
Internet Engineering Task Force (IETF) R. Housley
Request for Comments: 7191 Vigil Security
Category: Standards Track April 2014
ISSN: 2070-1721

 Cryptographic Message Syntax (CMS)
 Key Package Receipt and Error Content Types

Abstract

 This document defines the syntax for two Cryptographic Message Syntax
 (CMS) content types: one for key package receipts and another for key
 package errors. The key package receipt content type is used to
 confirm receipt of an identified key package or collection of key
 packages. The key package error content type is used to indicate an
 error occurred during the processing of a key package. CMS can be
 used to digitally sign, digest, authenticate, or encrypt these
 content types.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7191.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Housley Standards Track [Page 1]

RFC 7191 Key Package Receipts and Errors April 2014

Table of Contents

 1. Introduction ..2
 1.1. Requirements Terminology2
 1.2. ASN.1 Syntax Notation2
 1.3. Processing Key Package Receipt Requests3
 1.4. Processing Key Packages with Errors3
 2. SIR Entity Name ...3
 3. Key Package Identifier and Receipt Request Attribute4
 4. Key Package Receipt CMS Content Type6
 5. Key Package Error CMS Content Type8
 6. Protecting the KeyPackageReceipt and KeyPackageError17
 7. Using the application/cms Media Type17
 8. IANA Considerations ..17
 9. Security Considerations ..17
 10. Acknowledgements ..18
 11. References ..18
 11.1. Normative References18
 11.2. Informative References20
 Appendix A. ASN.1 Module ..21

1. Introduction

 This document defines the syntax for two Cryptographic Message Syntax
 (CMS) [RFC5652] content types: one for key package receipts and
 another for key package errors. The key package receipt content type
 is used to confirm receipt of an identified key package or collection
 of key packages. The key package error content type is used to
 indicate an error occurred during the processing of a key package.
 CMS can be used to digitally sign, digest, authenticate, or encrypt
 these content types.

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. ASN.1 Syntax Notation

 The content types defined herein use ASN.1 ([X.680], [X.681],
 [X.682], and [X.683]).

 The CONTENT-TYPE definition was updated to the 2008 version of ASN.1
 by [RFC6268]; however, none of the new 2008 ASN.1 tokens are used in
 this specification, which allows compilers that only support the 2002
 version of ASN.1 to compile the module in Appendix A.

Housley Standards Track [Page 2]

RFC 7191 Key Package Receipts and Errors April 2014

1.3. Processing Key Package Receipt Requests

 The key package or collection of key packages [RFC4073] [RFC5958]
 [RFC6031] [RFC6032] for which the receipt is being generated MUST be
 signed, and the key package MUST include the key-package-identifier-
 and-receipt-request attribute specified in Section 3.

1.4. Processing Key Packages with Errors

 The key package or collection of key packages [RFC4073] [RFC5958]
 [RFC6031] [RFC6032] for which the error is being generated might be
 signed. The key package can be identified by a key-package-
 identifier-and-receipt-request attribute specified in Section 3.

2. SIR Entity Name

 Within a key distribution system, the source, intermediary, and
 receiver entities are identified by a Source Intermediary Recipient
 (SIR) entity name. The syntax for the SIR entity name does not
 impose any particular structure, and it accommodates straightforward
 registration of additional SIR entity name types.

 The inclusion of the nameType object identifier ensures that two
 identifiers of different types that happen to contain the same values
 are not interpreted as equivalent. Additional SIR entity name types
 are expected to be registered that represent different granularities.
 For example, one SIR entity name type might represent the receiver
 organization, and at a finer granularity, another SIR entity name
 type might identify a specific device, perhaps using a manufacturer
 identifier and serial number. The use of an object identifier avoids
 the need for a central registry of SIR entity name types.

 The nameValue is an OCTET STRING, which allows the canonical form of
 any name to be carried. Two names of the same type are considered
 equal if the octet strings are the same length and contain the same
 string of octets.

Housley Standards Track [Page 3]

RFC 7191 Key Package Receipts and Errors April 2014

 SIREntityNames and SIREntityName have the following syntax:

 SIREntityNames ::= SEQUENCE SIZE (1..MAX) OF SIREntityName

 SIR-ENTITY-NAME ::= CLASS {
 &sIRENType OBJECT IDENTIFIER UNIQUE,
 &SIRENValue
 } WITH SYNTAX {
 SYNTAX &SIRENValue IDENTIFIED BY &sIRENType }

 SIREntityName ::= SEQUENCE {
 sirenType SIR-ENTITY-NAME.&sIRENType({SIREntityNameTypes}),
 sirenValue OCTET STRING (CONTAINING
 SIR-ENTITY-NAME.&SIRENValue(
 {SIREntityNameTypes}{@sirenType})) }

 This document defines one SIR entity name type: the DN type. The DN
 type uses a nameType of id-dn and a nameValue of a Distinguished Name
 (DN). The nameValue OCTET STRING carries an ASN.1 encoded Name as
 specified in [RFC5280]. Note that other documents may define
 additional types.

 SIREntityNameTypes SIR-ENTITY-NAME ::= {
 siren-dn,
 ... -- Expect additional SIR Entity Name types -- }

 siren-dn SIR-ENTITY-NAME ::= {
 SYNTAX DistinguishedName
 IDENTIFIED BY id-dn }

 id-dn OBJECT IDENTIFIER ::= {
 joint-iso-ccitt(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) sir-name-types(16) 0 }

3. Key Package Identifier and Receipt Request Attribute

 The key-package-identifier-and-receipt-request attribute, as its name
 implies, allows the originator to identify the key package and,
 optionally, request receipts. This attribute can appear as a signed,
 authenticated, and content attribute. Signed attributes are carried
 in the CMS Signed-data content type described in Section 5 of
 [RFC5652]. Authenticated attributes are carried in the CMS
 Authenticated-data content type described in Section 9 of [RFC5652]
 or in the CMS Authenticated-enveloped-data content type described in
 Section 2 of [RFC5083]. Content attributes are carried in the
 Content-with-attributes content type described in Section 3 of
 [RFC4073].

Housley Standards Track [Page 4]

RFC 7191 Key Package Receipts and Errors April 2014

 The key-package-identifier-and-receipt-request attribute has the
 following syntax:

 aa-keyPackageIdentifierAndReceiptRequest ATTRIBUTE ::= {
 TYPE KeyPkgIdentifierAndReceiptReq
 IDENTIFIED BY id-aa-KP-keyPkgIdAndReceiptReq }

 id-aa-KP-keyPkgIdAndReceiptReq OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) attributes(5) 65 }

 KeyPkgIdentifierAndReceiptReq ::= SEQUENCE {
 pkgID KeyPkgID,
 receiptReq KeyPkgReceiptReq OPTIONAL }

 KeyPkgID ::= OCTET STRING

 KeyPkgReceiptReq ::= SEQUENCE {
 encryptReceipt BOOLEAN DEFAULT FALSE,
 receiptsFrom [0] SIREntityNames OPTIONAL,
 receiptsTo SIREntityNames }

 Even though the ATTRIBUTE syntax is defined as a SET OF
 AttributeValue, a key-package-identifier-and-receipt-request
 attribute MUST have a single attribute value; zero or multiple
 instances of AttributeValue are not permitted.

 The fields in the key-package-identifier-and-receipt-request
 attribute have the following semantics:

 o pkgID contains an octet string, and this syntax does not impose
 any particular structure on the identifier.

 o receiptReq is OPTIONAL, and when it is present, it includes an
 encryption receipt flag, an OPTIONAL indication of which
 receivers should generate receipts, and an indication of where
 the receipts are to be sent.

 * The encryption receipt flag indicates whether the key package
 originator wants the receipt to be encrypted. If the boolean
 is set, then the receipt SHOULD be encrypted.

 * The OPTIONAL ReceiptsFrom field provides an indication of
 which receivers SHOULD generate receipts. When the
 ReceiptsFrom field is absent, all receivers of the key package
 are expected to return receipts. When the ReceiptsFrom field
 is present, a list of SIR entity names indicates which
 receivers of the key package are requested to return receipts.

Housley Standards Track [Page 5]

RFC 7191 Key Package Receipts and Errors April 2014

 In this case, the receiver SHOULD return a receipt only if
 their SIR entity name appears on the list.

 * The receipt request does not include any key management
 information; however, the list of SIR entity names in the
 receiptsTo field can be used to select symmetric or asymmetric
 keying material for the receipt receivers.

 A receiver SHOULD ignore the nameValue associated with any
 unrecognized nameType in either the receiptsFrom field or the
 receiptsTo field.

 When the key-package-identifier-and-receipt-request attribute appears
 in more than one location in the overall key package, each occurrence
 is evaluated independently. That is, the receiver may generate more
 than one receipt for a single key package. However, the time at
 which the receipts are sent will depend on policies that are beyond
 the scope of this document.

4. Key Package Receipt CMS Content Type

 The key package receipt content type is used to confirm receipt of an
 identified key package or collection of key packages. This content
 type MUST be encoded using the Distinguished Encoding Rules (DER)
 [X.690].

 The key package receipt content type has the following syntax:

 ct-key-package-receipt CONTENT-TYPE ::= {
 TYPE KeyPackageReceipt
 IDENTIFIED BY id-ct-KP-keyPackageReceipt }

 id-ct-KP-keyPackageReceipt OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) formats(2)
 key-package-content-types(78) 3 }

 KeyPackageReceipt ::= SEQUENCE {
 version KeyPkgVersion DEFAULT v2,
 receiptOf KeyPkgIdentifier,
 receivedBy SIREntityName }

 -- Revised definition of KeyPkgVersion from [RFC6031]
 KeyPkgVersion ::= INTEGER { v1(1), v2(2) } (1 .. 65535)

 KeyPkgIdentifier ::= CHOICE {
 pkgID KeyPkgID,
 attribute SingleAttribute {{ KeyPkgIdentifiers }} }

Housley Standards Track [Page 6]

RFC 7191 Key Package Receipts and Errors April 2014

 KeyPkgID ::= OCTET STRING

 KeyPkgIdentifiers ATTRIBUTE ::= { ... }

 The KeyPackageReceipt fields are used as follows:

 o version identifies version of the key package receipt content.
 For this version of the specification, the default value, v2,
 MUST be used. Note that v1 was defined in an earlier version,
 but the use of v1 is deprecated.

 o receiptOf offers two alternatives for identifying the key
 package for which the receipt is being generated. The first
 alternative, pkgID, MUST be supported, and pkgID provides the
 key package identifier of the key package or collection of key
 packages for which this receipt is being generated. This key
 package identifier value MUST exactly match the key package
 identifier value of the key-package-identifier-and-receipt-
 request attribute in the received key package or collection.
 The key-package-identifier-and-receipt-request attribute is
 described Section 3. The second alternative allows alternate
 attributes to be used to define the identifier.

 o receivedBy identifies the entity that received the key package.
 The entity is named by an SIR entity name as specified in
 Section 2.

 Key package receipts MUST be encapsulated in a CMS SignedData content
 type to carry the signature of the entity that is confirming receipt
 of the identified key package or collection of key packages. Key
 package receipts MAY be encrypted by encapsulating them in the CMS
 EncryptedData content type, the CMS EnvelopedData content type, or
 the AuthEnvelopedData content type. When the key package receipt is
 signed and encrypted, it MUST be signed prior to being encrypted.

 Note that delivery assurance is the responsibility of the protocol
 that is used to transport and track key packages. The key package
 receipt content type can be used in conjunction with that protocol as
 part of an overall delivery assurance solution.

 Because the receipts are signed, all recipients that generate key
 package receipts MUST have a private signature key to sign the
 receipt as well as store their own certificate or have a means of
 obtaining the key identifier of their public key. If memory is a
 concern, the public key identifier can be computed from the public
 key.

Housley Standards Track [Page 7]

RFC 7191 Key Package Receipts and Errors April 2014

 If the receipt signer has access to a real-time clock, then the
 binary-signing-time [RFC6019] signed attribute SHOULD be included in
 the key package receipt to provide the date and time when it was
 generated.

5. Key Package Error CMS Content Type

 The key package error content type provides an indication of the
 reason for rejection of a key package or collection of key packages.
 This content type MUST be encoded using the Distinguished Encoding
 Rules (DER) [X.690].

 The key package error content type has the following syntax:

 ct-key-package-error CONTENT-TYPE ::= {
 TYPE KeyPackageError IDENTIFIED BY id-ct-KP-keyPackageError }

 id-ct-KP-keyPackageError OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) formats(2)
 key-package-content-types(78) 6 }

 KeyPackageError ::= SEQUENCE {
 version KeyPkgVersion DEFAULT v2,
 errorOf [0] KeyPkgIdentifier OPTIONAL,
 errorBy SIREntityName,
 errorCode ErrorCodeChoice }

 KeyPkgVersion ::= INTEGER { v1(1), v2(2) } (1 .. 65535)

 KeyPkgIdentifier ::= CHOICE {
 pkgID KeyPkgID,
 attribute SingleAttribute {{ KeyPkgIdentifiers }} }

 KeyPkgID ::= OCTET STRING

 KeyPkgIdentifiers ATTRIBUTE ::= { ... }

 ErrorCodeChoice ::= CHOICE {
 enum EnumeratedErrorCode,
 oid OBJECT IDENTIFIER }

 EnumeratedErrorCode ::= ENUMERATED {
 decodeFailure (1),
 badContentInfo (2),
 badSignedData (3),
 badEncapContent (4),
 badCertificate (5),

Housley Standards Track [Page 8]

RFC 7191 Key Package Receipts and Errors April 2014

 badSignerInfo (6),
 badSignedAttrs (7),
 badUnsignedAttrs (8),
 missingContent (9),
 noTrustAnchor (10),
 notAuthorized (11),
 badDigestAlgorithm (12),
 badSignatureAlgorithm (13),
 unsupportedKeySize (14),
 unsupportedParameters (15),
 signatureFailure (16),
 insufficientMemory (17),
 incorrectTarget (23),
 missingSignature (29),
 resourcesBusy (30),
 versionNumberMismatch (31),
 revokedCertificate (33),

 -- Error codes with values <= 33 are aligned with [RFC5934]

 ambiguousDecrypt (60),
 noDecryptKey (61),
 badEncryptedData (62),
 badEnvelopedData (63),
 badAuthenticatedData (64),
 badAuthEnvelopedData (65),
 badKeyAgreeRecipientInfo (66),
 badKEKRecipientInfo (67),
 badEncryptContent (68),
 badEncryptAlgorithm (69),
 missingCiphertext (70),
 decryptFailure (71),
 badMACAlgorithm (72),
 badAuthAttrs (73),
 badUnauthAttrs (74),
 invalidMAC (75),
 mismatchedDigestAlg (76),
 missingCertificate (77),
 tooManySigners (78),
 missingSignedAttributes (79),
 derEncodingNotUsed (80),
 missingContentHints (81),
 invalidAttributeLocation (82),
 badMessageDigest (83),
 badKeyPackage (84),
 badAttributes (85),
 attributeComparisonFailure (86),
 unsupportedSymmetricKeyPackage (87),

Housley Standards Track [Page 9]

RFC 7191 Key Package Receipts and Errors April 2014

 unsupportedAsymmetricKeyPackage (88),
 constraintViolation (89),
 ambiguousDefaultValue (90),
 noMatchingRecipientInfo (91),
 unsupportedKeyWrapAlgorithm (92),
 badKeyTransRecipientInfo (93),
 other (127),
 ... -- Expect additional error codes -- }

 The KeyPackageError fields are used as follows:

 o version identifies version of the key package error content
 structure. For this version of the specification, the default
 value, v2, MUST be used. Note that v1 was defined in an earlier
 version, but the use of v1 is deprecated.

 o errorOf is OPTIONAL, and it provides the identifier of the
 keying material for which this error is being generated. This
 is omitted if the receiver or intermediary cannot parse the
 received data to determine the package identifier. Also,
 encryption may prevent an intermediary from obtaining any of the
 identifiers. Two alternatives for identifying the keying
 material are possible; see KeyPkgIdentifier as described in
 Section 4. The value MUST exactly match the value of the key-
 package-identifier-and-receipt-request attribute in the received
 key package or collection. The key-package-identifier-and-
 receipt-request attribute is described in Section 3.

 o errorBy identifies the entity that received the key package.
 The entity is named by an SIR entity name as specified in
 Section 2.

 o errorCode contains a code that indicates the reason for the
 error. It contains either an enumerated error code from the
 list below or an extended error code represented by an object
 identifier. The enumerated error code alternative MUST be
 supported. The object identifier error code MAY be supported.

 * decodeFailure is used to indicate that the key package
 intermediary or receiver was unable to successfully decode
 the provided package. The specified content type and the
 provided content do not match.

 * badContentInfo is used to indicate that the ContentInfo
 syntax is invalid or that the contentType carried within the
 ContentInfo is unknown or unsupported.

Housley Standards Track [Page 10]

RFC 7191 Key Package Receipts and Errors April 2014

 * badSignedData is used to indicate that the SignedData syntax
 is invalid, the version is unknown or unsupported, or more
 than one entry is present in digestAlgorithms.

 * badEncapContent is used to indicate that the
 EncapsulatedContentInfo syntax is invalid within a
 SignedData or an AuthenticatedData or the
 EncryptedContentInfo syntax is invalid within an
 AuthEnvelopedData.

 * badCertificate is used to indicate that the syntax for one
 or more certificates in CertificateSet or elsewhere is
 invalid or unsupported.

 * badSignerInfo is used to indicate that the SignerInfo syntax
 is invalid or the version is unknown or unsupported.

 * badSignedAttrs is used to indicate that the signedAttrs
 syntax within SignerInfo is invalid.

 * badUnsignedAttrs is used to indicate that the unsignedAttrs
 within SignerInfo contains one or more attributes. Since
 unrecognized attributes are ignored, this error code is used
 when the object identifier for the attribute is recognized,
 but the value is malformed or internally inconsistent. In
 addition, this error code can be used when policy prohibits
 an implementation from supporting unsigned attributes.

 * missingContent is used to indicate that the optional
 eContent is missing in EncapsulatedContentInfo, which is
 required when including an asymmetric key package, a
 symmetric key package, and an encrypted key package. This
 error can be generated due to problems located in SignedData
 or AuthenticatedData.

 Note that CMS EncapsulatedContentInfo eContent field is
 optional [RFC5652]; however, [RFC5958], [RFC6031], and
 [RFC6032] require that the eContent be present.

 * noTrustAnchor is used to indicate that the
 subjectKeyIdentifier does not identify the public key of a
 trust anchor or a certification path that terminates with an
 installed trust anchor.

 * notAuthorized is used to indicate that the sid within
 SignerInfo leads to an installed trust anchor, but that
 trust anchor is not an authorized signer for the received
 content type.

Housley Standards Track [Page 11]

RFC 7191 Key Package Receipts and Errors April 2014

 * badDigestAlgorithm is used to indicate that the
 digestAlgorithm in either SignerInfo, SignedData, or
 AuthenticatedData is unknown or unsupported.

 * badSignatureAlgorithm is used to indicate that the
 signatureAlgorithm in SignerInfo is unknown or unsupported.

 * unsupportedKeySize is used to indicate that the
 signatureAlgorithm in SignerInfo is known and supported, but
 the digital signature could not be validated because an
 unsupported key size was employed by the signer.
 Alternatively, the algorithm used in EnvelopedData,
 AuthenticatedData, or AuthEnvelopedData to generate the key-
 encryption key is known and supported, but an unsupported
 key size was employed by the originator.

 * unsupportedParameters is used to indicate that the
 signatureAlgorithm in SignerInfo is known, but the digital
 signature could not be validated because unsupported
 parameters were employed by the signer. Alternatively, the
 algorithm used in EnvelopedData, AuthenticatedData, or
 AuthEnvelopedData to generate the key-encryption key is
 known and supported, but unsupported parameters were
 employed by the originator.

 * signatureFailure is used to indicate that the
 signatureAlgorithm in SignerInfo is known and supported, but
 the digital signature in the signature field within
 SignerInfo could not be validated.

 * insufficientMemory indicates that the key package could not
 be processed because the intermediary or receiver did not
 have sufficient memory to store the keying material.

 * incorrectTarget indicates that a receiver is not the
 intended recipient.

 * missingSignature indicates that the receiver requires the
 key package to be signed or authenticated with a Message
 Authentication Code (MAC), but the received key package was
 not signed or authenticated.

 * resourcesBusy indicates that the resources necessary to
 process the key package are not available at the present
 time, but the resources might be available at some point in
 the future.

Housley Standards Track [Page 12]

RFC 7191 Key Package Receipts and Errors April 2014

 * versionNumberMismatch indicates that the version number in a
 received key package is not acceptable.

 * revokedCertificate indicates that one or more of the
 certificates needed to properly process the key package has
 been revoked.

 * ambiguousDecrypt indicates that the EncryptedData content
 type was used, and the key package receiver could not
 determine the appropriate keying material to perform the
 decryption.

 * noDecryptKey indicates that the receiver does not have the
 key named in the content-decryption-key-identifier attribute
 (see [RFC6032]).

 * badEncryptedData indicates that the EncryptedData syntax is
 invalid or the version is unknown or unsupported.

 * badEnvelopedData indicates that the EnvelopedData syntax is
 invalid or the version is unknown or unsupported.

 * badAuthenticatedData indicates that the AuthenticatedData
 syntax is invalid or the version is unknown or unsupported.

 * badAuthEnvelopedData indicates that the AuthEnvelopedData
 syntax is invalid or the version is unknown or unsupported.

 * badKeyAgreeRecipientInfo indicates that the
 KeyAgreeRecipientInfo syntax is invalid or the version is
 unknown or unsupported.

 * badKEKRecipientInfo indicates that the KEKRecipientInfo
 syntax is invalid or the version is unknown or unsupported.

 * badEncryptContent indicates that the EncryptedContentInfo
 syntax is invalid, or that the content type carried within
 the contentType is unknown or unsupported.

 * badEncryptAlgorithm indicates that the encryption algorithm
 identified by contentEncryptionAlgorithm in
 EncryptedContentInfo is unknown or unsupported. This can
 result from EncryptedData, EnvelopedData, or
 AuthEnvelopedData.

Housley Standards Track [Page 13]

RFC 7191 Key Package Receipts and Errors April 2014

 * missingCiphertext indicates that the optional
 encryptedContent is missing in EncryptedContentInfo, which
 is required when including an asymmetric key package, a
 symmetric key package, and an encrypted key package.

 * decryptFailure indicates that the encryptedContent in
 EncryptedContentInfo did not decrypt properly.

 * badMACAlgorithm indicates that the MAC algorithm identified
 by MessageAuthenticationCodeAlgorithm in AuthenticatedData
 is unknown or unsupported.

 * badAuthAttrs is used to indicate that the authAttrs syntax
 within AuthenticatedData or AuthEnvelopedData is invalid.
 Since unrecognized attributes are ignored, this error code
 is used when the object identifier for the attribute is
 recognized, but the value is malformed or internally
 inconsistent.

 * badUnauthAttrs is used to indicate that the unauthAttrs
 syntax within AuthenticatedData or AuthEnvelopedData is
 invalid. Since unrecognized attributes are ignored, this
 error code is used when the object identifier for the
 attribute is recognized, but the value is malformed or
 internally inconsistent.

 * invalidMAC is used to indicate that the message
 authentication code value within AuthenticatedData or
 AuthEnvelopedData did not validate properly.

 * mismatchedDigestAlg is used to indicate that the digest
 algorithm in digestAlgorithms field within SignedData does
 not match the digest algorithm used in the signature
 algorithm.

 * missingCertificate indicates that a signature could not be
 verified using a trust anchor or a certificate from the
 certificates field within SignedData. Similarly, this error
 code can indicate that a needed certificate is missing when
 processing EnvelopedData, AuthEnvelopedData, or
 AuthenticatedData.

 * tooManySigners indicates that a SignedData content contained
 more than one SignerInfo for a content type that requires
 only one signer.

Housley Standards Track [Page 14]

RFC 7191 Key Package Receipts and Errors April 2014

 * missingSignedAttributes indicates that a SignedInfo within a
 SignedData content did not contain any signed attributes; at
 a minimum, the content-type and message-digest must be
 present, as per [RFC5652]. Similarly, this error code can
 indicate that required authenticated attributes are missing
 when processing AuthEnvelopedData or AuthenticatedData.

 * derEncodingNotUsed indicates that the content contained BER
 encoding, or some other encoding, where DER encoding was
 required.

 * missingContentHints indicates that a SignedData content
 encapsulates a content other than a key package or an
 encrypted key package; however, the content-hints attribute
 [RFC2634] is not included. Similarly, this error code can
 indicate that the content-hints attribute was missing when
 processing AuthEnvelopedData or AuthenticatedData.

 * invalidAttributeLocation indicates that an attribute
 appeared in an unacceptable location.

 * badMessageDigest indicates that the value of the message-
 digest attribute [RFC5652] did not match the calculated
 value.

 * badKeyPackage indicates that the SymmetricKeyPackage
 [RFC6031] or AsymmetricKeyPackage [RFC5958] syntax is
 invalid or that the version is unknown.

 * badAttributes indicates that an attribute collection either
 contained multiple instances of the same attribute type that
 allows only one instance or contained an attribute instance
 with multiple values in an attribute that allows only one
 value.

 * attributeComparisonFailure indicates that multiple instances
 of an attribute failed the comparison rules for the type of
 attribute.

 * unsupportedSymmetricKeyPackage indicates that the
 implementation does not support symmetric key packages
 [RFC6031].

 * unsupportedAsymmetricKeyPackage indicates that the
 implementation does not support asymmetric key packages
 [RFC5958].

Housley Standards Track [Page 15]

RFC 7191 Key Package Receipts and Errors April 2014

 * constraintViolation indicates that one or more of the
 attributes has a value that is not in the authorized set of
 values for the signer [RFC6010]. That is, the value is in
 conflict with the constraints imposed on the signer.

 * ambiguousDefaultValue indicates that one or more of the
 attributes that is part of the signer’s constraints is
 omitted from the key package, and the constraint permits
 more than one value; therefore, the appropriate default
 value for that attribute or attribute cannot be determined.

 * noMatchingRecipientInfo indicates that a recipientInfo could
 not be found for the recipient. This can result from a ktri
 or kari found in EncryptedData, EnvelopedData, or
 AuthEnvelopedData.

 * unsupportedKeyWrapAlgorithm indicates that the key wrap
 algorithm is not supported.

 * badKeyTransRecipientInfo indicates that the
 KeyTransRecipientInfo syntax is invalid or the version is
 unknown or unsupported.

 * other indicates that the key package could not be processed,
 but the reason is not covered by any of the assigned status
 codes. Use of this status code SHOULD be avoided.

 The key package error content type MUST be signed if the entity
 generating it is capable of signing it. For example, a device will
 be incapable of signing when it is in early stages of deployment and
 it has not been configured with a private signing key or a device has
 an internal error that prevents use of its private signing key. When
 it is signed, the key package error MUST be encapsulated in a CMS
 SignedData content type to carry the signature of the party that is
 indicating an error. When it is encrypted, the key package error
 MUST be encapsulated in a CMS EnvelopedData content type, a CMS
 EncryptedData content type, or a CMS AuthEnvelopedData content type.
 When a key package error is signed and encrypted, it MUST be signed
 prior to being encrypted.

 All devices that generate signed key package error reports MUST store
 their own certificate or have a means of obtaining the key identifier
 of their public key. If memory is a concern, the public key
 identifier can be computed from the public key.

 If the error report signer has access to a real-time clock, then the
 binary-signing-time attribute [RFC6019] SHOULD be included in the key
 package error to provide the date and time when it was generated.

Housley Standards Track [Page 16]

RFC 7191 Key Package Receipts and Errors April 2014

6. Protecting the KeyPackageReceipt and KeyPackageError

 CMS protecting content types, [RFC5652] and [RFC5083], can be used to
 provide security to the KeyPackageReceipt and KeyPackageError content
 types:

 o SignedData can be used to apply a digital signature.

 o EncryptedData can be used to encrypt the content type with
 simple symmetric encryption, where the sender and the receiver
 already share the necessary encryption key.

 o EnvelopedData can be used to encrypt the content type with
 symmetric encryption, where the sender and the receiver do not
 already share the necessary encryption key.

 o AuthenticatedData can be used to integrity protect the content
 type with message authentication algorithms that support
 authenticated encryption, where key management information is
 handled in a manner similar to EnvelopedData.

 o AuthEnvelopedData can be used to protect the content types with
 algorithms that support authenticated encryption, where key
 management information is handled in a manner similar to
 EnvelopedData.

7. Using the application/cms Media Type

 The media type and parameters for carrying a key package receipt or a
 key package error content type are specified in [RFC7193].

8. IANA Considerations

 IANA has updated the reference for the following registration in the
 "SMI Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0)"
 registry:

 63 id-mod-keyPkgReceiptAndErrV2 [RFC7191]

9. Security Considerations

 The key package receipt and key package error contents are not
 necessarily protected. These content types can be combined with a
 security protocol to protect the contents of the package.

 The KeyPkgReceiptReq structure includes a receiptsFrom list and a
 receiptsTo list. Both lists contain SIREntityNames. The syntax does
 not specify a limit on the number of SIREntityNames that may be

Housley Standards Track [Page 17]

RFC 7191 Key Package Receipts and Errors April 2014

 included in either of these lists. In addition, there is
 purposefully no requirement that the receiptTo entries have any
 relation to the sender of the key package. To avoid these features
 being used as part of a denial-of-service amplification, receipts
 should only be returned for key packages with a valid signature from
 a trusted signer.

 If an implementation is willing to accept key packages from more than
 one source, then there is a possibility that the same key package
 identifier could be used by more than one source. As a result, there
 is the potential for a receipt for one key package to be confused
 with the receipt for another, potentially leading to confusion about
 the keying material that is available to the recipient. In
 environments with multiple key sources, a convention for assignment
 of key package identifiers can avoid this potential confusion
 altogether.

 In some situations, returning very detailed error information can
 provide an attacker with insight into the security processing. Where
 this is a concern, the implementation should return the most generic
 error code that is appropriate. However, detailed error codes are
 very helpful during development, debugging, and interoperability
 testing. For this reason, implementations may want to have a way to
 configure the use of a generic error code or a detailed one.

10. Acknowledgements

 Many thanks to Radia Perlman, Sean Turner, Jim Schaad, and Carl
 Wallace for their insightful review. Thanks to Robert Sparks for
 improved wording.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2634] Hoffman, P., Ed., "Enhanced Security Services for S/MIME",
 RFC 2634, June 1999.

 [RFC4073] Housley, R., "Protecting Multiple Contents with the
 Cryptographic Message Syntax (CMS)", RFC 4073, May 2005.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

Housley Standards Track [Page 18]

RFC 7191 Key Package Receipts and Errors April 2014

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, September 2009.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 June 2010.

 [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958, August
 2010.

 [RFC6010] Housley, R., Ashmore, S., and C. Wallace, "Cryptographic
 Message Syntax (CMS) Content Constraints Extension", RFC
 6010, September 2010.

 [RFC6019] Housley, R., "BinaryTime: An Alternate Format for
 Representing Date and Time in ASN.1", RFC 6019, September
 2010.

 [RFC6031] Turner, S. and R. Housley, "Cryptographic Message Syntax
 (CMS) Symmetric Key Package Content Type", RFC 6031,
 December 2010.

 [RFC6032] Turner, S. and R. Housley, "Cryptographic Message Syntax
 (CMS) Encrypted Key Package Content Type", RFC 6032,
 December 2010.

 [RFC6268] Schaad, J. and S. Turner, "Additional New ASN.1 Modules
 for the Cryptographic Message Syntax (CMS) and the Public
 Key Infrastructure Using X.509 (PKIX)", RFC 6268, July
 2011.

 [RFC7193] Turner, S., Housley, R., and J. Schaad, "The
 application/cms Media Type", RFC 7193, April 2014.

 [X.680] ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002.
 Information Technology - Abstract Syntax Notation One.

 [X.681] ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002.
 Information Technology - Abstract Syntax Notation One:
 Information Object Specification.

 [X.682] ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002.
 Information Technology - Abstract Syntax Notation One:
 Constraint Specification.

 [X.683] ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002.
 Information Technology - Abstract Syntax Notation One:
 Parameterization of ASN.1 Specifications.

Housley Standards Track [Page 19]

RFC 7191 Key Package Receipts and Errors April 2014

 [X.690] ITU-T Recommendation X.690 (2002) | ISO/IEC 8825- 1:2002.
 Information Technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER).

11.2. Informative References

 [RFC5083] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 November 2007.

 [RFC5934] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Management Protocol (TAMP)", RFC 5934, August 2010.

Housley Standards Track [Page 20]

RFC 7191 Key Package Receipts and Errors April 2014

Appendix A. ASN.1 Module

 This annex provides the normative ASN.1 definitions for the
 structures described in this specification using ASN.1 as defined in
 [X.680], [X.681], [X.682], and [X.683].

 KeyPackageReceiptAndErrorModuleV2
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-keyPkgReceiptAndErrV2(63) }

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL

 IMPORTS

 -- FROM New SMIME ASN.1 [RFC6268]

 CONTENT-TYPE
 FROM CryptographicMessageSyntax-2010
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }

 -- From New PKIX ASN.1 [RFC5912]

 ATTRIBUTE, SingleAttribute {}
 FROM PKIX-CommonTypes-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) }

 DistinguishedName
 FROM PKIX1Explicit-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51)}
 ;

 --- Key Package Version Number (revised from [RFC6031])

 KeyPkgVersion ::= INTEGER { v1(1), v2(2) } (1 .. 65535)

Housley Standards Track [Page 21]

RFC 7191 Key Package Receipts and Errors April 2014

 --
 -- SIR Entity Name
 --

 SIREntityNames ::= SEQUENCE SIZE (1..MAX) OF SIREntityName

 SIREntityNameTypes SIR-ENTITY-NAME ::= {
 siren-dn,
 ... -- Expect additional SIR Entity Name types -- }

 SIR-ENTITY-NAME ::= CLASS {
 &sIRENType OBJECT IDENTIFIER UNIQUE,
 &SIRENValue
 } WITH SYNTAX {
 SYNTAX &SIRENValue IDENTIFIED BY &sIRENType }

 SIREntityName ::= SEQUENCE {
 sirenType SIR-ENTITY-NAME.&sIRENType({SIREntityNameTypes}),
 sirenValue OCTET STRING (CONTAINING
 SIR-ENTITY-NAME.&SIRENValue(
 {SIREntityNameTypes}{@sirenType})) }

 siren-dn SIR-ENTITY-NAME ::= {
 SYNTAX DistinguishedName
 IDENTIFIED BY id-dn }

 id-dn OBJECT IDENTIFIER ::= {
 joint-iso-ccitt(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) sir-name-types(16) 0 }

 --
 -- Attribute Definitions
 --

 aa-keyPackageIdentifierAndReceiptRequest ATTRIBUTE ::= {
 TYPE KeyPkgIdentifierAndReceiptReq
 IDENTIFIED BY id-aa-KP-keyPkgIdAndReceiptReq }
 id-aa-KP-keyPkgIdAndReceiptReq OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) attributes(5) 65 }

 KeyPkgIdentifierAndReceiptReq ::= SEQUENCE {
 pkgID KeyPkgID,
 receiptReq KeyPkgReceiptReq OPTIONAL }

 KeyPkgID ::= OCTET STRING

Housley Standards Track [Page 22]

RFC 7191 Key Package Receipts and Errors April 2014

 KeyPkgReceiptReq ::= SEQUENCE {
 encryptReceipt BOOLEAN DEFAULT FALSE,
 receiptsFrom [0] SIREntityNames OPTIONAL,
 receiptsTo SIREntityNames }

 --
 -- Content Type Definitions
 --

 KeyPackageContentTypes CONTENT-TYPE ::= {
 ct-key-package-receipt |
 ct-key-package-error,
 ... -- Expect additional content types -- }

 -- Key Package Receipt CMS Content Type

 ct-key-package-receipt CONTENT-TYPE ::= {
 TYPE KeyPackageReceipt
 IDENTIFIED BY id-ct-KP-keyPackageReceipt }

 id-ct-KP-keyPackageReceipt OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) formats(2)
 key-package-content-types(78) 3 }

 KeyPackageReceipt ::= SEQUENCE {
 version KeyPkgVersion DEFAULT v2,
 receiptOf KeyPkgIdentifier,
 receivedBy SIREntityName }

 KeyPkgIdentifier ::= CHOICE {
 pkgID KeyPkgID,
 attribute SingleAttribute {{ KeyPkgIdentifiers }} }

 KeyPkgIdentifiers ATTRIBUTE ::= { ... }

 -- Key Package Receipt CMS Content Type

 ct-key-package-error CONTENT-TYPE ::= {
 TYPE KeyPackageError IDENTIFIED BY id-ct-KP-keyPackageError }

 id-ct-KP-keyPackageError OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) formats(2)
 key-package-content-types(78) 6 }

Housley Standards Track [Page 23]

RFC 7191 Key Package Receipts and Errors April 2014

 KeyPackageError ::= SEQUENCE {
 version KeyPkgVersion DEFAULT v2,
 errorOf [0] KeyPkgIdentifier OPTIONAL,
 errorBy SIREntityName,
 errorCode ErrorCodeChoice }

 ErrorCodeChoice ::= CHOICE {
 enum EnumeratedErrorCode,
 oid OBJECT IDENTIFIER }

 EnumeratedErrorCode ::= ENUMERATED {
 decodeFailure (1),
 badContentInfo (2),
 badSignedData (3),
 badEncapContent (4),
 badCertificate (5),
 badSignerInfo (6),
 badSignedAttrs (7),
 badUnsignedAttrs (8),
 missingContent (9),
 noTrustAnchor (10),
 notAuthorized (11),
 badDigestAlgorithm (12),
 badSignatureAlgorithm (13),
 unsupportedKeySize (14),
 unsupportedParameters (15),
 signatureFailure (16),
 insufficientMemory (17),
 incorrectTarget (23),
 missingSignature (29),
 resourcesBusy (30),
 versionNumberMismatch (31),
 revokedCertificate (33),

 -- Error codes with values <= 33 are aligned with [RFC5934]

 ambiguousDecrypt (60),
 noDecryptKey (61),
 badEncryptedData (62),
 badEnvelopedData (63),
 badAuthenticatedData (64),
 badAuthEnvelopedData (65),
 badKeyAgreeRecipientInfo (66),
 badKEKRecipientInfo (67),
 badEncryptContent (68),
 badEncryptAlgorithm (69),
 missingCiphertext (70),
 decryptFailure (71),

Housley Standards Track [Page 24]

RFC 7191 Key Package Receipts and Errors April 2014

 badMACAlgorithm (72),
 badAuthAttrs (73),
 badUnauthAttrs (74),
 invalidMAC (75),
 mismatchedDigestAlg (76),
 missingCertificate (77),
 tooManySigners (78),
 missingSignedAttributes (79),
 derEncodingNotUsed (80),
 missingContentHints (81),
 invalidAttributeLocation (82),
 badMessageDigest (83),
 badKeyPackage (84),
 badAttributes (85),
 attributeComparisonFailure (86),
 unsupportedSymmetricKeyPackage (87),
 unsupportedAsymmetricKeyPackage (88),
 constraintViolation (89),
 ambiguousDefaultValue (90),
 noMatchingRecipientInfo (91),
 unsupportedKeyWrapAlgorithm (92),
 badKeyTransRecipientInfo (93),
 other (127),
 ... -- Expect additional error codes -- }

 END

Author’s Address

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 EMail: housley@vigilsec.com

Housley Standards Track [Page 25]

