
Network Working Group M. Thomson
Request for Comments: 5573 Andrew
Category: Experimental June 2009

Asynchronous Channels for the Blocks Extensible Exchange Protocol (BEEP)

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 The Blocks Extensible Exchange Protocol (BEEP) provides a protocol
 framework for the development of application protocols. This
 document describes a BEEP feature that enables asynchrony for
 individual channels.

Table of Contents

 1. Introduction ..2
 2. Asynchronous BEEP Channels3
 2.1. Asynchronous Feature3
 2.2. Starting an Asynchronous Channel4
 2.3. Asynchronous Channel Behavior5
 2.4. Error Handling ...6
 3. Alternatives ..6
 3.1. Increasing Throughput6
 3.2. Asynchrony in the Application Protocol7
 4. Security Considerations ...7
 5. IANA Considerations ...8
 6. References ..8
 6.1. Normative References8
 6.2. Informative References8

Thomson Experimental [Page 1]

RFC 5573 Asynchronous BEEP Channels June 2009

1. Introduction

 The Blocks Extensible Exchange Protocol (BEEP) provides a protocol
 framework that manages many of the aspects necessary in developing an
 application protocol: framing, encoding, privacy, authentication, and
 asynchrony. However, the asynchrony provided by BEEP is limited to
 asynchrony between channels; replies to messages sent on any channel
 are strictly ordered.

 Serial processing behavior is desirable for a range of applications.
 However, serial processing is less suitable for applications that
 rely more heavily on asynchrony. In particular, if a response takes
 a significant amount of time to create, the channel is effectively
 blocked until the request has been processed and the response sent.
 Pipelining only ensures that network latency does not add to this
 time; subsequent requests cannot be processed until a response is
 made to the first request.

 Asynchronous applications require a protocol that is able to support
 a large number of concurrent outstanding requests. The analogy of a
 channel as a thread does not scale to the large number of threads
 used in modern systems. Modern applications regularly have large
 numbers of concurrent processing threads. Thus, a better way of
 multiplexing large numbers of concurrent requests is required.

 This document describes a BEEP feature, an extension to BEEP, that
 enables the creation of an asynchronous channel. An asynchronous
 channel is a channel where response ordering is not fixed to the
 order of the requests sent by the client peer. An asynchronous
 channel is identical to other channels, using unmodified framing;
 except that requests may be processed in parallel and responses may
 be sent in any order.

 An asynchronous channel enables the efficient use of a single channel
 for multiple concurrent requests. There is no impact on requests
 arising from the timing of responses to other requests. The
 requesting peer can process responses to the requests it sends as
 they come available; similarly, the serving peer can take advantage
 of parallel processing without artificial constraints on the order of
 responses.

 Asynchronous channels allow for greater throughput where the serving
 peer requires any time to process requests. This is particularly
 relevant where the serving peer needs to perform lengthy computations
 or make network-based requests as a part of servicing the request.

Thomson Experimental [Page 2]

RFC 5573 Asynchronous BEEP Channels June 2009

 BEEP feature negotiation is used to ensure that both peers are
 mutually willing to create asynchronous channels. A means for
 establishing an asynchronous channel is described.

 This document is published as an Experimental RFC in order to find
 out whether the extension is going to be deployed for use in a
 variety of use cases and applications.

2. Asynchronous BEEP Channels

 This document defines a BEEP feature that enables the use of
 asynchronous channels. An asynchronous channel is a BEEP channel
 that is not subject to the restrictions of Section 2.6.1 of [RFC3080]
 regarding ordering of responses; requests can be processed and
 responded to in any order by the serving peer.

 Asynchronous channels use the "msgno" element of the BEEP frame
 header to correlate request and response. Regular BEEP channels do
 not use "msgno" for request/response correlation, contrary to what
 might be inferred by the presence of the parameter. In a regular
 BEEP channel, the "msgno" only serves as a means of checking for
 protocol errors.

 Asynchronous channels are not suitable for applications where state
 established by requests is relied upon in subsequent requests or the
 ordering of messages is significant.

2.1. Asynchronous Feature

 The "feature" attribute in the BEEP greeting contains a whitespace-
 separated list of features supported by each peer. If both lists
 contain the same feature, that feature may be used by either peer.

 This document registers the feature "async". If either peer does not
 include this feature in the greeting message, neither peer is able to
 create an asynchronous channel.

 Figure 1 shows an example exchange where both peers declare
 willingness to use this feature.

Thomson Experimental [Page 3]

RFC 5573 Asynchronous BEEP Channels June 2009

 L: <wait for incoming connection>
 I: <open connection>
 L: RPY 0 0 . 0 133
 L: Content-Type: application/beep+xml
 L:
 L: <greeting features="async x-foo">
 L: <profile uri="http://example.com/beep/APP" />
 L: </greeting>
 L: END
 I: RPY 0 0 . 0 69
 I: Content-Type: application/beep+xml
 I:
 I: <greeting features="async" />
 I: END

 Figure 1: BEEP Greetings with Asynchronous Feature

 The registration template for BEEP features is included in Section 5.

2.2. Starting an Asynchronous Channel

 To create an asynchronous channel, an "async" parameter set to "true"
 is included in the "start" request. If omitted, or set to "false",
 the channel is not asynchronous.

 Figure 2 shows how the "async" attribute can be used to start an
 asynchronous channel.

 C: MSG 0 1 . 52 130
 C: Content-Type: application/beep+xml
 C:
 C: <start number="1" async="true">
 C: <profile uri="http://example.org/protocol"/>
 C: </start>
 C: END
 S: RPY 0 1 . 221 102
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri="http://example.org/protocol"/>
 S: END

 Figure 2: Asynchronous Channel Start

 If the serving peer is unable to create an asynchronous channel for
 any reason, the channel start is rejected. This could occur if the
 selected profile is not suitable for an asynchronous channel. The
 response can include the "553" response code (parameter invalid) and
 an appropriate message, as shown in Figure 3.

Thomson Experimental [Page 4]

RFC 5573 Asynchronous BEEP Channels June 2009

 C: MSG 0 1 . 52 128
 C: Content-Type: application/beep+xml
 C:
 C: <start number="1" async="true">
 C: <profile uri="http://example.org/serial"/>
 C: </start>
 C: END
 S: ERR 0 1 . 221 152
 S: Content-Type: application/beep+xml
 S:
 S: <error code="553">Profile <http://example.org/serial>
 S: cannot be used for asynchronous channels.</error>
 S: END

 Figure 3: Asynchronous Channel Start Error

2.3. Asynchronous Channel Behavior

 Asynchronous channels differ from normal BEEP channels in one way
 only: an asynchronous channel is not subject to the restrictions in
 Section 2.6.1 of [RFC3080] regarding the processing and response
 ordering. A peer in the serving role may process and respond to
 requests in any order it chooses.

 In an asynchronous channel, the "msgno" element of the frame header
 is used to correlate request and response. A BEEP peer receiving
 responses in a different order than the requests that triggered them
 must not regard this as a protocol error.

 "MSG" messages sent on an asynchronous channel may be processed in
 parallel by the serving peer. Responses ("RPY", "ANS", "NUL", or
 "ERR" messages) can be sent in any order. Different "ANS" messages
 that are sent in a one-to-many exchange may be interleaved with
 responses to other "MSG" messages.

 An asynchronous channel must still observe the rules in [RFC3080]
 regarding segmented messages. Each message must be completed before
 any other message can be sent on that same channel.

 Note: An exception to this rule is made in [RFC3080] for interleaved
 "ANS" segments sent in response to the same "MSG". It is
 recommended that BEEP peers do not generate interleaved ANS
 segments.

 The BEEP management channel (channel 0) is never asynchronous.

Thomson Experimental [Page 5]

RFC 5573 Asynchronous BEEP Channels June 2009

2.4. Error Handling

 BEEP does not provide any mechanism for managing a peer that does not
 respond to a request. Synchronous channels cannot be used or even
 closed if a peer does not provide a response to a request. The only
 remedy available is closing the underlying transport. While an
 asynchronous channel cannot be closed, it can still be used for
 further requests. However, any outstanding request still consumes
 state resources. Client peers may dispose of such state after a
 configured interval, but must be prepared to discard unrecognized
 responses if they do so.

3. Alternatives

 The option presented in this document provides for asynchronous
 communication. Asynchronous channels might not be applicable in
 every circumstance, particularly where ordering of requests is
 significant. Depending on application protocol requirements, the
 alternatives discussed in this section could be more applicable.

3.1. Increasing Throughput

 In some cases, asynchronous channels can be used to remove
 limitations on message processing throughput. Alternatively,
 pipelining of requests can increase throughput significantly where
 network latency is the limiting factor. Spreading requests over
 several channels increases overall throughput, if throughput is the
 only consideration.

 Note: Be wary of false optimizations that rely on the pipelining of
 requests. If later requests in a series of pipelined requests
 rely on state established by earlier requests, errors in earlier
 requests could invalidate later requests.

 The flow control window used in the TCP mapping [RFC3081] can
 introduce a limiting factor in throughput for individual channels.
 Choice of TCP window size similarly limits throughput, see [RFC1323].
 To avoid limitations introduced by flow control, receiving peers can
 increase the window size used; sending peers can open additional
 channels with the same profile. Correctly managing flow control also
 applies to asynchronous channels.

Thomson Experimental [Page 6]

RFC 5573 Asynchronous BEEP Channels June 2009

3.2. Asynchrony in the Application Protocol

 With changes to the application protocol, serial channels can be used
 for asynchronous exchanges. Asynchrony can be provided at a protocol
 layer above BEEP by separating request and response. This requires
 the addition of proprietary MIME headers or modifications to the
 application protocol.

 The serving peer provides an immediate "RPY" (or "NUL") response to
 requests. This frees the channel for further requests. The actual
 response is sent as a separate "MSG" using a special identifier
 included in the original request to correlate the response with the
 request. This second "MSG" can be sent on the same channel (since
 these are full duplex) or on a channel specifically created for this
 purpose.

 This method is not favored since it requires that the application
 protocol solve the problem of correlating request with response.
 BEEP aims to provide a general framework for the creation of an
 application protocol, and for it to not provide request/response
 correlation would limit its usefulness. Using a MIME header is also
 possible, but using "msgno" is the most elegant solution.

4. Security Considerations

 Enabling asynchronous messaging for a channel potentially requires
 the maintenance of additional state information. A peer in the
 server role that does not reply to messages can cause the
 accumulation of state at the client peer. If this state information
 were not limited, this mode could be used to perform denial of
 service. This problem, while already present in BEEP, is potentially
 more significant due to the nature of the processing on the serving
 peer that might occur for requests received on an asynchronous
 channel. The extent to which denial is possible is limited by what a
 serving peer accepts; the number of outstanding requests can be
 restricted to protect against excessive accumulation of state.

 A client peer maintains state for each request that it sends. A
 client peer should enforce a configurable limit on the number of
 requests that it will allow to be outstanding at any time. This
 limit could be enforced at channel, connection, or application scope.
 Once this limit is reached, the client peer might prevent or block
 further requests from been generated.

 Peers that serve requests on asynchronous channels also accumulate
 state when a request is accepted for processing. Peers in the
 serving role may similarly limit to the number of requests that are
 processed concurrently. Once this limit is reached the receiving

Thomson Experimental [Page 7]

RFC 5573 Asynchronous BEEP Channels June 2009

 peer can either stop reading new requests, or might start rejecting
 such requests by generating error responses. Alternatively, the flow
 control [RFC3081] can be used; "SEQ" frames can be suppressed,
 allowing the flow control window to close and preventing the receipt
 of further requests.

5. IANA Considerations

 This section registers the BEEP "async" feature in the BEEP
 parameters registry, following the template from Section 5.2 of
 [RFC3080].

 Feature Identification: async

 Feature Semantics: This feature enables the creation of asynchronous
 channels, see Section 2 of RFC 5573.

 Contact Information: Martin Thomson <martin.thomson@andrew.com>

6. References

6.1. Normative References

 [RFC3080] Rose, M., "The Blocks Extensible Exchange Protocol Core",
 RFC 3080, March 2001.

6.2. Informative References

 [RFC3081] Rose, M., "Mapping the BEEP Core onto TCP", RFC 3081,
 March 2001.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

Author’s Address

 Martin Thomson
 Andrew
 PO Box U40
 Wollongong University Campus, NSW 2500
 AU

 Phone: +61 2 4221 2915
 EMail: martin.thomson@andrew.com
 URI: http://www.andrew.com/

Thomson Experimental [Page 8]

