
Network Working Group R. Braden
Request for Comments: 1071 ISI
 D. Borman
 Cray Research
 C. Partridge
 BBN Laboratories
 September 1988

 Computing the Internet Checksum

Status of This Memo

 This memo summarizes techniques and algorithms for efficiently
 computing the Internet checksum. It is not a standard, but a set of
 useful implementation techniques. Distribution of this memo is
 unlimited.

1. Introduction

 This memo discusses methods for efficiently computing the Internet
 checksum that is used by the standard Internet protocols IP, UDP, and
 TCP.

 An efficient checksum implementation is critical to good performance.
 As advances in implementation techniques streamline the rest of the
 protocol processing, the checksum computation becomes one of the
 limiting factors on TCP performance, for example. It is usually
 appropriate to carefully hand-craft the checksum routine, exploiting
 every machine-dependent trick possible; a fraction of a microsecond
 per TCP data byte can add up to a significant CPU time savings
 overall.

 In outline, the Internet checksum algorithm is very simple:

 (1) Adjacent octets to be checksummed are paired to form 16-bit
 integers, and the 1’s complement sum of these 16-bit integers is
 formed.

 (2) To generate a checksum, the checksum field itself is cleared,
 the 16-bit 1’s complement sum is computed over the octets
 concerned, and the 1’s complement of this sum is placed in the
 checksum field.

 (3) To check a checksum, the 1’s complement sum is computed over the
 same set of octets, including the checksum field. If the result
 is all 1 bits (-0 in 1’s complement arithmetic), the check
 succeeds.

 Suppose a checksum is to be computed over the sequence of octets

Braden, Borman, & Partridge [Page 1]

RFC 1071 Computing the Internet Checksum September 1988

 A, B, C, D, ... , Y, Z. Using the notation [a,b] for the 16-bit
 integer a*256+b, where a and b are bytes, then the 16-bit 1’s
 complement sum of these bytes is given by one of the following:

 [A,B] +’ [C,D] +’ ... +’ [Y,Z] [1]

 [A,B] +’ [C,D] +’ ... +’ [Z,0] [2]

 where +’ indicates 1’s complement addition. These cases
 correspond to an even or odd count of bytes, respectively.

 On a 2’s complement machine, the 1’s complement sum must be
 computed by means of an "end around carry", i.e., any overflows
 from the most significant bits are added into the least
 significant bits. See the examples below.

 Section 2 explores the properties of this checksum that may be
 exploited to speed its calculation. Section 3 contains some
 numerical examples of the most important implementation
 techniques. Finally, Section 4 includes examples of specific
 algorithms for a variety of common CPU types. We are grateful
 to Van Jacobson and Charley Kline for their contribution of
 algorithms to this section.

 The properties of the Internet checksum were originally
 discussed by Bill Plummer in IEN-45, entitled "Checksum Function
 Design". Since IEN-45 has not been widely available, we include
 it as an extended appendix to this RFC.

 2. Calculating the Checksum

 This simple checksum has a number of wonderful mathematical
 properties that may be exploited to speed its calculation, as we
 will now discuss.

 (A) Commutative and Associative

 As long as the even/odd assignment of bytes is respected, the
 sum can be done in any order, and it can be arbitrarily split
 into groups.

 For example, the sum [1] could be split into:

 ([A,B] +’ [C,D] +’ ... +’ [J,0])

 +’ ([0,K] +’ ... +’ [Y,Z]) [3]

Braden, Borman, & Partridge [Page 2]

RFC 1071 Computing the Internet Checksum September 1988

 (B) Byte Order Independence

 The sum of 16-bit integers can be computed in either byte order.
 Thus, if we calculate the swapped sum:

 [B,A] +’ [D,C] +’ ... +’ [Z,Y] [4]

 the result is the same as [1], except the bytes are swapped in
 the sum! To see why this is so, observe that in both orders the
 carries are the same: from bit 15 to bit 0 and from bit 7 to bit
 8. In other words, consistently swapping bytes simply rotates
 the bits within the sum, but does not affect their internal
 ordering.

 Therefore, the sum may be calculated in exactly the same way
 regardless of the byte order ("big-endian" or "little-endian")
 of the underlaying hardware. For example, assume a "little-
 endian" machine summing data that is stored in memory in network
 ("big-endian") order. Fetching each 16-bit word will swap
 bytes, resulting in the sum [4]; however, storing the result
 back into memory will swap the sum back into network byte order.

 Byte swapping may also be used explicitly to handle boundary
 alignment problems. For example, the second group in [3] can be
 calculated without concern to its odd/even origin, as:

 [K,L] +’ ... +’ [Z,0]

 if this sum is byte-swapped before it is added to the first
 group. See the example below.

 (C) Parallel Summation

 On machines that have word-sizes that are multiples of 16 bits,
 it is possible to develop even more efficient implementations.
 Because addition is associative, we do not have to sum the
 integers in the order they appear in the message. Instead we
 can add them in "parallel" by exploiting the larger word size.

 To compute the checksum in parallel, simply do a 1’s complement
 addition of the message using the native word size of the
 machine. For example, on a 32-bit machine we can add 4 bytes at
 a time: [A,B,C,D]+’... When the sum has been computed, we "fold"
 the long sum into 16 bits by adding the 16-bit segments. Each
 16-bit addition may produce new end-around carries that must be
 added.

 Furthermore, again the byte order does not matter; we could
 instead sum 32-bit words: [D,C,B,A]+’... or [B,A,D,C]+’... and
 then swap the bytes of the final 16-bit sum as necessary. See
 the examples below. Any permutation is allowed that collects

Braden, Borman, & Partridge [Page 3]

RFC 1071 Computing the Internet Checksum September 1988

 all the even-numbered data bytes into one sum byte and the odd-
 numbered data bytes into the other sum byte.

 There are further coding techniques that can be exploited to speed up
 the checksum calculation.

 (1) Deferred Carries

 Depending upon the machine, it may be more efficient to defer
 adding end-around carries until the main summation loop is
 finished.

 One approach is to sum 16-bit words in a 32-bit accumulator, so
 the overflows build up in the high-order 16 bits. This approach
 typically avoids a carry-sensing instruction but requires twice
 as many additions as would adding 32-bit segments; which is
 faster depends upon the detailed hardware architecture.

 (2) Unwinding Loops

 To reduce the loop overhead, it is often useful to "unwind" the
 inner sum loop, replicating a series of addition commands within
 one loop traversal. This technique often provides significant
 savings, although it may complicate the logic of the program
 considerably.

 (3) Combine with Data Copying

 Like checksumming, copying data from one memory location to
 another involves per-byte overhead. In both cases, the
 bottleneck is essentially the memory bus, i.e., how fast the
 data can be fetched. On some machines (especially relatively
 slow and simple micro-computers), overhead can be significantly
 reduced by combining memory-to-memory copy and the checksumming,
 fetching the data only once for both.

 (4) Incremental Update

 Finally, one can sometimes avoid recomputing the entire checksum
 when one header field is updated. The best-known example is a
 gateway changing the TTL field in the IP header, but there are
 other examples (for example, when updating a source route). In
 these cases it is possible to update the checksum without
 scanning the message or datagram.

 To update the checksum, simply add the differences of the
 sixteen bit integers that have been changed. To see why this
 works, observe that every 16-bit integer has an additive inverse
 and that addition is associative. From this it follows that
 given the original value m, the new value m’, and the old

Braden, Borman, & Partridge [Page 4]

RFC 1071 Computing the Internet Checksum September 1988

 checksum C, the new checksum C’ is:

 C’ = C + (-m) + m’ = C + (m’ - m)

3. Numerical Examples

 We now present explicit examples of calculating a simple 1’s
 complement sum on a 2’s complement machine. The examples show the
 same sum calculated byte by bye, by 16-bits words in normal and
 swapped order, and 32 bits at a time in 3 different orders. All
 numbers are in hex.

 Byte-by-byte "Normal" Swapped
 Order Order

 Byte 0/1: 00 01 0001 0100
 Byte 2/3: f2 03 f203 03f2
 Byte 4/5: f4 f5 f4f5 f5f4
 Byte 6/7: f6 f7 f6f7 f7f6
 --- --- ----- -----
 Sum1: 2dc 1f0 2ddf0 1f2dc

 dc f0 ddf0 f2dc
 Carrys: 1 2 2 1
 -- -- ---- ----
 Sum2: dd f2 ddf2 f2dd

 Final Swap: dd f2 ddf2 ddf2

 Byte 0/1/2/3: 0001f203 010003f2 03f20100
 Byte 4/5/6/7: f4f5f6f7 f5f4f7f6 f7f6f5f4
 -------- -------- --------
 Sum1: 0f4f7e8fa 0f6f4fbe8 0fbe8f6f4

 Carries: 0 0 0

 Top half: f4f7 f6f4 fbe8
 Bottom half: e8fa fbe8 f6f4
 ----- ----- -----
 Sum2: 1ddf1 1f2dc 1f2dc

 ddf1 f2dc f2dc
 Carrys: 1 1 1
 ---- ---- ----
 Sum3: ddf2 f2dd f2dd

 Final Swap: ddf2 ddf2 ddf2

Braden, Borman, & Partridge [Page 5]

RFC 1071 Computing the Internet Checksum September 1988

 Finally, here an example of breaking the sum into two groups, with
 the second group starting on a odd boundary:

 Byte-by-byte Normal
 Order

 Byte 0/1: 00 01 0001
 Byte 2/ : f2 (00) f200
 --- --- -----
 Sum1: f2 01 f201

 Byte 4/5: 03 f4 03f4
 Byte 6/7: f5 f6 f5f6
 Byte 8/: f7 (00) f700
 --- --- -----
 Sum2: 1f0ea

 Sum2: f0ea
 Carry: 1

 Sum3: f0eb

 Sum1: f201
 Sum3 byte swapped: ebf0

 Sum4: 1ddf1

 Sum4: ddf1
 Carry: 1

 Sum5: ddf2

Braden, Borman, & Partridge [Page 6]

RFC 1071 Computing the Internet Checksum September 1988

4. Implementation Examples

 In this section we show examples of Internet checksum implementation
 algorithms that have been found to be efficient on a variety of
 CPU’s. In each case, we show the core of the algorithm, without
 including environmental code (e.g., subroutine linkages) or special-
 case code.

4.1 "C"

 The following "C" code algorithm computes the checksum with an inner
 loop that sums 16-bits at a time in a 32-bit accumulator.

 in 6
 {
 /* Compute Internet Checksum for "count" bytes
 * beginning at location "addr".
 */
 register long sum = 0;

 while(count > 1) {
 /* This is the inner loop */
 sum += * (unsigned short) addr++;
 count -= 2;
 }

 /* Add left-over byte, if any */
 if(count > 0)
 sum += * (unsigned char *) addr;

 /* Fold 32-bit sum to 16 bits */
 while (sum>>16)
 sum = (sum & 0xffff) + (sum >> 16);

 checksum = ˜sum;
 }

Braden, Borman, & Partridge [Page 7]

RFC 1071 Computing the Internet Checksum September 1988

4.2 Motorola 68020

 The following algorithm is given in assembler language for a Motorola
 68020 chip. This algorithm performs the sum 32 bits at a time, and
 unrolls the loop with 16 replications. For clarity, we have omitted
 the logic to add the last fullword when the length is not a multiple
 of 4. The result is left in register d0.

 With a 20MHz clock, this routine was measured at 134 usec/kB summing
 random data. This algorithm was developed by Van Jacobson.

 movl d1,d2
 lsrl #6,d1 | count/64 = # loop traversals
 andl #0x3c,d2 | Then find fractions of a chunk
 negl d2
 andb #0xf,cc | Clear X (extended carry flag)

 jmp pc@(2$-.-2:b,d2) | Jump into loop

 1$: | Begin inner loop...

 movl a0@+,d2 | Fetch 32-bit word
 addxl d2,d0 | Add word + previous carry
 movl a0@+,d2 | Fetch 32-bit word
 addxl d2,d0 | Add word + previous carry

 | ... 14 more replications
 2$:
 dbra d1,1$ | (NB- dbra doesn’t affect X)

 movl d0,d1 | Fold 32 bit sum to 16 bits
 swap d1 | (NB- swap doesn’t affect X)
 addxw d1,d0
 jcc 3$
 addw #1,d0
 3$:
 andl #0xffff,d0

Braden, Borman, & Partridge [Page 8]

RFC 1071 Computing the Internet Checksum September 1988

4.3 Cray

 The following example, in assembler language for a Cray CPU, was
 contributed by Charley Kline. It implements the checksum calculation
 as a vector operation, summing up to 512 bytes at a time with a basic
 summation unit of 32 bits. This example omits many details having to
 do with short blocks, for clarity.

 Register A1 holds the address of a 512-byte block of memory to
 checksum. First two copies of the data are loaded into two vector
 registers. One is vector-shifted right 32 bits, while the other is
 vector-ANDed with a 32 bit mask. Then the two vectors are added
 together. Since all these operations chain, it produces one result
 per clock cycle. Then it collapses the result vector in a loop that
 adds each element to a scalar register. Finally, the end-around
 carry is performed and the result is folded to 16-bits.

 EBM
 A0 A1
 VL 64 use full vectors
 S1 <32 form 32-bit mask from the right.
 A2 32
 V1 ,A0,1 load packet into V1
 V2 S1&V1 Form right-hand 32-bits in V2.
 V3 V1>A2 Form left-hand 32-bits in V3.
 V1 V2+V3 Add the two together.
 A2 63 Prepare to collapse into a scalar.
 S1 0
 S4 <16 Form 16-bit mask from the right.
 A4 16
 CK$LOOP S2 V1,A2
 A2 A2-1
 A0 A2
 S1 S1+S2
 JAN CK$LOOP
 S2 S1&S4 Form right-hand 16-bits in S2
 S1 S1>A4 Form left-hand 16-bits in S1
 S1 S1+S2
 S2 S1&S4 Form right-hand 16-bits in S2
 S1 S1>A4 Form left-hand 16-bits in S1
 S1 S1+S2
 S1 #S1 Take one’s complement
 CMR At this point, S1 contains the checksum.

Braden, Borman, & Partridge [Page 9]

RFC 1071 Computing the Internet Checksum September 1988

4.4 IBM 370

 The following example, in assembler language for an IBM 370 CPU, sums
 the data 4 bytes at a time. For clarity, we have omitted the logic
 to add the last fullword when the length is not a multiple of 4, and
 to reverse the bytes when necessary. The result is left in register
 RCARRY.

 This code has been timed on an IBM 3090 CPU at 27 usec/KB when
 summing all one bits. This time is reduced to 24.3 usec/KB if the
 trouble is taken to word-align the addends (requiring special cases
 at both the beginning and the end, and byte-swapping when necessary
 to compensate for starting on an odd byte).

 * Registers RADDR and RCOUNT contain the address and length of
 * the block to be checksummed.
 *
 * (RCARRY, RSUM) must be an even/odd register pair.
 * (RCOUNT, RMOD) must be an even/odd register pair.
 *
 CHECKSUM SR RSUM,RSUM Clear working registers.
 SR RCARRY,RCARRY
 LA RONE,1 Set up constant 1.
 *
 SRDA RCOUNT,6 Count/64 to RCOUNT.
 AR RCOUNT,RONE +1 = # times in loop.
 SRL RMOD,26 Size of partial chunk to RMOD.
 AR RADDR,R3 Adjust addr to compensate for
 S RADDR,=F(64) jumping into the loop.
 SRL RMOD,1 (RMOD/4)*2 is halfword index.
 LH RMOD,DOPEVEC9(RMOD) Use magic dope-vector for offset,
 B LOOP(RMOD) and jump into the loop...
 *
 * Inner loop:
 *
 LOOP AL RSUM,0(,RADDR) Add Logical fullword
 BC 12,*+6 Branch if no carry
 AR RCARRY,RONE Add 1 end-around
 AL RSUM,4(,RADDR) Add Logical fullword
 BC 12,*+6 Branch if no carry
 AR RCARRY,RONE Add 1 end-around
 *
 * ... 14 more replications ...
 *
 A RADDR,=F’64’ Increment address ptr
 BCT RCOUNT,LOOP Branch on Count
 *
 * Add Carries into sum, and fold to 16 bits
 *
 ALR RCARRY,RSUM Add SUM and CARRY words
 BC 12,*+6 and take care of carry

Braden, Borman, & Partridge [Page 10]

RFC 1071 Computing the Internet Checksum September 1988

 AR RCARRY,RONE
 SRDL RCARRY,16 Fold 32-bit sum into
 SRL RSUM,16 16-bits
 ALR RCARRY,RSUM
 C RCARRY,=X’0000FFFF’ and take care of any
 BNH DONE last carry
 S RCARRY,=X’0000FFFF’
 DONE X RCARRY,=X’0000FFFF’ 1’s complement

Braden, Borman, & Partridge [Page 11]

RFC 1071 Computing the Internet Checksum September 1988

 IEN 45
 Section 2.4.4.5

 TCP Checksum Function Design

 William W. Plummer

 Bolt Beranek and Newman, Inc.
 50 Moulton Street
 Cambridge MA 02138

 5 June 1978

Braden, Borman, & Partridge [Page 12]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 1. Introduction

 Checksums are included in packets in order that errors
 encountered during transmission may be detected. For Internet
 protocols such as TCP [1,9] this is especially important because
 packets may have to cross wireless networks such as the Packet
 Radio Network [2] and Atlantic Satellite Network [3] where
 packets may be corrupted. Internet protocols (e.g., those for
 real time speech transmission) can tolerate a certain level of
 transmission errors and forward error correction techniques or
 possibly no checksum at all might be better. The focus in this
 paper is on checksum functions for protocols such as TCP where
 the required reliable delivery is achieved by retransmission.

 Even if the checksum appears good on a message which has been
 received, the message may still contain an undetected error. The
 probability of this is bounded by 2**(-C) where C is the number
 of checksum bits. Errors can arise from hardware (and software)
 malfunctions as well as transmission errors. Hardware induced
 errors are usually manifested in certain well known ways and it
 is desirable to account for this in the design of the checksum
 function. Ideally no error of the "common hardware failure" type
 would go undetected.

 An example of a failure that the current checksum function
 handles successfully is picking up a bit in the network interface
 (or I/O buss, memory channel, etc.). This will always render the
 checksum bad. For an example of how the current function is
 inadequate, assume that a control signal stops functioning in the
 network interface and the interface stores zeros in place of the
 real data. These "all zero" messages appear to have valid
 checksums. Noise on the "There’s Your Bit" line of the ARPANET
 Interface [4] may go undetected because the extra bits input may
 cause the checksum to be perturbed (i.e., shifted) in the same
 way as the data was.

 Although messages containing undetected errors will occasionally
 be passed to higher levels of protocol, it is likely that they
 will not make sense at that level. In the case of TCP most such
 messages will be ignored, but some could cause a connection to be
 aborted. Garbled data could be viewed as a problem for a layer
 of protocol above TCP which itself may have a checksuming scheme.

 This paper is the first step in design of a new checksum function
 for TCP and some other Internet protocols. Several useful
 properties of the current function are identified. If possible

 - 1 -

Braden, Borman, & Partridge [Page 13]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 these should be retained in any new function. A number of
 plausible checksum schemes are investigated. Of these only the
 "product code" seems to be simple enough for consideration.

 2. The Current TCP Checksum Function

 The current function is oriented towards sixteen-bit machines
 such as the PDP-11 but can be computed easily on other machines
 (e.g., PDP-10). A packet is thought of as a string of 16-bit
 bytes and the checksum function is the one’s complement sum (add
 with end-around carry) of those bytes. It is the one’s
 complement of this sum which is stored in the checksum field of
 the TCP header. Before computing the checksum value, the sender
 places a zero in the checksum field of the packet. If the
 checksum value computed by a receiver of the packet is zero, the
 packet is assumed to be valid. This is a consequence of the
 "negative" number in the checksum field exactly cancelling the
 contribution of the rest of the packet.

 Ignoring the difficulty of actually evaluating the checksum
 function for a given packet, the way of using the checksum
 described above is quite simple, but it assumes some properties
 of the checksum operator (one’s complement addition, "+" in what
 follows):

 (P1) + is commutative. Thus, the order in which
 the 16-bit bytes are "added" together is
 unimportant.

 (P2) + has at least one identity element (The
 current function has two: +0 and -0). This
 allows the sender to compute the checksum
 function by placing a zero in the packet checksum
 field before computing the value.

 (P3) + has an inverse. Thus, the receiver may
 evaluate the checksum function and expect a zero.

 (P4) + is associative, allowing the checksum field
 to be anywhere in the packet and the 16-bit bytes
 to be scanned sequentially.

 Mathematically, these properties of the binary operation "+" over
 the set of 16-bit numbers forms an Abelian group [5]. Of course,
 there are many Abelian groups but not all would be satisfactory
 for use as checksum operators. (Another operator readily

 - 2 -

Braden, Borman, & Partridge [Page 14]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 available in the PDP-11 instruction set that has all of these
 properties is exclusive-OR, but XOR is unsatisfactory for other
 reasons.)

 Albeit imprecise, another property which must be preserved in any
 future checksum scheme is:

 (P5) + is fast to compute on a variety of machines
 with limited storage requirements.

 The current function is quite good in this respect. On the
 PDP-11 the inner loop looks like:

 LOOP: ADD (R1)+,R0 ; Add the next 16-bit byte
 ADC R0 ; Make carry be end-around
 SOB R2,LOOP ; Loop over entire packet.

 (4 memory cycles per 16-bit byte)

 On the PDP-10 properties P1-4 are exploited further and two
 16-bit bytes per loop are processed:

 LOOP: ILDB THIS,PTR ; Get 2 16-bit bytes
 ADD SUM,THIS ; Add into current sum
 JUMPGE SUM,CHKSU2 ; Jump if fewer than 8 carries
 LDB THIS,[POINT 20,SUM,19] ; Get left 16 and carries
 ANDI SUM,177777 ; Save just low 16 here
 ADD SUM,THIS ; Fold in carries
 CHKSU2: SOJG COUNT,LOOP ; Loop over entire packet

 (3.1 memory cycles per 16-bit byte)

 The "extra" instruction in the loops above are required to
 convert the two’s complement ADD instruction(s) into a one’s
 complement add by making the carries be end-around. One’s
 complement arithmetic is better than two’s complement because it
 is equally sensitive to errors in all bit positions. If two’s
 complement addition were used, an even number of 1’s could be
 dropped (or picked up) in the most significant bit channel
 without affecting the value of the checksum. It is just this
 property that makes some sort of addition preferable to a simple
 exclusive-OR which is frequently used but permits an even number
 of drops (pick ups) in any bit channel. RIM10B paper tape format
 used on PDP-10s [10] uses two’s complement add because space for
 the loader program is extremely limited.

 - 3 -

Braden, Borman, & Partridge [Page 15]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 Another property of the current checksum scheme is:

 (P6) Adding the checksum to a packet does not change
 the information bytes. Peterson [6] calls this a
 "systematic" code.

 This property allows intermediate computers such as gateway
 machines to act on fields (i.e., the Internet Destination
 Address) without having to first decode the packet. Cyclical
 Redundancy Checks used for error correction are not systematic
 either. However, most applications of CRCs tend to emphasize
 error detection rather than correction and consequently can send
 the message unchanged, with the CRC check bits being appended to
 the end. The 24-bit CRC used by ARPANET IMPs and Very Distant
 Host Interfaces [4] and the ANSI standards for 800 and 6250 bits
 per inch magnetic tapes (described in [11]) use this mode.

 Note that the operation of higher level protocols are not (by
 design) affected by anything that may be done by a gateway acting
 on possibly invalid packets. It is permissible for gateways to
 validate the checksum on incoming packets, but in general
 gateways will not know how to do this if the checksum is a
 protocol-specific feature.

 A final property of the current checksum scheme which is actually
 a consequence of P1 and P4 is:

 (P7) The checksum may be incrementally modified.

 This property permits an intermediate gateway to add information
 to a packet, for instance a timestamp, and "add" an appropriate
 change to the checksum field of the packet. Note that the
 checksum will still be end-to-end since it was not fully
 recomputed.

 3. Product Codes

 Certain "product codes" are potentially useful for checksuming
 purposes. The following is a brief description of product codes
 in the context of TCP. More general treatment can be found in
 Avizienis [7] and probably other more recent works.

 The basic concept of this coding is that the message (packet) to
 be sent is formed by transforming the original source message and
 adding some "check" bits. By reading this and applying a
 (possibly different) transformation, a receiver can reconstruct

 - 4 -

Braden, Borman, & Partridge [Page 16]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 the original message and determine if it has been corrupted
 during transmission.

 Mo Ms Mr

 ----- ----- -----
 | A | code | 7 | decode | A |
 | B | ==> | 1 | ==> | B |
 | C | | 4 | | C |
 ----- |...| -----
 | 2 | check plus "valid" flag
 ----- info

 Original Sent Reconstructed

 With product codes the transformation is Ms = K * Mo . That is,
 the message sent is simply the product of the original message
 Mo and some well known constant K . To decode, the received
 Ms is divided by K which will yield Mr as the quotient and
 0 as the remainder if Mr is to be considered the same as Mo .

 The first problem is selecting a "good" value for K, the "check
 factor". K must be relatively prime to the base chosen to
 express the message. (Example: Binary messages with K
 incorrectly chosen to be 8. This means that Ms looks exactly
 like Mo except that three zeros have been appended. The only
 way the message could look bad to a receiver dividing by 8 is if
 the error occurred in one of those three bits.)

 For TCP the base R will be chosen to be 2**16. That is, every
 16-bit byte (word on the PDP-11) will be considered as a digit of
 a big number and that number is the message. Thus,

 Mo = SIGMA [Bi * (R**i)] , Bi is i-th byte
 i=0 to N

 Ms = K * Mo

 Corrupting a single digit of Ms will yield Ms’ = Ms +or-
 C*(R**j) for some radix position j . The receiver will compute
 Ms’/K = Mo +or- C(R**j)/K. Since R and K are relatively prime,
 C*(R**j) cannot be any exact multiple of K. Therefore, the
 division will result in a non-zero remainder which indicates that
 Ms’ is a corrupted version of Ms. As will be seen, a good
 choice for K is (R**b - 1), for some b which is the "check
 length" which controls the degree of detection to be had for

 - 5 -

Braden, Borman, & Partridge [Page 17]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 burst errors which affect a string of digits (i.e., 16-bit bytes)
 in the message. In fact b will be chosen to be 1, so K will
 be 2**16 - 1 so that arithmetic operations will be simple. This
 means that all bursts of 15 or fewer bits will be detected.
 According to [7] this choice for b results in the following
 expression for the fraction of undetected weight 2 errors:

 f = 16(k-1)/[32(16k-3) + (6/k)] where k is the message length.

 For large messages f approaches 3.125 per cent as k goes to
 infinity.

 Multiple precision multiplication and division are normally quite
 complex operations, especially on small machines which typically
 lack even single precision multiply and divide operations. The
 exception to this is exactly the case being dealt with here --
 the factor is 2**16 - 1 on machines with a word length of 16
 bits. The reason for this is due to the following identity:

 Q*(R**j) = Q, mod (R-1) 0 <= Q < R

 That is, any digit Q in the selected radix (0, 1, ... R-1)
 multiplied by any power of the radix will have a remainder of Q
 when divided by the radix minus 1.

 Example: In decimal R = 10. Pick Q = 6.

 6 = 0 * 9 + 6 = 6, mod 9
 60 = 6 * 9 + 6 = 6, mod 9
 600 = 66 * 9 + 6 = 6, mod 9 etc.

 More to the point, rem(31415/9) = rem((30000+1000+400+10+5)/9)
 = (3 mod 9) + (1 mod 9) + (4 mod 9) + (1 mod 9) + (5 mod 9)
 = (3+1+4+1+5) mod 9
 = 14 mod 9
 = 5

 So, the remainder of a number divided by the radix minus one can
 be found by simply summing the digits of the number. Since the
 radix in the TCP case has been chosen to be 2**16 and the check
 factor is 2**16 - 1, a message can quickly be checked by summing
 all of the 16-bit words (on a PDP-11), with carries being
 end-around. If zero is the result, the message can be considered
 valid. Thus, checking a product coded message is exactly the
 same complexity as with the current TCP checksum!

 - 6 -

Braden, Borman, & Partridge [Page 18]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 In order to form Ms, the sender must multiply the multiple
 precision "number" Mo by 2**16 - 1. Or, Ms = (2**16)Mo - Mo.
 This is performed by shifting Mo one whole word’s worth of
 precision and subtracting Mo. Since carries must propagate
 between digits, but it is only the current digit which is of
 interest, one’s complement arithmetic is used.

 (2**16)Mo = Mo0 + Mo1 + Mo2 + ... + MoX + 0
 - Mo = - (Mo0 + Mo1 + + MoX)
 --------- ----------------------------------
 Ms = Ms0 + Ms1 + ... - MoX

 A loop which implements this function on a PDP-11 might look
 like:
 LOOP: MOV -2(R2),R0 ; Next byte of (2**16)Mo
 SBC R0 ; Propagate carries from last SUB
 SUB (R2)+,R0 ; Subtract byte of Mo
 MOV R0,(R3)+ ; Store in Ms
 SOB R1,LOOP ; Loop over entire message
 ; 8 memory cycles per 16-bit byte

 Note that the coding procedure is not done in-place since it is
 not systematic. In general the original copy, Mo, will have to
 be retained by the sender for retransmission purposes and
 therefore must remain readable. Thus the MOV R0,(R3)+ is
 required which accounts for 2 of the 8 memory cycles per loop.

 The coding procedure will add exactly one 16-bit word to the
 message since Ms < (2**16)Mo . This additional 16 bits will be
 at the tail of the message, but may be moved into the defined
 location in the TCP header immediately before transmission. The
 receiver will have to undo this to put Ms back into standard
 format before decoding the message.

 The code in the receiver for fully decoding the message may be
 inferred by observing that any word in Ms contains the
 difference between two successive words of Mo minus the carries
 from the previous word, and the low order word contains minus the
 low word of Mo. So the low order (i.e., rightmost) word of Mr is
 just the negative of the low order byte of Ms. The next word of
 Mr is the next word of Ms plus the just computed word of Mr
 plus the carry from that previous computation.

 A slight refinement of the procedure is required in order to
 protect against an all-zero message passing to the destination.
 This will appear to have a valid checksum because Ms’/K = 0/K

 - 7 -

Braden, Borman, & Partridge [Page 19]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 = 0 with 0 remainder. The refinement is to make the coding be
 Ms = K*Mo + C where C is some arbitrary, well-known constant.
 Adding this constant requires a second pass over the message, but
 this will typically be very short since it can stop as soon as
 carries stop propagating. Chosing C = 1 is sufficient in most
 cases.

 The product code checksum must be evaluated in terms of the
 desired properties P1 - P7. It has been shown that a factor of
 two more machine cycles are consumed in computing or verifying a
 product code checksum (P5 satisfied?).

 Although the code is not systematic, the checksum can be verified
 quickly without decoding the message. If the Internet
 Destination Address is located at the least significant end of
 the packet (where the product code computation begins) then it is
 possible for a gateway to decode only enough of the message to
 see this field without having to decode the entire message.
 Thus, P6 is at least partially satisfied. The algebraic
 properties P1 through P4 are not satisfied, but only a small
 amount of computation is needed to account for this -- the
 message needs to be reformatted as previously mentioned.

 P7 is satisfied since the product code checksum can be
 incrementally updated to account for an added word, although the
 procedure is somewhat involved. Imagine that the original
 message has two halves, H1 and H2. Thus, Mo = H1*(R**j) + H2.
 The timestamp word is to be inserted between these halves to form
 a modified Mo’ = H1*(R**(j+1)) + T*(R**j) + H2. Since K has
 been chosen to be R-1, the transmitted message Ms’ = Mo’(R-1).
 Then,

 Ms’ = Ms*R + T(R-1)(R**j) + P2((R-1)**2)

 = Ms*R + T*(R**(j+1)) + T*(R**j) + P2*(R**2) - 2*P2*R - P2

 Recalling that R is 2**16, the word size on the PDP-11,
 multiplying by R means copying down one word in memory. So,
 the first term of Ms’ is simply the unmodified message copied
 down one word. The next term is the new data T added into the
 Ms’ being formed beginning at the (j+1)th word. The addition is
 fairly easy here since after adding in T all that is left is
 propagating the carry, and that can stop as soon as no carry is
 produced. The other terms can be handle similarly.

 - 8 -

Braden, Borman, & Partridge [Page 20]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 4. More Complicated Codes

 There exists a wealth of theory on error detecting and correcting
 codes. Peterson [6] is an excellent reference. Most of these
 "CRC" schemes are designed to be implemented using a shift
 register with a feedback network composed of exclusive-ORs.
 Simulating such a logic circuit with a program would be too slow
 to be useful unless some programming trick is discovered.

 One such trick has been proposed by Kirstein [8]. Basically, a
 few bits (four or eight) of the current shift register state are
 combined with bits from the input stream (from Mo) and the result
 is used as an index to a table which yields the new shift
 register state and, if the code is not systematic, bits for the
 output stream (Ms). A trial coding of an especially "good" CRC
 function using four-bit bytes showed showed this technique to be
 about four times as slow as the current checksum function. This
 was true for both the PDP-10 and PDP-11 machines. Of the
 desirable properties listed above, CRC schemes satisfy only P3
 (It has an inverse.), and P6 (It is systematic.). Placement of
 the checksum field in the packet is critical and the CRC cannot
 be incrementally modified.

 Although the bulk of coding theory deals with binary codes, most
 of the theory works if the alphabet contains q symbols, where
 q is a power of a prime number. For instance q taken as 2**16
 should make a great deal of the theory useful on a word-by-word
 basis.

 5. Outboard Processing

 When a function such as computing an involved checksum requires
 extensive processing, one solution is to put that processing into
 an outboard processor. In this way "encode message" and "decode
 message" become single instructions which do not tax the main
 host processor. The Digital Equipment Corporation VAX/780
 computer is equipped with special hardware for generating and
 checking CRCs [13]. In general this is not a very good solution
 since such a processor must be constructed for every different
 host machine which uses TCP messages.

 It is conceivable that the gateway functions for a large host may
 be performed entirely in an "Internet Frontend Machine". This
 machine would be responsible for forwarding packets received

 - 9 -

Braden, Borman, & Partridge [Page 21]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 either from the network(s) or from the Internet protocol modules
 in the connected host, and for reassembling Internet fragments
 into segments and passing these to the host. Another capability
 of this machine would be to check the checksum so that the
 segments given to the host are known to be valid at the time they
 leave the frontend. Since computer cycles are assumed to be both
 inexpensive and available in the frontend, this seems reasonable.

 The problem with attempting to validate checksums in the frontend
 is that it destroys the end-to-end character of the checksum. If
 anything, this is the most powerful feature of the TCP checksum!
 There is a way to make the host-to-frontend link be covered by
 the end-to-end checksum. A separate, small protocol must be
 developed to cover this link. After having validated an incoming
 packet from the network, the frontend would pass it to the host
 saying "here is an Internet segment for you. Call it #123". The
 host would save this segment, and send a copy back to the
 frontend saying, "Here is what you gave me as #123. Is it OK?".
 The frontend would then do a word-by-word comparison with the
 first transmission, and tell the host either "Here is #123
 again", or "You did indeed receive #123 properly. Release it to
 the appropriate module for further processing."

 The headers on the messages crossing the host-frontend link would
 most likely be covered by a fairly strong checksum so that
 information like which function is being performed and the
 message reference numbers are reliable. These headers would be
 quite short, maybe only sixteen bits, so the checksum could be
 quite strong. The bulk of the message would not be checksumed of
 course.
 The reason this scheme reduces the computing burden on the host
 is that all that is required in order to validate the message
 using the end-to-end checksum is to send it back to the frontend
 machine. In the case of the PDP-10, this requires only 0.5
 memory cycles per 16-bit byte of Internet message, and only a few
 processor cycles to setup the required transfers.

 6. Conclusions

 There is an ordering of checksum functions: first and simplest is
 none at all which provides no error detection or correction.
 Second, is sending a constant which is checked by the receiver.
 This also is extremely weak. Third, the exclusive-OR of the data
 may be sent. XOR takes the minimal amount of computer time to
 generate and check, but is not a good checksum. A two’s
 complement sum of the data is somewhat better and takes no more

 - 10 -

Braden, Borman, & Partridge [Page 22]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 computer time to compute. Fifth, is the one’s complement sum
 which is what is currently used by TCP. It is slightly more
 expensive in terms of computer time. The next step is a product
 code. The product code is strongly related to one’s complement
 sum, takes still more computer time to use, provides a bit more
 protection against common hardware failures, but has some
 objectionable properties. Next is a genuine CRC polynomial code,
 used for checking purposes only. This is very expensive for a
 program to implement. Finally, a full CRC error correcting and
 detecting scheme may be used.

 For TCP and Internet applications the product code scheme is
 viable. It suffers mainly in that messages must be (at least
 partially) decoded by intermediate gateways in order that they
 can be forwarded. Should product codes not be chosen as an
 improved checksum, some slight modification to the existing
 scheme might be possible. For instance the "add and rotate"
 function used for paper tape by the PDP-6/10 group at the
 Artificial Intelligence Laboratory at M.I.T. Project MAC [12]
 could be useful if it can be proved that it is better than the
 current scheme and that it can be computed efficiently on a
 variety of machines.

 - 11 -

Braden, Borman, & Partridge [Page 23]

RFC 1071 Computing the Internet Checksum September 1988

 Internet Experiment Note 45 5 June 1978
 TCP Checksum Function Design William W. Plummer

 References

 [1] Cerf, V.G. and Kahn, Robert E., "A Protocol for Packet Network
 Communications," IEEE Transactions on Communications, vol.
 COM-22, No. 5, May 1974.

 [2] Kahn, Robert E., "The Organization of Computer Resources into
 a Packet Radio Network", IEEE Transactions on Communications,
 vol. COM-25, no. 1, pp. 169-178, January 1977.

 [3] Jacobs, Irwin, et al., "CPODA - A Demand Assignment Protocol
 for SatNet", Fifth Data Communications Symposium, September
 27-9, 1977, Snowbird, Utah

 [4] Bolt Beranek and Newman, Inc. "Specifications for the
 Interconnection of a Host and an IMP", Report 1822, January
 1976 edition.

 [5] Dean, Richard A., "Elements of Abstract Algebra", John Wyley
 and Sons, Inc., 1966

 [6] Peterson, W. Wesley, "Error Correcting Codes", M.I.T. Press
 Cambridge MA, 4th edition, 1968.

 [7] Avizienis, Algirdas, "A Study of the Effectiveness of Fault-
 Detecting Codes for Binary Arithmetic", Jet Propulsion
 Laboratory Technical Report No. 32-711, September 1, 1965.

 [8] Kirstein, Peter, private communication

 [9] Cerf, V. G. and Postel, Jonathan B., "Specification of
 Internetwork Transmission Control Program Version 3",
 University of Southern California Information Sciences
 Institute, January 1978.

 [10] Digital Equipment Corporation, "PDP-10 Reference Handbook",
 1970, pp. 114-5.

 [11] Swanson, Robert, "Understanding Cyclic Redundancy Codes",
 Computer Design, November, 1975, pp. 93-99.

 [12] Clements, Robert C., private communication.

 [13] Conklin, Peter F., and Rodgers, David P., "Advanced
 Minicomputer Designed by Team Evaluation of Hardware/Software
 Tradeoffs", Computer Design, April 1978, pp. 136-7.

 - 12 -

Braden, Borman, & Partridge [Page 24]

