
Internet Engineering Task Force (IETF) V. Hilt
Request for Comments: 6357 Bell Labs/Alcatel-Lucent
Category: Informational E. Noel
ISSN: 2070-1721 AT&T Labs
 C. Shen
 Columbia University
 A. Abdelal
 Sonus Networks
 August 2011

 Design Considerations for
 Session Initiation Protocol (SIP) Overload Control

Abstract

 Overload occurs in Session Initiation Protocol (SIP) networks when
 SIP servers have insufficient resources to handle all SIP messages
 they receive. Even though the SIP protocol provides a limited
 overload control mechanism through its 503 (Service Unavailable)
 response code, SIP servers are still vulnerable to overload. This
 document discusses models and design considerations for a SIP
 overload control mechanism.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6357.

Hilt Informational [Page 1]

RFC 6357 Overload Control Design August 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. SIP Overload Problem . 4
 3. Explicit vs. Implicit Overload Control 5
 4. System Model . 6
 5. Degree of Cooperation . 8
 5.1. Hop-by-Hop . 9
 5.2. End-to-End . 10
 5.3. Local Overload Control 11
 6. Topologies . 12
 7. Fairness . 14
 8. Performance Metrics . 14
 9. Explicit Overload Control Feedback 15
 9.1. Rate-Based Overload Control 15
 9.2. Loss-Based Overload Control 17
 9.3. Window-Based Overload Control 18
 9.4. Overload Signal-Based Overload Control 19
 9.5. On-/Off Overload Control 19
 10. Implicit Overload Control 20
 11. Overload Control Algorithms 20
 12. Message Prioritization . 21
 13. Operational Considerations 21
 14. Security Considerations 22
 15. Informative References . 23
 Appendix A. Contributors . 25

Hilt Informational [Page 2]

RFC 6357 Overload Control Design August 2011

1. Introduction

 As with any network element, a Session Initiation Protocol (SIP)
 [RFC3261] server can suffer from overload when the number of SIP
 messages it receives exceeds the number of messages it can process.
 Overload occurs if a SIP server does not have sufficient resources to
 process all incoming SIP messages. These resources may include CPU,
 memory, input/output, or disk resources.

 Overload can pose a serious problem for a network of SIP servers.
 During periods of overload, the throughput of SIP messages in a
 network of SIP servers can be significantly degraded. In fact,
 overload in a SIP server may lead to a situation in which the
 overload is amplified by retransmissions of SIP messages causing the
 throughput to drop down to a very small fraction of the original
 processing capacity. This is often called congestion collapse.

 An overload control mechanism enables a SIP server to process SIP
 messages close to its capacity limit during times of overload.
 Overload control is used by a SIP server if it is unable to process
 all SIP requests due to resource constraints. There are other
 failure cases in which a SIP server can successfully process incoming
 requests but has to reject them for other reasons. For example, a
 Public Switched Telephone Network (PSTN) gateway that runs out of
 trunk lines but still has plenty of capacity to process SIP messages
 should reject incoming INVITEs using a response such as 488 (Not
 Acceptable Here), as described in [RFC4412]. Similarly, a SIP
 registrar that has lost connectivity to its registration database but
 is still capable of processing SIP messages should reject REGISTER
 requests with a 500 (Server Error) response [RFC3261]. Overload
 control mechanisms do not apply in these cases and SIP provides
 appropriate response codes for them.

 There are cases in which a SIP server runs other services that do not
 involve the processing of SIP messages (e.g., processing of RTP
 packets, database queries, software updates, and event handling).
 These services may, or may not, be correlated with the SIP message
 volume. These services can use up a substantial share of resources
 available on the server (e.g., CPU cycles) and leave the server in a
 condition where it is unable to process all incoming SIP requests.
 In these cases, the SIP server applies SIP overload control
 mechanisms to avoid congestion collapse on the SIP signaling plane.
 However, controlling the number of SIP requests may not significantly
 reduce the load on the server if the resource shortage was created by
 another service. In these cases, it is to be expected that the
 server uses appropriate methods of controlling the resource usage of

Hilt Informational [Page 3]

RFC 6357 Overload Control Design August 2011

 other services. The specifics of controlling the resource usage of
 other services and their coordination is out of scope for this
 document.

 The SIP protocol provides a limited mechanism for overload control
 through its 503 (Service Unavailable) response code and the
 Retry-After header. However, this mechanism cannot prevent overload
 of a SIP server and it cannot prevent congestion collapse. In fact,
 it may cause traffic to oscillate and to shift between SIP servers
 and thereby worsen an overload condition. A detailed discussion of
 the SIP overload problem, the problems with the 503 (Service
 Unavailable) response code and the Retry-After header, and the
 requirements for a SIP overload control mechanism can be found in
 [RFC5390]. In addition, 503 is used for other situations, not just
 SIP server overload. A SIP overload control process based on 503
 would have to specify exactly which cause values trigger the overload
 control.

 This document discusses the models, assumptions, and design
 considerations for a SIP overload control mechanism. The document
 originated in the SIP overload control design team and has been
 further developed by the SIP Overload Control (SOC) working group.

2. SIP Overload Problem

 A key contributor to SIP congestion collapse [RFC5390] is the
 regenerative behavior of overload in the SIP protocol. When SIP is
 running over the UDP protocol, it will retransmit messages that were
 dropped or excessively delayed by a SIP server due to overload and
 thereby increase the offered load for the already overloaded server.
 This increase in load worsens the severity of the overload condition
 and, in turn, causes more messages to be dropped. A congestion
 collapse can occur [Hilt] [Noel] [Shen] [Abdelal].

 Regenerative behavior under overload should ideally be avoided by any
 protocol as this would lead to unstable operation under overload.
 However, this is often difficult to achieve in practice. For
 example, changing the SIP retransmission timer mechanisms can reduce
 the degree of regeneration during overload but will impact the
 ability of SIP to recover from message losses. Without any
 retransmission, each message that is dropped due to SIP server
 overload will eventually lead to a failed transaction.

 For a SIP INVITE transaction to be successful, a minimum of three
 messages need to be forwarded by a SIP server. Often an INVITE
 transaction consists of five or more SIP messages. If a SIP server
 under overload randomly discards messages without evaluating them,
 the chances that all messages belonging to a transaction are

Hilt Informational [Page 4]

RFC 6357 Overload Control Design August 2011

 successfully forwarded will decrease as the load increases. Thus,
 the number of transactions that complete successfully will decrease
 even if the message throughput of a server remains up and assuming
 the overload behavior is fully non-regenerative. A SIP server might
 (partially) parse incoming messages to determine if it is a new
 request or a message belonging to an existing transaction.
 Discarding a SIP message after spending the resources to parse it is
 expensive. The number of successful transactions will therefore
 decline with an increase in load as fewer resources can be spent on
 forwarding messages and more resources are consumed by inspecting
 messages that will eventually be dropped. The rate of the decline
 depends on the amount of resources spent to inspect each message.

 Another challenge for SIP overload control is controlling the rate of
 the true traffic source. Overload is often caused by a large number
 of user agents (UAs), each of which creates only a single message.
 However, the sum of their traffic can overload a SIP server. The
 overload mechanisms suitable for controlling a SIP server (e.g., rate
 control) may not be effective for individual UAs. In some cases,
 there are other non-SIP mechanisms for limiting the load from the
 UAs. These may operate independently from, or in conjunction with,
 the SIP overload mechanisms described here. In either case, they are
 out of scope for this document.

3. Explicit vs. Implicit Overload Control

 The main difference between explicit and implicit overload control is
 the way overload is signaled from a SIP server that is reaching
 overload condition to its upstream neighbors.

 In an explicit overload control mechanism, a SIP server uses an
 explicit overload signal to indicate that it is reaching its capacity
 limit. Upstream neighbors receiving this signal can adjust their
 transmission rate according to the overload signal to a level that is
 acceptable to the downstream server. The overload signal enables a
 SIP server to steer the load it is receiving to a rate at which it
 can perform at maximum capacity.

 Implicit overload control uses the absence of responses and packet
 loss as an indication of overload. A SIP server that is sensing such
 a condition reduces the load it is forwarding to a downstream
 neighbor. Since there is no explicit overload signal, this mechanism
 is robust, as it does not depend on actions taken by the SIP server
 running into overload.

 The ideas of explicit and implicit overload control are in fact
 complementary. By considering implicit overload indications, a
 server can avoid overloading an unresponsive downstream neighbor. An

Hilt Informational [Page 5]

RFC 6357 Overload Control Design August 2011

 explicit overload signal enables a SIP server to actively steer the
 incoming load to a desired level.

4. System Model

 The model shown in Figure 1 identifies fundamental components of an
 explicit SIP overload control mechanism:

 SIP Processor: The SIP Processor processes SIP messages and is the
 component that is protected by overload control.

 Monitor: The Monitor measures the current load of the SIP Processor
 on the receiving entity. It implements the mechanisms needed to
 determine the current usage of resources relevant for the SIP
 Processor and reports load samples (S) to the Control Function.

 Control Function: The Control Function implements the overload
 control algorithm. The Control Function uses the load samples (S)
 and determines if overload has occurred and a throttle (T) needs
 to be set to adjust the load sent to the SIP Processor on the
 receiving entity. The Control Function on the receiving entity
 sends load feedback (F) to the sending entity.

 Actuator: The Actuator implements the algorithms needed to act on
 the throttles (T) and ensures that the amount of traffic forwarded
 to the receiving entity meets the criteria of the throttle. For
 example, a throttle may instruct the Actuator to not forward more
 than 100 INVITE messages per second. The Actuator implements the
 algorithms to achieve this objective, e.g., using message gapping.
 It also implements algorithms to select the messages that will be
 affected and determine whether they are rejected or redirected.

 The type of feedback (F) conveyed from the receiving to the sending
 entity depends on the overload control method used (i.e., loss-based,
 rate-based, window-based, or signal-based overload control; see
 Section 9), the overload control algorithm (see Section 11), as well
 as other design parameters. The feedback (F) enables the sending
 entity to adjust the amount of traffic forwarded to the receiving
 entity to a level that is acceptable to the receiving entity without
 causing overload.

 Figure 1 depicts a general system model for overload control. In
 this diagram, one instance of the control function is on the sending
 entity (i.e., associated with the actuator) and one is on the
 receiving entity (i.e., associated with the Monitor). However, a
 specific mechanism may not require both elements. In this case, one
 of two control function elements can be empty and simply passes along
 feedback. For example, if (F) is defined as a loss-rate (e.g.,

Hilt Informational [Page 6]

RFC 6357 Overload Control Design August 2011

 reduce traffic by 10%), there is no need for a control function on
 the sending entity as the content of (F) can be copied directly into
 (T).

 The model in Figure 1 shows a scenario with one sending and one
 receiving entity. In a more realistic scenario, a receiving entity
 will receive traffic from multiple sending entities and vice versa
 (see Section 6). The feedback generated by a Monitor will therefore
 often be distributed across multiple Actuators. A Monitor needs to
 be able to split the load it can process across multiple sending
 entities and generate feedback that correctly adjusts the load each
 sending entity is allowed to send. Similarly, an Actuator needs to
 be prepared to receive different levels of feedback from different
 receiving entities and throttle traffic to these entities
 accordingly.

 In a realistic deployment, SIP messages will flow in both directions,
 from server B to server A as well as server A to server B. The
 overload control mechanisms in each direction can be considered
 independently. For messages flowing from server A to server B, the
 sending entity is server A and the receiving entity is server B, and
 vice versa. The control loops in both directions operate
 independently.

 Sending Receiving
 Entity Entity
 +----------------+ +----------------+
 | Server A | | Server B |
 | +----------+ | | +----------+ | -+
 | | Control | | F | | Control | | |
 | | Function |<-+------+--| Function | | |
 | +----------+ | | +----------+ | |
 | T | | | ^ | | Overload
 | v | | | S | | Control
 | +----------+ | | +----------+ | | | | | |
 | | Actuator | | | | Monitor | | |
 | +----------+ | | +----------+ | |
 | | | | ^ | -+
 | v | | | | -+
 | +----------+ | | +----------+ | |
 <-+--| SIP | | | | SIP | | | SIP
 --+->|Processor |--+------+->|Processor |--+-> | System
 | +----------+ | | +----------+ | |
 +----------------+ +----------------+ -+

 Figure 1: System Model for Explicit Overload Control

Hilt Informational [Page 7]

RFC 6357 Overload Control Design August 2011

5. Degree of Cooperation

 A SIP request is usually processed by more than one SIP server on its
 path to the destination. Thus, a design choice for an explicit
 overload control mechanism is where to place the components of
 overload control along the path of a request and, in particular,
 where to place the Monitor and Actuator. This design choice
 determines the degree of cooperation between the SIP servers on the
 path. Overload control can be implemented hop-by-hop with the
 Monitor on one server and the Actuator on its direct upstream
 neighbor. Overload control can be implemented end-to-end with
 Monitors on all SIP servers along the path of a request and an
 Actuator on the sender. In this case, the Control Functions
 associated with each Monitor have to cooperate to jointly determine
 the overall feedback for this path. Finally, overload control can be
 implemented locally on a SIP server if the Monitor and Actuator
 reside on the same server. In this case, the sending entity and
 receiving entity are the same SIP server, and the Actuator and
 Monitor operate on the same SIP Processor (although, the Actuator
 typically operates on a pre-processing stage in local overload
 control). Local overload control is an internal overload control
 mechanism, as the control loop is implemented internally on one
 server. Hop-by-hop and end-to-end are external overload control
 mechanisms. All three configurations are shown in Figure 2.

Hilt Informational [Page 8]

RFC 6357 Overload Control Design August 2011

 +---------+ +------(+)---------+
 +------+ | | | ^ |
 | | | +---+ | | +---+
 v | v //=>| C | v | //=>| C |
 +---+ +---+ // +---+ +---+ +---+ // +---+
 | A |===>| B | | A |===>| B |
 +---+ +---+ \\ +---+ +---+ +---+ \\ +---+
 ^ \\=>| D | ^ | \\=>| D |
 | +---+ | | +---+
 | | | v |
 +---------+ +------(+)---------+

 (a) hop-by-hop (b) end-to-end

 +-+
 v |
 +-+ +-+ +---+
 v | v | //=>| C |
 +---+ +---+ // +---+
 | A |===>| B |
 +---+ +---+ \\ +---+
 \\=>| D |
 +---+
 ^ |
 +-+

 (c) local

 ==> SIP request flow
 <-- Overload feedback loop

 Figure 2: Degree of Cooperation between Servers

5.1. Hop-by-Hop

 The idea of hop-by-hop overload control is to instantiate a separate
 control loop between all neighboring SIP servers that directly
 exchange traffic. That is, the Actuator is located on the SIP server
 that is the direct upstream neighbor of the SIP server that has the
 corresponding Monitor. Each control loop between two servers is
 completely independent of the control loop between other servers
 further up- or downstream. In the example in Figure 2(a), three
 independent overload control loops are instantiated: A - B, B - C,
 and B - D. Each loop only controls a single hop. Overload feedback
 received from a downstream neighbor is not forwarded further
 upstream. Instead, a SIP server acts on this feedback, for example,
 by rejecting SIP messages if needed. If the upstream neighbor of a
 server also becomes overloaded, it will report this problem to its

Hilt Informational [Page 9]

RFC 6357 Overload Control Design August 2011

 upstream neighbors, which again take action based on the reported
 feedback. Thus, in hop-by-hop overload control, overload is always
 resolved by the direct upstream neighbors of the overloaded server
 without the need to involve entities that are located multiple SIP
 hops away.

 Hop-by-hop overload control reduces the impact of overload on a SIP
 network and can avoid congestion collapse. It is simple and scales
 well to networks with many SIP entities. An advantage is that it
 does not require feedback to be transmitted across multiple-hops,
 possibly crossing multiple trust domains. Feedback is sent to the
 next hop only. Furthermore, it does not require a SIP entity to
 aggregate a large number of overload status values or keep track of
 the overload status of SIP servers it is not communicating with.

5.2. End-to-End

 End-to-end overload control implements an overload control loop along
 the entire path of a SIP request, from user agent client (UAC) to
 user agent server (UAS). An end-to-end overload control mechanism
 consolidates overload information from all SIP servers on the way
 (including all proxies and the UAS) and uses this information to
 throttle traffic as far upstream as possible. An end-to-end overload
 control mechanism has to be able to frequently collect the overload
 status of all servers on the potential path(s) to a destination and
 combine this data into meaningful overload feedback.

 A UA or SIP server only throttles requests if it knows that these
 requests will eventually be forwarded to an overloaded server. For
 example, if D is overloaded in Figure 2(b), A should only throttle
 requests it forwards to B when it knows that they will be forwarded
 to D. It should not throttle requests that will eventually be
 forwarded to C, since server C is not overloaded. In many cases, it
 is difficult for A to determine which requests will be routed to C
 and D, since this depends on the local routing decision made by B.
 These routing decisions can be highly variable and, for example,
 depend on call-routing policies configured by the user, services
 invoked on a call, load-balancing policies, etc. A previous message
 to a target that has been routed through an overloaded server does
 not necessarily mean that the next message to this target will also
 be routed through the same server.

 The main problem of end-to-end overload control is its inherent
 complexity, since UAC or SIP servers need to monitor all potential
 paths to a destination in order to determine which requests should be
 throttled and which requests may be sent. Even if this information
 is available, it is not clear which path a specific request will
 take.

Hilt Informational [Page 10]

RFC 6357 Overload Control Design August 2011

 A variant of end-to-end overload control is to implement a control
 loop between a set of well-known SIP servers along the path of a SIP
 request. For example, an overload control loop can be instantiated
 between a server that only has one downstream neighbor or a set of
 closely coupled SIP servers. A control loop spanning multiple hops
 can be used if the sending entity has full knowledge about the SIP
 servers on the path of a SIP message.

 Overload control for SIP servers is different from end-to-end
 congestion control used by transport protocols such as TCP. The
 traffic exchanged between SIP servers consists of many individual SIP
 messages. Each SIP message is created by a SIP UA to achieve a
 specific goal (e.g., to start setting up a call). All messages have
 their own source and destination addresses. Even SIP messages
 containing identical SIP URIs (e.g., a SUBSCRIBE and an INVITE
 message to the same SIP URI) can be routed to different destinations.
 This is different from TCP, where the traffic exchanged between
 routers consists of packets belonging to a usually longer flow of
 messages exchanged between a source and a destination (e.g., to
 transmit a file). If congestion occurs, the sources can detect this
 condition and adjust the rate at which the next packets are
 transmitted.

5.3. Local Overload Control

 The idea of local overload control (see Figure 2(c)) is to run the
 Monitor and Actuator on the same server. This enables the server to
 monitor the current resource usage and to reject messages that can’t
 be processed without overusing local resources. The fundamental
 assumption behind local overload control is that it is less resource
 consuming for a server to reject messages than to process them. A
 server can therefore reject the excess messages it cannot process to
 stop all retransmissions of these messages. Since rejecting messages
 does consume resources on a SIP server, local overload control alone
 cannot prevent a congestion collapse.

 Local overload control can be used in conjunction with other overload
 control mechanisms and provides an additional layer of protection
 against overload. It is fully implemented within a SIP server and
 does not require cooperation between servers. In general, SIP
 servers should apply other overload control techniques to control
 load before a local overload control mechanism is activated as a
 mechanism of last resort.

Hilt Informational [Page 11]

RFC 6357 Overload Control Design August 2011

6. Topologies

 The following topologies describe four generic SIP server
 configurations. These topologies illustrate specific challenges for
 an overload control mechanism. An actual SIP server topology is
 likely to consist of combinations of these generic scenarios.

 In the "load balancer" configuration shown in Figure 3(a), a set of
 SIP servers (D, E, and F) receives traffic from a single source A. A
 load balancer is a typical example for such a configuration. In this
 configuration, overload control needs to prevent server A (i.e., the
 load balancer) from sending too much traffic to any of its downstream
 neighbors D, E, and F. If one of the downstream neighbors becomes
 overloaded, A can direct traffic to the servers that still have
 capacity. If one of the servers acts as a backup, it can be
 activated once one of the primary servers reaches overload.

 If A can reliably determine that D, E, and F are its only downstream
 neighbors and all of them are in overload, it may choose to report
 overload upstream on behalf of D, E, and F. However, if the set of
 downstream neighbors is not fixed or only some of them are in
 overload, then A should not activate an overload control since A can
 still forward the requests destined to non-overloaded downstream
 neighbors. These requests would be throttled as well if A would use
 overload control towards its upstream neighbors.

 In some cases, the servers D, E, and F are in a server farm and are
 configured to appear as a single server to their upstream neighbors.
 In this case, server A can report overload on behalf of the server
 farm. If the load balancer is not a SIP entity, servers D, E, and F
 can report the overall load of the server farm (i.e., the load of the
 virtual server) in their messages. As an alternative, one of the
 servers (e.g., server E) can report overload on behalf of the server
 farm. In this case, not all messages contain overload control
 information, and all upstream neighbors need to be served by server E
 periodically to ensure that updated information is received.

 In the "multiple sources" configuration shown in Figure 3(b), a SIP
 server D receives traffic from multiple upstream sources A, B, and C.
 Each of these sources can contribute a different amount of traffic,
 which can vary over time. The set of active upstream neighbors of D
 can change as servers may become inactive, and previously inactive
 servers may start contributing traffic to D.

 If D becomes overloaded, it needs to generate feedback to reduce the
 amount of traffic it receives from its upstream neighbors. D needs
 to decide by how much each upstream neighbor should reduce traffic.
 This decision can require the consideration of the amount of traffic

Hilt Informational [Page 12]

RFC 6357 Overload Control Design August 2011

 sent by each upstream neighbor and it may need to be re-adjusted as
 the traffic contributed by each upstream neighbor varies over time.
 Server D can use a local fairness policy to determine how much
 traffic it accepts from each upstream neighbor.

 In many configurations, SIP servers form a "mesh" as shown in Figure
 3(c). Here, multiple upstream servers A, B, and C forward traffic to
 multiple alternative servers D and E. This configuration is a
 combination of the "load balancer" and "multiple sources" scenario.

 +---+ +---+
 /->| D | | A |-\
 / +---+ +---+ \
 / \ +---+
 +---+-/ +---+ +---+ \->| |
 | A |------>| E | | B |------>| D |
 +---+-\ +---+ +---+ /->| |
 \ / +---+
 \ +---+ +---+ /
 \->| F | | C |-/
 +---+ +---+

 (a) load balancer (b) multiple sources

 +---+
 | A |---\ a--\
 +---+-\ \---->+---+ \
 \/----->| D | b--\ \--->+---+
 +---+--/\ /-->+---+ \---->| |
 | B | \/ c-------->| D |
 +---+---\/\--->+---+ | |
 /\---->| E | ... /--->+---+
 +---+--/ /-->+---+ /
 | C |-----/ z--/
 +---+

 (c) mesh (d) edge proxy

 Figure 3: Topologies

 Overload control that is based on reducing the number of messages a
 sender is allowed to send is not suited for servers that receive
 requests from a very large population of senders, each of which only
 sends a very small number of requests. This scenario is shown in
 Figure 3(d). An edge proxy that is connected to many UAs is a
 typical example for such a configuration. Since each UA typically
 infrequently sends requests, which are often related to the same
 session, it can’t decrease its message rate to resolve the overload.

Hilt Informational [Page 13]

RFC 6357 Overload Control Design August 2011

 A SIP server that receives traffic from many sources, which each
 contribute only a small number of requests, can resort to local
 overload control by rejecting a percentage of the requests it
 receives with 503 (Service Unavailable) responses. Since it has many
 upstream neighbors, it can send 503 (Service Unavailable) to a
 fraction of them to gradually reduce load without entirely stopping
 all incoming traffic. The Retry-After header can be used in 503
 (Service Unavailable) responses to ask upstream neighbors to wait a
 given number of seconds before trying the request again. Using 503
 (Service Unavailable) can, however, not prevent overload if a large
 number of sources create requests (e.g., to place calls) at the same
 time.

 Note: The requirements of the "edge proxy" topology are different
 from the ones of the other topologies, which may require a different
 method for overload control.

7. Fairness

 There are many different ways to define fairness between multiple
 upstream neighbors of a SIP server. In the context of SIP server
 overload, it is helpful to describe two categories of fairness: basic
 fairness and customized fairness. With basic fairness, a SIP server
 treats all requests equally and ensures that each request has the
 same chance of succeeding. With customized fairness, the server
 allocates resources according to different priorities. An example
 application of the basic fairness criteria is the "Third caller
 receives free tickets" scenario, where each call attempt should have
 an equal success probability in connecting through an overloaded SIP
 server, irrespective of the service provider in which the call was
 initiated. An example of customized fairness would be a server that
 assigns different resource allocations to its upstream neighbors
 (e.g., service providers) as defined in a service level agreement
 (SLA).

8. Performance Metrics

 The performance of an overload control mechanism can be measured
 using different metrics.

 A key performance indicator is the goodput of a SIP server under
 overload. Ideally, a SIP server will be enabled to perform at its
 maximum capacity during periods of overload. For example, if a SIP
 server has a processing capacity of 140 INVITE transactions per
 second, then an overload control mechanism should enable it to
 process 140 INVITEs per second even if the offered load is much
 higher. The delay introduced by a SIP server is another important
 indicator. An overload control mechanism should ensure that the

Hilt Informational [Page 14]

RFC 6357 Overload Control Design August 2011

 delay encountered by a SIP message is not increased significantly
 during periods of overload. Significantly increased delay can lead
 to time-outs and retransmission of SIP messages, making the overload
 worse.

 Responsiveness and stability are other important performance
 indicators. An overload control mechanism should quickly react to an
 overload occurrence and ensure that a SIP server does not become
 overloaded, even during sudden peaks of load. Similarly, an overload
 control mechanism should quickly stop rejecting requests if the
 overload disappears. Stability is another important criteria. An
 overload control mechanism should not cause significant oscillations
 of load on a SIP server. The performance of SIP overload control
 mechanisms is discussed in [Noel], [Shen], [Hilt], and [Abdelal].

 In addition to the above metrics, there are other indicators that are
 relevant for the evaluation of an overload control mechanism:

 Fairness: Which type of fairness does the overload control mechanism
 implement?

 Self-limiting: Is the overload control self-limiting if a SIP server
 becomes unresponsive?

 Changes in neighbor set: How does the mechanism adapt to a changing
 set of sending entities?

 Data points to monitor: Which and how many data points does an
 overload control mechanism need to monitor?

 Computational load: What is the (CPU) load created by the overload
 "Monitor" and "Actuator"?

9. Explicit Overload Control Feedback

 Explicit overload control feedback enables a receiver to indicate how
 much traffic it wants to receive. Explicit overload control
 mechanisms can be differentiated based on the type of information
 conveyed in the overload control feedback and whether the control
 function is in the receiving or sending entity (receiver- vs. sender-
 based overload control), or both.

9.1. Rate-Based Overload Control

 The key idea of rate-based overload control is to limit the request
 rate at which an upstream element is allowed to forward traffic to
 the downstream neighbor. If overload occurs, a SIP server instructs

Hilt Informational [Page 15]

RFC 6357 Overload Control Design August 2011

 each upstream neighbor to send, at most, X requests per second. Each
 upstream neighbor can be assigned a different rate cap.

 An example algorithm for an Actuator in the sending entity is request
 gapping. After transmitting a request to a downstream neighbor, a
 server waits for 1/X seconds before it transmits the next request to
 the same neighbor. Requests that arrive during the waiting period
 are not forwarded and are either redirected, rejected, or buffered.
 Request gapping only affects requests that are targeted by overload
 control (e.g., requests that initiate a transaction and not
 retransmissions in an ongoing transaction).

 The rate cap ensures that the number of requests received by a SIP
 server never increases beyond the sum of all rate caps granted to
 upstream neighbors. Rate-based overload control protects a SIP
 server against overload, even during load spikes assuming there are
 no new upstream neighbors that start sending traffic. New upstream
 neighbors need to be considered in the rate caps assigned to all
 upstream neighbors. The rate assigned to upstream neighbors needs to
 be adjusted when new neighbors join. During periods when new
 neighbors are joining, overload can occur in extreme cases until the
 rate caps of all servers are adjusted to again match the overall rate
 cap of the server. The overall rate cap of a SIP server is
 determined by an overload control algorithm, e.g., based on system
 load.

 Rate-based overload control requires a SIP server to assign a rate
 cap to each of its upstream neighbors while it is activated.
 Effectively, a server needs to assign a share of its overall capacity
 to each upstream neighbor. A server needs to ensure that the sum of
 all rate caps assigned to upstream neighbors does not substantially
 oversubscribe its actual processing capacity. This requires a SIP
 server to keep track of the set of upstream neighbors and to adjust
 the rate cap if a new upstream neighbor appears or an existing
 neighbor stops transmitting. For example, if the capacity of the
 server is X and this server is receiving traffic from two upstream
 neighbors, it can assign a rate of X/2 to each of them. If a third
 sender appears, the rate for each sender is lowered to X/3. If the
 overall rate cap is too high, a server may experience overload. If
 the cap is too low, the upstream neighbors will reject requests even
 though they could be processed by the server.

 An approach for estimating a rate cap for each upstream neighbor is
 using a fixed proportion of a control variable, X, where X is
 initially equal to the capacity of the SIP server. The server then
 increases or decreases X until the workload arrival rate matches the
 actual server capacity. Usually, this will mean that the sum of the
 rate caps sent out by the server (=X) exceeds its actual capacity,

Hilt Informational [Page 16]

RFC 6357 Overload Control Design August 2011

 but enables upstream neighbors who are not generating more than their
 fair share of the work to be effectively unrestricted. In this
 approach, the server only has to measure the aggregate arrival rate.
 However, since the overall rate cap is usually higher than the actual
 capacity, brief periods of overload may occur.

9.2. Loss-Based Overload Control

 A loss percentage enables a SIP server to ask an upstream neighbor to
 reduce the number of requests it would normally forward to this
 server by X%. For example, a SIP server can ask an upstream neighbor
 to reduce the number of requests this neighbor would normally send by
 10%. The upstream neighbor then redirects or rejects 10% of the
 traffic that is destined for this server.

 To implement a loss percentage, the sending entity may employ an
 algorithm to draw a random number between 1 and 100 for each request
 to be forwarded. The request is not forwarded to the server if the
 random number is less than or equal to X.

 An advantage of loss-based overload control is that the receiving
 entity does not need to track the set of upstream neighbors or the
 request rate it receives from each upstream neighbor. It is
 sufficient to monitor the overall system utilization. To reduce
 load, a server can ask its upstream neighbors to lower the traffic
 forwarded by a certain percentage. The server calculates this
 percentage by combining the loss percentage that is currently in use
 (i.e., the loss percentage the upstream neighbors are currently using
 when forwarding traffic), the current system utilization, and the
 desired system utilization. For example, if the server load
 approaches 90% and the current loss percentage is set to a 50%
 traffic reduction, then the server can decide to increase the loss
 percentage to 55% in order to get to a system utilization of 80%.
 Similarly, the server can lower the loss percentage if permitted by
 the system utilization.

 Loss-based overload control requires that the throttle percentage be
 adjusted to the current overall number of requests received by the
 server. This is particularly important if the number of requests
 received fluctuates quickly. For example, if a SIP server sets a
 throttle value of 10% at time t1 and the number of requests increases
 by 20% between time t1 and t2 (t1<t2), then the server will see an
 increase in traffic by 10% between time t1 and t2. This is even
 though all upstream neighbors have reduced traffic by 10%. Thus,
 percentage throttling requires an adjustment of the throttling
 percentage in response to the traffic received and may not always be
 able to prevent a server from encountering brief periods of overload
 in extreme cases.

Hilt Informational [Page 17]

RFC 6357 Overload Control Design August 2011

9.3. Window-Based Overload Control

 The key idea of window-based overload control is to allow an entity
 to transmit a certain number of messages before it needs to receive a
 confirmation for the messages in transit. Each sender maintains an
 overload window that limits the number of messages that can be in
 transit without being confirmed. Window-based overload control is
 inspired by TCP [RFC0793].

 Each sender maintains an unconfirmed message counter for each
 downstream neighbor it is communicating with. For each message sent
 to the downstream neighbor, the counter is increased. For each
 confirmation received, the counter is decreased. The sender stops
 transmitting messages to the downstream neighbor when the unconfirmed
 message counter has reached the current window size.

 A crucial parameter for the performance of window-based overload
 control is the window size. Each sender has an initial window size
 it uses when first sending a request. This window size can be
 changed based on the feedback it receives from the receiver.

 The sender adjusts its window size as soon as it receives the
 corresponding feedback from the receiver. If the new window size is
 smaller than the current unconfirmed message counter, the sender
 stops transmitting messages until more messages are confirmed and the
 current unconfirmed message counter is less than the window size.

 Note that the reception of a 100 (Trying) response does not provide a
 confirmation for the successful processing of a message. 100
 (Trying) responses are often created by a SIP server very early in
 processing and do not indicate that a message has been successfully
 processed and cleared from the input buffer. If the downstream
 neighbor is a stateless proxy, it will not create 100 (Trying)
 responses at all and will instead pass through 100 (Trying) responses
 created by the next stateful server. Also, 100 (Trying) responses
 are typically only created for INVITE requests. Explicit message
 confirmations do not have these problems.

 Window-based overload control is similar to rate-based overload
 control in that the total available receiver buffer space needs to be
 divided among all upstream neighbors. However, unlike rate-based
 overload control, window-based overload control is self-limiting and
 can ensure that the receiver buffer does not overflow under normal
 conditions. The transmission of messages by senders is clocked by
 message confirmations received from the receiver. A buffer overflow
 can occur in extreme cases when a large number of new upstream

Hilt Informational [Page 18]

RFC 6357 Overload Control Design August 2011

 neighbors arrives at the same time. However, senders will eventually
 stop transmitting new requests once their initial sending window is
 closed.

 In window-based overload control, the number of messages a sender is
 allowed to send can frequently be set to zero. In this state, the
 sender needs to be informed when it is allowed to send again and when
 the receiver window has opened up. However, since the sender is not
 allowed to transmit messages, the receiver cannot convey the new
 window size by piggybacking it in a response to another message.
 Instead, it needs to inform the sender through another mechanism,
 e.g., by sending a message that contains the new window size.

9.4. Overload Signal-Based Overload Control

 The key idea of overload signal-based overload control is to use the
 transmission of a 503 (Service Unavailable) response as a signal for
 overload in the downstream neighbor. After receiving a 503 (Service
 Unavailable) response, the sender reduces the load forwarded to the
 downstream neighbor to avoid triggering more 503 (Service
 Unavailable) responses. The sender keeps reducing the load if more
 503 (Service Unavailable) responses are received. Note that this
 scheme is based on the use of 503 (Service Unavailable) responses
 without the Retry-After header, as the Retry-After header would
 require a sender to entirely stop forwarding requests. It should
 also be noted that 503 responses can be generated for reasons other
 than overload (e.g., server maintenance).

 A sender that has not received 503 (Service Unavailable) responses
 for a while but is still throttling traffic can start to increase the
 offered load. By slowly increasing the traffic forwarded, a sender
 can detect that overload in the downstream neighbor has been resolved
 and more load can be forwarded. The load is increased until the
 sender receives another 503 (Service Unavailable) response or is
 forwarding all requests it has. A possible algorithm for adjusting
 traffic is additive increase/multiplicative decrease (AIMD).

 Overload signal-based overload control is a sender-based overload
 control mechanism.

9.5. On-/Off Overload Control

 On-/off overload control feedback enables a SIP server to turn the
 traffic it is receiving either on or off. The 503 (Service
 Unavailable) response with a Retry-After header implements on-/off
 overload control. On-/off overload control is less effective in
 controlling load than the fine grained control methods above. All of

Hilt Informational [Page 19]

RFC 6357 Overload Control Design August 2011

 the above methods can realize on-/off overload control, e.g., by
 setting the allowed rate to either zero or unlimited.

10. Implicit Overload Control

 Implicit overload control ensures that the transmission of a SIP
 server is self-limiting. It slows down the transmission rate of a
 sender when there is an indication that the receiving entity is
 experiencing overload. Such an indication can be that the receiving
 entity is not responding within the expected timeframe or is not
 responding at all. The idea of implicit overload control is that
 senders should try to sense overload of a downstream neighbor even if
 there is no explicit overload control feedback. It avoids an
 overloaded server, which has become unable to generate overload
 control feedback, from being overwhelmed with requests.

 Window-based overload control is inherently self-limiting since a
 sender cannot continue to pass messages without receiving
 confirmations. All other explicit overload control schemes described
 above do not have this property and require additional implicit
 controls to limit transmissions in case an overloaded downstream
 neighbor does not generate explicit feedback.

11. Overload Control Algorithms

 An important aspect of the design of an overload control mechanism is
 the overload control algorithm. The control algorithm determines
 when the amount of traffic to a SIP server needs to be decreased and
 when it can be increased. In terms of the model described in Section
 4, the control algorithm takes (S) as an input value and generates
 (T) as a result.

 Overload control algorithms have been studied to a large extent and
 many different overload control algorithms exist. With many
 different overload control algorithms available, it seems reasonable
 to suggest a baseline algorithm in a specification for a SIP overload
 control mechanism and allow the use of other algorithms if they
 provide the same protocol semantics. This will also allow the
 development of future algorithms, which may lead to better
 performance. Conversely, the overload control mechanism should allow
 the use of different algorithms if they adhere to the defined
 protocol semantics.

Hilt Informational [Page 20]

RFC 6357 Overload Control Design August 2011

12. Message Prioritization

 Overload control can require a SIP server to prioritize requests and
 select requests to be rejected or redirected. The selection is
 largely a matter of local policy of the SIP server, the overall
 network, and the services the SIP server provides.

 While there are many factors that can affect the prioritization of
 SIP requests, the Resource-Priority Header (RPH) field [RFC4412] is a
 prime candidate for marking the prioritization of SIP requests.
 Depending on the particular network and the services it offers, a
 particular namespace and priority value in the RPH could indicate i)
 a high priority request, which should be preserved if possible during
 overload, ii) a low priority request, which should be dropped during
 overload, or iii) a label, which has no impact on message
 prioritization in this network.

 For a number of reasons, responses should not be targeted in order to
 reduce SIP server load. Responses cannot be rejected and would have
 to be dropped. This triggers the retransmission of the request plus
 the response, leading to even more load. In addition, the request
 associated with a response has already been processed and dropping
 the response will waste the efforts that have been spent on the
 request. Most importantly, rejecting a request effectively also
 removes the request and the response. If no requests are passed
 along, there will be no responses coming back in return.

 Overload control does not change the retransmission behavior of SIP.
 Retransmissions are triggered using procedures defined in RFC 3261
 [RFC3261] and are not subject to throttling.

13. Operational Considerations

 In addition to the design considerations discussed above,
 implementations of a SIP overload control mechanism need to take the
 following operational aspects into consideration. These aspects,
 while important, are out of scope for this document and are left for
 further discussion in other documents.

 Selection of feedback type: A SIP overload control mechanism can
 support one or multiple types of explicit overload control
 feedback. Using a single type of feedback (e.g., loss-based
 feedback) has the advantage of simplifying the protocol and
 implementations. Supporting multiple types of feedback (e.g.,
 loss- and rate-based feedback) provides more flexibility; however,
 it requires a way to select the feedback type used between two
 servers.

Hilt Informational [Page 21]

RFC 6357 Overload Control Design August 2011

 Event reporting: Overload is a serious condition for any network of
 SIP servers, even if it is handled properly by an overload control
 mechanism. Overload events should therefore be reported by a SIP
 server, e.g., through a logging or management interface.

14. Security Considerations

 This document presents an overview of several overload control
 feedback mechanisms. These mechanisms and design consideration are
 presented as input to other documents that will specify a particular
 feedback mechanism. Specific security measures pertinent to a
 particular overload feedback mechanism will be discussed in the
 context of a document specifying that security mechanism. However,
 there are common security considerations that must be taken into
 account regardless of the choice of a final mechanism.

 First, the rate-based mechanism surveyed in Section 9.1 allocates a
 fixed portion of the total inbound traffic of a server to each of its
 upstream neighbors. Consequently, an attacker can introduce a new
 upstream server for a short duration, causing the overloaded server
 to lower the proportional traffic rate to all other existing servers.
 Introducing many such short-lived servers will cause the aggregate
 rate arriving at the overloaded server to decrease substantially,
 thereby affecting a reduction in the service offered by the server
 under attack and leading to a denial-of-service attack [RFC4732].

 The same problem exists in the windows-based mechanism discussed in
 Section 9.3; however, because of the window acknowledgments sent by
 the overloaded server, the effect is not as drastic (an attacker will
 have to expend resources by constantly sending traffic to keep the
 receiver window full).

 All mechanisms assume that the upstream neighbors of an overloaded
 server follow the feedback received. In the rate- and window-based
 mechanisms, a server can directly verify if upstream neighbors follow
 the requested policies. As the loss-based mechanism described in
 Section 9.2 requires upstream neighbors to reduce traffic by a
 fraction and the current offered load in the upstream neighbor is
 unknown, a server cannot directly verify the compliance of upstream
 neighbors, except when traffic reduction is set to 100%. In this
 case, a server has to rely on heuristics to identify upstream
 neighbors that try to gain an advantage by not reducing load or not
 reducing it at the requested loss-rate. A policing mechanism can be
 used to throttle or block traffic from unfair or malicious upstream
 neighbors. Barring such a widespread policing mechanism, the
 communication link between the upstream neighbors and the overloaded
 server should be such that the identity of both the servers at the
 end of each link can be established and logged. The use of Transport

Hilt Informational [Page 22]

RFC 6357 Overload Control Design August 2011

 Layer Security (TLS) and mutual authentication of upstream neighbors
 [RFC3261] [RFC5922] can be used for this purpose.

 If an attacker controls a server, he or she may maliciously advertise
 overload feedback to all of the neighbors of the server, even if the
 server is not experiencing overload. This will have the effect of
 forcing all of the upstream neighbors to reject or queue messages
 arriving to them and destined for the apparently overloaded server
 (this, in essence, is diminishing the serving capacity of the
 upstream neighbors since they now have to deal with their normal
 traffic in addition to rejecting or quarantining the traffic destined
 to the overloaded server). All mechanisms allow the attacker to
 advertise a capacity of 0, effectively disabling all traffic destined
 to the server pretending to be in overload and forcing all the
 upstream neighbors to expend resources dealing with this condition.

 As before, a remedy for this is to use a communication link such that
 the identity of the servers at both ends of the link is established
 and logged. The use of TLS and mutual authentication of neighbors
 [RFC3261] [RFC5922] can be used for this purpose.

 If an attacker controls several servers of a load-balanced cluster,
 he or she may maliciously advertise overload feedback from these
 servers to all senders. Senders with the policy to redirect traffic
 that cannot be processed by an overloaded server will start to
 redirect this traffic to the servers that have not reported overload.
 This attack can be used to create a denial-of-service attack on these
 servers. If these servers are compromised, the attack can be used to
 increase the amount of traffic that is passed through the compromised
 servers. This attack is ineffective if servers reject traffic based
 on overload feedback instead of redirecting it.

15. Informative References

 [Abdelal] Abdelal, A. and W. Matragi, "Signal-Based Overload
 Control for SIP Servers", 7th Annual IEEE Consumer
 Communications and Networking Conference (CCNC-10), Las
 Vegas, Nevada, USA, January 2010.

 [Hilt] Hilt, V. and I. Widjaja, "Controlling overload in
 networks of SIP servers", IEEE International Conference
 on Network Protocols (ICNP’08), Orlando, Florida, October
 2008.

Hilt Informational [Page 23]

RFC 6357 Overload Control Design August 2011

 [Noel] Noel, E. and C. Johnson, "Novel Overload Controls for SIP
 Networks", International Teletraffic Congress (ITC 21),
 Paris, France, September 2009.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC4412] Schulzrinne, H. and J. Polk, "Communications Resource
 Priority for the Session Initiation Protocol (SIP)", RFC
 4412, February 2006.

 [RFC4732] Handley, M., Rescorla, E., and IAB, "Internet Denial-of-
 Service Considerations", RFC 4732, December 2006.

 [RFC5390] Rosenberg, J., "Requirements for Management of Overload
 in the Session Initiation Protocol", RFC 5390, December
 2008.

 [RFC5922] Gurbani, V., Lawrence, S., and A. Jeffrey, "Domain
 Certificates in the Session Initiation Protocol (SIP)",
 RFC 5922, June 2010.

 [Shen] Shen, C., Schulzrinne, H., and E. Nahum, "Session
 Initiation Protocol (SIP) Server Overload Control: Design
 and Evaluation, Principles", Systems and Applications of
 IP Telecommunications (IPTComm’08), Heidelberg, Germany,
 July 2008.

Hilt Informational [Page 24]

RFC 6357 Overload Control Design August 2011

Appendix A. Contributors

 Many thanks for the contributions, comments, and feedback on this
 document to: Mary Barnes (Nortel), Janet Gunn (CSC), Carolyn Johnson
 (AT&T Labs), Paul Kyzivat (Cisco), Daryl Malas (CableLabs), Tom
 Phelan (Sonus Networks), Jonathan Rosenberg (Cisco), Henning
 Schulzrinne (Columbia University), Robert Sparks (Tekelec), Nick
 Stewart (British Telecommunications plc), Rich Terpstra (Level 3),
 Fangzhe Chang (Bell Labs/Alcatel-Lucent).

Authors’ Addresses

 Volker Hilt
 Bell Labs/Alcatel-Lucent
 791 Holmdel-Keyport Rd
 Holmdel, NJ 07733
 USA

 EMail: volker.hilt@alcatel-lucent.com

 Eric Noel
 AT&T Labs

 EMail: eric.noel@att.com

 Charles Shen
 Columbia University

 EMail: charles@cs.columbia.edu

 Ahmed Abdelal
 Sonus Networks

 EMail: aabdelal@sonusnet.com

Hilt Informational [Page 25]

