
1

A Program for Origami Design

Copyright ©1994–1998 by
Robert J. Lang. All rights
reserved. Portions (CFSQP)
Copyright ©1993-1998 by Craig
T. Lawrence, Jian L. Zhou, and
Andre L. Tits. Use and
distribution of this program is
subject to restrictions described
in the TreeMaker documentation.

Thanks for suggestions and
algorithmic insight to:
Alex Bateman, Toshiyuki
Meguro, Tom Hull, Jun
Maekawa, Fumiaki Kawahata,
Erik Demaine, Barry Hayes, and
Marshall Bern.

Programmed with Metrowerks
CodeWarrior ™ and Metrowerks
PowerPlant™.

Copyright ©1994–1998 by Robert J. Lang. All rights reserved.

Portions (CFSQP) copyright @1993–1998 by Craig T. Lawrence, Jian L. Zhou, and Andre L. Tits. All
Rights Reserved.

Terms of License
TreeMaker contains copyrighted code (CFSQP) that may only be used for non-profit purposes. TreeMaker
may not be freely distributed.

CFSQP's Conditions for External Use include the following

1. The CFSQP routines may not be distributed to third parties. Interested parties should contact the authors
directly.

2. Due acknowledgment must be made of the use of the CFSQP routines in research reports or publications.
Whenever such reports are released for public access, a copy should be forwarded to the authors of CFSQP.

3. The CFSQP routines may only be used for research and development, unless it has been agreed
otherwise with the authors in writing.

For more information on CFSQP, see http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html

To obtain a copy of the TreeMaker executable, please provide the following information:
Your name

Your affiliation (must be a non-profit organization)

Your e-mail address

An affirmation that you will abide by CFSQP’s Conditions for External Use.

An affirmation that you will only be using TreeMaker for non-profit purposes and will not redistribute the
executable

Confirmation that you are using a Macintosh™ computer (it won't run on anything else)

sent to: rjlang@aol.com

A copy of the executable will be emailed to you within a few weeks.

If you like the program, drop me a line with your comments and attaboys. If you find bugs, drop me a line
with a description and I’ll try to fix it in the next version. This software is provided as-is with no implied
warranties of fitness or usability (but I hope you will find it to be be both fit and usable).

2

Table of Contents
1.0 Introduction ... 4

1.1 Background ... 4

1.2 Installing TreeMaker ... 6

1.3 Conventions .. 6

2.0 Tutorials .. 7

2.1 Tutorial 1: Designing a Base ... 7

2.2 Tutorial 2: Imposing symmetry... 15

2.3 Tutorial 3: Changing edge lengths .. 25

3.0 Tips and Techniques ... 34

3.1 Adding nodes .. 34

3.2 Making a plan view model .. 38

3.3 Forcing edge flaps ... 47

3.4 Fracturing polygons .. 52

3.5 Forcing symmetric angles ... 58

4.0 Reference .. 65

4.1 Introduction ... 65

4.2 Main window .. 65

4.3 Creating a new Tree .. 69

4.4 Editing Parts .. 71

4.5 Menu commands ... 78

5.0 The Tree Method of Origami Design .. 112

6.0 TreeMaker Algorithms .. 143

6.1 Mathematical Model ... 143

6.2 Definitions and Notation ... 144

3

6.3 Scale Optimization .. 144

6.4 Edge Optimization .. 144

6.5 Strain Optimization ... 145

6.6 Conditions ... 146

6.7 Meguro Stubs .. 148

6.8 Universal Molecule ... 149

7.0 Software Model ... 151

7.1 Overview ... 151

7.2 Tree Classes: Details ... 160

8.0 Final Stuff ... 169

8.1 Comments and Caveats ... 169

8.2 Version History ... 170

8.3 Sources .. 173

4

TreeMaker 4.0
Copyright ©1994–1998 by Robert J. Lang. All rights reserved.

Portions (CFSQP) copyright @1993–1998 by Craig T. Lawrence, Jian L. Zhou, and Andre L. Tits. All
Rights Reserved.

Terms of License
TreeMaker contains copyrighted code (CFSQP) that may only be used for non-profit purposes. TreeMaker
may not be freely distributed.

CFSQP's Conditions for External Use include the following

1. The CFSQP routines may not be distributed to third parties. Interested parties should contact the authors
directly.

2. Due acknowledgment must be made of the use of the CFSQP routines in research reports or publications.
Whenever such reports are released for public access, a copy should be forwarded to the authors of CFSQP.

3. The CFSQP routines may only be used for research and development, unless it has been agreed
otherwise with the authors in writing.

For more information on CFSQP, see http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html

To obtain a copy of the TreeMaker executable, please provide the following information:
Your name

Your affiliation (must be a non-profit organization)

Your e-mail address

An affirmation that you will abide by CFSQP’s Conditions for External Use.

An affirmation that you will only be using TreeMaker for non-profit purposes and will not redistribute the
executable

Confirmation that you are using a Macintosh™ computer (it won't run on anything else)

sent to: rjlang@aol.com

A copy of the executable will be emailed to you within a few weeks.

If you like the program, drop me a line with your comments and attaboys. If you find bugs, drop me a line
with a description and I’ll try to fix it in the next version. This software is provided as-is with no implied
warranties of fitness or usability (but I hope you will find it to be be both fit and usable).

1.0 Introduction

TreeMaker is a tool for origami design. Starting from a description of a desired origami model,
TreeMaker computes a crease pattern for folding a base for the model from an uncut square of
paper. This document describes TreeMaker, how you use it to design origami, and how it works.

1.1 Background

Origami is the Japanese name for the art of paper-folding. The purest form of origami stipulates
that you fold one sheet of paper, which must be square, and no cutting is allowed. These rules
might seem restrictive, but over the hundreds of years that origami has been practiced, tens of
thousands of origami designs have been developed for birds, flowers, animals, fish, cars, planes,
and almost everything else under creation. Despite the age of the art, the vast majority of origami
models have been designed within the last thirty years. This relatively late bloom of the art is due
in part to a spread of the art worldwide and an increase in the number of its practitioners, but it is

5

due in large part to the development of a body of techniques for the design of origami models.
Notable among these developments is the concept of a generalized base. Growing out of the four
classic bases of origami — the bird, fish, frog, and kite bases — the concept of a base forms the
foundation for nearly all sophisticated origami designs.

What, exactly, do we mean by “a base?” A base is a geometric shape that contains flaps
corresponding to all of the appendages of the origami model. For example, the base for a dog
would have six flaps, corresponding to four legs, a head, and a tail. The base for a beetle would
have nine flaps, corresponding to six legs, two antenna, and an abdomen. As origami subject
matter has moved from relatively simple birds to complex insects with legs, wings, horns, and
antennae, the advances that enabled this transition were the development of geometric and other
mathematical techniques for the design of the underlying origami base.

Fundamentally, TreeMaker is a program for designing origami bases. It calculates the crease
pattern for a base that has any arbitrary number of points of arbitrary size and distribution.
TreeMaker specializes in bases that can be represented by a tree graph, i.e., an acyclic (no loops)
line graph (or stick figure) in which each segment is labeled with a specified length. Each
segment of the tree corresponds to a flap of the base. TreeMaker will compute a crease pattern
showing how to fold a square (or rectangle, for non-purists) into a multi-pointed base whose
distribution of flaps match the lengths and connections of the tree.

I have been working on TreeMaker for several years and have posted some earlier versions at
public sites on the Internet, updating it as I discover or prove new algorithms and design rules.
Earlier versions solved the fundamental design problem but only found a few of the creases. The
current version, version 4.0 finds and fills in all of the creases for the full crease pattern.

To use TreeMaker , you represent the subject as a tree, or stick figure, that defines all of its
appendages and their relative lengths. You construct the tree using a simple graphical point-and-
click interface to define the segments of the tree and to set the lengths of the flaps. You can also
include constraints that enforce symmetry requirements among the appendages — for example,
forcing the model to be bilaterally symmetric, or forcing particular points to come from a corner
or edge of the square (to control thickness or to allow color-changes). After you have defined the
stick figure, TreeMaker will find an optimally efficient arrangement of points on a square that
correspond to the nodes of the tree and will identify the major creases of the base. The crease
pattern so computed is guaranteed to be foldable into a flat base with the proper proportions and
is in fact a locally optimum solution for the base. (“Locally optimum” means that for a given
starting configuration, you get the largest possible base for a given square, but an entirely
different starting configuration might give a different base.) You can subsequently add points to
the tree to simplify the crease pattern (I’ll explain more about this later); when you have
sufficiently simplified the pattern, a single command computes the rest of the creases. The full
pattern can be printed (and cut out and folded) at arbitrary size or copied to the Clipboard and
pasted into your favorite drawing program for further editing.

While anyone can use TreeMaker to construct a crease pattern for a base, effectively using it
takes some practice and understanding of the process of origami design. You should start by
working your way through the tutorials, which will give you a feeling for the capabilities (and
limitations) of TreeMaker.

6

1.2 Installing TreeMaker

To install TreeMaker , drag the “TreeMaker ƒ” folder onto your hard disk. TreeMaker is a fat
binary Macintosh application and will run native on both 68K and Power Macintosh. (I have no
plans to port TreeMaker to other platforms. I am told there is a Mac emulator for Linux,
DOS/Win95, and OS/2 called Executor. There is a sample version of it on http://www.ardi.com.)

Much of the information in TreeMaker is color-coded; although you can run it on a gray-scale
system, it will be easier if you have a color monitor with at least 256 colors.

Although you can jump right into TreeMaker if you like to experiment (or you’re the type who
never reads manuals), I recommend that you work your way through the following tutorials to
familiarize yourself with the capabilities of TreeMaker . A basic familiarity with Macintosh
applications is assumed throughout.

1.3 Conventions

Throughout this manual, menu titles and menu commands will be emboldened.

7

2.0 Tutorials

2.1 Tutorial 1: Designing a Base

In this tutorial, you will work through the design of a 4-legged animal with a head and tail and
will learn the fundamentals of designing a model with TreeMaker. Before starting it, you should
understand the fundamentals of origami design, such as the difference between corner, edge, and
middle flaps and be familiar with the basic origami procedures and terms such as valley fold,
mountain fold, reverse fold, rabbit ear, et cetera.

Begin by double-clicking on the TreeMaker icon to launch it. On startup, TreeMaker creates a
new, untitled window that displays a square — the default shape of paper. Later, you will see
how to change the size and shape of the paper (you can even design for a rectangle if you like)
but for now we’ll use a square.

TreeMaker designs an origami base that can be represented by a stick figure. You specify the
desired proportions of your base by drawing a stick figure in the square and specifying its
dimensions. If you have ever used a drawing program on a Macintosh computer, you should have
no trouble in figuring out how to draw a figure, but if you haven’t, we’ll walk you through it.

2.1.1

Click once in the middle of the square.
You will see a dot appear with a number
above it. This dot is a node; the number
is the index of the node, which is used to
identify the node later on. Each node is
assigned a unique index. You can ignore
the index for now. If you clicked just
once, the node has a highlight around it,
which means that it is selected . If the
node has no highlight, it is deselected .
The color of the highlight is the color set
on your computer, so it may be different
from the orange color shown in figure
2.1.1.

8

2.1.2

If exactly one node is selected and you
click somewhere else, a new node will be
placed at the click location with a line
connecting the nodes. The line between
the two nodes is called an edge . We’ll do
this now. Make sure the node is selected
(click once on it so that it is highlighted)
and then click once above the node; you
have now created an edge connecting the
two nodes. Note that the new node is
now selected (highlighted), as is the
edge, as shown in figure 2.1.2.

The edge displays two numbers near its
midpoint: the index, which serves to
identify the edge, and another number
below it, which is the desired length of
the edge. The length of the edge is the
same as the length of the corresponding
flap on the base.

• Note: all lengths on the tree are
defined relative to each other, not
relative to the size of the square.

All edges start out with a length of 1.000 by default; later you’ll learn how to change the length
of an edge. Note too that the displayed length of the edge doesn’t change when you drag nodes
and edges around; the displayed length is not the actual length of the drawn line; it’s the desired
length of the corresponding flap.

Note that each node has a circle around it. That’s because they are terminal nodes . Terminal
nodes are nodes that have only one edge attached to them, and they correspond to the tips of
flaps of the base.

As mentioned earlier, if you click on an existing node, it becomes selected. If you hold down the
mouse button after clicking you can drag the node around on the square. If exactly one node is
already selected and you click elsewhere in the square, you create a new node at the click
location and create a new edge connected to the selected node. (If zero or two or more nodes are
selected and you click elsewhere, everything gets deselected.) You can also click on edges and
drag them; dragging an edge drags the nodes at each end. You can extended the selected (select
more than one node or edge at a time) by holding down the shift key when you click on nodes or
edges. The collection of selected nodes and edges is called the selection .

The following are all the things you do with clicks:

• Click on a node or edge to select it and deselect everything else

• Shift-click on a deselected node or edge to add it to the selection

• Shift-click on a selected node or edge to remove it from the selection

9

• Double-click on a node or edge to edit its individual characteristics (we’ll get into this later)

By clicking and dragging, you can change the position of a node or edge. As you build up
constraints on the position of a node, a node can become “pinned” and you won’t be able to drag
it around any more. However, if you hold down the option key, you can override this behavior
and drag a pinned node.

To delete a node or edge, you can either hit the backspace key or select Clear from the Edit
menu. Although you can’t drag a pinned node without holding down the option key, you can
delete any node at any time.

Keyboard commands for editing are:

• <delete> or <forward delete> to delete selected nodes or edges

• <tab> to deselect everything

• Command-A to select everything

Deleting a terminal node also removes the attached edge. Similarly, deleting an edge also deletes
any nodes that would otherwise be orphaned.

• Note: you can’t delete a node or edge if it would break the tree into two pieces. You’ll get an
error message if you try.

2.1.3

Now we will build a tree. Choose Select
All from the Edit menu and then choose
Clear from the E d i t menu (or hit
<delete>) to get rid of what’s currently
on the square. Now, starting near the
bottom of the square, click once to place
a node; then click once about 1/3 of the
way up; click once again about 2/3 of the
way up; and click once near the top of
the square. You will have created a line
of four nodes and three edges as shown
in figure 2.1.3.

This line of nodes represents the head
(top), body (middle) and tail (bottom) of
the animal. Note that only terminal nodes
get circles around them.

10

2.1.4

Now we will add side branches to the
tree. Click once on node 2 to select it,
then click once to the left of node 2; this
adds a leg. Click again on node 2 to
select it and click once to the right of
node 2; this adds another leg, as shown in
figure 2.1.4.

Got the hang of it? Now try to add two
more legs to node 3, so that you wind up
with something that looks like figure
2.1.5.

This stick figure represents an animal
with a head, two front legs, a body, two
rear legs, and a tail. It will be used to
define a base with flaps for the head,
legs, body, and tail. Since all of the edges
of the stick figure have the same relative
length, each of the flaps of the base (and
the body) will be the same length in this

Figure 2.1.5

example.

Note that the nodes are outlined by lines.
These lines are called border paths;
they’ll define the usable region of the
square when we’re done.

11

2.1.6

At this stage of the game, you can click
on nodes and edges and move them about
rather easily because none of them are
pinned. Click on nodes 7 and 8 and drag
them upward so that they lie above node
4, as shown in figure 2.1.6.

When you have defined the stick figure,
it’s time to start computing the crease
pattern. Go to the Action menu and
select the command, Optimize Scale .
This starts the computation of the crease
pattern. You can tell that the calculation
is running from two things: first, the
positions of the nodes will change and
move around, and second, the cursor
turns into a piece of paper that is folding
and unfolding itself. The calculation will
take anywhere from several minutes (on
a Mac IIcx) to a few seconds (on a Power
Mac).

• Note: if you get tired of waiting
during a calculation, you can always interrupt it by pressing Command-Period.

• Note: most of the actions in TreeMaker are not easily undoable (the Undo command in
the Edit menu usually isn’t enabled). It’s a good idea to save figures before you run an
optimization, in case you don’t like the results.

12

2.1.7

Let this calculation run until the cursor
turns back into an arrow and things stop
moving around. You should see a pattern
something like figure 2.1.7. (Your
example might look like figure 2.1.7
turned upside-down; if it does, don’t
worry about it.)

There is a lot of information in this
figure, so let me spend a few minutes
describing what we’re seeing. Note that
the circles surrounding each terminal
node have expanded and moved so that
several are touching. Several black lines
have appeared that connect terminal
nodes and they have dots and numbers
along them. And the stick figure has been
distorted (because the terminal nodes
have moved) and has changed to a
slightly lighter blue. Also, the number
labeled “Scale” at the top of the window
has changed from 0.10000 to 0.26695.

Here’s what this all means. The circles
represent the paper used by flaps that correspond to terminal nodes. The black lines between
them are valley folds (most of the time) in the base. They are called active paths (for reasons that
will come later). The dots and numbers along the active paths are the locations of the internal
nodes (non-terminal nodes) along the active paths.

The stick figure has been distorted, which is because each of the terminal nodes of the stick
figure is now located in its actual location on the square. That is, when you fold the base, the tip
of the head flap will come from the point on the paper where the terminal node that corresponds
to the head is located.

What Optimize Scale actually does is to move around the terminal nodes to try to find an
arrangement that gives the largest possible base, subject to the proviso that all of the edges
maintain the same lengths relative to each other. Although all of the edges are enlarged by the
same amount, at the optimum configuration, at least some of the edges cannot be enlarged any
more. Such edges are called “pinned” edges are are indicated by turning a lighter blue. In this
optimization, all of the edges have turned light blue, which is an indication that no edge can be
made any longer. In general, after you have run the Optimize Scale command, all or nearly all of
the edges will be in this state.

Most of these lines, numbers, and circles are here for illustrative purposes and you will learn later
how to turn on and off their display. The black lines, however, are actual creases in the base; they
are (usually) valley folds. Bases are built in two stages. First, you Optimize Scale, which
identifies the valley folds of the crease pattern that form a network of polygons. This defines the
overall structure of the base. Then, you fill in the polygons with the remaining creases and you
have several options at this point.

13

2.1.8

We’ll do this second stage now via the
simplest route. Go to the Action menu
and select Build Polygons . You will see
the polygons become inlined with a thick
gray border, as shown in figure 2.1.8.

Then select the command Build Creases .
You will see a bunch of new lines
appear, as shown in figure 2.1.9.

This is the full crease pattern. The black
lines are valley folds; the medium gray
lines are mountain folds. You might
wonder why I don’t use dashed and chain
lines for mountain and valley folds, since
they are standard origami usage. I’ve
found that with the low resolution of
computer screens, in very complex
crease patterns, it’s hard to distinguish
the two.

Figure 2.1.9

14

2.1.10

At this point, you are seeing several
different sets of information overlaid on
one another. The tree (shades of blue)
displays the abstract structure of the tree.
The gray polygons display the underlying
structure of the crease pattern. The crease
lines display the creases themselves.
Because the creases are overlaid on top
of everything else, the display gets rather
busy when all of the creases are present.
You can choose to display just the
creases by choosing the Show Creases
Only command from the View menu,
getting the result shown in figure 2.1.10.

Finally, we have the crease pattern for
the base — the thing we were looking for
all along. In general, the black lines are
valley folds, the medium gray lines are
mountain folds, and the light gray folds
can be either; but there are a few
exceptions. The bottom corners of the
square aren’t used for anything, so you
would probably mountain-fold them underneath, rather than valley-folding them upward. A
major exception is the following. Around a middle point, the creases alternate around the point as
mountain, valley, mountain, valley… and one of the valleys needs to be turned into a mountain
fold to satisfy the Kawasaki theorem M=V±2. Since there are, in general, multiple valleys that
could be turned into mountains, I don’t make that choice for you. The light gray creases can be
either mountain, valley, or unfolded, depending upon which way you direct the flaps when you
flatten the model. These folds are, using the terminology of tree theory, tristate creases. So you
will still need to add a few creases when you try to collapse the crease pattern into a base, but it
should be pretty obvious where the additional creases go.

There are two ways to get the crease pattern from the screen onto a piece of paper. First, you can
simply print it using the Print command in the File menu. Second, at any time you can copy the
contents of the window to the Clipboard using the Copy command in the Edit menu. You can
then paste the image of the crease pattern into your favorite drawing program for further touch-
up and subsequent printout. In either case, if you print out the crease pattern and fold it up, you
will arrive at the base shown in figure 2.1.11 (which also shows which creases are mountain and
valley folds using the conventional line patterns). As promised, its flaps have the same number,
connections, and relative size as the original stick figure.

15

A

E F

G H

D

B

C

B

C

B

B

C

C

A

D

H

C

B

F

E

G

2.1.11

That’s all for this example. You have learned the basics of TreeMaker: how to define a stick
figure using the point-and-click interface and how to construct a basic crease pattern. In the next
example, you’ll learn how to modify the stick figure to alter proportions, how to incorporate
symmetry, and how to customize the screen and printed image.

2.2 Tutorial 2: Imposing symmetry

In this tutorial, you will learn how to use some more of the settings in TreeMaker and how to
incorporate bilateral symmetry into your design.

16

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4 5

6 7

2.2.1.

Open the TreeMaker application if it is
not already open and create a new
square. Make a five-limbed stick figure
as shown in figure 2.2.1. As you did in
the previous tutorial, set the body
segment to have a length of 0.8, but this
time we’ll leave the head to have a length
of 1.

Now select Optimize Scale from the
Action menu to optimize the distribution
of nodes. You should see the nodes move
around as usual, and then suddenly the
two bottom nodes will shift over toward
one side or the other. When the
optimization stops, the pattern of nodes
will be asymmetric, as shown in figure
2.2.2.

2

4 2

5

2

3

6 36

2

3

7

1
1.000

2
1.000

3
1.000 4

1.000

5
1.000

6
1.000

1

2

3

4

5

6 7

2.2.2

17

2.2.3

This is rather surprising; the node pattern
is less symmetric than the tree from
which it is derived. The tree has bilateral
symmetry — that is, the left side is the
mirror image of the right side. However,
the node pattern does not have bilateral
symmetry. We’ll see this in the crease
pattern as well. Select Build Polygons
from the Action menu; then B u i l d
Creases from the Action menu. Then
convert to Creases Only view from the
View menu. You will see that the
resulting crease pattern has no line of
symmetry at all (figure 2.2.3.)

This is an example of a phenomenon
called “spontaneous symmetry-
breaking,” in which a system that is
fundamentally symmetric at high energy
settles into an asymmetric state at lower
energy. (In the analogy, a larger scaling
factor corresponds to a lower energy.) In
this case, a slightly larger base is
obtained for an asymmetric distribution of nodes than is obtained for a symmetric distribution of
nodes. While symmetry-breaking is a wonderful phenomenon for generating Ph.D. theses, it can
be very undesirable in origami design. The crease pattern in figure 2.2.3 can indeed be folded
into the tree we started with and left and right flaps will have the same lengths, but they will have
different widths and different distributions of layers, so the base will not have mirror symmetry.

An asymmetric base is not necessarily a bad thing. It depends on the position of the subject. If
you were making a running human, for example, in which the left and right arms and legs were
in different positions, it might not matter if paired flaps had different numbers of layers. But in a
lot of models, it does matter, and in this case at least, we would like the folded base and therefore
the underlying crease pattern to have the same bilateral mirror-symmetry as the subject.

Fortunately, TreeMaker offers us this option. The first thing to do is to define a line of the
symmetry for the square. This need provides us with the opportunity to meet the Tree Editor
dialog, which lets us change settings that affect the entire structure. Select Edit Tree… from the
Edit menu, which brings up the dialog shown in figure 2.2.4.

2.2.4

18

This dialog gives information about the entire structure. It shows us the shape of the paper; the
default paper is a square whose width and height are both 1 unit, but you can also design for
rectangles by changing either the width or height. (But with TreeMaker’s capabilities for design,
why would you ever want to use anything but a square?) The third number is the scale, which is
the ratio between one unit on the tree and the size of the paper. (This is the same number that
appears at the top of the window.) In this example, we see that the scale is 0.277, which means
that a 1-unit edge on the tree will turn into a flap whose length is 0.277 times the side of the
square from which it is folded.

• Note: when we select the command Optimize Scale, TreeMaker tries to make the scale as
large as possible.

The controls and fields on the right are the ones that interest us. The “Symmetry” check box lets
us define a line of symmetry on the square. A line of symmetry is defined by the x and y
coordinates of any point on the symmetry line and by the angle of the symmetry line with respect
to the paper. A square has two natural lines of symmetry, that is, two different ways of dividing it
into mirror-symmetric halves. If you crease the square along the diagonal, you get two mirror-
symmetric triangles and the diagonal is the line of symmetry. If you book-fold the square, you
get two mirror-symmetric rectangles and the book fold is the line of symmetry. The two buttons
named “diag” and “book” are presets for these two symmetries. Click on the “book” button.
You’ll see that the “Symmetry” check box is turned on, and we now have values entered for x, y,
and the angle of the symmetry line as shown in figure 2.2.5.

2.2.5

Click “OK” to make the dialog box go away.

• Note: you can, if you like, enter your own values to either offset the line of symmetry
from the center of the paper or to create a line of symmetry for a rectangle.

19

2

4 2

5

2

3

6 36

2

3

7

1
1.000

2
1.000

3
1.000 4

1.000

5
1.000

6
1.000

1

2

3

4

5

6 7

2.2.6

If you built creases to make your paper
look like figure 2.2.3, select Remove
Polygons from the Action menu and
make sure you are in Default View (in
the View menu). You’ll see that the
paper now has a green line, which
indicates the line of symmetry as shown
in figure 2.2.6.

Now we need to establish a relationship
between individual nodes and the line of
symmetry. A node can have one of two
possible relationships with the line of
symmetry: it actually lie on the line of
symmetry (for example, the head or tail
of an animal) or it can be one of a pair of
nodes arranged symmetrically about the
line of symmetry. In our model, the head
lies on the symmetry line of the tree.
Thus, we need to force the node that
corresponds to the head (node 7) to lie on
the symmetry line of the square.

When we want to impose additional requirements on a tree, we are imposing conditions on the
various parts of the tree. We can impose conditions in several ways. The easiest is to simply
select node 1, and from the Conditions menu, select the command Node fixed to symmetry
line .

2

4 2

5

2

3

6 36

2

3

7

1
1.000

2
1.000

3
1.000 4

1.000

5
1.000

6
1.000

1

2

3

4

5

6 7

2.2.7

 What we have done is impose a
condition on node 1. The tangible
evidence of this is that the circle around
node 1 has turned green, as shown in
figure 2.2.7. Also, if you click on the
Conditions menu, you’ll see that the
Node fixed to symmetry line command
is now checked. (Don’t select the
command again, or you’ll toggle off this
condition.)

•Note that node 1 hasn’t moved and
isn’t on the symmetry line;
conditions don’t take effect until
you perform another optimization.

Next, we need to tell TreeMaker that
pairs of flaps should be mirror-
symmetric. For example, nodes 4 and 5
correspond to the left and right arms of
the figure. Thus, each of nodes 4 and 5
should be the mirror image of the other.

20

To set up this condition, click on node 4 and shift-click on node 5 to select them both. Then go to
the Conditions menu and select the Nodes paired command.

2

4 2

5

2

3

6 36

2

3

7

1
1.000

2
1.000

3
1.000 4

1.000

5
1.000

6
1.000

1

2

3

4

5

6 7

2.2.8

Now that nodes 4 and 5 have a condition
on them, their node circles are also green
as shown in figure 2.2.8. If you still have
them selected and click on the
Conditions menu, you’ll see that the
Nodes paired command is checked.

We also need to pair nodes 6 and 7. You
could do this the same way — select
nodes 6 and 7 and then select the Nodes
paired command — but there’s more
than one way to place conditions on
nodes. So, just for the experience, we’ll
do these a different way.

Double-click on Node 6. This brings up
the Node Editor dialog, which is shown
in figure 2.2.9.

21

2.2.9

The (empty) scrolling list is a list of all conditions that apply to node 6. It’s empty because there
are no conditions on node 6. The popup menu at the right is for adding conditions. If you click on
the popup menu it will give you a list of conditions to choose from. Select Nodes paired about
symmetry line . A new condition will appear in the scrolling list, as shown in figure 2.2.10.

2.2.10

You see that a condition has been added to the scrolling list. You need to fill in which node is
paired with node 6. Type a 7 into the field and click OK.

22

2

4 2

5

2

3

6 36

2

3

7

1
1.000

2
1.000

3
1.000 4

1.000

5
1.000

6
1.000

1

2

3

4

5

6 7

2.2.11

The result is shown in figure 2.2.11.
After the dialog box is closed, you’ll see
that the circles for nodes 6 and 7 circle
have turned green.

• Note: if you haven’t defined a line
of symmetry, the symmetry-related
conditions have no effect.

• Note: terminal nodes are the only
nodes you can set conditions on.
You don’t have to set up any
conditions on internal nodes (and in
fact any conditions you might set
up on them are ignored) since the
position of internal nodes in the tree
are irrelevant to the final crease
pattern.

Now we have set up the conditions that
enforce symmetry. As mentioned above,
the conditions don’t take effect until we

2

4

2

5

2

3

6 36

2

3

7

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4 5

6 7

2.2.12

re-optimize the pattern. Select Optimize
Scale from the Action menu to re-
optimize the crease pattern taking the
new conditions into account. Figure
2.2.12 shows the result.

23

2.2.13

When you ran the optimization, you saw
that the figure almost instantly became
symmetric and the final pattern of
terminal nodes is now symmetric.
(Observe, though, that the internal nodes
and edges are right where we left them.)
If you select Creases Only (from the
View menu) and Build Polys and
Creases (from the Action menu), you
will see the full crease pattern, which is
also mirror-symmetric, as shown in
figure 2.2.13.

Note the scale of the model (shown at the
top of the window) is now 0.272 (it was
0.277 with the asymmetric structure).
The scale has dropped, meaning that the
base folded from this pattern is slightly
smaller than the asymmetric base. In
general, when you add constraints to a
pattern, you will reduce the scale and
thus the size of the finished model.

We can also try the other line of symmetry. Select Edit Tree… from the Edit menu to open the
Tree Editor. Click on the “diag” button, which sets up a line of symmetry along one of the
diagonals of the square and click OK. Also, put the square back into Default View if it wasn’t
there already.

1

2

3 4

34

2

3

4

2

6

2

3

5

2

7
1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4 5

6 7

8 9

10

11

12

13

14 15

2.2.14

Now the node pattern is still symmetric
about the book fold and the conditions on
the nodes relating to symmetry haven’t
changed, but we have moved the line of
symmetry; observe that the green line of
symmetry in figure 2.2.14 is now along
the diagonal. Therefore, the conditions
we imposed are no longer satisfied.
Nothing has moved because conditions
aren’t enforced until we re-optimize.
Again select the command Optimize
Scale from the Action menu.

Observe that, as shown in figure 2.2.15,
the nodes have moved to new positions
consistent with the new symmetry
conditions. Also, the polygons and
creases have disappeared. Whenever you
change the node configuration by moving
a node, the polygons that used to include
that node are destroyed, as are any
creases that may have been associated

24

with the polygon. You’ll have to rebuild the polygons yourself, which you can do by selecting
the Build Polys and Creases command from the Action menu. Then put the model back into
Creases Only view (View menu).

3

4

2

3

4

26

2

3

5

2

7

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4

5

6

7

2.2.15

The new crease pattern, shown in figure
2.2.16, is mirror-symmetric about the
new symmetry line and is completely
different from the crease pattern that has
book symmetry.

Also, if you check the scale (at the top of
the window), you’ll see that the scale has
fallen once again to 0.2626. So the
diagonal symmetry in this example is
less efficient than book symmetry. In
general, you can orient a model along
either symmetry line and will have very
different crease patterns for both
configurations. Sometimes book
symmetry will be more efficient,
sometimes diagonal symmetry will be
more efficient. With TreeMaker, you can
easily check them both.

2.2.16

25

2.3 Tutorial 3: Changing edge lengths

In this tutorial, you will work through the design of a base that could be used for a human figure.
In the process, you will learn how to change the lengths of flaps.

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4

5

6 7

2.3.1

If you have quit TreeMaker , start it up
again or select New from the File menu
to create a new square. We will be
making a human figure, so using the
techniques described in the previous
tutorial, draw a stick figure of a human as
shown in figure 2.3.1.

Initially, all of the edges of the tree graph
have the same length, which is defined to
be 1 unit. The length of the edge is
written near the middle of the edge. For
many designs, it is desirable to change
the lengths of some of the edges to make
them longer or shorter than other edges.
For example, if you were making a
grasshopper, you’d want the back legs to
be much longer than the front legs. In
TreeMaker, you can choose the length of
any flap. That’s what we’ll learn how to
do now.

Each edge of the tree has a set of
attributes, one of which is its length. To change the length of the “head” (i.e., edge number 1),
double-click on it. A dialog box will appear as shown in figure 2.3.2.

2.3.2

26

The dialog box tells the index of the edge and which nodes the edge runs between; the desired
length of the edge; two quantities called strain and stiffness (more on these later); an optional
label; and whether there are any condition on the edge. We’ll change the length of the “head”
flap by giving it a new length. Enter “0.6” in the Length field, which will make the head flap a
bit over half the length of the arms and legs. If you like, you can also enter a label such as “head”
in the Label field as well. Then click the OK button.

head
1
0.600

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4
5

6 7

2.3.3

You’ll notice that the circle around node
1 has gotten smaller, as shown in figure
2.3.3. The radius of the circle around a
terminal node is equal to the length of the
adjacent edge using the current scale of
the model (which is 0.1000). A terminal
node attached to a 1-unit-long edge has a
circle of radius 1×0.1 = 0.1 times the side
of the square. Since we shrank the edge
to a length of 0.6, the circle shrinks
accordingly to a radius of 0.6×0.1 = 0.06.

You can also see that the length of the
edge (the number near the middle of the
edge) is now 0.6. The label, if you
entered one, also appears above the index
of the edge.

It’s probably worth a reminder that the
length of the blue line segment that
represents the edge hasn’t changed a
whit; what matters is the numerical
length that appears next to it.

27

head
1
0.600

2
0.750

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4
5

6 7

2.3.4

Now we’ll also shrink the torso a bit.
Double-click on the torso and enter a
length of 0.75 in the Length field. Then
click OK. The result is shown in figure
2.3.4.

We’ll also make this model symmetric
and will take this opportunity to learn a
third way of applying conditions. Open
up the Tree Editor by selecting the Edit
Tree… command from the Edit menu
and turn on book symmetry by clicking
on the “book” button.

Now we’ll apply conditions, but rather
than selecting specific menu commands
or editing particular nodes as we did
before, we’ll create all the conditions at
once. Select the Edit Conditions…
command from the Conditions menu.
You will be presented with a dialog as
shown in figure 2.3.5.

2.3.5

The Condition Editor shows every condition that applies to every part. With it, you can create all
three conditions within the same dialog. Select Node symmetric from the “Add…” popup menu,
followed by selecting Nodes paired about symmetry line twice from the same popup.

28

2.3.6

You will have created three blank conditions. Fill in the fields with the indices of the nodes (1, 4,
5, 6, and 7, respectively):

2.3.7

29

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4

5

6
7

2.3.8

Then click OK. The node circles will
have turned green, indicating that the
nodes have conditions on them, as shown
in figure 2.3.8.

•Note: if you make a mistake, or for
example, accidentally create the
wrong type of condition, select the
condition by clicking on it, and
then click the “Remove” button. If
you want to start over, click the
“Remove All” button.

Now we’ll optimize to find a base. Select
Optimize Scale from the Action menu.
When the run is complete, you should
have something that looks like figure
2.3.9.

The scale of this is 0.3388 and you can
generate the crease pattern if you like by
selecting Build Polys and Creases .

2

4

2

5

2

3

6 36

2

3

7

1
0.600

2
0.750

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4 5

6 7

2.3.9

However, it’s often possible to find a
different crease pattern with possibly a
larger scale (which gives a larger base)
for exactly the same tree and conditions.
You can find other patterns by starting
from a different initial configuration of
nodes.

In particular, whenever you have a large,
many-sided polygon as we do here, it’s
often possible to get a larger crease
pattern if you drag one of the nodes
inside the polygon. In this case, node 1 is
the obvious candidate. If you try to click
and drag directly, node 1 won’t move
because it’s pinned, but you can always
option-click and drag even a pinned
node. So, option-click on node 1 and
drag it down into the middle of the crease
pattern, as shown in figure 2.3.10.

30

1
0.600

2
0.750

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4 5

6 7

2.3.10

Your figure should look something like
this but it probably won’t look exactly
the same. You should see some red lines,
however. The red lines are paths that are
not valid, meaning that their actual length
is less than their minimum length. They
are a sign that no valid crease pattern is
possible with this arrangement of nodes.

Again, select Optimize Scale from the
Action menu to find a new configuration.
The result should look like figure 2.3.11.

2

4

2

5

2

3

6

2

3

6

2

3

7

2

3

7

1
0.600

2
0.750

3
1.000

4
1.000

5
1.000

6
1.000

1
2

3

4 5

6 7

2.3.11

31

2

3

6

2

3

7

1
0.600

2
0.750

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4 5

6 7

2.3.12

The new scale is 0.36367, somewhat
larger; so this configuration is more
efficient than the last. However, it’s not
very elegant, because nodes 6 and 7 are
close to a corner but are not precisely in
the corner. Option-drag each of those two
nodes into the corner as shown in figure
2.3.12.

•Note: you can put a node exactly
into the corner by dragging it
slightly beyond the corner. If you
drag a node beyond an edge, when
you let go, TreeMaker will snap the
node to the nearest edge. Drag it
beyond a corner and TreeMaker
will snap it into the corner.

Now select Build Polys and Creases
from the Action menu. Nothing happens.
What’s wrong?

TreeMaker cannot build polygons or
creases if there are unpinned , or movable, terminal nodes that are inside what would be a
polygon. What do we mean by pinned? A pinned node is one that cannot be moved in any
direction without either violating a path constraint or going outside the square.

Nodes aren’t the only things that are pinned; an edge whose length cannot be made larger
without causing some path to be violated is also said to be pinned. A pinned edge is shown in a
lighter blue than an unpinned edge (initially, all edges are unpinned). Looking at figure 2.3.12,
you can see that all edges except edge number 1, and all terminal nodes except node 1, are
pinned.

An edge that isn’t pinned can be made longer without reducing the lengths of other edges, which
means that the flap in the base that corresponds to the edge can be made longer. Sometimes
lengthening a flap of the base is esthetically acceptable; sometimes it isn’t. For this example, if
we lengthen the head flap, we’ll just have a bit more paper with which to make hair, facial
features, et cetera. So we can, and will, length edge number 1.

32

2

4

2

5

2

3

6

2

3

6

2

3

7

2

3

7

1
0.600+1.3%

2
0.750

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4 5

6 7

2.3.12

But how long should we make edge 1?
TreeMaker will find that out for you.
Click once on edge 1 and shift-click on
node 1 to select them both. Then go to
the Action menu and select the command
Scale Selection . This command will
move any unpinned selected nodes in
order to maximize the length of the
selected edge or edges. (If you have
selected more than one edge, they will all
be lengthened proportionally.) When the
optimization ends, you should have
something like figure 2.3.12.

• Note: you must select both some
unpinned nodes to move and some
unpinned edges to enlarge;
otherwise, nothing happens because
TreeMaker simply ignores pinned
nodes and edges. If you want all
unpinned nodes and unpinned
edges to be considered, just hit
command-A (Select All) to select
everything; TreeMaker will weed out the pinned nodes and edges before running the
optimization.

Look closely at the length of edge 1: its length is “0.600+1.3%”. It is said to be strained. Strain is
a deviation of an edge from its original desired value.

Strain is an important concept, particularly when we start imposing lots of symmetry conditions
on a base. A strained edge behaves as if it were actually longer or shorter. However, an edge
“remembers” its original (“unstrained”) length, a behavior that we utilize elsewhere.

There are two strain-related commands in the Action menu: Remove strain sets all strain to
zero; it undoes any strain changes. Relieve strain does something quite different: it absorbs
length changes due to strain into the edge and resets the strain to zero. Select Relieve strain now.
You’ll see that the length of edge 1 has now changed from 0.6 to 0.608.

33

2.3.13

Now, all edges are pinned and we can
proceed with the construction of the
creas pattern. Select Build Polys and
Creases from the Action menu to
construct the crease pattern and select
Creases Only from the View menu to
show just the creases, as shown in figure
2.3.13.

You now know how to set up a crease
pattern for a base with an arbitrary
number of flaps and how to change the
lengths of the flaps. You’ve also seen in
this tutorial how to set up and enforce
bilateral symmetry in the base. This gives
you 90% of what you need to know to
compute crease patterns with TreeMaker ,
and I encourage you at this point to go
off and experiment. To keep things
simple (and to keep the optimization
times down), I have kept to small
examples with a small number of flaps.
But you can try much more complicated
bases with much more complicated assemblies of flaps with TreeMaker; you are limited only by
the computer memory and speed (and of course, your own patience!). The next section will
address some of the subtler issues of origami design using TreeMaker. You can continue
working through it, or go off, experiment, and then come back when you’re ready.

34

3.0 Tips and Techniques

This section describes several tips and techniques that will improve your productivity when
working with TreeMaker.

3.1 Adding nodes

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

1

2

3

4
5

6

7

8

3.1.1

Once you have defined a tree and found
an optimum configuration of nodes, you
have several options for filling in the
remaining creases. In this section, I’ll
demonstrate several different treaments
of the same tree. Construct a “generic
mammal” tree with equal-length head,
tail, four legs, and a body, as shown in
figure 3.1.1.

35

3 4

3

4

2

3

5

2

7

2

3

6

2 8

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

1

2

3

45

6
7

8

3.1.2

Select command Optimize Scale from
the Action menu; you should arrive at a
distribution of terminal nodes as shown
in figure 3.1.2.

This crease pattern gives a single active
polygon, which is a hexagon. Now, as I
said, there are several ways to add
creases to this pattern to complete the
base. The simplest is the one we have
already learned; simply select Build
Polys and Creases from the Action
menu. This selection fills in the active
polygon with the “universal molecule”
crease pattern. This is the simplest
pattern and produces the least total crease
length.

Although the universal molecule is the
simplest pattern, it produces a base with
wide flaps that must be repeatedly sunk

3.1.3

in and out to narrow them.

36

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

8
1.000

1

2

3

45

6
7

8

9

3.1.4

It is possible to narrow flaps by adding
new nodes to the tree and inflating them
to break up the active polygon. For
example, in the tree shown above, if you
add a point to node 3, as shown in figure
3.1.4,

and then, making sure both the new edge
and node are selected, choose Optimize
Selection . This will expand the new edge
to its limit, creating new active paths that
effectively break up the hexagon into
smaller active polygons — in this case,
two triangles and two quadrilaterals, as
shown in figure 3.1.5.

3 4

3

4

2

3

5

2

7

2

3

6

2 8

2

3

9

2
3

9
3

6

3

5

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

8
1.000-37.9%

1

2

3

45

6
7

8

9

3.1.5

37

3.1.6

Building creases gives the crease pattern
shown in figure 3.1.6.

Alternatively, you could have added the
new edge to node 2, which would give
you the same crease pattern flopped end-
for-end.

With either of these two patterns, you get
a crease pattern in which the “head” and
“tail” are folded differently. For reasons
of symmetry, you might want the head
and tail to be symmetric, in which case,
if you add a new edge, you need to put it
in the middle of edge 2.

A third possibility is to split edge 2,
using the Split selected edge command.
If you split the edge, add a new node and
edge, and then optimize the length of the
new edge, you will get the node

3 4

3

4

2

9

3

5

2

7

2

9

3

6

2 8

9

2

8

927 9 3 6

9

3

5

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
0.500

8
0.500

9
1.000-43.8%

1

2

3

45

6
7

8

9
10

3.1.7

arrangement shown in figure 3.1.7.

38

3.1.8

This yields the crease pattern shown in
figure 3.1.8.

Suppose after seeing the result, we didn’t
want to do this after all. You can remove
the node by deleting node 10. But you
will still be left with an extra node in the
middle of the model. A node with only
two edges connected is called a
“redundant node.” You can remove a
single redundant node by selecting it and
choosing the command Absorb Selected
Node from the A c t i o n menu.
Alternatively, you can select the
command Absorb Redundant Nodes to
remove all redundant nodes from a tree.

3.2 Making a plan view model

Flat origami models come in two distinct
types, which correspond to two different
views of the subject. The most common
is a “side view” model, which resembles
the silhouette of the subject viewed from the side. (You can often make a side view model three-
dimensional by opening out the body from the underside, but the base is still fundamentally side
view.) Using TreeMaker, it is very easy to make side view models.

However, many models — especially insects — look better in “plan view,” that is, viewed as if
you were looking down on them from above. Some of the time, you can make a plan view model
out of a side view base by spreading the layers of the model to the left and right and flattening
the result. But oftentimes, the base has an odd number of layers, or the layers don’t spread
sufficiently far apart, or it is necessary to spread-sink one or more corners in a way that ends up
reducing the length of the attached points. For example, let’s take the regular human tree (equal-
length head, arms, legs, and body) oriented along the book direction.

39

2

4

2

5

2

3

6 36

2

3

7

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

1

2

3

4 5

6 7

3.2.1

If you set up the tree and symmetry line
and run an optimization, you will arrive
at the arrangement of nodes shown in
figure 3.2.1.

Select Build Polygons and Creases
from the Action menu, followed by
Creases Only from the View menu to
get the crease pattern shown in figure
3.2.2.

Now the problem with this crease pattern
is that if you fold it up into a side view
base, there is only one layer on the top,
and if you try to squash-fold the layer to
spread the arms and legs to either side
and make a plan view base, you’ll find
that the base of the squash fold reduces
the effective length of the legs
considerably.

That’s because we have overlooked an

3.2.2

important requirement for making a plan
view base. The way you make a side
view base into a plan view base is to
open the model along the line of
symmetry, which means that all of the
paper along the line of symmetry must lie
in the same plane to form the “hinge” of
the base. Put differently, the line of
symmetry of the paper must lie in the
plane of projection of the base. This
means that to make a plan view base, the
line of symmetry of the square must
consist entirely of active paths (since
active paths are the only parts of the base
that lie in the plane of projection of the
base).

So we need to get active paths running
along the line of symmetry. But since
active paths only run between nodes of
the tree and there is currently only one
node on the line of symmetry (the head),
we need to add more nodes to the tree
solely for the purpose of creating active paths. These nodes don’t correspond to features of the
model; they’re only there to make the base a plan view base. In particular, we need to add a node
to the bottom of the square so that there is a terminus on the bottom edge of the square for the
active paths that are to run along the line of symmetry.

40

Now any time we add a new node, it brings with it a node circle that cannot overlap any other
node circle. In the current configuration, there is no room between node circles 1 and 3 to add a
new circle. So we will have to add a new node and re-optimize in order to make room for the
new node. This is a very important point: there is no way to modify the original configuration of
nodes to make a plan view base without rearranging the entire pattern of nodes!

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

1

2

3

4 5

6 7
8

3.2.3

So, we’ll add a new node attached to
node 3. We’ll want the node to be located
on the centerline between nodes 6 and 7.
We’ll make this forcing using conditions.
There are a couple of ways we could do
it: we could apply a Node fixed to
symmetry line and Node fixed to edge
condition to the same node; but since we
know exactly where the node should lie,
we can just use a Node fixed to position
condition. So, create a new node attached
to node 3 as shown in figure 3.2.3.

Then double-click on the node to bring
up the Node Editor. Apply a Node fixed
to position condition, affixing the node
to location x=0.5, y=0 (turn on both
checkboxes).

41

3.2.4

2

4

2

5

2

3

6

2

3

7

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
0.400

1

2

3

4 5

6 78

3.2.5

There is still the question of how long to
make the associated edge. For now, give
it a length of 0.4 — we’ll discuss how
length matters in a moment. After you re-
run the optimization (Optimize Scale),
you should get a modified arrangement
of node circles shown in figure 3.2.5.

42

2

4

2

5

2

3

6

2

3

73 736

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
0.400+115.8%

1

2

3

4 5

6 78

3.2.6

The new node — node 8 — is now on
the bottom of the square. The darker blue
of its edge tells you that it isn’t pinned.
Choose Select all from the Edit menu,
then Optimize selection from the Action
menu. This will expand the edge to its
maximum possible length.

So now we have nodes 1 and 8 at the top
and bottom of the symmetry line — but
there is still no active path between them.

The reason is that the distance between
nodes 1 and 8 is larger than the minimum
allowed path length between them. To
get active paths in place, we need to add
another node to the symmetry line
somewhere between 1 and 8 to “soak up”
this excess length. The longer the new
node, the more excess length it will
require. For this new node, we don’t
know how large it must be, so we’ll use

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
0.400+115.8%

8
1.000

1

2

3

4 5

6 78

9

3.2.7

the Optimize Selection command to
optimize its size. Add a new node
connected to node 3 and apply a Stick to
symmetry line condition (which by now,
you know how to do). The result is
shown in figure 3.2.7.

Then select both the node and edge and
select Optimize Selection from the
Action menu to optimize the position of
the node and the length of the edge.

43

2

4

2

5

2

3

6

2

3

73 736

3

8

2

3

9

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
0.400+115.8%

8
1.000-56.8%

1

2

3

4 5

6 78

9

3.2.8

The result is shown in figure 3.2.8. Now
there are active paths between nodes 6
and 9 and between nodes 9 and 8, filling
the entire symmetry line. Thus, the
condition for making a plan view model
is satisfied.

Select Build Polys and Creases to
complete the pattern and Creases Only
to display it. The crease pattern is shown
in figure 3.2.9. And if you fold this
pattern into a base, you will indeed get a
plan view base.

3.2.9

44

2

4

2

5

2

3

6

2

3

73 736

2

3

8

2

9

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
0.400+115.8%

8
1.000-56.8%

1

2

3

4 5

6 78

9

Figure 3.2.10

When adding the new node to the crease
pattern, we didn’t necessarily have to add
it to node 2, which put the extra point
between the legs of the base; we could
have added it to node 4, which would put
the extra point at the shoulders of the
base. If you do that and run the
optimization, you’ll get the pattern
shown in figure 3.2.10.

This gives a different crease pattern,
shown in figure 3.2.11. This crease
pattern is entirely different: yet it results
in a plan view base with exactly the same
number and size of flaps as the first
example.

In both cases, the extra flap “sops up”
excess paper between the top and bottom
of the model. The difference between the
two is that in the first example, the extra
paper emanates from the junction of the

3.2.11

top group of points. In the second, the
excess flap emanates from the bottom
group of points.

There’s another possibility: we could
collect the excess paper in the middle of
the model. This would be preferable
because it distributes layers more evenly
through the model. We can do this by
adding the new flap in the middle of edge
2.

To do this, delete the new node you just
added. Then select edge 2. Choose the
command Split selected edge… from the
Action menu, which puts up the dialog
shown in figure 3.2.12.

45

3.2.12

2

4

2

5

2

9

3

6

2

9

3

73 736

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
0.400+115.8%

7
0.500

8
0.500

1

2

3

4 5

6 78

9

3.2.13

This lets you add a node in the middle of
the edge (or anywhere along it). Enter 0.5
in the field (to split the edge at its
middle) and click OK. There is now a
new node, node 9 in the middle of the
edge, as shown in figure 3.2.13.

46

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
0.400+115.8%

7
0.500

8
0.500

9
1.000

1

2

3

4 5

6 78

9

10

3.2.14

Click on node 9 to highlight it. Then
click next to it to create a new node and
edge attached at node 9 as shown in
figure 3.2.14.

Apply a Node fixed to symmetry line
condition to node 10, then select edge 9
and node 10 and choose the Optimize
selection command from the Action
menu. Again, you will create an active
path between nodes 1, 8, and the new
node, as shown in figure 3.2.15.

2

4

2

5

2

9

3

6

2

9

3

73 736

9

3

8

2

9

10

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
0.400+115.8%

7
0.500

8
0.500

9
1.000-56.8%

1

2

3

4 5

6 78

9

10

3.2.15

47

3.2.16

Again, select Build Polys and Creases
from the Action menu, followed by
Creases Only from the View menu to
get the crease pattern shown in 3.2.16.

So you see, there are many ways of
adding circles to force a plan view base;
yet another demonstration that there are
many different ways of achieving a base
for the same basic design.

One final note: if you have two circles in
the interior of the model that are touching
along the center line, you’ll have to add a
circle between them to force them apart.
The way to do this is to use a Nodes
collinear condition to force the new node
to lie between the other two.

3.3 Forcing edge flaps

Once you have run several TreeMaker
designs and folded them, you will
eventually come to the realization that some crease patterns are easy to collapse into bases while
others are incredibly difficult to fold up. Closer examination of this phenomenon reveals a
common thread: the more middle points a base has, the harder it is to fold up. In addition, while
edge points can almost always be separated from the rest of the base by simply being folded out
to the side (perpendicular to the plane of the the base), middle points are often surrounded by
layers of paper and can only be separated out by being reverse-folded up and out of the model
(lying in the plane of the base). For these reasons, it is often desirable to force most of the flaps
in the base to be edge flaps.

48

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

1

2
3

4

5

6

3.3.1

With only 3 or 4 flaps in the tree, they
will almost inevitably be edge flaps.
However, even with as few as 5 flaps,
you will find that one or more flap will
tend to move into the middle. For
example, suppose we want a base with
five equal-length flaps. Construct a tree
as shown in figure 3.3.1.

Depending on the initial configuration of
nodes, there are two optimum
arrangments of node circles, shown in
figure 3.3.1. If you start with the initial
configuration above, then you will
probably wind up with the solution
shown in figure 3.3.2, which has a scale
of 0.323.

1 2

1

3

1

4

1

5

1

2

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

1

23

4

5

6

3.3.2

49

1

2

1

3

1

3

1

3

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

1

2

3

4

5 6

3.3.3

If you allow one of the nodes to start in
the middle of the square, you will
probably arrive at the solution in figure
3.3.3, which is significantly larger with a
scale of 0.353.

In general, for 5 or more flaps, the most
efficient crease pattern will have at least
one middle flap. In this example, we
were able to force all of the flaps to be
edge flaps simply by starting from an
initial configuration in which all of the
terminal nodes were on the edges. This is
not always possible, however. For
example, if you try the same problem for
seven equal-length flaps, there is no
initial configuration that will avoid
putting a circle into the middle of the
paper, creating a middle flap. A typical
circle pattern (with a scale of 0.268) is
shown in figure 3.3.4.

1

2

1

2

1

5 1

2

16

1

7

1

3

12

1
1.000

2
1.0003

1.000

4
1.000

5
1.000

6
1.000

7
1.000

1

2

3

4

5

6 7

8

3.3.4

50

12

1

2

1

4

1

5

16

1

7

1

3

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

1

2 3

4

5

6 7

8

3.3.5

However, we can force nodes to lie on
the edge of the paper, thereby turning the
associated flaps into edge flaps, by
setting conditions on them. Select all the
nodes, either by shift-clicking on each in
turn, or by choosing the Select All
command from the Edit menu. Then
select the Node fixed to edge command
from the Condition menu, which applies
this condition to each node in the
selection, as shown in figure 3.3.5.

Re-run the optimizer. (Because of a quirk
in the optimization code, you may have
to re-run it several times sequentially to
force convergence.) When you do, you
will find that all the nodes now lie on the
edge of the paper, essentially forming
one giant polygon. Select Build Polys
and Creases from the Action menu and
Creases Only from the View menu. This
pattern results in the crease pattern

3.3.6

shown in figure 3.3.6.

Ease of collapsing the crease pattern into
a base is a good reason to force flaps to
be edge flaps; another good reason is the
number of layers. For a given width flap,
edge flaps have only half the number of
layers of middle flaps, and so if a flap is
to be folded further, it may be desirable
to make it be an edge flap to it will be
easier to fold.

Another reason to make a flap be an edge
flap is for color-changing. The bases
produced by TreeMaker are inherently
single-color. If you are making a model
that exploits the colors of both sides of
the paper — a bald eagle, for example,
which would have white head, tail, and
feet — then you will need to make sure
that the flaps to be color-changed are
edge flaps, so that they may be turned
inside-out around the raw edges of the
flap. (It is extremely difficult to turn a middle flap inside-out!) Of course, color-changing
individual flaps is only the most rudimentary way of exploiting two-tone models and is
insufficient for models with stripes or spots, for example. For zebras, tigers, and giraffes, you’ll
have to use different techniques than those found in TreeMaker.

51

All bases designed by TreeMaker are what I call a “uniaxial” base. A uniaxial base is one in
which all the flaps lie along a single line. A base in which all of the flaps are edge flaps has the
very useful property that the layers can be arranged so that with all of the layers in the same half-
plane, no major flap is enclosed inside of another flap. I call a base with this latter property a
“simple” uniaxial base. Simple bases can also be designed by the “string-of-beads” algorithm,
and it is fairly easy to prove that the perimeter of an edge-flap-only base cannot exceed the
perimeter of the square.

It is tempting to suppose that any simply stacked base must be an edge-flap-only base, but it is
often possible to add auxiliary nodes to a base with middle points to make them “quasi-edge-
like”. An example will make this clear.

3.3.7

An eight-pointed base in which all of the
flaps are edge flaps is shown in figure
3.3.7. It has a scale of 0.250. If we don’t
force all the points to be edge flaps, we’ll
find the arrangement shown in figure
3.3.8, in which four of the points have
become middle flaps.

52

3.3.8

Although four of the flaps are middle
flaps and will be trapped inside layers,
it’s possible to squash-fold the raw-edged
flaps attached to each node in such a way
that a simply-stacked base is obtained.
And clearly, the perimeter of this base
exceeds the perimeter of the square by
the factor (sec(15°)), or by about 3.5%.

3.4 Fracturing polygons

Once you have completed an
optimization, the simplest crease pattern
that collapses into a base is produced by
choosing Build Polys and Creases ,
which creates all creases using the
“universal molecule” algorithm. You can
also break up high-order active polygons
into lower-order active polygons by
adding new edges to existing nodes.
When you create a new edge and scale it
using Optimize selection, it will be
expanded until it forms typically three
new active paths.

This process will break any polygon of order 5 or higher into polygons of lower order. In
general, the lower the order of the active polygon, the simpler it is to fold, so this is often a
desirable process. However, if you try to break up a polygon of order 4 (a quadrilateral), unless it
happens to have a line of symmetry, you will form two triangles and another quadrilateral. Thus,
you cannot in general reduce a crease pattern to all triangles simply by adding new edges to
existing nodes.

53

1
0.600

2
0.400

3
1.000

4
0.800

1

2
3

4
5

3.4.1

As an example, construct the tree shown
in figure 3.4.1 that has four legs of
different lengths.

When you optimize this tree, you will get
an irregular quadrilateral. Building
creases gives you a “gusset quadrilateral”
as shown in figures 3.4.2 and 3.4.3.

1

2

1

3

1

4

1

2

1
0.600

2
0.400

3
1.000

4
0.800

1

2

3

4

5

3.4.2

54

3.4.3

1

2

1

3

1

4

1

2

1

5

1

4

1

2

1
0.600

2
0.400

3
1.000

4
0.800

5
1.000-79.1%1

2

3

4

5

6

3.4.4

If you add a new edge to node 1 and
expand it, you’ll get something like the
polygon pattern shown in figure 3.4.4.
Indeed, the quad has been broken into
two triangles — and another quad.

55

1

2

1

3

1

4

1

2

1

5

1

4

1

2

1

6

1

3

1

2

1

7

1 6
1

4

1
7

1

4

1

3

1

2

3

4

5

6

7

8

9

3.4.5

The process can be repeated essentially
infinitely; you can make the quad smaller
and smaller, but you’ll never get rid of it!
Figure 3.4.5 continues the process, but
there is still one quadrilateral.

There is a fundamental reason for this
limitation: breaking up an arbitrary quad
into four triangles requires the formation
of four active paths. But when you add a
new edge to an existing node, you only
have three degrees of freedom: the x and
y coordinates of the new node and the
length of the edge. To create four active
paths, you need a fourth degree of
freedom.

If we add the new edge to a newly-
created node formed by splitting an edge,
we have a fourth degree of freedom,
namely, the location of the split along the
edge. There is a special command for
adding a node that forms four active
paths by splitting an edge; it is the Fracture Poly… command in the Action menu. This
command lets you break up an active polygon by splitting one of the edges in such a way as to
form four active paths.

12
3

1

2

1

3

1

4

1

2

1
0.600

2
0.400

3
1.000

4
0.800

1

2

3

4

5

6
7

8

9

10

11

3.4.6

To use this command, you need to build
the polygons and select the one to be
fractured. Select the Build Polys
command from the Action menu, as
shown in figure 3.4.6.

This builds all of the polygons for the
crease pattern. There are two kinds of
polygons: “top-level” polygons, which
are formed from the nodes of the tree,
and “subpolygons,” which are smaller
polygons located inside of the top-level
polygons. In the figure, the largest
polygon — the quadrilateral — is a top-
level polygon. The two small triangles
are sub-polygons, which are fully
enclosed by the top-level polygon.

56

3.4.7

Only top-level polygons can be fractured in this version of TreeMaker. Click inside the largest
polygon (but outside of the two sub-polygons) to select it. Then select Fracture Poly… from the
Action menu, which puts up the dialog shown in figure 3.4.7.

There is frequently more than one way to fracture a poly. This dialog lists all possibilities in a
popup menu, cataloged by which edge is split and what the length of the new edge would be.
Below the popup menu is listed the location of the new node and the distance that the split is
from one of the nodes along the edge. Choose edge 3 from the popup and click OK.

1

2

6

1

3

1
6

4

1

2

6

4

6
1

5

6

1

3

6

1

2

1
0.600

2
0.400

3
0.800

4
0.223

5
0.777

6
0.184

1

2

3

4

5

67

3.4.8

Enter the index of the polygon to
fracture. (Since we only have one active
polygon in this figure, its index is 1.)
Then click OK. The result is shown in
figure 3.4.8.

Observe that the former edge 3 has been
split into two with a new node at the
junction. A new edge — called a “stub”
— has been attached to the node with
another new node at its end. The new
node makes active paths with all four of
the corners of the original quadrilateral,
thereby breaking it into four active
triangles.

57

3.4.9

Building the creases gives a distorted
Bird Base–like shape shown in figure
3.4.9 whose flaps remain the proper
length for the specified tree.

If instead we had chosen to make the
stub on edge 1, we would have achieved
the crease pattern shown in figure 3.4.10.

Both crease patterns result in the 4 initial
flaps coming out with the same length
and scale. In both cases, there is an extra
flap that corresponds to the stub. The
extra flap “soaks up” excess paper within
the polygon.

3.4.10

58

3.4.11

Of course, you can always simply create
creases directly, which results in the
universal molecule, as shown in figure
3.4.11.

This shows, once again, that there are
many ways to get the same number of
flaps.

3.5 Forcing symmetric angles

One of the major enhancements in
TreeMaker 4.0 is that you can force
active paths to lie at specific angles. Why
would you want to do this?

Once you have computed and folded a
number of TreeMaker designs, you’ll
discover that only rarely will the edges of
each flap line up with each other. That’s
because a flap is composed of a bunch of
triangles coming together and when
TreeMaker optimizes a base, there’s no
particular reason for it to make the angles of one triangle equal to those of the adjacent layers.

If you could force all angles to be the same, or one of a small set of similar angles, then you’d get
a base in which more layers tend to line up.

An additional benefit of this is that if all the major creases run along fairly standard angles, you
run a better chance of being able to construct reference points by folding and/or a sequential
folding sequence, rather than measuring for reference points and a folding sequence that consists
of a single “bring all these creases together at once.”

If we are to force major creases to lie at “standard” angles, which angles should we choose? A
natural set of angles are those that are obtained by dividing a circle into an integral number of
equal divisions: for example, the common 22.5° degree angle found in the Bird Base is obtained
by dividing a circle into 16 parts. While this is the most common division, several others provide
useful and interesting bases: division into 12 parts gives multiples of 30° and crease patterns with
many equilateral triangles in them.

59

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

1

2

3

4

5 6

7
8

3.5.1

Let’s work through an example. Create a
new document and construct the six-
legged tree as shown in figure 3.5.1.

Now, select Optimize Scale from the
Actions menu to create the first iteration
of the design.

2

5

2

6

3

4

2

3

7

3

4

2

3

8

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

1

2

3

4

5 6

7 8

3.5.2

60

3.5.3

If you Build Polygons and Creases you
will get the crease pattern shown in
figure 3.5.3.

The creases in this design don’t precisely
fall on standard angles. We’ll modify it
so that they do. We do this by putting a
“Path angle quantized” condition on all
of the paths that correspond to major
creases.

Put the model back into Default View
and select the Kill Polygons command,
Actions menu, to put in back into the
configuration shown in figure N. In this
case, only the polygon paths are shown.
Select the Select all polygon paths
command, Edit menu. Then select Path
angle quantized… from the Conditions
menu. This puts up the dialog shown in
figure 3.5.4.

3.5.4

This will place a condition that forces each of the selected paths to be active (so it will be a major
crease) and to lie at an angle that is a multiple of 180°/N, where N is an integer. Common values
of N and the corresponding angle are:

61

N angle

4 45°

6 30°

8 22.5°

12 15°

16 11.25°

The most common choice is N=8, which corresponds to the angles you find in a Bird Base, but
there are many other useful possibilities to be found in the other angles, and I have found
interesting structures for N=10 as well.

We’ll work with N=8 for now. Type in 8 and click OK.

2

5

2

6

3

4

2

3

7

3

4

2

3

8

1
1.000

2
1.000

3
1.000

4
1.000

5
1.000

6
1.000

7
1.000

1

2

3

4

5 6

7 8

3.5.5

Note that the node circles have turned
green, indicating that there’s a condition
imposed on the nodes (actually, on the
paths connected to the nodes). However,
both ordinary polygon paths and polygon
paths with conditions on them are
displayed in black.

In principle, you should be able to re-
optimize; however, due to a quirk in
T r e e M a k e r ’s nolinear optimizer,
TreeMaker has a tendency to settle onto a
spurious solution in which the entire
crease pattern has shrunk into oblivion.
To prevent this tendency, we’ll need to
stitch some of the nodes to the edges of
the square.

The two easiest to do this to are to stick
nodes 5 and 6 to their present locations.
Double-click on node 5 to bring up the
Node Editor.

62

3.5.6

Notice that the node already has three conditions on it — conditions on the paths that emanate
from it. From the popup menu, select a “Node fixed to position” condition, and turn on the
conditions for both the x and y coordinates, fixing both to the value 0.0000.

3.5.7

Then click on OK.

Repeat on node 6, this time fixing it to x=1.0000, y=0.0000.

Now Select All (from the Edit menu) and choose the command Optimize Strain from the
Action menu.

This is a different optimizer than we chose before. The reason is that once we start putting a lot
of conditions on the crease pattern (and particularly path conditions), it becomes impossible to
satisfy all the conditions without distorting the original tree. The Optimize Strain command

63

allows all of the edge strains to become variables as well as the node positions, but it seeks the
minimum amount of distortion (specifically, it minimizes the RMS strain of the tree).

This type of optimization is one of the most difficult from a numerical analysis perspective, as
there are a great many equality constraints and they are frequently not independent (i.e., you’ll
find that internally, there are two different constraints that are saying essentially the same thing).
In this case, the optimizer becomes very sensitive to round-off errors (even in double-precision
math) and TreeMaker will frequently think it is unable to find a solution.

Such is the case here. Although you will see the nodes move around, you’ll probably be
presented with the following dialog:

3.5.8

In this case, TreeMaker actually did find a solution. So click on the “Continue” button.

2

3

4

2

5

2

6

2

3

7

3

4

2

3

7

2

3

8

3

4

2

3

8

1
1.000+1.4%

2
1.000-37.8%

3
1.000+1.4%

4
1.000+1.4%

5
1.000+1.4%

6
1.000+1.4%

7
1.000+1.4%

1

2

3

4

5 6

7 8

3.5.9

You’ll see that the pattern of nodes
shown in figure 3.5.9 is very similar to
what it was before, but now the edges are
slightly strained. All of the paths we put
conditions on are now running at
multiples of 22.5°.

64

2

3

4

2

5

2

6

2

3

7

3

4

2

3

7

2

3

8

3

4

2

3

8

1
1.014

2
0.622

3
1.014

4
1.014

5
1.014

6
1.014

7
1.014

1

2

3

4

5 6

7 8

3.5.10

If you’re happy with the results of the
strain optimization, you can make it
permanent by selecting the Relieve
strain command, Action menu. This
absorbs the strain into the length of each
edge and resets the strain to zero, as
shown in figure 3.5.10.

You can again Build Polygons and
Creases from the Action menu to get the
new crease pattern shown in figure
3.5.11.

You’ll see that the new crease pattern is
somewhat simpler and cleaner than the
previous pattern. Perhaps more useful is
that with the standardization of the
angles, you can find all of the reference
points by folding alone.

3.5.11

65

4.0 Reference

4.1 Introduction

This section describes the user interface of TreeMaker; it gives a comprehensive description of
the main window, how you construct a tree, and lists all of the menu commands and describes all
of the dialogs. The reference complements the tutorials in the previous section. While you should
start with the tutorials, they only cover the most important parts of TreeMaker; it would be a
good idea at some point to read through all of the reference to make sure you are aware of all the
capabilities of the program.

4.2 Main window

Each origami design is its own document and is displayed within a single window. An origami
design is composed of a number of interrelated “parts”; the 7 types of parts are called: node,
edge, path, poly, vertex, and crease — each of which has a graphical representation — and
conditions, which modify nodes, edges, or paths, and don’t have a direct visual representation.

Figures 4.2.1 and 4.2.2 show two views of a typical window that displays all of the different
parts.

4.2.1

66

4.2.2

These are two different ways of viewing the same design. As is shown in the next section (Menu
Commands), you can use the Custom View… command in the View menu to select which parts
are shown and how they are shown.

Some parts are color-coded to display their attributes. Color coding is summarized in the
following tables.

terminal
node

cond’d
 node

Node circle
color

false no circle

true false black

true true green

67

pinned
edge

cond’d
 edge

Edge color

true false light blue

true true light cyan

false false medium blue

false true medium cyan

sub
path

terminal
path

valid
path

cond’d
 path

polygon
path

active
path

Path color

true false pale red

true true light red

false false medium light red

false true false bright red

false true true false true black

false true true false false true dark red

false true true false false false medium red

false true true true true dark green

false true true true false true dark orange

false true true true false false medium orange

crease
type

Crease color

valley black

mountain medium gray

tristate light gray

68

The top of the window shows the scale of the current design (the scale is the relationship
between one edge unit and the size of the square). The rest of the window shows all the parts.

The collection of nodes and edges is known as a tree. Lines between nodes are paths. There is a
path between most pairs of nodes, however, most paths are invisible in the windows above.
Groups of certain paths form polys (“poly” is short for “polygon” and I’ll use the term more or
less interchangeably). Polys are filled in with vertices and creases. The vertices and creases form
the crease pattern for the origami base. The design of an origami base is accomplished in three
steps:

(1) Construction of a tree and specification of the desired attributes of the base (this is done by
you)

(2) Placement of the nodes in a valid configuration (this is computed by TreeMaker)

(3) Construction of the polys, vertices, and creases, forming the crease pattern for the base. (This
is also computed by TreeMaker.)

4.2.3

Figure 4.2.33 shows a finished crease pattern.

69

4.3 Creating a new Tree

When a window is first opened, it will be in Default View showing a blank square, as shown in
figure 4.3.1.

4.3.1

You define the tree by pointing and
clicking in the square to draw a stick
figure that defines the topology of the
desired origami base. Clicking once in
the square produces a node at the
location of the click, as shown in figure
4.3.3. When a node is selected it is
highlighted: it has a spot of color around
it in the highlight color of the computer
TreeMaker is running on.

If a single node is highlighted, clicking in
another location will add a node with an
edge connecting the two, as shown in
figure 4.3.3.

4.3.2

70

4.3.3

When an edge is first created, it will be
highlighted and will have a default length
of 1 unit.

Once there are two or more terminal
nodes, all terminal nodes will have a
circle shown around them whose radius
is equal to the scaled length of the
attached edge.

In this example, node 2 is selected, so
clicking in a new location will create
another new node and edge as shown in
figure 4.3.4.

Internal nodes (those with two or more
edges emanating from them) do not
display circles around them. However,
you can add branches to the tree that
emanate from an internal node by
selecting the internal node and then
clicking elsewhere in the square, as

4.3.4

shown in figure 4.3.5 and 4.3.6.

71

4.3.5

4.3.6

Once a third node has been created, the
convex hull of the nodes (border paths)
will be outlined as is shown in figure
4.3.6.

Each edge of the tree corresponds to a
flap of the base. By repeatedly selecting
nodes and clicking, you can build up
arbitrarily complex trees with any
number and arrangement of flaps.

To remove a node or edge, simply select
it by clicking on it and do one of the
following:

Select the Cut command, Edit menu

Select the Clear command, Edit menu

Hit the <delete> or <forward delete> key

Nodes, edges, and paths are some
examples of “parts.” Attributes of parts
— the location of a node, the length of an
edge, and so forth — can be altered by
editing the part. How this is done is the
subject of the next section.

4.4 Editing Parts

All parts (nodes, edges, paths, polys,
vertices, and creases) have attributes
associated with them. Some are
numerical settings; some describe
relationships to other parts. You can edit
many of these attributes in several ways.
The most direct is to double-click on the
part. Double-clicking brings up a dialog
that displays all of the attributes of the
part whether they are editable or not.
This section describes all of the editor
dialogs for each of the parts.

Nodes

If a node is double-clicked, the Node
Editor is put up as shown in figure 4.4.1.

72

4.4.1

A node is always identified by an index (node 1 in this example). The fields of the Node Editor
are:

x= ___, y= ___ — the coordinates of the node

label — an optional label for the node, which you may use any way you wish

The large list (empty in the example), the popup menu labeled “Add…”, and the two buttons
titled “Remove” and “Remove All” are used to place conditions on the node. See Edit
Conditions… command, Conditions menu, for a description of these tools (which work the
same in every dialog in which they appear).

If you click on the disclosure triangle at the lower left corner of the dialog, it toggles between a
standard dialog and an Expert Mode dialog shown in figure 4.4.2.

73

4.4.2

Expert Mode displays additional noneditable information about the node at the bottom of the
dialog. You don’t really need to know this information to design an origami base, but you might
find it interesting; it tells you a little about how the data structure is put together.

Edges

If an edge is double-clicked the Edge Editor is put up as shown in figure 4.4.3.

4.4.3

74

Like the Node Editor, the Edge Editor displays the index of the edge as well as the indices of the
nodes at each end of the edge. The fields of the Edge Editor are:

label — an optional label for the edge, which you can use any way you want

length — the desired length of the edge, relative to all the other edges

strain — the current strain of the edge, i.e., deviation from its desired length

stiffness — the stiffness of the edge, i.e., how resistant it is to being strained

There is also a set of controls for adding conditions to the edge. Again, look at the description of
the Edit Conditions… command, Conditions menu, for a description of these controls.

At the lower left corner, clicking on the disclosure triangle toggles between normal and Expert
Mode as shown in figure 4.4.4.

4.4.4

As with nodes, the information shown in Expert Mode isn’t really necessary, but you might find
it interesting.

Paths

If you double-click on a path, the Path Editor is put up as shown in figure 4.4.5.

•Note: most paths are not visible, but you can call up the editor for any path (or any other
part) using the Select Part… command, Edit menu.

75

4.4.5

There are no editable fields of a path, other than the controls for adding conditions. The
uneditable fields of the Path Editor do tell you some useful information; they are:

min length — the minimum length (in unscaled tree units) this path is allowed

current length — the current length of the path (in unscaled tree units)

current angle — the current angle of the path with respect to the x-axis.

There is also a set of controls for adding conditions to the path.

At the lower left corner, clicking on the disclosure triangle toggles between normal and expert
mode as shown in figure 4.4.6.

76

4.4.6

Polys

If you double-click on a poly, the Poly Editor is put up, as shown in figure 4.4.7.

4.4.7

There are no editable fields of a poly and you can’t apply conditions to one, so the only thing the
Poly Editor really tells you is the index of the poly.

However, the disclosure triangle toggles to Expert Mode, which gives some of the structural
information of the poly, as shown in figure 4.4.8. A poly is, internally, a fairly complex beastie.

77

4.4.8

Vertices

If you double-click on a vertex, the Vertex Editor is put up, as shown in figure 4.4.9.

4.4.9

There are no editable fields of a vertex and you can’t apply conditions to one, so the only thing
the Vertex Editor tells you ins the index of the vertex.

However, the disclosure triangle toggles to Expert Mode, which shows some of the structural
information of the vertex, as shown in figure 4.4.10.

4.4.10

Creases

If you double-click on a crease, the Crease Editor is put up as shown in figure 4.4.11.

78

4.4.11

There are no editable fields of a crease and you can’t apply conditions to one. However, the
Crease Editor does tell you the index and the type of crease (mountain, valley, or tristate).

The disclosure triangle toggles to Expert Mode, which shows some of the structural information
about the crease, as shown in figure 4.4.12.

4.4.12

These editors are brought up by double-clicking on a visible part, but they can also be called up
for any part (visible or invisible) by selecting the Edit Part… command, Edit menu (see below).

4.5 Menu commands

This section summarizes all of the menu commands of TreeMaker. TreeMaker has five menus:
Apple , File, Edit, View , Actions , and Conditions. The commands in each menu are given
below.

Apple Menu
About TreeMakerÉ

Shows you the version and credits for the program as shown in figure 4.5.1.

79

A Program for Origami Design

Copyright ©1994–1998 by
Robert J. Lang. All rights
reserved. Portions (CFSQP)
Copyright ©1993-1998 by Craig
T. Lawrence, Jian L. Zhou, and
Andre L. Tits. Use and
distribution of this program is
subject to restrictions described
in the TreeMaker documentation.

Thanks for suggestions and
algorithmic insight to:
Alex Bateman, Toshiyuki
Meguro, Tom Hull, Jun
Maekawa, Fumiaki Kawahata,
Erik Demaine, Barry Hayes, and
Marshall Bern.

Programmed with Metrowerks
CodeWarrior ™ and Metrowerks
PowerPlant™.

4.5.1

File Menu

All of these commands do what they usually do in a Macintosh application.

New 1N

Create a new, blank square to work on.

Open 1O

Open an existing tree.

Close 1W

Close the current tree. You will be prompted to save it if you have made any changes.

Save 1S

Save the current tree to disk.

Save AsÉ

Save the current tree under a new name.

Revert

Revert the current tree to the last saved version.

Page SetupÉ

Select the page orientation and other printing options.

80

PrintÉ 1P

Print the current tree. The printout is exactly the same size as what’s on the screen and the same
elements will be shown as are displayed. If you are in Default View, you’ll see all the nodes,
edges, circles, and so forth; if you are in Creases Only View , then you’ll print just the crease
pattern.

If the image is too large to fit on a single sheet, it will be tiled on multiple pages with crop marks
at the joints. There will be a header on each page consisting of the name of the file on the left and
the current scale on the right.

Print OneÉ

Print a single page.

Quit 1Q

Quit the program.

Edit Menu
Undo 1Z

Undo is currently not supported except for text entries in dialogs. The structure of an origami
design has many complex interrelationships between parts; if you do something as simple as
moving a node, many data structures are created, destroyed, and re-connected. Implementation of
Undo would be difficult.

The next four commands are the standard Macintosh editing commands that behave normally for
text in dialog boxes.

Cut 1X

In a text field, Cut cuts the current selection to the Clipboard. In the main window, Cut delete
the current selection of nodes or edges.

Copy 1C

In a text field, copy the current selection to the Clipboard. In the main window, copy the contents
of the window to the Clipboard as a picture (PICT) with embedded Postscript commands for line
weight and polygon formation. You can paste the crease pattern into another drawing program to
touch it up, change line weights or styles, or color it in. Many of the images in this document, for
example, were generated by Copying the image of the main window to the Clipboard and pasting
them into the document.

Paste 1V

In a text field, past the contents of the Clipboard into the field. This command does nothing in
the main window.

Clear

In a text field, delete the current selection. In the main window, delete the current selection of
nodes or edges.

81

Select All 1A

This command selects all visible nodes and edges. It’s most useful for deleting everything and
starting over and, with operations that are constrained to the selection (like Optimize Edges and
Fracture Poly), for giving the largest number of degrees of freedom possible.

Edit PartÉ 1I

This command puts up a dialog, the Part Selector, that lets you select a part to edit by several
different criteria. This is useful if several parts are close together and you can’t easily click on the
one you want.

4.5.2

The fields of the Part Selector are:

Path by nodes — specifies a path according to the indices of the nodes at each end of the path

Node by index — specifies a node according to its index

Edge by index — specifies an edge according to its index

Path by index — specifies a path according to its index

Poly by index — specifies a poly according to its index

Vertex by index — specifies a vertex according to its index

Crease by index — specifies a crease according to its index

This command is used to edit a node, edge, path, poly, vertex, or crease when you can’t easily
double-click on it. I find that I use it most often to get access to a particular path when I know the
nodes at each end of the path, so that’s the default selection criterion.

After you close this dialog, an editor will be put up for the selected part.

82

Edit treeÉ 1J

Puts up the Tree Editor, which lets you alter attributes of the overall pattern, as shown in figure
4.5.3.

4.5.3

The fields of the Tree Editor are:

Paper width — gives the width of the paper in dimensionless units. This value is normally set to
1, no matter how big the screen or printout is. To change the actual size of the screen (or printed)
image, select Set Paper Size… in the View menu.

Paper height — gives the height of the paper in dimensionless units. This value is normally set
to 1 for a square but you can change it to other values if you like. To work out designs on a
rectangle, you can change either the width or height to a different value. (You can, if you like,
change both to a different value, but it won’t make any difference.)

Scale — this sets the relationship between the units of the tree (edge lengths) and the
dimensionless size of the square. This quantity is determined when you invoke the Optimize
Scale command. You will ordinarily not change this number, but if you are creating a very
complicated tree, you might want to set it to a very small number to keep from cluttering up the
screen with a lot of circles.

Symmetry — on = define a line of symmetry. The line is defined by a point on the line and an
angle. Two common lines of symmetry are the point (0.5, 0.5) and angle 45° (for a diagonal
model) and the point (0.5, 0.5) and angle 90° (for a book-folded model). The two buttons
immediately below the check box are preset for these values.

diag — preset button for diagonal symmetry

book — preset button for book-fold symmetry

x = ___ — the x-coordinate of a point on the line of symmetry.

y = ___ — the y-coordinate of a point on the line of symmetry.

angle = ___ — the angle (in degrees) of the line of symmetry.

Clicking on the disclosure triangle toggles to Expert Mode, which displays additional structural
information about the Tree as shown in figure 4.5.4.

83

4.5.4

View Menu

The View menu contains commands that affect the way the tree and crease pattern are displayed
on the screen or printout. Commands are:

Default View 1D

Alters settings so that both the tree (the stick figure) and creases are visible. This is usually the
most useful combination of settings for working through a design. Here is an example shown in
figure 4.5.5.

4.5.5

84

Show Tree Only 1T

Show only the stick figure. Here is an example, shown in figure 4.5.6.

4.5.6

Show Creases Only 1L

Show only the crease pattern. Use these settings when you want to print out the crease pattern
without any other extraneous elements. Here is an example shown in figure 4.5.7.

85

4.5.7

Show Creases and Circles 1U

Show the crease pattern plus circles around terminal nodes. This group of settings shows some of
the structure of the base superimposed over the crease pattern. It’s a good compromise between
showing just the crease pattern but also giving some indication of where paper goes into flaps.
Here is an example shown in figure 4.5.8.

4.5.8

86

Custom ViewÉ 1G

puts up the View Editor, which lets you change how the image is displayed on the screen and
display any combination of settings, as shown in figure 4.5.9.

4.5.9

The View Editor is a movable dialog and its settings take effect immediately so you can see what
the results of your settings are.

There are four buttons for preset combinations of settings:

Default — show the default view, which displays both the tree, node circles, polygons, and
creases.

Tree — show just the tree (stick figure)

Creases — show just the crease pattern.

All — show everything. For all but the simplest figures, this is too busy to be useful (see figure
4.5.10), but if you ever wanted to see all the “guts” of a TreeMaker design, this is the closest
thing to it.

87

4.5.10

The other fields of the View Editor are:

Show symmetry lines — draw the line of symmetry on the square

Show terminal nodes — display nodes that have only one edge attached. All nodes are displayed
as dark black dots at the location of each node. Nodes with conditions attached are shown in dark
green.

Show internal nodes — display nodes that have more than one edge attached

Show sub nodes — display nodes that are not part of the Tree but that are contained by polys

Show node indices — display the indices of the nodes

Show node circles — display a circle around each terminal node. The circles around nodes with
conditions attached are shown in dark green.

Show node labels — display any labels you have defined for nodes

Show node flags — display single-letter codes for the flags attached to each node, which are:

t — terminal node: node has only one edge attached

b — border node: node lies on the convex hull of the group of nodes

88

p — pinned node: node can’t be moved without violating a path constraint

g — polygon node: node is a vertex of a valid polygon

c — conditioned node: node has one or more conditions applied to it

Show edges — display the edges of the tree. Edges are shown as thick light blue lines. Pinned
edges are shown in a lighter blue.

Show edge indices — display the index of each edge at its midpoint

Show edge labels — display any labels defined for edges

Show edge length — display the length of each edge

Always show edge strain — display the edge strain even if it’s equal to zero

Show edge flags — display single-letter codes for the flags attached to each edge, which are:

p — pinned edge: edge can’t be lengthed without violating a path constraint

c — conditioned edge: edge has one or more conditions applied to it

Show terminal paths — display all paths between terminal nodes (nodes with only 1 edge). Paths
are shown as single-pixel-thick lines between nodes. Terminal paths are shown in red.

Show internal paths — display all paths that connect to at least one internal node. Internal paths
are shown in pale red.

Show sub paths — display paths between sub nodes. Sub paths are shown in very pale red.

Show invalid paths — display all paths whose actual lengths exceeds their computed minimum
length. Invalid paths are shown in dark red.

Show polygon paths — display all paths that are part of the network of active paths and
polygons. Polygon paths are shown in black.

Show conditioned paths — display paths that have conditions applied. Conditioned paths are
shown in orange.

Show path indices — display the index of each visible path at its midpoint

Show path length — display the minimum length of each visible path

Show path flags — display single-letter codes for the flags attached to each path, which are:

t — terminal path: the path runs between two terminal nodes.

v — valid path: this path’s actual length is greater than or equal to its minimum length

a — active path: this path’s actual length is exactly equal to its minimum length

89

b — border path: this path lies on the border (the convex hull) of the set of nodes

g — polygon path: this path should be part of a poly

c — conditioned path: this path has one or more conditions applied to it

Show polygons — display major polygons. Polygons are displayed by thick gray borders inlining
each polygon.

Show sub polygons — display sub polygons (reduced polygons)

Show vertices — display all vertices as black dots.

Show vertex indices — display the index of each vertex next to it

Show major creases — display mountain and valley fold creases. Valley folds are shown in
black; mountain folds are shown in dark gray.

Show minor creases — display tri-state creases. Tristate creases are shown in light gray.

Show crease indices — display the index of each crease

Fit to Screen 1F

This menu command changes the size of the paper and the window to fill up the main screen. On
a 17” monitor, you will get about a 7.25” square (which, incidentally, fits neatly on an 8.5×11”
sheet of paper when it is printed).

Set Paper SizeÉ 1Y

puts up the dialog shown in figure 4.5.11 to change the paper size, which is given in inches. The
screen image is exactly the same size as the printed image.

4.5.11

Action Menu

The commands in the Action menu perform the calculations that determine the node positions
and the locations of creases. Normally you will define a stick figure, set up conditions on the
nodes, edges, or paths, and then alternate between refining the condition set and selecting
commands from the Action menu.

Scale Everything 11

Adjust the positions of all nodes and the overall scale of the model to find the position of the
nodes that satisfies all conditions and that gives the largest possible base. The image is updated
periodically as the calculations are performed so you can see progress. Type Command-Period to

90

interrupt the calculation. Figure 4.5.12 shows a typical configuration before and after “Scale
Everything.”

4.5.12

If you interrupt the calculation, you will be presented with the following dialog:

4.5.13

Similarly, if the optimizer runs into problems, it may also interrupt the calculation and present
you with a dialog of explanation. You have the choice of continuing with the nodes in their
present positions or reverting to the state the nodes were in before the calculation. Even if you
revert, any creases you may have generated are irretrievably lost, but they are easily
reconstructed.

Scale Selection 12

This command is used to remove degrees of freedom in a pattern after a Optimize Scale
command. By selecting unpinned nodes (shown in gray) and unpinned edges (shown in darker

91

blue) and selecting this command, the lengths of all of the unpinned selected edges will be
lengthened proportionally by increasing their strain, optimizing the position of the unpinned
selected nodes. If you happen to have selected pinned nodes or edges, they will be ignored. Since
only the selected nodes and edges will be considered, an easy way to increase all possible nodes
and edges is to select all (command-A) and then select this command. Figure 4.5.14 shows a
typical before and after configuration for scaling a single edge.

4.5.14

Split Selected EdgeÉ 1H

This command lets you add a node somewhere in the middle of an existing edge. Selecting this
comands puts up a dialog shown in figure 4.5.15.

4.5.15

You enter the distance the soon-to-be-created node should be from the indicated node (in tree
units). You must enter a positive value less than the length of the edge. A new node will be
added along the edge, breaking it into two separate edges. Just adding a node to an edge doesn’t
accomplish anything, but you can use the new node to add new branches to the tree. Figure
4.5.16 shows a before and after configuration.

92

4.5.16

Absorb Selected Node 1K

Nodes that have exactly two branches are unnecessary and are called “redundant” nodes. (the
node added by the previous command is a redundant node, at least until you attach something to
it.) If you select a redundant node, this command absorbs it into the edges it connects and joins
the edges into a single edge. This is the inverse of Split Selected Edge.

Absorb Redundant Nodes 1-

This command absorbs all redundant nodes in the tree. It’s useful for cleaning up a tree if you
fractured one or more polys and then subsequently deleted all of the stubs.

Remove Strain 1]

This command sets the strain of all edges to zero while leaving their lengths unchanged.

Relieve Strain 1[

This command changes the lengths of the edges to be equal to their strained length and then sets
the strain equal to zero.

Minimize Strain 13

This command does another optimization that minimizes the RMS strain of the node
configuration. This is the command to use when many path active conditions have been placed
on the nodes, particularly if they are coupled with quantized angles; often it is not possible to
satisfy all conditions without straining different edges by different amounts.

Note: it is very easy to set up conditions that admit no solution at all. A sign that you have done
this is that the optimizer will suddenly set the scale nearly equal to zero.

93

Build Polygons 14

Build all of the polygons in the crease pattern. This command constucts polys from active and
border paths; it also computes all the reduced paths and reduced polygons, according to the
theory of the “universal molecule” construction. (The algorithm that does this is one of the
centerpieces of my origami design theory.) Figure 4.5.17 shows a typical before and after for this
command.

4.5.17

In the example above, the triangles are converted to triangle polygons, while the irregular
pentagon at the bottom contains a set nested subpolygons.

Fracture PolyÉ 1;

Any active polygon can be broken up into smaller active polygons by adding a stub to the
corresponding subtree (this is a generalization of Toshiyuki Meguro’s overlapping circle
algorithm). If you add the stub to an existing node and optimize it using the Optimize Selection
command, you can usually only break the polygon into three smaller polys. However, if one adds
the degree of freedom to create a new node along an edge, then it’s possible to break the poly
into four smaller polys. (This is also a new algorithm I developed.) This command implements
this improved algorithm.

You must select a major polygon to fracture, then select this command. A dialog is put up as
shown in figure 4.5.18.

94

4.5.18

The dialog computes all possible ways to fracture the poly and displays them in a popup menu,
cataloged by which edge is split and the length of the stub to be added. The location of the new
node and the distance of the split from the end of the edge is shown immediately below the
popup menu. Clicking OK results in the addition of a new terminal node and edge (a stub) to the
tree, which fractures the polygon into lower-order polygons. Figure 4.5.19 shows before and
after examples.

4.5.19

Note: you must explicitly call Build Polys again after fracturing a poly to build the new polys.

Triangulate Tree 1/

This command repeatedly tries to fracture every active polygon of order-4 or higher until all
active polygons are triangles. If you then build creases, you will get all mountain, valley, and
tristate creases in the model making rabbit-ear patterns. Figure 4.5.20 shows a typical before and
after example.

95

4.5.20

Remove Polygons 1B

This command removes all polygons. If you are working with arranging nodes, the presence of
polygons can be a distraction; this command gets rid of them all.

Build Creases 1B

Build all of the creases in the crease pattern. Creases will only be built for existing polygons, so
you need to have built all polygons prior to calling this routine.

A typical sequence of commands after defining the tree might be:

1. Optimize Scale to maximize the scale and get the largest possible base.

2. Select All followed by Optimize Selection to maximize any unpinned edges.

3. Build Polygons.

4. Triangulate Tree (optional)

5. Build Creases .

By the time you are done, the main window is likely to be rather cluttered, so it’s a good idea to
select Creases Only to display just the crease pattern. The figures below illustrate this entire
sequence.

First, draw the initial tree as shown in figure 4.5.21.

96

4.5.21

Then select Optimize Scale, Action menu, to find the configuration of nodes that gives the
largest possible scale, as shown in figure 4.5.22.

97

4.5.22

Most of the nodes and edges are pinned, but node 7 isn’t pinned and edge 6 could be larger. So,
select node 7 and edge 6 and then select the Optimize Selection command, Action menu, giving
the result shown in figure 4.5.23.

98

4.5.23

Edge 7 has been strained (lengthened) by 44.9%, which now puts edge 7 in the corner of the
paper. Now select the Build Polys command, Action menu, to construct polygons from the
active paths, as shown in figure 4.5.24.

99

4.5.24

There are five polygons: four triangles and a quadrilateral. Although we could build a crease
pattern from this, we can also break the entire crease pattern into triangles. Select the
Triangulate Tree command, Action menu, which adds a stub to the tree and breaks the lower
polygon into four triangles, as shown in figure 4.5.25.

100

4.5.25

Now select Build Creases , Action menu, to construct the crease pattern, as shown in figure
4.5.26.

101

4.5.26

The origami design is complete. This view is very busy because it shows all of the sub-structure
of the design. Select Creases Only command, View menu, to display only the crease pattern,
shown in figure 4.5.27.

102

4.5.27

The origami design is complete!

Remove Creases 1R

Removes all creases from the image.

Build Polys & Creases 16

Builds both polygons and creases in a single step.

Conditions

The Conditions menu contains commands for applying or removing conditions from the origami
design. A condition is a way of imposing additional requirements on the crease pattern beyond
the bare minimum required for foldability. For example, you might want to require that the
crease pattern be bilaterally symmetric (to match the subject), that certain flaps be corner or edge
flaps (to minimize the total thickness of the flap); that certain flaps be the same length no matter
how the tree is distorted due to strain; or that certain paths fall at particularly symmetric angles.
The requirements are met by creating objects called “conditions” and linking them to the tree.

Edit ConditionsÉ 1=

The Edit Conditions… command puts up a dialog that displays all conditions and their settings,
as shown in figure 4.5.28.

103

4.5.28

Most of the Condition Editor is filled with a scrolling list of all conditions. The “Add…” popup
menu lets you add conditions to the origami design. When you first create a condition, it has
blank fields, which you must fill in with the indices of affected parts and any settings that apply
to those parts.

If you click on or in a condition, it will be highlighted (the third from the bottom is currently
highlighted). If you then click on the “Remove” button, the highlighted condition will be deleted.

If you click on the “Remove All” button, all conditions will be deleted.

Conditions can be applied to nodes, edges, and paths. The Node Editor, Edge Editor, and Path
Editor each contain a reduced version of the Condition Editor that will display only the
conditions that apply to the particular node, edge, or path being edited.

The types of conditions that can be applied and their fields are the following:

Node fixed to position

4.5.29

This condition fixes one or both coordinates of a node to a set location. The fields are:

 — the index of the node

104

— a checkbox if the x coordinate is to be fixed

— the desired value of the x coordinate

— a checkbox if the y coordinate is to be fixed

— the desired value of the y coordinate

Node fixed to corner

4.5.30

This condition insures that a node lies on one of the four corners of the paper. It’s used to make a
flap a corner flap. The fields are:

— the index of the node

Node fixed to edge

4.5.31

This condition insures that a node lies on one of the edges of the paper. It’s used to make flap an
edge flap. The fields are:

— the index of the node

Node fixed to symmetry line

4.5.32

This condition insures that a node lies on the symmetry line of the model. It’s used to make flaps
that lie on the center line of a bilaterally symmetric subject. The fields are:

— the index of the node

Nodes paired

4.5.33

This condition insures that two nodes are mirror images of each other about the symmetry line of
the base. It’s used to make two identical flaps on the left and right sides of the model. The fields
are:

— the index of the first node

105

— the index of the second node

Nodes collinear

4.5.34

This condition is used to force three nodes to be collinear. It’s used to make crease patterns more
symmetric. The fields are:

— the index of the first node

— the index of the second node

— the index of the third node

Note: a more effective way of making a crease pattern symmetric is to use the “Path Angle
Fixed/Quantized” conditions.

Edge length fixed

4.5.35

This condition is used to force an edge to have zero strain in a strain optimization. The fields are:

— the index of the edge

Edges same strain

4.5.36

This condition is used to force two edges to have the same strain in a strain optimization. The
fields are:

— the index of the first edge

— the index of the second edge

Note: you can force a group of edges to all have the same strain by binding each edge in the
group to a common edge with this condition.

Path active

4.5.37

106

This condition is used to force a particular path to be active, i.e., to have its actual length equal to
its minimum length. This will insure that there is a crease between the two nodes that runs along
the axis of the model. The fields of this condition are:

— the index of the first node

— the index of the second node

Path angle fixed

4.5.38

This condition is used to force a particular path to be both active and to lie at a given angle. It’s
used to make a crease pattern more symmetric. Its fields are:

— the index of the first node

— the index of the second node

— the angle that the path is forced to lie at

Note: if you have very many path angle fixed or path angle quantized constraints, it is very easy
to create incompatible constraints. Sometimes incompatible constraints can be relieved by
performing a strain optimization; other times you will simply have to remove some conditions.

Path angle quantized

4.5.39

This condition is used to force a particular path to be active and to lie at one of a group of angles,
which are integer divisions of 180°. It’s used to make a crease pattern more symmetric by
requiring that major creases lie at “nice” angles. The fields are:

— the index of the first node

— the index of the second node

— the integer divisor for the angle quantization

— the first angle in the group

By applying this condition to most or all of the active paths in a model and performing a strain
optimization (which is usually necessary to satisfy all conditions), you can create a very
symmetric crease pattern, which is usually necessary if you want a sequentially foldable design.

The subsequent commands in the conditions menu apply and give the status of each of the types
of conditions. These commands may have a mark next to them giving the status of the current

107

selection. Selecting one of the commands toggles on/off the given condition as applied to the
current selection.

Node fixed to positionÉ

This command applies/removes a “Node fixed to position” condition to the selected node. It is
only enabled if exactly one node is selected. If the command is checked, there is already a
condition and selecting this command will remove it. If the command is unchecked, selecting
this command will put up a dialog shown in figure 4.5.40.

4.5.40

The fields of the dialog are:

Fix x position to — on = this node’s x coordinate will be set to a fixed value

Fix y position to — on = this node’s y coordinate will be set to a fixed value.

The command has the following marks and effects:

No mark: the selected node does not have this condition. Selecting the command applies a
condition to the selected node.

Check mark: the selected node has this condition. Selecting the command removes this type of
Condtion from the selected node.

Node fixed to corner

This command applies/removes a “Node fixed to corner” condition to the selected node(s). It is
enabled if at least one node is selected. The command has the following marks and effects:

No mark: none of the selected nodes have this condition. Selecting the command applies a
condition to each of the selected nodes.

Diamond mark: some of the selected nodes have this condition. Selecting the command applies a
condition to all of the selected nodes.

Check mark: all of the selected nodes have this condition. Selecting the command removes this
type of Condtion from each of the selected nodes.

Node fixed to edge

This command applies/removes a “Node fixed to edge” condition to the selected node(s). It is
enabled if at least one node is selected. The command has the following marks and effects:

108

No mark: none of the selected nodes have this condition. Selecting the command applies a
condition to each of the selected nodes.

Diamond mark: some of the selected nodes have this condition. Selecting the command applies a
condition to all of the selected nodes.

Check mark: all of the selected nodes have this condition. Selecting the command removes this
type of Condtion from each of the selected nodes.

Node fixed to symmetry line

This command applies/removes a “Node fixed to symmetry line” condition to the selected
node(s). It is enabled if at least one node is selected. The command has the following marks and
effects:

No mark: none of the selected nodes have this condition. Selecting the command applies a
condition to each of the selected nodes.

Diamond mark: some of the selected nodes have this condition. Selecting the command applies a
condition to all of the selected nodes.

Check mark: all of the selected nodes have this condition. Selecting the command removes this
type of Condtion from each of the selected nodes.

Nodes paired

This command applies/removes a “Nodes paired about symmetry line” condition to a selected
pair of nodes. It is enabled only if you have selected exactly two nodes. The command has the
following marks and effects:

No mark: neither of the selected nodes has this condition. Selecting the command applies a
condition binding the two nodes together.

Diamond mark: one or both of the selected nodes have this condition but not with each other.
Selecting the command removes the existing pair conditions and applies a condition binding the
two nodes together.

Check mark: the two nodes currently have this condition applied to them. Selecting the command
removes the condition.

Nodes collinear

This command applies/removes a “Nodes Collinear” condition to a selected triplet of nodes. It is
enabled only if you have selected exactly three nodes. The command has the following marks
and effects:

No mark: none of the selected nodes has this condition. Selecting the command applies a
condition binding the three nodes together.

Diamond mark: one of the three selected nodes have this condition but they don’t form a triplet.
Selecting the command removes the existing triplet conditions and applies a condition binding
the three nodes together.

109

Check mark: the three nodes currently have this condition applied to them. Selecting the
command removes the condition.

Remove selected Node conditions

This command removes all conditions that apply specifically to this node. It does not affect Edge
conditions or path conditions.

Remove all Node conditions

This command removes all conditions that apply to all nodes. It does not affect edge conditions
or path conditions.

Edge length fixed

This command applies/removes a “Edge length fixed” condition to the selected edge(s). It is
enabled if at least one edge is selected. The command has the following marks and effects:

No mark: none of the selected edges have this condition. Selecting the command applies a
condition to each of the selected edges.

Diamond mark: some of the selected edges have this condition. Selecting the command applies a
condition to all of the selected edges.

Check mark: all of the selected edges have this condition. Selecting the command removes this
type of Condtion from each of the selected edges.

Edges same strain

This command applies/removes a “Edges same strain” condition to a selected pair of edges. It is
enabled only if you have selected exactly two edges . The command has the following marks and
effects:

No mark: neither of the selected edges has this condition. Selecting the command applies a
condition binding the two edges together.

Diamond mark: one or both of the selected edges have this condition but not with each other.
Selecting the command removes the existing pair conditions and applies a condition binding the
two edges together.

Check mark: the two edges currently have this condition applied to them. Selecting the command
removes the condition.

Remove selected Edge conditions

This command removes all conditions that apply specifically to this edge. It does not affect node
conditions or path conditions.

Remove all Edge conditions

This command removes all conditions that apply to all edges. It does not affect node conditions
or path conditions.

110

Path active 1,

This command applies/removes a “Path active” condition to the selected path(s). It is enabled if
at least one path is selected. The command has the following marks and effects:

No mark: none of the selected paths have this condition. Selecting the command applies a
condition to each of the selected paths .

Diamond mark: some of the selected paths have this condition. Selecting the command applies a
condition to all of the selected paths .

Check mark: all of the selected paths have this condition. Selecting the command removes this
type of Condtion from each of the selected paths.

Path angle fixedÉ

This command applies/removes a “Path angle fixed” condition to the selected path(s). It is
enabled if at least one path is selected. The command has the following marks and effects:

No mark: none of the selected paths have this condition. Selecting the command applies a
condition to each of the selected paths. It puts up a dialog for the path angle shown in figure
4.5.41.

4.5.41

Diamond mark: some of the selected paths have this condition. Selecting the command applies a
condition to all of the selected paths. It also puts up the dialog for the path angle.

Check mark: all of the selected paths have this condition. Selecting the command removes this
type of Condtion from each of the selected paths.

Path angle quantizedÉ 1\

This command applies/removes a “Path angle quantized” condition to the selected path(s). It is
enabled if at least one path is selected. The command has the following marks and effects:

No mark: none of the selected paths have this condition. Selecting the command applies a
condition to each of the selected paths. It puts up a dialog for the path angle quantization shown
in figure 4.5.42.

4.5.42

111

Diamond mark: some of the selected paths have this condition. Selecting the command applies a
condition to all of the selected paths. It also puts up the dialog for the path angle quantization.

Check mark: all of the selected paths have this condition. Selecting the command removes this
type of Condtion from each of the selected paths.

Remove selected Path conditions

This command removes all conditions that apply specifically to this path. It does not affect node
conditions or edge conditions.

Remove all Path conditions

This command removes all conditions that apply to all paths. It does not affect node conditions
or edge conditions.

Remove all conditions 1`

This command removes all conditions in the design.

112

5.0 The Tree Method of Origami Design

This section describes the mathematical ideas that underly the tree method of origami design —
and technical origami, or origami sekkei — in particular. The Japanese art of origami, though
centuries old, has undergone a renaissance in the last few decades from new advances in origami
design. The simple stylized birds, flowers, and fish of old have been replaced by incredibly
complex replicas of insects, crustacea, mammals, amphibians, dinosaurs, humans, objects, and
just about everything under the sun. The explosion of subject matter was driven in part by new
discoveries in design techniques. One of the most significant of these discoveries was a series of
mathematical algorithms for designing origami bases in terms of the number, size, and
arrangement of their points. This document section some of those algorithms.

Even before mathematics came into the picture, the concept of “points” — flaps that become
appendages of an origami model — and their number, length, and connections have figured
heavily in the origami designer’s approach to creating new folds. Over the past few years, I and
several folders have been formulating mathematical techniques for designing origami models on
the basis of their points. We have discovered several general algorithms for design, algorithms
that enable one to compute the crease pattern for a base containing any number of points of
arbitrary complexity. A complete description of such algorithms and all of their nuances would
fill a book — in fact, I am working on that very task — but the basic technique can be quickly
outlined and may be of interest to folders interested in exploring new bases and symmetries.

I am going to describe an algorithm using terminology and concepts that I developed in my own
research. However, I should acknowledge major contributions from other mathematical folders.
In any scientific endeavor, the rate of progress is vastly accelerated through the interaction and
cross-fertilization of ideas among several investigators and those who have contributed to this
theory are many: they include Jun Maekawa, Fumiaki Kawahata, Toshiyuki Meguro, Alex
Bateman and Tom Hull, with additional insights from John Montroll, Peter Engel, Issei Yoshino,
Brian Ewins, Jeremy Shafer, and Martin and Erik Demaine. My thanks and acknowledgment to
these, as well as the many more folders whose works formed both inspiration and guide for my
work over the years.

And now, on with design.

The name “technical folding” has come to be applied to origami designs that, whether
intentionally or not, display a strong geometrical elegance and sophistication. The target concept
for much of technical folding is the base . A base is simply a geometric shape that resembles the
subject to be folded — usually, a shape having the same number and length of flaps as the
subject has appendages. For example, a base for a bird might have four flaps, corresponding to a
head, tail, and two wings. A slightly more complicated subject such as a lizard would require a
base with six flaps, corresponding to the head, four legs, and a tail. And an extremely
complicated subject such as a flying horned beetle might have six legs, four wings, three horns,
two antennae and an abdomen, requiring a base with sixteen flaps. You needn’t stop there, either.
Throw in mouthparts and a separate flap for the thorax, if you like, for a total of nineteen flaps.
The number of flaps required in a model depends on the level of anatomical accuracy desired by
the designer. Historically, much origami design was performed by trial and error — manipulating
a piece of paper until it began to resemble something recognizable. However, for a complex
subject, trial and error is a highly inefficient approach, since one is unlikely to stumble upon a

113

nineteen-pointed base with flaps of the right size in the right places purely by luck. For such
models, a more directed approach is called for.

For a given number and distribution of flaps, there are always many possible bases that can be
folded that differ in various ways: the overall size of the base, which flaps have how many
layers, how the flaps are positioned in the plane of the paper, the stacking order of the layers, and
so forth. I doubt that there is a universal algorithm that could come up with every possible base
for a given subject; at any rate, most folders would be satisfied with an algorithm that could at
least come up with one. It turns out that such an algorithm exists for a particular class of base.
We will consider bases that have a special property: their flaps and layers can be arranged such
that (1) one edge of every flap lies in a common plane and (2) when the edges all lie in a plane,
all of the layers of the base are perpendicular to the plane. I call this type of base a uniaxial base
(because when the base is flattened, all of the flaps lie along a single common axis). An example
of a hypothetical uniaxial base for a hypothetical four-legged (and hence six-flapped) creature is
shown in figure 5.1.

Head

Foreleg

Foreleg

Hind leg

Hind leg

Tail

Figure 5.1. Schematic of a uniaxial base for an animal with four legs, a head, body, and tail. It’s
a uniaxial base if it can be manipulated so that all of the flaps lie in a plane and all of the layers
are perpendicular to the plane. The shadow of the base consists entirely of lines.

While a great many origami bases can be represented as uniaxial bases including the four classic
bases — the kite, fish, bird, and frog bases — many others cannot. For example, John Montroll’s
Dog Base and its derivatives do not fall into this category. But there are many bases that do, and
most importantly from the standpoint of design, for a great many subjects, a uniaxial base is a
sufficiently good approximation of the subject that you can easily transform it into a very
accurate and detailed replica of the subject.

We can represent any uniaxial base by the stick figure formed by the projection of the base into
the plane, i.e., the shadow cast by the base if illuminated from above. This stick figure has the
same number and length sticks as the base has flaps, and therefore it is a convenient abstraction
of the base, even as the base is an abstraction of the subject which we are trying to fold. The
problem to be solved is: for a given stick figure, can one find a way of folding a square into a
base whose projection is that stick figure?

Let’s first define some terms describing this stick figure. The mathematical term for a stick figure
is a graph . I’ll call the particular stick figure for a uniaxial base the graph of the uniaxial base.

114

Each line segment in the graph is called an edge of the graph; each endpoint of a line segment (or
point where two segments come together) is called a node. Each flap of the base corresponds to a
distinct edge of the graph, and since each flap has a specified length, each edge of the graph has a
length as well, which is the length of its associated flap. Thus, the planar graph for the six-legged
animal base shown in figure 5.2 has eight nodes and seven edges. In figure 2, I have assigned a
length of 1 to each edge of the graph, which implies that each segment in the base has the same
length. One can, of course, assign any desired combination of lengths — if you wanted an extra-
long tail, you could give it a length of 2 or 3 — but for simplicity, we’ll make all of the edges the
same in this example.

1

1

1

1

1 1 1

Foreleg

TailHead

Hind leg

Foreleg Hind leg

Figure 5.2. Planar graph for the six-legged base. Each edge of the graph has a length of 1 unit in
this example.

We will also restrict ourselves to bases that don’t contain any loops of paper, which correspond
to planar graphs that don’t have any cycles in them. If a base has a closed loop, that implies it has
a hole in it somewhere, which would imply cutting — a no-no, in origami design. (Of course, we
can always simulate a loop by joining two flaps together and hiding the joint.) A graph with no
cycles is called a tree graph or just tree . It’s easy to see that for any tree , the number of nodes is
always exactly one more than the number of edges. Thus, we will be searching for bases whose
projections are trees; for this reason, I call this design approach the tree method of design.

We will also divide the nodes into two types: terminal nodes are nodes that come at the end of a
single edge. Terminal nodes correspond to the tips of legs, wings, and other appendages. Nodes
formed where two or more edges come together are called internal nodes .

Terminal nodes

Internal nodes Edges

115

Figure 5.3. Parts of a tree graph. Line segments are called edges of the graph; points where lines
end or come together are nodes. Terminal nodes are nodes with only one edge; internal nodes
have two or more edges.

Suppose we have a base that has been folded from a square and we construct its tree. If we
unfold the base, we get a square with a crease pattern that uniquely defines the base. The folding
sequence that transforms the square into the base can be thought of as a mapping between points
on the square and points on the tree.

If you think of the tree as the shadow of the base, you can see from figure 1 that wherever you
have vertical layers of paper, there are many points on the base that map to the same point on the
tree. However, at the terminal nodes of the tree, there is exactly one point on the square that
maps to the node. Thus, we can uniquely identify the points on the square that become the tips of
the flaps of the base.

Now consider the following thought experiment: suppose an ant were sitting at the tip of one of
the legs of the base and wished to travel to another part of the base — say, the tail — without
leaving the paper. It would have to walk down the leg to the body, down the body, and back out
the tail. The distance it traveled would be (length of the leg) + (length of the body) + (length of
the tail).

Figure 5.4. An ant wishes to go from a foreleg to the tail along the base. It can take several
different paths, but the most direct path is the path that lies in the plane of projection.

Now, let’s think about what the path of the ant would look like on the unfolded square (you can
imagine dipping the ant into ink so that it left a trail soaking through the paper as it walked). On
the square, the path might meander around a bit or it might go directly from one point to the
other, depending on the course of the ant. One thing is certain, however: the distance traveled on
the unfolded square must be at least as long as the minimum distance traveled along the base.

116

Tail

Foreleg

Figure 5.5. The trail of the ant. The path of the ant might wander around on the square once
you’ve unfolded it, but there is no way that the path can be shorter on the square than the path
was on the base. Thus, the distance between two nodes on the square must be at least as large as
the distance between the two nodes measured along the edges of the tree.

This illustrates an extremely important property of any mapping from a square to a base: the
distance between any two points on the square must be greater than or equal to the distance
between the two corresponding points on the base. And in particular, this relationship must hold
for any two points on the base that correspond to nodes on the tree. Now while this condition
must hold for any pair of points on the base, it turns out that if it holds for any pair of terminal
nodes, it will hold for every pair of points on the base. That is, if you identify a set of points on
the square corresponding to terminal nodes of a tree and the points satisfy the condition that the
distance between any pair of points on the square is greater than or equal to the distance between
the points as measured on the graph, then it is guaranteed that a crease pattern exists to
transform the square into a base whose projection is the tree.

This is a remarkable property. It tells us that no matter how complex a base is sought, no matter
how many points it may have and how they are connected to one another, we can always find a
crease pattern that transforms the square (or any other shape paper, for that matter) into the base.
Putting this into mathematical language, we arrive at the fundamental theorem of the tree method
of design (which I call the “tree theorem” for short):

Define a simply connected tree P with terminal nodes Pi, i=1, 2,…N. Define by l ij the
distance between nodes Pi and Pj as measured along the edges of the tree; that is, lij is the
sum of the lengths of all the edges between nodes Pi and Pj. Define a set of points ui in
the unit square ui,x ∈ [0,1], ui,y ∈ [0,1]. Then a crease pattern exists that transforms the unit
square into a uniaxial base whose projection is P if and only if |u i–uj|≤lij for every i,j.
Furthermore, in such a base, Pi is the projection of u i for all i.

117

Although the proof of the tree theorem is beyond the scope of this article1, we won’t let that stop
us from using it. The tree theorem tells us that if we can find a distribution of nodes on a square
for which the distance between any two nodes is greater than or equal to the distance between the
nodes on the tree, then a crease pattern exists that can transform that node pattern into a base. For
a given tree, there are often several possible node patterns that satisfy the tree theorem, each of
which yields a different base. For our six-pointed base, a little doodling with pen and paper will
reveal that the pattern of nodes shown in figure 5.6 fits inside of a square of side
2√((121+8√179)/65) ≈ 3.7460.

Tail

Foreleg

Head

Foreleg

Hind leg Hind leg

2

3

2

2

3

2

Figure 5.6. Node pattern that satisfies the tree theorem for the six-legged tree.

The tree theorem is an existence theorem; it says that a crease pattern exists but it doesn’t tell us
what this supposed crease pattern actually is. However, it does provide a strong clue. The tree
theorem says that the points on the square that correspond to terminal nodes of the tree become
the tips of the flaps on the folded base. Are there any other parts of the square that we can
identify on the base?

Consider the inequality in the tree theorem. Two points corresponding to terminal nodes must be
separated on the square by a distance greater than or equal to the distance between them on the
tree. In the special case where equality holds, we can uniquely identify the line between the two
points. We will call a line on the square that runs between any two terminal nodes a path . Every
path has a minimum length , which is the sum of the edges of the tree between the terminal
nodes that define the path. (In the symbolism of the tree theorem, l ij is the minimum length of
path ij .) The actual length of a path is given by the distance between the terminal nodes as
measured upon the square (|u i–uj| in the tree theorem). Any path for which its actual length is
equal to its minimum length is called an active path.

On the base, the only route between two flap tips that is equal to the distance between the
terminal nodes lies in the plane of the projection. Thus, any active path between two terminal

1For a proof of the tree theorem, see “A Computational Algorithms for Origami Design,” 12th Annual Symposium
on Computational Geometry, May 22–26, 1996, Philadelphia, PA.

118

nodes on the square becomes an edge of the base that lies in the plane of projection.
Consequently, we have another important result:

All active paths between terminal nodes map to an edge of the base in the plane of
projection of the base.

Active paths on the square lie in the plane of projection of the square, but the plane of projection
is where the vertical layers of paper in the base meet each other. Thus, active paths are not only
edges of the base: they are major creases of the base.

So now we have the rudiments of the crease pattern for the base. We know the points on the
square that correspond to terminal nodes of the tree become the tips of the flaps of the base, and
we know that active paths on the square become major creases of the base. Furthermore, they are
creases that lie in the plane of projection of the base. In many cases, this information alone is
enough to find the complete crease pattern for the uniaxial base that corresponds to the tree. In
many cases, though, it isn’t. So we’ll keep going.

If you draw all of the active paths on a square, you get a network of lines, each of which is a
major crease of the base. Figure 6 includes the active paths for the node pattern for the six-legged
animal, labeled with their length. Each of those lines will turn out to be a crease in the base.

Since the active paths map one-to-one to paths on the tree, any features on the tree can be
mapped directly onto the active paths. Specifically, we can locate where on an active path each
internal node falls. If our hypothetical ant travels from one terminal node to another encountering
internal nodes at distances d1, d2, d3, and so forth along the way, then when we draw the crease
pattern, we can identify each internal node along the active path connecting the nodes at the same
distances from the terminal nodes. Thus, we can add all of the internal nodes to our budding
crease pattern. In figure 5.7, I’ve identified all of the nodes, terminal and internal, by a letter on
the tree, and have added their locations to the active paths in the crease pattern on the square.
Note that in general, an internal node will show up on more than one active path.

A

E F

G H

D

B

C

B

C

B

B

C

C

A

B

C

D

E

G

F

H

Figure 5.7. (Left). Tree with all nodes lettered. (Right) Crease pattern with terminal nodes,
internal nodes, and active paths.

119

It’s also worth pointing out that we don’t show any terminal nodes along the edges of the square
because the paths between nodes G and E, E and F, and F and H are not active paths.

It can be shown that active paths never cross each other, so the only places where lines come
together on the square are terminal nodes. This pattern of lines breaks up the square into a set of
polygons. In some of the polygons, all of their sides are active paths (like the inverted-kite-
shaped quadrilateral in the center of figures 5.6 and 5.7). If one of the sides of a polygon lies on
the edge of a square, it may or may not be an active path (in figure 5.6 and 5.7, each triangle has
one side on the edge of the square that is not an active path.)

We’ll call a polygon whose corners are terminal nodes and whose sides are active paths or the
edge of the square an active polygon. Each active polygon has the property that all of its sides
map to the plane of projection of the base when the square is folded into a base. Consequently, to
find a crease pattern that collapses the square into the base, it is necessary to find a crease pattern
that maps the network of active paths onto the plane of projection of the base.

This sounds like we have added requirements and made our job harder, but in fact we have
actually simplified things. One of the things that makes origami design so difficult is the
interrelatedness of all the parts of the base; if you try to change the dimensions of one part of the
model, you have to take into account how that part interacts with the rest of the paper. But it
turns out that when you have a square broken up into active polygons, you can separate the
design into independent pieces. Recall that the tree is the projection of the base, which is folded
from the complete square. Each polygon on the square corresponds to a portion of the overall
base and if you collapse any polygon into a section of the base — which I call a subbase — the
projection of the subbase is itself a portion of the projection of the complete base, i.e., a portion
of the original tree. For example, figure 5.8 shows the polygons for our six-legged base and the
corresponding trees for each subbase. Note that since all of the corners of an active polygon must
be terminal nodes, the triangles at the bottom corners of the square are not active polygons and in
fact do not contribute to the base at all.

120

A

E F

G H

D

B

C

B

C

B

B

C

C

A

B

C

E

G

A

B

C

F

H

A

B

E F

A

B

C

D

G H

Figure 5.8. The four active polygons for the six-legged base and the trees corresponding to each
subbase.

An incredibly useful property of active polygons is that although two polygons may share a
common side, if that side is an active path, any crease pattern that collapses one polygon into a
subbase is always compatible with a crease pattern that collapses the adjacent polygon into its
subbase! If you like, for example, you could cut up the square into separate polygons, fold each
polygon into a subbase, and then glue matching edges of the subbases back together and be
assured that they would match up. This matching property is unique to active paths, so any two
polygons that share a side that is an active path will be guaranteed to match up. The practical
upshot of this is that in order to find the creases that collapse the entire base, we can find crease
patterns that collapse each polygon into a section of the overall base, taking the polygons one at a
time. So here is a way to break up the design of a complicated base into a bunch of much simpler
bases. To collapse the entire square into a uniaxial base, it suffices to find a way to collapse each
polygon individually into the appropriate subbase.

121

Now, there is conceivably an infinite number of polygons and a polygon can have any number of
sides, so we’re not out of the woods yet. We need to find a way to collapse an arbitrary polygon
into its corresponding subbase. Let’s look at a few simple cases.

We’ll start with triangles. A triangle has three sides and three corners. Recall that the corners of
active polygons are terminal nodes. Thus, the tree of a triangle must be a tree with three terminal
nodes and vice-versa. There is only one graph with three terminal nodes, which is shown in
figure 5.9. This tree corresponds to a uniaxial base with three flaps, whose lengths I have dubbed
a, b, and c .

A

B
C

D

a

b c

A

CB

D
D

D

a a

b

b c

c

Figure 5.9. (Left) The tree with three terminal nodes, corresponding to a subbase with flaps of
length a, b, and c . (Right) The corresponding triangle polygon.

Now, one of the assumptions we’ve made is that the sides of the active polygons are active paths.
For a triangle whose three sides are active paths, that means we already know the lengths of the
sides: they are, respectively, (a+b), (b+c), and (c+a). A triangle is uniquely specified by its
sides, so if we are given the tree we know what the triangle is and vice versa. Given a triangle
with sides defined above, is there a crease pattern that collapses this triangle into a subbase with
flaps of the appropriate length?

There is such a crease pattern and it is one familiar to every paper folder: the humble rabbit ear.
It’s been known since Euclid that the three bisectors of a triangle intersect at a point, which
enables one to form a rabbit ear from any triangle with all of the edges lying in the same plane
(or if you flatten the rabbit ear, the edges all lie on a line). One can also show the converse; if
three sides of a triangle are (a+b), (b+c), and (c+a), then the length of the flaps of the resulting
rabbit ear are a, b, and c. So any triangle bounded by three active paths can be filled in with the
creases of a rabbit ear, as shown in figure 5.10.

122

A

CB

D
D

D

a a

b

b c

c

E

A

C

B
D

a

b
c

E

Figure 5.10. Crease pattern for a rabbit ear and resulting subbase. Note that the three flaps of the
subbase have the same lengths as the three edges of the tree.

If you are actually folding the active polygon, you can find the intersection of the angle bisectors
— point E in the figure — just by pinching each corner in half along the bisector and finding the
point where all the creases come together. If you are calculating the crease locations numerically,
there is a beautiful formula for the location of the intersection of the angle bisectors of an
arbitrary triangle. If pA, pB, and pC are the vector coordinates of corners A, B, and C and pE is
the coordinate of the bisector intersection, then pE is given by the simple formula

pE = pA(b + c) + pB(c + a) + pC (a + b)
2(a + b + c)

.

That is, the location of the bisector intersection is simply the average of the coordinates of the
three corners with each corner weighted by the length of the opposite side.

What happens when one of the sides of the triangle is not an active path? This can happen, for
example, when one of the sides of the triangle lies along an edge of the square; all of the triangles
in figure 5.8 are of this type. Since the distance between any two terminal nodes must be greater
than or equal to the minimum path length, the side that isn’t an active path must be slightly too
long to be an active path rather than too short. Fortunately, only a slight modification of the
rabbit ear is necessary to address this situation. Figure 5.11 shows the crease pattern and subbase
when side BC is slightly too long.

A

C

B

a

b
c

E

A

CB

D D

a a

b

b c

c
E

Figure 5.11. (Left) Crease pattern for a triangle when side BC is not an active path. (Right)
Resulting subbase.

123

If the triangle has two sides that aren’t active paths, a similar modification will still collapse it
appropriately.

Another case that we should consider is a triangle graph that has one or more internal nodes
along its edges, which may or may not be due to a kink in the subgraph. For example, the two
side subgraphs in figure 5.8 each have three terminal nodes, but in each graph, one of the edges
has an internal node because the subgraph has a kink at that point. We can still use the rabbit ear
construction to find most of the creases, but wherever we have an internal node along an active
path, we need a crease radiating inward from the internal node to the mountain fold that forms
the “spine” of the subbase.

We might wonder which creases are valley and mountain folds. All of the creases that form the
spine of the subbase are always mountain folds. Most of the creases corresponding to active
paths are valley folds; however, for terminal nodes that fall in the interior of the paper, there is a
mathematical requirement that the number of mountain and valley folds that come together at a
point differ by 2; consequently, for any terminal node that lies in the interior of the square, one of
the active paths must be converted to a mountain fold.

The other type of creases we will encounter are those creases that radiate inward from internal
nodes; they can be mountain folds, valley folds, or no folds at all, depending on which way we
lay the flaps when we flatten the uniaxial base. Since any such fold has three possible states, I
call them tri-state folds. To give some indication which way the folds go, I’ll draw all of the
active paths as valley folds (even though a few of them may actually turn out to be mountain
folds) and draw all of the tri-state folds as x-ray lines (since they can go either way).

Using the rabbit-ear crease pattern, we can fill in three of the four active polygons of the six-
legged base as shown in figure 5.12. Using similar patterns, we can fill in the crease patterns for
any triangle in any network of active polygons. Let us now turn out attention to the next case:
four-sided active polygons.

A

E F

G H

D

B

C

B

C

B

B

C

C

Figure 5.12. Crease pattern for the six-legged base with triangles filled in.

Just as a triangular polygon corresponded to a tree with three terminal nodes, a four-sided
polygon, or quadrilateral, has a tree with four terminal nodes. There are two distinct types of
trees with four terminal nodes, shown in figure 5.13. I call these two graphs the “4-star” and the

124

“sawhorse.” If a, b, c, and d are the lengths of the four terminal edges in either graph and e is the
length of the “body” in the sawhorse, then a quadrilateral whose sides are all active paths will
have sides of length (a+b), (b+c), (c+d), and (d+a) for the 4-star and (a+b), (b+c+e), (c+d), and
(d+a+e) for the sawhorse. There is an ambiguity associated with quadrilateral polygons; with the
triangle, if we are given the lengths of the three sides, then the lengths of the edges of the tree are
uniquely determined but with a quadrilateral, knowledge of just the lengths of the sides is
insufficient to fully specify the dimensions of the tree. We must have the full tree to know
whether the graph is a 4-star or a sawhorse and in the latter case, to know the length of the body.

a

b c

d a

b
e

c

d

Figure 5.13. The two trees with four terminal nodes. (Left) The 4-star. (Right) The sawhorse.

Finding crease patterns for quadrilaterals is more complex than finding patterns triangles because
there is more than one crease pattern that will collapse a given quadrilateral into the appropriate
subbase. In fact, there can be infinitely many different crease patterns for a given quad. However,
there is one pattern that has the desirable property that it works for quadrilaterals corresponding
to either type of tree. I call it “the gusset quad” crease pattern because it usually has a gusset
across its top. Its construction is rather complex, but I will describe it briefly here.

Given a quadrilateral ABCD as shown in figure 5.14. Inscribe a smaller quadrilateral inside
whose sides are parallel to the sides of the original quadrilateral but are shifted inward a distance
h (the value of h is not yet determined). Denote the corners of the new quadrilateral by A′ , B′ , C′,
and D′. Drop perpendiculars from these four corners to the sides of the original quadrilateral.
Label their points of intersection AAB where the line from A ′ hits side AB , BAB where the line
from B ′ hits AB , and so forth.

A B

C

D

h

A′

D′ C′

B′

AAB BAB

BBC

CBC

CCD
DCD

DDA

ADA

125

Figure 5.14. Construction of the gusset quad for a quadrilateral ABCD. Inset the quadrilateral a
distance h; then drop perpendiculars from the new corners to the original sides.

Now we need some distances from the tree. Let lAC be the distance from node A to node C on the
tree and lBD be the distance from node B to node D. In most cases (see below for the exceptions),
there is a unique solution for the distance h for which one of these two equations holds:

AAAB + A′C′ + CCBC = lAC , or

BBBC + B′D′ + DDAD = lBD.

Let us suppose we found a solution for the first equation. The diagonal A ′C′ divides the inner
quadrilateral into two triangles. Find the intersections of the bisectors of each triangle and call
them B′′ and D′′ . (If the second equation gave the solution, you’d use the opposite diagonal of
the inner quadrilateral and find bisector intersections A ′′ and C′′ .) The points A′, B′′, C′, and D′′
are used to construct the complete crease pattern.

A′

D′ C′

B′

B′′
D′′

Figure 15. On the inner quadrilateral, construct the bisectors of each triangle to find points B ′′
and D ′′ .

You’ve now found all of the points necessary to construct the crease pattern; connect them with
creases as shown in figure 16 to produce the mountain folds that form the spine and the one
valley fold that forms the gusset. You will also have to construct tri-state creases from each
internal node along the sides of the quad to complete the crease pattern. Figure 5.16 also shows
the folded gusset quad and its tree.

A B

C

D

A′

C′

B′′
D′′

AB

DC

A′C′

B′′
D′′

126

Figure 5.16. (Left) The mountain and valley folds of the gusset quad. Two tri-state creases are
shown. (Right) The folded version of the gusset quad.

You can construct an equation for the distance h in terms of the coordinates of the four corners
and the distances; it’s a rather involved quadratic equation, but can be solved using a pocket
calculator and high-school algebra. For arbitrary quadrilaterals, there is not a simple method to
find the crease pattern by folding, but symmetric quadrilaterals (such as the one in the middle of
figure 5.8) can be found by folding alone.

I alluded to exceptions above; there are quadrilaterals for which the points A′ , B′ , C′, and D′ all
fall on a line. In these special cases, you don’t get an inner quadrilateral; all of the inner creases
collapse onto a line (or sometimes a point) and you get the simplified crease pattern shown in
figure 5.17. Jun Maekawa has proven a theorem — called, appropriately enough, the Maekawa
theorem — that says, in essence, any quadrilateral can have its edges collapsed onto a line using
a crease pattern similar to this one. However, only in a relatively small number of cases will the
lengths of the resulting flaps match the desired tree.

A B

C

D

Figure 5.17. The Maekawa crease pattern.

The Japanese folder Toshiyuki Meguro has extensively explored crease patterns that collapse
polygons onto lines and has coined the name “bun-shi,” or “molecules,” to describe such
patterns. Just as individual molecules fit together to make a larger biological structure, so too do
origami molecules fit together to make an origamical structure: the base.

Using the rabbit ear crease pattern for triangles and the gusset quad crease pattern for
quadrilaterals, you can fill in any active polygon network that consists of triangles and
quadrilaterals to get the complete crease pattern for the base. Such a polygon network is the one
for the six-legged base considered earlier in this article. Figure 5.18 shows the full crease pattern
for the six-legged base and the resulting base. Unlike figure 5.1, this base is a real, foldable base;
you can easily verify the crease pattern by cutting it out and folding it on the lines. As you can
see, the projection of the base into the plane is indeed the tree, and all of the flaps have their
proper length.

127

A

E F

G H

D

B

C

B

C

B

B

C

C

A

D

H

C

B

F

E

G

Figure 5.18. Full crease pattern and six-legged base.

If you try to collapse figure 5.18 into the base, you will have to flatten some valley folds and turn
several tri-state creases into valley or mountain folds, depending on how you stack the layers and
arrange the points. Although Tom Hull, Toshikazu Kawasaki, and others have identified several
rules for assigning mountain and valley folds to a crease pattern that will allow it to be folded
flat, I haven’t yet identified an algorithm to assign mountain and valley folds to a tree method
crease pattern — in fact, as you can tell by folding up a base, there is always more than one
distribution of mountain and valley folds for a given crease pattern. In any event, when you
collapse the base, all of the points will be free and unattached from the others and each segment
of the base is precisely the same length as corresponding segment on the tree. You can thin the
points further and add reverse folds, et cetera, to turn the base into a subject.

Much the same procedure can be used for any network of active polygons. However, what
happens if there are polygons with five, six, or more sides? You saw the jump in complexity
going from three to four corners was considerable. Although there was only one type of tree for a
triangle and two for a quadrilateral, for a five-sided polygon there are three possible types of
trees and the number rises quickly beyond that. So there are many more possibilities to
enumerate. In addition, computation of the crease pattern for higher-order polygons gets very
complicated very quickly, and you can imagine the difficulties as the number of points increases.
For a nineteen-pointed insect, the network of active polygons could conceivably consist of a
single nineteen-sided polygon! How would we ever collapse such a beast?

I recently discovered one solution: there is a generalization of the gusset quad that produces a
crease pattern for any active polygon. However, its construction is even more complex than the
construction of the gusset quad was. It turns out, though, that we need no more than the gusset
quad and the rabbit ear to fold a base for any tree.

Again, a paradox: we’ll simplify the design problem by making the tree more complicated.
Consider the tree in figure 5.19, which is a 5-pointed star. This graph leads to a set of active
paths that comprise a single five-sided polygon.

128

A

B

C

D

E

F

1 1

1

1

1

A B

C

D

E

F

F

F
F

F

Figure 5.19. (Left) Tree for a base with 5 equal flaps. (Right) Pattern of terminal nodes and
active paths corresponding to this tree.

Now suppose we wanted to add one more point to the star. That would entail adding one more
terminal node — node G — to the active polygon network. On the tree graph, the new node
would be connected to node F as shown in figure 5.20. (If we connected it to one of the other
nodes that wouldn’t add another point; it would just lengthen an existing point.) Suppose the
point has a length l. Then since all the other edges are 1 unit long, the tree theorem tells us that
the new terminal node must be separated from each of the other terminal nodes by a distance
(1+ l).

We can visualize these constraints by imagining that each terminal node is surrounded by a circle
whose radius is equal to the length of the edge attached to that node in the tree. That is, nodes A–
E are surrounded by circles of unit radius, while node G is surrounded by a circle of radius l . The
requirement that G be separated from the other nodes by at least a distance (1+ l) is equivalent to
the requirement that circle G not overlap with any other circle.

129

A

B

C

D

E

F

G

1 1

1

1

1

l

A B

C

D

E

F

F

F
F

F

G

Figure 5.20. (Left) Tree with a new terminal node. (Right) One possible position for node G that
satisfies the tree theorem.

Figure 5.20 shows the circles around each node. As long as the circles do not overlap, the tree
theorem is satisfied. As l, the length of the new edge, is increased, the size of the circle around
node G must be increased as well. Eventually, circle G will swell until it is touching at least three
other circles, and at that point, shown in figure 5.21, the new point is as large as it can possibly
be.

A B

C

D

E

F

F

F
F

F

G

F

F

F

F

Figure 5.21. Terminal node pattern with the largest possible circle around node G .

Wherever circle G touches another circle, the two terminal nodes are spaced at their minimum
separation. Consequently, the paths between the nodes of touching circles are active paths.

130

Whenever we add a new node inside a polygon, if we make the corresponding flap sufficiently
large, it forms several new active paths with the vertices of the old active polygon. In the process,
it breaks up the polygon into smaller polygons with fewer sides than the original polygon. In
figure 5.21, adding the new point has broken the five-sided polygon into one quadrilateral and
three triangles. But we already know crease patterns for quadrilaterals and triangles! Filling in
the crease patterns in each polygon gives a crease pattern for the full base, shown in figure 5.22.

A B

C

D

E

F

F

F
F

F

G

Figure 5.22. Crease pattern for the 5-pointed base.

Imagining terminal nodes as being surrounded by circles makes it easier to visualize the path
constraints of the tree theorem. Although strictly speaking, the circle analogy only holds for
terminal nodes with exactly one internal node between them, one can devise a similar condition
for more widely separated nodes. If you draw in circular arcs around each terminal node tangent
to the tri-state creases, you get a set of contours on both the crease pattern and the base, in which
edges attached to terminal nodes are represented by circles and edges attached only to internal
nodes are represented by contours that snake through the crease pattern as in figure 5.23. For
numerical computation, I find that it is simpler to do all calculations in terms of paths and path
lengths, but for intuition and visualization, the circles and contours constitute an equivalent and
more easily visualized tool for devising new crease patterns.

131

A

E F

G H

D

B

C

B

C

B

B

C

C

Figure 5.23. Circles and contours for the six-pointed lizard base.

If you’ve stuck with me so far, you’re now at the goal: an algorithm for finding a crease pattern
to fold a base with any number of points from a square, rectangle, or any other shape paper. (In
fact, this algorithm even works for circular paper!) To summarize the algorithm:

1. Draw a tree, or stick figure, of the base, labeling each edge with its desired length.

2. Find a pattern of terminal nodes on the square that satisfies the tree theorem, namely,
that the distance between any two nodes on the square is greater than or equal to their
separation on the tree.

3. Mark all of the active paths, paths whose actual length is equal to their minimum
length. Identify the active polygons.

4. For any active polygon with five or more sides, add a node and edge to the tree
attached at an internal node of the polygon and make the edge as large as possible,
thereby breaking up the active polygon into quads and triangles.

5. Fill in each active polygon with quad and triangle crease patterns.

The good news is that using the algorithm described above, a base can be constructed for any tree
— in fact, there are usually many distinctly different solutions for a single tree. The bad news is,
as you might suspect from some of the above, constructing the crease pattern can be
computationally intensive.

(The worse news is that even when you have the crease pattern, folding it up into a base can be
infuriatingly difficult; there is rarely a step-by-step folding sequence. More often than not, you
need to precrease everything, then collapse the base all at once.)

132

Since every polygon network can be broken up into triangles and quads by the addition of extra
circles, the triangle and quad molecules are by themselves sufficient for filling in the crease
pattern for any tree. However, there are many other possible molecules, including molecules that
can be used for higher-order polygons. It turns out that the gusset quad is just a special case of a
more general construction that is applicable to any higher-order polygon. I call this construction
the universal molecule . In fact, many of the known molecules — the Maekawa and Meguro
molecules, the rabbit ear, and so forth (but not the arrowhead quad, as it turns out) are special
cases of the universal molecule. The rest of this article describes the construction of this
molecule for an arbitrary polygon.

Consider a general polygon that satisfies the tree theorem, i.e., any two vertices are separated by
a distance greater than or equal to their separation on the tree graph. Since we are considering a
single active polygon, we know that of the paths between nonadjacent vertices, none are at their
minimum length (otherwise it would be an active path and the polygon would have been split).

Suppose we inset the boundary of the polygon by a distance h, as shown in figure 5.24. If the
original vertices of the polygon were A1, A2,… then we will label the inset vertices A1′ , A2′ ,… as
we did for the gusset quad construction. I will call the inset polygon a reduced polygon of the
original polygon.

h

A1

A1′

A2

A3

A4

A5

A2′

A3′

A4′

A5′

polygon

reduced polygon

α1

α1
α2

α2

α3

α3

α4α4

α5
α5

Figure 5.24. A reduced polygon is inset a distance h inside of an active polygon. The inset
corners lie on the angle bisectors (dotted lines) emanating from each corner.

Note that the points Ai′ lie on the bisectors emanating from the points Ai for any h. Consider first
a reduced polygon that is inset by an infinitesimally small amount. In the folded base, the sides
of the reduced polygon all lie in a common plane, just as the sides of the original active polygon
all lie in a common plane; however, the plane of the sides of the reduced polygon is offset from
the plane of the sides of the active polygon by a perpendicular distance h. As we increase h, we
shrink the size of the reduced polygon. Is there a limit to the shrinkage? Yes, there is, and this
limit is the key to the universal molecule. Recall that for any polygon that satisfies the tree
theorem, the path between any two vertices satisfies a path length constraint

Ai − Aj ≥ lij , (1)

133

where lij is the path length between nodes i and j measured along the tree graph. There is an
analogous condition for reduced polygons; any two vertices of a reduced polygon must satisfy
the condition

′Ai − ′Aj ≥ ′lij , (2)

where ′lij is a reduced path length given by

′lij = lij − h cot α i + cot α j() (3)

and α i is the angle between the bisector of corner i and the adjacent side. I call equation (2) the
reduced path constraint for a reduced polygon of inset distance h. Any path for which the
reduced path constraint becomes an equality is, in analogy with active paths between nodes,
called an active reduced path .

So for any distance h, we have a unique reduced polygon and a set of reduced path constraints,
each of which corresponds to one of the original path constraints. We have already assumed that
all of the original path constraints are met; thus, we know that all of the reduced path constraints
are met for the h=0 case (no inset distance). It can also be shown that there is always some
positive nonzero value of h for which the reduced path constraints hold. On the other hand, as we
increase the inset distance, there comes a point beyond which one or more of the reduced path
constraints is violated. Suppose we increase h to the largest possible value for which every
reduced path constraint remains true. At the maximum value of h, one or both of the following
conditions will hold:

(1) For two adjacent corners, the reduced path length has fallen to zero and the two inset corners
are degenerate; or

(2) For two nonadjacent corners, a path between inset corners has become an active reduced
path.

These two situations are illustrated in figure 5.25.

h

Ai

Ai′

Aj

Aj′

αi

αi
αj

αj

lij ′=0

h

A2

A5

A2′

A5′

α2
α2

α5
α5

lij ′=|Ai′–Aj′|

134

Figure 5.25. (Left) Two corners are inset to the same point, which is the intersection of the angle
bisectors. (Right) Two nonadjacent corners inset to the point where the reduced path between the
inset corners becomes active.

As I said, one or the other or both of these situations must apply; it is possible that path
corresponding to both adjacent and nonadjacent corners have become active simultaneously or
for multiple reduced paths to become active for the same value of h (this happens surprisingly
often). In either case, the reduced polygon can be simplified, thus reducing the complexity of the
problem.

In a reduced polygon, if two or more adjacent corners have coalesced into a single point, then the
reduced polygon has fewer sides (and paths) than the original active polygon. And if a path
between nonadjacent corners has become active, then the reduced polygon can be split into
separate polygons along the active reduced paths, each with fewer sides than the original polygon
had (just as in the polygon network, an active path across an active polygon splits it into two
smaller polygons). (In the gusset quad, for example, the reduced quad is inset until one of its
diagonals becomes an active path; the reduced quad is then split along the diagonal into two
triangles.) In either situation, you are left with one or more polygons that have fewer sides than
the original. The process of insetting and subdivision is then applied to each of the interior
polygons anew, and the process repeated as necessary.

If a polygon (active or reduced) has three sides, then there are no nonadjacent reduced paths. The
three bisectors intersect at a point, and the polygon’s reduced polygon evaporates to a point,
leaving a rabbit ear molecule behind composed of the bisectors.

Four-sided polygons can have the four corners inset to a single point or to a line, in which case
no further insetting is required, or to one or two triangles, which are then inset to a point. Higher-
order polygons are subdivided into lower-order ones in direct analogy.

Since each stage of the process absolutely reduces the number of sides of the reduced polygons
created (although possibly at the expense of creating more of them), the process must necessarily
terminate. Since each polygon (a) can fold flat, and (b) satisfies the tree theorem, then the entire
collection of nested polygons must also satisfy the tree condition. Consequently, any active
polygon that satisfies the tree theorem — no matter how many sides — can be filled with a
crease pattern using the procedure outlined above and collapsed into a base on the resulting
creases.

So what are the creases of the universal molecule? Each polygon is divided into two parts: the
core is the reduced polygon (which may be crossed by active reduced paths); the border around
the core is the ring . The angle bisectors that cross the ring are mountain folds. Internal nodes
along active paths propagate inward across the ring forming tri-state folds. Active reduced paths
that cross the core are valley folds. The boundary of reduced polygons can also be tri-state folds,
as one may or may not fold layers along them. The same assignment of crease applies to each
level of the recursive universal molecule construction.

A remarkable feature of the universal molecule is that many of the molecular crease patterns that
have been previously enumerated are just special cases of it, including the rabbit ear molecule,
the gusset quad, and both Maekawa and Meguro quads. Figures 5.26 and 5.27 illustrates these
special cases.

135

Figure 5.26. In a triangle, all three corners are inset to the same point, which is the intersection
of the angle bisectors. This gives the rabbit ear molecule.

Figure 5.27. The four possible universal molecules for a quad. If all four corners are inset to the
same point, the result is the Husimi molecule (top left). If adjacent pairs of corners are inset to
two points, the Maekawa molecule is obtained (top right). If the inset polygon is a triangle, it is
filled in with a rabbit ear molecule, which also results in a Maekawa molecule (bottom left).
Finally, if the inset polygon is a quad crossed by an active reduced path, the result is the gusset
quad.

These examples are just the tip of the iceberg; beyond four sides, the possibilities rapidly
explode. But this explosion doesn’t matter; there is a unique universal molecule for every
possible active polygon that satisfies the tree theorem.

An alternative design approach that blends aspects of the circle method and tree methods has
been described by Kawahata2 and Maekawa3. It has been called this the “string-of-beads”

2Fumiaki Kawahata, Fantasy Origami, pub. by Gallery Origami House, Tokyo, Japan, 1995 [in Japanese].

3Jun Maekawa, Oru magazine, also in Proceedings of the Second International Conference on Origami Science and
Technology, 1994 [in Japanese]

136

approach to design. As in the tree method, you begin with a tree graph of the model to be folded.
Each line of the graph is doubled and the graph is expanded to fill a square, with the nodes of the
graph spaced around the edges of the square like beads on a string. The process is illustrated for a
six-flap based in figure 5.28.

Figure 5.28. The string-of-beads design method. The tree graph is turned into a closed polygon,
which is then “inflated” inside of a square with straight lines between the terminal nodes. The
result is a large polygon inside the square that is collapsed into the base.

In the string-of-beads method, the tree graph is converted into a large polygon in which each
corner is one of the terminal nodes of the tree and each side is as long as the path between
adjacent terminal nodes. It is clear that this distribution of terminal nodes is just a special case of
the tree method in which we have constrained all of the nodes to lie on the edge of the square; it
avoids having middle points, but at the expense of possibly reduced efficiency.

The string-of-beads approach produces a large polygon that must be collapsed into the base, and
the techniques described by Maekawa involve placing tangent circles in the contours shown in
the last step of figure 5.28 (which is analogous to our use of additional circles to break down
active polygons into smaller polygons in the tree method; Kawahata’s algorithm projects
hyperbolas in from the edges to locate reference points for molecular patterns.) However, one
can also apply the universal molecule directly to the string-of-beads polygon, achieving another
efficient crease pattern that collapses it into a base.

137

Figure 5.29. Construction of the universal molecule for the polygon shown in figure 28.

Figure 5.29 shows the universal molecule. The initial hexagon is inset to the point that the two
horizontal reduced paths become active, and the hexagon is split into two triangles and rectangle.
The triangles are filled with rabbit ear creases; the rectangle is further inset, forming a Maekawa
molecule.

Figure 5.30 compares the crease pattern obtained from this polygon by adding an additional node
to the tree pattern (i.e., adding a middle flap) and that obtained with the universal molecule. (Tri-
state creases are shown as dotted lines.)

Figure 5.30. (Left) Crease pattern obtained by adding an additional node to the hexagonal active
polygon. (Right) Crease pattern obtained by using the universal molecule.

A nice feature of the universal molecule is that it is very frugal with creases. A tree filled in with
universal molecules tends to have relatively few creases and large, wide flaps (which can, of

138

course, be subsequently narrowed arbitrarily as desired). In fact, I conjecture the following: for
any active polygon, the universal molecule is the crease pattern with the shortest total length of
creases that collapses that polygon to the uniaxial base. Few creases translates into relatively few
layers in the base (at least, until you start sinking edges to narrow them). And because you don’t
have to arbitrarily add circles (and hence points) to a crease pattern to knock polygons down to
quads and triangles (as you do using the classical tree method algorithm), bases made with the
universal molecule tend to have less bunching of paper and fewer layers near joints of the base,
resulting in cleaner and (sometimes) easier-to-fold models.

As another example of the utility of the universal molecule, an article by Maekawa in Oru
magazine illustrated the design of a tree structure using the string-of-beads/contour algorithm. In
this algorithm, all terminal nodes are arranged around the outside of the square to form one large
active polygon. Then fixed-size circles are added to the interior to break up the active polygon
into quads and triangles. Figure 5.31 shows the tree and the circle pattern derived thereby.

1

22

2
2

2

5
2

1

2

1
2

2

3.224

Figure 5.31. (Left) tree and (right) crease pattern from Oru

Maekawa’s construction used rabbit ear molecules to fill in the triangles and a different, but
similarly versatile construction to fill in quads, called the arrowhead quad. The resulting crease
pattern is shown in figure 5.32. Because of the large number of interior circles, the crease pattern
is quite complex and is quite difficult to fold flat.

139

Figure 5.32. Crease pattern from Oru using arrowhead quad and rabbbit-ear molecules.

We can simplify the crease pattern obtained for the same terminal node positions by adding a
smaller number of interior circles and inflating each new circle to its maximum size before
adding the next, as described above. It turns out that we need add only three nodes to insure that
all active polygons have three or four sides. The resulting modified tree and crease pattern,
shown in figure 5.33, is reasonably simple to fold, and utilizes only rabbit-ear and gusset quad
molecules.

1

22

2
2

2

5
2

1

2

1
2

2

3.224

Figure 5.33. Tree and crease pattern for the Oru tree with three additional interior circles and
filled with triangle and gusset quads.

By applying the universal molecule to the original polygon, we can get a still simpler crease
pattern, which is shown in figure 5.34. This pattern has the additional perk that it is yet easier to

140

fold up in the base (I encourage you to try). The flaps are, as you might expect, much wider than
they are long. However, by sinking the top of the base in and each, all of the flaps can be thinned
to arbitrarily large aspect ratio while maintaining their relative lengths.

Figure 5.34. Universal molecule version of the Oru tree

All of the crease patterns in figures 5.31–5.34 share the property that all points lie on the edge of
the square. If we relax this constraint and allow middle points, then we can achieve a slightly
larger and even simpler pattern (with a scale of 0.067 as compared to 0.065 for the previous
pattern), shown in figure 5.35.

141

Figure 5.35. Oru tree crease pattern with middle points.

Without the universal molecule one must arbitrarily add circles to the network of active paths
until every polygon is of order 4 or smaller. Since there is some choice about where circles are
added, the tree method solution for a base is not necessarily unique. The universal molecule,
however, is entirely determined. By applying the recursive universal molecule construction, any
network of active paths can be filled in with creases and collapsed into a uniaxial base. Thus, the
progession from tree graph to full crease pattern may be accomplished using a single
optimization.

There is another, subtler advantage to the universal molecule: it tends to shift paper away from
the plane of projection of the base, which simplifies collapsing the base and reduces the buildup
of layers where flaps join together. Although the flaps tend to be wider than those produced with
other algorithms, one can easily make points narrower by repeatedly sinking the corners of
collapsed polygons to narrow the flaps. This, of course, builds up layers of paper in the base,
which is to some degree unavoidable. The most equitable distribution of these extra layers comes
when the points are sunk along lines parallel to the plane of projection. Since the edges of the
inset polygons are parallel to the plane of projection in the folded base, these lines naturally form
lines along which to sink.

There are other polygon-filling algorithms beyond the universal molecule described above, and I
will mention two of them here. Toshiyuki Meguro — who coined the term “molecule” (bun-shi,
in Japanese) has developed a technique that makes use of overlapping circles, which in effect,
allows one to add new branches to the tree by adding nodes to the middle of existing edges. This
technique allows each new circle to touch four, rather than three, existing circles, and cuts down
on the number of circles that need to be added. I have extended and generalized Meguro’s
concept to apply to arbitrary polygons by introducing the concept of a “stub.” Also Fumiaki
Kawahata has developed a technique for filling in polygons that involves projecting hyperbolas,
rather than straight lines, inward from the edges of an active polygon, which results is bases
whose points can be narrower and more regular (if desired). No doubt there are yet other
algorithms lurking out there in the mathematical wilds.

Although the mathematical algorithms for origami design are rigorously defined, the actual
location of the nodes and creases can be computationally intensive. Computationally intensive
problems are best handled by computer and indeed, the procedures described above can be cast
in the mathematical and logical terms that lend themselves to computer modeling. The computer
program TreeMaker implements these algorithms. Using TreeMaker , I’ve solved for bases for a
number of subjects whose solutions have eluded me over the years — deer with varying sizes
and types of antlers, 32-legged centipedes, flying insects, and more. Using a computer program
accelerates the development of a model by orders of magnitude; from the tree to the full crease
pattern takes less than five minutes (although folding the crease pattern into a base may take two
to three hours after that!) Not only does TreeMaker come up with the base initially, but it lets one
incrementally iterate the design of the model, shifting paper from one part of the model to
another to lengthen some points and shorten others, all the while keeping the entire model
maximally efficient.

One need not program a computer, of course, to use the techniques I’ve described to design
origami — origami designers have used similar techniques for years. But I foresee a dramatic
shift in the art as these techniques — what one might call “algorithmic” origami design —
become more widespread. For years, technical folders concentrated on getting the right number

142

and lengths of points to the near-exclusion of other folding considerations such as line, form, and
character. With algorithmic origami design, point count comes automatically and is no longer the
overwhelming consideration in technical origami design. In the past, origami art and origami
science have often been at odds, but with algorithmic origami design, the technical designer,
freed from the need to expend his or her energies on the number of appendages, can focus on the
art of folding, secure in the knowledge that the science will take care of itself.

143

6.0 TreeMaker Algorithms

This section describes the internal mathematical algorithms of TreeMaker. You don’t need to
know any of this to use the program, but if you’re curious about what’s going on inside your
machine, you might find this section interesting. If you come up with any
mathematical/algorithmic ideas of your own, send them to me and I’ll put them into a future
version.

6.1 Mathematical Model

TreeMaker finds crease patterns by performing several different types of nonlinear constrained
optimization. The quantity to maximize is the scale, which is the size of a 1-unit flap compared
to the size of the square. There are two families of constraints that must be satisfied for any valid
crease pattern:

— The coordinates of every node must lie within the square

— The separation between any two nodes on the square must be at least as large as the scaled
length of the path between the two nodes as measured along the tree.

If there are N nodes in a figure, the first condition sets 4N linear inequality constraints while the
second sets N(N–1)/2 quadratic inequality constraints. In addition to these constraints, the user
can set a number of other constraints:

— A node can have its position set to a fixed value

— A node can be constrained to lie on a line of bilateral symmetry

— Two nodes can be constrained to lie symmetrically about a line of symmetry

— Three nodes can be constrained to be collinear

— An edge can be constrained to a fixed length

— Two edges can be constrained to have the same strain

— A path can be forced to be active

— A path can have its angle set to a fixed value

— A path can have its angle quantized to a multiple of a given angle

The problem is solved by converting the path conditions of the Tree Theorem and any constraints
into mathematical equations, specifically, a constrained nonlinear optimization. This document
decribes the equations that define each type of optimization.

144

6.2 Definitions and Notation

Define U to be the set of all node coordinates u i, i ∈ In , where I n is a set of node indices:

I n = {1..nn}. Each node u i has coordinate variables ui,x and ui,y .

Define E to be the set of all edges ei , i ∈ Ie , where I e is a set of edge indices I e = {1..ne}. Each
edge contains exactly two nodes ni ,nj ∈ek . Each edge ei has a length li and a strain σ i .

Define Ut to be the set of terminal nodes, which are those nodes connected to exactly one edge.
Define I tn to be the set of terminal node indices. Clearly, Ut ⊆ U and I tn ⊆ In .

Define P to be the set of all paths, pij , i, j ∈ I n , i ≠ j . Each path is identified by the indices of the

nodes at each end of the path. Each path has a length, lij , which is given by the sum of the
strained lengths of the edges in the path; that is,

lij ≡ (1 + σk)lk
ek ∈pij

∑

Define Pt to be the set of terminal paths, which are those paths that connect two terminal nodes

Define m to be the overall scale of the tree.

Define w, h to be the width and height of the paper. The paper is a rectangle whose lower left
corner is the origin (0,0) and whose upper right corner is the point (w,h).

6.3 Scale Optimization

The most basic optimization is the optimization of the positions of all terminal nodes and the
scale of the design. This is equivalent to solving the problem

minimize (–m) over m,ui ∈Ut{ } s.t.

(1) 0 ≤ ui,x ≤ w for all ui ∈Ut

(2) 0 ≤ ui,y ≤ h for all ui ∈Ut

(3) m (1 + σk)lk[]
ek ∈pij

∑ − ui,x − uj ,x()2
+ ui,y − uj ,y()2

≤ 0 for all pij ,∈Pt

6.4 Edge Optimization

Edge optimization is used to selectively lengthen points by the same relative amount to “fill out”
a crease pattern. The scale m is fixed, and a subset of the the edges Es is subjected to the same
variable strain s. A subset of the terminal nodes U s is allowed to move. The edge optimizer
solves the problem:

145

minimize −σ over {σ,ui ∈Us} s.t.

(1) 0 ≤ ui,x ≤ w for all ui ∈Us

(2) 0 ≤ ui,y ≤ h for all ui ∈Us

(3) m 1 + σ()lk[]
ek ∈pij

ek ∈E s

∑ + 1 + σk()lk[]
ek ∈pij

ek ∉E s

∑

− ui,x − uj ,x()2
+ ui,y − uj ,y()2

≤ 0 for all pij ,∈Pt

Equation (3) can be broken into a fixed and variable part:

σ
variable

{ ⋅ m lk[]
ek ∈pij

ek ∈E s

∑

fixed
1 24 34

+ m 1 + σk()lk[]
ek ∈pij

ek ∉E s

∑

fixed
1 244 344

− ui,x − uj ,x()2
+ ui,y − uj ,y()2

fixed or
variable

1 244444 344444
≤ 0

Note, however, that the last term may or may not be a mixture of fixed and variable parts
depending upon which nodes are moving.

6.5 Strain Optimization

Strain optimization is used to distort the edges of the tree minimally in order to impose other
global constraints, e.g., symmetry, particular angles, etc, on the overall crease pattern. As with
edge optimization, the overall scale is fixed, but in this case, rather than maximizing the same
strain for all affected edges, the strain optimizer minimizes the RMS strain for a large set of edges
with each edge potentially having a different strain. As with the strain optimizer, there is a set of
strainable edges Esand a set of moving nodes Us . The strain optimizer solves the problem:

minimize σ i
2

ei ∈E s
∑ over {σ i ei ∈E s ,u j ∈Us} s.t.

(1) 0 ≤ ui,x ≤ w for all ui ∈Us

(2) 0 ≤ ui,y ≤ h for all ui ∈Us

(3) m 1 + σk()lk[]
ek ∈pij

ek ∈E s

∑ + 1 + σk()lk[]
ek ∈pij

ek ∉E s

∑

− ui,x − uj ,x()2
+ ui,y − uj ,y()2

≤ 0 for all pij ,∈Pt

Equation 3 can also be broken into a fixed and variable part:

146

σk

variable
{

mlk

fixed
{

ek ∈pij

ek ∈E s

∑ + m lk[]
ek ∈pij

ek ∈E s

∑ + 1 + σk()lk[]
ek ∈pij

ek ∉E s

∑

fixed
1 244444 344444

− ui,x − uj ,x()2
+ ui,y − uj ,y()2

fixed or
variable

1 244444 344444
≤ 0

6.6 Conditions

In addition to the conditions specified above, which are always required to be satisfied, one can
optionally impose additional conditions on the crease pattern that are typically strict equalities.
These are easily incorporated into the nonlinear constrained optimization machinery. The
conditions and related equations currently implemented in TreeMaker are listed below.

Node position fixed

A node ui that has one or both of its coordinates fixed to a point a must satisfy one or both of the
equations

ui,x − ai,x = 0

ui,y − ai,y = 0

Node fixed to corner of paper

A node ui that is constrained to lie on a corner of the paper must satisfy both equations

ui,x − w() ⋅ui,x = 0

ui,y − h() ⋅ui,y = 0

Node fixed to edge of paper

A node ui that is fixed to lie on the edge of the paper must satisfy the equation

ui,x − w() ⋅ui,x ⋅ ui,y − h() ⋅ui,y = 0

Node fixed to line

A node ui that is constrained to lie on a line through point a running at angle α , such as a line of
symmetry, must satisfy the equation

ui,x − ax()cosα − ui,y − ay()sinα = 0
.

Two nodes paired about a line

Two nodes ui and u j that are constrained to be mirror-symmetric about a line through point a
running at angle α , such as a line of symmetry, must satisfy the two equations

147

ui,x − uj ,x()cosα − ui,y − uj ,y()sinα = 0

ui,x + uj ,x − 2ai,x()sinα − ui,y + uj ,y − 2ai,y()cosα = 0

Three nodes collinear

Three nodes ui , u j , and uk that are constrained to be collinear must satisfy the equation

uj ,y − ui,y() uk ,x − uj ,x() − uk ,y − uj ,y() uj ,x − ui,x() = 0

Edge length fixed

An edge ek whose length is fixed must have its strain satisfy the equation

σk = 0

Edges same strain

Two edge ej and ek that have the same strain must satisfy the equation

σ j − σk = 0

Path active

A path pij between two nodes ui and u j that is constrained to be active must satisfy the
equation

m (1 + σk)lk[]
ek ∈pij

∑ − ui,x − uj ,x()2
+ ui,y − uj ,y()2

= 0

Path angle fixed

A path pij between two nodes ui and u j that is constrained to lie at an angle α must satisfy the
equation

ui,x − uj ,x()cosα − ui,y − uj ,y()sinα = 0
.

Path angle quantized

A path pij between two nodes ui and u j that is constrained to lie at an angle of the form

αk = α0 + k ⋅ δα . where δα ≡ 180°
N

 must satisfy the equation

2N −1 ⋅ ui,x − uj ,x()2
+ ui,y − uj ,y()2[]− N / 2

⋅ ui,x − uj ,x()sinαk − ui,y − uj ,y()cosαk[]
k =0

N −1

∏

 = 0

148

This function has the property that it goes to zero when the path is quantized, goes to ±1 in
between quantized paths, and has no gradient component in the direction of shortening the path
(which can cause problems when there are many such constraints). However, the code for the
gradient of this function is rather complicated.

6.7 Meguro Stubs

A Meguro stub is a terminal node and edge added to the tree — usually emanating from the
middle of an existing edge — such that the new terminal node creates exactly 4 active paths to
other nodes in the tree.

When a Meguro stub is added inside of an existing N-sided polygon it breaks the polygon into 4
new polygons that all have fewer than N sides. Thus, by addition of Meguro stubs, high-order
polygons are converted to lower-order polygons, until eventually all polygons in the crease
patterns are triangles and can be filled with rabbit-ear molecules. This process is called
“triangulation” of a crease pattern. By repeatedly adding Meguro stubs any crease pattern can be
fully triangulated.

I introduce a few more definitions:

A polygon Q is defined by a set of terminal nodes UtQ that form the vertices of the polygon and a
set of terminal paths PQ , which are all paths that span UQ .

Define the set of nodes UQ and edges EQ as all nodes and edges that are contained within one or
more of the paths PQ ; UQ and EQ constitute the subtree of polygon Q . Define UtQ as the nodes
in UQ that are also terminal nodes, i.e., UtQ = UQ ∩ Utn .

Let eab be an edge of the subtree with ua the node at one end of eab and ub the node at the other
end.

In general, for every edge eab and set of four distinct nodes ui , u j , uk , ul , there is a Meguro

stub that terminates on a new node um; the stub is defined by four quantities:

The node coordinates um,x and um,y ;

The distance dm from node ua at which the new stub emanates from edge eab ;

The length lm of the new stub.

These four variables are found by solving the four simultaneous equalities

m l(ek) +
ek ∈pia

∑
dm if eab ∈ pia

−dm if eab ∉ pia

+ lm

− ui,x − um,x()2
+ ui,y − um,y()2

= 0

for each of the four nodes ui , u j , uk , ul . Although a solution can potentially be found for any

four nodes, not all are valid; the only valid combinations of nodes ui , u j , uk , ul and edges eab

149

are those for which (1) the four nodes are distinct, and (2) both signs of dm are represented
among the four equations. In addition, solutions for dm that are negative or greater than the

length of eab are non-physical and must be discarded.

Note that for these equations to be used as written above, there can be no unrelieved strain in the
system. They can clearly be modified to include strain.

6.8 Universal Molecule

The universal molecule is a crease pattern that is constructed by a series of repeated reductions of
polygons. The construction is carried out by insetting the polygons and constructing reduced
paths and fracturing the resulting network into still smaller polygons of lower order. As with
triangulation, the process is guaranteed to terminate.

We use the same polygon definitions as were used in the description of Meguro stubs. In
addition:

Assume the nodes ui ∈UQ are ordered by their index, i.e., the N-sided polygon contains the
indices u1 , u2 ,… uN , order as you travel clockwise around the polygon. Construct the following:

α i is half of the interior angle at node ui . We define the quantity ς i ≡ cot α i .

Define R90 as the operator that rotates a vector clockwise by 90°, i.e., R90 o (ux ,uy) = (uy ,−ux)

Define N as the operator that normalizes a vector, i.e.,

N o u = u

u

ri is the scaled bisector of the angle formed at ui , pointing toward the interior of the polygon
with magnitude cscα i . The vector ri as well as ς i can be constructed according to the following
prescription:

′r ≡ N o (ri−1 − ri)

′′r ≡ N o (ri+1 − ri)

′′′r ≡ N o R90 o (′′r − ′r)

ri = ′′′r
′′′r ⋅ R90 o ′′′r[]

ς i = ri ⋅ ′r

The inset distance h is the largest value such that

(1) for every path pij of length lij between non-adjacent nodes ui and u j ,

ux + hrx()2 + uy + hry()2
≤ m lij − h ς i + ς j()[]

150

(2) for every path pij between adjacent nodes ui and u j ,

h ≤ u ⋅ u
u ⋅ r

where

u ≡ ui − u j

r ≡ ri − r j

Although this problem is a nonlinear constrained optimization, since there is only one variable, it
can be solved directly by simply solving for each equality for all possible paths pij and taking the
smallest positive value of h found. The second relation (2) gives the value for h simply by
replacing the inequality by equality. The solution for equality for relation (1), which is simply a
quadratic equation in h, is given by the following sequential substitutions:

w = ς i + ς j

a = r ⋅ r − w2

b = u ⋅ r + lijw

c = u ⋅ u − lij
2

h = −b + b2 − ac

a

Obviously, negative or complex values of h should be ignored.

Once a solution is found, we create a set of new reduced nodes ′ui and reduced paths ′pij of

length ′lij

′ui = ui + hri

′lij = lij − h ς i + ς j()
The reduced nodes and reduced paths are checked for active status and then subdivided into
polygons, and the process is repeated.

151

7.0 Software Model

This document describes the overall structure of the TreeMaker software model, the data
structures, and how they correspond to the mathematical structures the make up the Tree Method
of origami design. TreeMaker is written in C++ and elements of the crease pattern are
represented by C++ objects, which are data structures and functions that act upon these data
structures.

TreeMaker is strongly object-oriented. Early versions of TreeMaker were written in Object
Pascal, which was a step up from its predecessors (I actually carried out some of the earliest
work in Fortran), but beginning with version 3.0, I switched to C++. for its power and
extensibility. Because of this, as I’ve added to the mathematical algorithms, I’ve tended to put
them in a very “C++-like” form. (To a man with a hammer, everything looks like a nail.)

Whether or not C++ is the most “natural” language to do origami design modeling, I make use of
many of the unique properties of the language in TreeMaker, including polymorphism, multiple
inheritance, operator overloading, template classes and functions, run-time type identification,
and exception classes. If you want to get understand the software model of TreeMaker, you
should know C++.

A comment on terminology: there are two things called “objects” in this document:
mathematical/geometrical objects (which are part of the mathematical algorithm) and software
objects (C++ data structures). For simplicity, I’ve given the C++ objects names appropriate to
their mathematical analogous structure. To avoid confusion, I’ll refer to mathematical objects
with lower-case names, while all C++ objects have upper-case names and will appear in
Courier font. So, for example, a node is a part of the mathematical model; a Node is a C++
object that represents the mathematical object.

7.1 Overview

The code for TreeMaker consists of a bunch of classes that interact with each other. TreeMaker’s
classes are grouped into modules; classes within a module are related to each other in some way.
Some modules depend on or are derived from other modules. A top-level view of all the modules
in the program are shown below in figure 7.1.

152

Metrowerks PowerPlantLArrayCFSQP

ListOf<T>

Ref<T>
RefList<T>

Tree Classes

TreeMaker User
Interface Classes

Optimizer Classes

Vector<T>

Cpfsqp

Matrix<T>

Linear
Algebra

TreeMaker Classes

My libraries

7.1

There are four main groups of modules. Two — PowerPlant and CFSQP — are libraries written
by other guys. One — “My libraries” — is written by me. The fourth group —“TreeMaker
Classes” — is composed of the classes unique to TreeMaker. A brief discussion of these four
groups follows.

Metrowerks PowerPlant

PowerPlant is a Macintosh class library supplied with the Metrowerks CodeWarrior family of
compilers. It provides a complete set of classes for building a Macintosh user interface, as well as
a number of useful utility classes. The user interface of TreeMaker is built from the PowerPlant
class library.

PowerPlant is Mac-specific. This makes porting TreeMaker to any other platform a bit of an
undertaking. PowerPlant is a very complex library and is the subject of a 600-page manual (The
PowerPlant Book), so I won’t bother trying to describe any more here.

PowerPlant is itself composed of several independent modules, some of which can stand alone.
One of them, the LArray class, as shown above, serves as the base for a number of my own
class libraries.

153

CFSQP

CFSQP is a general-purpose nonlinear constrained optimization code, written in C, developed by
the research group of Professor Andre Tits at the University of Maryland. It forms the core of the
numerical optimization routines (replacing a home-rolled implementation of the Augmented
Lagrangian Multiplier method used in earlier versions). A description of the routines may be
found on the FSQP Home Page, located at

 http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html

CFSQP is used with permission according to the following conditions of use:

 Conditions for External Use

 1. The CFSQP routines may not be distributed to third parties.
 Interested parties should contact the authors directly.
 2. If modifications are performed on the routines, these
 modifications shall be communicated to the authors. The
 modified routines will remain the sole property of the
 authors.
 3. Due acknowledgment must be made of the use of the CFSQP
 routines in research reports or publications. Whenever
 such reports are released for public access, a copy should
 be forwarded to the authors.
 4. The CFSQP routines may only be used for research and
 development, unless it has been agreed otherwise with the
 authors in writing.

Copyright (c) 1993-1997 by Craig T. Lawrence, Jian L. Zhou, and
 Andre L. Tits
All rights Reserved.

 Enquiries should be directed to
 ,
 Prof. Andre L. Tits
 Electrical Engineering Dept.
 and Institute for Systems Research
 University of Maryland
 College Park, Md 20742
 U. S. A.

 Phone: 301-405-3669
 Fax: 301-405-6707
 E-mail: andre@eng.umd.edu

My libraries

TreeMaker uses a number of general-purpose class libraries that I’ve written. They are:

154

Vector<T>

Vector<T> is a template class for vectors (not the same as the STL vector<T> class) that
supports arithmetic operations and various vector operations.

Matrix<T>

Matrix<T> is a template class for matrices that supports arithmetic operations and various
matrix operations.

LinearAlgebra

LinearAlgebra contains a class, Ludecomp<T> , that perform various linear algebra
operations, including LU decomposition, matrix inversion, and solution of linear systems. It also
includes a class NewtonRaphson<T> that solves systems of nonlinear equations.

Cpfsqp

Cpfsqp is a C++ interface to the CFSQP library for performing nonlinear constrained
optimization. It is particularly suited for embedded applications where constraints are regularly
added or removed or where the number of constraints are not known beforehand. Cpfsqp
contains two classes, Cpfsqp, which takes over some of the housekeeping for problems with a
large number of constraints, and DifferentiableFunction, which is a base class for a
function of a vector that has a defined gradient function.

ListOf<T>

ListOf<T> is a template class based on the (stand-alone) LArray class in PowerPlant. It
provides type-safe arrays, support for PowerPlant’s LArrayIterator class for iterating
through mutable arrays, and supports two independent notations for accessing arrays: a Pascal-
style (1-based) notation, and a C-style (0-based) notation. It also adds routines for treating arrays
as sets, supporting intersection and union of lists. (It’s my “general-purpose list” class.)

Ref<T>, RefList<T>

The Reference classes are classes that provide the equivalent of a “smart” pointer-to-T; when the
object of a Ref<T> is deleted, the Ref<T> sets itself to zero no matter where it is. This
eliminates dangling pointers (or at least transforms them into NULL pointers, which are easier to
catch). In addition, it’s possible to configure the objects being referenced in such a way that they
delete themselves when the number of references drops below a preset value (automatic garbage
collection). (I don’t use this latter capability in TreeMaker.)

TreeMaker Classes

TreeMaker classes are the classes unique to the TreeMaker application. They are grouped in 3
sets: Tree Classes, which support and maintain the internal structure of the Tree; they are nearly
platform-independent. Optimizer Classes perform calculations and implement algorithms that act
upon the Tree. They, too, are nearly platform-independent. User Interface Classes provide the
user interface, support display and editing of Tree objects, interaction with the OS and the file

155

system. The UI classes are heavily platform-dependent; they are built from PowerPlant, which is
a Macintosh-specific class library.

Tree Classes

The Tree Classes are the classes that support a unified mathematical model of the tree (the stick
figure); the crease pattern; and the relationships between the various objects. The figure below
shows the different classes and their inheritance hierarchy.

PathOwner

NodeOwner
PolyOwner

EdgeOwner

CreaseOwner

VertexOwner

Tree

Poly

Path

Node

ConditionPart

ConditionNodeFixed

ConditionNodeSymmetric

ConditionNodeOnEdge

ConditionNodesPaired

ConditionNodesCollinear

ConditionEdgeLengthFixed

ConditionPathActive
ConditionPathAngleFixed

ConditionPathAngleQuant

ConditionNodeOnCorner

Edge

7.2

The primary Tree Classes are:

Tree

Node

Edge

Path

Poly

Vertex

Crease

Condition

All primary classes inherit similar behavior from the Part base class. Some classes have the
capability of owning instances of other classes. Condition is a base class for conditions
imposed on the crease pattern (e.g., bilateral symmetry). A more detailed description of the Tree
classes is given later.

156

Optimizer Classes

Optimizer classes perform mathematical operations on the Tree that generate a valid crease
pattern. Optimizer classes are At present, there are four optimizer classes:

ScaleOptimizer

EdgeOptimizer

StrainOptimizer

StubFinder

These four classes do the mathematical “heavy lifting”; they actually solve for particular creases
patterns. They are derived from pure numerical classes (NewtonRaphson and Cpfsqp).

ScaleOptimizer finds the arrangement of nodes that gives the largest possible crease
pattern.

EdgeOptimizer selectively increases particular edges to their largest possible size.

StrainOptimizer is used in heavily constrained situations; it finds a configuration that
minimizes the strain on the edges.

StubFinder is a simple solver that adds stubs to a tree to break high-order polygons into
lower-order polygons.

The three optimizer classes inherit from the TreeOptimizer class, which embodies platform-
dependent behaviors: cancellation, error messages, and showing of progress.

To support the optimizers, there are a number of DifferentiableFunction objects that
are used for constraints and objective functions for the optimizers.

157

The inheritance relationships between the optimizer classes are shown below.

Cpfsqp ScaleOptimizer

EdgeOptimizer

StrainOptimizerTreeOptimizer

NewtonRaphson StubFinder

DifferentiableFunction OneVarFn
PathFn1
PathFn2
PathAngleFn1
PathAngleFn2
StrainPathFn1
StrainPathFn2
StrainPathFn3
StickToEdgeFn
StickToLineFn
PairFn1A
PairFn1B
PairFn2A
PairFn2B
CollinearFn1
CollinearFn2
CollinearFn3
BoundaryFn
QuantizeAngleFn1
QuantizeAngleFn2
LocalizeFn
MultiStrainPathFn1
MultiStrainPathFn2
MultiStrainPathFn3
CornerFn

ScaleOptimizer_Objective

EdgeOptimizer_Objective

StrainOptimizer_Objective

7.3

User Interface Classes

The user interface of TreeMaker is implemented by a collection of PowerPlant object
descendants. In the following description, PowerPlant classes are in boldface type.

Application

The TreeApp is the application object that maintains interaction with the operating system, puts
up and controls the menu bar, and dispatches commands and clicks to control objects.

LApplication TreeApp

7.4

158

Document

TreeDoc is the document object that is “command central” — menu selections, keystrokes, and
mouse actions are routed to the TreeDoc , which places the appropriate calls to the Tree object
(which is a member variable of the TreeDoc).

LSingleDoc TreeDoc

7.5

Views

The bulk of TreeMaker consists of various LView subclasses that let the user see and manipulate
the tree object. The main view is the TreeView object, which displays the tree, the various
parts, and the crease pattern. By selectively choosing which parts to display, the user can choose
to view the tree, the crease pattern, or a combination of the two.

There is also a group of editors which allow you to examine or manipulate the fields of
individual objects. These are all inherited from the PowerPlant class LModalDialog and a
utility class, PartEditorMixin , which supplies useful routines for displaying object
addresses as indices.

A second group of editors perform small manipulations on the tree, e.g., changing the paper size,
setting the lengths of a group of edges, and so forth.

The ConditionRegistry class provides a binding between Condition objects and the
views used to reference them.

The ConditionTool<P, C> class provides tools for creating and filtering Conditions for
Parts and lists of Parts.

159

LView
TreeView

TreeEditor
NodeEditor
EdgeEditor
PathEditor
PolyEditor
CreaseEditor
VertexEditor
ConditionEditor

TreeViewEditor
SelectPartEditor
SizeEditor
SplitEdgeEditor
StubEditor
NodeFixedEditor
EdgeLengthEditor
QuantizationEditor

PartEditorMixin

ConditionEditorView

ConditionRegistry

ConditionNodeFixedView
ConditionNodeOnCornerView
ConditionNodeOnEdgeView
ConditionNodesCollinearView
ConditionNodesPairedView
ConditionNodeSymmetricView
ConditionEdgeLengthFixedView
ConditionPathActiveView
ConditionPathAngleFixedView
ConditionPathAngleQuantView

LModalDialog ToggleSizeDialog

ConditionView

ConditionTool<P,C>

7.6

File I/O

File I/O is provided by the TreeFile class, which implements storage in a platform-
independent text-based format.

LFile TreeFile

7.7

Printouts

The crease pattern can be printed out using the standard Apple print protocols. Printing is
handled by a slightly modified subclass of the PowerPlant LPrintout object.

LPrintout TreePrintout

7.8

160

Miscellaneous

I also found it necessary to write a number of small utility packages or modified classes. They
are:

Alerts - a wrapper to handle simple alerts

AnimatedCursor - displays a cursor animation during calculations

LCropMark - a pane that displays crop marks in a printout

LFloatEditField - an edit field that displays a floating-point value

LGACaptEditField - an edit field that turns into a LCaption when it is disabled

LGADeadCheckbox (obsolete) - a checkbox that doesn’t respond to clicks. It’s a convenient
tool for displaying binary information

LGAModalDialogBox - a dialog box (derived from LGADialogBox) that displays true
modal dialog behavior (disabling all commands when it’s in the foreground).

LGATargetAnnouncingEditField - an edit field that broadcasts a message when it
becomes the target.

QDUtils - routines for doing arithmetic with QuickDraw Point records

ToggleSizeDialog - a dialog box that has two sizes you can toggle between. I use it to hide
object data fields that aren’t used directly but keeps them accessible.

UParamText - a utility that does for PowerPlant views what the system routine
::ParamText() does for resource-based dialogs and alerts.

UPlaceDialog - a utility that places dialogs in the right place on the main screen

Sort - a template class for sorting an array of numbers.

7.2 Tree Classes: Details

In this section the fundamental data structures are discussed along with their inheritance
hierarchy. Many objects inherit from a “Owner” class; as discussed below, an “ObjectOwner”
maintains a list of references to “Object” and when the “Owner” is deleted, it kills all of its
owned objects.

The relationships between objects are maintained by references and lists of references. These are
summarized in the table below. Bolded names are references that are inherited from subclasses.

Part-ness

Most objects inherit from a base class called Part which has two member variables: an index,
which is set by the owner of the part, and a pointer to the top-level Tree structure.

class Part

161

{
public:

short mIndex;
Tree* mTree;

}

References to objects are made visible to the user by the mIndex, the value of which is set by
the owner of the part (see below). Given a reference to any Part , the mTree reference gives
access to the overall Tree . All TreeMaker objects inherit from Part as shown below:

Part

Node

Edge

Path

Poly

Condition

Vertex

Crease
7.9

Conversely, the Tree has a set of lists of references to all Parts with names like mNodes ,
mEdges, mPaths, etc. This provides flat access to the hierarchical data structure; it simplifies
searching over the Parts and lets us assign the Part index according to its position within the
master list.

Ownership

The data structures in TreeMaker are tied together by various relations. One important set of
relations is the concept of “ownership.” Every object is owned by another object. The chain of
ownership is a simple rooted tree, that is, every object has a unique owner, which in turn has a
unique owner, all the way up to the Tree at the top of the hierarchy. (It’s similar to a “chain of
command.”)

Ownership confers two important properties:

When an owner object is deleted, it deletes all of the objects that it owns

An owner object can be interrogated about objects that it owns, for example, to return an
object that satisfies certain criteria.

Ownership ability is conferred through inheritance. The chain of ownership is shown in the
figure below. Objects to the right inherit from objects to the left.

162

NodeOwner

PathOwner
PolyOwner

Poly

CreaseOwner

Tree

EdgeOwner

VertexOwner
Node

Path

7.10

There are a couple of interesting aspects of these relationships that could be confusing:

1. A Poly can own other Polys, which are called subPolys.

2. Both Poly and Tree own Polys and hence (through inheritance) also own Nodes and
Paths. A Poly owns all Nodes that are fully enclosed by the Poly and owns all Paths that
connect those Nodes.

Both Poly and Path can own Creases. However, only the Tree can own Edges.

3. Both Nodes and Paths can own Vertices.

The owner for an object has a member variable that points back to the owner; e.g., the Node
object has a member variable, mOwnedNodes, that points to the NodeOwner .

Because the behavior of different types of Owners is similar, there is some logic to embedding
ownership behavior into a template class (e.g., Owner<Vertex>, Owner<Node>, etc.).
However, I found that it is easier to follow the code if I give each owner a unique name
(“mNodeOwner”) and use unique names for owned objects (“mOwnedNodes”). Also, as you
will see, there are some member functions unique to particular Owner classes.

Here are the types of objects that other objects own:

A terminal Node or ring Node may own a single Vertex that coincides with the position of the
Node .

The following types of Paths own Creases: active paths, spoke paths, ridge paths, and
optionally, ring paths.

Active paths, ring paths, and ridge paths can own internal vertices as well that lie along the paths.

A Poly owns radial Creases that connect to its reduced polygons and/or any ridge Crease. A
Poly also owns Creases that run between internal vertices. A Poly also owns its sub-polys.

A Tree owns its Nodes, Edges, Paths, and Polys.

163

Persistence

In memory, references to objects are made by pointers. To the user, and in storage, references are
maintained by the Part index. The Tree contains master lists of all Parts which are used solely for
storage and indexing. This lets us follow this model for reading in the structure:

1. Create the appropriate number of blank, uninitialized Parts

2. Read in each part, and “on the fly” convert all indices to Part references.

Every Part constructor supplies the Tree* variable separately from the owner variable.

Conditions, because they are polymorphic, are handled slightly differently, since we don’t
know a priori which type of blank Condition to create. Therefore, as described further in the
source code (TreeFile.cp), Conditions are created on the fly through the
ConditionRegistry object.

References: Ref<T> and RefList<T>

Because of the complexity of the data structure — most parts maintain several lists of related
parts (e.g., a Node has a list of all Paths that begin or end on it) — when we create or delete
parts, there are a lot of references to clean up, particularly when objects are deleted. Earlier
versions of TreeMaker maintained these references by pointers and lists of pointers.
Unfortunately, the program was frequently plagued by dangling pointers created when I failed to
clear all pointers scattered throughout the data structure that referenced a deleted part.

In TreeMaker 4.0, references and lists of references are maintained through the Ref<T> and
RefList<T> template classes, which are essentially “smart pointer” classes. A Ref<T>
behaves like a T* (you can dereference it both directly and indirectly and assign it to T*) but if
you ever delete an object of type T, every Ref<T> that referred to it clears itself and subsequent
attempts to dererence return NULL . This simplifies the programming, since I don’t need to clear
such references explicitly, and it also eliminates a great many bugs since attempts to dererence a
pointer to a deleted object (which snuck through in earlier versions) are converted to attempts to
dereference a void*, which is more easily caught and eliminated.

A RefList<T> is similar to a Ref<T> . It behaves like a ListOf<T*>, except when an
object from the list is deleted, its reference is completely removed from the list.

Tree

A Tree is the top-level data structure that contains and ties together the stick figure we are
trying to represent and the crease pattern for the corresponding base. There is one unique Tree
for each document.

EdgeOwner

PolyOwner
Tree

7.11

164

The Tree class has two friend classes, TreeCleaner and TreeFile, which are utilized for
housecleaning and persistence, respectively.

The references contained by a Tree are summarized below. Names in bold refer to inherited
member variables.

Object References What

Tree mOwnedNodes All nodes in the primary tree (i.e., not including nodes
in the interior of a poly, which are owned by the poly
itself)

mOwnedEdges All edges in the primary tree

mOwnedPaths All paths in the primary tree (i.e., not including
reduced paths inside a poly, which are owned by the
poly)

mOwnedPolys All top-level polygons (i.e., not including polys that
are subpolys)

mNodes All nodes

mEdges All edges

mPaths All paths

mPolys All polygons

mConditions All conditions

mVertices All vertices

mCreases All creases

Node

A Node is the data structure that represents a node of a planar graph. There are several types of
planar graph utilized in TreeMaker; there is the top-level graph, which is the target of the
modeling; but there are also sub-graphs that are used in the process of insetting polygons.

There are two types of Node . A “tree node” is a node that is part of the tree and is owned by the
tree. Tree nodes come in two flavors: terminal nodes, which have exactly one edge, and internal
nodes, which represent nodes where two or more edges come together.

A “poly node” is a node that is owned by a poly. Poly nodes are the reduced images of tree
nodes; so all poly nodes are also reduced nodes.

165

Part

VertexOwner

Node

7.12

The references contained by a Node are summarized below. Names in bold refer to inherited
member variables.

Object References What

Node mOwnedVertices The vertex associated with this node

mEdges Edges connected to this node

mPaths Paths that terminate on this node (not paths that
contain this node)

mNodeOwner Poly or tree that owns this node

Edge

A Edge is the data structure that represents an edge of the top-level planar graph. An Edge
connects two Nodes. Each Edge corresponds to a flap (or segment) of a base.

Part Edge

7.13

The references contained by an Edge are summarized below. Names in bold refer to inherited
member variables.

Object References What

Edge mNodes 2 nodes at each end of this edge

mEdgeOwner Tree that owns this edge

Path

A Path is an object that describes a particular relationship between two Nodes. Terminal paths
connect terminal nodes. A Path has associated with it a length, which is the minimum length
between two nodes of the graph.

A “tree path” is a path owned by the Tree. Tree paths have a list of edges and internal nodes
that represents the path along the tree from which its length is derived.

A “poly path” is a path owned by a Poly . Poly paths have their lengths computed by reducing
the length of the original path from which it is derived.

166

Part

VertexOwner

Path

7.14

The references contained by a Path are summarized below. Names in bold refer to inherited
member variables.

Object References What

Path mOwnedVertices All vertices that occur along this path

mNodes Ordered list of nodes from one end of path to the other

mEdges Ordered list of edges from one end of path to the other

mFwdPoly The polygon that this path belongs to, enumerated in
the forward direction

mBkdPoly The polygon that this path belongs to, enumerated in
the backward direction

mPathOwner poly or tree that owns this path

Poly

A Poly is a polygon of the crease pattern. The paper is divided into one or more polygons; each
polygon may be further subdivided into one or more reduced polygons. Each polygon owns
reduced nodes, reduced paths, and creases.

Part

PolyOwner

CreaseOwner

Poly

7.15

The references contained by a Poly are summarized below. Names in bold refer to inherited
member variables.

Object References What

Poly mOwnedNodes All nodes owned by this poly; this is the distinct
subset of mInsetNodes ; i.e., every node in
mInsetNodes appears exactly once in this list.

167

mOwnedPaths All paths owned by this poly, which are one of the
following:

(1) paths that connect two owned nodes, i.e., ring or
cross paths or the ridge path

(2) paths from the outer poly to owned nodes, i.e.,
spoke paths

mOwnedPolys All subpolys of this poly

mOwnedCreases All creases that connect the edges of this poly to the
edges of its subpolys

mRingNodes The nodes that form the vertices of this polygon

mRingPaths The paths that form the edges of this polygon, i.e., an
ordered list of paths that connect consecutive vertex
nodes.

mCrossPaths All other paths that connect the mRingNodes , i.e.,
those paths connecting non-consecutive
mRingNodes .

mInsetNodes Mapping from ring nodes to inset nodes. Note that
several ring nodes may map to the same inset node,
i.e., this list may have duplicate entries.

mSpokePaths Paths that connect ring nodes to inset nodes for this
poly.

mRidgePath If the poly has exactly two distinct inset nodes, this is
the path that connects them. We need this path
because some creases may terminate on it.

mPolyOwner Poly or tree that owns this poly

Vertex

A Vertex is a point where two or more creases come together. The Vertex inherits only from
Part .

Part Vertex

7.16

The references contained by a Vertex are summarized below. Names in bold refer to inherited
member variables.

Object References What

168

Vertex mCreases All creases that terminate on this vertex

mVertexOwner node or path that owns this vertex

Crease

A Crease is a line in the crease pattern. There are three types of Creases: ValleyCrease,
MountainCrease, and TristateCrease . The Crease inherits only from Part

Part Crease

The references contained by a Crease are summarized below. Names in bold refer to inherited
member variables.

Object References What

Crease mVertices 2 vertices at each end of the crease

mCreaseOwner poly or path that owns this crease

Condition

A Condition is a relationship between portions of the tree to implement symmetry, fixed
angles, and other constraints on the crease pattern.

Part Condition ConditionEdgeLengthFixed
ConditionNodeFixed
ConditionNodeOnEdge
ConditionNodesCollinear
ConditionNodesPaired
ConditionNodeSymmetric
ConditionPathActive
ConditionPathAngleFixed
ConditionPathAngleQuant
ConditionNodeOnCorner

7.17

Condition is a base class that defines the behavior for all possible conditions, which may
establish and enforce relationships any other part of the tree. Before an optimization is
performed, all Conditions associated with a Tree are polled and are allowed to apply
mathematical constraints (equalities and inequalities) that enforce the condition.

At present, there are 10 types of Condition on Nodes, Edges, and Paths.

169

8.0 Final Stuff

8.1 Comments and Caveats

While TreeMaker is a very powerful tool for origami design (if I do say so), it is important to be
aware of its limitations, so you don’t try to use it for something it’s not suited for. There are also
several subtleties to TreeMaker design that, when properly accounted for, will further improve
your productivity.

Keep in mind that TreeMaker is basically a dumb optimizer; it does not seek out symmetries that
lead to particularly elegant folding sequences, nor does it recognize when a slight modification of
the lengths of branches might allow a more elegant or symmetric folding sequence. TreeMaker
always takes the brute-force approach, seeking the absolute optimum, even when a slight
deviation from the optimum would make a much more elegant model. However, you can
recognize when a particularly symmetric configuration is close at hand and can set conditions to
force a symmetric and/or more elegant solution.

Also, TreeMaker finds local optima, not global optima. If you see a lot of unused space in the
crease pattern, you might consider rearranging a few circles and restarting the search routine.
You may find a better solution with a different initial trial solution. In general, efficient solutions
have many 3- and 4-sided polygons after the first optimization. If you find that you get several
polygons with a large number of sides, try dragging one or more nodes into the center of the big
polygon and re-optimizing.

Most importantly, some subjects just don’t lend themselves to design using tree theory. Since
tree theory abstracts the model as a stick figure, for subjects that can be approximated by a stick
figure, TreeMaker works very well; but for subjects that are not easily turned into a stick figure,
TreeMaker is the wrong tool for the job. For example, for chunky models or models that require
large flat regions (such as a hippo or butterfly) other design algorithms are likely to do a better
job than TreeMaker. Also, since the tree itself is inherently one-dimensional, you can’t specify
colors directly for models that show both sides of the paper; while you can force flaps to be edge
or corner flaps (and thus are easily reversible), you can’t easily design complex two-toned
models such as zebras or tigers.

Finally, keep in mind that for all its power, TreeMaker only provides a base. It’s still up to you to
thin the flaps and convert the base into the final model, and there is a lot of room for
personalizing, customizing, and putting your own stamp of artistry onto your design.

TreeMaker is written in C++ using Metrowerks’s CodeWarrior development environment.
Versions prior to 4.0 of TreeMaker may be freely distributed provided that you include all
documentation and the copyright notice unmodified and that you do not charge anything for it.
Version 4.0 may not be freely distributed due to copyright restrictions on some of the code. See
the cover page of this manual for license terms.

TreeMaker is constantly evolving, and my priorities are to fix known bugs and add features but
not to deal with obscure incompatibilities. It ain’t bulletproof, and while I currently know of no
life-threatening bugs and will try to fix any that I hear about, it still may exhibit unexpected
behavior (i.e. , crashes). Have fun playing around, but use it at your own risk.

170

If you have any suggestions or comments, please send them to me at the address given at the end
of this document.

8.2 Version History

(1.0) 05-01-93. Original TreeMaker program. Edits nodes and edges and finds optimum
distribution of nodes but no creases. Written in Symantec's THINK Pascal 5.0 using the THINK
Class Library, v. 1.1.

(2.0) 08-06-93. Added CPath object and an editor for same. You can now individually change
the length of a path, as well as control its angle and/or its collinearity with another node.
Numerous small changes in user interface. Version 2.0 documents are incompatible with version
1.0 application and vice versa.

(2.0.1) 03-11-94. Changed the scale box to display 5 digits of accuracy.

(2.0.2) 03-31-94. Added “Show All Paths” to the Action menu so you can toggle paths on and
off with a keystroke.

(3.0a1) 03-01-95. Complete from-the-ground-up rewrite in C++, using Metrowerks CodeWarrior
and the Metrowerks PowerPlant class library. Completely restructured mathematical model,
improved scale optimization routines, added secondary optimization, many new constraints, text-
based file format, computation of molecule creases, and other stuff too numerous to mention.

(3.0b1) 06-25-95. First beta version.

• Added universal molecules and removed computation of tristate creases for compatibility with
universal molecules.

• Added “diag” and “book” preset buttons to Tree Editor.

(3.0) 08-18-95 released.

• Fixed bug in computation of inset creases for nearly-parallel lines.

• Increased weight on “Stick to Edge” and “Collinear Node” constraints, which improves
optimizations when many nodes are present.

• Finished documentation and uploaded for distribution to origami-L archives.

(3.5) 12-22-95 released.

• Generally improved consistency of dialogs and validation:

• In all dialogs, controls and edit fields are disabled and blanked if they’re not appropriate (e.g.,
symmetry-related controls are disabled if the tree doesn’t have a symmetry line defined).

• All editors now use a common syntax (“FillDialog”) for initializing the dialog.

171

• Dialogs no longer alter parts directly; instead, they issue commands to the TreeDoc together
with a list of the new settings. (This is in preparation for implementing Undo/Redo by
bottlenecking all editing actions through the TreeDoc.)

• In dialogs, eliminated unnecessary ctor/dtor method declarations and inlined from-LStream
ctors.

• Private data shown in part editors was made less obtrusive (smaller type)

• All part indices are now fully validated in dialogs

• Validation alerts are provided by a new superclass for all dialogs, class TreeDialog. Text in
validation alerts is now stored in an ‘STR#’ resource (per Mac UI guidelines).

• Fixed bug in which menus were not updated properly after a Tab or Delete keystroke.

• Optimize Selected Nodes… command and StretchyEdgeOptimizer have been modified so that
the only nodes and edges considered for scaling are those in the current selection.

• Many new commands and optimizers added to Action Menu:

• Added Split Edge… command which lets you add a node to the middle of an edge

• Added Absorb Node command which lets you remove a redundant node from the middle of an
edge

• Added Absorb Redundant Nodes command, which removes all redundant nodes

• Added Arrange Internal Nodes command, which cleans up the position of internal nodes.

• Added Fracture Poly… command, which lets you add a node inside a polygon that forms four
active paths with the polygon nodes, effectively fracturing the polygon into smaller polys.

• Added Triangulate Tree command, which fractures all polys in the crease pattern down to
order-3 polys.

• Fixed memory leak in ConstrainedMinimax (constraints were not being destroyed)

• Restored computation of tristate creases for rabbit-ear molecules in Build Creases.

• Updated documentation and added tutorials to describe the new commands.

• “Wait” cursor is now in color.

• Improved About… box.

(3.6) 03-18-96 released

• Added “Show Creases and Circles” command, which is a useful view for printing.

172

• Rewrote TreeFile class to buffer file I/O, gaining over an order of magnitude in speed during
Save/Open.

• Converted mathematical classes (Minimax, ConstrainedMinimax, etc.) to templates

• About… box is faster.

(3.7) 12-3-96

• Fixed a bug that affected the display of polygons in the main window and screwed up printing
on certain types of printers; also added a background to the main window.

• Added a background to valid polygons.

• Added crop marks in multipage printouts so you can print out large patterns on multiple sheets
and can accurately cut and paste them together

• Removed the unnecessary border around the square in the printout, which increases the size of
the largest square you can fit onto a single page to 7.5 in.

• UI is now updated to PP Constructor 2.3 format, including use of new LPrintout.

• Added a modest speed improvement to the “Fracture Poly” algorithm by eliminating some
unnecessary calculations

• Added new Path::mIsValidPath member variable, which is used in the improved polygon-
finding algorithm. Also added the corresponding display in the Path Editor.

• Big improvements in the polygon-finding algorithm; border paths don’t have to be active to
form polygons. Non-optimized but valid node arrangements will now form crease patterns.

• Improved the algorithm that identifies pinned nodes. Nodes are now pinned only by active
paths and the edges of the paper.

• Added offscreen drawing, which improves the look and feel.

• Tweaked the color scheme slightly for better visibility and contrast.

• Added a polygon editor. There’s nothing to change, but it does let you examine some of the
internal characteristics of polygons.

(4.0) 4-1-98 released

• Complete overhaul of software model. Standard objects — Node, Edge, Path, Poly, Tree —
have many new fields. Phased out the Fold object; introduced the Vertex, Crease, and Condition
objects.

• All objects are now descended from Part and have an index.

• Polys are now hierarchical. Objects can own one another.

173

• Initial suite of Conditions includes 10 different types.

• Introduced strain into edges

• Replaced ConstrainedMinimax<> optimizers with optimizers based on CFSQP 2.5. Created
supporting classes for same.

• Introduced ToggleSizeDialog so that part flags are normally concealed.

• Replaced all View objects with Grayscale classes.

• Introduced strain minimization. Rewrote EdgeOptimizer to utilize strain as well.

• Polys are no longer automatically built, but must be explicitly called.

• Introduced TreeCleaner class to insure automatic cleanup after editing.

• Added Condition menu to hold related commands.

• Rearranged command-key equivalents in menus.

• Introduced new file structure for future compatibility.

8.3 Sources

For comments, suggestions, attaboys and whaps, please write to me at:

Robert J. Lang
7580 Olive Drive
Pleasanton, CA 94588
rjlang@aol.com

For more information on CFSQP, check out the CFSQP web site at:

http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html

