
Internet Engineering Task Force (IETF) J. Rosenberg
Request for Comments: 6544 jdrosen.net
Category: Standards Track A. Keranen
ISSN: 2070-1721 Ericsson
 B. B. Lowekamp
 Skype
 A. B. Roach
 Tekelec
 March 2012

 TCP Candidates with Interactive Connectivity Establishment (ICE)

Abstract

 Interactive Connectivity Establishment (ICE) defines a mechanism for
 NAT traversal for multimedia communication protocols based on the
 offer/answer model of session negotiation. ICE works by providing a
 set of candidate transport addresses for each media stream, which are
 then validated with peer-to-peer connectivity checks based on Session
 Traversal Utilities for NAT (STUN). ICE provides a general framework
 for describing candidates but only defines UDP-based media streams.
 This specification extends ICE to TCP-based media, including the
 ability to offer a mix of TCP and UDP-based candidates for a single
 stream.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6544.

Rosenberg, et al. Standards Track [Page 1]

RFC 6544 ICE TCP March 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Rosenberg, et al. Standards Track [Page 2]

RFC 6544 ICE TCP March 2012

Table of Contents

 1. Introduction ..4
 2. Terminology ...5
 3. Overview of Operation ...5
 4. Sending the Initial Offer7
 4.1. Gathering Candidates7
 4.2. Prioritization ...8
 4.3. Choosing Default Candidates10
 4.4. Lite Implementation Requirements10
 4.5. Encoding the SDP ..11
 5. Candidate Collection Techniques12
 5.1. Host Candidates ...12
 5.2. Server Reflexive Candidates13
 5.3. NAT-Assisted Candidates13
 5.4. UDP-Tunneled Candidates14
 5.5. Relayed Candidates ..15
 6. Receiving the Initial Offer and Answer15
 6.1. Considerations with Two Lite Agents16
 6.2. Forming the Check Lists16
 7. Connectivity Checks ..17
 7.1. STUN Client Procedures17
 7.2. STUN Server Procedures18
 8. Concluding ICE Processing18
 9. Subsequent Offer/Answer Exchanges18
 9.1. Updated Offer ...18
 9.2. ICE Restarts ..19
 10. Media Handling ..19
 10.1. Sending Media ..19
 10.2. Receiving Media ..20
 11. Connection Management ...20
 11.1. Connections Formed during Connectivity Checks20
 11.2. Connections Formed for Gathering Candidates21
 12. Security Considerations22
 13. IANA Considerations ...23
 14. Acknowledgements ..23
 15. References ..23
 15.1. Normative References23
 15.2. Informative References24
 Appendix A. Limitations of ICE TCP26
 Appendix B. Implementation Considerations for BSD Sockets27
 Appendix C. SDP Examples ...28

Rosenberg, et al. Standards Track [Page 3]

RFC 6544 ICE TCP March 2012

1. Introduction

 Interactive Connectivity Establishment (ICE) [RFC5245] defines a
 mechanism for NAT traversal for multimedia communication protocols
 based on the offer/answer model [RFC3264] of session negotiation.
 ICE works by providing a set of candidate transport addresses for
 each media stream, which are then validated with peer-to-peer
 connectivity checks based on Session Traversal Utilities for NAT
 (STUN) [RFC5389]. However, ICE only defines procedures for UDP-based
 transport protocols.

 There are many reasons why ICE support for TCP is important. First,
 there are media protocols that only run over TCP. Such protocols are
 used, for example, for screen sharing and instant messaging
 [RFC4975]. For these protocols to work in the presence of NAT,
 unless they define their own NAT traversal mechanisms, ICE support
 for TCP is needed. In addition, RTP can also run over TCP [RFC4571].
 Typically, it is preferable to run RTP over UDP, and not TCP.
 However, in a variety of network environments, overly restrictive NAT
 and firewall devices prevent UDP-based communications altogether, but
 general TCP-based communications are permitted. In such
 environments, sending RTP over TCP, and thus establishing the media
 session, may be preferable to having it fail altogether. With this
 specification, agents can gather UDP and TCP candidates for a media
 stream, list the UDP ones with higher priority, and then only use the
 TCP-based ones if the UDP ones fail. This provides a fallback
 mechanism that allows multimedia communications to be highly
 reliable.

 The usage of RTP over TCP is particularly useful when combined with
 Traversal Using Relays around NAT (TURN) [RFC5766]. In this case,
 one of the agents would connect to its TURN server using TCP and
 obtain a TCP-based relayed candidate. It would offer this to its
 peer agent as a candidate. The other agent would initiate a TCP
 connection towards the TURN server. When that connection is
 established, media can flow over the connections, through the TURN
 server. The benefit of this usage is that it only requires the
 agents to make outbound TCP connections to a server on the public
 network. This kind of operation is broadly interoperable through NAT
 and firewall devices. Since it is a goal of ICE and this extension
 to provide highly reliable communications that "just work" in as
 broad a set of network deployments as possible, this use case is
 particularly important.

 This specification extends ICE by defining its usage with TCP
 candidates. It also defines how ICE can be used with RTP and Secure
 RTP (SRTP) to provide both TCP and UDP candidates. This
 specification does so by following the outline of ICE itself and

Rosenberg, et al. Standards Track [Page 4]

RFC 6544 ICE TCP March 2012

 calling out the additions and changes to support TCP candidates in
 ICE. The base behavior of ICE [RFC5245] remains unchanged except for
 the extensions in this document that define the usage of ICE with TCP
 candidates.

 It should be noted that since TCP NAT traversal is more complicated
 than with UDP, ICE TCP is not generally as efficient as UDP-based
 ICE. Discussion about this topic can be found in Appendix A.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 This document uses the same terminology as ICE (see Section 3 of
 [RFC5245]).

3. Overview of Operation

 The usage of ICE with TCP is relatively straightforward. This
 specification mainly deals with how and when connections are opened
 and how those connections relate to candidate pairs.

 When agents perform address allocations to gather TCP-based
 candidates, three types of candidates can be obtained: active
 candidates, passive candidates, and simultaneous-open (S-O)
 candidates. An active candidate is one for which the agent will
 attempt to open an outbound connection but will not receive incoming
 connection requests. A passive candidate is one for which the agent
 will receive incoming connection attempts but not attempt a
 connection. An S-O candidate is one for which the agent will attempt
 to open a connection simultaneously with its peer.

 When gathering candidates from a host interface, the agent typically
 obtains active, passive, and S-O candidates. Similarly, one can use
 different techniques for obtaining, e.g., server reflexive, NAT-
 assisted, tunneled, or relayed candidates of these three types (see
 Section 5). Connections to servers used for relayed and server
 reflexive candidates are kept open during ICE processing.

 When encoding these candidates into offers and answers, the type of
 the candidate is signaled. In the case of active candidates, both IP
 address and port are present, but the port is meaningless (it is
 there only for making encoding of active candidates consistent with
 the other candidate types and is ignored by the peer). As a
 consequence, active candidates do not need to be physically allocated

Rosenberg, et al. Standards Track [Page 5]

RFC 6544 ICE TCP March 2012

 at the time of address gathering. Rather, the physical allocations,
 which occur as a consequence of a connection attempt, occur at the
 time of the connectivity checks.

 When the candidates are paired together, active candidates are always
 paired with passive, and S-O candidates with each other. When a
 connectivity check is to be made on a candidate pair, each agent
 determines whether it is to make a connection attempt for this pair.

 The actual process of generating connectivity checks, managing the
 state of the check list, and updating the Valid list works
 identically for TCP as it does for UDP.

 ICE requires an agent to demultiplex STUN and application-layer
 traffic, since they appear on the same port. This demultiplexing is
 described in [RFC5245] and is done using the magic cookie and other
 fields of the message. Stream-oriented transports introduce another
 wrinkle, since they require a way to frame the connection so that the
 application and STUN packets can be extracted in order to
 differentiate STUN packets from application-layer traffic. For this
 reason, TCP media streams utilizing ICE use the basic framing
 provided in RFC 4571 [RFC4571], even if the application layer
 protocol is not RTP.

 When Transport Layer Security (TLS) or Datagram Transport Layer
 Security (DTLS) is used, they are also run over the RFC 4571 framing
 shim, while STUN runs outside of the (D)TLS connection. The
 resulting ICE TCP protocol stack is shown in Figure 1, with (D)TLS on
 the left side and without it on the right side.

 +----------+
 | |
 | App |
 +----------+----------+ +----------+----------+
 | | | | | |
 | STUN | (D)TLS | | STUN | App |
 +----------+----------+ +----------+----------+
 | | | |
 | RFC 4571 | | RFC 4571 |
 +---------------------+ +---------------------+
 | | | |
 | TCP | | TCP |
 +---------------------+ +---------------------+
 | | | |
 | IP | | IP |
 +---------------------+ +---------------------+

 Figure 1: ICE TCP Stack with and without (D)TLS

Rosenberg, et al. Standards Track [Page 6]

RFC 6544 ICE TCP March 2012

 The implication of this is that, for any media stream protected by
 (D)TLS, the agent will first run ICE procedures, exchanging STUN
 messages. Then, once ICE completes, (D)TLS procedures begin. ICE
 and (D)TLS are thus "peers" in the protocol stack. The STUN messages
 are not sent over the (D)TLS connection, even ones sent for the
 purposes of keepalive in the middle of the media session.

4. Sending the Initial Offer

 For offerers making use of ICE for TCP streams, the procedures below
 are used. The main differences compared to UDP candidates are the
 new methods for gathering candidates, how TCP candidates are
 prioritized, and how they are encoded in the Session Description
 Protocol (SDP) offer and answer.

4.1. Gathering Candidates

 Providers of real-time communications services may decide that it is
 preferable to have no media at all rather than to have media over
 TCP. To allow for choice, it is RECOMMENDED that it be possible to
 configure agents to either obtain or not obtain TCP candidates for
 real-time media.

 Having it be configurable, and then configuring it to be off, is far
 better than not having the capability at all. An important goal of
 this specification is to provide a single mechanism that can be used
 across all types of endpoints. As such, it is preferable to account
 for provider and network variation through configuration instead of
 hard-coded limitations in an implementation. Besides, network
 characteristics and connectivity assumptions can, and will, change
 over time. Just because an agent is communicating with a server on
 the public network today doesn’t mean that it won’t need to
 communicate with one behind a NAT tomorrow. Just because an agent is
 behind a NAT with endpoint-independent mapping today doesn’t mean
 that tomorrow it won’t pick up its agent and take it to a public
 network access point where there is a NAT with address- and port-
 dependent mapping properties or one that only allows outbound TCP.
 The way to handle these cases and build a reliable system is for
 agents to implement a diverse set of techniques for allocating
 addresses, so that at least one of them is almost certainly going to
 work in any situation. Implementors should consider very carefully
 any assumptions made about deployments before electing not to
 implement one of the mechanisms for address allocation. In
 particular, implementors should consider whether the elements in the
 system may be mobile and connect through different networks with
 different connectivity. They should also consider whether endpoints
 that are under their control, in terms of location and network
 connectivity, would always be under their control. In environments

Rosenberg, et al. Standards Track [Page 7]

RFC 6544 ICE TCP March 2012

 where mobility and user control are possible, a multiplicity of
 techniques is essential for reliability.

 First, agents SHOULD obtain host candidates as described in
 Section 5.1. Then, each agent SHOULD "obtain" (allocate a
 placeholder for) an active host candidate for each component of each
 TCP-capable media stream on each interface that the host has. The
 agent does not yet have to actually allocate a port for these
 candidates, but they are used for the creation of the check lists.

 The agent SHOULD then obtain server reflexive, NAT-assisted, and/or
 UDP-tunneled candidates (see Section 5.2, Section 5.3, and
 Section 5.4). The mechanisms for establishing these candidates and
 the number of candidates to collect vary from technique to technique.
 These considerations are discussed in the relevant sections.

 Next, agents SHOULD obtain passive (and possibly S-O) relayed
 candidates for each component as described in Section 5.5. Each
 agent SHOULD also allocate a placeholder for an active relayed
 candidate for each component of each TCP-capable media stream.

 It is highly RECOMMENDED that a host obtains at least one set of host
 candidates and one set of relayed candidates. Obtaining additional
 candidates will increase the chance of successfully creating a direct
 connection.

 Once the candidates have been obtained, the agent MUST keep the TCP
 connections open until ICE processing has completed. See Appendix B
 for important implementation guidelines.

 If a media stream is UDP-based (such as RTP), an agent MAY use an
 additional host TCP candidate to request a UDP-based candidate from a
 TURN server (or some other relay with similar functionality). Usage
 of such UDP candidates follows the procedures defined in ICE for UDP
 candidates.

 Like its UDP counterparts, TCP-based STUN transactions are paced out
 at one every Ta milliseconds (see Section 16 of [RFC5245]). This
 pacing refers strictly to STUN transactions (both Binding and
 Allocate requests). If performance of the transaction requires
 establishment of a TCP connection, then the connection gets opened
 when the transaction is performed.

4.2. Prioritization

 The transport protocol itself is a criteria for choosing one
 candidate over another. If a particular media stream can run over
 UDP or TCP, the UDP candidates might be preferred over the TCP

Rosenberg, et al. Standards Track [Page 8]

RFC 6544 ICE TCP March 2012

 candidates. This allows ICE to use the lower latency UDP
 connectivity if it exists but fallback to TCP if UDP doesn’t work.

 In Section 4.1.2.1 of [RFC5245], a recommended formula for UDP ICE
 candidate prioritization is defined. For TCP candidates, the same
 formula and candidate type preferences SHOULD be used, and the
 RECOMMENDED type preferences for the new candidate types defined in
 this document (see Section 5) are 105 for NAT-assisted candidates and
 75 for UDP-tunneled candidates.

 When both UDP and TCP candidates are offered for the same media
 stream, and one transport protocol should be preferred over the
 other, the type preferences for the preferred transport protocol
 candidates SHOULD be increased and/or the type preferences for the
 other transport protocol candidates SHOULD be decreased. How much
 the values should be increased or decreased depends on whether it is
 more important to choose a certain transport protocol or a certain
 candidate type. If the candidate type is more important (e.g., even
 if UDP is preferred, TCP host candidates are preferred over UDP
 server reflexive candidates) changing type preference values by one
 for the other transport protocol candidates is enough. On the other
 hand, if the transport protocol is more important (e.g., any UDP
 candidate is preferred over any TCP candidate), all the preferred
 transport protocol candidates SHOULD have type preference higher than
 the other transport protocol candidates. However, it is RECOMMENDED
 that the relayed candidates are still preferred lower than the other
 candidate types. For RTP-based media streams, it is RECOMMENDED that
 UDP candidates are preferred over TCP candidates.

 With TCP candidates, the local preference part of the recommended
 priority formula is updated to also include the directionality
 (active, passive, or simultaneous-open) of the TCP connection. The
 RECOMMENDED local preference is then defined as:

 local preference = (2^13) * direction-pref + other-pref

 The direction-pref MUST be between 0 and 7 (both inclusive), with 7
 being the most preferred. The other-pref MUST be between 0 and 8191
 (both inclusive), with 8191 being the most preferred. It is
 RECOMMENDED that the host, UDP-tunneled, and relayed TCP candidates
 have the direction-pref assigned as follows: 6 for active, 4 for
 passive, and 2 for S-O. For the NAT-assisted and server reflexive
 candidates, the RECOMMENDED values are: 6 for S-O, 4 for active, and
 2 for passive.

 The preference priorities listed here are simply recommendations that
 try to strike a balance between success probability and the resulting
 path’s efficiency. Depending on the scenario where ICE TCP is used,

Rosenberg, et al. Standards Track [Page 9]

RFC 6544 ICE TCP March 2012

 different values may be appropriate. For example, if the overhead of
 a UDP tunnel is not an issue, those candidates should be prioritized
 higher since they are likely to have a high success probability.
 Also, simultaneous-open is prioritized higher than active and passive
 candidates for NAT-assisted and server reflexive candidates since if
 TCP S-O is supported by the operating systems of both endpoints, it
 should work at least as well as the active-passive approach. If an
 implementation is uncertain whether S-O candidates are supported, it
 may be reasonable to prioritize them lower. For host, UDP-tunneled,
 and relayed candidates, the S-O candidates are prioritized lower than
 active and passive since active-passive candidates should work with
 them at least as well as the S-O candidates.

 If any two candidates have the same type-preference and direction-
 pref, they MUST have a unique other-pref. With this specification,
 this usually only happens with multi-homed hosts, in which case
 other-pref is the preference for the particular IP address from which
 the candidate was obtained. When there is only a single IP address,
 this value SHOULD be set to the maximum allowed value (8191).

4.3. Choosing Default Candidates

 The default candidate is chosen primarily based on the likelihood of
 it working with a non-ICE peer. When media streams supporting mixed
 modes (both TCP and UDP) are used with ICE, it is RECOMMENDED that,
 for real-time streams (such as RTP), the default candidates be UDP-
 based. However, the default SHOULD NOT be a simultaneous-open
 candidate.

 If a media stream is inherently TCP-based, it is RECOMMENDED for an
 offering full agent to select an active candidate as the default
 candidate and use [RFC4145] "setup" attribute value "active". This
 increases the chances for a successful NAT traversal even without ICE
 support if the agent is behind a NAT and the peer is not. For the
 same reason, for a lite agent, it is RECOMMENDED to use a passive
 candidate and "setup" attribute value "passive" in the offer.

4.4. Lite Implementation Requirements

 If an offerer meets the criteria for the lite mode as described in
 Appendix A of [RFC5245] (i.e., it will always have a public, globally
 unique IP address), it MAY use the lite mode of ICE for TCP
 candidates. In the lite mode, for TCP candidates, only passive host
 candidates are gathered, unless active candidates are needed as the
 default candidates. Otherwise, the procedures described for lite
 mode in [RFC5245] also apply to TCP candidates. If UDP and TCP
 candidates are mixed in a media stream, the mode (lite or full)
 applies to both UDP and TCP candidates.

Rosenberg, et al. Standards Track [Page 10]

RFC 6544 ICE TCP March 2012

4.5. Encoding the SDP

 TCP-based candidates are encoded into a=candidate lines like the UDP
 candidates described in [RFC5245]. However, the transport protocol
 (i.e., value of the transport-extension token defined in [RFC5245],
 Section 15.1) is set to "TCP" and the connection type (active,
 passive, or S-O) is encoded using a new extension attribute. With
 TCP candidates, the candidate-attribute syntax with Augmented BNF
 [RFC5234] is then:

 candidate-attribute = "candidate" ":" foundation SP component-id SP
 "TCP" SP
 priority SP
 connection-address SP
 port SP
 cand-type
 [SP rel-addr]
 [SP rel-port]
 SP tcp-type-ext
 *(SP extension-att-name SP
 extension-att-value)

 tcp-type-ext = "tcptype" SP tcp-type
 tcp-type = "active" / "passive" / "so"

 The connection-address encoded into the candidate-attribute for
 active candidates MUST be set to the IP address that will be used for
 the attempt, but the port(s) MUST be set to 9 (i.e., Discard). For
 active relayed candidates, the value for connection-address MUST be
 identical to the IP address of a passive or simultaneous-open
 candidate from the same relay server.

 If the default candidate is TCP-based, the agent MUST include the
 a=setup and a=connection attributes from RFC 4145 [RFC4145],
 following the procedures defined there as if ICE were not in use. In
 particular, if an agent is the answerer, the a=setup attribute MUST
 meet the constraints in RFC 4145 based on the value in the offer.

 If an agent is utilizing SRTP [RFC3711], it MAY include a mix of UDP
 and TCP candidates. If ICE selects a TCP candidate pair, it is
 RECOMMENDED that the agent still utilizes SRTP but runs it over the
 connection established by ICE. The alternative, RTP over TLS, breaks
 RTP header compression and on-path RTP analysis tools and hence
 SHOULD be avoided. In the case of DTLS-SRTP [RFC5764], the
 directionality attributes (a=setup) are utilized strictly to
 determine the direction of the DTLS handshake. Directionality of the
 TCP connection establishment is determined by the ICE attributes and
 procedures defined here.

Rosenberg, et al. Standards Track [Page 11]

RFC 6544 ICE TCP March 2012

 If an agent is securing non-RTP media over TCP/TLS, the SDP MUST be
 constructed as described in RFC 4572 [RFC4572]. The directionality
 attributes (a=setup) are utilized strictly to determine the direction
 of the TLS handshake. Directionality of the TCP connection
 establishment is determined by the ICE attributes and procedures
 defined here.

 Examples of SDP offers and answers with ICE TCP extensions are shown
 in Appendix C.

5. Candidate Collection Techniques

 The following sections discuss a number of techniques that can be
 used to obtain candidates for use with ICE TCP. It is important to
 note that this list is not intended to be exhaustive, nor is
 implementation of any specific technique beyond host candidates
 (Section 5.1) considered mandatory.

 Implementors are encouraged to implement as many of the following
 techniques from the following list as is practical, as well as to
 explore additional NAT-traversal techniques beyond those discussed in
 this document. However, to get a reasonable success ratio, one
 SHOULD implement at least one relayed technique (e.g., TURN) and one
 technique for discovering the address given for the host by a NAT
 (e.g., STUN).

 To increase the success probability with the techniques described
 below and to aid with transition to IPv6, implementors SHOULD take
 particular care to include both IPv4 and IPv6 candidates as part of
 the process of gathering candidates. If the local network or host
 does not support IPv6 addressing, then clients SHOULD make use of
 other techniques, e.g., TURN-IPv6 [RFC6156], Teredo [RFC4380], or
 SOCKS IPv4-IPv6 gatewaying [RFC3089], for obtaining IPv6 candidates.

 While implementations SHOULD support as many techniques as feasible,
 they SHOULD also consider which of them to use if multiple options
 are available. Since different candidates are paired with each
 other, offering a large number of candidates results in a large check
 list and potentially long-lasting connectivity checks. For example,
 using multiple NAT-assisted techniques with the same NAT usually
 results only in redundant candidates. Similarly, using just one of
 the multiple UDP tunneling or relaying techniques is often enough.

5.1. Host Candidates

 Host candidates are the most simple candidates since they only
 require opening TCP sockets on the host’s interfaces and sending/
 receiving connectivity checks from them. However, if the hosts are

Rosenberg, et al. Standards Track [Page 12]

RFC 6544 ICE TCP March 2012

 behind different NATs, host candidates usually fail to work. On the
 other hand, if there are no NATs between the hosts, host candidates
 are the most efficient method since they require no additional NAT
 traversal protocols or techniques.

 For each TCP-capable media stream the agent wishes to use (including
 ones like RTP that can be either UDP or TCP), the agent SHOULD obtain
 two host candidates (each on a different port) for each component of
 the media stream on each interface that the host has -- one for the
 simultaneous-open and one for the passive candidate. If an agent is
 not capable of acting in one of these modes, it would omit those
 candidates.

5.2. Server Reflexive Candidates

 Server reflexive techniques aim to discover the address a NAT has
 given for the host by asking that from a server on the other side of
 the NAT and then creating proper bindings (unless such already exist)
 on the NATs with connectivity checks sent between the hosts. Success
 of these techniques depends on the NATs’ mapping and filtering
 behavior [RFC5382] and also on whether the NATs and hosts support the
 TCP simultaneous-open technique.

 Obtaining server reflexive passive candidates may require initiating
 connections from host’s passive candidates; see Appendix B for
 implementation details on this. Server reflexive active candidates
 can be derived from passive or S-O candidates by using the same IP
 addresses and interfaces as those candidates. It is useful to obtain
 both server reflexive passive and S-O candidates since which one
 actually works better depends on the hosts and NATs. Furthermore,
 some techniques (e.g., TURN relaying) require knowing the IP address
 of the peer’s active candidates beforehand, so active server
 reflexive candidates are needed for such techniques to function
 properly.

 A widely used protocol for obtaining server reflexive candidates is
 STUN. Its TCP-specific behavior is described in [RFC5389], Section
 7.2.2.

5.3. NAT-Assisted Candidates

 NAT-assisted techniques communicate with the NATs directly and, in
 this way, discover the address that the NAT has given to the host.
 NAT-assisted techniques also create proper bindings on the NATs. The
 benefit of these techniques over the server reflexive techniques is
 that the NATs can adjust their mapping and filtering behavior so that
 connections can be successfully created. A downside of NAT-assisted
 techniques is that they commonly allow communicating only with a NAT

Rosenberg, et al. Standards Track [Page 13]

RFC 6544 ICE TCP March 2012

 that is in the same subnet as the host and thus often fail in
 scenarios with multiple layers of NATs. These techniques also rely
 on NATs supporting the specific protocols and allowing the users to
 modify their behavior.

 These candidates are encoded in the ICE offer and answer like the
 server reflexive candidates, but they (commonly) use a higher
 priority (as described in Section 4.2) and hence are tested before
 the server reflexive candidates.

 Currently, the Universal Plug and Play (UPnP) forum’s Internet
 Gateway Device (IGD) protocol [UPnP-IGD] and the NAT Port Mapping
 Protocol (PMP) [NAT-PMP] are widely supported NAT-assisted
 techniques. Other known protocols include Port Control Protocol
 (PCP) [PCP-BASE], SOCKS [RFC1928], Realm Specific IP (RSIP)
 [RFC3103], and Simple Middlebox Configuration (SIMCO) [RFC4540].
 Also, the Middlebox Communications (MIDCOM) MIB [RFC5190] defines a
 mechanism based on the Simple Network Management Protocol (SNMP) for
 controlling NATs.

5.4. UDP-Tunneled Candidates

 UDP-tunneled NAT traversal techniques utilize the fact that UDP NAT
 traversal is simpler and more efficient than TCP NAT traversal. With
 these techniques, the TCP packets (or possibly complete IP packets)
 are encapsulated in UDP packets. Because of the encapsulation, these
 techniques increase the overhead for the connection and may require
 support from both of the endpoints, but on the other hand, UDP
 tunneling commonly results in reliable and fairly simple TCP NAT
 traversal.

 UDP-tunneled candidates can be encoded in the ICE offer and answer
 either as relayed or server reflexive candidates, depending on
 whether the tunneling protocol utilizes a relay between the hosts.
 The UDP-tunneled candidates may appear to applications as host
 candidates from a local pseudo-interface. Treating these candidates
 as host candidates results in incorrect prioritization and possibly
 non-optimal candidate selection. Implementations may attempt to
 detect pseudo-interfaces, e.g., from the address prefix of the
 interface, but detection details vary from technique to technique.

 For example, the Teredo protocol [RFC4380] [RFC6081] provides
 automatic UDP tunneling and IPv6 interworking. The Teredo UDP tunnel
 is visible to the host application as an IPv6 address; thus, Teredo
 candidates are encoded as IPv6 addresses.

Rosenberg, et al. Standards Track [Page 14]

RFC 6544 ICE TCP March 2012

5.5. Relayed Candidates

 Relaying packets through a relay server is often the NAT traversal
 technique that has the highest success probability: communicating via
 a relay that is in the public Internet looks like normal client-
 server communication for the NATs and is supported in practice by all
 existing NATs, regardless of their filtering and mapping behavior.
 However, using a relay has several drawbacks, e.g., it usually
 results in a sub-optimal path for the packets, the relay needs to
 exist and it needs to be discovered, the relay is a possible single
 point of failure, relaying consumes potentially a lot of resources of
 the relay server, etc. Therefore, relaying is often used as the last
 resort when no direct path can be created with other NAT traversal
 techniques.

 With relayed candidates, the host commonly needs to obtain only a
 passive candidate since any of the peer’s server reflexive (and NAT-
 assisted if the peer can communicate with the outermost NAT) active
 candidates should work with the passive relayed candidate. However,
 if the relay is behind a NAT or a firewall, also using active and S-O
 candidates will increase success probability.

 Relaying protocols capable of relaying TCP connections include TURN
 TCP [RFC6062] and SOCKS [RFC1928] (which can also be used for IPv4-
 IPv6 gatewaying [RFC3089]). It is also possible to use a Secure
 SHell (SSH) [RFC4251] tunnel as a relayed candidate if a suitable
 server is available and the server permits this.

6. Receiving the Initial Offer and Answer

 Handling an ICE offer with TCP candidates works in a similar way as
 with UDP candidates. First, ICE support is verified (including the
 check for ice-mismatch described in Section 5.1 of [RFC5245]) and
 agent roles are determined. Candidates are gathered using the
 techniques described in Section 5 and prioritized as described in
 Section 4.2. Default candidates are selected taking into account the
 considerations in Section 4.3. The SDP answer is encoded as in
 Section 4.3 of [RFC5245], with the exception of TCP candidates whose
 encoding is described in Section 4.5.

 When the offerer receives the initial answer, it also verifies ICE
 support and determines its role. If both of the agents use lite
 implementations, the offerer takes the controlling role and uses the
 procedures defined in [RFC4145] to select the most preferred
 candidate pair with a new offer.

Rosenberg, et al. Standards Track [Page 15]

RFC 6544 ICE TCP March 2012

6.1. Considerations with Two Lite Agents

 If both agents are using the lite mode and if the offerer uses the
 a=setup:active attribute [RFC4145] in the new offer, the offerer MAY
 initiate the TCP connection on the selected pair in parallel with the
 new offer to speed up the connection establishment. Consequently,
 the answerer MUST still accept incoming TCP connections to any of the
 passive candidates it listed in the answer, from any of the IP
 addresses the offerer listed in the initial offer.

 If the answerer receives the new offer matching the candidate pair
 where a connection was already created in parallel with the new
 offer, it MUST accept the offer and respond to it while keeping the
 already-created connection. If the connection that was created in
 parallel with the new offer does not match the candidate pair in the
 new offer, the connection MUST be closed, and ICE restart SHOULD be
 performed.

 Since the connection endpoints are not authenticated using the
 connectivity checks in the scenario where both agents use the lite
 mode, unless media-level security (e.g., TLS) is used, it is
 RECOMMENDED to use the full mode instead. For more lite versus full
 implementation considerations, see Appendix A of [RFC5245].

6.2. Forming the Check Lists

 As with UDP, check lists are formed only by full ICE implementations.
 When forming candidate pairs, the following types of TCP candidates
 can be paired with each other:

 Local Remote
 Candidate Candidate

 tcp-so tcp-so
 tcp-active tcp-passive
 tcp-passive tcp-active

 When the agent prunes the check list, it MUST also remove any pair
 for which the local candidate is a passive TCP candidate. With
 pruning, the NAT-assisted candidates are treated like server
 reflexive candidates if the base is also used as a host candidate.

 The remainder of check list processing works in the same way as the
 UDP case.

Rosenberg, et al. Standards Track [Page 16]

RFC 6544 ICE TCP March 2012

7. Connectivity Checks

 The TCP connectivity checks, like with UDP, are generated only by
 full implementations. The TCP candidate pairs are in the same check
 list with the UDP candidate pairs, and they are scheduled for
 connectivity checks, as described in Section 5.8 of [RFC5245], based
 on the priority order.

7.1. STUN Client Procedures

 When an agent wants to send a TCP-based connectivity check, it first
 opens a TCP connection, if none yet exists, for the 5-tuple defined
 by the candidate pair for which the check is to be sent. This
 connection is opened from the local candidate of the pair to the
 remote candidate of the pair. If the local candidate is tcp-active,
 the agent MUST open a connection from the interface associated with
 that local candidate. This connection SHOULD be opened from an
 unallocated port. For host candidates, this is readily done by
 connecting from the local candidate’s interface. For relayed, NAT-
 assisted, and UDP-tunneled candidates, the agent may need to use
 additional procedures specific to the protocol.

 Once the connection is established, the agent MUST utilize the shim
 defined in RFC 4571 [RFC4571] for the duration this connection
 remains open. The STUN Binding requests and responses are sent on
 top of this shim, so that the length field defined in RFC 4571
 precedes each STUN message. If TLS or DTLS-SRTP is to be utilized
 for the media session, the TLS or DTLS-SRTP handshakes will take
 place on top of this shim as well. However, they only start once ICE
 processing has completed. In essence, the TLS or DTLS-SRTP
 handshakes are considered a part of the media protocol. STUN is
 never run within the TLS or DTLS-SRTP session as part of the ICE
 procedures.

 If the TCP connection cannot be established, the check is considered
 to have failed, and a full-mode agent MUST update the pair state to
 Failed in the check list. See Section 7.2.2 of [RFC5389] for more
 details on STUN over TCP.

 Once the connection is established, client procedures are identical
 to those for UDP candidates. However, retransmissions of the STUN
 connectivity check messages are not needed, since TCP takes care of
 reliable delivery of the messages. Note also that STUN responses
 received on an active TCP candidate will typically produce a peer
 reflexive candidate. If the response to the first connectivity check
 on the established TCP connection is something other than a STUN

Rosenberg, et al. Standards Track [Page 17]

RFC 6544 ICE TCP March 2012

 message, the remote candidate address apparently was not one of the
 peer’s addresses, and the agent SHOULD close the connection and
 consider all pairs with that remote candidate as failed.

7.2. STUN Server Procedures

 An ICE TCP agent, full or lite, MUST be prepared to receive incoming
 TCP connection requests on the base of any TCP candidate that is
 simultaneous-open or passive. When the connection request is
 received, the agent MUST accept it. The agent MUST utilize the
 framing defined in RFC 4571 [RFC4571] for the lifetime of this
 connection. Due to this framing, the agent will receive data in
 discrete frames. Each frame could be media (such as RTP or SRTP),
 TLS, DTLS, or STUN packets. The STUN packets are extracted as
 described in Section 10.2.

 Once the connection is established, STUN server procedures are
 identical to those for UDP candidates. Note that STUN requests
 received on a passive TCP candidate will typically produce a remote
 peer reflexive candidate.

8. Concluding ICE Processing

 If there are TCP candidates for a media stream, a controlling agent
 MUST use the regular selection algorithm.

 When ICE processing for a media stream completes, each agent SHOULD
 close all TCP connections (that were opened due to this ICE session)
 except the ones between the candidate pairs selected by ICE.

 These two rules are related; the closure of connection on completion
 of ICE implies that a regular selection algorithm has to be used.
 This is because aggressive selection might cause transient pairs to
 be selected. Once such a pair is selected, the agents would close
 the other connections, one of which may be about to be selected as a
 better choice. This race condition may result in TCP connections
 being accidentally closed for the pair that ICE selects.

9. Subsequent Offer/Answer Exchanges

9.1. Updated Offer

 When an updated offer is generated by the controlling endpoint after
 the connectivity checks have succeeded, the SDP extensions for
 connection-oriented media [RFC4145] are used to signal that an
 existing connection should be used, rather than opening a new one.

Rosenberg, et al. Standards Track [Page 18]

RFC 6544 ICE TCP March 2012

9.2. ICE Restarts

 If an ICE restart occurs for a media stream with TCP candidate pairs
 that have been selected by ICE, the agents MUST NOT close the
 connections after the restart. In the offer or answer that causes
 the restart, an agent MAY include a simultaneous-open candidate whose
 transport address matches the previously selected candidate. If both
 agents do this, the result will be a simultaneous-open candidate pair
 matching an existing TCP connection. In this case, the agents MUST
 NOT attempt to open a new connection (or start new TLS or DTLS-SRTP
 procedures). Instead, that existing connection is reused, and STUN
 checks are performed.

 Once the restart completes, if the selected pair does not match the
 previously selected pair, the TCP connection for the previously
 selected pair SHOULD be closed by the agent.

10. Media Handling

10.1. Sending Media

 When sending media, if the selected candidate pair matches an
 existing TCP connection, that connection MUST be used for sending
 media.

 The framing defined in RFC 4571 MUST be used when sending media. For
 media streams that are not RTP-based and do not normally use RFC
 4571, the agent treats the media stream as a byte stream and assumes
 that it has its own framing of some sort, if needed. It then takes
 an arbitrary number of bytes from the byte stream and places that as
 a payload in the RFC 4571 frames, including the length. Next, the
 sender checks to see if the resulting set of bytes would be viewed as
 a STUN packet based on the rules in Sections 6 and 8 of [RFC5389].
 This includes a check on the most significant two bits, the magic
 cookie, the length, and the fingerprint. If, based on those rules,
 the bytes would be viewed as a STUN message, the sender MUST utilize
 a different number of bytes so that the length checks will fail.
 Though it is normally highly unlikely that an arbitrary number of
 bytes from a byte stream would resemble a STUN packet based on all of
 the checks, it can happen if the content of the application stream
 happens to contain a STUN message (for example, a file transfer of
 logs from a client that includes STUN messages).

 If TLS or DTLS-SRTP procedures are being utilized to protect the
 media stream, those procedures start at the point that media is
 permitted to flow, as defined in the ICE specification [RFC5245].
 The TLS or DTLS-SRTP handshakes occur on top of the RFC 4571 shim and

Rosenberg, et al. Standards Track [Page 19]

RFC 6544 ICE TCP March 2012

 are considered part of the media stream for the purposes of this
 specification.

10.2. Receiving Media

 The framing defined in RFC 4571 MUST be used when receiving media.
 For media streams that are not RTP-based and do not normally use RFC
 4571, the agent extracts the payload of each RFC 4571 frame and
 determines if it is a STUN or an application-layer data based on the
 procedures in ICE [RFC5245]. If media is being protected with DTLS-
 SRTP, the DTLS, RTP, and STUN packets are demultiplexed as described
 in Section 5.1.2 of [RFC5764].

 For non-STUN data, the agent appends this to the ongoing byte stream
 collected from the frames. It then parses the byte stream as if it
 had been directly received over the TCP connection. This allows for
 ICE TCP to work without regard to the framing mechanism used by the
 application-layer protocol.

11. Connection Management

11.1. Connections Formed during Connectivity Checks

 Once a TCP or TCP/TLS connection is opened by ICE for the purpose of
 connectivity checks, its life cycle depends on how it is used. If
 that candidate pair is selected by ICE for usage for media, an agent
 SHOULD keep the connection open until:

 o the session terminates,

 o the media stream is removed, or

 o an ICE restart takes place, resulting in the selection of a
 different candidate pair.

 In any of these cases, the agent SHOULD close the connection when
 that event occurs. This applies to both agents in a session, in
 which case one of the agents will usually end up closing the
 connection first.

 If a connection has been selected by ICE, an agent MAY close it
 anyway. As described in the next paragraph, this will cause it to be
 reopened almost immediately, and in the interim, media cannot be
 sent. Consequently, such closures have a negative effect and are NOT
 RECOMMENDED. However, there may be cases where an agent needs to
 close a connection for some reason.

Rosenberg, et al. Standards Track [Page 20]

RFC 6544 ICE TCP March 2012

 If an agent needs to send media on the selected candidate pair, and
 its TCP connection has closed, then:

 o If the agent’s local candidate is tcp-active or tcp-so, it MUST
 reopen a connection to the remote candidate of the selected pair.

 o If the agent’s local candidate is tcp-passive, the agent MUST
 await an incoming connection request and, consequently, will not
 be able to send media until it has been opened.

 If the TCP connection is established, the framing of RFC 4571 is
 utilized. If the agent opened the connection and is a full agent, it
 MUST send a STUN connectivity check. An agent MUST be prepared to
 receive a connectivity check over a connection it opened or accepted
 (note that this is true in general; ICE requires that an agent be
 prepared to receive a connectivity check at any time, even after ICE
 processing completes). If a full agent receives a connectivity check
 after re-establishment of the connection, it MUST generate a
 triggered check over that connection in response if it has not
 already sent a check. Once an agent has sent a check and received a
 successful response, the connection is considered Valid, and media
 can be sent (which includes a TLS or DTLS-SRTP session resumption or
 restart).

 If the TCP connection cannot be established, the controlling agent
 SHOULD restart ICE for this media stream. This will happen in cases
 where one of the agents is behind a NAT with connection-dependent
 mapping properties [RFC5382].

11.2. Connections Formed for Gathering Candidates

 If the agent opened a connection to a STUN server, or another similar
 server, for the purposes of gathering a server reflexive candidate,
 that connection SHOULD be closed by the client once ICE processing
 has completed. This happens regardless of whether the candidate
 learned from the server was selected by ICE.

 If the agent opened a connection to a TURN server for the purposes of
 gathering a relayed candidate, that connection MUST be kept open by
 the client for the duration of the media session if a relayed
 candidate from the TURN server was selected by ICE. Otherwise, the
 connection to the TURN server SHOULD be closed once ICE processing
 completes.

 If, despite efforts of the client, a TCP connection to a TURN server
 fails during the lifetime of the media session utilizing a transport
 address allocated by that server, the client SHOULD reconnect to the
 TURN server, obtain a new allocation, and restart ICE for that media

Rosenberg, et al. Standards Track [Page 21]

RFC 6544 ICE TCP March 2012

 stream. Similar measures SHOULD apply also to other types of
 relaying servers.

12. Security Considerations

 The main threat in ICE is hijacking of connections for the purposes
 of directing media streams to denial-of-service (DoS) targets or to
 malicious users. When full implementations are used, ICE TCP
 prevents that by only using TCP connections that have been validated.
 Validation requires a STUN transaction to take place over the
 connection. This transaction cannot complete without both
 participants knowing a shared secret exchanged in the rendezvous
 protocol used with ICE, such as SIP [RFC3261]. This shared secret,
 in turn, is protected by that protocol exchange. In the case of SIP,
 the usage of the SIP Secure (SIPS) [RFC3261] mechanism is
 RECOMMENDED. When this is done, an attacker, even if it knows or can
 guess the port on which an agent is listening for incoming TCP
 connections, will not be able to open a connection and send media to
 the agent.

 If the rendezvous protocol exchange is compromised, the shared secret
 can be learned by an attacker, and the attacker may be able to fake
 the connectivity check validation and open a TCP connection to the
 target. Hence, using additional security mechanisms (e.g.,
 application-layer security) that mitigate these risks is RECOMMENDED.

 A STUN amplification attack is described in Section 18.5.2 of
 [RFC5245]. The same considerations apply to TCP, but the
 amplification effect with TCP is larger due to need for establishing
 a TCP connection before any checks are performed. Therefore, an ICE
 agent SHOULD NOT have more than 5 outstanding TCP connection attempts
 with the same peer to the same IP address.

 If both agents use the lite mode, no connectivity checks are sent,
 and additional procedures (e.g., media-level security) are needed to
 validate the connection. The lack of connectivity checks is
 especially problematic if one of the hosts is behind a NAT and has an
 address from a private address space: the peer may accidentally
 connect to a host in a different subnet that uses the same private
 address space. This is one of the reasons why the lite mode is not
 appropriate for an ICE agent located behind a NAT.

 A more detailed analysis of different attacks and the various ways
 ICE prevents them are described in [RFC5245]. Those considerations
 apply to this specification.

Rosenberg, et al. Standards Track [Page 22]

RFC 6544 ICE TCP March 2012

13. IANA Considerations

 IANA has created a new sub-registry "ICE Transport Protocols" in the
 "Interactive Connectivity Establishment (ICE)" registry for ICE
 candidate-attribute transport extensions. Initial values are given
 below; future assignments are to be made through IETF Review or IESG
 Approval [RFC5226]. Assignments consist of an extension token (as
 defined in Section 15.1 of [RFC5245]) and a reference to the document
 defining the extension.

 Token Reference
 ----- ---------
 UDP RFC 5245, Section 15.1
 TCP RFC 6544, Section 4.5

14. Acknowledgements

 The authors would like to thank Tim Moore, Saikat Guha, Francois
 Audet, Roni Even, Simon Perreault, Alfred Heggestad, Hadriel Kaplan,
 Jonathan Lennox, Flemming Andreasen, Dan Wing, and Vijay Gurbani for
 the reviews and input on this document. Special thanks to Marc
 Petit-Huguenin for providing the SDP examples.

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol
 (SRTP)", RFC 3711, March 2004.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

Rosenberg, et al. Standards Track [Page 23]

RFC 6544 ICE TCP March 2012

 [RFC4571] Lazzaro, J., "Framing Real-time Transport Protocol (RTP)
 and RTP Control Protocol (RTCP) Packets over Connection-
 Oriented Transport", RFC 4571, July 2006.

 [RFC4572] Lennox, J., "Connection-Oriented Media Transport over the
 Transport Layer Security (TLS) Protocol in the Session
 Description Protocol (SDP)", RFC 4572, July 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the
 Secure Real-time Transport Protocol (SRTP)", RFC 5764,
 May 2010.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal
 Using Relays around NAT (TURN): Relay Extensions to
 Session Traversal Utilities for NAT (STUN)", RFC 5766,
 April 2010.

15.2. Informative References

 [IMC05] Guha, S. and P. Francis, "Characterization and
 Measurement of TCP Traversal through NATs and Firewalls",
 Proceedings of the 5th ACM SIGCOMM Conference on Internet
 Measurement, 2005.

 [NAT-PMP] Cheshire, S., Krochmal, M., and K. Sekar, "NAT Port
 Mapping Protocol (NAT-PMP)", Work in Progress,
 April 2008.

 [PCP-BASE] Wing, D., Cheshire, S., Boucadair, M., Penno, R., and P.
 Selkirk, "Port Control Protocol (PCP)", Work in Progress,
 March 2012.

Rosenberg, et al. Standards Track [Page 24]

RFC 6544 ICE TCP March 2012

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 March 1996.

 [RFC3089] Kitamura, H., "A SOCKS-based IPv6/IPv4 Gateway
 Mechanism", RFC 3089, April 2001.

 [RFC3103] Borella, M., Grabelsky, D., Lo, J., and K. Taniguchi,
 "Realm Specific IP: Protocol Specification", RFC 3103,
 October 2001.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)", RFC 4380,
 February 2006.

 [RFC4540] Stiemerling, M., Quittek, J., and C. Cadar, "NEC’s Simple
 Middlebox Configuration (SIMCO) Protocol Version 3.0",
 RFC 4540, May 2006.

 [RFC4975] Campbell, B., Mahy, R., and C. Jennings, "The Message
 Session Relay Protocol (MSRP)", RFC 4975, September 2007.

 [RFC5190] Quittek, J., Stiemerling, M., and P. Srisuresh,
 "Definitions of Managed Objects for Middlebox
 Communication", RFC 5190, March 2008.

 [RFC5382] Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP",
 BCP 142, RFC 5382, October 2008.

 [RFC6062] Perreault, S. and J. Rosenberg, "Traversal Using Relays
 around NAT (TURN) Extensions for TCP Allocations",
 RFC 6062, November 2010.

 [RFC6081] Thaler, D., "Teredo Extensions", RFC 6081, January 2011.

 [RFC6156] Camarillo, G., Novo, O., and S. Perreault, "Traversal
 Using Relays around NAT (TURN) Extension for IPv6",
 RFC 6156, April 2011.

 [UPnP-IGD] Warrier, U., Iyer, P., Pennerath, F., Marynissen, G.,
 Schmitz, M., Siddiqi, W., and M. Blaszczak, "Internet
 Gateway Device (IGD) Standardized Device Control Protocol
 V 1.0", November 2001.

Rosenberg, et al. Standards Track [Page 25]

RFC 6544 ICE TCP March 2012

Appendix A. Limitations of ICE TCP

 Compared to UDP-based ICE, ICE TCP has, in general, lower success
 probability for enabling connectivity without a relay if both of the
 hosts are behind a NAT. This happens because many of the currently
 deployed NATs have endpoint-dependent mapping behavior, or they do
 not support the flow of TCP handshake packets seen in the case of TCP
 simultaneous-open, e.g., some NATs do not allow incoming TCP SYN
 packets from an address where a SYN packet has been sent to recently
 or the subsequent SYN-ACK is not processed properly.

 It has been reported in [IMC05] that with the population of NATs
 deployed at the time of the measurements (2005), one of the NAT
 traversal techniques described here, TCP simultaneous-open, worked in
 roughly 45% of the cases. Also, not all operating systems implement
 TCP simultaneous-open properly and thus are not able to use such
 candidates. However, when more NATs comply with the requirements set
 by [RFC5382] and operating system TCP stacks are fixed, the success
 probability of simultaneous-open is likely to increase. Also, it is
 important to implement additional techniques with higher success
 ratios, such as Teredo, whose success in different scenarios is
 described in Figure 1 of [RFC6081].

 Finally, it should be noted that implementing various techniques
 listed in Section 5 should increase the success probability, but many
 of these techniques require support from the endpoints and/or from
 some network elements (e.g., from the NATs). Without comprehensive
 experimental data on how well different techniques are supported, the
 actual increase of success probability is hard to evaluate.

Rosenberg, et al. Standards Track [Page 26]

RFC 6544 ICE TCP March 2012

Appendix B. Implementation Considerations for BSD Sockets

 This specification requires unusual handling of TCP connections, the
 implementation of which is non-trivial in traditional BSD socket
 APIs.

 In particular, ICE requires an agent to obtain a local TCP candidate,
 bound to a local IP and port, then initiate a TCP connection from
 that local port (e.g., to the STUN server in order to obtain server
 reflexive candidates, to the TURN server to obtain a relayed
 candidate, or to the peer as part of a connectivity check), and be
 prepared to receive incoming TCP connections (for passive and
 simultaneous-open candidates). A "typical" BSD socket is used either
 for initiating or receiving connections, and not for both. The code
 required to allow incoming and outgoing connections on the same local
 IP and port is non-obvious. The following pseudocode, contributed by
 Saikat Guha, has been found to work on many platforms:

 for i in 0 to MAX
 sock_i = socket()
 set(sock_i, SO_REUSEADDR)
 bind(sock_i, local)

 listen(sock_0)
 connect(sock_1, stun)
 connect(sock_2, remote_a)
 connect(sock_3, remote_b)

 The key here is that, prior to the listen() call, the full set of
 sockets that need to be utilized for outgoing connections must be
 allocated and bound to the local IP address and port. This number,
 MAX, represents the maximum number of TCP connections to different
 destinations that might need to be established from the same local
 candidate. This number can be potentially large for simultaneous-
 open candidates. If a request forks, ICE procedures may take place
 with multiple peers. Furthermore, for each peer, connections would
 need to be established to each passive or simultaneous-open candidate
 for the same component. If we assume a worst case of 5 forked
 branches, and for each peer, five simultaneous-open candidates, that
 results in MAX=25.

Rosenberg, et al. Standards Track [Page 27]

RFC 6544 ICE TCP March 2012

Appendix C. SDP Examples

 This section shows two examples of SDP offer and answer when the ICE
 TCP extension is used. Both examples are based on the simplified
 topology of Figure 8 in [RFC5245], with the same IP addresses. The
 examples shown here should be considered strictly informative.

 In the first example, the offer contains only TCP candidates (lines
 are folded in examples to satisfy RFC formatting rules):

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1
 s=
 c=IN IP4 192.0.2.3
 t=0 0
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio 45664 TCP/RTP/AVP 0
 b=RS:0
 b=RR:0
 a=rtpmap:0 PCMU/8000
 a=setup:active
 a=connection:new
 a=candidate:1 1 TCP 2128609279 10.0.1.1 9 typ host tcptype active
 a=candidate:2 1 TCP 2124414975 10.0.1.1 8998 typ host tcptype passive
 a=candidate:3 1 TCP 2120220671 10.0.1.1 8999 typ host tcptype so
 a=candidate:4 1 TCP 1688207359 192.0.2.3 9 typ srflx raddr 10.0.1.1
 rport 9 tcptype active
 a=candidate:5 1 TCP 1684013055 192.0.2.3 45664 typ srflx raddr
 10.0.1.1 rport 8998 tcptype passive
 a=candidate:6 1 TCP 1692401663 192.0.2.3 45687 typ srflx raddr
 10.0.1.1 rport 8999 tcptype so

Rosenberg, et al. Standards Track [Page 28]

RFC 6544 ICE TCP March 2012

 The answer to that offer could look like this:

 v=0
 o=bob 2808844564 2808844564 IN IP4 192.0.2.1
 s=
 c=IN IP4 192.0.2.1
 t=0 0
 a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh
 a=ice-ufrag:9uB6
 m=audio 3478 TCP/RTP/AVP 0
 b=RS:0
 b=RR:0
 a=setup:passive
 a=connection:new
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 TCP 2128609279 192.0.2.1 9 typ host tcptype active
 a=candidate:2 1 TCP 2124414975 192.0.2.1 3478 typ host tcptype passive
 a=candidate:3 1 TCP 2120220671 192.0.2.1 3482 typ host tcptype so

 In the second example, UDP and TCP media streams are mixed, but S-O
 candidates are omitted due to hosts not supporting TCP simultaneous-
 open, and UDP candidates are preferred (but preference order for
 candidate types is kept the same) by decreasing the TCP candidate type
 preferences by one (i.e., using type preference 125 for the host
 candidates and 99 for the server reflexive candidates):

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1
 s=
 c=IN IP4 192.0.2.3
 t=0 0
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio 45664 RTP/AVP 0
 b=RS:0
 b=RR:0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 TCP 2111832063 10.0.1.1 9 typ host tcptype active
 a=candidate:2 1 TCP 2107637759 10.0.1.1 9012 typ host tcptype passive
 a=candidate:3 1 TCP 1671430143 192.0.2.3 9 typ srflx raddr 10.0.1.1
 rport 9 tcptype active
 a=candidate:4 1 TCP 1667235839 192.0.2.3 44642 typ srflx raddr
 10.0.1.1 rport 9012 tcptype passive
 a=candidate:5 1 UDP 2130706431 10.0.1.1 8998 typ host
 a=candidate:6 1 UDP 1694498815 192.0.2.3 45664 typ srflx raddr
 10.0.1.1 rport 8998

Rosenberg, et al. Standards Track [Page 29]

RFC 6544 ICE TCP March 2012

 The corresponding answer could look like this:

 v=0
 o=bob 2808844564 2808844564 IN IP4 192.0.2.1
 s=
 c=IN IP4 192.0.2.1
 t=0 0
 a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh
 a=ice-ufrag:9uB6
 m=audio 3478 RTP/AVP 0
 b=RS:0
 b=RR:0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 TCP 2111832063 192.0.2.1 9 typ host tcptype active
 a=candidate:2 1 TCP 2107637759 192.0.2.1 3478 typ host tcptype passive
 a=candidate:3 1 UDP 2130706431 192.0.2.1 3478 typ host

Rosenberg, et al. Standards Track [Page 30]

RFC 6544 ICE TCP March 2012

Authors’ Addresses

 Jonathan Rosenberg
 jdrosen.net

 EMail: jdrosen@jdrosen.net
 URI: http://www.jdrosen.net

 Ari Keranen
 Ericsson
 Hirsalantie 11
 02420 Jorvas
 Finland

 EMail: ari.keranen@ericsson.com

 Bruce B. Lowekamp
 Skype

 EMail: bbl@lowekamp.net

 Adam Roach
 Tekelec
 17210 Campbell Rd., Suite 250
 Dallas, TX 75252
 US

 EMail: adam@nostrum.com

Rosenberg, et al. Standards Track [Page 31]

