
END DO

CALL DefaultFinishBulkAssembly() ! To finalize assembly process over a volume

ElementCount = GetNOFBoundaryElements() ! Obtain the count of elements decribing the boundary
DO t=1,ElementCount

Element => GetBoundaryElement(t) ! Gives a pointer to the element processed
IF(ActiveBoundaryElement()) THEN

n = GetElementNOFNodes()
nd = GetElementNOFDOFs()
CALL IntegrateAndAssembleOverBoundary(Element, n, nd)

END IF
END DO
CALL DefaultFinishBoundaryAssembly() ! To finalize assembly process over the boundary

CALL DefaultFinishAssembly() ! To finalize the entire assembly process
CALL DefaultDirichletBCs() ! Set Dirichlet boundary conditions
Norm = DefaultSolve() ! Solve the linear system assembled

CONTAINS
!--
SUBROUTINE IntegrateAndAssemble(Element, n, nd)
!--
...
END SUBROUTINE IntegrateAndAssemble

!--
SUBROUTINE IntegrateAndAssembleOverBoundary(Element, n, nd)
!--
...
END SUBROUTINE IntegrateAndAssembleOverBoundary

!--
END SUBROUTINE AdvDiffSolver
!--

It should be noted that the specification of the element matrices and vectors and performing their assembly
is here encapsulated into the contained subroutines which remain to be detailed. Otherwise we employ
high-level utilities that are usually applied similarly regardless of details which are specific to a PDE model.

Considering the implementation of the subroutine IntegrateAndAssemble(Element,n,nd), we first in-
troduce the following local variables

REAL(KIND=dp) :: MASS(nd,nd), STIFF(nd,nd), FORCE(nd)
REAL(KIND=dp) :: Basis(nd), dBasisdx(nd,3), DetJ, Weight

INTEGER :: dim

LOGICAL :: Stat, Found

CSC – IT Center for Science

7. Partial Differential Equations 16

TYPE(GaussIntegrationPoints_t) :: IP

TYPE(ValueList_t), POINTER :: BodyForce

TYPE(Nodes_t) :: Nodes
SAVE Nodes

which are useful for implementing nearly any solver. We note that the argument nd provides the right
parameter for specifying the sizes of the element mass matrix MASS and stationary stiffness matrix STIFF as
well as the associated right-hand side vector FORCE. On the other hand, the variables Nodes and IP may then
be used in the subroutine body to obtain information about element nodes and the Gauss quadrature:

CALL GetElementNodes(Nodes)
IP = GaussPoints(Element)

The values of the (H1-regular) basis functions and their derivatives with respect to the global coordinates xj
as well as the determinant of the Jacobian matrix in an integration point may also be obtained by creating a
loop over the Gauss points as

INTEGER :: t

DO t=1,IP % n
stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx)
...

END DO

In order to create the finite element expansion of an input parameter or the source data, we need to create
a vector of the associated scalar coefficients prior to entering into the loop over the integration points. It
should be noted that the classic Lagrange interpolation basis functions λi, i = 1, . . . , n, are applied in this
connection, with the available number of these basis functions defined by the program variable n above.
In cases of discretizations based on the H1-regular basis functions we generally have λi = ψi, while ψi,
n < i ≤ nd may be additional basis functions which are not derived from the classic Lagrange interpolation
property (they may be hierarchic basis functions corresponding to the p-version of the finite element method).
For example, to write the expansions

fh =

n∑
i

fiλi, ρh =

n∑
i

ρiλi

corresponding to the source data f and the material parameter ρ which are assumed to be referred to as the
’Source’ and ’Density’ in the solver input file, we may create the vectors LOAD and TimeDerivativePar
which contain the coefficients fi and ρi as

REAL(KIND=dp) :: LOAD(n), TimeDerivativePar(n)

TimeDerivativePar(1:n) = GetReal(GetMaterial(), ’Density’, Found)

BodyForce => GetBodyForce()
IF (ASSOCIATED(BodyForce)) &

Load(1:n) = GetReal(BodyForce, ’Source’, Found)

The values of fh and ρh at an integration point are then obtained in the quadrature loop as

LoadAtIP = SUM(Basis(1:n) * LOAD(1:n))
rho = SUM(Basis(1:n)*TimeDerivativePar(1:n))

If we assume that the vector DiffusionPar contains the current coefficients for approximating the diffu-
sion parameter µ, a complete set of instructions for integrating the scaled mass matrix, the part of the stiffness
matrix corresponding to the diffusion term and the part of the element right-hand side vector corresponding
to the body source finally reads

!--
SUBROUTINE IntegrateAndAssemble(Element, n, nd)
!--
INTEGER :: n, nd
TYPE(Element_t), POINTER :: Element

!--
REAL(KIND=dp) :: MASS(nd,nd), STIFF(nd,nd), FORCE(nd)
...

!--
CALL GetElementNodes(Nodes)
IP = GaussPoints(Element)

CSC – IT Center for Science

7. Partial Differential Equations 17

TimeDerivativePar(1:n) = GetReal(GetMaterial(), ’Density’, Found)
BodyForce => GetBodyForce()
IF (ASSOCIATED(BodyForce)) &

Load(1:n) = GetReal(BodyForce, ’Source’, Found)

dim = CoordinateSystemDimension()
MASS = 0._dp
STIFF = 0._dp
FORCE = 0._dp

DO t=1,IP % n
stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx)

LoadAtIP = SUM(Basis(1:n) * LOAD(1:n))
rho = SUM(Basis(1:n)*TimeDerivativePar(1:n))
D = SUM(Basis(1:n)*DiffusionPar(1:n))

Weight = IP % s(t) * DetJ

STIFF(1:nd,1:nd) = STIFF(1:nd,1:nd) + Weight * &
D * MATMUL(dBasisdx, TRANSPOSE(dBasisdx))

DO p=1,nd
DO q=1,nd
MASS(p,q) = MASS(p,q) + Weight * rho * Basis(q) * Basis(p)

END DO
END DO

FORCE(1:nd) = FORCE(1:nd) + Weight * LoadAtIP * Basis(1:nd)
END DO

IF(TransientSimulation) CALL Default1stOrderTime(MASS,STIFF,FORCE)
CALL DefaultUpdateEquations(STIFF,FORCE)

END SUBROUTINE IntegrateAndAssemble

Here the general subroutines Default1stOrderTime and DefaultUpdateEquations are used after the numer-
ical integration to first include the effect of the first-order time derivative and then to assemble the element
contributions to the global linear system. Now, only a small modification would be needed in order to
implement the convective term.

The subroutine IntegrateAndAssembleOverBoundary(Element, n, nd) can be written in a similar way.
To obtain a ready code, see the directory ../trunk/fem/tests/ModelPDE contained in the source
code repository of Elmer.

CSC – IT Center for Science

	Table of Contents
	User defined functions
	Calling convention
	Compilation

	User defined solvers
	Calling convention
	Compilation
	Solver Input File

	Reading data from SIF
	Reading constant scalars
	Reading constant vectors
	Reading constant matrices

	Managing variables
	Handle to variables
	Permutation vector of variable
	Vector valued field variables
	Global variables
	Creating variables

	Standard IO and error handling
	Info – Writing information on console
	Error and Warning – Handling exceptions

	Mesh files
	Creating mesh files manually

	Partial Differential Equations
	Model problem
	Obtaining a discrete version of the model
	Implementation

