
Internet Engineering Task Force (IETF) M. Kucherawy
Request for Comments: 7103 G. Shapiro
Category: Informational N. Freed
ISSN: 2070-1721 January 2014

 Advice for Safe Handling of Malformed Messages

Abstract

 Although Internet message formats have been precisely defined since
 the 1970s, authoring and handling software often shows only mild
 conformance to the specifications. The malformed messages that
 result are non-standard. Nonetheless, decades of experience have
 shown that using some tolerance in the handling of the malformations
 that result is often an acceptable approach and is better than
 rejecting the messages outright as nonconformant. This document
 includes a collection of the best advice available regarding a
 variety of common malformed mail situations; it is to be used as
 implementation guidance.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7103.

Kucherawy, et al. Informational [Page 1]

RFC 7103 Safe Mail Handling January 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Kucherawy, et al. Informational [Page 2]

RFC 7103 Safe Mail Handling January 2014

Table of Contents

 1. Introduction . 3
 1.1. The Purpose of This Work 3
 1.2. Not the Purpose of This Work 4
 1.3. General Considerations 4
 2. Document Conventions . 5
 2.1. Examples . 5
 3. Background . 5
 4. Invariant Content . 5
 5. Mail Submission Agents 6
 6. Line Termination . 7
 7. Header Anomalies . 8
 7.1. Converting Obsolete and Invalid Syntaxes 8
 7.1.1. Host-Address Syntax 8
 7.1.2. Excessive Angle Brackets 8
 7.1.3. Unbalanced Angle Brackets 8
 7.1.4. Unbalanced Parentheses 9
 7.1.5. Commas in Address Lists 9
 7.1.6. Unbalanced Quotes 10
 7.1.7. Naked Local-Parts 10
 7.2. Non-Header Lines . 10
 7.3. Unusual Spacing . 12
 7.4. Header Malformations 13
 7.5. Header Field Counts 13
 7.5.1. Repeated Header Fields 14
 7.5.2. Missing Header Fields 15
 7.5.3. Return-Path . 16
 7.6. Missing or Incorrect Charset Information 16
 7.7. Eight-Bit Data . 18
 8. MIME Anomalies . 18
 8.1. Missing MIME-Version Field 19
 8.2. Faulty Encodings . 19
 9. Body Anomalies . 19
 9.1. Oversized Lines . 19
 10. Security Considerations 20
 11. References . 20
 11.1. Normative References 20
 11.2. Informative References 20
 Appendix A. Acknowledgements 23

Kucherawy, et al. Informational [Page 3]

RFC 7103 Safe Mail Handling January 2014

1. Introduction

1.1. The Purpose of This Work

 The history of email standards, going back to [RFC733] and beyond,
 contains a fairly rigid evolution of specifications. However,
 implementations within that culture have also long had an
 undercurrent known formally as "the robustness principle", also known
 informally as "Postel’s Law": "Be liberal in what you accept, and
 conservative in what you send" [RFC1122].

 Jon Postel’s directive is often interpreted to mean that any deviance
 from a specification is acceptable. However, we believe it was
 intended only to account for legitimate variations in interpretation
 within specifications, as well as basic transit errors, like bit
 errors. Taken to its unintended extreme, excessive tolerance would
 imply that there are no limits to the liberties that a sender might
 take, while presuming a burden on a receiver to guess "correctly" at
 the meaning of any such variation. These matters are further
 compounded by receiver software -- the end users’ mail readers --
 which are also sometimes flawed, leaving senders to craft messages
 (sometimes bending the rules) to overcome those flaws.

 In general, this served the email ecosystem well by allowing a few
 errors in implementations without obstructing participation in the
 game. The proverbial bar was set low. However, as we have evolved
 into the current era, some of these lenient stances have begun to
 expose opportunities that can be exploited by malefactors. Various
 email-based applications rely on the strong application of these
 standards for simple security checks, while the very basic building
 blocks of that infrastructure, intending to be robust, fail utterly
 to assert those standards.

 The distributed and non-interactive nature of email has often
 prompted adjustments to receiving software, to handle these
 variations, rather than trying to gain better conformance by senders,
 since the receiving operator is primarily driven by complaints from
 recipient users and has no authority over the sending side of the
 system. Processing with such flexibility comes at some cost, since
 mail software is faced with decisions about whether to permit non-
 conforming messages to continue toward their destinations unaltered,
 adjust them to conform (possibly at the cost of losing some of the
 original message), or reject them outright.

 This document includes a collection of the best advice available
 regarding a variety of common malformed mail situations; it is to be
 used as implementation guidance. These malformations are typically

Kucherawy, et al. Informational [Page 4]

RFC 7103 Safe Mail Handling January 2014

 based around loose interpretations or implementations of
 specifications such as the Internet Message Format [MAIL] and
 Multipurpose Internet Mail Extensions [MIME].

1.2. Not the Purpose of This Work

 It is important to understand that this work is not an effort to
 endorse or standardize certain common malformations. The code and
 culture that introduces such messages into the mail stream needs to
 be repaired, as the security penalty now being paid for this lax
 processing arguably outweighs the reduction in support costs to end
 users who are not expected to understand the standards. However, the
 reality is that this will not be fixed quickly.

 Given this, it is beneficial to provide implementers with guidance
 about the safest or most effective way to handle malformed messages
 when they arrive, taking into consideration the trade-offs of the
 choices available especially with respect to how various actors in
 the email ecosystem respond to such messages in terms of handling,
 parsing, or rendering to end users.

1.3. General Considerations

 Many deviations from message format standards are considered by some
 receivers to be strong indications that the message is undesirable,
 such as spam or something containing malware. These receivers
 quickly decide that the best handling choice is simply to reject or
 discard the message. This means malformations caused by innocent
 misunderstandings or ignorance of proper syntax can cause messages
 with no ill intent also to fail to be delivered.

 Senders that want to ensure message delivery are best advised to
 adhere strictly to the relevant standards (including, but not limited
 to, [MAIL], [MIME], and [DKIM]), as well as observe other industry
 best practices such as may be published from time to time by either
 the IETF or independently.

 Receivers that haven’t the luxury of strict enforcement of the
 standards on inbound messages are usually best served by observing
 the following guidelines for handling of malformed messages:

 1. Whenever possible, mitigation of syntactic malformations should
 be guided by an assessment of the most likely semantic intent.
 For example, it is reasonable to conclude that multiple sets of
 angle brackets around an address are simply superfluous and can
 be dropped.

Kucherawy, et al. Informational [Page 5]

RFC 7103 Safe Mail Handling January 2014

 2. When the intent is unclear, or when it is clear but also
 impractical to change the content to reflect that intent,
 mitigation should be limited to cases where not taking any
 corrective action would clearly lead to a worse outcome.

 3. Security issues, when present, need to be addressed and may force
 mitigation strategies that are otherwise suboptimal.

2. Document Conventions

2.1. Examples

 Examples of message content include a number within braces at the end
 of each line. These are line numbers for use in subsequent
 discussion, and they are not actually part of the message content
 presented in the example.

 Blank lines are not numbered in the examples.

3. Background

 The reader would benefit from reading [EMAIL-ARCH] for some general
 background about the overall email architecture. Of particular
 interest is the Internet Message Format, detailed in [MAIL].
 Throughout this document, the use of the term "message" should be
 assumed to mean a block of text conforming to the Internet Message
 Format.

4. Invariant Content

 An agent handling a message could use several distinct
 representations of the message. One is an internal representation,
 such as separate blocks of storage for the header and body, some
 header or body alterations, or tables indexed by header name, set up
 to make particular kinds of processing easier. The other is the
 representation passed along to the next agent in the handling chain.
 This might be identical to the message input to the module, or it
 might have some changes such as added or reordered header fields or
 body elisions to remove malicious content.

 Message handling is usually most effective when each in a sequence of
 handling modules receives the same content for analysis. A module
 that "fixes" or otherwise alters the content passed to later modules
 can prevent the later modules from identifying malicious or other
 content that exposes the end user to harm. It is important that all
 processing modules can make consistent assertions about the content.
 Modules that operate sequentially sometimes add private header fields
 to relay information downstream for later filters to use (and

Kucherawy, et al. Informational [Page 6]

RFC 7103 Safe Mail Handling January 2014

 possibly remove), or they may have out-of-band ways of doing so.
 However, even the presence of private header fields can impact a
 downstream handling agent unaware of its local semantics, so an out-
 of-band method is always preferable.

 The above is less of a concern when multiple analysis modules are
 operated in parallel, independent of one another.

 Often, abuse reporting systems can act effectively only when a
 complaint or report contains the original message exactly as it was
 generated. Messages that have been altered by handling modules might
 render a complaint not actionable as the system receiving the report
 may be unable to identify the original message as one of its own.

 Some message changes alter syntax without changing semantics. For
 example, Section 7.4 describes a situation where an agent removes
 additional header whitespace. This is a syntax change without a
 change in semantics, though some systems (such as DKIM) are sensitive
 to such changes. Message system developers need to be aware of the
 downstream impact of making either kind of change.

 Where a change to content between modules is unavoidable, it is a
 good idea to add standard trace data to indicate a "visible" handoff
 between modules has occurred. The only advisable way to do this is
 to prepend Received fields with the appropriate information, as
 described in Section 3.6.7 of [MAIL].

 There will always be local handling exceptions, but these guidelines
 should be useful for developing integrated message processing
 environments.

 In most cases, this document only discusses techniques used on
 internal representations. It is occasionally necessary to make
 changes between the input and output versions; such cases will be
 called out explicitly.

5. Mail Submission Agents

 Within the email context, the single most influential component that
 can reduce the presence of malformed items in the email system is the
 Mail Handling Service (MHS; see [EMAIL-ARCH]), which includes the
 Mail Submission Agent (MSA). This is the component that is
 essentially the interface between end users that create content and
 the mail stream.

 MHSs need to become more strict about enforcement of all relevant
 email standards, especially [MAIL] and the [MIME] family of
 documents.

Kucherawy, et al. Informational [Page 7]

RFC 7103 Safe Mail Handling January 2014

 More strict conformance by relaying Mail Transfer Agents (MTAs) will
 also be helpful. Although preventing the dissemination of malformed
 messages is desirable, the rejection of such mail already in transit
 also has a support cost -- namely, the creation of a [DSN] that many
 end users might not understand.

6. Line Termination

 For interoperable Internet Mail messages, the only valid line
 separation sequence during a typical SMTP session is ASCII 0x0D
 ("carriage return", or CR) followed by ASCII 0x0A ("line feed", or
 LF), commonly referred to as "CRLF". This is not the case for binary
 mode SMTP (see [BINARYSMTP]).

 Common UNIX user tools, however, typically only use LF for internal
 line termination. This means that a protocol engine that converts
 between UNIX and Internet message formats has to convert between
 these two end-of-line representations before transmitting a message
 or after receiving it.

 Non-compliant implementations can create messages with a mix of line
 terminations, such as LF everywhere except CRLF only at the end of
 the message. According to [SMTP] and [MAIL], this means the entire
 message actually exists on a single line.

 Within modern Internet Mail, it is highly unlikely that an isolated
 CR or LF is valid in common ASCII text. Furthermore, when content
 actually does need to contain such an unusual character sequence,
 [MIME] provides mechanisms for encoding that content in an SMTP-safe
 manner.

 Thus, it will typically be safe and helpful to treat an isolated CR
 or LF as equivalent to a CRLF when parsing a message.

 Note that this advice pertains only to the raw SMTP data and not to
 decoded MIME entities. As noted above, when MIME encoding mechanisms
 are used, the unusual character sequences are not visible in the raw
 SMTP stream.

Kucherawy, et al. Informational [Page 8]

RFC 7103 Safe Mail Handling January 2014

7. Header Anomalies

 This section covers common syntactic and semantic anomalies found in
 a message header and presents suggested methods of mitigation.

7.1. Converting Obsolete and Invalid Syntaxes

 A message using an obsolete header syntax (see Section 4 of [MAIL])
 might confound an agent that is attempting to be robust in its
 handling of syntax variations. A bad actor could exploit such a
 weakness in order to get abusive or malicious content through a
 filter. This section presents some examples of such variations.
 Messages including these variations ought to be rejected; where this
 is not possible, recommended internal interpretations are provided.

7.1.1. Host-Address Syntax

 The following obsolete syntax attempts to specify source routing:

 To: <@example.net:fran@example.com>

 This means "send to fran@example.com via the mail service at
 example.net". It can safely be interpreted as:

 To: <fran@example.com>

7.1.2. Excessive Angle Brackets

 The following overuse of angle brackets:

 To: <<<user2@example.org>>>

 can safely be interpreted as:

 To: <user2@example.org>

7.1.3. Unbalanced Angle Brackets

 The following use of unbalanced angle brackets:

 To: <another@example.net

 can usually be treated as:

 To: <another@example.net>

Kucherawy, et al. Informational [Page 9]

RFC 7103 Safe Mail Handling January 2014

 The following:

 To: second@example.org>

 can usually be treated as:

 To: second@example.org

7.1.4. Unbalanced Parentheses

 The following use of unbalanced parentheses:

 To: (Testing <fran@example.com>

 can safely be interpreted as:

 To: (Testing) <fran@example.com>

 Likewise, this case:

 To: Testing) <sam@example.com>

 can safely be interpreted as:

 To: "Testing)" <sam@example.com>

 In both cases, it is obvious where the active email address in the
 string can be found. The former case retains the active email
 address in the string by completing what appears to be intended as a
 comment; the intent in the latter case is less obvious, so the
 leading string is interpreted as a display name.

7.1.5. Commas in Address Lists

 This use of an errant comma:

 To: <third@example.net, fourth@example.net>

 can usually be interpreted as ending an address, so the above is
 usually best interpreted as:

 To: third@example.net, fourth@example.net

Kucherawy, et al. Informational [Page 10]

RFC 7103 Safe Mail Handling January 2014

7.1.6. Unbalanced Quotes

 The following use of unbalanced quotation marks:

 To: "Joe <joe@example.com>

 leaves software with no unambiguous interpretation. One possible
 interpretation is:

 To: "Joe <joe@example.com>"@example.net

 where "example.net" is the domain name or host name of the handling
 agent making the interpretation. However, the more obvious and
 likely best interpretation is simply:

 To: "Joe" <joe@example.com>

7.1.7. Naked Local-Parts

 [MAIL] defines a local-part as the user portion of an email address,
 and the display-name as the "user-friendly" label that accompanies
 the address specification.

 Some broken submission agents might introduce messages with only a
 local-part or only a display-name and no properly formed address.
 For example:

 To: Joe

 A submission agent ought to reject this or, at a minimum, append "@"
 followed by its own host name or some other valid name likely to
 enable a reply to be delivered to the correct mailbox. Where this is
 not done, an agent receiving such a message will probably be
 successful by synthesizing a valid header field for evaluation using
 the techniques described in Section 7.5.2.

7.2. Non-Header Lines

 Some messages contain a line of text in the header that is not a
 valid message header field of any kind. For example:

 From: user@example.com {1}
 To: userpal@example.net {2}
 Subject: This is your reminder {3}
 about the football game tonight {4}
 Date: Wed, 20 Oct 2010 20:53:35 -0400 {5}

 Don’t forget to meet us for the tailgate party! {7}

Kucherawy, et al. Informational [Page 11]

RFC 7103 Safe Mail Handling January 2014

 The cause of this is typically a bug in a message generator of some
 kind. Line {4} was intended to be a continuation of line {3}; it
 should have been indented by whitespace as set out in Section 2.2.3
 of [MAIL].

 This anomaly has varying impacts on processing software, depending on
 the implementation:

 1. Some agents choose to separate the header of the message from the
 body only at the first empty line (that is, a CRLF immediately
 followed by another CRLF).

 2. Some agents assume this anomaly should be interpreted to mean the
 body starts at line {4}, as the end of the header is assumed by
 encountering something that is not a valid header field or folded
 portion thereof.

 3. Some agents assume this should be interpreted as an intended
 header folding as described above and thus simply append a single
 space character (ASCII 0x20) and the content of line {4} to that
 of line {3}.

 4. Some agents reject this outright as line {4} is neither a valid
 header field nor a folded continuation of a header field prior to
 an empty line.

 This can be exploited if it is known that one message handling agent
 will take one action, while the next agent in the handling chain will
 take another. Consider, for example, a message filter that searches
 message headers for properties indicative of abusive or malicious
 content that is attached to a Mail Transfer Agent (MTA) implementing
 option 2 above. An attacker could craft a message that includes this
 malformation at a position above the property of interest, knowing
 the MTA will not consider that content part of the header.
 Consequently, the MTA will not feed it to the filter; thus, it avoids
 detection. Meanwhile, the Mail User Agent (MUA), which presents the
 content to an end user, implements option 1 or 3, which has some
 undesirable effect.

 It should be noted that a few implementations choose option 4 above
 since any reputable message generation program will get header
 folding right, and thus anything so blatant as this malformation is
 likely an error caused by a malefactor.

Kucherawy, et al. Informational [Page 12]

RFC 7103 Safe Mail Handling January 2014

 The preferred implementation if option 4 above is not employed is to
 apply the following heuristic when this malformation is detected:

 1. Search forward for an empty line. If one is found, then apply
 option 3 above to the anomalous line, and continue.

 2. Search forward for another line that appears to be a new header
 field (a name followed by a colon). If one is found, then apply
 option 3 above to the anomalous line, and continue.

7.3. Unusual Spacing

 The following message is valid per [MAIL]:

 From: user@example.com {1}
 To: userpal@example.net {2}
 Subject: This is your reminder {3}
 {4}
 about the football game tonight {5}
 Date: Wed, 20 Oct 2010 20:53:35 -0400 {6}

 Don’t forget to meet us for the tailgate party! {8}

 Line {4} contains a single whitespace. The intended result is that
 lines {3}, {4}, and {5} comprise a single continued header field.
 However, some agents are aggressive at stripping trailing whitespace,
 which will cause line {4} to be treated as an empty line, and thus
 the separator line between header and body. This can affect header-
 specific processing algorithms as described in the previous section.

 This example was legal in earlier versions of the Internet message
 format standard but was rendered obsolete as of [RFC2822] as line {4}
 could be interpreted as the separator between the header and body.

 The best handling of this example is for a message parsing engine to
 behave as if line {4} were not present in the message and for a
 message creation engine to emit the message with line {4} removed.

Kucherawy, et al. Informational [Page 13]

RFC 7103 Safe Mail Handling January 2014

7.4. Header Malformations

 Among the many possible malformations, a common one is insertion of
 whitespace at unusual locations, such as:

 From: user@example.com {1}
 To: userpal@example.net {2}
 Subject: This is your reminder {3}
 MIME-Version : 1.0 {4}
 Content-Type: text/plain {5}
 Date: Wed, 20 Oct 2010 20:53:35 -0400 {6}

 Don’t forget to meet us for the tailgate party! {8}

 Note the addition of whitespace in line {4} after the header field
 name but before the colon that separates the name from the value.

 The obsolete grammar of Section 4 of [MAIL] permits that extra
 whitespace, so it cannot be considered invalid. However, a consensus
 of implementations prefers to remove that whitespace. There is no
 perceived change to the semantics of the header field being altered
 as the whitespace is itself semantically meaningless. Therefore, it
 is best to remove all whitespace after the field name but before the
 colon and to emit the field in this modified form.

7.5. Header Field Counts

 Section 3.6 of [MAIL] prescribes specific header field counts for a
 valid message. Few agents actually enforce these in the sense that a
 message whose header contents exceed one or more limits set there are
 generally allowed to pass; they typically add any required fields
 that are missing, however.

 Also, few agents that use messages as input, including MUAs that
 actually display messages to users, verify that the input is valid
 before proceeding. Some popular open-source filtering programs and
 some popular Mailing List Management (MLM) packages select either the
 first or last instance of a particular field name, such as From, to
 decide who sent a message. Absent strict enforcement of [MAIL], an
 attacker can craft a message with multiple instances of the same
 fields if that attacker knows the filter will make a decision based
 on one, but the user will be shown the others.

 This situation is exacerbated when message validity is assessed, such
 as through enhanced authentication methods like DomainKeys Identified
 Mail [DKIM]. Such methods might cover one instance of a constrained
 field but not another, taking the wrong one as "good" or "safe". An

Kucherawy, et al. Informational [Page 14]

RFC 7103 Safe Mail Handling January 2014

 MUA, for example, could show the first of two From fields to an end
 user as "good" or "safe", while an authentication method actually
 only verified the second.

 In attempting to counter this exposure, one of the following
 strategies can be used:

 1. reject outright or refuse to process further any input message
 that does not conform to Section 3.6 of [MAIL];

 2. remove or, in the case of an MUA, refuse to render any instances
 of a header field whose presence exceeds a limit prescribed in
 Section 3.6 of [MAIL] when generating its output;

 3. where a field can contain multiple distinct values (such as From)
 or is free-form text (such as Subject), combine them into a
 semantically identical, single header field of the same name (see
 Section 7.5.1);

 4. alter the name of any header field whose presence exceeds a limit
 prescribed in Section 3.6 of [MAIL] when generating its output so
 that later agents can produce a consistent result. Any
 alteration likely to cause the field to be ignored by downstream
 agents is acceptable. A common approach is to prefix the field
 names with a string such as "BAD-".

 When selecting a mitigation action (or some other action) from the
 above list, an operator must consider its needs and the nature of its
 user base.

7.5.1. Repeated Header Fields

 There are some occasions where repeated fields are encountered where
 only one is expected. Two examples are presented. First:

 From: reminders@example.com {1}
 To: jqpublic@example.com {2}
 Subject: Automatic Meeting Reminder {3}
 Subject: 4pm Today -- Staff Meeting {4}
 Date: Wed, 20 Oct 2010 08:00:00 -0700 {5}

 Reminder of the staff meeting today in the small {6}
 auditorium. Come early! {7}

 The message above has two Subject fields, which is in violation of
 Section 3.6 of [MAIL]. A safe interpretation of this would be to
 treat it as though the two Subject field values were concatenated, so
 long as they are not identical, such as:

Kucherawy, et al. Informational [Page 15]

RFC 7103 Safe Mail Handling January 2014

 From: reminders@example.com {1}
 To: jqpublic@example.com {2}
 Subject: Automatic Meeting Reminder {3}
 4pm Today -- Staff Meeting {4}
 Date: Wed, 20 Oct 2010 08:00:00 -0700 {5}

 Reminder of the staff meeting today in the small {6}
 auditorium. Come early! {7}

 Second:

 From: president@example.com {1}
 From: vice-president@example.com {2}
 To: jqpublic@example.com {3}
 Subject: A note from the E-Team {4}
 Date: Wed, 20 Oct 2010 08:00:00 -0700 {5}

 This memo is to remind you of the corporate dress {6}
 code. Attached you will find an updated copy of {7}
 the policy. {8}
 ...

 As with the first example, there is a violation in terms of the
 number of instances of the From field. A likely safe interpretation
 would be to combine these into a comma-separated address list in a
 single From field:

 From: president@example.com, {1}
 vice-president@example.com {2}
 To: jqpublic@example.com {3}
 Subject: A note from the E-Team {4}
 Date: Wed, 20 Oct 2010 08:00:00 -0700 {5}

 This memo is to remind you of the corporate dress {6}
 code. Attached you will find an updated copy of {7}
 the policy. {8}
 ...

7.5.2. Missing Header Fields

 Similar to the previous section, there are messages seen in the wild
 that lack certain required header fields. In particular, [MAIL]
 requires that a From and Date field be present in all messages.

Kucherawy, et al. Informational [Page 16]

RFC 7103 Safe Mail Handling January 2014

 When presented with a message lacking these fields, the MTA might
 perform one of the following:

 1. Make no changes.

 2. Add an instance of the missing field(s) using synthesized content
 based on data provided in other parts of the protocol.

 Option 2 is recommended for handling this case. Handling agents
 should add these for internal handling if they are missing, but
 should not add them to the external representation. The reason for
 this advice is that there are some filter modules that would consider
 the absence of such fields to be a condition warranting special
 treatment (for example, rejection), and thus the effectiveness of
 such modules would be stymied by an upstream filter adding them in a
 way visible to other components.

 The synthesized fields should contain a best guess as to what should
 have been there; for From, the SMTP MAIL command’s address can be
 used (if not null) or a placeholder address followed by an address
 literal (for example, unknown@[192.0.2.1]); for Date, a date
 extracted from a Received field is a reasonable choice.

 One other important case to consider is a missing Message-ID field.
 An MTA that encounters a message missing this field should synthesize
 a valid one and add it to the external representation, since many
 deployed tools commonly use the content of that field as a unique
 message reference, so its absence inhibits correlation of message
 processing. Section 3.6.4 of [MAIL] describes advisable practice for
 synthesizing the content of this field when it is absent, and
 establishes a requirement that it be globally unique.

7.5.3. Return-Path

 While legitimate messages can contain more than one Return-Path
 header field, such usage is often an error rather that a valid
 message containing multiple header field blocks as described in
 Sections 3.6 of [MAIL]. Accordingly, when a message containing
 multiple Return-Path header fields is encountered, all but the
 topmost one is to be disregarded, as it is most likely to have been
 added nearest to the mailbox that received that message.

7.6. Missing or Incorrect Charset Information

 MIME provides the means to include textual material employing
 character sets ("charsets") other than US-ASCII. Such material is
 required to have an identified charset. Charset identification is

Kucherawy, et al. Informational [Page 17]

RFC 7103 Safe Mail Handling January 2014

 done using a "charset" parameter in the Content-Type header field, a
 charset label within the MIME entity itself, or the charset can be
 implicitly specified by the Content-Type (see [CHARSET]).

 Unfortunately, it is fairly common for required character set
 information to be missing or incorrect in textual MIME entities. As
 such, processing agents should perform basic sanity checks, such as:

 o US-ASCII contains bytes between 1 and 127 inclusive only
 (colloquially, "7-bit" data), so material including bytes outside
 of that range ("8-bit" data) is necessarily not US-ASCII. (See
 Section 2.1 of [MAIL].)

 o [UTF-8] has a very specific syntactic structure that other 8-bit
 charsets are unlikely to follow.

 o Null bytes (ASCII 0x00) are not allowed in either 7-bit or 8-bit
 data.

 o Not all 7-bit material is US-ASCII. The presence of the various
 escape sequences used for character switching can be used as an
 indication of the various charsets based on ISO/IEC 2022
 [ISO-2022], such as those defined in [ISO-2022-CN], [ISO-2022-JP],
 and [ISO-2022-KR].

 When a character set error is detected, processing agents should:

 1. apply heuristics to determine the most likely character set and,
 if successful, proceed using that information; or

 2. refuse to process the malformed MIME entity.

 A null byte inside a textual MIME entity can cause typical string
 processing functions to misidentify the end of a string, which can be
 exploited to hide malicious content from analysis processes.
 Accordingly, null bytes require additional special handling.

 A few null bytes in isolation is likely to be the result of poor
 message construction practices. Such nulls should be silently
 dropped.

 Large numbers of null bytes are usually the result of binary material
 that is improperly encoded, improperly labeled, or both. Such
 material is likely to be damaged beyond the hope of recovery, so the
 best course of action is to refuse to process it.

 Finally, the presence of null bytes may be used as indication of
 possible malicious intent.

Kucherawy, et al. Informational [Page 18]

RFC 7103 Safe Mail Handling January 2014

7.7. Eight-Bit Data

 Standards-compliant email messages do not contain any non-ASCII data
 without indicating that such content is present by means of published
 SMTP extensions. Absent that, MIME encodings are typically used to
 convert non-ASCII data to ASCII in a way that can be reversed by
 other handling agents or end users.

 The best way to handle non-compliant 8-bit material depends on its
 location.

 Non-compliant 8-bit material in MIME entity content should simply be
 processed as if the necessary SMTP extensions had been used to
 transfer the message. Note that improperly labeled 8-bit material in
 textual MIME entities may require treatment as described in
 Section 7.6.

 Non-compliant 8-bit material in message or MIME entity header fields
 can be handled as follows:

 1. Occurrences in unstructured text fields, comments, and phrases
 can be converted into encoded-words (see [MIME3] if a likely
 character set can be determined). Alternatively, 8-bit
 characters can be removed or replaced with some other character.

 2. Occurrences in header fields whose syntax is unknown may be
 handled by dropping the field entirely or by removing/replacing
 the 8-bit character as described above.

 3. Occurrences in addresses are especially problematic. Agents
 supporting [EAI] may, if the 8-bit material conforms to 8-bit
 syntax, elect to treat the message as an EAI message and process
 it accordingly. Otherwise, in most cases, it is best to exclude
 the address from any sort of processing -- which may mean
 dropping it entirely -- since any attempt to fix it definitively
 is unlikely to be successful.

8. MIME Anomalies

 The five-part set of MIME specifications includes a mechanism of
 message extensions for providing text in character sets other than
 ASCII, non-text attachments to messages, multipart message bodies,
 and similar facilities.

 Some anomalies with MIME-compliant generation are also common. This
 section discusses some of those and presents preferred methods of
 mitigation.

Kucherawy, et al. Informational [Page 19]

RFC 7103 Safe Mail Handling January 2014

8.1. Missing MIME-Version Field

 Any message that uses [MIME] constructs is required to have a MIME-
 Version header field. Without it, the Content-Type and associated
 fields have no semantic meaning.

 It is often observed that a message has complete MIME structure, yet
 lacks this header field. It is prudent to disregard this absence and
 conduct analysis of the message as if it were present, especially by
 agents attempting to identify malicious material.

 Further, the absence of MIME-Version might be an indication of
 malicious intent, and extra scrutiny of the message may be warranted.
 Such omissions are not expected from compliant message generators.

8.2. Faulty Encodings

 There have been a few different specifications of base64 in the past.
 The implementation defined in [MIME] instructs decoders to discard
 characters that are not part of the base64 alphabet. Other
 implementations consider an encoded body containing such characters
 to be completely invalid. Very early specifications of base64 (see
 [PEM89], for example, which was later obsoleted by [PEM93]) allowed
 email-style comments within base64-encoded data.

 The attack vector here involves constructing a base64 body whose
 meaning varies given different possible decodings. If a security
 analysis module wishes to be thorough, it should consider scanning
 the possible outputs of the known decoding dialects in an attempt to
 anticipate how the MUA will interpret the data.

9. Body Anomalies

9.1. Oversized Lines

 A message containing a line of content that exceeds 998 characters
 plus the line terminator (1000 total) violates Section 2.1.1 of
 [MAIL]. Some handling agents may not look at content in a single
 line past the first 998 bytes, providing bad actors an opportunity to
 hide malicious content.

 There is no specified way to handle such messages, other than to
 observe that they are non-compliant and reject them or rewrite the
 oversized line such that the message is compliant.

 To ensure long lines do not prevent analysis of potentially malicious
 data, handling agents are strongly encouraged to take one of the
 following actions:

Kucherawy, et al. Informational [Page 20]

RFC 7103 Safe Mail Handling January 2014

 1. Break such lines into multiple lines at a position that does not
 change the semantics of the text being thus altered. For
 example, break an oversized line at a position such that a [URI]
 does not span two lines (which could inhibit the proper
 identification of the URI).

 2. Rewrite the MIME part (or the entire message if not MIME) that
 contains the excessively long line using a content encoding that
 breaks the line in the transmission but would still result in the
 line being intact on decoding for presentation to the user. Both
 of the encodings declared in [MIME] can accomplish this.

10. Security Considerations

 The discussions of the anomalies above and their prescribed solutions
 are themselves security considerations. The practices enumerated in
 this document are generally perceived as attempts to resolve security
 considerations that already exist rather than introducing new ones.
 However, some of the attacks described here may not have appeared in
 previous email specifications.

11. References

11.1. Normative References

 [EMAIL-ARCH] Crocker, D., "Internet Mail Architecture", RFC 5598,
 July 2009.

 [MAIL] Resnick, P., "Internet Message Format", RFC 5322,
 October 2008.

 [MIME] Freed, N. and N. Borenstein, "Multipurpose Internet
 Mail Extensions (MIME) Part One: Format of Internet
 Message Bodies", RFC 2045, November 1996.

11.2. Informative References

 [BINARYSMTP] Vaudreuil, G., "SMTP Service Extensions for
 Transmission of Large and Binary MIME Messages", RFC
 3030, December 2000.

 [CHARSET] Melnikov, A. and J. Reschke, "Update to MIME regarding
 "charset" Parameter Handling in Textual Media Types",
 RFC 6657, July 2012.

 [DKIM] Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy,
 Ed., "DomainKeys Identified Mail (DKIM) Signatures",
 RFC 6376, September 2011.

Kucherawy, et al. Informational [Page 21]

RFC 7103 Safe Mail Handling January 2014

 [DSN] Moore, K. and G. Vaudreuil, "An Extensible Message
 Format for Delivery Status Notifications", RFC 3464,
 January 2003.

 [EAI] Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, February 2012.

 [ISO-2022-CN] Zhu, HF., Hu, DY., Wang, ZG., Kao, TC., Chang, WCH.,
 and M. Crispin, "Chinese Character Encoding for
 Internet Messages", RFC 1922, March 1996.

 [ISO-2022-JP] Murai, J., Crispin, M., and E. van der Poel, "Japanese
 Character Encoding for Internet Messages", RFC 1468,
 June 1993.

 [ISO-2022-KR] Choi, U., Chon, K., and H. Park, "Korean Character
 Encoding for Internet Messages", RFC 1557, December
 1993.

 [ISO-2022] ISO/IEC, "Information technology -- Character code
 structure and extension techniques", ISO/IEC 2022,
 1994, <http://www.iso.org/iso/
 catalogue_detail.htm?csnumber=22747>.

 [MIME3] Moore, K., "MIME (Multipurpose Internet Mail
 Extensions) Part Three: Message Header Extensions for
 Non-ASCII Text", RFC 2047, November 1996.

 [PEM89] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I -- Message Encipherment and Authentication
 Procedures", RFC 1113, August 1989.

 [PEM93] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421, February 1993.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts --
 Communication Layers", RFC 1122, October 1989.

 [RFC2822] Resnick, P., Ed., "Internet Message Format", RFC 2822,
 April 2001.

 [RFC733] Crocker, D., Vittal, J., Pogran, K., and D. Henderson,
 Jr., "Standard for the Format of Internet Text
 Messages", RFC 733, November 1977.

 [SMTP] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

Kucherawy, et al. Informational [Page 22]

RFC 7103 Safe Mail Handling January 2014

 [URI] Berners-Lee, T., Fielding, R., and L. Masinter,
 "Uniform Resource Identifier (URI): Generic Syntax",
 RFC 3986, January 2005.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 3629, 2003.

Kucherawy, et al. Informational [Page 23]

RFC 7103 Safe Mail Handling January 2014

Appendix A. Acknowledgements

 The authors wish to acknowledge the following for their review and
 constructive criticism of this proposal: Dave Cridland, Dave Crocker,
 Jim Galvin, Tony Hansen, John Levine, Franck Martin, Alexey Melnikov,
 and Timo Sirainen.

Authors’ Addresses

 Murray S. Kucherawy

 EMail: superuser@gmail.com

 Gregory N. Shapiro

 EMail: gshapiro@proofpoint.com

 Ned Freed

 EMail: ned.freed@mrochek.com

Kucherawy, et al. Informational [Page 24]

